Science.gov

Sample records for intracellular survival mechanisms

  1. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival.

    PubMed

    Zaragoza, Oscar; Chrisman, Cara J; Castelli, Maria Victoria; Frases, Susana; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2008-10-01

    Cryptococcus neoformans is a facultative intracellular pathogen. The most distinctive feature of C. neoformans is a polysaccharide capsule that enlarges depending on environmental stimuli. The mechanism by which C. neoformans avoids killing during phagocytosis is unknown. We hypothesized that capsule growth conferred resistance to microbicidal molecules produced by the host during infection, particularly during phagocytosis. We observed that capsule enlargement conferred resistance to reactive oxygen species produced by H(2)O(2) that was not associated with a higher catalase activity, suggesting a new function for the capsule as a scavenger of reactive oxidative intermediates. Soluble capsular polysaccharide protected C. neoformans and Saccharomyces cerevisiae from killing by H(2)O(2). Acapsular mutants had higher susceptibility to free radicals. Capsular polysaccharide acted as an antioxidant in the nitroblue tetrazolium (NBT) reduction coupled to beta-nicotinamide adenine dinucleotide (NADH)/phenazine methosulfate (PMS) assay. Capsule enlargement conferred resistance to antimicrobial peptides and the antifungal drug Amphotericin B. Interestingly, the capsule had no effect on susceptibility to azoles and increased susceptibility to fluconazole. Capsule enlargement reduced phagocytosis by environmental predators, although we also noticed that in this system, starvation of C. neoformans cells produced resistance to phagocytosis. Our results suggest that capsular enlargement is a mechanism that enhances C. neoformans survival when ingested by phagocytic cells.

  2. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival

    PubMed Central

    Zaragoza, Oscar; Chrisman, Cara J.; Castelli, Maria Victoria; Frases, Susana; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2015-01-01

    Summary Cryptococcus neoformans is a facultative intracellular pathogen. The most distinctive feature of C. neoformans is a polysaccharide capsule that enlarges depending on environmental stimuli. The mechanism by which C. neoformans avoids killing during phagocytosis is unknown. We hypothesized that capsule growth conferred resistance to microbicidal molecules produced by the host during infection, particularly during phagocytosis. We observed that capsule enlargement conferred resistance to reactive oxygen species produced by H2O2 that was not associated with a higher catalase activity, suggesting a new function for the capsule as a scavenger of reactive oxidative intermediates. Soluble capsular polysaccharide protected C. neoformans and Saccharomyces cerevisiae from killing by H2O2. Acapsular mutants had higher susceptibility to free radicals. Capsular polysaccharide acted as an antioxidant in the nitroblue tetrazolium (NBT) reduction coupled to β-nicotinamide adenine dinucleotide (NADH)/phenazine methosulfate (PMS) assay. Capsule enlargement conferred resistance to antimicrobial peptides and the antifungal drug Amphotericin B. Interestingly, the capsule had no effect on susceptibility to azoles and increased susceptibility to fluconazole. Capsule enlargement reduced phagocytosis by environmental predators, although we also noticed that in this system, starvation of C. neoformans cells produced resistance to phagocytosis. Our results suggest that capsular enlargement is a mechanism that enhances C. neoformans survival when ingested by phagocytic cells. PMID:18554313

  3. Invasion and Intracellular Survival by Protozoan Parasites

    PubMed Central

    Sibley, L. David

    2013-01-01

    Summary Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a nonfusigenic vacuole (e.g. Toxoplasma, Encephalitizoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunological responses and thereby prevent disease. PMID:21349087

  4. Strategies for Intracellular Survival of Burkholderia pseudomallei

    PubMed Central

    Allwood, Elizabeth M.; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  5. Mechanism of Asp24 Upregulation in Brucella abortus Rough Mutant with a Disrupted O-Antigen Export System and Effect of Asp24 in Bacterial Intracellular Survival

    PubMed Central

    Tian, Mingxing; Qu, Jing; Han, Xiangan; Ding, Chan; Wang, Shaohui; Peng, Daxin

    2014-01-01

    We previously showed that Brucella abortus rough mutant strain 2308 ΔATP (called the ΔrfbE mutant in this study) exhibits reduced intracellular survival in RAW264.7 cells and attenuated persistence in BALB/c mice. In this study, we performed microarray analysis to detect genes with differential expression between the ΔrfbE mutant and wild-type strain S2308. Interestingly, acid shock protein 24 gene (asp24) expression was significantly upregulated in the ΔrfbE mutant compared to S2308, as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Further studies using additional strains indicated that the upregulation of asp24 occurred only in rough mutants with disrupted O-antigen export system components, including the ATP-binding protein gene rfbE (bab1_0542) and the permease gene rfbD (bab1_0543), while the ΔwboA rough mutant (which lacks an O-antigen synthesis-related glycosyltransferase) and the RB51 strain (a vaccine strain with the rough phenotype) showed no significant changes in asp24 expression compared to S2308. In addition, abolishing the intracellular O-antigen synthesis of the ΔrfbE mutant by deleting the wboA gene (thereby creating the ΔrfbE ΔwboA double-knockout strain) recovered asp24 expression. These results indicated that asp24 upregulation is associated with intracellular O-antigen synthesis and accumulation but not with the bacterial rough phenotype. Further studies indicated that asp24 upregulation in the ΔrfbE mutant was associated neither with bacterial adherence and invasion nor with cellular necrosis on RAW264.7 macrophages. However, proper expression of the asp24 gene favors intracellular survival of Brucella in RAW264.7 cells and HeLa cells during an infection. This study reveals a novel mechanism for asp24 upregulation in B. abortus mutants. PMID:24752516

  6. Mechanism of Asp24 upregulation in Brucella abortus rough mutant with a disrupted O-antigen export system and effect of Asp24 in bacterial intracellular survival.

    PubMed

    Tian, Mingxing; Qu, Jing; Han, Xiangan; Ding, Chan; Wang, Shaohui; Peng, Daxin; Yu, Shengqing

    2014-07-01

    We previously showed that Brucella abortus rough mutant strain 2308 ΔATP (called the ΔrfbE mutant in this study) exhibits reduced intracellular survival in RAW264.7 cells and attenuated persistence in BALB/c mice. In this study, we performed microarray analysis to detect genes with differential expression between the ΔrfbE mutant and wild-type strain S2308. Interestingly, acid shock protein 24 gene (asp24) expression was significantly upregulated in the ΔrfbE mutant compared to S2308, as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Further studies using additional strains indicated that the upregulation of asp24 occurred only in rough mutants with disrupted O-antigen export system components, including the ATP-binding protein gene rfbE (bab1_0542) and the permease gene rfbD (bab1_0543), while the ΔwboA rough mutant (which lacks an O-antigen synthesis-related glycosyltransferase) and the RB51 strain (a vaccine strain with the rough phenotype) showed no significant changes in asp24 expression compared to S2308. In addition, abolishing the intracellular O-antigen synthesis of the ΔrfbE mutant by deleting the wboA gene (thereby creating the ΔrfbE ΔwboA double-knockout strain) recovered asp24 expression. These results indicated that asp24 upregulation is associated with intracellular O-antigen synthesis and accumulation but not with the bacterial rough phenotype. Further studies indicated that asp24 upregulation in the ΔrfbE mutant was associated neither with bacterial adherence and invasion nor with cellular necrosis on RAW264.7 macrophages. However, proper expression of the asp24 gene favors intracellular survival of Brucella in RAW264.7 cells and HeLa cells during an infection. This study reveals a novel mechanism for asp24 upregulation in B. abortus mutants.

  7. Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression.

    PubMed

    Dentice, Monica; Ambrosio, Raffaele; Damiano, Valentina; Sibilio, Annarita; Luongo, Cristina; Guardiola, Ombretta; Yennek, Siham; Zordan, Paola; Minchiotti, Gabriella; Colao, Annamaria; Marsili, Alessandro; Brunelli, Silvia; Del Vecchio, Luigi; Larsen, P Reed; Tajbakhsh, Shahragim; Salvatore, Domenico

    2014-12-01

    Precise control of the thyroid hormone (T3)-dependent transcriptional program is required by multiple cell systems, including muscle stem cells. Deciphering how this is achieved and how the T3 signal is controlled in stem cell niches is essentially unknown. We report that in response to proliferative stimuli such as acute skeletal muscle injury, type 3 deiodinase (D3), the thyroid hormone-inactivating enzyme, is induced in satellite cells where it reduces intracellular thyroid signaling. Satellite cell-specific genetic ablation of dio3 severely impairs skeletal muscle regeneration. This impairment is due to massive satellite cell apoptosis caused by exposure of activated satellite cells to the circulating TH. The execution of this proapoptotic program requires an intact FoxO3/MyoD axis, both genes positively regulated by intracellular TH. Thus, D3 is dynamically exploited in vivo to chronically attenuate TH signaling under basal conditions while also being available to acutely increase gene programs required for satellite cell lineage progression.

  8. A transcriptomic analysis of Yersinia enterocolitica biovar 1B infecting murine macrophages reveals new mechanisms of intracellular survival

    SciTech Connect

    Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; LaBauve, Annette E.; Sinha, Anupama; Curtis, Deanna Joy; House, Samantha E.; Tew, Karen E.; Hamblin, Rachelle Y.; Williams, Kelly Porter; Branda, Steven S.; Young, Glenn M.; Meagher, Robert J.

    2015-04-20

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.

  9. Intracellular Inactivation of Thyroid Hormone Is a Survival Mechanism for Muscle Stem Cell Proliferation and Lineage Progression

    PubMed Central

    Dentice, Monica; Ambrosio, Raffaele; Damiano, Valentina; Sibilio, Annarita; Luongo, Cristina; Guardiola, Ombretta; Yennek, Siham; Zordan, Paola; Minchiotti, Gabriella; Colao, Annamaria; Marsili, Alessandro; Brunelli, Silvia; Del Vecchio, Luigi; Larsen, P. Reed; Tajbakhsh, Shahragim; Salvatore, Domenico

    2014-01-01

    Summary Precise control of the thyroid hormone (T3)-dependent transcriptional program is required by multiple cell systems, including muscle stem cells. Deciphering how this is achieved and how the T3 signal is controlled in stem cell niches is essentially unknown. We report that in response to proliferative stimuli such as acute skeletal muscle injury, type 3 deiodinase (D3), the thyroid hormone-inactivating enzyme, is induced in satellite cells where it reduces intracellular thyroid signaling. Satellite cell-specific genetic ablation of dio3 severely impairs skeletal muscle regeneration. This impairment is due to massive satellite cell apoptosis caused by exposure of activated satellite cells to the circulating TH. The execution of this proapoptotic program requires an intact FoxO3/MyoD axis, both genes positively regulated by intracellular TH. Thus, D3 is dynamically exploited in vivo to chronically attenuate TH signaling under basal conditions while also being available to acutely increase gene programs required for satellite cell lineage progression. PMID:25456740

  10. A transcriptomic analysis of Yersinia enterocolitica biovar 1B infecting murine macrophages reveals new mechanisms of intracellular survival

    DOE PAGES

    Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; LaBauve, Annette E.; Sinha, Anupama; Curtis, Deanna Joy; House, Samantha E.; Tew, Karen E.; Hamblin, Rachelle Y.; Williams, Kelly Porter; et al

    2015-04-20

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish amore » baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.« less

  11. Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival

    PubMed Central

    Poorey, Kunal; Brazel, David M.; LaBauve, Annette E.; Sinha, Anupama; Curtis, Deanna J.; House, Samantha E.; Tew, Karen E.; Hamblin, Rachelle Y.; Williams, Kelly P.; Branda, Steven S.; Young, Glenn M.

    2015-01-01

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies. PMID:25895974

  12. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  13. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  14. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival.

    PubMed

    Lamberti, Yanina; Gorgojo, Juan; Massillo, Cintia; Rodriguez, Maria E

    2013-12-01

    Bordetella pertussis is the causative agent of pertussis, aka whooping cough. Although generally considered an extracellular pathogen, this bacterium has been found inside respiratory epithelial cells, which might represent a survival strategy inside the host. Relatively little is known, however, about the mechanism of internalization and the fate of B. pertussis inside the epithelia. We show here that B. pertussis is able to enter those cells by a mechanism dependent on microtubule assembly, lipid raft integrity, and the activation of a tyrosine-kinase-mediated signaling. Once inside the cell, a significant proportion of the intracellular bacteria evade phagolysosomal fusion and remain viable in nonacidic lysosome-associated membrane-protein-1-negative compartments. In addition, intracellular B. pertussis was found able to repopulate the extracellular environment after complete elimination of the extracellular bacteria with polymyxin B. Taken together, these data suggest that B. pertussis is able to survive within respiratory epithelial cells and by this means potentially contribute to host immune system evasion.

  15. Mechanisms of intracellular ice formation.

    PubMed Central

    Muldrew, K; McGann, L E

    1990-01-01

    The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling. PMID:2306499

  16. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus

    PubMed Central

    Sharma, Onkar; O’Seaghdha, Maghnus; Velarde, Jorge J.; Wessels, Michael R.

    2016-01-01

    A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS) has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase). When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO), and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase) that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells. PMID:26938870

  17. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  18. Intracellular calcium and survival of tadpole forebrain cells in anoxia.

    PubMed

    Hedrick, Michael S; Fahlman, Christian S; Bickler, Philip E

    2005-02-01

    The frog brain survives hypoxia with a slow loss of energy charge and ion homeostasis. Because hypoxic death in most neurons is associated with increases in intracellular calcium ([Ca2+]i), we examined the relationship between [Ca2+]i and survival of a mixed population of isolated cells from the forebrain of North American bullfrog Rana catesbeiana tadpoles. Forebrain cells from stage V-XV tadpoles were isolated by enzymatic digestion and loaded with one of three different calcium indicators (Fura-2, Fura 2-FF and BTC) to provide estimates of [Ca2+]i accurate at low and high [Ca2+]i. Propidium iodide (PI) fluorescence was used as an indicator of cell viability. Cells were exposed to anoxia (100% N2) and measurements of [Ca2+]i and cell survival made from 1 h to 18 h. Intracellular [Ca2+] increased significantly after 3-6 h anoxia (P<0.05), regardless of the type of Ca2+ indicator used; however, there were substantial differences in the measurements of [Ca2+]i with the different indicators, reflecting their varying affinities for Ca2+. Resting [Ca2+]i was approximately 50 nmol l(-1) and increased to about 9-30 micromol l(-1) after 4-6 h anoxia. The significant increase in [Ca2+]i during anoxia was not associated with significant increases in cell death, with 85-95% survival over this time period. Cells exposed to anoxia for 18 h, or those made anoxic for 4-6 and reoxygenated for 12 h to 16 h, had survival rates greater than 70%, but survival was significantly less than normoxic controls. These results indicate that large increases in [Ca2+]i are not necessarily associated with hypoxic cell death in vertebrate brain cells. PMID:15695760

  19. The role of TREM-2 in internalization and intracellular survival of Brucella abortus in murine macrophages.

    PubMed

    Wei, Pan; Lu, Qiang; Cui, Guimei; Guan, Zhenhong; Yang, Li; Sun, Changjiang; Sun, Wanchun; Peng, Qisheng

    2015-02-15

    Triggering receptor expressed on myeloid cells-2 (TREM-2) is a cell surface receptor primarily expressed on macrophages and dendritic cells. TREM-2 functions as a phagocytic receptor for bacteria as well as an inhibitor of Toll like receptors (TLR) induced inflammatory cytokines. However, the role of TREM-2 in Brucella intracellular growth remains unknown. To investigate whether TREM-2 is involved in Brucella intracellular survival, we chose bone marrow derived macrophages (BMDMs), in which TREM-2 is stably expressed, as cell model. Colony formation Units (CFUs) assay suggests that TREM-2 is involved in the internalization of Brucella abortus (B. abortus) by macrophages, while silencing of TREM-2 decreases intracellular survival of B. abortus. To further study the underlying mechanisms of TREM-2-mediated bacterial intracellular survival, we examined the activation of B. abortus-infected macrophages through determining the kinetics of activation of the three MAPKs, including ERK, JNK and p38, and measuring TNFα production in response to lipopolysaccharide (LPS) of Brucella (BrLPS) or B. abortus stimulation. Our data show that TREM-2 deficiency promotes activation of Brucella-infected macrophages. Moreover, our data also demonstrate that macrophage activation promotes killing of Brucella by enhancing nitric oxygen (NO), but not reactive oxygen species (ROS) production, macrophage apoptosis or cellular death. Taken together, these findings provide a novel interpretation of Brucella intracellular growth through inhibition of NO production produced by TREM-2-mediated activated macrophages.

  20. Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection.

    PubMed

    Bendor, Liron; Weyrich, Laura S; Linz, Bodo; Rolin, Olivier Y; Taylor, Dawn L; Goodfield, Laura L; Smallridge, William E; Kennett, Mary J; Harvill, Eric T

    2015-01-01

    The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease. PMID:26485303

  1. Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection.

    PubMed

    Bendor, Liron; Weyrich, Laura S; Linz, Bodo; Rolin, Olivier Y; Taylor, Dawn L; Goodfield, Laura L; Smallridge, William E; Kennett, Mary J; Harvill, Eric T

    2015-01-01

    The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease.

  2. Traumatic brain injury causes a long-lasting calcium (Ca2+)-plateau of elevated intracellular Ca levels and altered Ca2+ homeostatic mechanisms in hippocampal neurons surviving brain injury

    PubMed Central

    Sun, David A.; Deshpande, Laxmikant S.; Sombati, Sompong; Baranova, Anya; Wilson, Margaret S.; Hamm, Robert J.; DeLorenzo, Robert J.

    2008-01-01

    Traumatic brain injury (TBI) survivors often suffer chronically from significant morbidity associated with cognitive deficits, behavioral difficulties and a post-traumatic syndrome and thus it is important to understand the pathophysiology of these long-term plasticity changes after TBI. Calcium (Ca2+) has been implicated in the pathophysiology of TBI-induced neuronal death and other forms of brain injury including stroke and status epilepticus. However, the potential role of long-term changes in neuronal Ca2+ dynamics after TBI has not been evaluated. In the present study, we measured basal free intracellular Ca2+ concentration ([Ca2+]i) in acutely isolated CA3 hippocampal neurons from Sprague–Dawley rats at 1, 7 and 30 days after moderate central fluid percussion injury. Basal [Ca2+]i was significantly elevated when measured 1 and 7 days post-TBI without evidence of neuronal death. Basal [Ca2+]i returned to normal when measured 30 days post-TBI. In contrast, abnormalities in Ca2+ homeostasis were found for as long as 30 days after TBI. Studies evaluating the mechanisms underlying the altered Ca2+ homeostasis in TBI neurons indicated that necrotic or apoptotic cell death and abnormalities in Ca2+ influx and efflux mechanisms could not account for these changes and suggested that long-term changes in Ca2+ buffering or Ca2+ sequestration/release mechanisms underlie these changes in Ca2+ homeostasis after TBI. Further elucidation of the mechanisms of altered Ca2+ homeostasis in traumatized, surviving neurons in TBI may offer novel therapeutic interventions that may contribute to the treatment and relief of some of the morbidity associated with TBI. PMID:18371074

  3. Mechanisms of Fat Graft Survival.

    PubMed

    Pu, Lee L Q

    2016-02-01

    Although more fat grafting procedures have been performed by plastic surgeons with the primary goal to restore soft tissue loss, the actual mechanism on how fat graft survives remains less completely understood. An established old theory on fat graft survival is still based on the cell survival theory proposed by Peer in the early 1950s. On the basis of his preliminary experimental study, he proposed that the mechanism of fat graft survival is based on established early blood circulation through anastomosis of the fat graft and host blood vessels. Recently, several investigators have demonstrated new concepts of the fat graft survival: One further advanced the old Peer cell survival theory and another based on new discovery and understanding of adipose-derived stem cells. This article serves as a scientific review on how fat graft survives after in vivo transplantation based on a number of well-conducted experimental studies. Both the graft survival and graft replacement theories on how fat graft survives are true based on the previously mentioned well-conducted experimental studies. Each theory may play a role in fat graft survival. It is possible that graft survival may be more dominant in some patients but the graft replacement may be more dominant in other patients.

  4. Mechanisms of cellular invasion by intracellular parasites.

    PubMed

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  5. Intracellular Drug Delivery: Mechanisms for Cell Entry.

    PubMed

    Garnacho, Carmen

    2016-01-01

    Over the last half century, the delivery of pharmacologically active substances, such as synthetic drugs, natural compounds, gene material and many other pharmaceutical products, has been widely studied. Understanding the interactions of drug carriers with cells and how these interactions influence the cellular uptake is of paramount importance, since targets for many therapeutic agents against several disorders are localized in the subcellular compartments. Besides, the route of drug carrier entry (direct or via endocytosis) often defines the efficiency, kinetics and final destination of the drug itself. Although classical endocytic pathways such as phagocytosis, macropinocytosis, clathrin-mediated and caveola-dependent pathways are well characterized, their control for pharmaceutical drug delivery applications is still a challenging issue. Also, better knowledge of non-classical endocytic pathways may help optimize targeted drug delivery systems for intracellular delivery. Therefore, this review focuses on mechanisms of intracellular delivery, including direct internalization and endocytosis, as well as factors such as targeting moiety, target receptor, and size, shape, and surface properties of the drug carrier that can influence uptake process. PMID:26675221

  6. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  7. Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells.

    PubMed

    Dikshit, Neha; Bist, Pradeep; Fenlon, Shannon N; Pulloor, Niyas Kudukkil; Chua, Christelle En Lin; Scidmore, Marci A; Carlyon, Jason A; Tang, Bor Luen; Chen, Swaine L; Sukumaran, Bindu

    2015-08-01

    Recurrent urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC) by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by UPEC to survive within BEC are incompletely understood. In this study we aimed to understand the role of host vesicular trafficking proteins in the intracellular survival of UPEC. Using a cell culture model of intracellular UPEC infection, we found that the small GTPase Rab35 facilitates UPEC survival in UPEC-containing vacuoles (UCV) within BEC. Rab35 plays a role in endosomal recycling of transferrin receptor (TfR), the key protein responsible for transferrin-mediated cellular iron uptake. UPEC enhance the expression of both Rab35 and TfR and recruit these proteins to the UCV, thereby supplying UPEC with the essential nutrient iron. Accordingly, Rab35 or TfR depleted cells showed significantly lower intracellular iron levels and reduced ability to support UPEC survival. In the absence of Rab35, UPEC are preferentially trafficked to degradative lysosomes and killed. Furthermore, in an in vivo murine model of persistent intracellular infection, Rab35 also colocalizes with intracellular UPEC. We propose a model in which UPEC subverts two different vesicular trafficking pathways (endosomal recycling and degradative lysosomal fusion) by modulating Rab35, thereby simultaneously enhancing iron acquisition and avoiding lysosomal degradation of the UCV within bladder epithelial cells. Our findings reveal a novel survival mechanism of intracellular UPEC and suggest a potential avenue for therapeutic intervention against recurrent UTI.

  8. Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival.

    PubMed

    Verma, Smriti; Mohapatra, Gayatree; Ahmad, Salman Mustfa; Rana, Sarika; Jain, Swati; Khalsa, Jasneet Kaur; Srikanth, C V

    2015-09-01

    Posttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions. Here, we present the first report of modulation by intestinal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) of host SUMOylation, a PTM pathway central to all fundamental cellular processes. Both in cell culture and in a mouse model, we observed that S. Typhimurium infection led to a dynamic SUMO-conjugated proteome alteration. The intracellular survival of S. Typhimurium was dependent on SUMO status as revealed by reduced infection and Salmonella-induced filaments (SIFs) in SUMO-upregulated cells. S. Typhimurium-dependent SUMO modulation was seen as a result of depletion of crucial SUMO pathway enzymes Ubc-9 and PIAS1, at both the protein and the transcript levels. Mechanistically, depletion of Ubc-9 relied on upregulation of small noncoding RNAs miR30c and miR30e during S. Typhimurium infection. This was necessary and sufficient for both down-modulation of Ubc-9 and a successful infection. Thus, we demonstrate a novel strategy of pathogen-mediated perturbation of host SUMOylation, an integral mechanism underlying S. Typhimurium infection and intracellular survival.

  9. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo

    PubMed Central

    Wu, Huixia; Jones, Rheinallt M.; Neish, Andrew S.

    2011-01-01

    SUMMARY The enteric pathogen Salmonella typhimurium secretes the preformed AvrA effector protein into host cells. This acetyltransferase has been shown to modulate mammalian intestinal immune and survival responses by inhibition of JNK MAPK. To study the role of this effector in natural enteric infection, we used a mouse model to compare wild type Salmonella typhimurium to an isogenic AvrA null Salmonella mutant. Salmonella lacking AvrA induced increased intestinal inflammation, more intense systemic cytokine responses, and increased apoptosis in epithelial cells. Increased apoptosis was also observed in extra epithelial macrophages. AvrA null infected mice consistently showed higher bacterial burden within mucosal lymphoid tissues, spleen and liver by 5 days post infection, which indicated a more severe clinical course. To study the molecular mechanisms involved, recombinant adenoviruses expressing AvrA or mutant AvrA proteins were constructed, which showed appropriate expression and mediated the expected inhibition of JNK signaling. Cultured epithelial cells and macrophages transduced with AvrA expressing adenovirus were protected from apoptosis induced by exogenous stimuli. In conclusion, the results demonstrated that Salmonella AvrA modulates survival of infected macrophages likely via JNK suppression, and prevents macrophage death and rapid bacterial dissemination. AvrA suppression of apoptosis in infected macrophages may allow for establishment of a stable intracellular niche typical of intracellular pathogens. PMID:21899703

  10. The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo.

    PubMed

    Wu, Huixia; Jones, Rheinallt M; Neish, Andrew S

    2012-01-01

    The enteric pathogen Salmonella typhimurium secretes the preformed AvrA effector protein into host cells. This acetyltransferase has been shown to modulate mammalian intestinal immune and survival responses by inhibition of JNK MAPK. To study the role of this effector in natural enteric infection, we used a mouse model to compare wild-type S. typhimurium to an isogenic AvrA null Salmonella mutant. Salmonella lacking AvrA induced increased intestinal inflammation, more intense systemic cytokine responses, and increased apoptosis in epithelial cells. Increased apoptosis was also observed in extra epithelial macrophages. AvrA null-infected mice consistently showed higher bacterial burden within mucosal lymphoid tissues, spleen and liver by 5 days post infection, which indicated a more severe clinical course. To study the molecular mechanisms involved, recombinant adenoviruses expressing AvrA or mutant AvrA proteins were constructed, which showed appropriate expression and mediated the expected inhibition of JNK signalling. Cultured epithelial cells and macrophages transduced with AvrA expressing adenovirus were protected from apoptosis induced by exogenous stimuli. In conclusion, the results demonstrated that Salmonella AvrA modulates survival of infected macrophages likely via JNK suppression, and prevents macrophage death and rapid bacterial dissemination. AvrA suppression of apoptosis in infected macrophages may allow for establishment of a stable intracellular niche typical of intracellular pathogens.

  11. The role of autophagy in the intracellular survival of Campylobacter concisus

    PubMed Central

    Burgos-Portugal, Jose A.; Mitchell, Hazel M.; Castaño-Rodríguez, Natalia; Kaakoush, Nadeem O.

    2014-01-01

    Campylobacter concisus is an emerging pathogen that has been associated with gastrointestinal diseases. Given the importance of autophagy for the elimination of intracellular bacteria and the subversion of this process by pathogenic bacteria, we investigated the role of autophagy in C. concisus intracellular survival. Gentamicin protection assays were employed to assess intracellular levels of C. concisus within Caco-2 cells, following autophagy induction and inhibition. To assess the interaction between C. concisus and autophagosomes, confocal microscopy, scanning electron microscopy, and transmission electron microscopy were employed. Expression levels of 84 genes involved in the autophagy process were measured using qPCR. Autophagy inhibition resulted in two- to four-fold increases in intracellular levels of C. concisus within Caco-2 cells, while autophagy induction resulted in a significant reduction in intracellular levels or bacterial clearance. C. concisus strains with low intracellular survival levels showed a dramatic increase in these levels upon autophagy inhibition. Confocal microscopy showed co-localization of the bacterium with autophagosomes, while transmission electron microscopy identified intracellular bacteria persisting within autophagic vesicles. Further, qPCR showed that following infection, 13 genes involved in the autophagy process were significantly regulated, and a further five showed borderline results, with an overall indication towards a dampening effect exerted by the bacterium on this process. Our data collectively indicates that while autophagy is important for the clearance of C. concisus, some strains may manipulate this process to benefit their intracellular survival. PMID:24918042

  12. Transposon-Derived Brucella abortus Rough Mutants Are Attenuated and Exhibit Reduced Intracellular Survival

    PubMed Central

    Allen, Chris A.; Adams, L. Garry; Ficht, Thomas A.

    1998-01-01

    The O antigen of Brucella abortus has been described as a major virulence determinant based on the attenuated survival of fortuitously isolated rough variants. However, the lack of genetic definition of these mutants and the virulence of naturally occurring rough species, Brucella ovis and Brucella canis, has confused interpretation. To better characterize the role of O antigen in virulence and survival, transposon mutagenesis was used to generate B. abortus rough mutants defective in O-antigen presentation. Sequence analysis of DNA flanking the site of Tn5 insertion was used to verify insertion in genes encoding lipopolysaccharide (LPS) biosynthetic functions. Not surprisingly, each of the rough mutants was attenuated for survival in mice, but unexpected differences among the mutants were observed. In an effort to define the basis for the observed differences, the structure of the rough LPS and the sensitivity of these mutants to individual killing mechanisms were examined in vitro. All of the B. abortus rough mutants exhibited a 4- to 5-log-unit increase, compared to the smooth parental strain, in sensitivity to complement-mediated lysis. Little change was evident in the sensitivity of these organisms to hydrogen peroxide, consistent with an inability of O antigen to exclude relatively small molecules. Sensitivity to polymyxin B, which was employed as a model cationic, amphipathic peptide similar to defensins found in phagocytic cells, revealed survival differences among the rough mutants similar to those observed in the mouse. One mutant in particular exhibited hypersensitivity to polymyxin B and reduced survival in mice. This mutant was characterized by a truncated rough LPS. DNA sequence analysis of this mutant revealed a transposon interruption in the gene encoding phosphomannomutase (pmm), suggesting that this activity may be required for the synthesis of a full-length core polysaccharide in addition to O antigen. B. abortus O antigen appears to be essential

  13. In vitro phagocytosis and intracellular survival of Campylobacter jejuni with phagocytes

    SciTech Connect

    Kiehlbauch, J.A.

    1986-01-01

    In vitro phagocytosis and intracellular survival of Campylobacter jejuni was studied using three types of mononuclear phagocytes: a J774G8 peritoneal macrophage line, resident BABL/c peritoneal macrophages and human peripheral blood monocytes. In phagocytosis assays using CFU determinations, phagocytosis increased steadily over an 8 hr time period. Results obtained using a /sup 51/Cr assay indicated no consistent significant difference between phagocytosis of C. jejuni between the three mononuclear phagocytes or PMN's and that maximum infection occurred prior to 0.5 hr and maintained throughout the 4 hr assay. Further investigation of the mechanism of attachment and entry of C. jejuni revealed this process required the expenditure of energy by the phagocyte, but was not inhibited by inhibitors of microfilament functions. In addition, phagocytosis was enhanced by the presence of 20% FCS,

  14. Proline Mechanisms of Stress Survival

    PubMed Central

    Liang, Xinwen; Zhang, Lu; Natarajan, Sathish Kumar

    2013-01-01

    Abstract Significance: The imino acid proline is utilized by different organisms to offset cellular imbalances caused by environmental stress. The wide use in nature of proline as a stress adaptor molecule indicates that proline has a fundamental biological role in stress response. Understanding the mechanisms by which proline enhances abiotic/biotic stress response will facilitate agricultural crop research and improve human health. Recent Advances: It is now recognized that proline metabolism propels cellular signaling processes that promote cellular apoptosis or survival. Studies have shown that proline metabolism influences signaling pathways by increasing reactive oxygen species (ROS) formation in the mitochondria via the electron transport chain. Enhanced ROS production due to proline metabolism has been implicated in the hypersensitive response in plants, lifespan extension in worms, and apoptosis, tumor suppression, and cell survival in animals. Critical Issues: The ability of proline to influence disparate cellular outcomes may be governed by ROS levels generated in the mitochondria. Defining the threshold at which proline metabolic enzyme expression switches from inducing survival pathways to cellular apoptosis would provide molecular insights into cellular redox regulation by proline. Are ROS the only mediators of proline metabolic signaling or are other factors involved? Future Directions: New evidence suggests that proline biosynthesis enzymes interact with redox proteins such as thioredoxin. An important future pursuit will be to identify other interacting partners of proline metabolic enzymes to uncover novel regulatory and signaling networks of cellular stress response. Antioxid. Redox Signal. 19, 998–1011. PMID:23581681

  15. Intracellular mechanisms of lymphoid cell activation.

    PubMed

    Fresa, K; Hameed, M; Cohen, S

    1989-01-01

    Activation of lymphocytes for proliferation is associated with the appearance of an intracellular factor (ADR) that can induce DNA synthesis in isolated quiescent nuclei. ADR plays a role in the sequence of intracellular events leading to activation for IL-2-mediated proliferation. Because of the nature of the defining assay, the locus of ADR action appears to be near the terminal end of the transduction pathway. Interestingly, although lymphocytes from aged individuals respond poorly to proliferative stimuli, they appear to produce normal to above-normal levels of ADR. In contrast, their nuclei are only poorly responsive to stimulation by ADR. Preparations rich in ADR activity have proteolytic activity as well. In addition, aprotinin, as well as a variety of other protease inhibitors, suppresses ADR-induced DNA synthesis in a dose-dependent manner. ADR activity can be removed from active extracts by absorption with aprotinin-conjugated agarose beads, and can be removed from the beads by elution at pH 5.0. This latter suggests that ADR itself is a protease. However, its endogenous substrate is not yet known. We have also detected an inhibitor of ADR activity in the cytoplasm of resting lymphocytes. This is a heat-stable protein of approximately 60,000 Da. In addition to suppressing the interaction of ADR with quiescent nuclei, the inhibitor can suppress DNA synthetic activity of replicative nuclei isolated from mitogen-activated lymphocytes. Interestingly, these preparations had little or no activity on replicative nuclei derived from several neoplastic cell lines. The resistance of tumor cell nuclei to spontaneously occurring cytoplasmic inhibitory factors such as the one described here may provide one explanation for the loss of growth control in neoplastic cells. PMID:2642767

  16. Intracellular antioxidants: from chemical to biochemical mechanisms.

    PubMed

    Chaudière, J; Ferrari-Iliou, R

    1999-01-01

    Intracellular antioxidants include low molecular weight scavengers of oxidizing species, and enzymes which degrade superoxide and hydroperoxides. Such antioxidants systems prevent the uncontrolled formation of free radicals and activated oxygen species, or inhibit their reactions with biological structures. Hydrophilic scavengers are found in cytosolic, mitochondrial and nuclear compartments. Ascorbate and glutathione scavenge oxidizing free radicals in water by means of one-electron or hydrogen atom transfer. Similarly, ergothioneine scavenges hydroxyl radicals at very high rates, but it acts more specifically as a chemical scavenger of hypervalent ferryl complexes, halogenated oxidants and peroxynitrite-derived nitrating species, and as a physical quencher of singlet oxygen. Hydrophobic scavengers are found in cell membranes where they inhibit or interrupt chain reactions of lipid peroxidation. In animal cells, they include alpha-tocopherol (vitamin E) which is a primary scavenger of lipid peroxyl radicals, and carotenoids which are secondary scavengers of free radicals as well as physical quenchers of singlet oxygen. The main antioxidant enzymes include dismutases such as superoxide dismutases (SOD) and catalases, which do not consume cofactors, and peroxidases such as selenium-dependent glutathione peroxidases (GPx) in animals or ascorbate peroxidases (APx) in plants. The reducing coenzymes of peroxidases, and as a rule all reducing components of the antioxidant network, are regenerated at the expense of NAD(P)H produced in specific metabolic pathways. Synergistic and co-operative interactions of antioxidants rely on the sequential degradation of peroxides and free radicals as well as on mutual protections of enzymes. This antioxidant network can induce metabolic deviations and plays an important role in the regulation of protein expression and/or activity at the transcriptional or post-translational levels. Its biological significance is discussed in terms of

  17. The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling

    PubMed Central

    Bröms, Jeanette E.; Sjöstedt, Anders; Lavander, Moa

    2010-01-01

    Francisella tularensis is a highly virulent gram-negative intracellular bacterium that causes the zoonotic disease tularemia. Essential for its virulence is the ability to multiply within host cells, in particular monocytic cells. The bacterium has developed intricate means to subvert host immune mechanisms and thereby facilitate its intracellular survival by preventing phagolysosomal fusion followed by escape into the cytosol, where it multiplies. Moreover, it targets and manipulates numerous host cell signaling pathways, thereby ameliorating the otherwise bactericidal capacity. Many of the underlying molecular mechanisms still remain unknown but key elements, directly or indirectly responsible for many of the aforementioned mechanisms, rely on the expression of proteins encoded by the Francisella pathogenicity island (FPI), suggested to constitute a type VI secretion system. We here describe the current knowledge regarding the components of the FPI and the roles that have been ascribed to them. PMID:21687753

  18. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae.

    PubMed

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes; Fischer, Michael B; Weber, Viktoria

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  19. [Neurotensin: reception and intracellular mechanisms of signaling].

    PubMed

    Osadchiĭ, O E

    2006-01-01

    The review coveres the features of neurotensin receptor, functional role ot its structural elements, nature of conjugation with effectoral cell systems, and mechanisms of receptor decensitization developing as results of prolonged effect of agonist. The author provides pharmacological description of neurotensin antagonists and special features of three subtypes of its receptors. The author reviews the research results establishing a correlation between structural modification of various section of neurotensin molecula and manifestations of its physiological activity. Special focus is mage on discussion of neurotensin's physiological effects developing as results of its modulating impact on discharge of other biologically active substances.

  20. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    PubMed Central

    Lina, Taslima T.; Dunphy, Paige S.; Luo, Tian

    2016-01-01

    ABSTRACT Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD) occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40%) were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs) against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4) expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival. PMID:27381289

  1. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites.

    PubMed

    Toledo, Daniel A M; D'Avila, Heloísa; Melo, Rossana C N

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host-parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival.

  2. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites

    PubMed Central

    Toledo, Daniel A. M.; D’Avila, Heloísa; Melo, Rossana C. N.

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host–parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival. PMID:27199996

  3. Cryptococcus neoformans Thermotolerance to Avian Body Temperature Is Sufficient For Extracellular Growth But Not Intracellular Survival In Macrophages.

    PubMed

    Johnston, Simon A; Voelz, Kerstin; May, Robin C

    2016-01-01

    Cryptococcus neoformans is a fatal fungal pathogen of humans that efficiently parasitises macrophages. Birds can be colonised by cryptococci and can transmit cryptococcosis to humans via inhalation of inoculated bird excreta. However, colonisation of birds appears to occur in the absence of symptomatic infection. Here, using a pure population of primary bird macrophages, we demonstrate a mechanism for this relationship. We find that bird macrophages are able to suppress the growth of cryptococci seen in mammalian cells despite C. neoformans being able to grow at bird body temperature, and are able to escape from bird macrophages by vomocytosis. A small subset of cryptococci are able to adapt to the inhibitory intracellular environment of bird macrophages, exhibiting a large cell phenotype that rescues growth suppression. Thus, restriction of intracellular growth combined with survival at bird body temperature explains the ability of birds to efficiently spread C. neoformans in the environment whilst avoiding systemic disease. PMID:26883088

  4. Cryptococcus neoformans Thermotolerance to Avian Body Temperature Is Sufficient For Extracellular Growth But Not Intracellular Survival In Macrophages

    PubMed Central

    Johnston, Simon A.; Voelz, Kerstin; May, Robin C.

    2016-01-01

    Cryptococcus neoformans is a fatal fungal pathogen of humans that efficiently parasitises macrophages. Birds can be colonised by cryptococci and can transmit cryptococcosis to humans via inhalation of inoculated bird excreta. However, colonisation of birds appears to occur in the absence of symptomatic infection. Here, using a pure population of primary bird macrophages, we demonstrate a mechanism for this relationship. We find that bird macrophages are able to suppress the growth of cryptococci seen in mammalian cells despite C. neoformans being able to grow at bird body temperature, and are able to escape from bird macrophages by vomocytosis. A small subset of cryptococci are able to adapt to the inhibitory intracellular environment of bird macrophages, exhibiting a large cell phenotype that rescues growth suppression. Thus, restriction of intracellular growth combined with survival at bird body temperature explains the ability of birds to efficiently spread C. neoformans in the environment whilst avoiding systemic disease. PMID:26883088

  5. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum.

    PubMed

    Riquelme, Sebastián; Varas, Macarena; Valenzuela, Camila; Velozo, Paula; Chahin, Nicolás; Aguilera, Paulina; Sabag, Andrea; Labra, Bayron; Álvarez, Sergio A; Chávez, Francisco P; Santiviago, Carlos A

    2016-01-01

    The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host-pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected

  6. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Riquelme, Sebastián; Varas, Macarena; Valenzuela, Camila; Velozo, Paula; Chahin, Nicolás; Aguilera, Paulina; Sabag, Andrea; Labra, Bayron; Álvarez, Sergio A.; Chávez, Francisco P.; Santiviago, Carlos A.

    2016-01-01

    The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host–pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected

  7. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum.

    PubMed

    Riquelme, Sebastián; Varas, Macarena; Valenzuela, Camila; Velozo, Paula; Chahin, Nicolás; Aguilera, Paulina; Sabag, Andrea; Labra, Bayron; Álvarez, Sergio A; Chávez, Francisco P; Santiviago, Carlos A

    2016-01-01

    The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host-pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected

  8. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Riquelme, Sebastián; Varas, Macarena; Valenzuela, Camila; Velozo, Paula; Chahin, Nicolás; Aguilera, Paulina; Sabag, Andrea; Labra, Bayron; Álvarez, Sergio A.; Chávez, Francisco P.; Santiviago, Carlos A.

    2016-01-01

    The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host–pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected

  9. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  10. The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed.

    PubMed

    Raymond, Méliane R; Wharton, David A

    2016-07-01

    A few species of nematodes can survive extensive intracellular freezing throughout all their tissues, an event that is usually thought to be fatal to cells. How are they able to survive in this remarkable way? The pattern and distribution of ice formed, after freezing at -10°C, can be observed using freeze substitution and transmission electron microscopy, which preserves the former position of ice as white spaces. We compared the pattern and distribution of ice formed in a nematode that survives intracellular freezing well (Panagrolaimus sp. DAW1), one that survives poorly (Panagrellus redivivus) and one with intermediate levels of survival (Plectus murrayi). We also examined Panagrolaimus sp. in which the survival of freezing had been compromised by starvation. Levels of survival were as expected and the use of vital dyes indicated cellular damage in those that survived poorly (starved Panagrolaimus sp. and P. murrayi). In fed Panagrolaimus sp. the intracellular ice spaces were small and uniform, whereas in P. redivivus and starved Panagrolaimus sp. there were some large spaces that may be causing cellular damage. The pattern and distribution of ice formed was different in P. murrayi, with a greater number of individuals having no ice or only small intracellular ice spaces. Control of the size of the ice formed is thus important for the survival of intracellular freezing in nematodes.

  11. The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed.

    PubMed

    Raymond, Méliane R; Wharton, David A

    2016-07-01

    A few species of nematodes can survive extensive intracellular freezing throughout all their tissues, an event that is usually thought to be fatal to cells. How are they able to survive in this remarkable way? The pattern and distribution of ice formed, after freezing at -10°C, can be observed using freeze substitution and transmission electron microscopy, which preserves the former position of ice as white spaces. We compared the pattern and distribution of ice formed in a nematode that survives intracellular freezing well (Panagrolaimus sp. DAW1), one that survives poorly (Panagrellus redivivus) and one with intermediate levels of survival (Plectus murrayi). We also examined Panagrolaimus sp. in which the survival of freezing had been compromised by starvation. Levels of survival were as expected and the use of vital dyes indicated cellular damage in those that survived poorly (starved Panagrolaimus sp. and P. murrayi). In fed Panagrolaimus sp. the intracellular ice spaces were small and uniform, whereas in P. redivivus and starved Panagrolaimus sp. there were some large spaces that may be causing cellular damage. The pattern and distribution of ice formed was different in P. murrayi, with a greater number of individuals having no ice or only small intracellular ice spaces. Control of the size of the ice formed is thus important for the survival of intracellular freezing in nematodes. PMID:27143749

  12. Intracellular Survival of Neisseria gonorrhoeae in Male Urethral Epithelial Cells: Importance of a Hexaacyl Lipid A

    PubMed Central

    Post, Deborah M. B.; Phillips, Nancy J.; Shao, Jian Q.; Entz, David D.; Gibson, Bradford W.; Apicella, Michael A.

    2002-01-01

    Neisseria gonorrhoeae is a strict human pathogen that invades and colonizes the urogenital tracts of males and females. Lipooligosaccharide (LOS) has been shown to play a role in gonococcal pathogenesis. The acyl transferase MsbB is involved in the biosynthesis of the lipid A portion of the LOS. In order to determine the role of an intact lipid A structure on the pathogenesis of N. gonorrhoeae, the msbB gene was cloned and sequenced, a deletion and insertion mutation was introduced into N. gonorrhoeae, and the mutant strain was designated 1291A11K3. Mass spectrometric analyses of 1291A11K3 LOS determined that this mutation resulted in a pentaacyl rather than a hexaacyl lipid A structure. These analyses also demonstrated an increase in the phosphorylation of lipid A and an increase in length of the oligosaccharide of a minor species of the msbB LOS. The interactions of this mutant with male urethral epithelial cells (uec) were examined. Transmission and scanning electron microscopy studies indicated that the msbB mutants formed close associations with and were internalized by the uec at levels similar to those of the parent strain. Gentamicin survival assays performed with 1291A11K3 and 1291 bacteria demonstrated that there was no difference in the abilities of the two strains to adhere to uec; however, significantly fewer 1291A11K3 bacteria than parent strain bacteria were recovered from gentamicin-treated uec. These studies suggest that the lipid A modification in the N. gonorrhoeae msbB mutant may render it more susceptible to innate intracellular killing mechanisms when internalized by uec. PMID:11796626

  13. Intracellular survival of Staphylococcus aureus during persistent infection in the insect Tenebrio molitor.

    PubMed

    McGonigle, John E; Purves, Joanne; Rolff, Jens

    2016-06-01

    Survival of bacteria within host cells and tissues presents a challenge to the immune systems of higher organisms. Escape from phagocytic immune cells compounds this issue, as immune cells become potential vehicles for pathogen dissemination. However, the duration of persistence within phagocytes and its contribution to pathogen load has yet to be determined. We investigate the immunological significance of intracellular persistence within the insect model Tenebrio molitor, assessing the extent, duration and location of bacterial recovery during a persistent infection. Relative abundance of Staphylococcus aureus in both intracellular and extracellular fractions was determined over 21 days, and live S. aureus were successfully recovered from both the hemolymph and within phagocytic immune cells across the entire time course. The proportion of bacteria recovered from within phagocytes also increased over time. Our results show that to accurately estimate pathogen load it is vital to account for bacteria persisting within immune cells.

  14. Intracellular survival of Staphylococcus aureus during persistent infection in the insect Tenebrio molitor.

    PubMed

    McGonigle, John E; Purves, Joanne; Rolff, Jens

    2016-06-01

    Survival of bacteria within host cells and tissues presents a challenge to the immune systems of higher organisms. Escape from phagocytic immune cells compounds this issue, as immune cells become potential vehicles for pathogen dissemination. However, the duration of persistence within phagocytes and its contribution to pathogen load has yet to be determined. We investigate the immunological significance of intracellular persistence within the insect model Tenebrio molitor, assessing the extent, duration and location of bacterial recovery during a persistent infection. Relative abundance of Staphylococcus aureus in both intracellular and extracellular fractions was determined over 21 days, and live S. aureus were successfully recovered from both the hemolymph and within phagocytic immune cells across the entire time course. The proportion of bacteria recovered from within phagocytes also increased over time. Our results show that to accurately estimate pathogen load it is vital to account for bacteria persisting within immune cells. PMID:26778297

  15. Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host

    PubMed Central

    Roop, R. Martin; Gaines, Jennifer M.; Anderson, Eric S.; Caswell, Clayton C.; Martin, Daniel W.

    2013-01-01

    Brucella strains produce abortion and infertility in their natural hosts and a zoonotic disease in humans known as undulant fever. These bacteria do not produce classical virulence factors, and their capacity to successfully survive and replicate within a variety of host cells underlines their pathogenicity. Extensive replication of the brucellae in placental trophoblasts is associated with reproductive tract pathology in natural hosts and prolonged persistence in macrophages leads to the chronic infections that are a hallmark of brucellosis in both natural hosts and humans. This review describes how Brucella strains have efficiently adapted to their intracellular lifestyle in the host. PMID:19830453

  16. Swedish isolates of Vibrio cholerae enhance their survival when interacted intracellularly with Acanthamoeba castellanii.

    PubMed

    Shanan, Salah; Bayoumi, Magdi; Saeed, Amir; Sandström, Gunnar; Abd, Hadi

    2016-01-01

    Vibrio cholerae is a Gram-negative bacterium that occurs naturally in aquatic environment. Only V. cholerae O1 and V. cholerae O139 produce cholera toxin and cause cholera, other serogroups can cause gastroenteritis, open wounds infection, and septicaemia. V. cholerae O1 and V. cholerae O139 grow and survive inside Acanthamoeba castellanii. The aim of this study is to investigate the interactions of the Swedish clinical isolates V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 with A. castellanii. The interaction between A. castellanii and V. cholerae strains was studied by means of amoeba cell counts, viable counts of the bacteria in the absence or presence of amoebae, and of the intracellularly growing bacteria, visualised by electron microscopy. These results show that all V. cholerae can grow and survive outside and inside the amoebae, disclosing that V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 all can be considered as facultative intracellular bacteria. PMID:27118300

  17. Swedish isolates of Vibrio cholerae enhance their survival when interacted intracellularly with Acanthamoeba castellanii

    PubMed Central

    Shanan, Salah; Bayoumi, Magdi; Saeed, Amir; Sandström, Gunnar; Abd, Hadi

    2016-01-01

    Vibrio cholerae is a Gram-negative bacterium that occurs naturally in aquatic environment. Only V. cholerae O1 and V. cholerae O139 produce cholera toxin and cause cholera, other serogroups can cause gastroenteritis, open wounds infection, and septicaemia. V. cholerae O1 and V. cholerae O139 grow and survive inside Acanthamoeba castellanii. The aim of this study is to investigate the interactions of the Swedish clinical isolates V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 with A. castellanii. The interaction between A. castellanii and V. cholerae strains was studied by means of amoeba cell counts, viable counts of the bacteria in the absence or presence of amoebae, and of the intracellularly growing bacteria, visualised by electron microscopy. These results show that all V. cholerae can grow and survive outside and inside the amoebae, disclosing that V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 all can be considered as facultative intracellular bacteria. PMID:27118300

  18. Characterization of New Virulence Factors Involved in the Intracellular Growth and Survival of Burkholderia pseudomallei.

    PubMed

    Moule, Madeleine G; Spink, Natasha; Willcocks, Sam; Lim, Jiali; Guerra-Assunção, José Afonso; Cia, Felipe; Champion, Olivia L; Senior, Nicola J; Atkins, Helen S; Clark, Taane; Bancroft, Gregory J; Cuccui, Jon; Wren, Brendan W

    2016-03-01

    Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates. PMID:26712202

  19. Characterization of New Virulence Factors Involved in the Intracellular Growth and Survival of Burkholderia pseudomallei

    PubMed Central

    Moule, Madeleine G.; Spink, Natasha; Willcocks, Sam; Lim, Jiali; Guerra-Assunção, José Afonso; Cia, Felipe; Champion, Olivia L.; Senior, Nicola J.; Atkins, Helen S.; Clark, Taane; Bancroft, Gregory J.; Cuccui, Jon

    2015-01-01

    Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates. PMID:26712202

  20. Mechanisms of Defense against Intracellular Pathogens Mediated by Human Macrophages.

    PubMed

    Bloom, Barry R; Modlin, Robert L

    2016-06-01

    The key question our work has sought to address has been, "What are the necessary and sufficient conditions that engender protection from intracellular pathogens in the human host?" The origins of this work derive from a long-standing interest in the mechanisms of protection against two such paradigmatic intracellular pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, that have brilliantly adapted to the human host. It was obvious that these pathogens, which cause chronic diseases and persist in macrophages, must have acquired subtle strategies to resist host microbicidal mechanisms, yet since the vast majority of individuals infected with M. tuberculosis do not develop disease, there must be some potent human antimicrobial mechanisms. What follows is not a comprehensive review of the vast literature on the role of human macrophages in protection against infectious disease, but a summary of the research in our two laboratories with collaborators that we hope has contributed to some understanding of mechanisms of resistance and pathogenesis. While mouse models revealed some necessary conditions for protection, e.g., innate immunity, Th1 cells and their cytokines, and major histocompatibility complex class I-restricted T cells, here we emphasize multiple antimicrobial mechanisms that exist in human macrophages that differ from those of most experimental animals. Prominent here is the vitamin D-dependent antimicrobial pathway common to human macrophages activated by innate and acquired immune responses, mediated by antimicrobial peptides, e.g., cathelicidin, through an interleukin-15- and interleukin-32-dependent common pathway that is necessary for macrophage killing of M. tuberculosis in vitro. PMID:27337485

  1. Ehrlichia chaffeensis Exploits Canonical and Noncanonical Host Wnt Signaling Pathways To Stimulate Phagocytosis and Promote Intracellular Survival

    PubMed Central

    Luo, Tian; Dunphy, Paige S.; Lina, Taslima T.

    2015-01-01

    Ehrlichia chaffeensis invades and survives in phagocytes by modulating host cell processes and evading innate defenses, but the mechanisms are not fully defined. Recently we have determined that E. chaffeensis tandem repeat proteins (TRPs) are type 1 secreted effectors involved in functionally diverse interactions with host targets, including components of the evolutionarily conserved Wnt signaling pathways. In this study, we demonstrated that induction of host canonical and noncanonical Wnt pathways by E. chaffeensis TRP effectors stimulates phagocytosis and promotes intracellular survival. After E. chaffeensis infection, canonical and noncanonical Wnt signalings were significantly stimulated during early stages of infection (1 to 3 h) which coincided with dephosphorylation and nuclear translocation of β-catenin, a major canonical Wnt signal transducer, and NFATC1, a noncanonical Wnt transcription factor. In total, the expression of ∼44% of Wnt signaling target genes was altered during infection. Knockdown of TRP120-interacting Wnt pathway components/regulators and other critical components, such as Wnt5a ligand, Frizzled 5 receptor, β-catenin, nuclear factor of activated T cells (NFAT), and major signaling molecules, resulted in significant reductions in the ehrlichial load. Moreover, small-molecule inhibitors specific for components of canonical and noncanonical (Ca2+ and planar cell polarity [PCP]) Wnt pathways, including IWP-2, which blocks Wnt secretion, significantly decreased ehrlichial infection. TRPs directly activated Wnt signaling, as TRP-coated microspheres triggered phagocytosis which was blocked by Wnt pathway inhibitors, demonstrating a key role of TRP activation of Wnt pathways to induce ehrlichial phagocytosis. These novel findings reveal that E. chaffeensis exploits canonical and noncanonical Wnt pathways through TRP effectors to facilitate host cell entry and promote intracellular survival. PMID:26712203

  2. Immunomodulatory Effects of Streptococcus suis Capsule Type on Human Dendritic Cell Responses, Phagocytosis and Intracellular Survival

    PubMed Central

    Meijerink, Marjolein; Ferrando, Maria Laura; Lammers, Geraldine; Taverne, Nico; Smith, Hilde E.; Wells, Jerry M.

    2012-01-01

    Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-α in human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/TNF-α cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in the body. PMID:22558240

  3. Gene set analysis of survival following ovarian cancer implicates macrolide binding and intracellular signaling genes

    PubMed Central

    Fridley, Brooke L.; Jenkins, Gregory D.; Tsai, Ya-Yu; Song, Honglin; Bolton, Kelly L.; Fenstermacher, David; Tyrer, Jonathan; Ramus, Susan J.; Cunningham, Julie M.; Vierkant, Robert A.; Chen, Zhihua; Chen, Y. Ann; Iversen, Ed; Menon, Usha; Gentry-Maharaj, Aleksandra; Schildkraut, Joellen; Sutphen, Rebecca; Gayther, Simon A.; Hartmann, Lynn C.; Pharoah, Paul D. P.; Sellers, Thomas A.; Goode, Ellen L.

    2012-01-01

    Background Genome-wide association studies (GWAS) for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy, have identified novel susceptibility loci. GWAS for survival after EOC have had more limited success. The association of each single nucleotide polymorphism (SNP) individually may not be well-suited to detect small effects of multiple SNPs, such as those operating within the same biological pathway. Gene set analysis (GSA) overcomes this limitation by assessing overall evidence for association of a phenotype with all measured variation in a set of genes. Methods To determine gene sets associated with EOC overall survival, we conducted GSA using data from two large GWASes (N cases = 2,813, N deaths = 1,116), with a novel Principal Component – Gamma GSA method. Analysis was completed for all cases and then separately for high grade serous (HGS) histological subtype. Results Analysis of the HGS subjects resulted in 43 gene sets with p<0.005 (1.7%); of these, 21 gene sets had p < 0.10 in both GWASes, including intracellular signaling pathway (p = 7.3 × 10−5) and macrolide binding (p = 6.2 ×10−4) gene sets. The top gene sets in analysis of all cases were meiotic mismatch repair (p=6.3 ×10−4) and macrolide binding (p=1.0×10−3). Of 18 gene sets with p<0.005 (0.7%), eight had p < 0.10 in both GWASes. Conclusion This research detected novel gene sets associated with EOC survival. Impact Novel gene sets associated with EOC survival might lead to new insights and avenues for development of novel therapies for EOC and pharmacogenomic studies. PMID:22302016

  4. Edwardsiella tarda-Induced Inhibition of Apoptosis: A Strategy for Intracellular Survival

    PubMed Central

    Zhou, Ze-jun; Sun, Li

    2016-01-01

    Edwardsiella tarda is a Gram-negative bacterial pathogen that can infect a wide range of freshwater and marine fish. One salient feature of E. tarda is the ability to survive and replicate in various host cells. In this study, we observed that E. tarda replicated robustly in the zebrafish cell line ZF4, and that E. tarda-infected cells exhibited no detectable signs of apoptosis. Global transcriptome analysis and quantitative real-time RT-PCR revealed that E. tarda infection generally significantly downregulated pro-apoptotic genes and upregulated anti-apoptotic genes. To investigate the role of apoptosis in E. tarda infection, two upregulated anti-apoptotic genes (Fech and Prx3) and two downregulated pro-apoptotic genes (Brms1a and Ivns1a) were overexpressed in zebrafish. Subsequent infection study showed that Fech and Prx3 overexpression significantly promoted E. tarda dissemination in and colonization of fish tissues, while Brms1a and Ivns1a overexpression significantly reduced E. tarda dissemination and colonization. Consistently, when Fech and Prx3 were knocked down in zebrafish, E. tarda infection was significantly inhibited, whereas Brms1a and Ivns1a knockdown significantly enhanced E. tarda infection. These results indicate for the first time that E. tarda prevents apoptosis in teleost as a strategy for intracellular survival, and that some putative apoptotic genes of teleost function in the apoptosis pathway probably in a manner similar to that in mammalian systems. PMID:27471679

  5. Interplay between Clathrin and Rab5 Controls the Early Phagocytic Trafficking and Intracellular Survival of Brucella abortus within HeLa cells*

    PubMed Central

    Lee, Jin Ju; Kim, Dae Geun; Kim, Dong Hyeok; Simborio, Hannah Leah; Min, Wongi; Lee, Hu Jang; Her, Moon; Jung, Suk Chan; Watarai, Masahisa; Kim, Suk

    2013-01-01

    Lipid raft-associated clathrin is essential for host-pathogen interactions during infection. Brucella abortus is an intracellular pathogen that circumvents host defenses, but little is known about the precise infection mechanisms that involve interaction with lipid raft-associated mediators. The aim of this study was to elucidate the clathrin-mediated phagocytic mechanisms of B. abortus. The clathrin dependence of B. abortus infection in HeLa cells was investigated using an infection assay and immunofluorescence microscopy. The redistribution of clathrin in the membrane and in phagosomes was investigated using sucrose gradient fractionation of lipid rafts and the isolation of B. abortus-containing vacuoles, respectively. Clathrin and dynamin were concentrated into lipid rafts during B. abortus infection, and the entry and intracellular survival of B. abortus within HeLa cells were abrogated by clathrin inhibition. Clathrin disruption decreased actin polymerization and the colocalization of B. abortus-containing vacuoles with clathrin and Rab5 but not lysosome-associated membrane protein 1 (LAMP-1). Thus, our data demonstrate that clathrin plays a fundamental role in the entry and intracellular survival of B. abortus via interaction with lipid rafts and actin rearrangement. This process facilitates the early intracellular trafficking of B. abortus to safe replicative vacuoles. PMID:23940042

  6. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production

    PubMed Central

    Marques, Maria Angela M.; Berrêdo-Pinho, Marcia; Rosa, Thabatta L. S. A.; Pujari, Venugopal; Lemes, Robertha M. R.; Lery, Leticia M. S.; Silva, Carlos Adriano M.; Guimarães, Ana Carolina R.; Atella, Georgia C.; Wheat, William H.; Brennan, Patrick J.; Crick, Dean C.; Belisle, John T.

    2015-01-01

    ABSTRACT Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-14C]cholesterol or [26-14C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in

  7. Transcription of innate immunity genes and cytokine secretion by canine macrophages resistant or susceptible to intracellular survival of Leishmania infantum.

    PubMed

    Turchetti, Andréia Pereira; da Costa, Luciana Fachini; Romão, Everton de Lima; Fujiwara, Ricardo Toshio; da Paixão, Tatiane Alves; Santos, Renato Lima

    2015-01-15

    In this study we assessed the basal transcription of genes associated with innate immunity (i.e. Nramp1, NOD1, NOD2, TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR9) in canine monocyte-derived macrophages from Leishmania-free dogs. Additionally, secretion of cytokines (IL-10, IL-12, TNF-α and IFN-γ) and nitric oxide in culture supernatants of macrophages with higher or lower resistance to intracellular survival of Leishmania infantum was also measured. Constitutive transcription of TLR9 and NOD2 were negligible; NOD1, TLR1, and TLR7 had low levels of transcription, whereas Nramp1 and TLR2, 3, 4, 5, and 6 had higher levels of constitutive transcription in canine monocyte-derived macrophages. There were no significant differences in transcription between macrophages with higher or lower resistance to intracellular survival of L. infantum. Secretion of TNF-α was higher in more resistant macrophages (designated as resistant) at 24h after infection when compared to less resistant macrophages (designated as susceptible), as well as the secretion of IFN-γ at 72 h post infection. Secretion of IL-10 was lower in resistant macrophages at 24h after infection. No detectable production of nitric oxide was observed. Interestingly, there was a negative correlation between NOD2 transcript levels and intracellular survival of L. infantum in resistant macrophages. This study demonstrated that decreased intracellular survival of L. infantum in canine macrophages was associated with increased production of TNF-α and IFN-γ and decreased production of IL-10; and that constitutive transcription of Nramp1, TLR and NLR does not interfere in intracellular survival of L. infantum.

  8. Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages.

    PubMed

    Naderer, Thomas; Heng, Joanne; Saunders, Eleanor C; Kloehn, Joachim; Rupasinghe, Thusitha W; Brown, Tracey J; McConville, Malcolm J

    2015-09-01

    Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites.

  9. Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages

    PubMed Central

    Saunders, Eleanor C.; Kloehn, Joachim; Rupasinghe, Thusitha W.; Brown, Tracey J.; McConville, Malcolm J.

    2015-01-01

    Abstract Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites. PMID:26334531

  10. The role of PIP2 and the IP3/DAG pathway in intracellular calcium release and cell survival during nanosecond electric pulse exposures

    NASA Astrophysics Data System (ADS)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.

    2015-03-01

    Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.

  11. The CovS/CovR Acid Response Regulator Is Required for Intracellular Survival of Group B Streptococcus in Macrophages

    PubMed Central

    Cumley, Nicola J.; Smith, Leanne M.; Anthony, Mark

    2012-01-01

    Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and septicemia. The ability of this organism to survive inside phagocytic cells is poorly understood but thought to be an important step for the establishment of disease in the host. Here, we demonstrate that GBS shows prolonged survival within J774 macrophages and that the capacity to survive is not significantly changed across a diverse range of strains representing different serotypes, multilocus sequence types (MLST), and sites of clinical isolation. Using staining for the lysosome-associated membrane protein (LAMP) and by pharmacological inhibition of phagosome acidification, we demonstrate that streptococci reside in a phagosome and that acidification of the phagosome is required for GBS to survive intracellularly. Moreover, we show that the GBS two-component system CovS/CovR, which is the major acid response regulator in this organism, is required for survival inside the phagosome. PMID:22331428

  12. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata.

    PubMed

    Worland, M R; Wharton, D A; Byars, S G

    2004-01-01

    The alpine cockroach Celatoblatta quinquemaculata is common at altitudes of around 1500 m on the Rock and Pillar range of Central Otago, New Zealand where it experiences freezing conditions in the winter. The cockroach is freeze tolerant, but only to c. -9 degrees C. The cause of death at temperatures below this is unknown but likely to be due to osmotic damage to cells (shrinkage). This study compared the effect of different ice nucleation temperatures (-2 and -4 degrees C) on the viability of three types of cockroach tissue (midgut, Malpighian tubules and fat body cells) and cooling to three different temperatures (-5, -8, -12 degrees C). Two types of observations were made (i) cryomicroscope observations of ice formation and cell shrinkage (ii) cell integrity (viability) using vital stains. Cell viability decreased with lower treatment temperatures but ice nucleation temperature had no significant effect. Cryomicroscope observations showed that ice spread through tissue faster at -4 than -2 degrees C and that intracellular freezing only occurred when nucleated at -4 degrees C. From temperature records during cooling, it was observed that when freezing occurred, latent heat immediately increased the insect's body temperature close to its melting point (c. -0.3 degrees C). This "rebound" temperature was independent of nucleation temperature. Some tissues were more vulnerable to damage than others. As the gut is thought to be the site of freezing, it is significant that this tissue was the most robust. The ecological importance of the effect of nucleation temperature on survival of whole animals under field conditions is discussed.

  13. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages.

    PubMed

    Reyes, Alisha Wehdnesday Bernardo; Arayan, Lauren Togonon; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Min, WonGi; Lee, Hu Jang; Kim, Dong Hee; Chang, Hong Hee; Kim, Suk

    2016-02-01

    Brucellosis is one of the major zoonoses worldwide that inflicts important health problems in animal and human. Here, we demonstrated that dextran sulfate sodium (DSS) significantly increased adhesion of Brucella (B.) abortus in murine macrophages compared to untreated cells. Even without infection, Brucella uptake into macrophages increased and F-actin reorganization was induced compared with untreated cells. Furthermore, DSS increased the phosphorylation of MAPKs (ERK1/2 and p38α) in Brucella-infected, DSS-treated cells compared with the control cells. Lastly, DSS markedly increased the intracellular survival of Brucella abortus in macrophages by up to 48 h. These results suggest that DSS enhanced the adhesion and phagocytosis of B. abortus into murine macrophages by stimulating the MAPK signaling proteins phospho-ERK1/2 and p38α and that DSS increased the intracellular survival of B. abortus by inhibiting colocalization of Brucella-containing vacuoles (BCVs) with the late endosome marker LAMP-1. This study emphasizes the enhancement of the phagocytic and intracellular modulatory effects of DSS, which may suppress the innate immune system and contribute to prolonged Brucella survival and chronic infection.

  14. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  15. Differential Legionella spp. survival between intracellular and extracellular forms in thermal spring environments.

    PubMed

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Hsu, Shih-Yung; Huang, Jen-Te; Liu, Jorn-Hon; Huang, Yu-Li

    2013-05-01

    Legionella are commonly found in natural and man-made aquatic environments and are able to inhabit various species of protozoa. The relationship between the occurrence of Legionella spp. within protozoa and human legionellosis has been demonstrated; however, the proportions of intracellular and extracellular Legionella spp. in the aquatic environment were rarely reported. In this study, we developed a new method to differentiate intracellular and extracellular Legionella spp. in the aquatic environment. Water samples from three thermal spring recreational areas in southeastern Taiwan were collected and analyzed. For each water sample, concurrent measurements were performed for Legionella spp. and their free-living amoebae hosts. The overall detection rate was 32 % (16/50) for intracellular Legionella spp. and 12 % (6/50) for extracellular Legionella spp. The most prevalent host of Legionella spp. was Hartmannella vermiformis. The identified Legionella spp. differed substantially between intracellular and extracellular forms. The results showed that it may be necessary to differentiate intracellular and extracellular forms of Legionella spp.

  16. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    SciTech Connect

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O.

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  17. Mechanism of H. pylori Intracellular Entry: An in vitro Study

    PubMed Central

    Liu, H.; Semino-Mora, C.; Dubois, Andre

    2012-01-01

    The majority of Helicobacter pylori reside on gastric epithelial cell surfaces and in the overlying mucus, but a small fraction of H. pylori enter host epithelial and immune cells. To explore the role of the nudA invasin in host cell entry, a ΔnudA deletion derivative of strain J99 was constructed and transformants were verified by PCR and by fluorescence in situ hybridization. AGS cells were inoculated with either wild type (WT) strain J99 or its ΔnudA mutant to determine the fraction of bacteria that were bound to the cells and were present inside these cells using the gentamicin protection assay. We observed no significant difference between either the density of H. pylori bound to AGS cell membranes or the density of intracellular H. pylori. To further explore this finding, separate chambers of each culture were fixed in glutaraldehyde for transmission electron microscopy (TEM) and immunogold TEM. This addition to the “classical” gentamicin assay demonstrated that there were significantly more intracellular, and fewer membrane-bound, H. pylori in WT-infected AGS cells than in ΔnudA allele infected cells. Thus, the sum of intracellular and membrane-bound H. pylori was similar in the two groups. Since no other similar TEM study has been performed, it is at present unknown whether our observations can be reproduced by others Taken together however, our observations suggest that the “classical” gentamicin protection assay is not sufficiently sensitive to analyze H. pylori cell entry and that the addition of TEM to the test demonstrates that nudA plays a role in H. pylori entry into AGS cells in vitro. In addition, deletion of the invasin gene appears to limit H. pylori to the AGS cell surface, where it may be partly protected against gentamicin. In contrast, this specific environment may render H. pylori more vulnerable to host defense and therapeutic intervention, and less prone to trigger normal immune, carcinogenic, and other developmental response

  18. Intracellular transport mechanisms: a critique of diffusion theory.

    PubMed

    Agutter, P S; Malone, P C; Wheatley, D N

    1995-09-21

    It is argued that Brownian motion makes a less significant contribution to the movements of molecules and particles inside cells than is commonly believed, and that the numbers of similar molecules and particles within any near-homogeneous subcompartment of the cell internum are insufficient to justify the statistical assumptions implicit in the derivation of the diffusion equation. For these reasons, it is contended that, contrary to accepted opinion, diffusion theory cannot provide an explanation for intracellular transport at the molecular level. Although attempts have been made to adapt diffusion theory to complex media, the conclusion is that none satisfactorily overcomes the problem of applying the theory to cell biology. However, the heuristic influence of the theory on cellular biophysics and physiology is noted, and possible alternative frameworks for interpreting the valuable experimental data obtained from such studies are outlined.

  19. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryogenic technologies are required to preserve embryonic axes of recalcitrant seeds. Formation of potentially lethal intracellular ice limits successful cryopreservation; thus, it is important to understand the relationships among cryo-exposure techniques, water content and survival. In this pap...

  20. Intracellular trafficking mechanism of cationic phospholipids including cationic liposomes in HeLa cells.

    PubMed

    Un, K; Sakai-Kato, K; Goda, Y

    2014-07-01

    The development of gene delivery methods is essential for the achievement of effective gene therapy. Elucidation of the intracellular transfer mechanism for cationic carriers is in progress, but there are few reports regarding the intracellular trafficking processes of the cationic phospholipids taken up into cells. In the present work, the trafficking processes of a cationic phospholipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) were investigated from intracellular uptake to extracellular efflux using cationic liposomes in vitro. Following intracellular transport of liposomes via endocytosis, DOTAP was localized in the endoplasmic reticulum, Golgi apparatus, and mitochondria. Moreover, the proteins involved in DOTAP intracellular trafficking and extracellular efflux were identified. In addition, helper lipids of cationic liposomes were found to partially affect this intracellulartrafficking. These findings might provide valuable information for designing cationic carriers and avoiding unexpected toxic side effects derived from cationic liposomal components.

  1. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.

    PubMed

    Nakamura, Toshihide; Takagi, Hiroshi; Shima, Jun

    2009-04-01

    Freezing tolerance is an important characteristic for baker's yeast, Saccharomyces cerevisiae, as it is used to make frozen dough. The ability of yeast cells to survive freezing is thought to depend on various factors. The purpose of this work was to study the viability of yeast cells during the freezing process. We examined factors potentially affecting their survival, including the growth phase, ice-seeding temperature, intracellular trehalose content, freezing period, and duration of supercooling. The results showed that the ice-seeding temperature significantly affected cell viability. In the stationary phase, trehalose accumulation did not affect the viability of yeast cells after brief freezing, although it did significantly affect the viability after prolonged freezing. In the log phase, the ice-seeding temperature was more important for cell survival than the presence of trehalose during prolonged freezing. The importance of increasing the extracellular ice-seeding temperature was verified by comparing frozen yeast survival rates in a freezing test with ice-seeding temperatures of -5 degrees C and -15 degrees C. We also found that the cell survival rates began to increase at 3h of supercooling. The yeast cells may adapt to subzero temperatures and/or acquire tolerance to freezing stress during the supercooling. PMID:19126409

  2. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy.

    PubMed

    La Rovere, Rita M L; Roest, Gemma; Bultynck, Geert; Parys, Jan B

    2016-08-01

    The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress.

  3. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy.

    PubMed

    La Rovere, Rita M L; Roest, Gemma; Bultynck, Geert; Parys, Jan B

    2016-08-01

    The endoplasmic reticulum (ER), mitochondria and lysosomes are physically and/or functionally linked, establishing close contact sites between these organelles. As a consequence, Ca(2+) release events from the ER, the major intracellular Ca(2+)-storage organelle, have an immediate effect on the physiological function of mitochondria and lysosomes. Also, the lysosomes can act as a Ca(2+) source for Ca(2+) release into the cytosol, thereby influencing ER-based Ca(2+) signaling. Given the important role for mitochondria and lysosomes in cell survival, cell death and cell adaptation processes, it has become increasingly clear that Ca(2+) signals from or towards these organelles impact these processes. In this review, we discuss the most recent insights in the emerging role of Ca(2+) signaling in cellular survival by controlling basal mitochondrial bioenergetics and by regulating apoptosis, a mitochondrial process, and autophagy, a lysosomal process, in response to cell damage and cell stress. PMID:27157108

  4. STING-Dependent 2'-5' Oligoadenylate Synthetase-Like Production Is Required for Intracellular Mycobacterium leprae Survival.

    PubMed

    de Toledo-Pinto, Thiago Gomes; Ferreira, Anna Beatriz Robottom; Ribeiro-Alves, Marcelo; Rodrigues, Luciana Silva; Batista-Silva, Leonardo Ribeiro; Silva, Bruno Jorge de Andrade; Lemes, Robertha Mariana Rodrigues; Martinez, Alejandra Nóbrega; Sandoval, Felipe Galvan; Alvarado-Arnez, Lucia Elena; Rosa, Patrícia Sammarco; Shannon, Edward Joseph; Pessolani, Maria Cristina Vidal; Pinheiro, Roberta Olmo; Antunes, Sérgio Luís Gomes; Sarno, Euzenir Nunes; Lara, Flávio Alves; Williams, Diana Lynn; Ozório Moraes, Milton

    2016-07-15

    Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen. PMID:27190175

  5. Intracellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2.

    PubMed

    Forest, Chantal G; Ferraro, Elyse; Sabbagh, Sébastien C; Daigle, France

    2010-12-01

    For successful infection, Salmonella enterica secretes and injects effector proteins into host cells by two distinct type three secretion systems (T3SSs) located on Salmonella pathogenicity islands (SPIs)-1 and -2. The SPI-2 T3SS is involved in intracellular survival of S. enterica serovar Typhimurium and systemic disease. As little is known regarding the function of the SPI-2 T3SS from S. enterica serovar Typhi, the aetiological agent of typhoid fever, we investigated its role for survival in human macrophages. Mutations in the translocon (sseB), basal secretion apparatus (ssaR) and regulator (ssrB) did not result in any reduction in survival under many of the conditions tested. Similar results were obtained with another S. Typhi strain or by using human primary cells. Results were corroborated based on complete deletion of the SPI-2 T3SS. Surprisingly, the data suggest that the SPI-2 T3SS of S. Typhi is not required for survival in human macrophages.

  6. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections

    PubMed Central

    Hodgson, Kelly; Morris, Jodie; Bridson, Tahnee; Govan, Brenda; Rush, Catherine; Ketheesan, Natkunam

    2015-01-01

    Diabetes has been recognized as an important risk factor for a variety of intracellular bacterial infections, but research into the dysregulated immune mechanisms contributing to the impaired host–pathogen interactions is in its infancy. Diabetes is characterized by a chronic state of low-grade inflammation due to activation of pro-inflammatory mediators and increased formation of advanced glycation end products. Increased oxidative stress also exacerbates the chronic inflammatory processes observed in diabetes. The reduced phagocytic and antibacterial activity of neutrophils and macrophages provides an intracellular niche for the pathogen to replicate. Phagocytic and antibacterial dysfunction may be mediated directly through altered glucose metabolism and oxidative stress. Furthermore, impaired activation of natural killer cells contributes to decreased levels of interferon-γ, required for promoting macrophage antibacterial mechanisms. Together with impaired dendritic cell function, this impedes timely activation of adaptive immune responses. Increased intracellular oxidation of antigen-presenting cells in individuals with diabetes alters the cytokine profile generated and the subsequent balance of T-cell immunity. The establishment of acute intracellular bacterial infections in the diabetic host is associated with impaired T-cell-mediated immune responses. Concomitant to the greater intracellular bacterial burden and potential cumulative effect of chronic inflammatory processes, late hyper-inflammatory cytokine responses are often observed in individuals with diabetes, contributing to systemic pathology. The convergence of intracellular bacterial infections and diabetes poses new challenges for immunologists, providing the impetus for multidisciplinary research. PMID:25262977

  7. Intracellular survival of Staphylococcus aureus due to alteration of cellular activity in arsenic and lead intoxicated mature Swiss albino mice.

    PubMed

    Bishayi, Biswadev; Sengupta, Mahuya

    2003-02-14

    The role of heavy metals like arsenic (As) and lead (Pb) as environmental toxicants is established. However, the exact mechanism of their effect on immunocompetent cell activity is not well known. Staphylococcus aureus is a virulent pathogen that has the ability to cause a variety of potentially life-threatening infections. The objective of our study was to demonstrate in an experimental mouse model of bacteremic S. aureus infection, bacterial clearance from blood and spleen in arsenic, lead treated and control group of mice. Bacterial density was measured in blood and spleen after 0, 24, 48 and 72 h post-infection. Our findings show a significant increase in bacterial load in blood (P<0.025 for arsenic and P<0.01 for lead) and delayed bacterial clearance by spleen in both arsenic (P<0.05) and lead (P<0.025) treated groups as compared to control, thus highlighting an immuno-compromised state following heavy metal exposure. To further elucidate immunomodulatory effects of both arsenic and lead, cell function studies were performed on splenic macrophages (M(phi)) isolated from lead and arsenic treated as well as control group of mice. Our findings show a decrease in cell adhesion property (P<0.005) of splenic M(phi)s from 2.9925+/-0.053 in control to 1.395+/-0.106 in arsenic and 0.8835+/-0.0106 in lead treated mice at 60 min. Morphologic alteration of the splenic M(phi)s showed an increase (As: P<0.05, Pb: P<0.0005) in both arsenic (6.876+/-0.3287%) and lead (16.55+/-1.051%) treated mice to control (2.649+/-1.238%) which may be responsible for the formers' reduced functional status. The chemotactic index, a measure of chemotactic migration of the macrophages toward immune serum, was 16.43+/-1.007 in control cell and was reduced (P<0.0005) to 4.19+/-0.393 in arsenic and 2.92+/-0.649 in lead treated mice at 60 min. These altered cell functions could probably explain the intracellular survival of S. aureus but such a causal relationship awaits further detailed

  8. Neurodegeneration in Glaucoma: Progression and Calcium-Dependent Intracellular Mechanisms

    PubMed Central

    Crish, Samuel D.; Calkins, David J.

    2011-01-01

    Glaucoma is an age-related optic neuropathy involving sensitivity to ocular pressure. The disease is now seen increasingly as one of the central nervous system, as powerful new approaches highlight an increasing number of similarities with other age-related neurodegenerations such as Alzheimer’s and Parkinson’s. While the etiologies of these diseases are diverse, they involve many important common elements including compartmentalized programs of degeneration targeting axons, dendrites and finally cell bodies. Most age-related degenerations display early functional deficits that precede actual loss of neuronal substrate. These are linked to several specific neurochemical cascades that can be linked back to dysregulation of Ca2+-dependent processes. We are now in the midst of identifying similar cascades in glaucoma. Here we review recent evidence on the pathological progression of neurodegeneration in glaucoma and some of the Ca2+-dependent mechanisms that could underlie these changes. These mechanisms present clear implications for efforts to develop interventions targeting neuronal loss directly and make glaucoma an attractive model for both interrogating and informing other neurodegenerative diseases. PMID:21187126

  9. Determining the intracellular transport mechanism of a cleft-[2]rotaxane.

    PubMed

    Bao, Xiaofeng; Isaacsohn, Idit; Drew, Angela F; Smithrud, David B

    2006-09-20

    Rotaxanes are a class of interlocked compounds that have been extensively investigated for their potential utility as switches or sensors. We recently demonstrated that rotaxanes have further application as agents that transport material into cells. This novel finding prompted our investigation into the mechanism by which rotaxanes are involved in transmembrane transport. Two-dimensional NMR analysis showed that a cleft-containing rotaxane exists in two dominant conformations ("closed" and "open"). To determine the importance of conformational flexibility on the ability of the rotaxanes to bind guests and transport material into cells, the rotaxane was chemically modified to lock it in the closed conformation. Charged guests interact less favorably with the locked rotaxane, as compared to the unmodified rotaxane, both in an aqueous solution and in DMSO. In a chloroform solution, both rotaxanes bind the guests with similar affinities. The locked rotaxane exhibited a reduced capacity to transport a fluoresceinated peptide into cells, whereas the unmodified rotaxane efficiently delivers the peptide. Flow cytometry experiments demonstrated that a high percentage of the cells contained the delivered peptide (89-98%), the level of delivery is concentration dependent, and the rotaxanes and peptide have low toxicity. Cellular uptake of the peptide was largely temperature and ATP independent, suggesting that the rotaxane-peptide complex passes through the cellular membrane without requiring active cell-mediated processes. The results show that the sliding motion of the wheel is necessary for the delivery of materials into cells and can enhance the association of guests. These studies demonstrate the potential for rotaxanes as a new class of mechanical devices that deliver a variety of therapeutic agents into targeted cell populations.

  10. A small heat shock protein is essential for thermotolerance and intracellular survival of Leishmania donovani

    PubMed Central

    Hombach, Antje; Ommen, Gabi; MacDonald, Andrea; Clos, Joachim

    2014-01-01

    ABSTRACT Leishmania parasites must survive and proliferate in two vastly different environments – the guts of poikilothermic sandflies and the antigen-presenting cells of homeothermic mammals. The change of temperature during the transmission from sandflies to mammals is both a key trigger for the progression of their life cycle and for elevated synthesis of heat shock proteins, which have been implicated in their survival at higher temperatures. Although the functions of the main heat shock protein families in the Leishmania life cycle have been studied, nothing is known about the roles played by small heat shock proteins. Here, we present the first evidence for the pivotal role played by the Leishmania donovani 23-kDa heat shock protein (which we called HSP23), which is expressed preferentially during the mammalian stage where it assumes a perinuclear localisation. Loss of HSP23 causes increased sensitivity to chemical stressors and renders L. donovani non-viable at 37°C. Consequently, HSP23-null mutants are non-infectious to primary macrophages in vitro. All phenotypic effects could be abrogated by the introduction of a functional HSP23 transgene into the null mutant, confirming the specificity of the mutant phenotype. Thus, HSP23 expression is a prerequisite for L. donovani survival at mammalian host temperatures and a crucial virulence factor. PMID:25179594

  11. Effect of Warming Rate on the Survival of Vitrified Mouse Oocytes and on the Recrystallization of Intracellular Ice1

    PubMed Central

    Seki, Shinsuke; Mazur, Peter

    2008-01-01

    Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at −25°C. They were then cooled rapidly to −70°C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to −196°C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140°C/min to 3300°C/min. Survivals after warming at 140°C/min and 250°C/min were low (<30%). Survivals after warming at ≥2200°C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed. PMID:18562703

  12. Effects of Equex from different sources on post-thaw survival, longevity and intracellular Ca2+ concentration of dog spermatozoa.

    PubMed

    Peña, Ana I; Lugilde, Luz L; Barrio, Mónica; Herradón, Pedro G; Quintela, Luis A

    2003-04-15

    The aims of the present study were to compare the effects of two commercial preparations (Equex STM Paste or Equex Pasta), whose active ingredient is sodium dodecyl sulphate (SDS), added to a Tris-egg yolk-based extender, on post-thaw sperm survival and longevity, as well as on the intracellular Ca(2+) concentration of dog spermatozoa during incubation at 38 degrees C. One ejaculate was collected from each of eight dogs. Each ejaculate was centrifuged, the semen plasma discarded, and the sperm pellet rediluted with a Tris-glucose-egg yolk extender containing 3% glycerol (Ext-1) at a sperm concentration of 200 x 10(6) spermatozoa (spz)/ml. The diluted semen was divided in three aliquots of equal volume and allowed to equilibrate for 1h at 4 degrees C. After equilibration, the same volume of three different second extenders was added, respectively, to each of the three aliquots: (A) Ext-2A (same composition as Ext-1 except that it contained 7% glycerol and 1% Equex STM Paste), (B) Ext-2B (same composition as that of Ext-1 except that it contained 7% glycerol and 1% Equex Pasta), and (C) Ext-2 (CONTROL: same composition as that of Ext-1 except that it contained 7% glycerol). Semen samples were packed in 0.5 ml straws and frozen on a rack 4 cm above liquid nitrogen (LN(2)) in a styrofoam box. Thawing was at 70 degrees C for 8s. Sperm motility was evaluated after thawing and at 1 h intervals for 5h at 38 degrees C by subjective examination and by using a CASA system. Plasma membrane integrity and acrosomal status were evaluated at 1, 4 and 7h post-thaw using a triple staining procedure and flow cytometry. Intracellular Ca(2+) concentration of live spermatozoa was evaluated by flow cytometry at 1, 4 and 7h post-thaw after co-loading the sperm cells with the Ca(2+) indicators Fluo 3 AM and Fura Red AM, and with PI. Post-thaw sperm survival and longevity, as well as the quality of the sperm movement, were significantly better (P<0.005) when Ext-2A (containing Equex STM

  13. Mechanisms of sensorineural cell damage, death and survival in the cochlea

    PubMed Central

    Wong, Ann C. Y.; Ryan, Allen F.

    2015-01-01

    The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss (ARHL). Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed. PMID:25954196

  14. Swine TRIM21 restricts FMDV infection via an intracellular neutralization mechanism.

    PubMed

    Fan, Wenchun; Zhang, Dong; Qian, Ping; Qian, Suhong; Wu, Mengge; Chen, Huanchun; Li, Xiangmin

    2016-03-01

    The tripartite motif protein 21 (TRIM21) is a ubiquitously expressed E3 ubiquitin ligase and an intracellular antibody receptor. TRIM21 mediates antibody-dependent intracellular neutralization (ADIN) in cytosol and provides an intracellular immune response to protect host defense against pathogen infection. In this study, swine TRIM21 (sTRIM21) was cloned and its role in ADIN was investigated. The expression of sTRIM21 is induced by type I interferon in PK-15 cells. sTRIM21 restricts FMDV infection in the presence of FMDV specific antibodies. Furthermore, sTRIM21 interacts with Fc fragment of swine immunoglobulin G (sFc) fused VP1 of FMDV and thereby causing its degradation. Both the RING and SPRY domains are essential for sTRIM21 to degrade sFc-fused VP1. These results suggest that the intracellular neutralization features of FMDV contribute to the antiviral activity of sTRIM21. sTRIM21 provide another intracellular mechanism to inhibit FMDV infection in infected cells.

  15. Swine TRIM21 restricts FMDV infection via an intracellular neutralization mechanism.

    PubMed

    Fan, Wenchun; Zhang, Dong; Qian, Ping; Qian, Suhong; Wu, Mengge; Chen, Huanchun; Li, Xiangmin

    2016-03-01

    The tripartite motif protein 21 (TRIM21) is a ubiquitously expressed E3 ubiquitin ligase and an intracellular antibody receptor. TRIM21 mediates antibody-dependent intracellular neutralization (ADIN) in cytosol and provides an intracellular immune response to protect host defense against pathogen infection. In this study, swine TRIM21 (sTRIM21) was cloned and its role in ADIN was investigated. The expression of sTRIM21 is induced by type I interferon in PK-15 cells. sTRIM21 restricts FMDV infection in the presence of FMDV specific antibodies. Furthermore, sTRIM21 interacts with Fc fragment of swine immunoglobulin G (sFc) fused VP1 of FMDV and thereby causing its degradation. Both the RING and SPRY domains are essential for sTRIM21 to degrade sFc-fused VP1. These results suggest that the intracellular neutralization features of FMDV contribute to the antiviral activity of sTRIM21. sTRIM21 provide another intracellular mechanism to inhibit FMDV infection in infected cells. PMID:26777733

  16. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms

    PubMed Central

    Donlan, Rodney M.; Costerton, J. William

    2002-01-01

    Though biofilms were first described by Antonie van Leeuwenhoek, the theory describing the biofilm process was not developed until 1978. We now understand that biofilms are universal, occurring in aquatic and industrial water systems as well as a large number of environments and medical devices relevant for public health. Using tools such as the scanning electron microscope and, more recently, the confocal laser scanning microscope, biofilm researchers now understand that biofilms are not unstructured, homogeneous deposits of cells and accumulated slime, but complex communities of surface-associated cells enclosed in a polymer matrix containing open water channels. Further studies have shown that the biofilm phenotype can be described in terms of the genes expressed by biofilm-associated cells. Microorganisms growing in a biofilm are highly resistant to antimicrobial agents by one or more mechanisms. Biofilm-associated microorganisms have been shown to be associated with several human diseases, such as native valve endocarditis and cystic fibrosis, and to colonize a wide variety of medical devices. Though epidemiologic evidence points to biofilms as a source of several infectious diseases, the exact mechanisms by which biofilm-associated microorganisms elicit disease are poorly understood. Detachment of cells or cell aggregates, production of endotoxin, increased resistance to the host immune system, and provision of a niche for the generation of resistant organisms are all biofilm processes which could initiate the disease process. Effective strategies to prevent or control biofilms on medical devices must take into consideration the unique and tenacious nature of biofilms. Current intervention strategies are designed to prevent initial device colonization, minimize microbial cell attachment to the device, penetrate the biofilm matrix and kill the associated cells, or remove the device from the patient. In the future, treatments may be based on inhibition of genes

  17. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization

    PubMed Central

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  18. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    PubMed

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  19. The survival advantage: Underlying mechanisms and extant limitations.

    PubMed

    Kazanas, Stephanie A; Altarriba, Jeanette

    2015-01-01

    Recently, researchers have begun to investigate the function of memory in our evolutionary history. According to Nairne and colleagues (e.g., Nairne, Pandeirada, and Thompson, 2008; Nairne, Thompson, and Pandeirada, 2007), the best mnemonic strategy for learning lists of unrelated words may be one that addresses the same problems that our Pleistocene ancestors faced: fitness-relevant problems including securing food and water, as well as protecting themselves from predators. Survival processing has been shown to promote better recall and recognition memory than many well-known mnemonic strategies (e.g., pleasantness ratings, imagery, generation, etc.). However, the survival advantage does not extend to all types of stimuli and tasks. The current review presents research that has replicated Nairne et al.'s (2007) original findings, in addition to the research designs that fail to replicate the survival advantage. In other words, there are specific manipulations in which survival processing does not appear to benefit memory any more than other strategies. Potential mechanisms for the survival advantage are described, with an emphasis on those that are the most plausible. These proximate mechanisms outline the memory processes that may contribute to the advantage, although the ultimate mechanism may be the congruity between the survival scenario and Pleistocene problem-solving. PMID:25947360

  20. Noncontact three-dimensional mapping of intracellular hydro-mechanical properties by Brillouin microscopy

    PubMed Central

    Scarcelli, Giuliano; Polacheck, William J.; Nia, Hadi T.; Patel, Kripa; Grodzinsky, Alan J.; Kamm, Roger D.; Yun, Seok Hyun

    2015-01-01

    Current measurements of the biomechanical properties of cells require physical contact with cells or lack sub-cellular resolution. Here, we developed a label-free optical microscopy technique based on Brillouin light scattering capable of measuring intracellular longitudinal modulus with optical resolution. We obtained 3D Brillouin maps of cells in 2D and 3D microenvironments, which reveal mechanical changes due to cytoskeletal modulation and cell volume regulation. PMID:26436482

  1. Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms.

    PubMed

    Beebe, Stephen J; Blackmore, Peter F; White, Jody; Joshi, Ravindra P; Schoenbach, Karl H

    2004-08-01

    These studies describe the effects of nanosecond (10-300 ns) pulsed electric fields (nsPEF) on mammalian cell structure and function. As the pulse durations decrease, effects on the plasma membrane (PM) decrease and effects on intracellular signal transduction mechanisms increase. When nsPEF-induced PM electroporation effects occur, they are distinct from classical PM electroporation effects, suggesting unique, nsPEF-induced PM modulations. In HL-60 cells, nsPEF that are well below the threshold for PM electroporation and apoptosis induction induce effects that are similar to purinergic agonistmediated calcium release from intracellular stores, which secondarily initiate capacitive calcium influx through store-operated calcium channels in the PM. NsPEF with durations and electric field intensities that do or do not cause PM electroporation, induce apoptosis in mammalian cells with a well-characterized phenotype typified by externalization of phosphatidylserine on the outer PM and activation of caspase proteases. Treatment of mouse fibrosarcoma tumors with nsPEF also results in apoptosis induction. When Jurkat cells were transfected by electroporation and then treated with nsPEF, green fluorescent protein expression was enhanced compared to electroporation alone. The results indicate that nsPEF activate intracellular mechanisms that can determine cell function and fate, providing an important new tool for probing signal transduction mechanisms that modulate cell structure and function and for potential therapeutic applications for cancer and gene therapy.

  2. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  3. Subcellular Dynamics of Multifunctional Protein Regulation: Mechanisms of GAPDH Intracellular Translocation

    PubMed Central

    Sirover, Michael A.

    2012-01-01

    Multidimensional proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibit distinct activities unrelated to their originally identified functions. Apart from glycolysis, GAPDH participates in iron metabolism, membrane trafficking, histone biosynthesis, the maintenance of DNA integrity and receptor mediated cell signaling. Further, multifunctional proteins exhibit distinct changes in their subcellular localization reflecting their new activities. As such, GAPDH is not only a cytosolic protein but is localized in the membrane, the nucleus, polysomes, the ER and the Golgi. In addition, although the initial subcellular localizations of multifunctional proteins may be of significance, dynamic changes in intracellular distribution may occur as a consequence of those new activities. As such, regulatory mechanisms may exist through which cells control multifunctional protein expression as a function of their subcellular localization. The temporal sequence through which subcellular translocation and the acquisition of new GAPDH functions is considered as well as post-translational modification as a basis for its intracellular transport. PMID:22388977

  4. Surface transport properties of reticulopodia: do intracellular and extracellular motility share a common mechanism?

    PubMed

    Bowser, S S; Israel, H A; McGee-Russell, S M; Rieder, C L

    1984-12-01

    The reticulopodial networks of the foraminiferan protozoans Allogromia sp., strain NF, and A. laticollaris display rapid (up to 11 microns/second) and bidirectional saltatory transport of membrane surface markers (polystyrene microspheres). Electron microscopy shows that microspheres adhere directly to the reticulopodial surface glycocalyx. A videomicroscopic analysis of this phenomenon reveals that microsphere movement is typically independent of pseudopod extension/withdrawal and that particles of different sizes and surface properties display similar motile characteristics. The motile properties of surface-associated microspheres appear identical to those of saltating intracellular organelles. Indeed, in some instances the surface-attached microspheres appear transiently linked in motion to these underlying organelles. Our observations suggest that, in reticulopodia, surface transport of microspheres and intracellular transport of organelles are driven by a common mechanism.

  5. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  6. Granulocyte Macrophage-Colony Stimulating Factor-induced Zn Sequestration Enhances Macrophage Superoxide and Limits Intracellular Pathogen Survival

    PubMed Central

    Vignesh, Kavitha Subramanian; Landero Figueroa, Julio A.; Porollo, Aleksey; Caruso, Joseph A.; Deepe, George S.

    2013-01-01

    SUMMARY Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like Zn. The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7 and the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H+ channel function and triggered reactive oxygen species (ROS) generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function. PMID:24138881

  7. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.

    PubMed

    Yan, Liang; Gu, Zhanjun; Zhao, Yuliang

    2013-10-01

    As more and more nanomaterials with novel physicochemical properties or new functions are created and used in different research fields and industrial sectors, the scientific and public concerns about their toxic effects on human health and the environment are also growing quickly. In the past decade, the study of the toxicological properties of nanomaterials/nanoparticles has formed a new research field: nanotoxicology. However, most of the data published relate to toxicological phenomena and there is less understanding of the underlying mechanism for nanomaterial-induced toxicity. Nanomaterial-induced reactive oxygen species (ROS) play a key role in cellular and tissue toxicity. Herein, we classify the pathways for intracellular ROS production by nanomaterials into 1) the direct generation of ROS through nanomaterial-catalyzed free-radical reactions in cells, and 2) the indirect generation of ROS through disturbing the inherent biochemical equilibria in cells. We also discuss the chemical mechanisms associated with above pathways of intracellular ROS generation, from the viewpoint of the high reactivity of atoms on the nanosurface. We hope to aid in the understanding of the chemical origin of nanotoxicity to provide new insights for chemical and material scientists for the rational design and creation of safer and greener nanomaterials.

  8. Mechanisms of control of neuron survival by the endocannabinoid system.

    PubMed

    Galve-Roperh, Ismael; Aguado, Tania; Palazuelos, Javier; Guzmán, Manuel

    2008-01-01

    Endocannabinoids act as retrograde messengers that, by inhibiting neurotransmitter release via presynaptic CB(1) cannabinoid receptors, regulate the functionality of many synapses. In addition, the endocannabinoid system participates in the control of neuron survival. Thus, CB(1) receptor activation has been shown to protect neurons from acute brain injury as well as in neuroinflammatory conditions and neurodegenerative diseases. Nonetheless, some studies have reported that cannabinoids can also exert neurotoxic actions. Cannabinoid neuroprotective activity relies on the inhibition of glutamatergic neurotransmission and on other various mechanisms, and is supported by the observation that the brain overproduces endocannabinoids upon damage. Coupling of neuronal CB(1) receptors to cell survival routes such as the phosphatidylinositol 3-kinase/Akt and extracellular signal-regulated kinase pathways may contribute to cannabinoid neuroprotective action. These pro-survival signals occur, at least in part, by the cross-talk between CB(1) receptors and growth factor tyrosine kinase receptors. Besides promoting neuroprotection, a role for the endocannabinoid system in the control of neurogenesis from neural progenitors has been put forward. In addition, activation of CB(2) cannabinoid receptors on glial cells may also participate in neuroprotection by limiting the extent of neuroinflammation. Altogether, these findings support that endocannabinoids constitute a new family of lipid mediators that act as instructive signals in the control of neuron survival.

  9. Intracellular Trafficking of Plasmids for Gene Therapy: Mechanisms of Cytoplasmic Movement and Nuclear Import

    PubMed Central

    Dean, David A.

    2015-01-01

    Under physiologically relevant conditions, the levels of non-viral gene transfer are low at best. The reason for this is that many barriers exist for the efficient transfer of genes to cells, even before any gene expression can occur. While many transfection strategies focus on DNA condensation and overcoming the plasma membrane, events associated with the intracellular trafficking of the DNA complexes have not been as extensively studied. Once internalized, plasmids must travel potentially long distances through the cytoplasm to reach their next barrier, the nuclear envelope. This review summarizes the current progress on the cytoplasmic trafficking and nuclear transport of plasmids used for gene therapy applications. Both of these processes utilize specific and defined mechanisms to facilitate movement of DNA complexes through the cell. The continued elucidation and exploitation of these mechanisms will lead to improved strategies for transfection and successful gene therapy. PMID:17168698

  10. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  11. Neocortical GABA release at high intracellular sodium and low extracellular calcium: an anti-seizure mechanism.

    PubMed

    Rassner, Michael P; Moser, Andreas; Follo, Marie; Joseph, Kevin; van Velthoven-Wurster, Vera; Feuerstein, Thomas J

    2016-04-01

    In epilepsy, the GABA and glutamate balance may be disrupted and a transient decrease in extracellular calcium occurs before and during a seizure. Flow Cytometry based fluorescence activated particle sorting experiments quantified synaptosomes from human neocortical tissue, from both epileptic and non-epileptic patients (27.7% vs. 36.9% GABAergic synaptosomes, respectively). Transporter-mediated release of GABA in human and rat neocortical synaptosomes was measured using the superfusion technique for the measurement of endogenous GABA. GABA release was evoked by either a sodium channel activator or a sodium/potassium-ATPase inhibitor when exocytosis was possible or prevented, and when the sodium/calcium exchanger was active or inhibited. The transporter-mediated release of GABA is because of elevated intracellular sodium. A reduction in the extracellular calcium increased this release (in both non-epileptic and epileptic, except Rasmussen encephalitis, synaptosomes). The inverse was seen during calcium doubling. In humans, GABA release was not affected by exocytosis inhibition, that is, it was solely transporter-mediated. However, in rat synaptosomes, an increase in GABA release at zero calcium was only exhibited when the exocytosis was prevented. The absence of calcium amplified the sodium/calcium exchanger activity, leading to elevated intracellular sodium, which, together with the stimulation-evoked intracellular sodium increment, enhanced GABA transporter reversal. Sodium/calcium exchange inhibitors diminished GABA release. Thus, an important seizure-induced extracellular calcium reduction might trigger a transporter- and sodium/calcium exchanger-related anti-seizure mechanism by augmenting transporter-mediated GABA release, a mechanism absent in rats. Uniquely, the additional increase in GABA release because of calcium-withdrawal dwindled during the course of illness in Rasmussen encephalitis. Seizures cause high Na(+) influx through action potentials. A

  12. Origins of stochastic intracellular processes and consequences for cell-to-cell variability and cellular survival strategies.

    PubMed

    Schwabe, A; Dobrzyński, M; Rybakova, K; Verschure, P; Bruggeman, F J

    2011-01-01

    Quantitative analyses of the dynamics of single cells have become a powerful approach in current cell biology. They give us an unprecedented opportunity to study dynamics of molecular networks at a high level of accuracy in living single cells. Genetically identical cells, growing in the same environment and sharing the same growth history, can differ remarkably in their molecular makeup and physiological behaviors. The origins of this cell-to-cell variability have in many cases been traced to the inevitable stochasticity of molecular reactions. Those mechanisms can cause isogenic cells to have qualitatively different life histories. Many studies indicate that molecular noise can be exploited by cell populations to enhance survival prospects in uncertain environments. On the other hand, cells have evolved noise-suppression mechanisms to cope with the inevitable noise in their functioning so as to reduce the hazardous effects of noise. In this chapter, we discuss key experiments, theoretical results, and physiological consequences of molecular stochasticity to introduce this exciting field to a broader community of (systems) biologists. PMID:21943916

  13. An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure

    PubMed Central

    Gudelj, Ivana; Weitz, Joshua S; Ferenci, Tom; Claire Horner-Devine, M; Marx, Christopher J; Meyer, Justin R; Forde, Samantha E

    2010-01-01

    Trade-offs have been put forward as essential to the generation and maintenance of diversity. However, variation in trade-offs is often determined at the molecular level, outside the scope of conventional ecological inquiry. In this study, we propose that understanding the intracellular basis for trade-offs in microbial systems can aid in predicting and interpreting patterns of diversity. First, we show how laboratory experiments and mathematical models have unveiled the hidden intracellular mechanisms underlying trade-offs key to microbial diversity: (i) metabolic and regulatory trade-offs in bacteria and yeast; (ii) life-history trade-offs in bacterial viruses. Next, we examine recent studies of marine microbes that have taken steps toward reconciling the molecular and the ecological views of trade-offs, despite the challenges in doing so in natural settings. Finally, we suggest avenues for research where mathematical modelling, experiments and studies of natural microbial communities provide a unique opportunity to integrate studies of diversity across multiple scales. PMID:20576029

  14. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors

    PubMed Central

    Miller, Daniel H.; Medina, Jamie E.; Hamilton, Joshua W.; Messerli, Mark A.; Brodsky, Alexander S.

    2016-01-01

    The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05) (S2 Table). Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition. PMID:26986722

  15. Spatio-temporal PLC activation in parallel with intracellular Ca2+ wave propagation in mechanically stimulated single MDCK cells.

    PubMed

    Tsukamoto, Akira; Hayashida, Yasunori; Furukawa, Katsuko S; Ushida, Takashi

    2010-03-01

    Intracellular Ca2+ transients are evoked either by the opening of Ca2+ channels on the plasma membrane or by phospholipase C (PLC) activation resulting in IP3 production. Ca2+ wave propagation is known to occur in mechanically stimulated cells; however, it remains uncertain whether and how PLC activation is involved in intracellular Ca2+ wave propagation in mechanically stimulated cells. To answer these questions, it is indispensable to clarify the spatio-temporal relations between intracellular Ca2+ wave propagation and PLC activation. Thus, we visualized both cytosolic Ca2+ and PLC activation using a real-time dual-imaging system in individual Mardin-Darby Canine Kidney (MDCK) cells. This system allowed us to simultaneously observe intracellular Ca2+ wave propagation and PLC activation in a spatio-temporal manner in a single mechanically stimulated MDCK cell. The results showed that PLC was activated not only in the mechanically stimulated region but also in other subcellular regions in parallel with intracellular Ca2+ wave propagation. These results support a model in which PLC is involved in Ca2+ signaling amplification in mechanically stimulated cells.

  16. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization.

    PubMed

    Vlachodimitropoulou Koumoutsea, Evangelia; Garbowski, Maciej; Porter, John

    2015-09-01

    Iron chelators are increasingly combined clinically but the optimal conditions for cellular iron mobilization and mechanisms of interaction are unclear. Speciation plots for iron(III) binding of paired combinations of the licensed iron chelators desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) suggest conditions under which chelators can combine as 'shuttle' and 'sink' molecules but this approach does not consider their relative access and interaction with cellular iron pools. To address this issue, a sensitive ferrozine-based detection system for intracellular iron removal from the human hepatocyte cell line (HuH-7) was developed. Antagonism, synergism or additivity with paired chelator combinations was distinguished using mathematical isobologram analysis over clinically relevant chelator concentrations. All combinations showed synergistic iron mobilization at 8 h with clinically achievable concentrations of sink and shuttle chelators. Greatest synergism was achieved by combining DFP with DFX, where about 60% of mobilized iron was attributable to synergistic interaction. These findings predict that the DFX dose required for a half-maximum effect can be reduced by 3·8-fold when only 1 μmol/l DFP is added. Mechanisms for the synergy are suggested by consideration of the iron-chelate speciation plots together with the size, charge and lipid solubilities for each chelator. Hydroxypyridinones with low lipid solubilities but otherwise similar properties to DFP were used to interrogate the mechanistic interactions of chelator pairs. These studies confirm that synergistic cellular iron mobilization requires one chelator to have the physicochemical properties to enter cells, chelate intracellular iron and subsequently donate iron to a second 'sink' chelator.

  17. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization.

    PubMed

    Vlachodimitropoulou Koumoutsea, Evangelia; Garbowski, Maciej; Porter, John

    2015-09-01

    Iron chelators are increasingly combined clinically but the optimal conditions for cellular iron mobilization and mechanisms of interaction are unclear. Speciation plots for iron(III) binding of paired combinations of the licensed iron chelators desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) suggest conditions under which chelators can combine as 'shuttle' and 'sink' molecules but this approach does not consider their relative access and interaction with cellular iron pools. To address this issue, a sensitive ferrozine-based detection system for intracellular iron removal from the human hepatocyte cell line (HuH-7) was developed. Antagonism, synergism or additivity with paired chelator combinations was distinguished using mathematical isobologram analysis over clinically relevant chelator concentrations. All combinations showed synergistic iron mobilization at 8 h with clinically achievable concentrations of sink and shuttle chelators. Greatest synergism was achieved by combining DFP with DFX, where about 60% of mobilized iron was attributable to synergistic interaction. These findings predict that the DFX dose required for a half-maximum effect can be reduced by 3·8-fold when only 1 μmol/l DFP is added. Mechanisms for the synergy are suggested by consideration of the iron-chelate speciation plots together with the size, charge and lipid solubilities for each chelator. Hydroxypyridinones with low lipid solubilities but otherwise similar properties to DFP were used to interrogate the mechanistic interactions of chelator pairs. These studies confirm that synergistic cellular iron mobilization requires one chelator to have the physicochemical properties to enter cells, chelate intracellular iron and subsequently donate iron to a second 'sink' chelator. PMID:26033030

  18. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival

    PubMed Central

    Döhmer, Peter H.; Valguarnera, Ezequiel; Czibener, Cecilia; Ugalde, Juan E.

    2013-01-01

    SUMMARY Brucella abortus, the etiological agent of bovine brucellosis, is an intracellular pathogen whose virulence is completely dependent on a type IV secretion system. This secretion system translocates effector proteins into the host cell to modulate the intracellular fate of the bacterium in order to establish a secure niche were it actively replicates. Although much has been done in understanding how this secretion system participates in the virulence process, few effector proteins have been identified to date. We describe here the identification of a type IV secretion substrate (SepA) that is only present in Brucella spp. and has no detectable homology to known proteins. This protein is secreted in a virB dependent manner in a two-step process involving a periplasmic intermediate and secretion is necessary for its function. The deletion mutant showed a defect in the early stages of intracellular replication in professional and non-professional phagocytes although it invades the cells more efficiently than the wild type parental strain. Our results indicate that, even though the mutant was more invasive, it had a defect in excluding the lysosomal marker Lamp-1 and was inactivated more efficiently during the early phases of the intracellular life cycle. PMID:24119283

  19. Political Mechanisms for Long-Range Survival and Development

    NASA Astrophysics Data System (ADS)

    Marshall, W.

    As the first species aware of extinction and capable of proactively ensuring our long-term survival and development, it is striking that we do not do so with the rigor, formality, and foresight it requires. Only from a reactive posture have we responded to the challenges of global warfare, human rights, environmental concerns, and sustainable development. Despite our awareness of the possibility for extinction and apocalyptic set-backs to our evolution, and despite the existence of long-range studies-which must still be dramatically increased-proactive global policy implementation regarding our long-term survival and development is arguably non-existent. This lack of long-term policy making can be attributed in part to the lack of formal political mechanisms to facilitate longer-range policy making that extends 30 years or more into the future. Political mechanisms for infusing long-range thinking, research, and strategic planning into the policy-making process can help correct this shortcoming and provide the motivation needed to adequately address long-term challenges with the political rigor required to effectively establish and implement long-term policies. There are some efforts that attempt to address longer-range issues, but those efforts often do not connect to the political process, do not extend 30 or more years into the future, are not well-funded, and are not sufficiently systemic. Political mechanisms for long-range survival and prosperity could correct these inadequacies by raising awareness, providing funding, and most importantly, leveraging political rigor to establish and enforce long-range strategic planning and policies. The feasibility of such mechanisms should first be rigorously studied and assessed in a feasibility study, which could then inform implementation. This paper will present the case for such a study and suggest some possible political mechanisms that should be investigated further in the proposed study. This work is being further

  20. Molecular Mechanisms of Survival Strategies in Extreme Conditions

    PubMed Central

    Magazù, Salvatore; Migliardo, Federica; Gonzalez, Miguel A.; Mondelli, Claudia; Parker, Stewart F.; Vertessy, Beata G.

    2012-01-01

    Today, one of the major challenges in biophysics is to disclose the molecular mechanisms underlying biological processes. In such a frame, the understanding of the survival strategies in extreme conditions received a lot of attention both from the scientific and applicative points of view. Since nature provides precious suggestions to be applied for improving the quality of life, extremophiles are considered as useful model-systems. The main goal of this review is to present an overview of some systems, with a particular emphasis on trehalose playing a key role in several extremophile organisms. The attention is focused on the relation among the structural and dynamic properties of biomolecules and bioprotective mechanisms, as investigated by complementary spectroscopic techniques at low- and high-temperature values. PMID:25371270

  1. A Large Animal Survival Model to Evaluate Bariatric Surgery Mechanisms

    PubMed Central

    Simianu, Vlad V.; Sham, Jonathan G.; Wright, Andrew S.; Stewart, Skye D.; Alloosh, Mouhamad; Sturek, Michael; Cummings, David E.; Flum, David R.

    2016-01-01

    Background The impact of Roux-en-Y gastric bypass (RYGB) on type 2 diabetes mellitus is thought to result from upper and/or lower gut hormone alterations. Evidence supporting these mechanisms is incomplete, in part because of limitations in relevant bariatric-surgery animal models, specifically the lack of naturally insulin-resistant large animals. With overfeeding, Ossabaw swine develop a robust metabolic syndrome, and may be suitable for studying post-surgical physiology. Whether bariatric surgery is feasible in these animals with acceptable survival is unknown. Methods Thirty-two Ossabaws were fed a high-fat, high-cholesterol diet to induce obesity and insulin resistance. These animals were assigned to RYGB (n = 8), RYGB with vagotomy (RYGB-V, n = 5), gastrojejunostomy (GJ, n = 10), GJ with duodenal exclusion (GJD, n = 7), or sham operation (n = 2) and were euthanized 60 days post-operatively. Post-operative changes in weight and food intake are reported. Results Survival to scheduled necropsy among surgical groups was 77%, living an average of 57 days post-operatively. Cardiac arrest under anesthesia occurred in 4 pigs. Greatest weight loss (18.0% ± 6%) and food intake decrease (57.0% ± 20%) occurred following RYGB while animals undergoing RYGB-V showed only 6.6% ± 3% weight loss despite 50.8% ± 25% food intake decrease. GJ (12.7% ± 4%) and GJD (1.2% ± 1%) pigs gained weight, but less than sham controls (13.4% ± 10%). Conclusions A survival model of metabolic surgical procedures is feasible, leads to significant weight loss, and provides the opportunity to evaluate new interventions and subtle variations in surgical technique (e.g. vagus nerve sparing) that may provide new mechanistic insights. PMID:27213116

  2. Effects of Listeria monocytogenes EGD-e and Salmonella enterica ser. Typhimurium LT2 chitinases on intracellular survival in Dictyostelium discoideum and mammalian cell lines.

    PubMed

    Frederiksen, Rikki F; Leisner, Jørgen J

    2015-05-01

    Some bacterial pathogens produce chitinases as virulence factors during host infection. The molecular target of such enzymes in non-chitinous hosts remains uncertain. We studied the importance of Listeria monocytogenes EGD-e and Salmonella enterica ser. Typhimurium LT2 chitinases for intracellular survival in Dictyostelium discoideum, and for Salmonella, also infection of mammalian cell lines, and a mouse model. The Salmonella chitinase did not contribute significantly to infection of D. discoideum, mammalian cell lines or mice. However, survival in D. discoideum was clearly reduced for Listeria mutants deficient of ChiB (8-fold) or deficient of both ChiA and ChiB (22-fold). Our findings suggest that chitinases from the two species play different roles in virulence.

  3. Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans.

    PubMed

    Afadzi, Mercy; Strand, Sabina P; Nilssen, Esben A; Måsøy, Svein-Erik; Johansen, Tonni F; Hansen, Rune; Angelsen, Bjørn A; de L Davies, Catharina

    2013-01-01

    The mechanism involved in the ultrasoundenhanced intracellular delivery of fluorescein-isothiocyanate (FITC)-dextran (molecular weight 4 to 2000 kDa) and liposomes containing doxorubicin (Dox) was studied using HeLa cells and an ultrasound transducer at 300 kHz, varying the acoustic power. The cellular uptake and cell viability were measured using flow cytometry and confocal microscopy. The role of endocytosis was investigated by inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis. Microbubbles were found to be required during ultrasound treatment to obtain enhanced cellular uptake. The percentage of cells internalizing Dox and dextran increased with increasing mechanical index. Confocal images and flow cytometric analysis indicated that the liposomes were disrupted extracellularly and that released Dox was taken up by the cells. The percentage of cells internalizing dextran was independent of the molecular weight of dextrans, but the amount of the small 4-kDa dextran molecules internalized per cell was higher than for the other dextrans. The inhibition of endocytosis during ultrasound exposure resulted in a significant decrease in cellular uptake of dextrans. Therefore, the improved uptake of Dox and dextrans may be a result of both sonoporation and endocytosis.

  4. All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause.

    PubMed

    Labrie, Fernand

    2015-01-01

    Following the arrest of estradiol secretion by the ovaries at menopause, all estrogens and all androgens in postmenopausal women are made locally in peripheral target tissues according to the physiological mechanisms of intracrinology. The locally made sex steroids exert their action and are inactivated intracellularly without biologically significant release of the active sex steroids in the circulation. The level of expression of the steroid-forming and steroid-inactivating enzymes is specific to each cell type in each tissue, thus permitting to each cell/tissue to synthesize a small amount of androgens and/or estrogens in order to meet the local physiological needs without affecting the other tissues of the organism. Achieved after 500 million years of evolution, combination of the arrest of ovarian estrogen secretion, the availability of high circulating levels of DHEA and the expression of the peripheral sex steroid-forming enzymes have permitted the appearance of menopause with a continuing access to intratissular sex steroids for the individual cells/tissues without systemic exposure to circulating estradiol. In fact, one essential condition of menopause is to maintain serum estradiol at biologically inactive (substhreshold) concentrations, thus avoiding stimulation of the endometrium and risk of endometrial cancer. Measurement of the low levels of serum estrogens and androgens in postmenopausal women absolutely requires the use of MS/MS-based technology in order to obtain reliable accurate, specific and precise assays. While the activity of the series of steroidogenic enzymes can vary, the serum levels of DHEA show large individual variations going from barely detectable to practically normal "premenopausal" values, thus explaining the absence of menopausal symptoms in about 25% of women. It should be added that the intracrine system has no feedback elements to adjust the serum levels of DHEA, thus meaning that women with low DHEA activity will not be

  5. Existence of two groups of Staphylococcus aureus strains isolated from bovine mastitis based on biofilm formation, intracellular survival, capsular profile and agr-typing.

    PubMed

    Bardiau, Marjorie; Caplin, Jonathan; Detilleux, Johann; Graber, Hans; Moroni, Paolo; Taminiau, Bernard; Mainil, Jacques G

    2016-03-15

    Staphylococcus (S.) aureus is recognised worldwide as an important pathogen causing contagious acute and chronic bovine mastitis. Chronic mastitis account for a significant part of all bovine cases and represent an important economic problem for dairy producers. Several properties (biofilm formation, intracellular survival, capsular expression and group agr) are thought to be associated with this chronic status. In a previous study, we found the existence of two groups of strains based on the association of these features. The aim of the present work was to confirm on a large international and non-related collection of strains the existence of these clusters and to associate them with case history records. In addition, the genomes of eight strains were sequenced to study the genomic differences between strains of each cluster. The results confirmed the existence of both groups based on capsular typing, intracellular survival and agr-typing: strains cap8-positive, belonging to agr group II, showing a low invasion rate and strains cap5-positive, belonging to agr group I, showing a high invasion rate. None of the two clusters were associated with the chronic status of the cow. When comparing the genomes of strains belonging to both clusters, the genes specific to the group "cap5-agrI" would suggest that these strains are better adapted to live in hostile environment. The existence of these two groups is highly important as they may represent two clusters that are adapted differently to the host and/or the surrounding environment.

  6. Liraglutide, leptin, and their combined effects on feeding: additive intake reduction through common intracellular signaling mechanisms

    PubMed Central

    Kanoski, Scott E.; Ong, Zhi Yi; Fortin, Samantha M.; Schlessinger, Elizabeth S.; Grill, Harvey J.

    2014-01-01

    Aims Glucagon like peptide-1 receptor (GLP-1R) agonists and leptin each exert anorexigenic effects. In combination, the intake inhibitory and weight loss effects are greater than either treatment alone, however the mechanisms unclear. Materials and methods Effects of liraglutide (a long-acting GLP-1 analogue) and leptin co-treatment, delivered in low or moderate doses subcutaneously (SC) or to the 3rd ventricle respectively, on cumulative intake, meal patterns, and hypothalamic expression of intracellular signaling proteins [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein tyrosine phosphatase-1B (PTP1B)] were examined in lean rats. Results A low-dose combination of liraglutide (25μg/kg) and leptin (0.75μg) additively reduced cumulative food intake and body weight, a result mediated predominantly through a significant reduction in meal frequency that was not present with either drug alone. Liraglutide treatment alone also reduced meal size; an effect not enhanced with leptin co-administration. Moderate doses of liraglutide (75μg/kg) and leptin (4μg) examined separately each reduced meal frequency, cumulative food intake, and body weight; only liraglutide reduced meal size. In combination these doses did not further enhance the anorexigenic effects of either treatment alone. Ex vivo immunoblot showed elevated pSTAT3 in hypothalamic tissue following liraglutide-leptin co-treatment, an effect greater than leptin treatment alone. In addition, SC liraglutide reduced expression of PTP1B (a negative regulator of leptin receptor signaling), revealing a potential mechanism for the enhanced pSTAT3 response following liraglutide-leptin co-administration. Conclusions Collectively, these results provide novel behavioral and molecular mechanisms underlying the additive reduction in food intake and body weight following liraglutide-leptin combination treatment. PMID:25475828

  7. Use of Agent-Based Modeling To Explore the Mechanisms of Intracellular Phosphorus Heterogeneity in Cultured Phytoplankton

    PubMed Central

    Fredrick, Neil D.; Berges, John A.; Twining, Benjamin S.; Nuñez-Milland, Daliangelis

    2013-01-01

    There can be significant intraspecific individual-level heterogeneity in the intracellular P of phytoplankton, which can affect the population-level growth rate. Several mechanisms can create this heterogeneity, including phenotypic variability in various physiological functions (e.g., nutrient uptake rate). Here, we use modeling to explore the contribution of various mechanisms to the heterogeneity in phytoplankton grown in a laboratory culture. An agent-based model simulates individual cells and their intracellular P. Heterogeneity is introduced by randomizing parameters (e.g., maximum uptake rate) of daughter cells at division. The model was calibrated to observations of the P quota of individual cells of the centric diatom Thalassiosira pseudonana, which were obtained using synchrotron X-ray fluorescence (SXRF). A number of simulations, with individual mechanisms of heterogeneity turned off, then were performed. Comparison of the coefficient of variation (CV) of these and the baseline simulation (i.e., all mechanisms turned on) provides an estimate of the relative contribution of these mechanisms. The results show that the mechanism with the largest contribution to variability is the parameter characterizing the maximum intracellular P, which, when removed, results in a CV of 0.21 compared to a CV of 0.37 with all mechanisms turned on. This suggests that nutrient/element storage capabilities/mechanisms are important determinants of intrapopulation heterogeneity. PMID:23666327

  8. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN).

    PubMed

    Luster, Brennon R; Urbano, Francisco J; Garcia-Rill, Edgar

    2016-06-01

    The pedunculopontine nucleus is a part of the reticular activating system, and is active during waking and REM sleep. Previous results showed that all PPN cells tested fired maximally at gamma frequencies when depolarized. This intrinsic membrane property was shown to be mediated by high-threshold N- and P/Q-type Ca(2+) channels. Recent studies show that the PPN contains three independent populations of neurons which can generate gamma band oscillations through only N-type channels, only P/Q-type channels, or both N- and P/Q-type channels. This study investigated the intracellular mechanisms modulating gamma band activity in each population of neurons. We performed in vitro patch-clamp recordings of PPN neurons from Sprague-Dawley rat pups, and applied 1-sec ramps to induce intrinsic membrane oscillations. Our results show that there are two pathways modulating gamma band activity in PPN neurons. We describe populations of neurons mediating gamma band activity through only N-type channels and the cAMP/PKA pathway (presumed "REM-on" neurons), through only P/Q-type channels and the CaMKII pathway (presumed "Wake-on" neurons), and a third population which can mediate gamma activity through both N-type channels and cAMP/PK and P/Q-type channels and CaMKII (presumed "Wake/REM-on" neurons). These novel results suggest that PPN gamma oscillations are modulated by two independent pathways related to different Ca(2+) channel types.

  9. Mechanisms of high-order photobleaching and its relationship to intracellular ablation

    PubMed Central

    Kalies, S.; Kuetemeyer, K.; Heisterkamp, A.

    2011-01-01

    In two-photon laser-scanning microscopy using femtosecond laser pulses, the dependence of the photobleaching rate on excitation power may have a quadratic, cubic or even biquadratic order. To date, there are still many open questions concerning this so-called high-order photobleaching. We studied the photobleaching kinetics of an intrinsic (enhanced Green Fluorescent Protein (eGFP)) and an extrinsic (Hoechst 33342) fluorophore in a cellular environment in two-photon microscopy. Furthermore, we examined the correlation between bleaching and the formation of reactive oxygen species. We observed bleaching-orders of three and four for eGFP and two and three for Hoechst increasing step-wise at a certain wavelength. An increase of reactive oxygen species correlating with the bleaching over time was recognized. Comparing our results to the mechanisms involved in intracellular ablation with respect to the amount of interacting photons and involved energetic states, we found that a low-density plasma is formed in both cases with a smooth transition in between. Photobleaching, however, is mediated by sequential-absorption and multiphoton-ionization, while ablation is dominated by the latter and cascade-ionization processes. PMID:21483605

  10. Mechanism of histone survival during transcription by RNA polymerase II.

    PubMed

    Kulaeva, Olga I; Studitsky, Vasily M

    2010-01-01

    This work is related to and stems from our recent NSMB paper, "Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II" (December 2009). Synopsis. Recent genomic studies from many laboratories have suggested that nucleosomes are not displaced from moderately transcribed genes. Furthermore, histones H3/H4 carrying the primary epigenetic marks are not displaced or exchanged (in contrast to H2A/H2B histones) during moderate transcription by RNA polymerase II (Pol II) in vivo. These exciting observations suggest that the large molecule of Pol II passes through chromatin structure without even transient displacement of H3/H4 histones. The most recent analysis of the RNA polymerase II (Pol II)-type mechanism of chromatin remodeling in vitro (described in our NSMB 2009 paper) suggests that nucleosome survival is tightly coupled with formation of a novel intermediate: a very small intranucleosomal DNA loop (Ø-loop) containing transcribing Pol II. In the submitted manuscript we critically evaluate one of the key predictions of this model: the lack of even transient displacement of histones H3/H4 during Pol II transcription in vitro. The data suggest that, indeed, histones H3/H4 are not displaced during Pol II transcription in vitro. These studies are directly connected with the observation in vivo on the lack of exchange of histones H3/H4 during Pol II transcription.

  11. An Invertron-Like Linear Plasmid Mediates Intracellular Survival and Virulence in Bovine Isolates of Rhodococcus equi

    PubMed Central

    Valero-Rello, Ana; Hapeshi, Alexia; Anastasi, Elisa; Alvarez, Sonsiray; Scortti, Mariela; Meijer, Wim G.; MacArthur, Iain

    2015-01-01

    We report a novel host-associated virulence plasmid in Rhodococcus equi, pVAPN, carried by bovine isolates of this facultative intracellular pathogenic actinomycete. Surprisingly, pVAPN is a 120-kb invertron-like linear replicon unrelated to the circular virulence plasmids associated with equine (pVAPA) and porcine (pVAPB variant) R. equi isolates. pVAPN is similar to the linear plasmid pNSL1 from Rhodococcus sp. NS1 and harbors six new vap multigene family members (vapN to vapS) in a vap pathogenicity locus presumably acquired via en bloc mobilization from a direct predecessor of equine pVAPA. Loss of pVAPN rendered R. equi avirulent in macrophages and mice. Mating experiments using an in vivo transconjugant selection strategy demonstrated that pVAPN transfer is sufficient to confer virulence to a plasmid-cured R. equi recipient. Phylogenetic analyses assigned the vap multigene family complement from pVAPN, pVAPA, and pVAPB to seven monophyletic clades, each containing plasmid type-specific allelic variants of a precursor vap gene carried by the nearest vap island ancestor. Deletion of vapN, the predicted “bovine-type” allelic counterpart of vapA, essential for virulence in pVAPA, abrogated pVAPN-mediated intramacrophage proliferation and virulence in mice. Our findings support a model in which R. equi virulence is conferred by host-adapted plasmids. Their central role is mediating intracellular proliferation in macrophages, promoted by a key vap determinant present in the common ancestor of the plasmid-specific vap islands, with host tropism as a secondary trait selected during coevolution with specific animal species. PMID:25895973

  12. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria

    PubMed Central

    Jia, Qiong; Hu, Xinling; Shi, Dawei; Zhang, Yan; Sun, Meihao; Wang, Jianwei; Mi, Kaixia; Zhu, Guofeng

    2016-01-01

    The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells. PMID:27762279

  13. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN).

    PubMed

    Luster, Brennon R; Urbano, Francisco J; Garcia-Rill, Edgar

    2016-06-01

    The pedunculopontine nucleus is a part of the reticular activating system, and is active during waking and REM sleep. Previous results showed that all PPN cells tested fired maximally at gamma frequencies when depolarized. This intrinsic membrane property was shown to be mediated by high-threshold N- and P/Q-type Ca(2+) channels. Recent studies show that the PPN contains three independent populations of neurons which can generate gamma band oscillations through only N-type channels, only P/Q-type channels, or both N- and P/Q-type channels. This study investigated the intracellular mechanisms modulating gamma band activity in each population of neurons. We performed in vitro patch-clamp recordings of PPN neurons from Sprague-Dawley rat pups, and applied 1-sec ramps to induce intrinsic membrane oscillations. Our results show that there are two pathways modulating gamma band activity in PPN neurons. We describe populations of neurons mediating gamma band activity through only N-type channels and the cAMP/PKA pathway (presumed "REM-on" neurons), through only P/Q-type channels and the CaMKII pathway (presumed "Wake-on" neurons), and a third population which can mediate gamma activity through both N-type channels and cAMP/PK and P/Q-type channels and CaMKII (presumed "Wake/REM-on" neurons). These novel results suggest that PPN gamma oscillations are modulated by two independent pathways related to different Ca(2+) channel types. PMID:27354537

  14. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms.

    PubMed Central

    Hermann, M; Jaconi, M E; Dahlgren, C; Waldvogel, F A; Stendahl, O; Lew, D P

    1990-01-01

    The activation patterns of surface adherent neutrophils are modulated via interaction of extracellular matrix proteins with neutrophil integrins. To evaluate neutrophil bactericidal activity, Staphylococcus aureus adherent to biological surfaces were incubated with neutrophils and serum, and the survival of surface bacteria was determined. When compared to albumin-coated surfaces, the bactericidal activity of neutrophils adherent to purified human extracellular matrix was markedly enhanced (mean survival: 34.2% +/- 9.0% of albumin, P less than 0.0001) despite similar efficient ingestion of extracellular bacteria. Enhancement of killing was observed when surfaces were coated with purified constituents of extracellular matrix, i.e., fibronectin, fibrinogen, laminin, vitronectin, or type IV collagen. In addition to matrix proteins, the tetrapeptide RGDS (the sequence recognized by integrins) crosslinked to surface bound albumin was also active (survival: 74.5% +/- 5.5% of albumin, P less than 0.02), and fibronectin-increased killing was inhibited by soluble RGDS. Chemiluminescence measurements and experiments with CGD neutrophils revealed that both oxygen-dependent and -independent bactericidal mechanisms are involved. In conclusion, matrix proteins enhance intracellular bactericidal activity of adherent neutrophils, presumably by integrin recognition of RGDS-containing ligands. These results indicate a role for extracellular matrix proteins in the enhancement of the host defense against pyogenic infections. Images PMID:2394841

  15. Improved Survival of HER2+ Breast Cancer Patients Treated with Trastuzumab and Chemotherapy Is Associated with Host Antibody Immunity against the HER2 Intracellular Domain.

    PubMed

    Knutson, Keith L; Clynes, Raphael; Shreeder, Barath; Yeramian, Patrick; Kemp, Kathleen P; Ballman, Karla; Tenner, Kathleen S; Erskine, Courtney L; Norton, Nadine; Northfelt, Donald; Tan, Winston; Calfa, Carmen; Pegram, Mark; Mittendorf, Elizabeth A; Perez, Edith A

    2016-07-01

    The addition of trastuzumab to chemotherapy extends survival among patients with HER2(+) breast cancer. Prior work showed that trastuzumab and chemotherapy augments HER2 extracellular domain (ECD)-specific antibodies. The current study investigated whether combination therapy induced immune responses beyond HER2-ECD and, importantly, whether those immune responses were associated with survival. Pretreatment and posttreatment sera were obtained from 48 women with metastatic HER2(+) breast cancer on NCCTG (now Alliance for Clinical Trials in Oncology) studies, N0337 and N983252. IgG to HER2 intracellular domain (ICD), HER2-ECD, p53, IGFBP2, CEA, and tetanus toxoid were examined. Sera from 25 age-matched controls and 26 surgically resected HER2(+) patients were also examined. Prior to therapy, some patients with metastatic disease had elevated antibodies to IGFBP2, p53, HER2-ICD, HER2-ECD, and CEA, but not to tetanus toxin, relative to controls and surgically resected patients. Treatment augmented antibody responses to HER2-ICD in 69% of metastatic patients, which was highly associated with improved progression-free survival (PFS; HR = 0.5, P = 0.0042) and overall survival (OS; HR = 0.7, P = 0.038). Augmented antibody responses to HER2-ICD also correlated (P = 0.03) with increased antibody responses to CEA, IGFBP2, and p53, indicating that treatment induces epitope spreading. Paradoxically, patients who already had high preexisting immunity to HER2-ICD did not respond to therapy with increased antibodies to HER2-ICD and demonstrated poorer PFS (HR = 1.6, P < 0.0001) and OS (HR = 1.4, P = 0.0006). Overall, the findings further demonstrate the importance of the adaptive immune system in the efficacy of trastuzumab-containing regimens. Cancer Res; 76(13); 3702-10. ©2016 AACR. PMID:27197192

  16. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    PubMed Central

    2011-01-01

    Background The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Results Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Conclusions Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired

  17. Depletion of autophagy-related genes ATG3 and ATG5 in Tenebrio molitor leads to decreased survivability against an intracellular pathogen, Listeria monocytogenes.

    PubMed

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Noh, Mi Young; Kim, Dong Hyun; Kim, Iksoo; Han, Yeon Soo; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung

    2015-01-01

    Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy-related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open-reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58-95% to other insect Atg proteins. There exist clear one-to-one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post-Listeria challenge, the survival rate in the dsEGFP-injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double-stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy-based clearance of Listeria in T. molitor model.

  18. Depletion of autophagy-related genes ATG3 and ATG5 in Tenebrio molitor leads to decreased survivability against an intracellular pathogen, Listeria monocytogenes.

    PubMed

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Noh, Mi Young; Kim, Dong Hyun; Kim, Iksoo; Han, Yeon Soo; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung

    2015-01-01

    Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy-related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open-reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58-95% to other insect Atg proteins. There exist clear one-to-one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post-Listeria challenge, the survival rate in the dsEGFP-injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double-stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy-based clearance of Listeria in T. molitor model. PMID:25403020

  19. Mechanisms of intracellular defense and activity of free radical oxidation in rat myocardium in the dynamics of chronic fluorine intoxication.

    PubMed

    Zhukova, A G; Alekhina, D A; Sazontova, T G; Prokop'ev, Yu A; Gorokhova, L G; Stryapko, N V; Mikhailova, N N

    2013-12-01

    The mechanisms of intracellular defense and activity of free radical oxidation in the myocardium were studied in the dynamics of chronic fluorine intoxication. At the early stages of fluorine intoxication (day 3-week 3), the concentrations of defense proteins HIF-1α, HSC73, and HOx-2 and activity of the main metabolic enzymes increased, which promoted maintenance of cardiomyocyte structure and function at the normal physiological level. At late stages of fluorine intoxication (weeks 6 and 9), metabolic changes in the myocardium attest to high strain of the adaptive mechanisms.

  20. Prolonged Oxaliplatin Exposure Alters Intracellular Calcium Signaling: A New Mechanism To Explain Oxaliplatin-Associated Peripheral Neuropathy

    PubMed Central

    Schulze, Christin; McGowan, Margit; Jordt, Sven; Ehrlich, Barbara E

    2012-01-01

    Oxaliplatin is a platinum based cytotoxic agent commonly used to treat colorectal cancers. Despite its effectiveness, oxaliplatin administration is associated with the development of cold-induced peripheral neuropathy. This potentially permanent side effect is provoked by cold exposure and can range from mild and self limited to severe and debilitating. Even with tumor shrinkage, these painful side effects can force dose-reduction or discontinuation of treatment. Neither the mechanism of action of oxaliplatin nor that of cold-induced neuropathy is understood. Paclitaxel, an entirely different chemotherapeutic agent used to treat a variety of malignancies, also is associated with the development of peripheral neuropathy. Unlike oxaliplatin, neurotoxicity arising from paclitaxel treatment is better understood and was found to have profound effects on intracellular calcium signaling (1,2). In this study we examined the effects of oxaliplatin on calcium signaling pathways and found that acute exposure of either a neuroblastoma cell line or primary neurons with therapeutic concentrations of oxaliplatin had no effect on intracellular calcium signaling. We also found that cellular temperature sensors (TRP channels) were also not activated by oxaliplatin. Interestingly, prolonged exposure of oxaliplatin sensitized cells to subsequent stimuli and enhanced the magnitude of intracellular calcium responses. Taken together, our results suggest that acute oxaliplatin exposure will not induce abnormal calcium signaling but oxaliplatin-primed cells do exhibit enhanced sensitivity. These findings provide new insight to the mechanism behind oxaliplatin-induced neuropathy. PMID:21859566

  1. Ultrastructural studies on the intracellular fate of Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and Chlamydia trachomatis (strain lymphogranuloma venereum 434): modulation of intracellular events and relationship with endocytic mechanism.

    PubMed

    Prain, C J; Pearce, J H

    1989-07-01

    Previous observations on the highly infectious LGV strain 434 of Chlamydia trachomatis and the guinea pig inclusion conjunctivitis (GPIC) strain of C. psittaci (which requires centrifugation of inocula with host cell monolayers for maximum infectivity) indicated that infectivity differences were expressed, not at entry, but at an intracellular stage affecting multiplication. Centrifugation increased the potential of internalized chlamydiae to undergo productive infection. Here, analysis of the intracellular fate of chlamydiae by ultrastructural methods indicates that strain GPIC exhibits two patterns of behaviour depending on the mode of inoculation. Strain GPIC showed limited entry, with 47% of intracellular organisms becoming associated with thorotrast-labelled lysosomes, following static incubation with monolayers. In contrast, with centrifugation, entry was not limited and association with lysosomes was reduced to 12%; strain 434 behaved similarly but independently of the mode of inoculation. The different results for strain GPIC correlated with distinct entry mechanisms. Entry during static incubation was unimpaired either by treatment with cytochalasin D or by temperature reduction to 20 degrees C, suggesting that it was pinocytic. Entry during centrifugation was markedly impaired by both treatments, suggesting that it was phagocytic. The data lead to two novel conclusions: first, that chlamydiae can apparently enter cells by both pinocytic and phagocytic mechanisms; second, that the entry mechanism influences intracellular fate. It is suggested that entry mechanism is linked to selection of the vesicle membrane forming around the internalizing chlamydiae. This, in turn, may influence both intracellular translocation and subsequent inhibition or promotion of multiplication of the internalized parasite.

  2. Homeostatic Systems--Mechanisms for Survival. Science IV.

    ERIC Educational Resources Information Center

    Pfeiffer, Carl H.

    The two student notebooks in this set provide the basic outline and assignments for the fourth and last year of a senior high school unified science program which builds on the technical third year course, Science IIIA (see SE 012 149). An introductory section considers the problems of survival inherent in living systems, matter-energy…

  3. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?

    USGS Publications Warehouse

    McDowell, Nate G.; Pockman, William T.; Allen, Craig D.; Breshears, David D.; Cobb, Neil; Kolb, Thomas; Plaut, Jennifer; Sperry, John; West, Adam; Williams, David G.; Yepez, Enrico A.

    2008-01-01

    Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.

  4. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium’s Adaptive Mechanisms of Intramacrophage Survival and Replication

    PubMed Central

    Aribam, Swarmistha Devi; Harada, Tomoyuki; Elsheimer-Matulova, Marta; Iwata, Taketoshi; Kanehira, Katsushi; Hikono, Hirokazu; Matsui, Hidenori; Ogawa, Yohsuke; Shimoji, Yoshihiro; Eguchi, Masahiro

    2016-01-01

    Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb)-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria. PMID:26986057

  5. Cellular Internalization Mechanism and Intracellular Trafficking of Filamentous M13 Phages Displaying a Cell-Penetrating Transbody and TAT Peptide

    PubMed Central

    Shin, Seung-Min; Pham, Chuong D.; Choi, Dong-Ki; Kwon, Myung-Hee; Kim, Yong-Sung

    2012-01-01

    Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005∼0.01%) than that of TAT-M13 (0.001∼0.005%). Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs. PMID:23251631

  6. Intracellular recordings of subnucleus reticularis dorsalis neurones revealed novel electrophysiological properties and windup mechanisms.

    PubMed

    Soto, Cristina; Canedo, Antonio

    2011-09-01

    Aδ- and/or C-fibre nociceptive inputs drive subnucleus reticularis dorsalis (SRD) neurones projecting to a variety of regions including the spinal cord and the nucleus reticularis gigantocellularis (NRGc), but their electrophysiological properties are largely unknown. Here we intracellularly recorded the SRD neuronal responses to injection of polarising current pulses as well as to electrical stimulation of the cervical spinal posterior quadrant (PQ) and the NRGc. Three different classes of neurones with distinct electrophysiological properties were found: type I were characterised by the absence of a fast postspike hyperpolarisation, type II by the presence of a postspike hyperpolarisation followed by a depolarisation resembling low threshold calcium spikes (LTSs), and type III (lacking LTSs) had a fast postspike hyperpolarisation deinactivating A-like potassium channels leading to enlarged interspike intervals. All three classes generated depolarising sags to hyperpolarising current pulses and showed 3-4.5 Hz subthreshold oscillatory activity leading to windup when intracellularly injecting low-frequency repetitive depolarising pulses as well as in response to 0.5-2 Hz NRGc and PQ electrical stimulation. About half of the 132 sampled neurones responded antidromically to NRGc stimulation with more than 65% of the NRGc-antidromic cells, pertaining to all three types, also responding antidromically to PQ stimulation. NRGc stimulation induced exclusively excitatory first-synaptic-responses whilst PQ stimulation induced first-response excitation in most cases, but inhibitory postsynaptic potentials in a few type II and type III neurones not projecting to the spinal cord that also displayed cumulative inhibitory effects (inverse windup). The results show that SRD cells (i) can actively regulate different temporal firing patterns due to their intrinsic electrophysiological properties, (ii) generate windup upon gradual membrane depolarisation produced by low

  7. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  8. Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis?

    PubMed Central

    Göttle, Peter; Küry, Patrick

    2015-01-01

    A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS. PMID:26151843

  9. Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis?

    PubMed

    Göttle, Peter; Küry, Patrick

    2015-07-03

    A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS.

  10. Mechanisms by which the inhibition of specific intracellular signaling pathways increase osteoblast proliferation on apatite surfaces.

    PubMed

    Yang, Seungwon; Tian, Yu-Shun; Lee, Yun-Jung; Yu, Frank H; Kim, Hyun-Man

    2011-04-01

    Osteoblasts proliferate slowly on the surface of calcium phosphate apatite which is widely used as a substrate biomaterial in bone regeneration. Owing to poor adhesion signaling in the cells grown on the calcium phosphate surface, inadequate growth factor signaling is generated to trigger cell cycle progression. The present study investigated an intracellular signal transduction pathway involved in the slow cell proliferation in osteoblasts grown on the calcium phosphate surface. Small GTPase RhoA and phosphatase and tensin homolog (PTEN) were more activated in cells grown on the surface of calcium phosphate apatite than on tissue culture plate. Specific inhibition of RhoA and PTEN induced the cells on calcium phosphate apatite surface to proliferate at a similar rate as cells on tissue culture plate surface. Specific inhibition of ROCK, which is a downstream effector of RhoA and an upstream activator of PTEN also increased proliferation of these osteoblasts. Present results indicate that physical property of calcium phosphate crystals that impede cell proliferation may be surmounted by the inhibition of the RhoA/ROCK/PTEN pathway to rescue delayed proliferation of osteoblasts on the calcium phosphate apatite surface. In addition, specific inhibition of ROCK promoted cell migration and osteoblast differentiation. Inhibition of the RhoA/ROCK/PTEN intracellular signaling pathway is expected to enhance cell activity to promote and accelerate bone regeneration on the calcium phosphate apatite surface.

  11. Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection.

    PubMed

    Dessì, Daniele; Delogu, Giuseppe; Emonte, Eleonora; Catania, Maria Rosaria; Fiori, Pier Luigi; Rappelli, Paola

    2005-02-01

    The existence of a symbiotic relationship between Trichomonas vaginalis and Mycoplasma hominis, which is the first reported example of symbiosis between two obligate human pathogens, has been recently reported by our research group. In this work, we examined the cellular location of M. hominis in respect to T. vaginalis. By using gentamicin protection assays, double immunofluorescence, and confocal microscopy, we obtained strong evidence that M. hominis is located within protozoan cells. 5-Bromodeoxyuridine incorporation assays showed that intracellularly located mycoplasmas actively synthesize DNA. Our results demonstrate that M. hominis has the capability of entering trichomonad cells and of replicating inside the protozoon. These findings suggest that symbiosis might provide the bacteria, during human infection, with the capability to resist to environmental stresses, such as host defense mechanisms and pharmacological therapies. PMID:15664961

  12. Intracellular mechanisms of hydrogen peroxide-mediated neutrophil adherence to cultured human endothelial cells.

    PubMed

    Okayama, N; Coe, L; Oshima, T; Itoh, M; Alexander, J S

    1999-03-01

    We examined which endothelial second messengers are involved in peroxide-mediated endothelial-neutrophil adhesion with respect to endothelial P-selectin expression and platelet-activating factor (PAF). Peroxide (0.5 mM)-mediated adhesion was blocked by a protein kinase C (PKC) inhibitor, Gö6976 (10 nM); an intracellular calcium chelator, TMB-8 (0.1 mM); and a protein kinase G (PKG) inhibitor, KT5823 (0.5 microM); but not by a tyrosine kinase inhibitor, genistein (1 microM), or a protein kinase A inhibitor, H-89 (0.1 microM). These data were consistent with the proadhesive effects of PMA (0.1 microM), a PKC activator; a calcium ionophore, A23187 (1 microM); and dibutyryl cGMP (0.5 and 1 mM); but not phenylarsine oxide (0.1 mM), a tyrosine phosphatase inhibitor, or dibutyryl cAMP (1 mM). Conversely, peroxide-mediated P-selectin expression was blocked by Gö6976 and KT5823, but not by TMB-8. These data are strengthened by the observation that PMA and dibutyryl cGMP, but not A23187, increased P-selectin expression. WEB 2086 (10 microM), a PAF-receptor antagonist, blocked peroxide-, PMA-, and A23187-mediated adhesion, but not peroxide-mediated P-selectin expression. PAF itself (10 nM) stimulated adhesion, but not P-selectin expression. These data indicate that PKC and PKG are involved in peroxide-mediated neutrophil adhesion via P-selectin mobilization and PAF synthesis; however, intracellular calcium appears to mediate adhesion only through PAF synthesis.

  13. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    PubMed

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  14. Tumoricidal effector mechanisms of murine Bacillus Calmette-Guérin-activated macrophages: mediation of cytolysis, mitochondrial respiration inhibition, and release of intracellular iron by distinct mechanisms.

    PubMed

    Klostergaard, J; Leroux, M E; Ezell, S M; Kull, F C

    1987-04-15

    Murine Bacillus Calmette-Guérin-activated macrophages mediate discrete cytotoxic effects in cocultured tumor target cells in vitro. These effects include: the loss of intracellular iron, in part associated with reversible inhibition of the Kreb's cycle enzyme, aconitase; cytostasis, associated with reversible lesions inflicted in the electron transport chain (ETC) of the mitochondria resulting in reversible loss of proliferative capacity; and cytolysis, manifested by eventual gross perturbation of the integrity of the plasma membrane. We demonstrate that these manifestations of cytotoxicity are the result of three independent mechanisms employing apparently distinct macromolecules for their commission. Analysis of target cells that are highly susceptible (L-929), highly resistant (L-1210), or have incomplete resistance (EMT-6) to the cytolytic effects of cocultured activated macrophages indicates that there is no consistent relationship between the release of intracellular 59Fe and 51Cr. Thus, perturbation of intracellular iron pools did not appear to be an obligatory step on the pathway to cytolysis. Further evidence for this dissociation was obtained by employing a specific heteroantiserum reactive with cytolytic molecule(s). This antiserum could block the cytolytic response (51Cr release of cocultured L-929 and EMT-6 targets) but had no effect on the extent of iron release from viable EMT-6 or L-1210 targets. Furthermore, the cytolytic factor itself was incapable of mediating effects on the ETC or in causing release of intracellular iron. Two lines of evidence suggested that effects on the ETC are not linked with loss of intracellular iron. First, the monokine respiration inhibitory factor was incapable of causing release of intracellular iron from target cells in which the mitochondria were strongly suppressed. Second, the kinetics of release of respiration inhibitory factor from endotoxin-triggered Bacillus Calmette-Guérin-activated macrophages indicate a

  15. Capsaicin mimics mechanical load-induced intracellular signaling events: involvement of TRPV1-mediated calcium signaling in induction of skeletal muscle hypertrophy.

    PubMed

    Ito, Naoki; Ruegg, Urs T; Kudo, Akira; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2013-01-01

    Mechanical load-induced intracellular signaling events are important for subsequent skeletal muscle hypertrophy. We previously showed that load-induced activation of the cation channel TRPV1 caused an increase in intracellular calcium concentrations ([Ca ( 2+) ]i) and that this activated mammalian target of rapamycin (mTOR) and promoted muscle hypertrophy. However, the link between mechanical load-induced intracellular signaling events, and the TRPV1-mediated increases in [Ca ( 2+) ]i are not fully understood. Here we show that administration of the TRPV1 agonist, capsaicin, induces phosphorylation of mTOR, p70S6K, S6, Erk1/2 and p38 MAPK, but not Akt, AMPK or GSK3β. Furthermore, the TRPV1-induced phosphorylation patterns resembled those induced by mechanical load. Our results continue to highlight the importance of TRPV1-mediated calcium signaling in load-induced intracellular signaling pathways.

  16. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+.

    PubMed Central

    Werry, Tim D; Wilkinson, Graeme F; Willars, Gary B

    2003-01-01

    Alteration in [Ca(2+)](i) (the intracellular concentration of Ca(2+)) is a key regulator of many cellular processes. To allow precise regulation of [Ca(2+)](i) and a diversity of signalling by this ion, cells possess many mechanisms by which they are able to control [Ca(2+)](i) both globally and at the subcellular level. Among these are many members of the superfamily of GPCRs (G-protein-coupled receptors), which are characterized by the presence of seven transmembrane domains. Typically, those receptors able to activate PLC (phospholipase C) enzymes cause release of Ca(2+) from intracellular stores and influence Ca(2+) entry across the plasma membrane. It has been well documented that Ca(2+) signalling by one type of GPCR can be influenced by stimulation of a different type of GPCR. Indeed, many studies have demonstrated heterologous desensitization between two different PLC-coupled GPCRs. This is not surprising, given our current understanding of negative-feedback regulation and the likely shared components of the signalling pathway. However, there are also many documented examples of interactions between GPCRs, often coupling preferentially to different signalling pathways, which result in a potentiation of Ca(2+) signalling. Such interactions have important implications for both the control of cell function and the interpretation of in vitro cell-based assays. However, there is currently no single mechanism that adequately accounts for all examples of this type of cross-talk. Indeed, many studies either have not addressed this issue or have been unable to determine the mechanism(s) involved. This review seeks to explore a range of possible mechanisms to convey their potential diversity and to provide a basis for further experimental investigation. PMID:12790797

  17. Intracellular membrane association of the Aplysia cAMP phosphodiesterase long and short forms via different targeting mechanisms.

    PubMed

    Kim, Kun-Hyung; Jun, Yong-Woo; Park, Yongsoo; Lee, Jin-A; Suh, Byung-Chang; Lim, Chae-Seok; Lee, Yong-Seok; Kaang, Bong-Kiun; Jang, Deok-Jin

    2014-09-12

    Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. PMID:25077971

  18. Intracellular membrane association of the Aplysia cAMP phosphodiesterase long and short forms via different targeting mechanisms.

    PubMed

    Kim, Kun-Hyung; Jun, Yong-Woo; Park, Yongsoo; Lee, Jin-A; Suh, Byung-Chang; Lim, Chae-Seok; Lee, Yong-Seok; Kaang, Bong-Kiun; Jang, Deok-Jin

    2014-09-12

    Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively.

  19. Merlin, a “Magic” Linker Between the Extracellular Cues and Intracellular Signaling Pathways that Regulate Cell Motility, Proliferation, and Survival

    PubMed Central

    Stamenkovic, Ivan; Yu, Qin

    2010-01-01

    Genetic alterations of neurofibromatosis type 2 (NF2) gene lead to the development of schwannomas, meningiomas, and ependymomas. Mutations of NF2 gene were also found in thyroid cancer, mesothelioma, and melanoma, suggesting that it functions as a tumor suppressor in a wide spectrum of cells. The product of NF2 gene is merlin (moesinezrin-radixin-like protein), a member of the Band 4.1 superfamily proteins. Merlin shares significant sequence homology with the ERM (Ezrin-Radixin-Moesin) family proteins and serves as a linker between transmembrane proteins and the actin-cytoskeleton. Merlin is a multifunctional protein and involved in integrating and regulating the extracellular cues and intracellular signaling pathways that control cell fate, shape, proliferation, survival, and motility. Recent studies showed that merlin regulates the cell-cell and cell-matrix adhesions and functions of the cell surface adhesion/extracellular matrix receptors including CD44 and that merlin and CD44 antagonize each other's function and work upstream of the mammalian Hippo signaling pathway. Furthermore, merlin plays important roles in stabilizing the contact inhibition of proliferation and in regulating activities of several receptor tyrosine kinases. Accumulating data also suggested an emerging role of merlin as a negative regulator of growth and progression of several non-NF2 associated cancer types. Together, these recent advances have improved our basic understanding about merlin function, its regulation, and the major signaling pathways regulated by merlin and provided the foundation for future translation of these findings into the clinic for patients bearing the cancers in which merlin function and/or its downstream signaling pathways are impaired or altered. PMID:20491622

  20. TcI Isolates of Trypanosoma cruzi Exploit the Antioxidant Network for Enhanced Intracellular Survival in Macrophages and Virulence in Mice.

    PubMed

    Zago, María Paola; Hosakote, Yashoda M; Koo, Sue-Jie; Dhiman, Monisha; Piñeyro, María Dolores; Parodi-Talice, Adriana; Basombrio, Miguel A; Robello, Carlos; Garg, Nisha J

    2016-06-01

    Trypanosoma cruzi species is categorized into six discrete typing units (TcI to TcVI) of which TcI is most abundantly noted in the sylvatic transmission cycle and considered the major cause of human disease. In our study, the TcI strains Colombiana (COL), SylvioX10/4 (SYL), and a cultured clone (TCC) exhibited different biological behavior in a murine model, ranging from high parasitemia and symptomatic cardiomyopathy (SYL), mild parasitemia and high tissue tropism (COL), to no pathogenicity (TCC). Proteomic profiling of the insect (epimastigote) and infective (trypomastigote) forms by two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization-time of flight mass spectrometry, followed by functional annotation of the differential proteome data sets (≥2-fold change, P < 0.05), showed that several proteins involved in (i) cytoskeletal assembly and remodeling, essential for flagellar wave frequency and amplitude and forward motility of the parasite, and (ii) the parasite-specific antioxidant network were enhanced in COL and SYL (versus TCC) trypomastigotes. Western blotting confirmed the enhanced protein levels of cytosolic and mitochondrial tryparedoxin peroxidases and their substrate (tryparedoxin) and iron superoxide dismutase in COL and SYL (versus TCC) trypomastigotes. Further, COL and SYL (but not TCC) were resistant to exogenous treatment with stable oxidants (H2O2 and peroxynitrite [ONOO(-)]) and dampened the intracellular superoxide and nitric oxide response in macrophages, and thus these isolates escaped from macrophages. Our findings suggest that protein expression conducive to increase in motility and control of macrophage-derived free radicals provides survival and persistence benefits to TcI isolates of T. cruzi. PMID:27068090

  1. Comparison of the mechanisms controlling intracellular pH and sodium in snail neurones.

    PubMed

    Thomas, R C

    1978-04-01

    Ion-sensitive microelectrodes were used to record intracellular pH, Na+ and Cl- in snail neurones. NaCl or HCl was injected iontophoretically to compare the Na pump with the pHi regulating system. The Na pump was inhibited by ouabain, carbonyl cyanide m-chlorophenyl hydrazone and increasing the membrane potential, whereas the pHi regulating system was relatively unaffected. Activation of the Na pump had no effect on pHi whereas activation of the pHi recovery process increased internal Na+. Activation of the pHi recovery process by CO2 application increased internal Na+ and also decreased internal Cl-. The results show that there is no direct connexion between the Na pump and the pHi recovery process, and that the pHi recovery process is electroneutral, and appears not to require metabolic energy. The results also confirm that the pHi recovery process involves the influx of Na+ ions and the efflux of Cl- ions.

  2. Anabolic androgenic steroids and intracellular calcium signaling: a mini review on mechanisms and physiological implications.

    PubMed

    Vicencio, J M; Estrada, M; Galvis, D; Bravo, R; Contreras, A E; Rotter, D; Szabadkai, G; Hill, J A; Rothermel, B A; Jaimovich, E; Lavandero, S

    2011-05-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses.

  3. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival

    PubMed Central

    Si, Hongwei; Liu, Dongmin

    2014-01-01

    Aging is well-known an inevitable process that is influenced by genetic, lifestyle and environmental factors. However, the exact mechanisms underlying the aging process are not well understood. Increasing evidence shows that aging is highly associated with chronic increase in reactive oxygen species (ROS), accumulation of a low-grade proinflammatory phenotype and reduction in age-related autophagy, suggesting that these factors may play important roles in promoting aging. Indeed, reduction of ROS and low-grade inflammation and promotion of autophagy by calorie restriction or other dietary manipulation can extend lifespan in a wide spectrum of model organisms. Interestingly, recent studies show that some food-derived small molecules, also called phytochemicals, can extend lifespan in various animal species. In this paper, we review several recently identified potential antiaging phytochemicals that have been studied in cells, animals and humans and further highlight the cellular and molecular mechanisms underlying the antiaging actions by these molecules. PMID:24742470

  4. Sulfur mustard-induced increase in intracellular calcium: A mechanism of mustard toxicity

    SciTech Connect

    Ray, R.; Majerus, B.J.; Munavalli, G.S.; Petrali, J.P.

    1993-05-13

    The effect of sulfur mustard SM, bis-(2-chloroethyl) sulfide on intracellular free Ca2+ concentration (Ca2+)i was studied in vitro using the clonal mouse neuroblastoma-rat glioma hybrid NG108-15 and primary normal human epidermal keratinocyte (NHEK) cell culture models. SM depletes cellular glutathione (GSH) and thus may inhibit GSH-dependent Ca2+-ATPase (Ca2+ pump), leading to a high (Ca2+) and consequent cellular toxicity. Following 0.3 mM SM exposure, GSH levels decreased 20-34% between 1-6 hr in NG108-15 cells. SM increased (Ca2+)i, measured using the Ca2+-specific fluorescent probe Fluo-3 AM, in both NG108-15 cells (1030% between 2-6 hr) and NHEK (23-30% between 0.5-3 hr) . Depletion of cellular GSH by buthionine sulfoximine (1 mM), a specific GSH biosynthesis inhibitor, also increased Ca2+, (88% at 1 hr) in NHEK, suggesting that GSH depletion may lead to increased (Ca2+)i. Calcium, localized cytochemically with antimony, accumulated in increased amounts around mitochondria and endoplasmic reticula, in the cytosol, and in particular in the euchromatin regions of the nucleus beginning at 6 hr after 0.3 mM SM exposure of NG108-15 cells. Cell membrane integrity examined with the fluorescent membrane probe calcein AM was unaffected through 6 hr following 1 mM SM exposure; and cell viability (NG108-15 cells) measured by trypan blue exclusion was >80% of control through 9 hr following 0.3 mM SM exposure.

  5. Intracellular mechanisms coupled to NPY Y2 and Y5 receptor activation and lipid accumulation in murine adipocytes.

    PubMed

    Rosmaninho-Salgado, Joana; Cortez, Vera; Estrada, Marta; Santana, Magda M; Gonçalves, Alexandra; Marques, Ana Patrícia; Cavadas, Cláudia

    2012-12-01

    The formation of adipose tissue is a process that includes the pre-adipocyte proliferation and differentiation to adipocytes that are cells specialized in lipid accumulation. The adipocyte differentiation is a process driven by the coordinated expression of various transcription factors, such as peroxisome proliferator-activated receptor (PPAR-γ). Neuropeptide Y (NPY) induces adipocyte proliferation and differentiation but the NPY receptors and the intracellular pathways involved in these processes are still not clear. In the present work we studied the role of NPY receptors and the intracellular pathways involved in the stimulatory effect of NPY on lipid accumulation. The murine pre-adipocyte cell line, 3T3-L1, was used as a cell model. Adipogenesis was evaluated by quantifying lipid accumulation by Oil red-O assay and by analyzing PPAR-γ expression using the Western blotting assay. Adipocytes were incubated with NPY (100nM) and a decrease on lipid accumulation and PPAR-γ expression was observed in the presence of NPY Y(2) receptor antagonist (BIIE0246, 1μM) or NPY Y(5) antagonist. Furthermore, NPY Y(2) (NPY(3-36), 100nM) or NPY Y(5) (NPY(19-23)(GLY(1), Ser(3), Gln(4), Thr(6), Ala(31), Aib(32), Gln(34)) PP, 100nM) receptor agonists increased lipid accumulation and PPAR-γ expression. We further investigate the intracellular pathways associated with NPY Y(2) and NPY Y(5) receptor activation. Our results show NPY induces PPAR-γ expression and lipid accumulation through NPY Y(2) and NPY Y(5) receptors activation. PKC and PLC inhibitors inhibit lipid accumulation induced by NPY Y(5) receptor agonist. Moreover, our results suggest that lipid accumulation induced by NPY Y(2) receptor activation occurs through PKA, MAPK and PI3K pathways. In conclusion, this study contributes to a step forward on the knowledge of intracellular mechanisms associated with NPY receptors activation on adipocytes and contributes to a better understanding and the development of new

  6. Intracellular pH-regulating mechanism of the squid axon. Relation between the external Na+ and HCO-3 dependences

    PubMed Central

    1985-01-01

    The intracellular pH-regulating mechanism of the squid axon was examined for its dependence on the concentrations of external Na+ and HCO3-, always at an external pH (pHo) of 8.0. Axons having an initial intracellular pH (pHi) of approximately 7.4 were internally dialyzed with a solution of pH 6.5 that contained 400 mM Cl- and no Na+. After pHi had fallen to approximately 6.6, dialysis was halted, thereby returning control of pHi to the axon. With external Na+ and HCO-3 present, intracellular pH (pHi) increased because of the activity of the pHi-regulating system. The acid extrusion rate (i.e., equivalent efflux of H+, JH) is the product of the pHi recovery rate, intracellular buffering power, and the volume-to-surface ratio. The [HCO3-]o dependence of JH was examined at three fixed levels of [Na+]o: 425, 212, and 106 mM. In all three cases, the apparent Jmax was approximately 19 pmol X cm-2 X s-1. However, the apparent Km (HCO3-) was approximately inversely proportional to [Na+]o, rising from 2.6 to 5.4 to 9.7 mM as [Na+]o was lowered from 425 to 212 to 106 mM, respectively. The [Na+]o dependence of JH was similarly examined at three fixed levels of [HCO3-]o: 12, 6, and 3 mM. The Jmax values did not vary significantly from those in the first series of experiments. The apparent Km (Na+), however, was approximately inversely related to [HCO3-]o, rising from 71 to 174 to 261 mM as [HCO3-]o was lowered from 12 to 6 to 3 mM, respectively. These results agree with the predictions of the ion-pair model of acid extrusion, which has external Na+ and CO3= combining to form the ion pair NaCO3-, which then exchanges for internal Cl-. When the JH data are replotted as a function of [NaCO3- ]o, data from all six groups of experiments fall along the same Michaelis-Menten curve, with an apparent Km (NaCO3-) of 80 microM. The ordered and random binding of Na+ and CO3= cannot be ruled out as possible models, but are restricted in allowable combinations of rate constants. PMID

  7. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate.

    PubMed

    Studzian, Maciej; Bartosz, Grzegorz; Pulaski, Lukasz

    2015-08-01

    ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods.

  8. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate.

    PubMed

    Studzian, Maciej; Bartosz, Grzegorz; Pulaski, Lukasz

    2015-08-01

    ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods. PMID:25918011

  9. Sudden infant deaths: arousal as a survival mechanism.

    PubMed

    Kahn, Andre; Groswasser, Jose; Franco, Patricia; Scaillet, Sonia; Sawaguchi, Toshiko; Kelmanson, Igor; Bernanrd, Dan

    2002-12-01

    The mechanisms responsible for sudden infant death syndrome (SIDS) are still largely unknown. To explain what factors contribute to the deaths, we suggest a model: the '3 S model for SIDS' that includes 'sicknesses', 'stages of development' and 'surroundings': (1) 'sicknesses' refers to infectious diseases or other medical condition. (2) 'Stages of development' relates to the maturation of vital systems including respiratory, neurovegetative or sleep-wake behavioral controls. (3) 'Surroundings' refers to environmental conditions that enhance the deficiency of cardiorespiratory, vegetative and/or arousal controls. Such conditions were identified by epidemiological studies and include the following main risk factors: the prone body position during sleep, high environmental temperature, maternal smoking or sleep deprivation. An infant could be at higher risk for SIDS because of a deficiency in breathing and cardiac autonomic controls during sleep, inducing repeated episodes of hypoxia and hypoxemia. The risk is increased when the infant has a lower propensity to arouse from sleep and so, to autoresuscitate. The accident has a greater probability to occur when an infection, or an unfavorable environmental factor aggravates the immature cardiorespiratory and sleep/wake behaviors of the infant. The clinical findings could be related to the changes reported in the brainstems of SIDS victims. PMID:14592372

  10. Different ataxin-3 amyloid aggregates induce intracellular Ca(2+) deregulation by different mechanisms in cerebellar granule cells.

    PubMed

    Pellistri, Francesca; Bucciantini, Monica; Invernizzi, Gaetano; Gatta, Elena; Penco, Amanda; Frana, Anna Maria; Nosi, Daniele; Relini, Annalisa; Regonesi, Maria Elena; Gliozzi, Alessandra; Tortora, Paolo; Robello, Mauro; Stefani, Massimo

    2013-12-01

    This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.

  11. Intracellular Bacteria in Protozoa

    NASA Astrophysics Data System (ADS)

    Görtz, Hans-Dieter; Brigge, Theo

    Intracellular bacteria in humans are typically detrimental, and such infections are regarded by the patients as accidental and abnormal. In protozoa it seems obvious that many bacteria have coevolved with their hosts and are well adapted to the intracellular way of life. Manifold interactions between hosts and intracellular bacteria are found, and examples of antibacterial resistance of unknown mechanisms are observed. The wide diversity of intracellular bacteria in protozoa has become particularly obvious since they have begun to be classified by molecular techniques. Some of the bacteria are closely related to pathogens; others are responsible for the production of toxins.

  12. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    PubMed

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  13. Relationship of electro-mechanical remodeling to survival rates after cardiac resynchronization therapy.

    PubMed

    Kiani, Jawad; Agarwal, Sunil Kumar; Kamireddy, Swapna; Adelstein, Evan; Saba, Samir

    2013-01-01

    Cardiac resynchronization therapy, when added to optimal medical therapy, increases longevity in symptomatic congestive heart failure patients with left ventricular ejection fractions (LVEF)≤0.35 and QRS durations>120 ms. Cardiac resynchronization therapy is also associated with electrical and mechanical reverse remodeling. We examined whether reverse remodeling predicts increased survival rates in non-trial settings. Recipients of cardiac resynchronization therapy and defibrillators (n=112; 78 men; mean age, 69±11 yr) underwent repeat echocardiography and electrocardiography at least 90 days after device implantation. Forty patients had mechanical responses of at least 0.05 improvement in absolute LVEF; 56 had electrical responses (any narrowing of biventricular-paced QRS duration compared with the electrocardiogram immediately after therapy). During a mean follow-up period of 3.1±1.7 years, 55 patients died. The average death rate per 100 person-years was lower among mechanical responders than nonresponders (9.2% vs 23.9%; P=0.009); the unadjusted hazard ratio was 0.39 (95% confidence interval [CI], 0.19-0.79). In a multivariate model adjusted for age, sex, baseline LVEF, and QRS duration, mechanical responders had 60% better survival than nonresponders (hazard ratio=0.40; 95% CI, 0.21-0.79; P=0.008). No difference in survival was observed in electrical response. In our association of absolute change in LVEF over the observed range with death (using restricted cubic splines), we observed a linear relationship with survival. In patients given cardiac resynchronization therapy, mechanical but not electrical remodeling was associated with better survival rates, suggesting that mechanical remodeling underlies this therapy's mechanism of conferring a survival benefit.

  14. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids

    PubMed Central

    Puighermanal, Emma; Busquets-Garcia, Arnau; Maldonado, Rafael; Ozaita, Andrés

    2012-01-01

    Exogenous cannabinoids, such as delta9-tetrahydrocannabinol (THC), as well as the modulation of endogenous cannabinoids, affect cognitive function through the activation of cannabinoid receptors. Indeed, these compounds modulate a number of signalling pathways critically implicated in the deleterious effect of cannabinoids on learning and memory. Thus, the involvement of the mammalian target of rapamycin pathway and extracellular signal-regulated kinases, together with their consequent regulation of cellular processes such as protein translation, play a critical role in the amnesic-like effects of cannabinoids. In this study, we summarize the cellular and molecular mechanisms reported in the modulation of cognitive function by the endocannabinoid system. PMID:23108544

  15. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism

    PubMed Central

    Marquer, Catherine; Tian, Huasong; Yi, Julie; Bastien, Jayson; Dall'Armi, Claudia; Yang-Klingler, YoungJoo; Zhou, Bowen; Chan, Robin Barry; Di Paolo, Gilbert

    2016-01-01

    Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann–Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer. PMID:27336679

  16. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    SciTech Connect

    Hashimoto, Ryota; Katoh, Youichi; Miyamoto, Yuki; Itoh, Seigo; Daida, Hiroyuki; Nakazato, Yuji; Okada, Takao

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption may accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation. - Highlights:

  17. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    SciTech Connect

    Arai, Roberto J.; Debbas, Victor; Stern, Arnold; Monteiro, Hugo P.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.

  18. Elevated intracellular calcium concentration increases secretory processing of the amyloid precursor protein by a tyrosine phosphorylation-dependent mechanism.

    PubMed Central

    Petryniak, M A; Wurtman, R J; Slack, B E

    1996-01-01

    Secretory cleavage of the amyloid precursor protein (APP), a process that releases soluble APP derivatives (APPs) into the extracellular space, is stimulated by the activation of muscarinic receptors coupled to phosphoinositide hydrolysis. The signalling pathways involved in the release process exhibit both protein kinase C- and protein tyrosine phosphorylation-dependent components [Slack, Breu, Petryniak, Srivastava and Wurtman (1995) J. Biol. Chem. 270, 8337-8344]. The possibility that elevations in intracellular Ca2+ concentration initiate the tyrosine phosphorylation-dependent release of APPs was examined in human embryonic kidney cells expressing muscarinic m3 receptors. Inhibition of protein kinase C with the bisindolylmaleimide GF 109203X decreased the carbachol-evoked release of APPs by approx. 30%, as shown previously. The residual response was further decreased, in an additive manner, by the Ca2+ chelator EGTA, or by the tyrosine kinase inhibitor tyrphostin A25. The Ca2+ ionophore, ionomycin, like carbachol, stimulated both the release of APPs and the tyrosine phosphorylation of several proteins, one of which was identified as paxillin, a component of focal adhesions. The effects of ionomycin on APPs release and on protein tyrosine phosphorylation were concentration-dependent, and occurred over similar concentration ranges; both effects were inhibited only partly by GF 109203X, but were abolished by EGTA or by tyrosine kinase inhibitors. The results demonstrate for the first time that ionophore-induced elevations in intracellular Ca2+ levels elicit APPs release via increased tyrosine phosphorylation. Part of the increase in APPs release evoked by muscarinic receptor activation might be attributable to a similar mechanism. PMID:9003386

  19. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. 1: Responses to intracellular current

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog sacculus are specifically adapted to sense small-amplitude, high-frequency linear accelerations. These hair cells display many properties that are undesirable or inappropriate for hair cells that must provide static gravity sensitivity. This study resulted in part due to an interest in seeing how the transduction mechanisms of hair cells in a gravity-sensing otolith endorgan would differ from those in the bullfrog sacculus. The bullfrog utriculus is an appropriate model for these studies, because its structure is representative of higher vertebrates in general and its function as a sensor of static gravity and dynamic linear acceleration is well known. Hair cells in the bullfrog utriculus, classifiable as Type 2 by cell body and synapse morphology, differ markedly in hair bundle morphology from those in the bullfrog sacculus. Moreover, the hair bundle morphologies of utricular hair cells, unlike those in the sacculus, differ in different membrane regions.

  20. Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review.

    PubMed

    Chen, Ting-Jung; Wu, Chia-Ching; Su, Fong-Chin

    2012-12-01

    The cytoskeleton, which is the major mechanical component of cells, supports the cell body and regulates the cellular motility to assist the cell in performing its biological functions. Several cytoskeletal network models have been proposed to investigate the mechanical properties of cells. This review paper summarizes these models with a focus on the prestressed cable network, the semi-flexible chain network, the open-cell foam, the tensegrity, and the granular models. The components, material parameters, types of connection joints, tension conditions, and the advantages and disadvantages of each model are evaluated from a structural and biological point of view. The underlying mechanisms that are associated with the morphological changes of spreading cells are expected to be simulated using a cytoskeletal model; however, it is still paid less attention most likely due to the lack of a suitable cytoskeletal model that can accurately model the spreading process. In this review article, the established cytoskeletal models are hoped to provide useful information for the development of future cytoskeletal models with different degrees of cell attachment for the study of the mechanical mechanisms underlying the cellular behaviors in response to external stimulations. PMID:23062682

  1. Intracellular Iron Transport and Storage: From Molecular Mechanisms to Health Implications

    PubMed Central

    Mackenzie, Elizabeth L.; Iwasaki, Kenta

    2008-01-01

    Abstract Maintenance of proper “labile iron” levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess “labile iron” is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation–reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation. Antioxid. Redox Signal. 10, 997–1030. PMID:18327971

  2. Acute mechanical overstimulation of isolated outer hair cells causes changes in intracellular calcium levels without shape changes.

    PubMed

    Fridberger, A; Ulfendahl, M

    1996-01-01

    Impaired auditory function following acoustic overstimulation, or noise, is mainly reported to be accompanied by cellular changes such as damage to the sensory hair bundles, but changes in the cell bodies of the outer hair cells have also been described. To investigate more closely the immediate cellular responses to overstimulation, isolated guinea pig outer hair cells were subjected to a 200 Hz oscillating water jet producing intense mechanical stimulation. The water jet was aimed at the cell body of the isolated outer hair cell. Cell shape changes were studied using video microscopy, and intracellular calcium concentration changes were monitored by means of the fluorescent calcium indicator Fluo-3. Cells exposed to a high-intensity stimulus showed surprisingly small light-microscopical alterations. The cytoplasmic calcium concentration increased in most cells, although some cells appeared very resistant to the mechanical stress. No correlation could be found be tween the calcium concentration changes and the cell length. The changes in calcium concentration reported here are suggested to be involved in the long-term pathogenesis of noise-induced hair cell damage.

  3. Intracellular mechanisms of cocaine-memory reconsolidation in the basolateral amygdala and dorsal hippocampus

    NASA Astrophysics Data System (ADS)

    Wells, Audrey Marie

    The ability of cocaine-associated environmental contexts to promote relapse in abstinent humans and reinstatement of cocaine-seeking behavior in laboratory animals depends on the formation and maintenance of maladaptive context-response-cocaine associative memories, the latter of which can be disrupted by manipulations that interfere with memory reconsolidation. Memory reconsolidation refers to a protein synthesis-dependent phenomenon whereby memory traces are reincorporated back into long-term memory storage following their retrieval and subsequent destabilization. To elucidate the distinctive roles of the basolateral amygdala (BLA) and dorsal hippocampus (DH) in the reconsolidation of context-response-cocaine memories, Experiments 1-3 evaluated novel molecular mechanisms within each structure that control this phenomenon. Experiment 1 tested the hypothesis that activation of the extracellular signal-regulated kinase (ERK) in the BLA and nucleus accumbens core (NACc - a substrate for Pavlovian cocaine-memory reconsolidation) would critically control instrumental cocaine-memory reconsolidation. To determine this, rats were re-exposed to a context that had previously been used for cocaine self-administration (i.e., cocaine memory-reactivation) and immediately thereafter received bilateral intra-BLA or intra-NACc microinfusions of the ERK inhibitor U0126 or vehicle (VEH) and were subsequently tested for drug context-induced cocaine-seeking behavior (non-reinforced lever responding) ~72 h later. Re-exposure to the cocaine-paired context at test fully reinstated cocaine-seeking behavior, relative to responding in an alternate, extinction context, and post-reactivation U0126 treatment in the BLA, but not the NACc, impaired cocaine-seeking behavior, relative to VEH. This effect was associated with a temporary increase in ERK2, but not ERK1, phosphorylation in the BLA and required explicit reactivation of the target memory trace (i.e., did not similarly manifest when U

  4. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    PubMed

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  5. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    SciTech Connect

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  6. Levosimendan may improve survival in patients requiring mechanical assist devices for post-cardiotomy heart failure

    PubMed Central

    Braun, Jan-Peter; Jasulaitis, Dominik; Moshirzadeh, Maryam; Doepfmer, Ulrich R; Kastrup, Marc; von Heymann, Christian; Dohmen, Pascal M; Konertz, Wolfgang; Spies, Claudia

    2006-01-01

    Introduction Most case series suggest that less than half of the patients receiving a mechanical cardiac assist device as a bridge to recovery due to severe post-cardiotomy heart failure survive to hospital discharge. Levosimendan is the only inotropic substance known to improve medium term survival in patients suffering from severe heart failure. Methods This retrospective analysis covers our single centre experience. Between July 2000 and December 2004, 41 consecutive patients were treated for this complication. Of these, 38 patients are included in this retrospective analysis as 3 patients died in the operating room. Levosimendan was added to the treatment protocol for the last nine patients. Results Of 29 patients treated without levosimendan, 20 could be weaned off the device, 9 survived to intensive care unit discharge, 7 left hospital alive and 3 survived 180 days. All 9 patients treated with levosimendan could be weaned, 8 were discharged alive from ICU and hospital, and 7 lived 180 days after surgery (p < 0.002 for 180 day survival). Plasma lactate after explantation of the device was significantly lower (p = 0.002), as were epinephrine doses. Time spent on renal replacement therapy was significantly shorter (p = 0.023). Conclusion Levosimendan seems to improve medium term survival in patients failing to wean off cardiopulmonary bypass and requiring cardiac assist devices as a bridge to recovery. This retrospective analysis justifies prospective randomised investigations of levosimendan in this group of patients. PMID:16420666

  7. BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat.

    PubMed

    Bechara, Ranya G; Lyne, Ronan; Kelly, Áine M

    2014-12-15

    Exercise-induced improvements in learning are associated with neurotrophic and neurogenic changes in the dentate gyrus, but the intracellular signalling mechanisms that may mediate these improvements remain unknown. In the current study we investigate the effects of one week of forced exercise on spatial memory and analyse in parallel BDNF-stimulated signalling pathways in cells of the dentate gyrus. Additionally, we test whether a single intracerebroventricular (i.c.v.) injection of BDNF can mimic the observed cognitive and signalling changes. Male Wistar rats were assigned to exercised and sedentary groups and tested in a spatial task post-exercise. Tissue from the dentate gyrus was assessed for expression and release of BDNF, and for changes in expression and activation of TrkB, ERK and synapsin-1. In a separate set of experiments, male Wistar rats received a single i.c.v. injection of BDNF and were then tested in the same spatial learning task. Exercised and BDNF-treated (but not control) rats could successfully complete an object displacement task that tests spatial learning. Exercised rats and BDNF-treated rats displayed increases BDNF expression and ERK1 activation, while exercised rats showed increases in cell division, stimulated BDNF release, TrkB activation, and synapsin-1 expression in the dentate gyrus. We conclude that exercise-induced increases in BDNF in the dentate gyrus are sufficient to cause improvements in spatial memory by activating signalling cascades that enhance synaptic transmission in the hippocampus.

  8. Intracellular pH-regulating mechanism of the squid axon. Interaction between DNDS and extracellular Na+ and HCO3-

    PubMed Central

    1989-01-01

    Intracellular pH (pHi) of the squid axon is regulated by a stilbenesensitive transporter that couples the influx of Na+ and HCO3- (or the equivalent) to the efflux of Cl-. According to one model, the extracellular ion pair NaCO3- exchanges for intracellular Cl-. In the present study, the ion-pair model was tested by examining the interaction of the reversible stilbene derivative 4,4'-dinitrostilbene- 2,2'-disulfonate (DNDS) with extracellular Na+ and HCO3-. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, as measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. In the presence of both external Na+ and HCO3- (pHo = 8.0, 22 degrees C), pHi increased due to the pHi-regulating mechanism. At a fixed [Na+]o of 425 mM and [HCO3-]o of 12 mM, DNDS reversibly reduced the equivalent acid-extrusion rate (JH) calculated from the rate of pHi recovery. The best-fit value for maximal inhibition was 104%, and for the [DNDS]o at half-maximal inhibition, 0.3 mM. At a [Na+]o of 425 mM, the [HCO3-]o dependence of JH was examined at 0, 0.1, and 0.25 mM DNDS. Although Jmax was always approximately 20 pmol cm-2 s-1, Km(HCO3-) was 2.6, 5.7, and 12.7 mM, respectively. Thus, DNDS is competitive with HCO3-. At a [HCO3-]o of 12 mM, the [Na+]o dependence of JH was examined at 0 and 0.1 mM DNDS. Although Jmax was approximately 20 pmol cm-2 s-1 in both cases, Km(Na+) was 71 and 179 mM, respectively. At a [HCO3-]o of 48 mM, Jmax was approximately 20 pmol cm-2 s-1 at [DNDS]o levels of 0, 0.1, and 0.25 mM. However, Km(Na+) was 22, 45, and 90 mM, respectively. Thus, DNDS (an anion) is also competitive with Na+. The results are consistent with simple competition between DNDS and NaCO3-, and place severe restrictions on other kinetic models. PMID:2915212

  9. The mechanism of injury-induced intracellular calcium concentration oscillations in the endothelium of excised rat aorta.

    PubMed

    Berra-Romani, Roberto; Raqeeb, Abdul; Torres-Jácome, Julián; Guzman-Silva, Alejandro; Guerra, Germano; Tanzi, Franco; Moccia, Francesco

    2012-01-01

    Endothelial injury is the primary event that leads to a variety of severe vascular disorders. Mechanical injury elicits a Ca(2+) response in the endothelium of excised rat aorta, which comprises an initial Ca(2+) release from inositol-1,4,5-trisphosphate (InsP(3))-sensitive stores followed by a long-lasting decay phase due to Ca(2+) entry through uncoupled connexons. The Ca(2+) signal may also adopt an oscillatory pattern, the molecular underpinnings of which are unclear. In the light of the role played by Ca(2+) spiking in tissue regeneration, this study aimed to unveil the mechanisms underlying injury-induced Ca(2+) oscillations. The latter reversibly ceased upon removal of extracellular Ca(2+) or addition of the gap junction blockers heptanol, 18 α,β-glycyrrhetinic acid, La(3+) and Ni(2+), but were insensitive to BTP-2 and SKF 96365. The spiking response was abolished by inhibiting the Ca(2+) entry mode of the Na(+)/Ca(2+) exchanger (NCX). The InsP(3)-producing agonist ATP resumed Ca(2+) oscillations in silent cells, while the phospholipase C inhibitor U73122 suppressed them. Injury-induced Ca(2+) transients were prevented by the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA) blockers thapsigargin and cyclopiazonic acid, while they were unaffected by suramin and genistein. These data show for the first time that the coordinated interplay between NCX-mediated Ca(2+) entry and InsP(3)-dependent Ca(2+) release contributes to injury-induced intracellular Ca(2+) concentration oscillations.

  10. Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest?

    PubMed

    Debrabant, Alain; Nakhasi, Hira

    2003-06-25

    The protozoan parasites Leishmania, Trypanosoma cruzi and Trypanosoma brucei show multiple features consistent with a form of programmed cell death (PCD). Despite some similarities with apoptosis of mammalian cells, PCD in trypanosomatid protozoans appears to be significantly different. In these unicellular organisms, PCD could represent an altruistic mechanism for the selection of cells, from the parasite population, that are fit to be transmitted to the next host. Alternatively, PCD could help in controlling the population of parasites in the host, thereby increasing host survival and favoring parasite transmission, as proposed by Seed and Wenk. Therefore, PCD in trypanosomatid parasites may represent a pathway involved both in survival and propagation of the species.

  11. Hospital closures and survivals: an analysis of operating characteristics and regulatory mechanisms in three states.

    PubMed Central

    Kennedy, L; Dumas, M B

    1983-01-01

    This article examines factors related to hospital closures, using a longitudinal sample of surviving and closed hospitals. The hospitals are drawn from three states with different regulatory programs. Size of hospital and occupancy rate are shown to be related to likelihood of closure, while ownership, length of stay, and expenditures are not. These findings are observed both in the aggregate and within the individual states between 1960 and 1980. The three states--Arizona, Pennsylvania, and Maryland--represent different population trends and regulatory mechanisms and goals. The findings indicate that some programs appear to guarantee survival, whereas others are more neutral. PMID:6668180

  12. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  13. Regulation of OGT by URI in Response to Glucose Confers c-MYC-Dependent Survival Mechanisms.

    PubMed

    Burén, Stefan; Gomes, Ana L; Teijeiro, Ana; Fawal, Mohamad-Ali; Yilmaz, Mahmut; Tummala, Krishna S; Perez, Manuel; Rodriguez-Justo, Manuel; Campos-Olivas, Ramón; Megías, Diego; Djouder, Nabil

    2016-08-01

    Cancer cells can adapt and survive under low nutrient conditions, but underlying mechanisms remain poorly explored. We demonstrate here that glucose maintains a functional complex between the co-chaperone URI, PP1γ, and OGT, the enzyme catalyzing O-GlcNAcylation. Glucose deprivation induces the activation of PKA, which phosphorylates URI at Ser-371, resulting in PP1γ release and URI-mediated OGT inhibition. Low OGT activity reduces O-GlcNAcylation and promotes c-MYC degradation to maintain cell survival. In the presence of glucose, PP1γ-bound URI increases OGT and c-MYC levels. Accordingly, mice expressing non-phosphorylatable URI (S371A) in hepatocytes exhibit high OGT activity and c-MYC stabilization, accelerating liver tumorigenesis in agreement with c-MYC oncogenic functions. Our work uncovers that URI-regulated OGT confers c-MYC-dependent survival functions in response to glucose fluctuations. PMID:27505673

  14. Improving survival of disassociated human embryonic stem cells by mechanical stimulation using acoustic tweezing cytometry.

    PubMed

    Chen, Di; Sun, Yubing; Deng, Cheri X; Fu, Jianping

    2015-03-24

    Dissociation-induced apoptosis of human embryonic stem cells (hESCs) hampers their large-scale culture. Herein we leveraged the mechanosensitivity of hESCs and employed, to our knowledge, a novel technique, acoustic tweezing cytometry (ATC), for subcellular mechanical stimulation of disassociated single hESCs to improve their survival. By acoustically actuating integrin-bound microbubbles (MBs) to live cells, ATC increased the survival rate and cloning efficiency of hESCs by threefold. A positive correlation was observed between the increased hESC survival rate and total accumulative displacement of integrin-anchored MBs during ATC stimulation. ATC may serve as a promising biocompatible tool to improve hESC culture.

  15. Rapidity gap survival in central exclusive diffraction: Dynamical mechanisms and uncertainties

    SciTech Connect

    Strikman, Mark; Weiss, Christian

    2009-01-01

    We summarize our understanding of the dynamical mechanisms governing rapidity gap survival in central exclusive diffraction, pp -> p + H + p (H = high-mass system), and discuss the uncertainties in present estimates of the survival probability. The main suppression of diffractive scattering is due to inelastic soft spectator interactions at small pp impact parameters and can be described in a mean-field approximation (independent hard and soft interactions). Moderate extra suppression results from fluctuations of the partonic configurations of the colliding protons. At LHC energies absorptive interactions of hard spectator partons associated with the gg -> H process reach the black-disk regime and cause substantial additional suppression, pushing the survival probability below 0.01.

  16. Longest Event-Free Survival without Anticoagulation in a Mechanical Aortic Valve Replacement

    PubMed Central

    Salmane, Chadi; Pandya, Bhavi; Lafferty, Kristen; Patel, Nileshkumar J; McCord, Donald

    2016-01-01

    Sixty percent of the patients going for valve replacement opt for mechanical valves and the remaining 40% choose bioprosthetics. Mechanical valves are known to have a higher risk of thrombosis; this risk further varies depending on the type of valve, its position, and certain individual factors. According to current guidelines, long-term anticoagulation is indicated in patients with metallic prosthetic valve disease. We report two unique cases of patients who survived 27 and 37 years event free, respectively, after mechanical aortic valve replacement (AVR) without being on any form of anticoagulation. The latter case described the longest survival in a human with a prosthetic aortic valve without anticoagulation. A review of literature demonstrated few cases of prosthetic valves with no anticoagulation in the long term without significant embolic events reported as case reports. These cases have been summarized in this article. Some cases of long-term survival (in the absence of anticoagulation) were attributed to good luck, and others as the result of genetic variations. New mechanical prosthetic valves can be promising, such as microporus-surfaced valves that may be used without full anticoagulation. The use of dual antiplatelet agents alone can be currently recommended only when a patient cannot take oral anticoagulation after AVR, and it should be followed with measuring and monitoring of platelet reactivity. PMID:27053922

  17. Mathematical Modeling of Therapy-induced Cancer Drug Resistance: Connecting Cancer Mechanisms to Population Survival Rates

    PubMed Central

    Sun, Xiaoqiang; Bao, Jiguang; Shao, Yongzhao

    2016-01-01

    Drug resistance significantly limits the long-term effectiveness of targeted therapeutics for cancer patients. Recent experimental studies have demonstrated that cancer cell heterogeneity and microenvironment adaptations to targeted therapy play important roles in promoting the rapid acquisition of drug resistance and in increasing cancer metastasis. The systematic development of effective therapeutics to overcome drug resistance mechanisms poses a major challenge. In this study, we used a modeling approach to connect cellular mechanisms underlying cancer drug resistance to population-level patient survival. To predict progression-free survival in cancer patients with metastatic melanoma, we developed a set of stochastic differential equations to describe the dynamics of heterogeneous cell populations while taking into account micro-environment adaptations. Clinical data on survival and circulating tumor cell DNA (ctDNA) concentrations were used to confirm the effectiveness of our model. Moreover, our model predicted distinct patterns of dose-dependent synergy when evaluating a combination of BRAF and MEK inhibitors versus a combination of BRAF and PI3K inhibitors. These predictions were consistent with the findings in previously reported studies. The impact of the drug metabolism rate on patient survival was also discussed. The proposed model might facilitate the quantitative evaluation and optimization of combination therapeutics and cancer clinical trial design. PMID:26928089

  18. A Functional Selectivity Mechanism at the Serotonin-2A GPCR Involves Ligand-Dependent Conformations of Intracellular Loop 2

    PubMed Central

    2014-01-01

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT2AR) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. The findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT2AR activation. PMID:25314362

  19. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages.

    PubMed

    Macedo, Auricelio A; Silva, Ana P C; Mol, Juliana P S; Costa, Luciana F; Garcia, Luize N N; Araújo, Marcio S; Martins Filho, Olindo A; Paixão, Tatiane A; Santos, Renato L

    2015-01-01

    Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS) during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi). In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment. PMID:26366863

  20. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages

    PubMed Central

    Macedo, Auricelio A.; Silva, Ana P. C.; Mol, Juliana P. S.; Costa, Luciana F.; Garcia, Luize N. N.; Araújo, Marcio S.; Martins Filho, Olindo A.; Paixão, Tatiane A.; Santos, Renato L.

    2015-01-01

    Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS) during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi). In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment. PMID:26366863

  1. JMJD3 promotes survival of diffuse large B-cell lymphoma subtypes via distinct mechanisms

    PubMed Central

    Stupack, Dwayne G.; Bai, Nan; Xun, Jing; Ren, Guosheng; Han, Jihong; Li, Luyuan; Luo, Yunping; Xiang, Rong; Tan, Xiaoyue

    2016-01-01

    JMJD3 (Jumonji domain containing-3), a histone H3 Lys27 (H3K27) demethylase, has been reported to be involved in the antigen-driven differentiation of germinal center B-cells. However, insight into the mechanism of JMJD3 in DLBCL (Diffuse large B-cell lymphoma) progression remains poorly understood. In this study, we investigated the subtype-specific JMJD3-dependent survival effects in DLBCL. Our data showed that in the ABC subtype, silencing-down of JMJD3 inhibited interferon regulatory factor 4 (IRF4) expression in a demethylase activity-dependent fashion. IRF4 reciprocally stimulated expression of JMJD3, forming a positive feedback loop that promoted survival in these cells. Accordingly, IRF4 expression was sufficient to rescue the pro-apoptotic effect of JMJD3 suppression in the ABC, but not in the GCB subtype. In contrast, ectopic overexpression of BCL-2 completely offset JMJD3-mediated survival in the GCB DLBCL cells. In vivo, treatment with siRNA to JMJD3 reduced tumor volume concordant with increased apoptosis in either subtype. This suggests it is a common target, though the distinctive signaling axes regulating DCBCL survival offer different strategic options for treating DLBCL subtypes. PMID:27102442

  2. Modeling the effects of sodium chloride, acetic acid and intracellular pH on the survival of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primar...

  3. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis.

    PubMed

    Garfoot, Andrew L; Rappleye, Chad A

    2016-02-01

    The fungal pathogen Histoplasma capsulatum causes respiratory and disseminated disease, even in immunocompetent hosts. In contrast to opportunistic pathogens, which are readily controlled by phagocytic cells, H. capsulatum yeasts are able to infect macrophages, survive antimicrobial defenses, and proliferate as an intracellular pathogen. In this review, we discuss some of the molecular mechanisms that enable H. capsulatum yeasts to overcome obstacles to intracellular pathogenesis. H. capsulatum yeasts gain refuge from extracellular obstacles such as antimicrobial lung surfactant proteins by engaging the β-integrin family of phagocytic receptors to promote entry into macrophages. In addition, H. capsulatum yeasts conceal immunostimulatory β-glucans to avoid triggering signaling receptors such as the β-glucan receptor Dectin-1. H. capsulatum yeasts counteract phagocyte-produced reactive oxygen species by expression of oxidative stress defense enzymes including an extracellular superoxide dismutase and an extracellular catalase. Within the phagosome, H. capsulatum yeasts block phagosome acidification, acquire essential metals such as iron and zinc, and utilize de novo biosynthesis pathways to overcome nutritional limitations. These mechanisms explain how H. capsulatum yeasts avoid and negate macrophage defense strategies and establish a hospitable intracellular niche, making H. capsulatum a successful intracellular pathogen of macrophages. PMID:26235362

  4. Hijacking and Use of Host Lipids by Intracellular Pathogens.

    PubMed

    Toledo, Alvaro; Benach, Jorge L

    2015-12-01

    Intracellular bacteria use a number of strategies to survive, grow, multiply, and disseminate within the host. One of the most striking adaptations that intracellular pathogens have developed is the ability to utilize host lipids and their metabolism. Bacteria such as Anaplasma, Chlamydia, or Mycobacterium can use host lipids for different purposes, such as a means of entry through lipid rafts, building blocks for bacteria membrane formation, energy sources, camouflage to avoid the fusion of phagosomes and lysosomes, and dissemination. One of the most extreme examples of lipid exploitation is Mycobacterium, which not only utilizes the host lipid as a carbon and energy source but is also able to reprogram the host lipid metabolism. Likewise, Chlamydia spp. have also developed numerous mechanisms to reprogram lipids onto their intracellular inclusions. Finally, while the ability to exploit host lipids is important in intracellular bacteria, it is not an exclusive trait. Extracellular pathogens, including Helicobacter, Mycoplasma, and Borrelia, can recruit and metabolize host lipids that are important for their growth and survival.Throughout this chapter we will review how intracellular and extracellular bacterial pathogens utilize host lipids to enter, survive, multiply, and disseminate in the host. PMID:27337282

  5. Disruption of the intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes

    SciTech Connect

    Fu Min; Wu Meng; Wang Jifeng; Qiao Yanjiang; Wang Zhao . E-mail: zwang@tsinghua.edu.cn

    2007-03-23

    Aconitine is an effective ingredient in Aconite tuber, an important traditional Chinese medicine. Aconitine is also known to be a highly toxic diterpenoid alkaloid with arrhythmogenic effects. In the present study, we have characterized the properties of arrhythmic cytotoxicity and explored the possible mechanisms of aconitine-induced cardiomyocytes. Results show that aconitine induces significant abnormity in the spontaneous beating rate, amplitude of spontaneous oscillations and the relative intracellular Ca{sup 2+} concentration. Also, mRNA transcription levels and protein expressions of SR Ca{sup 2+} release channel RyR{sub 2} and sarcolemmal NCX were elevated in aconitine-induced cardiomyocytes. However, co-treatment with ruthenium red (RR), a RyR channel inhibitor, could reverse the aconitine-induced abnormity in intracellular Ca{sup 2+} signals. These results demonstrate that disruption of intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling (EC coupling) is a crucial mechanism of arrhythmic cytotoxicity in aconitine-induced cardiomyocytes. Moreover, certain inhibitors appear to play an important role in the detoxification of aconitine-induced Ca{sup 2+}-dependent arrhythmias.

  6. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    PubMed Central

    Zubair, Haseeb; Azim, Shafquat; Khan, Husain Yar; Ullah, Mohammad Fahad; Wu, Daocheng; Singh, Ajay Pratap; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-01-01

    There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS) that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach. PMID:27331811

  7. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments

    PubMed Central

    Finn, Sarah; Condell, Orla; McClure, Peter; Amézquita, Alejandro; Fanning, Séamus

    2013-01-01

    Some Enterobacteriaceae possess the ability to survive in low-moisture environments for extended periods of time. Many of the reported food-borne outbreaks associated with low-moisture foods involve Salmonella contamination. The control of Salmonella in low-moisture foods and their production environments represents a significant challenge for all food manufacturers. This review summarizes the current state of knowledge with respect to Salmonella survival in intermediate- and low-moisture food matrices and their production environments. The mechanisms utilized by this bacterium to ensure their survival in these dry conditions remain to be fully elucidated, however, in depth transcriptomic data is now beginning to emerge regarding this observation. Earlier research work described the effect(s) that low-moisture can exert on the long-term persistence and heat tolerance of Salmonella, however, data are also now available highlighting the potential cross-tolerance to other stressors including commonly used microbicidal agents. Sources and potential control measures to reduce the risk of contamination will be explored. By extending our understanding of these geno- and phenotypes, we may be able to exploit them to improve food safety and protect public health. PMID:24294212

  8. In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments

    SciTech Connect

    Krumholz, Lee R.

    2005-06-01

    Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 are model subsurface organisms for studying genes involving in situ radionuclide transformation and sediment survival. Our research objective for this project has been to develop a signature-tagged mutagenesis (STM) procedure and use it to identify mutants in genes of these subsurface bacteria involved in sediment survival and radionuclide reduction. The mutant genes identified in these studies allow us for the first time to describe at the genetic level microbial processes that are actually being used by environmental bacteria while growing in their natural ecosystems. Identification of these genes revealed facets of microbial physiology and ecology that are not accessible through laboratory studies. Ultimately, this information may be used to optimize bioremediation or other engineered microbial processes. Furthermore, the identification of a mutant in a gene conferring multidrug resistance in strain MR-1 shows that this widespread mechanism of antibiotic resistance, likely has its origins as a mechanism of bacterial defense against naturally occurring toxins. Studies with D. desulfuricans G20: The STM procedure first involved generating a library of 5760 G20 mutants and screening for potential non-survivors in subsurface sediment microcosms. After two rounds of screening, a total of 117 mutants were confirmed to be true non-survivors. 97 transposon insertion regions have been sequenced to date. Upon further analysis of these mutants, we classified the sediment survival genes into COG functional categories. STM mutant insertions were located in genes encoding proteins related to metabolism (33%), cellular processes (42%), and information storage and processing (17%). We also noted 8% of STM mutants identified had insertions in genes for hypothetical proteins or unknown functions. Interestingly, at least 64 of these genes encode cytoplasmic proteins, 46 encode inner membrane proteins, and only 7 encode

  9. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms

    PubMed Central

    Mansilla Pareja, Maria Eugenia; Colombo, Maria I.

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance. PMID:24137567

  10. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  11. Early down-regulation of PKCδ as a pro-survival mechanism in Huntington's disease.

    PubMed

    Rué, Laura; Alcalá-Vida, Rafael; López-Soop, Graciela; Creus-Muncunill, Jordi; Alberch, Jordi; Pérez-Navarro, Esther

    2014-03-01

    A balance between cell survival and apoptosis is crucial to avoid neurodegeneration. Here, we analyzed whether the pro-apoptotic protein PKCδ, and the pro-survival PKCα and βII, were dysregulated in the brain of R6/1 mouse model of Huntington's disease (HD). Protein levels of the three PKCs examined were reduced in all the brain regions analyzed being PKCδ the most affected isoform. Interestingly, PKCδ protein levels were also decreased in the striatum and cortex of R6/2 and Hdh(Q111/Q111) mice, and in the putamen of HD patients. Nuclear PKCδ induces apoptosis, but we detected reduced PKCδ in both cytoplasmic and nuclear enriched fractions from R6/1 mouse striatum, cortex and hippocampus. In addition, we show that phosphorylation and ubiquitination of PKCδ are increased in 30-week-old R6/1 mouse brain. All together these results suggest a pro-survival role of reduced PKCδ levels in response to mutant huntingtin-induced toxicity. In fact, we show that over-expression of PKCδ increases mutant huntingtin-induced cell death in vitro, whereas over-expression of a PKCδ dominant negative form or silencing of endogenous PKCδ partially blocks mutant huntingtin-induced cell death. Finally, we show that the analysis of lamin B protein levels could be a good marker of PKCδ activity, but it is not involved in PKCδ-mediated cell death in mutant huntingtin-expressing cells. In conclusion, our results suggest that neurons increase the degradation of PKCδ as a compensatory pro-survival mechanism in response to mutant huntingtin-induced toxicity that can help to understand why cell death appears late in the disease.

  12. Intracellularly survived Staphylococcus aureus after phagocytosis are more virulent in inducing cytotoxicity in fresh murine peritoneal macrophages utilizing TLR-2 as a possible target.

    PubMed

    Nandi, Ajeya; Bishayi, Biswadev

    2016-08-01

    Staphylococcus aureus with high virulence potential is contributing to a current public health crisis in both hospital and community settings. TLR-2 and generation of reactive oxygen species (ROS) by phagocytic cells is thought to be an important component of the host's immunity against S. aureus infection. However, response of S. aureus against modulation of host-derived ROS in absence of TLR-2 during acute staphylococcal infection is still remains unclear. Peritoneal macrophages were pretreated with either inhibitors of superoxide dismutase (SOD) or catalase in presence or absence of anti TLR-2 antibody and were infected with S. aureus strain AG-789. Bacteria were recovered after time dependent phagocytosis; intracellular killing, level and expression of SOD and catalase were measured. Phagocytosed bacteria from respective groups were further used for infection to fresh peritoneal macrophages as well as for in vivo infection. Levels of ROS, cytokine, lysozyme, antioxidant enzymes activity and TLR-2 expression were measured. Results revealed that more bacteria were escaped killing in SOD and catalase inhibitor pretreated TLR-2 neutralized macrophages, found to express more catalase and are antibiotic resistant. Infection of fresh macrophages with S. aureus, recovered from SOD and catalase inhibited TLR-2 neutralized macrophages induced lower ROS, lysozyme and cytokine production and caused increased bacterial count. Furthermore, bacterial antioxidants by modulating host-derived ROS could regulate the cell surface TLR-2 expression in murine peritoneal macrophages. So, in the early phase of infection, TLR-2 participates in the innate immune response and targeting bacterial antioxidants might be useful in the alleviation of Staphylococcus aureus infection. PMID:27270212

  13. Desiccation as a Long-Term Survival Mechanism for the Archaeon Methanosarcina barkeri

    PubMed Central

    Anderson, Kimberly L.; Apolinario, Ethel E.

    2012-01-01

    Viable methanogens have been detected in dry, aerobic environments such as dry reservoir sediment, dry rice paddies and aerobic desert soils, which suggests that methanogens have mechanisms for long-term survival in a desiccated state. In this study, we quantified the survival rates of the methanogenic archaeon Methanosarcina barkeri after desiccation under conditions equivalent to the driest environments on Earth and subsequent exposure to different stress factors. There was no significant loss of viability after desiccation for 28 days for cells grown with either hydrogen or the methylotrophic substrates, but recovery was affected by growth phase, with cells desiccated during the stationary phase of growth having a higher rate of recovery after desiccation. Synthesis of methanosarcinal extracellular polysaccharide (EPS) significantly increased the viability of desiccated cells under both anaerobic and aerobic conditions compared with that of non-EPS-synthesizing cells. Desiccated M. barkeri exposed to air at room temperature did not lose significant viability after 28 days, and exposure of M. barkeri to air after desiccation appeared to improve the recovery of viable cells compared with that of desiccated cells that were never exposed to air. Desiccated M. barkeri was more resistant to higher temperatures, and although resistance to oxidative conditions such as ozone and ionizing radiation was not as robust as in other desiccation-resistant microorganisms, the protection mechanisms are likely adequate to maintain cell viability during periodic exposure events. The results of this study demonstrate that after desiccation M. barkeri has the innate capability to survive extended periods of exposure to air and lethal temperatures. PMID:22194299

  14. Endotoxin-stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism.

    PubMed

    Dangi, Anil; Huang, Chao; Tandon, Ashish; Stolz, Donna; Wu, Tong; Gandhi, Chandrashekhar R

    2016-01-01

    Bacterial lipopolysaccharide (LPS)-stimulated hepatic stellate cells (HSCs) produce many cytokines including IFNβ, TNFα, and IL6, strongly inhibit DNA synthesis, but induce apoptosis of a small number of hepatocytes. In vivo administration of LPS (up to 10 mg/mL) causes modest inflammation and weight loss in rats but not mortality. We determined whether LPS-stimulated HSCs instigate mechanisms of hepatocyte survival. Rats received 10 mg/kg LPS (i.p.) and determinations were made at 6 h. In vitro, HSCs were treated with 100 ng/mL LPS till 24 h. The medium was transferred to hepatocytes, and determinations were made at 0-12 h. Controls were HSC-conditioned medium or medium-containing LPS. LPS treatment of rats caused autophagy in hepatocytes, a physiological process for clearance of undesirable material including injured or damaged organelles. This was accompanied by activation of c-Jun NH2 terminal kinase (JNK) and apoptosis of ~4-5% of hepatocytes. In vitro, LPS-conditioned HSC medium (LPS/HSC) induced autophagy in hepatocytes but apoptosis of only ~10% of hepatocytes. While LPS/HSC stimulated activation of JNK (associated with cell death), it also activated NFkB and ERK1/2 (associated with cell survival). LPS-stimulated HSCs produced IFNβ, and LPS/HSC-induced autophagy in hepatocytes and their apoptosis were significantly inhibited by anti-IFNβ antibody. Blockade of autophagy, on the other hand, strongly augmented hepatocyte apoptosis. While LPS-stimulated HSCs cause apoptosis of a subpopulation of hepatocytes by producing IFNβ, they also induce cell survival mechanisms, which may be of critical importance in resistance to liver injury during endotoxemia.

  15. Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes.

    PubMed

    Chung, Jin Ho; Han, Ji Hyun; Hwang, Eun Ju; Seo, Jin Young; Cho, Kwang Hyun; Kim, Kyu Han; Youn, Jai Il; Eun, Hee Chul

    2003-10-01

    Beneficial effects attributed to green tea, such as its anticancer and antioxidant properties, may be mediated by (-)-epigallocatechin-3-gallate (EGCG). In this study, the effects of EGCG on cell proliferation and UV-induced apoptosis were investigated in normal epidermal keratinocytes. When topically applied to aged human skin, EGCG stimulated the proliferation of epidermal keratinocytes, which increased the epidermal thickness. In addition, this topical application also inhibited the UV-induced apoptosis of epidermal keratinocytes. EGCG was found to increase the phosphorylation of Bad protein at the Ser112 and Ser136. Moreover, EGCG-induced Erk phosphorylation was found to be critical for the phosphorylation of Ser112 in Bad protein, and the EGCG-induced activation of the Akt pathway was found to be involved in the phosphorylation of Ser136. Furthermore, EGCG increased Bcl-2 expression but decreased Bax expression, causing an increase in the Bcl-2-to-Bax ratio. In addition, we demonstrate the differential growth inhibitory effects of EGCG on cancer cells. In conclusion, this study demonstrates that EGCG promotes keratinocyte survival and inhibits the UV-induced apoptosis via two mechanisms: by phosphorylating Ser112 and Ser136 of Bad protein through Erk and Akt pathways, respectively, and by increasing the Bcl-2-to-Bax ratio. Moreover, these two proposed mechanisms of EGCG-induced cell proliferation may differ kinetically to promote keratinocyte survival.

  16. A semi-mechanistic red blood cell survival model provides some insight into red blood cell destruction mechanisms.

    PubMed

    Korell, Julia; Duffull, Stephen B

    2013-08-01

    Most mathematical models developed for the survival of haematological cell populations, in particular red blood cells (RBCs), follow the principle of parsimony. They focus on the predominant destruction mechanism of age-related cell death (senescence) and do not account for within subject variability in the RBC lifespan. However, assessment of the underlying physiological destruction mechanisms can be of interest in pathological conditions that affect RBC survival, for example sickle cell anaemia or anaemia of chronic kidney disease. We have previously proposed a semi-mechanistic RBC survival model which accounts for four different types of RBC destruction mechanisms. In this work, it is shown that the proposed model in combination with informative RBC survival data is able to provide a deeper insight into RBC destruction mechanisms. The proposed model was applied in a non-linear mixed effect modelling framework to biotin derived RBC survival data available from literature. Three mechanisms were estimable based on the available data of twelve subjects, including random destruction, senescence and destruction due to delayed failure. It was possible to identify three subjects with a decreased RBC survival in the study population. These three subjects all showed differences in the contribution of the estimated destruction mechanisms: an increased random destruction, versus an accelerated senescence, versus a combination of both.

  17. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    PubMed

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.

  18. Single Sample Expression-Anchored Mechanisms Predict Survival in Head and Neck Cancer

    PubMed Central

    Yang, Xinan; Regan, Kelly; Huang, Yong; Zhang, Qingbei; Li, Jianrong; Seiwert, Tanguy Y.; Cohen, Ezra E. W.; Xing, H. Rosie; Lussier, Yves A.

    2012-01-01

    Gene expression signatures that are predictive of therapeutic response or prognosis are increasingly useful in clinical care; however, mechanistic (and intuitive) interpretation of expression arrays remains an unmet challenge. Additionally, there is surprisingly little gene overlap among distinct clinically validated expression signatures. These “causality challenges” hinder the adoption of signatures as compared to functionally well-characterized single gene biomarkers. To increase the utility of multi-gene signatures in survival studies, we developed a novel approach to generate “personal mechanism signatures” of molecular pathways and functions from gene expression arrays. FAIME, the Functional Analysis of Individual Microarray Expression, computes mechanism scores using rank-weighted gene expression of an individual sample. By comparing head and neck squamous cell carcinoma (HNSCC) samples with non-tumor control tissues, the precision and recall of deregulated FAIME-derived mechanisms of pathways and molecular functions are comparable to those produced by conventional cohort-wide methods (e.g. GSEA). The overlap of “Oncogenic FAIME Features of HNSCC” (statistically significant and differentially regulated FAIME-derived genesets representing GO functions or KEGG pathways derived from HNSCC tissue) among three distinct HNSCC datasets (pathways:46%, p<0.001) is more significant than the gene overlap (genes:4%). These Oncogenic FAIME Features of HNSCC can accurately discriminate tumors from control tissues in two additional HNSCC datasets (n = 35 and 91, F-accuracy = 100% and 97%, empirical p<0.001, area under the receiver operating characteristic curves = 99% and 92%), and stratify recurrence-free survival in patients from two independent studies (p = 0.0018 and p = 0.032, log-rank). Previous approaches depending on group assignment of individual samples before selecting features or learning a classifier are limited by design to

  19. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells

    PubMed Central

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells. PMID:27536106

  20. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    PubMed

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells. PMID:27536106

  1. Corynebacterium diphtheriae putative tellurite-resistance protein (CDCE8392_0813) contributes to the intracellular survival in human epithelial cells and lethality of Caenorhabditis elegans

    PubMed Central

    dos Santos, Louisy Sanches; Antunes, Camila Azevedo; dos Santos, Cintia Silva; Pereira, José Augusto Adler; Sabbadini, Priscila Soares; de Luna, Maria das Graças; Azevedo, Vasco; Hirata, Raphael; Burkovski, Andreas; Asad, Lídia Maria Buarque de Oliveira; Mattos-Guaraldi, Ana Luíza

    2015-01-01

    Corynebacterium diphtheriae, the aetiologic agent of diphtheria, also represents a global medical challenge because of the existence of invasive strains as causative agents of systemic infections. Although tellurite (TeO32-) is toxic to most microorganisms, TeO32--resistant bacteria, including C. diphtheriae, exist in nature. The presence of TeO32--resistance (TeR) determinants in pathogenic bacteria might provide selective advantages in the natural environment. In the present study, we investigated the role of the putative TeR determinant (CDCE8392_813gene) in the virulence attributes of diphtheria bacilli. The disruption of CDCE8392_0813 gene expression in the LDCIC-L1 mutant increased susceptibility to TeO32- and reactive oxygen species (hydrogen peroxide), but not to other antimicrobial agents. The LDCIC-L1 mutant also showed a decrease in both the lethality of Caenorhabditis elegans and the survival inside of human epithelial cells compared to wild-type strain. Conversely, the haemagglutinating activity and adherence to and formation of biofilms on different abiotic surfaces were not regulated through the CDCE8392_0813 gene. In conclusion, the CDCE8392_813 gene contributes to the TeR and pathogenic potential of C. diphtheriae. PMID:26107188

  2. Impact of mechanical shear on the survival of Listeria monocytogenes on surfaces.

    PubMed

    Sheen, Shiowshuh; Costa, Sonya; Cooke, Peter

    2010-08-01

    The impact of mechanical surface shear on microbial viability is rarely a subject for exploration in food processing. The objective of this research was to investigate the impact of mechanical shear on the survival of Listeria monocytogenes on surfaces. Mechanical shear created by slicing a model food was explored to investigate the viability of L. monocytogenes. Cell injury/death was readily demonstrated in fluorescence images by confocal microscopy in which the live and dead cells were fluorescently stained green and red, respectively, with a viability dye kit. Images showed that a large percentage of dead cells appeared after slicing, and they were readily transferred from the slicer blade onto the surfaces of sliced agar, indicating that surface shear may cause the lethal effect on L. monocytogenes. Surface transfer results also showed that viable cell counts on agar slices (in a slicing series) followed a consistently decreasing pattern. The cell counts initially at 5 to 6.5 log CFU/slice (slices 1 to 6), decreased to 3 to 4 log CFU/slice (slices 8 to 30), then to 2 to 3 log CFU/slice (slices 31 to 40), and counts would be expected to further decrease if slicing continued. The overall cell recovery (survival) ratio was about 2% to 3% compared to the initial 8.4 log CFU/blade on a 10 cm(2) edge area. The impact of shear on microbial viability during slicing may contribute 99% of viable cell count reduction. This study provides clear evidence that surface shear can kill foodborne pathogens and reduce cross-contamination. The lethal effects of surface shear may further enhance food safety.

  3. Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival.

    PubMed

    Bergom, Carmen; Gao, Cunji; Newman, Peter J

    2005-10-01

    Defects in apoptotic pathways can promote cancer development and cause cancers to become resistant to chemotherapy. The cell adhesion and signaling molecule PECAM-1 has been shown to potently suppress apoptosis in a variety of cellular systems. PECAM-1 expression has been reported on a variety of human malignancies-especially hematopoietic and vascular cell cancers-but the significance of this expression has not been fully explored. The ability of PECAM-1 to inhibit apoptosis makes it an attractive candidate as a molecule that may promote cancer development and/or confer resistance to chemotherapeutic treatment. The exact mechanisms by which PECAM-1 mediates its cytoprotection have not been fully defined, but its anti-apoptotic effects have been shown to require both homophilic binding and intracellular signaling via its immunoreceptor tyrosine-based inhibitory motif (ITIM) domains. In this review, we will discuss the data regarding PECAM-1's anti-apoptotic effects and ways in which this cytoprotection may be clinically relevant to the development and/or treatment of hematologic malignancies that express this vascular cell-specific surface molecule. PMID:16194886

  4. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    PubMed

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed. PMID:26967458

  5. Mitotic Intragenic Recombination: A Mechanism of Survival for Several Congenital Disorders of Glycosylation

    PubMed Central

    Kane, Megan S.; Davids, Mariska; Adams, Christopher; Wolfe, Lynne A.; Cheung, Helen W.; Gropman, Andrea; Huang, Yan; Ng, Bobby G.; Freeze, Hudson H.; Adams, David R.; Gahl, William A.; Boerkoel, Cornelius F.

    2016-01-01

    Congenital disorders of glycosylation (CDGs) are disorders of abnormal protein glycosylation that affect multiple organ systems. Because most CDGs have been described in only a few individuals, our understanding of the associated phenotypes and the mechanisms of individual survival are limited. In the process of studying two siblings, aged 6 and 11 years, with MOGS-CDG and biallelic MOGS (mannosyl-oligosaccharide glucosidase) mutations (GenBank: NM_006302.2; c.[65C>A; 329G>A] p.[Ala22Glu; Arg110His]; c.[370C>T] p.[Gln124∗]), we noted that their survival was much longer than the previous report of MOGS-CDG, in a child who died at 74 days of age. Upon mutation analysis, we detected multiple MOGS genotypes including wild-type alleles in their cultured fibroblast and peripheral blood DNA. Further analysis of DNA from cultured fibroblasts of six individuals with compound heterozygous mutations of PMM2 (PMM2-CDG), MPI (MPI-CDG), ALG3 (ALG3-CDG), ALG12 (ALG12-CDG), DPAGT1 (DPAGT1-CDG), and ALG1 (ALG1-CDG) also identified multiple genotypes including wild-type alleles for each. Droplet digital PCR showed a ratio of nearly 1:1 wild-type to mutant alleles for most, but not all, mutations. This suggests that mitotic recombination contributes to the survival and the variable expressivity of individuals with compound heterozygous CDGs. This also provides an explanation for prior observations of a reduced frequency of homozygous mutations and might contribute to increased levels of residual enzyme activity in cultured fibroblasts of individuals with MPI- and PMM2-CDGs. PMID:26805780

  6. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    PubMed

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  7. Cellular Exit Strategies of Intracellular Bacteria.

    PubMed

    Hybiske, Kevin; Stephens, Richard

    2015-12-01

    The coevolution of intracellular bacteria with their eukaryotic hosts has presented these pathogens with numerous challenges for their evolutionary progress and survival. Chief among these is the ability to exit from host cells, an event that is fundamentally linked to pathogen dissemination and transmission. Recent years have witnessed a major expansion of research in this area, and this chapter summarizes our current understanding of the spectrum of exit strategies that are exploited by intracellular pathogens. Clear themes regarding the mechanisms of microbial exit have emerged and are most easily conceptualized as (i) lysis of the host cell, (ii) nonlytic exit of free bacteria, and (iii) release of microorganisms into membrane-encased compartments. The adaptation of particular exit strategies is closely linked with additional themes in microbial pathogenesis, including host cell death, manipulation of host signaling pathways, and coincident activation of proinflammatory responses. This chapter will explore the molecular determinants used by intracellular pathogens to promote host cell escape and the infectious advantages each exit pathway may confer, and it will provide an evolutionary framework for the adaptation of these mechanisms. PMID:27337274

  8. Molecular Mechanism of Flocculation Self-Recognition in Yeast and Its Role in Mating and Survival

    PubMed Central

    Goossens, Katty V. Y.; Ielasi, Francesco S.; Nookaew, Intawat; Stals, Ingeborg; Alonso-Sarduy, Livan; Daenen, Luk; Van Mulders, Sebastiaan E.; Stassen, Catherine; van Eijsden, Rudy G. E.; Siewers, Verena; Delvaux, Freddy R.; Kasas, Sandor; Nielsen, Jens; Devreese, Bart

    2015-01-01

    ABSTRACT We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. PMID:25873380

  9. Isolation of a non-fermentative bacterium, Pseudomonas aeruginosa, using intracellular carbon for denitrification and phosphorus-accumulation and relevant metabolic mechanisms.

    PubMed

    Liu, Hui; Wang, Qin; Sun, Yanfu; Zhou, Kangqun; Liu, Wen; Lu, Qian; Ming, Caibing; Feng, Xidan; Du, Jianjun; Jia, Xiaoshan; Li, Jun

    2016-07-01

    A newly designed pilot-scale system was developed to enrich denitrifying phosphate-accumulating organisms (DNPAOs) for nitrogen and phosphorus nutrient removal synchronously. A strain of DNPAOs was isolated and its biochemical characteristics and metabolic mechanisms of this bacterial strain were analyzed. The results showed that compared with previously reported system, this newly designed system has higher removal rates of nutrients. Removal efficiencies of NH3-N, TN, TP, and COD in actual wastewater were 82.64%, 79.62%, 87.22%, and 90.41%, respectively. Metabolic activity of DNPAOs after anoxic stage in this study even reached 94.64%. Pseudomonas aeruginosa is a strain of non-fermentative DNPAOs with strong nitrogen and phosphorus removal abilities. Study on the metabolic mechanisms suggested that intracellular PHB of P. aeruginosa plays dual roles, supplying energy for phosphorus accumulation and serving as a major carbon source for denitrification. PMID:26995616

  10. Intracellular Zn(2+) Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species.

    PubMed

    Tuncay, Erkan; Turan, Belma

    2016-02-01

    Oxidants increase intracellular free Zn(2+) concentration ([Zn(2+)]i) in ventricular myocytes, which contributes to oxidant-induced alterations in excitation-contraction coupling (ECC). However, it is not clear whether increased [Zn(2+)]i in cardiomyocytes via increased reactive nitrogen species (RNS) has a role on heart function under pathological conditions, such as hyperglycemia. In this study, first we aimed to investigate the role of increased [Zn(2+)]i under in vitro condition in the development of both electrical and mechanical dysfunction of isolated papillary muscle strips from rat heart via exposed samples to a Zn(2+)-ionophore (Zn-pyrithione; 1 μM) for 20 min. Under simultaneous measurement of intracellular action potential and contractile activity in these preparations, Zn-pyrithione exposure caused marked prolongation in action potential repolarization phase and slowdown in both contraction and relaxation rates of twitch activity. Second, in order to demonstrate an association between increased [Zn(2+)]i and increased RNS, we monitored intracellular [Zn(2+)]i under an acute exposure of nitric oxide (NO) donor sodium nitroprusside, SNP, in freshly isolated quiescent cardiomyocytes loaded with FluoZin-3. Resting level of free Zn(2+) is significantly higher in cardiomyocytes under hyperglycemic condition compared to those of the controls, which seems to be associated with increased level of RNS production in hyperglycemic cardiomyocytes. Western blot analysis showed that Zn-pyrithione exposure induced a marked decrease in the activity of protein phosphatase 1 and 2A, member of macromolecular protein complex of cardiac ryanodine receptors, RyR2, besides significant increase in the phosphorylation level of extracellular signal-regulated kinase1/2 as a concentration-dependent manner. Overall, the present data demonstrated that there is a cross-relationship between increased RNS production and increased [Zn(2+)]i level in cardiomyocytes under pathological

  11. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas.

    PubMed

    Liu, Peifeng; Sun, Yanming; Wang, Qi; Sun, Ying; Li, He; Duan, Yourong

    2014-01-01

    The lysosomal escape of nanoparticles is crucial to enhancing their delivery and therapeutic efficiency. Here, we report the cellular uptake mechanism, lysosomal escape, and organelle morphology effect of monomethoxy (polyethylene glycol)-poly (D,L-lactide-co-glycolide)-poly (L-lysine) (mPEG-PLGA-PLL, PEAL) and 4-O-beta-D-Galactopyranosyl-D-gluconic acid (Gal)-modified PEAL (PEAL-Gal) for intracellular delivery to HepG2, Huh7, and PLC hepatoma cells. These results indicate that PEAL is taken up by clathrin-mediated endocytosis of HepG2, Huh7 and PLC cells. For PEAL-Gal, sialic acid receptor-mediated endocytosis and clathrin-mediated endocytosis are the primary uptake pathways in HepG2 cells, respectively, whereas PEAL-Gal is internalized by sag vesicle- and clathrin-mediated endocytosis in Huh7 cells. In the case of PLC cells, clathrin-mediated endocytosis and sialic acid receptor play a primary role in the uptake of PEAL-Gal. TEM results verify that PEAL and PEAL-Gal lead to a different influence on organelle morphology of HepG2, Huh7 and PLC cells. In addition, the results of intracellular distribution reveal that PEAL and PEAL-Gal are less entrapped in the lysosomes of HepG2 and Huh7 cells, demonstrating that they effectively escape from lysosomes and contribute to enhance the efficiency of intracellular delivery and tumor therapy. In vivo tumor targeting image results demonstrate that PEAL-Gal specifically delivers Rhodamine B (Rb) to the tumor tissue of mice with HepG2, Huh7, and PLC hepatomas and remains at a high concentration in tumor tissue until 48 h, properties that will greatly contribute to enhanced antitumor efficiency.

  12. Thrombolytic Therapy for Right-Sided Mechanical Pulmonic and Tricuspid Valves: The Largest Survival Analysis to Date.

    PubMed

    Taherkhani, Maryam; Hashemi, Seyed Reza; Hekmat, Manouchehr; Safi, Morteza; Taherkhani, Adineh; Movahed, Mohammad Reza

    2015-12-01

    Data regarding thrombolytic treatment of right-sided mechanical valve thrombosis are almost nonexistent, and all current guidelines arise from very small case series. We retrospectively studied the in-hospital and long-term outcome data of a larger series of patients who had received, from September 2005 through June 2012, thrombolytic therapy for right-sided mechanical pulmonary valve or tricuspid valve thrombosis. We identified 16 patients aged 8-67 years who had undergone thrombolytic therapy for definite thrombotic mechanical valve obstruction in the tricuspid or pulmonary valve position (8 in each position). All study patients except one had subtherapeutic international normalized ratios. The 8 patients with pulmonary mechanical valve thrombosis had a 100% response rate to thrombolytic therapy, and their in-hospital survival rate was also 100%. The 8 patients with tricuspid mechanical valve thrombosis had a 75% response rate to thrombolytic therapy, with an in-hospital survival rate of 87.5%. The one-year survival rate for mechanical valve thrombosis treated with thrombolytic therapy (whether pulmonary or tricuspid) was 87.5%. On the basis of our data, we recommend that thrombolytic therapy remain the first-line therapy for right-sided mechanical valve thrombosis in adults or children-including children with complex congenital heart disease and patients with mechanical pulmonary valve thrombosis. Surgery should be reserved for patients in whom this treatment fails.

  13. Sulfide toxicity: Mechanical ventilation and hypotension determine survival rate and brain necrosis

    SciTech Connect

    Baldelli, R.J.; Green, F.H.Y.; Auer, R.N. )

    1993-09-01

    Occupational exposure to hydrogen sulfide is one of the leading causes of sudden death in the workplace, especially in the oil and gas industry. High-dose exposure causes immediate neurogenic apnea and death; lower doses cause [open quotes]knockdown[close quotes] (transient loss of consciousness, with apnea). Because permanent neurological sequelae have been reported, the authors sought to determine whether sulfide can directly kill central nervous system neurons. Ventilated and unventilated rats were studied to allow administration of higher doses of sulfide and to facilitate physiological monitoring. It was extremely difficult to produce cerebral necrosis with sulfide. Only one of eight surviving unventilated rats given high-dose sulfide (a dose that was lethal in [ge]50% of animals) showed cerebral necrosis. Mechanical ventilation shifted the dose that was lethal in 50% of the animals to 190 mg/kg from 94 mg/kg in the unventilated rats. Sulfide was found to potently depress blood pressure. Cerebral necrosis was absent in the ventilated rats (n = 11), except in one rat that showed profound and sustained hypotension to [le]35 Torr. Electroencephalogram activity ceased during exposure but recovered when the animals regained consciousness. The authors conclude that very-high-dose sulfide is incapable of producing cerebral necrosis by a direct histotoxic effect. 32 refs., 5 figs.

  14. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea.

    PubMed

    Storey, Kenneth B; Lant, Benjamin; Anozie, Obiajulu O; Storey, Janet M

    2013-08-01

    The gastropod mollusk, Littorina littorea L., is a common inhabitant of the intertidal zone along rocky coastlines of the north Atlantic. This species has well-developed anoxia tolerance and freeze tolerance and is extensively used as a model for exploring the biochemical adaptations that support these tolerances as well as for toxicological studies aimed at identifying effective biomarkers of aquatic pollution. This article highlights our current understanding of the molecular mechanisms involved in anaerobiosis and freezing survival of periwinkles, particularly with respect to anoxia-induced metabolic rate depression. Analysis of foot muscle and hepatopancreas metabolism includes anoxia-responsive changes in enzyme regulation, signal transduction, gene expression, post-transcriptional regulation of mRNA, control of translation, and cytoprotective strategies including chaperones and antioxidant defenses. New studies describe the regulation of glucose-6-phosphate dehydrogenase by reversible protein phosphorylation, the role of microRNAs in suppressing mRNA translation in the hypometabolic state, modulation of glutathione S-transferase isozyme patterns, and the regulation of the unfolded protein response. PMID:23507570

  15. The cancer glycocalyx mechanically primes integrin-mediated growth and survival.

    PubMed

    Paszek, Matthew J; DuFort, Christopher C; Rossier, Olivier; Bainer, Russell; Mouw, Janna K; Godula, Kamil; Hudak, Jason E; Lakins, Jonathon N; Wijekoon, Amanda C; Cassereau, Luke; Rubashkin, Matthew G; Magbanua, Mark J; Thorn, Kurt S; Davidson, Michael W; Rugo, Hope S; Park, John W; Hammer, Daniel A; Giannone, Grégory; Bertozzi, Carolyn R; Weaver, Valerie M

    2014-07-17

    Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function.

  16. The cancer glycocalyx mechanically primes integrin-mediated growth and survival

    PubMed Central

    Paszek, Matthew J.; DuFort, Christopher C.; Rossier, Olivier; Bainer, Russell; Mouw, Janna K.; Godula, Kamil; Hudak, Jason E.; Lakins, Jonathon N.; Wijekoon, Amanda C.; Cassereau, Luke; Rubashkin, Matthew G.; Magbanua, Mark J.; Thorn, Kurt S.; Davidson, Michael W.; Rugo, Hope S.; Park, John W.; Hammer, Daniel A.; Giannone, Grégory; Bertozzi, Carolyn R.; Weaver, Valerie M.

    2015-01-01

    Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function. PMID:25030168

  17. From mobility to crosstalk. A model of intracellular miRNAs motion may explain the RNAs interaction mechanism on the basis of target subcellular localization.

    PubMed

    Vasilescu, Catalin; Tanase, Mihai; Dragomir, Mihnea; Calin, George A

    2016-10-01

    MicroRNAs (miRNAs), 22 nucleotides long molecules with the function to reduce gene expression by inhibiting mRNA translation through partial complementary to one or more messenger RNA (mRNA) molecules. A single miRNA can reduce the expression levels of hundreds of genes and one mRNA can be a target for many miRNAs. Despite the study models used so far, miRNAs and mRNAs cannot be seen as acting in an isolated manner or even "in pairs". They most likely exert their complex actions through numerous overlapping interrelations. One of the models depicting interdependence of intracytoplasmic RNAs is the crosstalk model. It is based on a competition between several target mRNAs which are regulated by the same miRNA. In this paper, we will discuss the mobility mechanism of miRNAs, recently suggested by data from "single particle tracking" experiments. These data suggests that miRNA intracellular mobility may be of "intermittent active transport"(IAT) type. IAT is a mobility model composed by alternation of active transport (AT) and Brownian motion (BM). Based on a mathematical model, we concluded that, AT phase may explain the efficiency in reaching far targets and the BM phase may explain the competition. Furthermore, we suggest that the interaction between miRNAs and their targets depends on the concentration of the molecules, the affinity between the molecules and also on the intracellular localization of the molecules. Hence, the probability that a miRNA interacts with its target depends also on the distance to the target and the macromolecular crowding. Taken together, our data proposes an intracytoplasmic mobility mechanism for miRNA and shows that this model can partially explain the RNA crosstalk. PMID:27498347

  18. Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth

    NASA Astrophysics Data System (ADS)

    Islamov, R. R.; Mishagina, E. A.; Tyapkina, O. V.; Shajmardanova, G. F.; Eremeev, A. A.; Kozlovskaya, I. B.; Nikolskij, E. E.; Grigorjev, A. I.

    2011-05-01

    It was previously shown that different cell types in vivo and in vitro may die via apoptosis under weightlessness conditions in space as well as in simulated hypogravity on the Earth. We assessed survivability of spinal motoneurons of rats after 35-day antiorthostatic hind limb suspension. Following weight bearing, unloading the total protein content in lumbar spinal cord is dropped by 21%. The electrophysiological studies of m. gastrocnemius revealed an elevated motoneurons' reflex excitability and conduction disturbances in the sciatic nerve axons. The number of myelinated fibers in the ventral root of experimental animals was insignificantly increased by 35-day of antiorthostatic hind limb suspension, although the retrograde axonal transport was significantly decreased during the first week of simulated hypogravity. The results of the immunohistochemical assay with antibodies against proapoptotic protein caspase 9 and cytotoxicity marker neuron specific nitric oxide synthase (nNOS) and the TUNEL staining did not reveal any signs of apoptosis in motoneurons of suspended and control animals. To examine the possible adaptation mechanisms activated in motoneurons in response to simulated hypogravity we investigated immunoexpression of Hsp25 and Hsp70 in lumbar spinal cord of the rats after 35-day antiorthostatic hind limb suspension. Comparative analysis of the immunohistochemical reaction with anti-Hsp25 antibodies revealed differential staining of motoneurons in intact and experimental animals. The density of immunoprecipitate with anti-Hsp25 antibodies was substantially higher in motoneurons of the 35-day suspended than control rats and the more intensive precipitate in this reaction was observed in motoneuron neuritis. Quantitative analysis of Hsp25 expression demonstrated an increase in the Hsp25 level by 95% in experimental rats compared to the control. The immunoexpression of Hsp70 found no qualitative and quantitative differences in control and experimental

  19. Intracellular Organisms as Placental Invaders

    PubMed Central

    Vigliani, Marguerite B.; Bakardjiev, Anna I.

    2015-01-01

    In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications.

  20. Nitric oxide regulates cardiac intracellular Na⁺ and Ca²⁺ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism.

    PubMed

    Pavlovic, Davor; Hall, Andrew R; Kennington, Erika J; Aughton, Karen; Boguslavskyi, Andrii; Fuller, William; Despa, Sanda; Bers, Donald M; Shattock, Michael J

    2013-08-01

    In the heart, Na/K-ATPase regulates intracellular Na(+) and Ca(2+) (via NCX), thereby preventing Na(+) and Ca(2+) overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na(+) and Ca(2+) and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p<0.05, n=6) and all were abolished by Ca(2+)-chelation (EGTA 10mM) or NOS inhibition l-NAME (1mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50=3.8 μM; n=6/grp), via decrease in Km, in PLM(WT) but not PLM(KO) or PLM(3SA) myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na(+) (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM(3SA) mouse hearts but not PLM(WT) and PLM(KO). We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na(+) and Ca(2+) overload and arrhythmias. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".

  1. Insight concerning the mechanism of therapeutic ultrasound facilitating gene delivery: increasing cell membrane permeability or interfering with intracellular pathways?

    PubMed

    Duvshani-Eshet, Maayan; Haber, Tom; Machluf, Marcelle

    2014-02-01

    Nonviral gene delivery methods encounter major barriers in plasmid DNA (pDNA) trafficking toward the nucleus. The present study aims to understand the role and contribution of therapeutic ultrasound (TUS), if any, in pDNA trafficking in primary cells such as fibroblasts and cell lines (e.g., baby hamster kidney [BHK]) during the transfection process. Using compounds that alter the endocytic pathways and the cytoskeletal network, we show that after TUS application, pDNA trafficking in the cytoplasm is not mediated by endocytosis or by the cytoskeletal network. Transfection studies and confocal analyses showed that the actin fibers impeded TUS-mediated transfection in BHK cells, but not in fibroblasts. Flow cytometric analyses indicated that pDNA uptake by cells occurs primarily when the pDNA is added before and not after TUS application. Taken together, these results suggest that TUS by itself operates as a mechanical force driving the pDNA through the cell membrane, traversing the cytoplasmic network and into the nucleus.

  2. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.

    PubMed

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y

    2005-07-15

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  3. Exploring mechanisms of survival in rainbow trout selectively bred for increased resistance to Flavobacterium psychrophilum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A challenge for selective breeding programs is to better understand how artificial selection alters host pathophysiologic and immunologic response following pathogen exposure. The National Center for Cool and Cold Water Aquaculture is exploring this in rainbow trout bred for increased survival (ARS...

  4. Early palliative care and metastatic non-small cell lung cancer: potential mechanisms of prolonged survival.

    PubMed

    Irwin, Kelly E; Greer, Joseph A; Khatib, Jude; Temel, Jennifer S; Pirl, William F

    2013-02-01

    Patients with advanced cancer experience a significant burden of physical symptoms and psychological distress at the end of life, and many elect to receive aggressive cancer-directed therapy. The goal of palliative care is to relieve suffering and promote quality of life (QOL) for patients and families. Traditionally, both the public and medical community have conceptualized the need for patients to make a choice between pursuing curative therapy or receiving palliative care. However, practice guidelines from the World Health Organization and leadership from the oncology and palliative care communities advocate a different model of palliative care that is introduced from the point of diagnosis of life-threatening illness. Early palliative care has been shown to provide benefits in QOL, mood, and health care utilization. Additionally, preliminary research has suggested that in contrast to fears about palliative care hastening death, referral to palliative care earlier in the course of illness may have the potential to lengthen survival, particularly in patients with advanced nonsmall-cell lung cancer. This review summarizes the literature on potential survival benefits of palliative care and presents a model of how early integrated palliative care could potentially influence survival in patients with advanced cancer. PMID:23355404

  5. Interactions of Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN reveal a novel intracellular auxin transport mechanism.

    PubMed

    Liu, Fei; Zhang, Lan; Luo, Yanzhong; Xu, Miaoyun; Fan, Yunliu; Wang, Lei

    2016-10-01

    Little is known about the transport mechanism of intracellular auxin. Here, we report two vacuole-localized proteins, Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN (OsCLIP), that regulate intracellular auxin transport and homoeostasis. Overexpression of OsCOLE1 markedly increased the internode length and auxin content of the stem base, whereas these parameters were decreased in RNA interference (RNAi) plants. OsCOLE1 was localized on the tonoplast and preferentially expressed in mature tissues. We further identified its interacting protein OsCLIP, which was co-localized on the tonoplast. Protein-protein binding assays demonstrated that the N-terminus of OsCOLE1 directly interacted with OsCLIP in yeast cells and the rice protoplast. Furthermore, (3) H-indole-3-acetic acid ((3) H-IAA) transport assays revealed that OsCLIP transported IAA into yeast cells, which was promoted by OsCOLE1. The results indicate that OsCOLE1 affects rice development by regulating intracellular auxin transport through interaction with OsCLIP, which provides a new insight into the regulatory mechanism of intracellular transport of auxin and the roles of vacuoles in plant development. PMID:27265035

  6. Intracellular pH in human arterial smooth muscle. Regulation by Na+/H+ exchange and a novel 5-(N-ethyl-N-isopropyl)amiloride-sensitive Na(+)- and HCO3(-)-dependent mechanism

    SciTech Connect

    Neylon, C.B.; Little, P.J.; Cragoe, E.J. Jr.; Bobik, A. )

    1990-10-01

    We investigated in a physiological salt solution (PSS) containing HCO3- the intracellular pH (pHi) regulating mechanisms in smooth muscle cells cultured from human internal mammary arteries, using the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and 22Na+ influx rates. The recovery of pHi from an equivalent intracellular acidosis was more rapid when the cells were incubated in CO2/HCO3(-)-buffered PSS than in HEPES-buffered PSS. Recovery of pHi was dependent on extracellular Na+ (Km, 13.1 mM); however, it was not attenuated by 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), indicating the absence of SITS-sensitive HCO3(-)-dependent mechanisms. Recovery instead appeared mostly dependent on processes sensitive to 5-(N-ethyl-N-isopropyl)amiloride (EIPA), indicating the involvement of Na+/H+ exchange and a previously undescribed EIPA-sensitive Na(+)- and HCO3(-)-dependent mechanism. Differentiation between this HCO3(-)-dependent mechanism and Na+/H+ exchange was achieved after depletion of cellular ATP. Under these conditions, the NH4Cl-induced 22Na+ influx rate stimulated by intracellular acidosis was markedly attenuated in HEPES-buffered PSS but not in CO2/HCO3(-)-buffered PSS. EIPA also appeared to inhibit the two mechanisms differentially. In HEPES-buffered PSS containing 20 mM Na+, the EIPA inhibition curve for the intracellular acidosis-induced 22Na+ influx was monophasic (IC50, 39 nM), whereas in an identical CO2/HCO3(-)-buffered PSS, the inhibition curve exhibited biphasic characteristics (IC50, 37.3 nM and 312 microM). Taken together, the results indicate that Na+/H+ exchange and a previously undescribed EIPA-sensitive Na(+)- and HCO3(-)-dependent mechanism play an important role in regulating the pHi of human vascular smooth muscle.

  7. Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide

    PubMed Central

    Weisbrod, Robert M; Griswold, Mark C; Yaghoubi, Mohammad; Komalavilas, Padmini; Lincoln, Thomas M; Cohen, Richard A

    1998-01-01

    The role of cyclic GMP in the ability of nitric oxide (NO) to decrease intracellular free calcium concentration [Ca2+]i and divalent cation influx was studied in rabbit aortic smooth muscle cells in primary culture. In cells stimulated with angiotensin II (AII, 10−7 M), NO (10−10–10−6 M) increased cyclic GMP levels measured by radioimmunoassay and decreased [Ca2+]i and cation influx as indicated by fura-2 fluorimetry.Zaprinast (10−4 M), increased NO-stimulated levels of cyclic GMP by 3–20 fold. Although the phosphodiesterase inhibitor lowered the level of [Ca2+]i reached after administration of NO, the initial decreases in [Ca2+]i initiated by NO were not significantly different in magnitude or duration from those that occurred in the absence of zaprinast.The guanylyl cyclase inhibitor, H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (ODQ, 10−5 M), blocked cyclic GMP accumulation and activation of protein kinase G, as measured by back phosphorylation of the inositol trisphosphate receptor. ODQ and Rp-8-Br-cyclic GMPS, a protein kinase G inhibitor, decreased the effects of NO, 10−10–10−8 M, but the decrease in [Ca2+]i or cation influx caused by higher concentrations of NO (10−7–10−6 M) were unaffected. Relaxation of intact rabbit aorta rings to NO (10−7–10−5 M) also persisted in the presence of ODQ without a significant increase in cyclic GMP. Rp-8-Br-cyclic GMPS blocked the decreases in cation influx caused by a cell permeable cyclic GMP analog, but ODQ and/or the protein kinase G inhibitor had no significant effect on the decrease caused by NO.Although inhibitors of cyclic GMP, protein kinase G and phosphodiesterase can be shown to affect the decrease in [Ca2+]i and cation influx via protein kinase G, these studies indicate that when these mechanisms are blocked, cyclic GMP-independent mechanisms also contribute significantly to the decrease in [Ca2+]i and smooth muscle relaxation to NO. PMID:9886761

  8. Preservation of cell-survival mechanisms by the presenilin-1 K239N mutation may cause its milder clinical phenotype.

    PubMed

    Sarroca, Sara; Molina-Martínez, Patricia; Aresté, Cristina; Etzrodt, Martin; García de Frutos, Pablo; Gasa, Rosa; Antonell, Anna; Molinuevo, José Luís; Sánchez-Valle, Raquel; Saura, Carlos A; Lladó, Albert; Sanfeliu, Coral

    2016-10-01

    Presenilin 1 (PSEN1) mutations are the main cause of monogenic Alzheimer's disease. We studied the functional effects of the mutation K239N, which shows incomplete penetrance at the age of 65 years and compared it with the more aggressive mutation E120G. We engineered stable cell lines expressing human PSEN1 wild type or with K239N or E120G mutations. Both mutations induced dysfunction of γ-secretase in the processing of amyloid-β protein precursor, leading to an increase in the amyloid β42/amyloid β40 ratio. Analysis of homeostatic mechanisms showed that K239N induced lower basal and hydrogen peroxide induced intracellular levels of reactive oxygen species than E120G. Similarly, K239N induced lower vulnerability to apoptosis by hydrogen peroxide injury than E120G. Accordingly, the proapoptotic signaling pathways c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase maintained PSEN1-mediated negative regulation in K239N but not in E120G-bearing cells. Furthermore, the activation of the prosurvival signaling pathways mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt was lower in E120G-bearing cells. Therefore, preservation of mechanisms regulating cell responses independent of amyloid-β protein precursor processing may account for the milder phenotype induced by the PSEN1 K239N mutation.

  9. Preservation of cell-survival mechanisms by the presenilin-1 K239N mutation may cause its milder clinical phenotype.

    PubMed

    Sarroca, Sara; Molina-Martínez, Patricia; Aresté, Cristina; Etzrodt, Martin; García de Frutos, Pablo; Gasa, Rosa; Antonell, Anna; Molinuevo, José Luís; Sánchez-Valle, Raquel; Saura, Carlos A; Lladó, Albert; Sanfeliu, Coral

    2016-10-01

    Presenilin 1 (PSEN1) mutations are the main cause of monogenic Alzheimer's disease. We studied the functional effects of the mutation K239N, which shows incomplete penetrance at the age of 65 years and compared it with the more aggressive mutation E120G. We engineered stable cell lines expressing human PSEN1 wild type or with K239N or E120G mutations. Both mutations induced dysfunction of γ-secretase in the processing of amyloid-β protein precursor, leading to an increase in the amyloid β42/amyloid β40 ratio. Analysis of homeostatic mechanisms showed that K239N induced lower basal and hydrogen peroxide induced intracellular levels of reactive oxygen species than E120G. Similarly, K239N induced lower vulnerability to apoptosis by hydrogen peroxide injury than E120G. Accordingly, the proapoptotic signaling pathways c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase maintained PSEN1-mediated negative regulation in K239N but not in E120G-bearing cells. Furthermore, the activation of the prosurvival signaling pathways mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt was lower in E120G-bearing cells. Therefore, preservation of mechanisms regulating cell responses independent of amyloid-β protein precursor processing may account for the milder phenotype induced by the PSEN1 K239N mutation. PMID:27498054

  10. Processing and presentation of antigens derived from intracellular protozoan parasites

    PubMed Central

    Goldszmid, Romina S.; Sher, Alan

    2010-01-01

    Summary Control of parasitic protozoan infections requires the generation of efficient innate and adaptive immune responses, and in most cases both CD8 and CD4 T cells are necessary for host survival. Since intracellular protozoa remodel the vacuolar compartments in which they reside, it is not obvious how their antigens enter the MHC class I and class II pathways. Studies using genetically engineered parasites have shown that host cell targeting, intracellular compartmentalization, subcellular localization of antigen within the parasite and mechanism of invasion are important factors determining the presentation pathway utilized. The recent identification of endogenous parasite-derived CD8 T cell epitopes have helped confirm these concepts as well as provided new information on the processing pathways and the impact of parasite-stage specific antigen expression on the repertoire of responding T cells stimulated by infection. Elucidating the mechanisms governing antigen processing and presentation of intracellular protozoa may provide important insights needed for the rational design of effective vaccines. PMID:20153156

  11. The bond survival time variation of polymorphic amyloid fibrils in the mechanical insight

    NASA Astrophysics Data System (ADS)

    Lee, Myeongsang; Baek, Inchul; Chang, Hyun Joon; Yoon, Gwonchan; Na, Sungsoo

    2014-04-01

    The structure-property relationships of biological materials such as amyloid fibrils are important to developing therapeutic strategies for amyloid-related diseases. The mechanical characterization of biological materials can provide insight into such relationships. In this study, polymorphic human islet polypeptide (hIAPP) fibrils were constructed with molecular modeling, and a constant-force bending simulation was performed to characterize the different mechanical behaviors of polymorphic hIAPP protofibrils. Our simulation results showed that, owing to their different intramolecular interactions, the fracture times of polymorphic hIAPP protofibrils depend on polymorphic structures.

  12. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  13. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  14. Inhibition Mechanism of the Intracellular Transporter Ca2+-Pump from Sarco-Endoplasmic Reticulum by the Antitumor Agent Dimethyl-Celecoxib

    PubMed Central

    Cortés-Castell, Ernesto; Gil-Guillén, Vicente; Fernández-Belda, Francisco

    2014-01-01

    Dimethyl-celecoxib is a celecoxib analog that lacks the capacity as cyclo-oxygenase-2 inhibitor and therefore the life-threatening effects but retains the antineoplastic properties. The action mechanism at the molecular level is unclear. Our in vitro assays using a sarcoplasmic reticulum preparation from rabbit skeletal muscle demonstrate that dimethyl-celecoxib inhibits Ca2+-ATPase activity and ATP-dependent Ca2+ transport in a concentration-dependent manner. Celecoxib was a more potent inhibitor of Ca2+-ATPase activity than dimethyl-celecoxib, as deduced from the half-maximum effect but dimethyl-celecoxib exhibited higher inhibition potency when Ca2+ transport was evaluated. Since Ca2+ transport was more sensitive to inhibition than Ca2+-ATPase activity the drugs under study caused Ca2+/Pi uncoupling. Dimethyl-celecoxib provoked greater uncoupling and the effect was dependent on drug concentration but independent of Ca2+-pump functioning. Dimethyl-celecoxib prevented Ca2+ binding by stabilizing the inactive Ca2+-free conformation of the pump. The effect on the kinetics of phosphoenzyme accumulation and the dependence of the phosphoenzyme level on dimethyl-celecoxib concentration were independent of whether or not the Ca2+–pump was exposed to the drug in the presence of Ca2+ before phosphorylation. This provided evidence of non-preferential interaction with the Ca2+-free conformation. Likewise, the decreased phosphoenzyme level in the presence of dimethyl-celecoxib that was partially relieved by increasing Ca2+ was consistent with the mentioned effect on Ca2+ binding. The kinetics of phosphoenzyme decomposition under turnover conditions was not altered by dimethyl-celecoxib. The dual effect of the drug involves Ca2+-pump inhibition and membrane permeabilization activity. The reported data can explain the cytotoxic and anti-proliferative effects that have been attributed to the celecoxib analog. Ligand docking simulation predicts interaction of celecoxib and

  15. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation.

    PubMed

    Bar-Eyal, Leeat; Eisenberg, Ido; Faust, Adam; Raanan, Hagai; Nevo, Reinat; Rappaport, Fabrice; Krieger-Liszkay, Anja; Sétif, Pierre; Thurotte, Adrien; Reich, Ziv; Kaplan, Aaron; Ohad, Itzhak; Paltiel, Yossi; Keren, Nir

    2015-10-01

    Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency.

  16. A general mechanism for intracellular toxicity of metal-containing nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01234h Click here for additional data file.

    PubMed Central

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto

    2014-01-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment – where particles are abundantly internalized – is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a “lysosome-enhanced Trojan horse effect” since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. PMID:24842463

  17. Autophagy as a Survival Mechanism for Squamous Cell Carcinoma Cells in Endonuclease G-Mediated Apoptosis

    PubMed Central

    Masui, Atsushi; Hamada, Masakazu; Kameyama, Hiroyasu; Wakabayashi, Ken; Takasu, Ayako; Imai, Tomoaki; Iwai, Soichi; Yura, Yoshiaki

    2016-01-01

    Safingol, L- threo-dihydrosphingosine, induces cell death in human oral squamous cell carcinoma (SCC) cells through an endonuclease G (endoG) -mediated pathway. We herein determined whether safingol induced apoptosis and autophagy in oral SCC cells. Safingol induced apoptotic cell death in oral SCC cells in a dose-dependent manner. In safingol-treated cells, microtubule-associated protein 1 light chain 3 (LC3)-I was changed to LC3-II and the cytoplasmic expression of LC3, amount of acidic vesicular organelles (AVOs) stained by acridine orange and autophagic vacuoles were increased, indicating the occurrence of autophagy. An inhibitor of autophagy, 3-methyladenine (3-MA), enhanced the suppressive effects of safingol on cell viability, and this was accompanied by an increase in the number of apoptotic cells and extent of nuclear fragmentation. The nuclear translocation of endoG was minimal at a low concentration of safingol, but markedly increased when combined with 3-MA. The suppressive effects of safingol and 3-MA on cell viability were reduced in endoG siRNA- transfected cells. The scavenging of reactive oxygen species (ROS) prevented cell death induced by the combinational treatment, whereas a pretreatment with a pan-caspase inhibitor z-VAD-fmk did not. These results indicated that safingol induced apoptosis and autophagy in SCC cells and that the suppression of autophagy by 3-MA enhanced apoptosis. Autophagy supports cell survival, but not cell death in the SCC cell system in which apoptosis occurs in an endoG-mediated manner. PMID:27658240

  18. Delivery of host cell-directed therapeutics for intracellular pathogen clearance

    PubMed Central

    Collier, Michael A.; Gallovic, Matthew D.; Peine, Kevin J.; Duong, Anthony D.; Bachelder, Eric M.; Gunn, John S.; Schlesinger, Larry S.; Ainslie, Kristy M.

    2014-01-01

    Intracellular pathogens present a major health risk because of their innate ability to evade clearance. Their location within host cells and ability to react to the host environment by mutation or transcriptional changes often enables survival mechanisms to resist standard therapies. Host-directed drugs do not target the pathogen, minimizing the potential development of drug resistance; however, they can be difficult to deliver efficiently to intracellular sites. Vehicle delivery of host-mediated response drugs not only improves drug distribution and toxicity profiles, but can reduce the total amount of drug necessary to clear infection. In this article, we will review some host-directed drugs and current drug delivery techniques that can be used to efficiently clear intracellular infections. PMID:24134600

  19. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    NASA Astrophysics Data System (ADS)

    Zrelli, K.; Galy, O.; Latour-Lambert, P.; Kirwan, L.; Ghigo, J. M.; Beloin, C.; Henry, N.

    2013-12-01

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms.

  20. The relationship of freeze tolerance with intracellular compounds in baker's yeasts.

    PubMed

    Shi, Xiaojian; Miao, Yelian; Chen, Jie Yu; Chen, Jun; Li, Wenli; He, Xun; Wang, Jining

    2014-03-01

    Freeze-tolerant baker's yeasts are required for the processing of frozen doughs. The present study was carried out to investigate the cell survival rate after frozen storage and the change of fermentability in dough due to frozen storage, and to discuss quantitatively the relationship of freeze tolerance with intracellular trehalose, amino acids, and glycerol, using six types of baker's yeasts as the test materials. The experimental results showed that the fermentability of yeast cells in frozen dough was strongly correlated with the cell survival rate. The baker's yeast with a higher level of cell survival rate had a larger increase in the total intracellular compound content after frozen storage, and the cell survival rate increased linearly with increasing total intracellular compound content in frozen yeast cells. Trehalose was a primary compound affecting freeze tolerance, followed by glutamic acid, arginine, proline, asparagic acid, and glycerol. The basic information provided by the present study is useful for exploring the freeze-tolerance mechanisms of baker's yeast cells, breeding better freeze-tolerant baker's yeast strains, and developing more effective cryoprotectants. PMID:24482281

  1. Harboring oil-degrading bacteria: a potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs.

    PubMed

    Al-Dahash, Lulwa M; Mahmoud, Huda M

    2013-07-30

    Certain coral reef systems north of the Arabian Gulf are characterized by corals with a unique ability to thrive and flourish despite the presence of crude oil continuously seeping from natural cracks in the seabed. Harboring oil-degrading bacteria as a part of the holobiont has been investigated as a potential mechanism of adaptation and survival for corals in such systems. The use of conventional and molecular techniques verified a predominance of bacteria affiliated with Gammaproteobacteria, Actinobacteria and Firmicutes in the mucus and tissues of Acropora clathrata and Porites compressa. These bacteria were capable of degrading a wide range of aliphatic (C9-C28) aromatic hydrocarbons (Phenanthrene, Biphenyl, Naphthalene) and crude oil. In addition, microcosms supplied with coral samples and various concentrations of crude oil shifted their bacterial population toward the more advantageous types of oil degraders as oil concentrations increased.

  2. Intracellular mechanisms involved in copper-gonadotropin-releasing hormone (Cu-GnRH) complex-induced cAMP/PKA signaling in female rat anterior pituitary cells in vitro.

    PubMed

    Gajewska, Alina; Zielinska-Gorska, Marlena; Wolinska-Witort, Ewa; Siawrys, Gabriela; Baran, Marta; Kotarba, Grzegorz; Biernacka, Katarzyna

    2016-01-01

    The copper-gonadotropin-releasing hormone molecule (Cu-GnRH) is a GnRH analog, which preserves its amino acid sequence, but which contains a Cu(2+) ion stably bound to the nitrogen atoms including that of the imidazole ring of Histidine(2). A previous report indicated that Cu-GnRH was able to activate cAMP/PKA signaling in anterior pituitary cells in vitro, but raised the question of which intracellular mechanism(s) mediated the Cu-GnRH-induced cAMP synthesis in gonadotropes. To investigate this mechanism, in the present study, female rat anterior pituitary cells in vitro were pretreated with 0.1 μM antide, a GnRH antagonist; 0.1 μM cetrorelix, a GnRH receptor antagonist; 0.1 μM PACAP6-38, a PAC-1 receptor antagonist; 2 μM GF109203X, a protein kinase C inhibitor; 50 mM PMA, a protein kinase C activator; the protein kinase A inhibitors H89 (30 μM) and KT5720 (60 nM); factors affecting intracellular calcium activity: 2.5 mM EGTA; 2 μM thapsigargin; 5 μM A23187, a Ca(2+) ionophore; or 10 μg/ml cycloheximide, a protein synthesis inhibitor. After one of the above pretreatments, cells were incubated in the presence of 0.1 μM Cu-GnRH for 0.5, 1, and 3 h. Radioimmunoassay analysis of cAMP confirmed the functional link between Cu-GnRH stimulation and cAMP/PKA signal transduction in rat anterior pituitary cells, demonstrating increased intracellular cAMP, which was reduced in the presence of specific PKA inhibitors. The stimulatory effect of Cu-GnRH on cAMP production was partly dependent on GnRH receptor activation. In addition, an indirect and Ca(2+)-dependent mechanism might be involved in intracellular adenylate cyclase stimulation. Neither activation of protein kinase C nor new protein synthesis was involved in the Cu-GnRH-induced increase of cAMP in the rat anterior pituitary primary cultures. Presented data indicate that conformational changes of GnRH molecule resulting from cooper ion coordination affect specific pharmacological properties of Cu

  3. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    SciTech Connect

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  4. Long-term cumulative survival and mechanical complications of single-tooth Ankylos Implants: focus on the abutment neck fractures

    PubMed Central

    2015-01-01

    PURPOSE To evaluate the cumulative survival rate (CSR) and mechanical complications of single-tooth Ankylos® implants. MATERIALS AND METHODS This was a retrospective clinical study that analyzed 450 single Ankylos® implants installed in 275 patients between December 2005 and December 2012. The main outcomes were survival results CSR and implant failure) and mechanical complications (screw loosening, fracture, and cumulative fracture rate [CFR]). The main outcomes were analyzed according to age, sex, implant length or diameter, bone graft, arch, and position. RESULTS The 8-year CSR was 96.9%. Thirteen (2.9%) implants failed because of early osseointegration failure in 3, marginal bone loss in 6, and abutment fracture in 4. Screw loosening occurred in 10 implants (2.2%), and 10 abutment fractures occurred. All abutment fractures were located in the neck, and concurrent screw fractures were observed. The CSR and rate of screw loosening did not differ significantly according to factors. The CFR was higher in middle-aged patients (5.3% vs 0.0% in younger and older patients); for teeth in a molar position (5.8% vs 0.0% for premolar or 1.1% for anterior position); and for larger-diameter implants (4.5% for 4.5 mm and 6.7% for 5.5 mm diameter vs 0.5% for 3.5 mm diameter) (all P<.05). CONCLUSION The Ankylos® implant is suitable for single-tooth restoration in Koreans. However, relatively frequent abutment fractures (2.2%) were observed and some fractures resulted in implant failures. Middle-aged patients, the molar position, and a large implant diameter were associated with a high incidence of abutment fracture. PMID:26813443

  5. A Compete-and-Survive Mechanism Explains the Single FtsZ-Ring Formation

    NASA Astrophysics Data System (ADS)

    Lan, Ganhui; Xiong, Li-Ping

    2015-03-01

    Cytokinesis is a critical step in cell reproduction. In bacterial cells, this process is mediated by the cytoskeletal Z ring which is assembled from FtsZ filaments that are ``anchored'' to the cell membrane through ZipA/FtsA molecules. Fluorescence Recovery after Photobleaching experiments have shown that the Z ring is highly dynamic, with recovery half time of 8 ~ 30 seconds, yet has a rather persistent overall structure. But it is unclear how a single narrow dynamic Z ring emerges from a big pool of cytoplasmic FtsZ molecules. Here, we developed a rule-based molecular model with FtsZ and ZipA/FtsA molecules, by explicitly considering the elementary assembling events of molecules and their diffusion. Our model can not only efficiently reproduce the Z ring with experimentally observed statistical properties, but provide a convenient way to combine biochemical dynamic and physical assembling processes within the same spatiotemporal modeling framework. In agreement with experiments, we showed that the spontaneous self-assembling process relies on the molecular ``stoichiometry'': either high or low FtsZ to ZipA/FtsA ratios would result in multiple Z rings or aggregated bundles. Our in silico FRAP experiment further yields a recovery half time comparable to experimental results. These results indicate that the rapid turnover dynamics prevents the FtsZ molecules from being sequestered by small FtsZ bundles dispersed over the membrane, allowing single Z ring to emerge and mature. This dynamic colocalization mechanism provides cells a simple way for spatial regulation.

  6. Intracellular mechanism of the action of inhibin on the secretion of follicular stimulating hormone and of luteinizing hormone induced by LH-RH in vitro

    NASA Technical Reports Server (NTRS)

    Lecomte-Yerna, M. J.; Hazee-Hagelstein, M. T.; Charlet-Renard, C.; Franchimont, P.

    1982-01-01

    The FSH secretion-inhibiting action of inhibin in vitro under basal conditions and also in the presence of LH-RH is suppressed by the addition of MIX, a phosphodiesterase inhibitor. In the presence of LH-RH, inhibin reduces significantly the intracellular level of cAMP in isolated pituitary cells. In contrast, the simultaneous addition of MIX and inhibin raises the cAMP level, and this stimulation is comparable to the increase observed when MIX is added alone. These observations suggest that one mode of action of inhibin could be mediated by a reduction in cAMP within the pituitary gonadotropic cell.

  7. TRIM21-dependent intracellular antibody neutralization of virus infection.

    PubMed

    McEwan, William A; James, Leo C

    2015-01-01

    The ability of antibodies to prevent viral infection has long been recognized. In vitro neutralization assays, which take place in the absence of professional immune effector mechanisms, have demonstrated that the process of neutralization can occur by a variety of molecular mechanisms. Most known mechanisms involve the blocking of an event essential for infection, for instance, the steric inhibition of attachment to entry receptors. As such, neutralization is often thought of as a passive process that can occur without the need for host effector machinery. In contrast to this view, it has recently been demonstrated that neutralization can depend on the widely expressed cytosolic Fc binding protein TRIM21. This unique and novel Ig receptor directs the ubiquitin and proteasome-dependent degradation of intracellular antibody-bound viral particles and prevents infection. It has been further demonstrated that detection of cytosolic antibody by TRIM21 activates inflammatory signaling pathways and promotes the production of cytokines and chemokines. Studies in a TRIM21-null mouse demonstrate the importance of these activities: homozygous knockouts suffer fatal viral infection where wild-type mice survive. Though there is much to be learned about the role of TRIM21 in immunity, it is clear that there is a hitherto unappreciated role for antibodies in the intracellular environment.

  8. Glucagon-like peptide-2 intracellularly stimulates eNOS phosphorylation and specifically induces submucosal arteriole vasodilation via a sheer stress-independent, local neural mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract, including enhancing mucosal cell survival and proliferation, mucosal blood flow, luminal nutrient uptake, and suppressing gastric motility and secretion. We have shown th...

  9. An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide 'stapling' technology.

    PubMed

    He, Y; Chen, D; Zheng, W

    2015-11-12

    Specific protein-protein interactions (PPIs) constitute a key underlying mechanism for the presence of a multitude of intracellular signaling pathways, which are essential for the survival of normal and cancer cells. Specific molecular blockers for a crucial PPI would therefore be invaluable tools for an enhanced functional interrogation of the signaling pathway harboring this particular PPI. On the other hand, if a particular PPI is essential for the survival of cancer cells but is absent in or dispensable for the survival of normal cells, its specific molecular blockers could potentially be developed into effective anticancer therapeutics. Due to the flat and extended PPI interface, it would be conceivably difficult for small molecules to achieve an effective blockade, a problem which could be potentially circumvented with peptides or proteins. However, the well-documented proteolytic instability and cellular impermeability of peptides and proteins in general would make their developing into effective intracellular PPI blockers quite a challenge. With the advent of the peptide 'stapling' technology which was demonstrated to be able to stabilize the α-helical conformation of a peptide via bridging two neighboring amino-acid side chains with a 'molecular staple', a linear parent peptide could be transformed into a stronger PPI blocker with enhanced proteolytic stability and cellular permeability. This review will furnish an account on the peptide 'stapling' technology and its exploitation in efforts to achieve an enhanced functional interrogation or manipulation of intracellular signaling pathways especially those that are cancer relevant.

  10. The survival of Coxiella burnetii in soils

    NASA Astrophysics Data System (ADS)

    Evstigneeva, A. S.; Ul'Yanova, T. Yu.; Tarasevich, I. V.

    2007-05-01

    Coxiella burnetii is a pathogen of Q-fever—a widespread zoonosis. The effective adaptation of C. burnetii to intracellular existence is in contrast with its ability to survive in the environment outside the host cells and its resistance to chemical and physical agents. Its mechanism of survival remains unknown. However, its survival appears to be related to the developmental cycle of the microorganism itself, i.e., to the formation of its dormant forms. The survival of Coxiella burnetii was studied for the first time. The pathogenic microorganism was inoculated into different types of soil and cultivated under different temperatures. The survival of the pathogen was verified using a model with laboratory animals (mice). Viable C. burnetii were found in the soil even 20 days after their inoculation. The relationship between the organic carbon content in the soils and the survival of C. burnetii was revealed. Thus, the results obtained were the first to demonstrate that the soil may serve as a reservoir for the preservation and further spreading of the Q-fever pathogen in the environment, on the one hand, and reduce the risk of epidemics, on the other.

  11. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  12. Surviving the crisis: Adaptive wisdom, coping mechanisms and local responses to avian influenza threats in Haining, China.

    PubMed

    Zhang, Letian; Pan, Tianshu

    2008-04-01

    Based on ethnographic research conducted in the summer of 2006, this paper examines local responses to the imminent threat of avian flu in Haining County of Zhejiang Province. During our field investigation, we conducted interviews with officials from local medical institutions (including the hospitals, the animal husbandry and veterinary station, and health clinics), to bureaus of public health and agro-economy. We also visited chicken farms, restaurants and farming households. We address the following factors that commonly structured the perceptions and actions of different social actors in the area of study: The changing mode of information-sharing and communication practices in the local communities; the official drive to professionalize the emergency response management system in the county; and the coping mechanisms that helped the villagers and town residents to weather the storm of avian flu. Our field research suggests that collective survival consciousness was translated into a spirit of voluntarism during the crisis. One important practical lesson we have learned from this study is that the adaptive wisdom embedded in local memories demonstrated its operational worth as a resourceful knowledge base for ordinary farmers to deal with food shortage, famine, plague and future pandemics. PMID:27268990

  13. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  14. Quinolone-resistance in Salmonella is associated with decreased mRNA expression of virulence genes invA and avrA, growth and intracellular invasion and survival.

    PubMed

    Wang, Yu-Ping; Li, Lin; Shen, Jian-Zhong; Yang, Fu-Jiang; Wu, Yong-Ning

    2009-02-01

    A variety of environmental factors, such as oxygen, pH, osmolarity and antimicrobial agents, modulate the expression of Salmonella pathogenicity islands (SPI) genes. This study investigated SPI-1 gene expression and the pathogenicity of quinolone-resistant Salmonella. mRNA expression levels of the invA and avrA genes, located in SPI-1, in quinolone-susceptible and quinolone-resistant Salmonella strains were determined using real-time fluorescent quantitative reverse transcription-polymerase chain reaction (RT-PCR). Twenty-five quinolone-resistant Salmonella mutants were derived from quinolone-susceptible strains by multiple-passage selection through increasing concentrations of ciprofloxacin in vitro, while an additional 15 strains were quinolone-resistant Salmonella clinical isolates. Sequence analysis showed no gene deletion or point mutations of nine SPI-1 genes (including invA and avrA) occurred in either the selected or clinical quinolone-resistant strains, while a single gyrA point mutation (S83F) was observed in all 40 quinolone-resistant strains. The mRNA expression levels of invA and avrA were significantly decreased (P<0.005) in quinolone-resistant strains (clinically acquired or experimentally selected in vitro), compared to the quinolone-susceptible strains. The resistant strains also had a slower growth rate combined with decreased epithelial cell invasion and intracellular replication in epithelial cells and macrophages. The results suggest that quinolone-resistance may be associated with lower virulence and pathogenicity than in quinolone-susceptible strains.

  15. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons.

    PubMed

    Suto, Kaori; Urabe, Ken; Naruse, Kouji; Uchida, Kentaro; Matsuura, Terumasa; Mikuni-Takagaki, Yuko; Suto, Mitsutoshi; Nemoto, Noriko; Kamiya, Kentaro; Itoman, Moritoshi

    2012-03-01

    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze-thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze-thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze-thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze-thaw cycles. In patella tendons, the ultimate stress, Young's modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze-thaw cycles. In conclusion, we identified that cells surviving after freeze-thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze-thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity.

  16. Effect of ionizing radiation dose, temperature, and atmosphere on the survival of Salmonella typhimurium in sterile, mechanically deboned chicken meat

    SciTech Connect

    Thayer, D.W.; Boyd, G. )

    1991-02-01

    The response to gamma radiation (0 to 3.60 kGy; 100 krad = 1 kGy) of Salmonella typhimurium was tested in otherwise sterile, mechanically deboned chicken meat (MDCM) in the absence of competing microflora. Response was determined at temperatures of -20 to +20 C and when the MDCM was packaged in vacuum or in the presence of air. A central composite response-surface design was used to test the response of the pathogen to the treatments in a single experiment. Predictive equations were developed from the analyses of variances of the resulting data. The accuracy of each predictive equation was tested by further studies of the effects of gamma radiation on S. typhimurium in the presence or absence of air at -20, 0, and +20 C. All data were then analyzed to refine the predictive equations further. Both the original and the refined equations adequately predicted the response of S. typhimurium in MDCM to gamma radiation doses up to 3.60 kGy in the presence of air or in vacuo. Gamma irradiation was significantly more lethal for S. typhimurium in the presence of air and at higher temperatures. The final equations predict a reduction in the number of surviving Salmonella in MDCM irradiated to 1.50 kGy at -20 C of 2.53 logs in air or 2.12 logs if irradiated in vacuum. If the contaminated MDCM were to receive a dose of 3.0 kGy at -20 C in air, the number of Salmonella would be decreased by 4.78 logs, and if irradiated in vacuum, by 4.29 logs.

  17. Intracellular chromium reduction.

    PubMed

    Arslan, P; Beltrame, M; Tomasi, A

    1987-10-22

    Two steps are involved in the uptake of Cr(VI): (1) the diffusion of the anion CrO4(2-) through a facilitated transport system, presumably the non-specific anion carrier and (2) the intracellular reduction of Cr(VI) to Cr(III). The intracellular reduction of Cr(VI), keeping the cytoplasmic concentration of Cr(VI) low, facilitates accumulation of chromate from extracellular medium into the cell. In the present paper, a direct demonstration of intracellular chromium reduction is provided by means of electron paramagnetic (spin) resonance (EPR) spectroscopy. Incubation of metabolically active rat thymocytes with chromate originates a signal which can be attributed to a paramagnetic species of chromium, Cr(V) or Cr(III). The EPR signal is originated by intracellular reduction of chromium since: (1) it is observed only when cells are incubated with chromate, (2) it is present even after extensive washings of the cells in a chromium-free medium; (3) it is abolished when cells are incubated with drugs able to reduce the glutathione pool, i.e., diethylmaleate or phorone; and (4) it is abolished when cells are incubated in the presence of a specific inhibitor of the anion carrier, 4-acetamido-4'-isothiocyanatostilbene-2-2'-disulfonic acid. PMID:2820507

  18. Packaging of live Legionella pneumophila into pellets expelled by Tetrahymena spp. does not require bacterial replication and depends on a Dot/Icm-mediated survival mechanism.

    PubMed

    Berk, Sharon G; Faulkner, Gary; Garduño, Elizabeth; Joy, Mark C; Ortiz-Jimenez, Marco A; Garduño, Rafael A

    2008-04-01

    The freshwater ciliate Tetrahymena sp. efficiently ingested, but poorly digested, virulent strains of the gram-negative intracellular pathogen Legionella pneumophila. Ciliates expelled live legionellae packaged in free spherical pellets. The ingested legionellae showed no ultrastructural indicators of cell division either within intracellular food vacuoles or in the expelled pellets, while the number of CFU consistently decreased as a function of time postinoculation, suggesting a lack of L. pneumophila replication inside Tetrahymena. Pulse-chase feeding experiments with fluorescent L. pneumophila and Escherichia coli indicated that actively feeding ciliates maintain a rapid and steady turnover of food vacuoles, so that the intravacuolar residence of the ingested bacteria was as short as 1 to 2 h. L. pneumophila mutants with a defective Dot/Icm virulence system were efficiently digested by Tetrahymena sp. In contrast to pellets of virulent L. pneumophila, the pellets produced by ciliates feeding on dot mutants contained very few bacterial cells but abundant membrane whorls. The whorls became labeled with a specific antibody against L. pneumophila OmpS, indicating that they were outer membrane remnants of digested legionellae. Ciliates that fed on genetically complemented dot mutants produced numerous pellets containing live legionellae, establishing the importance of the Dot/Icm system to resist digestion. We thus concluded that production of pellets containing live virulent L. pneumophila depends on bacterial survival (mediated by the Dot/Icm system) and occurs in the absence of bacterial replication. Pellets of virulent L. pneumophila may contribute to the transmission of Legionnaires' disease, an issue currently under investigation. PMID:18245233

  19. Intracellular trafficking of nucleic acids.

    PubMed

    Zhou, Rui; Geiger, R Christopher; Dean, David A

    2004-11-01

    Until recently, the attention of most researchers has focused on the first and last steps of gene transfer, namely delivery to the cell and transcription, in order to optimise transfection and gene therapy. However, over the past few years, researchers have realised that the intracellular trafficking of plasmids is more than just a "black box" and is actually one of the major barriers to effective gene delivery. After entering the cytoplasm, following direct delivery or endocytosis, plasmids or other vectors must travel relatively long distances through the mesh of cytoskeletal networks before reaching the nuclear envelope. Once at the nuclear envelope, the DNA must either wait until cell division, or be specifically transported through the nuclear pore complex, in order to reach the nucleoplasm where it can be transcribed. This review focuses on recent developments in the understanding of these intracellular trafficking events as they relate to gene delivery. Hopefully, by continuing to unravel the mechanisms by which plasmids and other gene delivery vectors move throughout the cell, and by understanding the cell biology of gene transfer, superior methods of transfection and gene therapy can be developed.

  20. Intracellular transduction using cell-penetrating peptides.

    PubMed

    Sawant, Rupa; Torchilin, Vladimir

    2010-04-01

    Cell penetrating peptides (CPPs), TATp, in particular, has been used widely for intracellular delivery of various agents ranging from small molecules to proteins, peptides, range of pharmaceutical nanocarriers and imaging agents. This review highlights the mechanisms of CPP-mediated delivery and summarizes numerous examples illustrating the potential of CPPs in the fields of biology and medicine. PMID:20237640

  1. Effects of changes in intracellular iron pool on AlkB-dependent and AlkB-independent mechanisms protecting E.coli cells against mutagenic action of alkylating agent.

    PubMed

    Sikora, Anna; Maciejewska, Agnieszka M; Poznański, Jarosław; Pilżys, Tomasz; Marcinkowski, Michał; Dylewska, Małgorzata; Piwowarski, Jan; Jakubczak, Wioletta; Pawlak, Katarzyna; Grzesiuk, Elżbieta

    2015-08-01

    An Escherichia coli hemH mutant accumulates protoporphyrin IX, causing photosensitivity of cells to visible light. Here, we have shown that intracellular free iron in hemH mutants is double that observed in hemH(+) strain. The aim of this study was to recognize the influence of this increased free iron concentration on AlkB-directed repair of alkylated DNA by analyzing survival and argE3 → Arg(+) reversion induction after λ>320 nm light irradiation and MMS-treatment in E. coli AB1157 hemH and alkB mutants. E.coli AlkB dioxygenase constitutes a direct single-protein repair system using non-hem Fe(II) and cofactors 2-oxoglutarate (2OG) and oxygen (O2) to initiate oxidative dealkylation of DNA/RNA bases. We have established that the frequency of MMS-induced Arg(+) revertants in AB1157 alkB(+)hemH(-)/pMW1 strain was 40 and 26% reduced comparing to the alkB(+)hemH(-) and alkB(+)hemH(+)/pMW1, respectively. It is noteworthy that the effect was observed only when bacteria were irradiated with λ>320 nm light prior MMS-treatment. This finding indicates efficient repair of alkylated DNA in photosensibilized cells in the presence of higher free iron pool and AlkB concentrations. Interestingly, a 31% decrease in the level of Arg(+) reversion was observed in irradiated and MMS-treated hemH(-)alkB(-) cells comparing to the hemH(+)alkB(-) strain. Also, the level of Arg(+) revertants in the irradiated and MMS treated hemH(-) alkB(-) mutant was significantly lower (by 34%) in comparison to the same strain but MMS-treated only. These indicate AlkB-independent repair involving Fe ions and reactive oxygen species. According to our hypothesis it may be caused by non-enzymatic dealkylation of alkylated dNTPs in E. coli cells. In in vitro studies, the absence of AlkB protein in the presence of iron ions allowed etheno(ϵ) dATP and ϵdCTP to spontaneously convert to dAMP and dCMP, respectively. Thus, hemH(-) intra-cellular conditions may favor Fe-dependent dealkylation of modified dNTPs.

  2. Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage “Switch” Phenotype

    PubMed Central

    Malyshev, Igor; Malyshev, Yuri

    2015-01-01

    Macrophages play a key role in immunity. In this review, we consider the traditional notion of macrophage plasticity, data that do not fit into existing concepts, and a hypothesis for existence of a new switch macrophage phenotype. Depending on the microenvironment, macrophages can reprogram their phenotype toward the proinflammatory M1 phenotype or toward the anti-inflammatory M2 phenotype. Macrophage reprogramming involves well-coordinated changes in activities of signalling and posttranslational mechanisms. Macrophage reprogramming is provided by JNK-, PI3K/Akt-, Notch-, JAK/STAT-, TGF-β-, TLR/NF-κB-, and hypoxia-dependent pathways. Posttranscriptional regulation is based on micro-mRNA. We have hypothesized that, in addition to the M1 and M2 phenotypes, an M3 switch phenotype exists. This switch phenotype responds to proinflammatory stimuli with reprogramming towards the anti-inflammatory M2 phenotype or, contrarily, it responds to anti-inflammatory stimuli with reprogramming towards the proinflammatory M1 phenotype. We have found signs of such a switch phenotype in lung diseases. Understanding the mechanisms of macrophage reprogramming will assist in the selection of new therapeutic targets for correction of impaired immunity. PMID:26366410

  3. TgERK7 is involved in the intracellular proliferation of Toxoplasma gondii.

    PubMed

    Li, Zhong-Yuan; Wang, Ze-Dong; Huang, Si-Yang; Zhu, Xing-Quan; Liu, Quan

    2016-09-01

    Toxoplasma gondii uses a unique mechanism to fulfill its asexual life cycles by which the parasite can infect all the warm-blooded animals including humans. Mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) pathway widely existed in eukaryotic cells mediates the conversion of environmental stimuli to intracellular events such as proliferation and differentiation. Their counterparts have been identified in Apicomplexan parasites such as ERK7 in T. gondii. To confirm whether the unique mechanism of T. gondii is relevant to MAPK/ERK member, we created a mutant (ΔTgERK7) in GT1 tachyzoites using double homologous recombination method. Our results of virulence evaluation showed 100 % survival of all the ΔTgERK7-infected mice until 35 days post-challenge compared to no survival in wild-type GT1-infected group (10.6 ± 0.34 days). Furthermore, lower parasite loads were detected in the peritoneal fluid of ΔTgERK7-infected mice (P < 0.05). To ensure whether or not ERK7 gene knockout leads to the growth deficiency of T. gondii, the intracellular proliferation of ΔTgERK7 was also examined in vitro. Our data indicated that the proliferation of ΔTgERK7 parasites was significantly prolonged in comparison with wild-type GT1 tachyzoites (P < 0.05). Therefore, we concluded that TgERK7 is important for the intracellular proliferation of T. gondii, which further emphasized that MAPK/ERK derived from T. gondii participates in the regulation of the asexual life cycles to ensure the survival and reinfections of this parasite. PMID:27150970

  4. Extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus.

    PubMed

    Gasparetti, Chiara; Nordlund, Emilia; Jänis, Janne; Buchert, Johanna; Kruus, Kristiina

    2012-04-01

    Tyrosinase (EC 1.14.18.1) is a widely distributed type 3 copper enzyme participating in essential biological functions. Tyrosinases are potential biotools as biosensors or protein crosslinkers. Understanding the reaction mechanism of tyrosinases is fundamental for developing tyrosinase-based applications. The reaction mechanisms of tyrosinases from Trichoderma reesei (TrT) and Agaricus bisporus (AbT) were analyzed using three diphenolic substrates: caffeic acid, L-DOPA (3,4-dihydroxy-l-phenylalanine), and catechol. With caffeic acid the oxidation rates of TrT and AbT were comparable; whereas with L-DOPA or catechol a fast decrease in the oxidation rates was observed in the TrT-catalyzed reactions only, suggesting end product inhibition of TrT. Dopachrome was the only reaction end product formed by TrT- or AbT-catalyzed oxidation of L-DOPA. We produced dopachrome by AbT-catalyzed oxidation of L-DOPA and analyzed the TrT end product (i.e. dopachrome) inhibition by oxygen consumption measurement. In the presence of 1.5mM dopachrome the oxygen consumption rate of TrT on 8mM L-DOPA was halved. The type of inhibition of potential inhibitors for TrT was studied using p-coumaric acid (monophenol) and caffeic acid (diphenol) as substrates. The strongest inhibitors were potassium cyanide for the TrT-monophenolase activity, and kojic acid for the TrT-diphenolase activity. The lag period related to the TrT-catalyzed oxidation of monophenol was prolonged by kojic acid, sodium azide and arbutin; contrary it was reduced by potassium cyanide. Furthermore, sodium azide slowed down the initial oxidation rate of TrT- and AbT-catalyzed oxidation of L-DOPA or catechol, but it also formed adducts with the reaction end products, i.e., dopachrome and o-benzoquinone.

  5. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment

    PubMed Central

    Leon-Sicairos, Nidia; Reyes-Cortes, Ruth; Guadrón-Llanos, Alma M.; Madueña-Molina, Jesús; Leon-Sicairos, Claudia; Canizalez-Román, Adrian

    2015-01-01

    Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed. PMID:26120582

  6. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment.

    PubMed

    Leon-Sicairos, Nidia; Reyes-Cortes, Ruth; Guadrón-Llanos, Alma M; Madueña-Molina, Jesús; Leon-Sicairos, Claudia; Canizalez-Román, Adrian

    2015-01-01

    Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.

  7. Antibody-Fc receptor interactions in protection against intracellular pathogens.

    PubMed

    Joller, Nicole; Weber, Stefan S; Oxenius, Annette

    2011-04-01

    Intracellular pathogen-specific antibodies (Abs) can contribute to host protection by a number of different mechanisms. Ab opsonization of pathogens residing outside a host cell can prevent infection of target cells either via neutralization of the critical surface epitopes required for host cell entry, complement-mediated degradation, or via subsequent intracellular degradation. In the case of intracellular localization, Abs can bind to infected cells and thus mark them for destruction by Fc receptor (FcR)-bearing effector cells. This review focuses on the protective role of Abs against intracellular bacteria and parasites involving FcR interactions that modulate the intracellular trafficking of the pathogen, the ability of FcRs to interfere with the establishment of an intracellular replicative niche and the involvement of FcRs to modulate pathogen-specific T-cell responses. PMID:21413006

  8. The role of autophagy in intracellular pathogen nutrient acquisition

    PubMed Central

    Steele, Shaun; Brunton, Jason; Kawula, Thomas

    2015-01-01

    Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates, and amino acids). It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral, and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells. PMID:26106587

  9. Antibody-Fc receptor interactions in protection against intracellular pathogens.

    PubMed

    Joller, Nicole; Weber, Stefan S; Oxenius, Annette

    2011-04-01

    Intracellular pathogen-specific antibodies (Abs) can contribute to host protection by a number of different mechanisms. Ab opsonization of pathogens residing outside a host cell can prevent infection of target cells either via neutralization of the critical surface epitopes required for host cell entry, complement-mediated degradation, or via subsequent intracellular degradation. In the case of intracellular localization, Abs can bind to infected cells and thus mark them for destruction by Fc receptor (FcR)-bearing effector cells. This review focuses on the protective role of Abs against intracellular bacteria and parasites involving FcR interactions that modulate the intracellular trafficking of the pathogen, the ability of FcRs to interfere with the establishment of an intracellular replicative niche and the involvement of FcRs to modulate pathogen-specific T-cell responses.

  10. Endosomal escape: a bottleneck in intracellular delivery.

    PubMed

    Shete, Harshad K; Prabhu, Rashmi H; Patravale, Vandana B

    2014-01-01

    With advances in therapeutic science, apart from drugs, newer bioactive moieties like oligonucleotides, proteins, peptides, enzymes and antibodies are constantly being introduced for the betterment of therapeutic efficacy. These moieties have intracellular components of the cells like cytoplasm and nucleus as one of their pharmacological sites for exhibiting therapeutic activity. Despite their promising efficacy, their intracellular bioavailability has been critically hampered leading to failure in the treatment of numerous diseases and disorders. The endosomal uptake pathway is known to be a rate-limiting barrier for such systems. Bioactive molecules get trapped in the endosomal vesicles and degraded in the lysosomal compartment, necessitating the need for effective strategies that facilitate the endosomal escape and enhance the cytosolic bioavailability of bioactives. Microbes like viruses and bacteria have developed their innate mechanistic tactics to translocate their genome and toxins by efficiently penetrating the host cell membrane. Understanding this mechanism and exploring it further for intracellular delivery has opened new avenues to surmount the endosomal barrier. These strategies include membrane fusion, pore formation and proton sponge effects. On the other hand, progress in designing a novel smart polymeric carrier system that triggers endosomal escape by undergoing modulations in the intracellular milieu has further led to an improvement in intracellular delivery. These comprise pH, enzyme and temperature-induced modulators, synthetic cationic lipids and photo-induced physical disruption. Each of the aforementioned strategies has its own unique mechanism to escape the endosome. This review recapitulates the numerous strategies designed to surmount the bottleneck of endosomal escape and thereby achieve successful intracellular uptake of bioactives. PMID:24730275

  11. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  12. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality.

    PubMed

    Thomas, Vincent; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2010-05-01

    An increasing number of microorganisms, including bacteria but also viruses and eukaryotes, have been described as benefiting from interaction with free-living amoebae (FLA). Beneficial interaction can be due to resistance to predation conferring ecological advantage, intracellular survival and/or intracellular proliferation. This review highlights the potential risk associated with amoebae by listing all known pathogenic microbial species for which growth and/or survival promotion by FLA (mainly Acanthamoeba spp.) has been demonstrated. It focuses on the susceptibility of amoebal and intra-amoebal bacteria to various categories of biocides, the known mechanisms of action of these biocides against trophozoites and cysts and the various methods used to demonstrate efficacy of treatments against FLA. Brief descriptions of FLA ecology and prevalence in domestic/institutional water systems and their intrinsic pathogenicity are also presented. The intention is to provide an informed opinion on the environmental risks associated with the presence of FLA and on the survival of cysts following biocidal treatments, while also highlighting the need to conduct research on the roles of amoebae in aquatic ecosystems.

  13. Effects of N-Acetylcysteine on Cytokines in Non-Acetaminophen Acute Liver Failure: Potential Mechanism of Improvement in Transplant-Free Survival

    PubMed Central

    Stravitz, R. Todd; Sanyal, Arun J.; Reisch, Joan; Bajaj, Jasmohan S.; Mirshahi, Faridoddin; Cheng, Jianfeng; Lee, William M.

    2016-01-01

    Background N-Acetylcysteine (NAC) improves transplant-free survival in patients with non-acetaminophen acute liver failure (ALF) when administered in early stages of hepatic encephalopathy. The mechanisms of this benefit are unknown. Aim To determine whether NAC improves transplant-free survival in ALF by ameliorating the surge of pro-inflammatory cytokines. Methods Serum samples were obtained from 78 participants of the randomized, ALF Study Group NAC Trial with grade 1 or 2 hepatic encephalopathy on randomization. Concentrations of ten cytokines, chosen to represent a wide array of inflammatory responses, were determined by multiplex ELISA. Results In univariate analysis, predictors of transplant-free survival included NAC administration (P=0.012), admission bilirubin (P=0.003), INR (P=0.0002), grade 1 vs. grade 2 encephalopathy (P=0.006) and lower admission interleukin (IL)-17 concentrations (P=0.011). IL-17 levels were higher in patients with grade 2 vs. 1 encephalopathy on randomization (P=0.007) and in those who progressed to grade 3 or 4 encephalopathy over the following 7 days (P≤0.01). Stepwise multivariate logistic regression analysis identified only NAC administration and lower IL-17 concentrations as independent predictors of transplant-free survival. In patients with detectable IL-17 concentrations on admission, 78% of those who received NAC vs. 44% of those who received placebo had undetectable levels by day 3-5 (P=0.042), and the mean decrease in IL-17 concentrations between admission and late samples was significantly greater in patients who received NAC vs. placebo (P=0.045). Conclusions NAC may improve transplant-free survival in patients with non-acetaminophen ALF by ameliorating the production of IL-17, which is associated with progression of hepatic encephalopathy and poor outcome. PMID:23782487

  14. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  15. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  16. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  17. Extracellular Matrix Stiffness and Architecture Govern Intracellular Rheology in Cancer

    PubMed Central

    Baker, Erin L.; Bonnecaze, Roger T.; Zaman, Muhammad H.

    2009-01-01

    Abstract Little is known about the complex interplay between the extracellular mechanical environment and the mechanical properties that characterize the dynamic intracellular environment. To elucidate this relationship in cancer, we probe the intracellular environment using particle-tracking microrheology. In three-dimensional (3D) matrices, intracellular effective creep compliance of prostate cancer cells is shown to increase with increasing extracellular matrix (ECM) stiffness, whereas modulating ECM stiffness does not significantly affect the intracellular mechanical state when cells are attached to two-dimensional (2D) matrices. Switching from 2D to 3D matrices induces an order-of-magnitude shift in intracellular effective creep compliance and apparent elastic modulus. However, for a given matrix stiffness, partial blocking of β1 integrins mitigates the shift in intracellular mechanical state that is invoked by switching from a 2D to 3D matrix architecture. This finding suggests that the increased cell-matrix engagement inherent to a 3D matrix architecture may contribute to differences observed in viscoelastic properties between cells attached to 2D matrices and cells embedded within 3D matrices. In total, our observations show that ECM stiffness and architecture can strongly influence the intracellular mechanical state of cancer cells. PMID:19686648

  18. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival.

    PubMed

    Vaillant, A R; Mazzoni, I; Tudan, C; Boudreau, M; Kaplan, D R; Miller, F D

    1999-09-01

    In this report, we have examined the mechanisms whereby neurotrophins and neural activity coordinately regulate neuronal survival, focussing on sympathetic neurons, which require target-derived NGF and neural activity for survival during development. When sympathetic neurons were maintained in suboptimal concentrations of NGF, coincident depolarization with concentrations of KCl that on their own had no survival effect, synergistically enhanced survival. Biochemical analysis revealed that depolarization was sufficient to activate a Ras-phosphatidylinositol 3-kinase-Akt pathway (Ras-PI3-kinase-Akt), and function-blocking experiments using recombinant adenovirus indicated that this pathway was essential for approximately 50% of depolarization-mediated neuronal survival. At concentrations of NGF and KCl that promoted synergistic survival, these two stimuli converged to promote increased PI3-kinase-dependent Akt phosphorylation. This convergent PI3-kinase-Akt pathway was essential for synergistic survival. In contrast, inhibition of calcium/calmodulin-dependent protein kinase II revealed that, while this molecule was essential for depolarization-induced survival, it had no role in KCl- induced Akt phosphorylation, nor was it important for synergistic survival by NGF and KCl. Thus, NGF and depolarization together mediate survival of sympathetic neurons via intracellular convergence on a Ras-PI3-kinase-Akt pathway. This convergent regulation of Akt may provide a general mechanism for coordinating the effects of growth factors and neural activity on neuronal survival throughout the nervous system.

  19. IL-1RAcPb signaling regulates adaptive mechanisms in neurons that promote their long-term survival following excitotoxic insults.

    PubMed

    Gosselin, David; Bellavance, Marc-André; Rivest, Serge

    2013-01-01

    Excitotoxicity is a major component of neurodegenerative diseases and is typically accompanied by an inflammatory response. Cytokines IL-1alpha and IL-1beta are key regulators of this inflammatory response and modulate the activity of numerous cell types, including neurons. IL-1RAcPb is an isoform of IL-1RAcP expressed specifically in neurons and promotes their survival during acute inflammation. Here, we investigated in vivo whether IL-1RAcPb also promotes neuronal survival in a model of excitotoxicity. Intrastriatal injection of kainic acid (KA) in mice caused a strong induction of IL-1 cytokines mRNA in the brain. The stress response of cortical neurons at 12 h post-injection, as measured by expression of Atf3, FoxO3a, and Bdnf mRNAs, was similar in WT and AcPb-deficient mice. Importantly however, a delayed upregulation in the transcription of calpastatin was significantly higher in WT than in AcPb-deficient mice. Finally, although absence of AcPb signaling had no effect on damage to neurons in the cortex at early time points, it significantly impaired their long-term survival. These data suggest that in a context of excitotoxicity, stimulation of IL-1RAcPb signaling may promote the activity of a key neuroprotective mechanism. PMID:23423359

  20. The contribution of both oxygen and nitrogen intermediates to the intracellular killing mechanisms of C1q-opsonized Listeria monocytogenes by the macrophage-like IC-21 cell line.

    PubMed

    Alvarez-Domínguez, C; Carrasco-Marín, E; López-Mato, P; Leyva-Cobián, F

    2000-09-01

    Listeria monocytogenes is a facultative intracellular pathogen which is internalized by host mammalian cells upon binding to their surface. Further listerial growth occurs in the cytosol after escape from the phagosomal-endosomal compartment. We have previously reported that C1q is able to potentiate L. monocytogenes phagocytosis upon bacterial opsonization by ingestion through C1q-binding structures. In this report, we analysed the post-phagocytic events upon internalization of C1q-opsonized L. monocytogenes and found an induction of macrophage (Mphi)-like IC-21 cell bactericidal mechanisms displayed by the production of oxygen and nitrogen metabolites. Both types of molecules are effective in L. monocytogenes killing. Further analysis of the cellular responses promoted by interaction of C1q with its surface binding structures, leads us to consider C1q as a collaborative molecule involved in Mphi activation. Upon interaction with surface binding structures, C1q was able to trigger and/or amplify the production of reactive oxygen and nitrogen intermediates induced by stimuli such as interferon-gamma and L. monocytogenes phagocytosis. PMID:11012757

  1. The contribution of both oxygen and nitrogen intermediates to the intracellular killing mechanisms of C1q-opsonized Listeria monocytogenes by the macrophage-like IC-21 cell line

    PubMed Central

    Álvarez-Domínguez, C; Carrasco-Marín, E; López-Mato, P; Leyva-Cobián, F

    2000-01-01

    Listeria monocytogenes is a facultative intracellular pathogen which is internalized by host mammalian cells upon binding to their surface. Further listerial growth occurs in the cytosol after escape from the phagosomal–endosomal compartment. We have previously reported that C1q is able to potentiate L. monocytogenes phagocytosis upon bacterial opsonization by ingestion through C1q-binding structures. In this report, we analysed the post-phagocytic events upon internalization of C1q-opsonized L. monocytogenes and found an induction of macrophage (Mφ)-like IC-21 cell bactericidal mechanisms displayed by the production of oxygen and nitrogen metabolites. Both types of molecules are effective in L. monocytogenes killing. Further analysis of the cellular responses promoted by interaction of C1q with its surface binding structures, leads us to consider C1q as a collaborative molecule involved in Mφ activation. Upon interaction with surface binding structures, C1q was able to trigger and/or amplify the production of reactive oxygen and nitrogen intermediates induced by stimuli such as interferon-γ and L. monocytogenes phagocytosis. PMID:11012757

  2. Pyk2 Inhibition of p53 as an Adaptive and Intrinsic Mechanism Facilitating Cell Proliferation and Survival*

    PubMed Central

    Lim, Ssang-Taek; Miller, Nichol L. G.; Nam, Ju-Ock; Chen, Xiao Lei; Lim, Yangmi; Schlaepfer, David D.

    2010-01-01

    Pyk2 is a cytoplasmic tyrosine kinase related to focal adhesion kinase (FAK). Compensatory Pyk2 expression occurs upon FAK loss in mice. However, the impact of Pyk2 up-regulation remains unclear. Previous studies showed that nuclear-localized FAK promotes cell proliferation and survival through FAK FERM domain-enhanced p53 tumor suppressor degradation (Lim, S. T., Chen, X. L., Lim, Y., Hanson, D. A., Vo, T. T., Howerton, K., Larocque, N., Fisher, S. J., Schlaepfer, D. D., and Ilic, D. (2008) Mol. Cell 29, 9–22). Here, we show that FAK knockdown triggered p53 activation and G1 cell cycle arrest in human umbilical vein endothelial cells after 4 days. However, by 7 days elevated Pyk2 expression occurred with a reduction in p53 levels and the release of the G1 block under conditions of continued FAK knockdown. To determine whether Pyk2 regulates p53, experiments were performed in FAK−/−p21−/− mouse embryo fibroblasts expressing endogenous Pyk2 and in ID8 ovarian carcinoma cells expressing both Pyk2 and FAK. In both cell lines, Pyk2 knockdown increased p53 levels and inhibited cell proliferation associated with G1 cell cycle arrest. Pyk2 FERM domain re-expression was sufficient to reduce p53 levels and promote increased BrdUrd incorporation. Pyk2 FERM promoted Mdm2-dependent p53 ubiquitination. Pyk2 FERM effects on p53 were blocked by proteasomal inhibition or mutational-inactivation of Pyk2 FERM nuclear localization. Staurosporine stress of ID8 cells promoted endogenous Pyk2 nuclear accumulation and enhanced Pyk2 binding to p53. Pyk2 knockdown potentiated ID8 cell death upon staurosporine addition. Moreover, Pyk2 FERM expression in human fibroblasts upon FAK knockdown prevented cisplatin-mediated apoptosis. Our studies demonstrate that nuclear Pyk2 functions to limit p53 levels, thus facilitating cell growth and survival in a kinase-independent manner. PMID:19880522

  3. Intracellular structure and nucleocytoplasmic transport.

    PubMed

    Agutter, P S

    1995-01-01

    Intracellular movement of any solute or particle accords with one of two general schemes: either it takes place predominantly in the solution phase or it occurs by dynamic interactions with solid-state structures. If nucleocytoplasmic exchanges of macromolecules and complexes are predominantly solution-phase processes, i.e., if the former ("diffusionist") perspective applies, then the only significant structures in nucleocytoplasmic transport are the pore complexes. However, if such exchanges accord with the latter ("solid-state") perspective, then the roles of the nucleoskeleton and cytoskeleton in nucleocytoplasmic transport are potentially, at least, as important as that of the pore complexes. The role of the nucleoskeleton in mRNA transport is more difficult to evaluate than that of the cytoskeleton because it is less well characterized, and current evidence does not exclude either perspective. However, the balance of evidence favors a solid-state scheme. It is argued that ribosomal subunits are also more likely to migrate by a solid-state rather than a diffusionist mechanism, though the opposite is true of proteins and tRNAs. Moreover, recent data on the effects of viral proteins on intranuclear RNA processing and migration accord with the solid-state perspective. In view of this balance of evidence, three possible solid-state mechanisms for nucleocytoplasmic mRNA transport are described and evaluated. The explanatory advantage of solid-state models is contrasted with the heuristic advantage of diffusion theory, but it is argued that diffusion theory itself, even aided by modern computational techniques and numerical and graphical approaches, cannot account for data describing the movements of materials within the cell. Therefore, the mechanisms envisaged in a diffusionist perspective cannot be confined to diffusion alone, but must include other processes such as bulk fluid flow.

  4. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  5. Survival, Differentiation, and Neuroprotective Mechanisms of Human Stem Cells Complexed With Neurotrophin-3-Releasing Pharmacologically Active Microcarriers in an Ex Vivo Model of Parkinson’s Disease

    PubMed Central

    Daviaud, Nicolas; Garbayo, Elisa; Sindji, Laurence; Martínez-Serrano, Alberto; Schiller, Paul C.

    2015-01-01

    Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson’s disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. Significance Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson’s disease (PD). The present work elucidates and compares the survival, differentiation, and

  6. Transcriptional regulation of the Chlamydia heat shock stress response in an intracellular infection

    PubMed Central

    Hanson, Brett R.; Tan, Ming

    2015-01-01

    Summary Bacteria encode heat shock proteins that aid in survival during stressful growth conditions. In addition, the major heat shock proteins of the intracellular bacterium Chlamydia trachomatis have been associated with immune pathology and disease. We developed a ChIP-qPCR method to study the regulation of chlamydial heat shock gene regulation during an intracellular infection. This approach allowed us to show that chlamydial heat shock genes are regulated by the transcription factor HrcA within an infected cell, providing validation for previous in vitro findings. Induction of chlamydial heat shock gene expression by elevated temperature was due to loss of HrcA binding to heat shock promoters, supporting a mechanism of derepression. This heat shock response was rapid, while recovery of HrcA binding and return to non-stress transcript levels occurred more slowly. We also found that control of heat shock gene expression was differentially regulated over the course of the intracellular Chlamydia infection. There was evidence of HrcA-mediated regulation of heat shock genes throughout the chlamydial developmental cycle but the level of repression was lower at early times. This is the first study of Chlamydia-infected cells showing the effect of an environmental signal on transcription factor-DNA binding and target gene expression in the bacterium. PMID:26075961

  7. The Mutualistic Side of Wolbachia-Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria.

    PubMed

    Braquart-Varnier, Christine; Altinli, Mine; Pigeault, Romain; Chevalier, Frédéric D; Grève, Pierre; Bouchon, Didier; Sicard, Mathieu

    2015-01-01

    Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts. PMID:26733946

  8. The Mutualistic Side of Wolbachia–Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria

    PubMed Central

    Braquart-Varnier, Christine; Altinli, Mine; Pigeault, Romain; Chevalier, Frédéric D.; Grève, Pierre; Bouchon, Didier; Sicard, Mathieu

    2015-01-01

    Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts. PMID:26733946

  9. Secretome of obligate intracellular Rickettsia

    PubMed Central

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  10. Staphylococcus aureus Strain USA300 Perturbs Acquisition of Lysosomal Enzymes and Requires Phagosomal Acidification for Survival inside Macrophages

    PubMed Central

    Tranchemontagne, Zachary R.; Camire, Ryan B.; O'Donnell, Vanessa J.; Baugh, Jessfor

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) causes invasive, drug-resistant skin and soft tissue infections. Reports that S. aureus bacteria survive inside macrophages suggest that the intramacrophage environment may be a niche for persistent infection; however, mechanisms by which the bacteria might evade macrophage phagosomal defenses are unclear. We examined the fate of the S. aureus-containing phagosome in THP-1 macrophages by evaluating bacterial intracellular survival and phagosomal acidification and maturation and by testing the impact of phagosomal conditions on bacterial viability. Multiple strains of S. aureus survived inside macrophages, and in studies using the MRSA USA300 clone, the USA300-containing phagosome acidified rapidly and acquired the late endosome and lysosome protein LAMP1. However, fewer phagosomes containing live USA300 bacteria than those containing dead bacteria associated with the lysosomal hydrolases cathepsin D and β-glucuronidase. Inhibiting lysosomal hydrolase activity had no impact on intracellular survival of USA300 or other S. aureus strains, suggesting that S. aureus perturbs acquisition of lysosomal enzymes. We examined the impact of acidification on S. aureus intramacrophage viability and found that inhibitors of phagosomal acidification significantly impaired USA300 intracellular survival. Inhibition of macrophage phagosomal acidification resulted in a 30-fold reduction in USA300 expression of the staphylococcal virulence regulator agr but had little effect on expression of sarA, saeR, or sigB. Bacterial exposure to acidic pH in vitro increased agr expression. Together, these results suggest that S. aureus survives inside macrophages by perturbing normal phagolysosome formation and that USA300 may sense phagosomal conditions and upregulate expression of a key virulence regulator that enables its intracellular survival. PMID:26502911

  11. Intracellular angiotensin II activates rat myometrium.

    PubMed

    Deliu, Elena; Tica, Andrei A; Motoc, Dana; Brailoiu, G Cristina; Brailoiu, Eugen

    2011-09-01

    Angiotensin II is a modulator of myometrial activity; both AT(1) and AT(2) receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT(1) receptor antagonist losartan but not by the AT(2) receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca(2+)](i). Blockade of AT(1) receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca(2+)](i) produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca(2+)-free saline, indicating a major involvement of Ca(2+) release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP(3)) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP(3) pathway. Angiotensin II-induced increase in [Ca(2+)](i) was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT(1)-like receptors on lysosomes and activates PLC-IP(3)-dependent Ca(2+) release from endoplasmic reticulum; the response is further augmented by a Ca(2+)-induced Ca(2+) release mechanism via ryanodine receptors activation.

  12. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms.

    PubMed

    Acioglu, Cigdem; Mirabelli, Ersilia; Baykal, Ahmet Tarik; Ni, Li; Ratnayake, Ayomi; Heary, Robert F; Elkabes, Stella

    2016-08-01

    Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes

  13. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair; Clardy, Stacey L; Tsunoda, Ikuo; Carlson, Noel G

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not

  14. Intracellular Staphylococcus aureus Escapes the Endosome and Induces Apoptosis in Epithelial Cells

    PubMed Central

    Bayles, Kenneth W.; Wesson, Carla A.; Liou, Linda E.; Fox, Lawrence K.; Bohach, Gregory A.; Trumble, W. R.

    1998-01-01

    We examined the invasion of an established bovine mammary epithelial cell line (MAC-T) by a Staphylococcus aureus mastitis isolate to study the potential role of intracellular survival in the persistence of staphylococcal infections. S. aureus cells displayed dose-dependent invasion of MAC-T cells and intracellular survival. An electron microscopic examination of infected cells indicated that the bacteria induced internalization via a mechanism involving membrane pseudopod formation and then escaped into the cytoplasm following lysis of the endosomal membrane. Two hours after the internalization of S. aureus, MAC-T cells exhibited detachment from the matrix, rounding, a mottled cell membrane, and vacuolization of the cytoplasm, all of which are indicative of cells undergoing programmed cell death (apoptosis). By 18 h, the majority of the MAC-T cell population exhibited an apoptotic morphology. Other evidence for apoptosis was the generation of MAC-T cell DNA fragments differing in size by increments of approximately 180 bp and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling of the fragmented nuclear DNA of the infected host cells. These results demonstrate that after internalization S. aureus escapes the endosome and induces apoptosis in nonprofessional phagocytes. PMID:9423876

  15. Survival pattern in patients with acute organophosphate poisoning on mechanical ventilation: A retrospective intensive care unit-based study in a tertiary care teaching hospital

    PubMed Central

    Ahmed, Syed M; Das, Bikramjit; Nadeem, Abu; Samal, Rajiv K

    2014-01-01

    Background and Aims: Organophosphorus (OP) compound poisoning is one of the most common poisonings in India. The aim of the study was to study the outcomes and predictors of mortality in patients with acute OP poisoning requiring mechanical ventilation. Methods: A retrospective study was conducted in the intensive care unit and 117 patients were included. Diagnosis was performed from the history taken either from the patient or from the patient's relatives. Demographic data, month of the year, mode of poisoning, common age group, duration of mechanical ventilation, time of starting pralidoxime (PAM), and mortality were recorded. Chi square test, Pearson correlation test, and multivariate binary logistic regression analysis was used. Data are presented as mean ± SD. Results: 91.86% (79/86) of cases were suicidal and remaining cases were accidental. Duration of mechanical ventilation varied from less than 48 hours to more than 7 days. Mortality rate was 33.3%, 7.2%, and 100% in those who required mechanical ventilation for more than 7 days, 5 to 7 days, and 2 to 4 days, respectively. Lag time was less than 6 hrs in 13 patients and all of them survived. 17.1% and 28.1% patients died in whom PAM was started 6 to 12 hrs and 13 to 24 hrs after poisoning, respectively. There was statistically significant positive correlation between lag time of starting of PAM with duration of mechanical ventilation and total dose of PAM (P < 0.0001). None of the predictors age, lag time, severity of poisoning, and duration of ventilation were independent predictors of death. Overall mortality rate was 18.6%. Conclusion: Mortality from OP compound poisoning is directly proportionate to the severity of poisoning, delay in starting PAM, and duration of mechanical ventilation. Death is not dependent on a single factor, rather contributory to these factors working simultaneously. PMID:24700893

  16. Enhanced hypoxic preconditioning by isoflurane: signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors

    PubMed Central

    Bickler, Philip E.; Fahlman, Christian S.

    2012-01-01

    Neurons preconditioned with non-injurious hypoxia or the anesthetic isoflurane express different genes but are equally protected against severe hypoxia/ischemia. We hypothesized that neuroprotection would be augmented when preconditioning with isoflurane and hypoxic preconditioning are combined. We also tested if preconditioning requires intracellular Ca2+ and the inositol triphosphate receptor, and if gene expression is similar in single agent and combined preconditioning. Hippocampal slice cultures prepared from 9 day-old rats were preconditioned with hypoxia (95% N2, 5% CO2 for 15 min, HPC), 1% isoflurane for 15 min (APC) or their combination (CPC) for 15 min. A day later cultures were deprived of O2 and glucose (OGD) to produce neuronal injury. Cell death was assessed 48 hr after OGD. mRNA encoding 119 signal transduction genes was quantified with cDNA micro arrays. Intracellular Ca2+ in CA1 region was measured with fura-2 during preconditioning. The cell-permeable Ca2+ buffer BAPTA-AM, the IP3 receptor antagonist Xestospongin C and RNA silencing were used to investigate preconditioning mechanisms. CPC decreased CA1, CA3 and dentate region death by 64–86% following OGD, more than HPC or APC alone (P<0.01). Gene expression following CPC was an amalgam of gene expression in HPC and APC, with simultaneous increases in growth/development and survival/apoptosis regulation genes. Intracellular Ca2+ chelation and RNA silencing of IP3 receptors prevented preconditioning neuroprotection and gene responses. We conclude that combined isoflurane-hypoxia preconditioning augments neuroprotection compared to single agents in immature rat hippocampal slice cultures. The mechanism involves genes for growth, development, apoptosis regulation and cell survival as well as IP3 receptors and intracellular Ca2+. PMID:20434434

  17. Enhanced hypoxic preconditioning by isoflurane: signaling gene expression and requirement of intracellular Ca2+ and inositol triphosphate receptors.

    PubMed

    Bickler, Philip E; Fahlman, Christian S

    2010-06-22

    Neurons preconditioned with non-injurious hypoxia or the anesthetic isoflurane express different genes but are equally protected against severe hypoxia/ischemia. We hypothesized that neuroprotection would be augmented when preconditioning with isoflurane and hypoxic preconditioning are combined. We also tested if preconditioning requires intracellular Ca(2+) and the inositol triphosphate receptor, and if gene expression is similar in single agent and combined preconditioning. Hippocampal slice cultures prepared from 9 day old rats were preconditioned with hypoxia (95% N(2), 5% CO(2) for 15 min, HPC), 1% isoflurane for 15 min (APC) or their combination (CPC) for 15 min. A day later cultures were deprived of O(2) and glucose (OGD) to produce neuronal injury. Cell death was assessed 48 h after OGD. mRNA encoding 119 signal transduction genes was quantified with cDNA micro arrays. Intracellular Ca(2+) in CA1 region was measured with fura-2 during preconditioning. The cell-permeable Ca(2+) buffer BAPTA-AM, the IP(3) receptor antagonist Xestospongin C and RNA silencing were used to investigate preconditioning mechanisms. CPC decreased CA1, CA3 and dentate region death by 64-86% following OGD, more than HPC or APC alone (P<0.01). Gene expression following CPC was an amalgam of gene expression in HPC and APC, with simultaneous increases in growth/development and survival/apoptosis regulation genes. Intracellular Ca(2+) chelation and RNA silencing of IP(3) receptors prevented preconditioning neuroprotection and gene responses. We conclude that combined isoflurane-hypoxia preconditioning augments neuroprotection compared to single agents in immature rat hippocampal slice cultures. The mechanism involves genes for growth, development, apoptosis regulation and cell survival as well as IP(3) receptors and intracellular Ca(2+).

  18. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  19. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids.

  20. Surviving or thriving: quality assurance mechanisms to promote innovation in the development of evidence-based parenting interventions.

    PubMed

    Sanders, Matthew R; Kirby, James N

    2015-04-01

    Parenting interventions have the potential to make a significant impact to the prevention and treatment of major social and mental health problems of children. However, parenting interventions fail to do so because program developers pay insufficient attention to the broader ecological context that influences the adoption and implementation of evidence-based interventions. This context includes the professional and scientific community, end users, consumers, and broader sociopolitical environment within which parenting services are delivered. This paper presents an iterative stage model of quality assurance steps to guide ongoing research and development particularly those related to program innovations including theory building, intervention development, pilot testing, efficacy and effectiveness trials, program refinement, dissemination, and planning for implementation and political advocacy. The key challenges associated with each phase of the research and development process are identified. Stronger consumer participation throughout the entire process from initial program design to wider community dissemination is an important, but an often ignored part of the process. Specific quality assurance mechanisms are discussed that increase accountability, professional, and consumer confidence in an intervention and the evidence supporting its efficacy.

  1. Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages

    PubMed Central

    Batista-Silva, L. R.; Rodrigues, Luciana Silva; Vivarini, Aislan de Carvalho; Costa, Fabrício da Mota Ramalho; Mattos, Katherine Antunes de; Costa, Maria Renata Sales Nogueira; Rosa, Patricia Sammarco; Toledo-Pinto, T. G.; Dias, André Alves; Moura, Danielle Fonseca; Sarno, Euzenir Nunes; Lopes, Ulisses Gazos; Pessolani, Maria Cristina Vidal

    2016-01-01

    Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis. PMID:27282338

  2. Adaptive survival mechanisms and growth limitations of small-stature herb species across a plant diversity gradient.

    PubMed

    Dassler, A; Roscher, C; Temperton, V M; Schumacher, J; Schulze, E-D

    2008-09-01

    Several biodiversity experiments have shown positive effects of species richness on aboveground biomass production, but highly variable responses of individual species. The well-known fact that the competitive ability of plant species depends on size differences among species, raises the question of effects of community species richness on small-stature subordinate species. We used experimental grasslands differing in species richness (1-60 species) and functional group richness (one to four functional groups) to study biodiversity effects on biomass production and ecophysiological traits of five small-stature herbs (Bellis perennis, Plantago media, Glechoma hederacea, Ranunculus repens and Veronica chamaedrys). We found that ecophysiological adaptations, known as typical shade-tolerance strategies, played an important role with increasing species richness and in relation to a decrease in transmitted light. Specific leaf area and leaf area ratio increased, while area-based leaf nitrogen decreased with increasing community species richness. Community species richness did not affect daily leaf carbohydrate turnover of V. chamaedrys and P. media indicating that these species maintained efficiency of photosynthesis even in low-light environments. This suggests an important possible mechanism of complementarity in such grasslands, whereby smaller species contribute to a better overall efficiency of light use. Nevertheless, these species rarely contributed a large proportion to community biomass production or achieved higher yields in mixtures than expected from monocultures. It seems likely that the allocation to aboveground plant organs to optimise carbon assimilation limited the investment in belowground organs to acquire nutrients and thus hindered these species from increasing their performance in multi-species mixtures.

  3. Losac, a factor X activator from Lonomia obliqua bristle extract: Its role in the pathophysiological mechanisms and cell survival

    SciTech Connect

    Alvarez Flores, Miryam Paola; Fritzen, Marcio; Reis, Cleyson V.; Chudzinski-Tavassi, Ana Marisa . E-mail: amchudzinski@butantan.gov.br

    2006-05-19

    Contact with the bristles of the caterpillar Lonomia obliqua can cause serious hemorrhage. Previously it was reported that a procoagulant protein (Lopap) in the bristle extract of L. obliqua increases cell longevity by inhibiting apoptosis. In this work, we purified from bristle extract a factor X activator that stimulates proliferation of endothelial cells. This protein, named Losac, was purified by ion exchange chromatography, followed by gel filtration chromatography and reverse-phase HPLC. Losac is a 45-kDa protein that activates factor X in a concentration-dependent manner and does not depend on calcium ions. In cultures of HUVECs, Losac increased cell proliferation and inhibited the apoptosis induced by starvation. HUVECs incubated with Losac (0.58 {mu}M for 1 h) increased release of nitric oxide and tissue-plasminogen activator, which both may mediate anti-apoptosis. Losac also increased slightly the decay-accelerating factor (DAF = CD55), which protects cells from complement-mediated lysis. On the other hand, Losac did not alter the release or expression of von Willebrand factor, tissue factor, intercellular adhesion molecule-1, interleukin-8, and prostacyclin. These characteristics indicate that Losac, a protein with procoagulant activity, also functions as a growth stimulator and an inhibitor of cellular death for endothelial cells. Losac may have biotechnological applications, including the reduction of cell death and consequently increased productivity of animal cell cultures, and the use of hemolymph of L. obliqua for this purpose is already being explored. Further study is required to elucidate the mechanism for the inhibition of apoptosis by Losac.

  4. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes.

    PubMed

    Cano, Victoria; March, Catalina; Insua, Jose Luis; Aguiló, Nacho; Llobet, Enrique; Moranta, David; Regueiro, Verónica; Brennan, Gerard P; Millán-Lou, Maria Isabel; Martín, Carlos; Garmendia, Junkal; Bengoechea, José A

    2015-11-01

    Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not co-localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down-regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.

  5. Manipulation of Costimulatory Molecules by Intracellular Pathogens: Veni, Vidi, Vici!!

    PubMed Central

    Pahari, Susanta; Agrewala, Javed N.

    2012-01-01

    Some of the most successful pathogens of human, such as Mycobacterium tuberculosis (Mtb), HIV, and Leishmania donovani not only establish chronic infections but also remain a grave global threat. These pathogens have developed innovative strategies to evade immune responses such as antigenic shift and drift, interference with antigen processing/presentation, subversion of phagocytosis, induction of immune regulatory pathways, and manipulation of the costimulatory molecules. Costimulatory molecules expressed on the surface of various cells play a decisive role in the initiation and sustenance of immunity. Exploitation of the “code of conduct” of costimulation pathways provides evolutionary incentive to the pathogens and thereby abates the functioning of the immune system. Here we review how Mtb, HIV, Leishmania sp., and other pathogens manipulate costimulatory molecules to establish chronic infection. Impairment by pathogens in the signaling events delivered by costimulatory molecules may be responsible for defective T-cell responses; consequently organisms grow unhindered in the host cells. This review summarizes the convergent devices that pathogens employ to tune and tame the immune system using costimulatory molecules. Studying host-pathogen interaction in context with costimulatory signals may unveil the molecular mechanism that will help in understanding the survival/death of the pathogens. We emphasize that the very same pathways can potentially be exploited to develop immunotherapeutic strategies to eliminate intracellular pathogens. PMID:22719245

  6. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus.

    PubMed

    Lehar, Sophie M; Pillow, Thomas; Xu, Min; Staben, Leanna; Kajihara, Kimberly K; Vandlen, Richard; DePalatis, Laura; Raab, Helga; Hazenbos, Wouter L; Morisaki, J Hiroshi; Kim, Janice; Park, Summer; Darwish, Martine; Lee, Byoung-Chul; Hernandez, Hilda; Loyet, Kelly M; Lupardus, Patrick; Fong, Rina; Yan, Donghong; Chalouni, Cecile; Luis, Elizabeth; Khalfin, Yana; Plise, Emile; Cheong, Jonathan; Lyssikatos, Joseph P; Strandh, Magnus; Koefoed, Klaus; Andersen, Peter S; Flygare, John A; Wah Tan, Man; Brown, Eric J; Mariathasan, Sanjeev

    2015-11-19

    Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections. PMID:26536114

  7. Intracellular calcium puffs in osteoclasts.

    PubMed

    Radding, W; Jordan, S E; Hester, R B; Blair, H C

    1999-12-15

    We studied intracellular calcium ([Ca(2+)](i)) in acid-secreting bone-attached osteoclasts, which produce a high-calcium acidic extracellular compartment. Acid secretion and [Ca(2+)](i) were followed using H(+)-restricted dyes and fura-2 or fluo-3. Whole cell calcium of acid-secreting osteoclasts was approximately 100 nM, similar to cells on inert substrate that do not secrete acid. However, measurements in restricted areas of the cell showed [Ca(2+)](i) transients to 500-1000 nM consistent with calcium puffs, transient (millisecond) localized calcium elevations reported in other cells. Spot measurements at 50-ms intervals indicated that puffs were typically less than 400 ms. Transients did not propagate in waves across the cell in scanning confocal measurements. Calcium puffs occurred mainly over regions of acid secretion as determined using lysotracker red DND99 and occurred at irregular periods averaging 5-15 s in acid secreting cells, but were rare in lysotracker-negative nonsecretory cells. The calmodulin antagonist trifluoperazine, cell-surface calcium transport inhibitors lanthanum or barium, and the endoplasmic reticulum ATPase inhibitor thapsigargin had variable acute effects on the mean [Ca(2+)](i) and puff frequency. However, none of these agents prevented calcium puff activity, suggesting that the mechanism producing the puffs is independent of these processes. We conclude that [Ca(2+)](i) transients in osteoclasts are increased in acid-secreting osteoclasts, and that the puffs occur mainly near the acid-transporting membrane. Cell membrane acid transport requires calcium, suggesting that calcium puffs function to maintain acid secretion. However, membrane H(+)-ATPase activity was insensitive to calcium in the 100 nM-1 microM range. Thus, any effects of calcium puffs on osteoclastic acid transport must be indirect.

  8. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    NASA Technical Reports Server (NTRS)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  9. Intracellular Pressure Dynamics in Blebbing Cells.

    PubMed

    Strychalski, Wanda; Guy, Robert D

    2016-03-01

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. PMID:26958893

  10. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    SciTech Connect

    Damodaran, T.V.; Attia, M.K.; Abou-Donia, M.B.

    2011-11-15

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7-14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  11. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    PubMed Central

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  12. Modulation of Host miRNAs by Intracellular Bacterial Pathogens

    PubMed Central

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  13. Modulation of Host miRNAs by Intracellular Bacterial Pathogens.

    PubMed

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  14. Experimental selection of long-term intracellular mycobacteria.

    PubMed

    Vázquez, Cristina L; Lerner, Thomas R; Kasmapour, Bahram; Pei, Gang; Gronow, Achim; Bianco, Maria V; Blanco, Federico C; Bleck, Christopher K E; Geffers, Robert; Bigi, Fabiana; Abraham, Wolf-Rainer; Gutierrez, Maximiliano G

    2014-09-01

    Some intracellular bacteria are known to cause long-term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long-term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re-infection and also with the specific expression of stress- and survival-related genes. Our findings identify bacterial traits implicated in the establishment of long-term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments. PMID:24779357

  15. Experimental selection of long-term intracellular mycobacteria

    PubMed Central

    Vázquez, Cristina L; Lerner, Thomas R; Kasmapour, Bahram; Pei, Gang; Gronow, Achim; Bianco, Maria V; Blanco, Federico C; Bleck, Christopher K E; Geffers, Robert; Bigi, Fabiana; Abraham, Wolf-Rainer; Gutierrez, Maximiliano G

    2014-01-01

    Some intracellular bacteria are known to cause long-term infections that last decades without compromising the viability of the host. Although of critical importance, the adaptations that intracellular bacteria undergo during this long process of residence in a host cell environment remain obscure. Here, we report a novel experimental approach to study the adaptations of mycobacteria imposed by a long-term intracellular lifestyle. Selected Mycobacterium bovis BCG through continuous culture in macrophages underwent an adaptation process leading to impaired phenolic glycolipids (PGL) synthesis, improved usage of glucose as a carbon source and accumulation of neutral lipids. These changes correlated with increased survival of mycobacteria in macrophages and mice during re-infection and also with the specific expression of stress- and survival-related genes. Our findings identify bacterial traits implicated in the establishment of long-term cellular infections and represent a tool for understanding the physiological states and the environment that bacteria face living in fluctuating intracellular environments. PMID:24779357

  16. The EGFR/ErbB3 Pathway Acts as a Compensatory Survival Mechanism upon c-Met Inhibition in Human c-Met+ Hepatocellular Carcinoma

    PubMed Central

    Steinway, Steven N.; Dang, Hien; You, Hanning; Rountree, C. Bart; Ding, Wei

    2015-01-01

    Background c-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF), plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC) patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance. Methods We utilized the human MHCC97-H c-Met positive (c-Met+) HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells) were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses. Results We have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate

  17. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    PubMed Central

    Pitangui, Nayla de Souza; Sardi, Janaina de Cássia Orlandi; Voltan, Aline R.; dos Santos, Claudia T.; da Silva, Julhiany de Fátima; da Silva, Rosangela A. M.; Souza, Felipe O.; Soares, Christiane P.; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms. PMID:26793172

  18. Invasion of the Central Nervous System by Intracellular Bacteria

    PubMed Central

    Drevets, Douglas A.; Leenen, Pieter J. M.; Greenfield, Ronald A.

    2004-01-01

    Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens. PMID:15084504

  19. ER functions of oncogenes and tumor suppressors: Modulators of intracellular Ca(2+) signaling.

    PubMed

    Bittremieux, Mart; Parys, Jan B; Pinton, Paolo; Bultynck, Geert

    2016-06-01

    Intracellular Ca(2+) signals that arise from the endoplasmic reticulum (ER), the major intracellular Ca(2+)-storage organelle, impact several mitochondrial functions and dictate cell survival and cell death processes. Furthermore, alterations in Ca(2+) signaling in cancer cells promote survival and establish a high tolerance towards cell stress and damage, so that the on-going oncogenic stress does not result in the activation of cell death. Over the last years, the mechanisms underlying these oncogenic alterations in Ca(2+) signaling have started to emerge. An important aspect of this is the identification of several major oncogenes, including Bcl-2, Bcl-XL, Mcl-1, PKB/Akt, and Ras, and tumor suppressors, such as p53, PTEN, PML, BRCA1, and Beclin 1, as direct and critical regulators of Ca(2+)-transport systems located at the ER membranes, including IP3 receptors and SERCA Ca(2+) pumps. In this way, these proteins execute part of their function by controlling the ER-mitochondrial Ca(2+) fluxes, favoring either survival (oncogenes) or cell death (tumor suppressors). Oncogenic mutations, gene deletions or amplifications alter the expression and/or function of these proteins, thereby changing the delicate balance between oncogenes and tumor suppressors, impacting oncogenesis and favoring malignant cell function and behavior. In this review, we provided an integrated overview of the impact of the major oncogenes and tumor suppressors, often altered in cancer cells, on Ca(2+) signaling from the ER Ca(2+) stores. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  20. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  1. Intracellular Macrophage Infections with E. coli under Nitrosative Stress

    PubMed Central

    Bateman, Stacey L.; Seed, Patrick

    2016-01-01

    Escherichia coli (E. coli) produces disseminated infections of the urinary tract, blood, and central nervous system where it encounters professional phagocytes such as macrophages, which utilize reactive nitrogen intermediates (RNI) to arrest bacteria. In vitro, extraintestinal pathogenic E. coli (ExPEC) can survive within bone marrow-derived macrophages for greater than 24 h post-infection within a LAMP1+ vesicular compartment, and ExPEC strains, in particular, are better adapted to intracellular macrophage survival than commensal strains (Bokil et al., 2011). This protocol details an intracellular murine macrophage-like cell infection, including modulation of the host nitrosative stress response, to model this host-pathogen interaction in vitro. To accomplish this, RAW 264.7 murine macrophage-like cells are pre-incubated with either L-arginine, an NO precursor, or IFNγ to yield a high nitric oxide (NO) physiological state, or L-NAME, an inducible NO synthase (iNOS)-specific inhibitor, to yield a low NO physiological state. This protocol has been successfully utilized to assess the contribution of a novel ExPEC regulator to intracellular survival and the nitrosative stress response during macrophage infections (Bateman and Seed, 2012), but can be adapted for use with a variety of E. coli strains or isogenic deletions.

  2. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  3. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  4. Coxiella subversion of intracellular host signaling.

    PubMed

    Hussain, S Kauser; Voth, Daniel E

    2012-01-01

    Coxiella burnetii is a highly infectious bacterial pathogen that replicates in a specialized vacuole inside eukaryotic cells. Due to a prolonged growth cycle, Coxiella continuously manipulates cellular processes to generate this parasitophorous vacuole (PV) and promote host cell viability. Here, we discuss recent findings that indicate Coxiella modulates several host signaling pathways to influence survival and ensure intracellular replication. The pathogen actively inhibits apoptotic cell death and activates the pro-survival kinases Akt and Erk1/2 to promote host viability. Coxiella's anti-apoptotic activity also involves the interface between autophagy and apoptosis, which is regulated by the interaction of autophagy-related Beclin-1 and anti-apoptotic Bcl-2. Additionally, Coxiella requires host kinase activity for PV biogenesis and maintenance. Thus, signaling modulation by Coxiella is critical for multiple aspects of host cell parasitism. Collectively, recent signaling studies have enhanced our understanding of the unique Coxiella-host cell interaction. Identification of bacterial factors that regulate signaling events will further our ability to model this intriguing infectious process.

  5. Sensing and surviving hypoxia in vertebrates.

    PubMed

    Jonz, Michael G; Buck, Leslie T; Perry, Steve F; Schwerte, Thorsten; Zaccone, Giacomo

    2016-02-01

    Surviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates. We discuss the respiratory structures in fish, including the skin, gills, and air-breathing organs, and recent evidence for chemosensory neuroepithelial cells (NECs) in these tissues that initiate reflex responses to hypoxia. The use of the zebrafish as a genetic and developmental model has allowed observation of the ontogenesis of respiratory and chemosensory systems, demonstration of a putative intracellular O2 sensor in chemoreceptors that may initiate transduction of the hypoxia signal, and investigation into the effects of extreme hypoxia on cardiorespiratory development. Other organisms, such as goldfish and freshwater turtles, display a high degree of anoxia tolerance, and these models are revealing important adaptations at the cellular level, such as the regulation of glutamatergic and GABAergic neurotransmission in defense of homeostasis in central neurons.

  6. Decreased dissociation of the 3-methylcrotonyl-CoA carboxylase complex from Achromobacter in the presence of 3-methylcrotonyl-CoA. A possible regulatory mechanism for the intracellular degradation of the enzyme.

    PubMed

    Schiele, U; Stürzer, M

    1975-12-01

    By inactivation of different concentrations of 3-methylcrotonyl-CoA carboxylase from Achromobacter IVS with a fixed concentration of iodoacetamide, it was demonstrated that the degree of dissociation of the complex is considerably lower in the presence of 3-methylcrotonyl-CoA. ATP did not produce this effect. This property could serve to regulate the intracellular degradation of the enzyme, if the dissociated subunits were attacked preferentially.

  7. Beyond Survival

    ERIC Educational Resources Information Center

    Steffenson, Dave

    1975-01-01

    The author argues that environmentalists need to realize that the present ecological crisis is essentially a value crisis, not merely a fight for survival alone. He envisions a complete value change for the human population and advocates the incorporation of value strategies into all environmental education programs immediately. (MA)

  8. Fluorescent acid-fast microscopy for measuring phagocytosis of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum by Tetrahymena pyriformis and their intracellular growth.

    PubMed

    Strahl, E D; Gillaspy, G E; Falkinham, J O

    2001-10-01

    Fluorescent acid-fast microscopy (FAM) was used to enumerate intracellular Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in the ciliated phagocytic protozoan Tetrahymena pyriformis. There was a linear relationship between FAM and colony counts of M. avium cells both from cultures and within protozoa. The Ziehl-Neelsen acid-fast stain could not be used to enumerate intracellular mycobacteria because uninfected protozoa contained acid-fast, bacterium-like particles. Starved, 7-day-old cultures of T. pyriformis transferred into fresh medium readily phagocytized M. avium, M. intracellulare, and M. scrofulaceum. Phagocytosis was rapid and reached a maximum in 30 min. M. avium, M. intracellulare, and M. scrofulaceum grew within T. pyriformis, increasing by factors of 4- to 40-fold after 5 days at 30 degrees C. Intracellular M. avium numbers remained constant over a 25-day period of growth (by transfer) of T. pyriformis. Intracellular M. avium cells also survived protozoan encystment and germination. The growth and viability of T. pyriformis were not affected by mycobacterial infection. The results suggest that free-living phagocytic protozoa may be natural hosts and reservoirs for M. avium, M. intracellulare, and M. scrofulaceum.

  9. Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia.

    PubMed Central

    Chudin, E; Goldhaber, J; Garfinkel, A; Weiss, J; Kogan, B

    1999-01-01

    Ventricular fibrillation (VF), the major cause of sudden cardiac death, is typically preceded by ventricular tachycardia (VT), but the mechanisms underlying the transition from VT to VF are poorly understood. Intracellular Ca(2+) overload occurs during rapid heart rates typical of VT and is also known to promote arrhythmias. We therefore studied the role of intracellular Ca(2+) dynamics in the transition from VT to VF, using a combined experimental and mathematical modeling approach. Our results show that 1) rapid pacing of rabbit ventricular myocytes at 35 degrees C led to increased intracellular Ca(2+) levels and complex patterns of action potential (AP) configuration and the intracellular Ca(2+) transients; 2) the complex patterns of the Ca(2+) transient arose directly from the dynamics of intracellular Ca(2+) cycling, and were not merely passive responses to beat-to-beat alterations in AP; 3) the complex Ca(2+) dynamics were simulated in a modified version of the Luo-Rudy (LR) ventricular action potential with improved intracellular Ca(2+) dynamics, and showed good agreement with the experimental findings in isolated myocytes; and 4) when incorporated into simulated two-dimensional cardiac tissue, this action potential model produced a form of spiral wave breakup from VT to a VF-like state in which intracellular Ca(2+) dynamics played a key role through its influence on Ca(2+)-sensitive membrane currents such as I(Ca), I(NaCa), and I(ns(Ca)). To the extent that spiral wave breakup is useful as a model for the transition from VT to VF, these findings suggest that intracellular Ca(2+) dynamics may play an important role in the destabilization of VT and its degeneration into VF. PMID:10585917

  10. The proteome targets of intracellular targeting antimicrobial peptides.

    PubMed

    Shah, Pramod; Hsiao, Felix Shih-Hsiang; Ho, Yu-Hsuan; Chen, Chien-Sheng

    2016-04-01

    Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review.

  11. Effects of Triclosan on Neural Stem Cell Viability and Survival.

    PubMed

    Park, Bo Kyung; Gonzales, Edson Luck T; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  12. Microcolonial fungi: survival potential of terrestrial vegetative structures.

    PubMed

    Gorbushina, Anna

    2003-01-01

    So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures. PMID:14678663

  13. Microcolonial fungi: survival potential of terrestrial vegetative structures.

    PubMed

    Gorbushina, Anna

    2003-01-01

    So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.

  14. Microcolonial Fungi: Survival Potential of Terrestrial Vegetative Structures

    NASA Astrophysics Data System (ADS)

    Gorbushina, Anna

    2003-11-01

    So far mainly spores or other "differentiated-for-survival" structures were considered to be resistant against extreme environmental constraints (including extraterrestrial challenges). Microcolonial fungi (MCF) are unique growth structures formed by eukaryotic microorganisms inhabiting rock varnish surfaces in terrestrial deserts. They are here proposed as a new object for exobiological study. Sun-exposed desert rocks provide surface habitats with intense solar radiation, a scarce water supply, drastic changes in temperature, and episodic to sporadic availability of nutrients. These challenging conditions reduce the diversity of life to MCF, whose resistance to desiccation and tolerance for ultraviolet (UV) radiation make them survival specialists. Based upon our studies of MCF, we propose that the following mechanisms are universally employed for survival on rock surfaces: (1) compact tissue-like colony organization formed by thermodynamically optimal round cells embedded in extracellular polymeric substances, (2) the presence of several types of UV-absorbing compounds (melanins and mycosporines) and antioxidants (carotenoids, melanins, and mycosporines) that convey multiple stress resistance to desiccation, temperature, and irradiation changes, and (3) intracellular developmental mechanisms typical for these structures.

  15. Effects of Triclosan on Neural Stem Cell Viability and Survival

    PubMed Central

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  16. Magnetic tweezers for intracellular applications

    NASA Astrophysics Data System (ADS)

    Hosu, Basarab G.; Jakab, Károly; Bánki, Péter; Tóth, Ferenc I.; Forgacs, Gabor

    2003-09-01

    We have designed and constructed a versatile magnetic tweezer primarily for intracellular investigations. The micromanipulator uses only two coils to simultaneously magnetize to saturation micron-size superparamagnetic particles and generate high magnitude constant field gradients over cellular dimensions. The apparatus resembles a miniaturized Faraday balance, an industrial device used to measure magnetic susceptibility. The device operates in both continuous and pulse modes. Due to its compact size, the tweezers can conveniently be mounted on the stage of an inverted microscope and used for intracellular manipulations. A built-in temperature control unit maintains the sample at physiological temperatures. The operation of the tweezers was tested by moving 1.28 μm diameter magnetic beads inside macrophages with forces near 500 pN.

  17. Effects of aldosterone and mineralocorticoid receptor blockade on intracellular electrolytes.

    PubMed

    Wehling, Martin

    2005-01-01

    Genomic mechanisms of mineralocorticoid action have been increasingly elucidated over the past four decades. In renal epithelia, the main effect is an increase in sodium transport through activation and de novo synthesis of epithelial sodium channels. This leads to increased concentrations of intracellular sodium activating sodium-potassium-ATPase molecules mainly at the basolateral membrane which extrude sodium back into the blood stream. In contrast, rapid steroid actions have been widely recognized only recently. The present article summarizes both traditional and rapid effects of mineralocorticoid hormones on intracellular electrolytes, e.g. free intracellular calcium in vascular smooth muscle cells as determined by fura 2 spectrofluorometry in single cultured cells from rat aorta. Latter effects are almost immediate, reach a plateau after only 3 to 5 minutes and are characterized by high specificity for mineralocorticoids versus glucocorticoids. The effect of aldosterone is blocked by neomycin and short-term treatment with phorbol esters but augmented by staurosporine, indicating an involvement of phospholipase C and protein kinase C. The Ca(2+) effect appears to involve the release of intracellular Ca(2+), as shown by the inhibitory effect of thapsigargin. This mechanism operates at physiological subnanomolar aldosterone concentrations and appears to result in rapid fine tuning of cardiovascular responsivity. As a landmark feature of these rapid effects, insensitivity to classic antimineralocorticosteroids, e.g. spironolactone or canrenone has been found in the majority of observations. In an integrated view, mineralocorticoids seem to mainly effect intracellular electrolytes genomically to induce transepithelial transport, and induce nongenomically mediated alterations of cell function (e.g. vasoconstriction) by rapid effects on intracellular electrolytes such as free intracellular calcium. PMID:15947890

  18. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  19. Intracellular calcium channels in protozoa.

    PubMed

    Docampo, Roberto; Moreno, Silvia N J; Plattner, Helmut

    2014-09-15

    Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in six subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.

  20. Intracellular Calcium Channels in Protozoa

    PubMed Central

    Docampo, Roberto; Moreno, Silvia N.J.; Plattner, Helmut

    2014-01-01

    Ca2+-signaling pathways and intracellular Ca2+ channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in 6 subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca2+ signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca2+ channels (TRPCs) and intracellular mechanosensitive Ca2+-channels in Paramecium and in parasitic protozoa. PMID:24291099

  1. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms.

    PubMed

    Zhan, Fenghuang; Colla, Simona; Wu, Xiaosong; Chen, Bangzheng; Stewart, James P; Kuehl, W Michael; Barlogie, Bart; Shaughnessy, John D

    2007-06-01

    Overexpression of CKS1B, a gene mapping within a minimally amplified region between 153 to 154 Mb of chromosome 1q21, is linked to a poor prognosis in multiple myeloma (MM). CKS1B binds to and activates cyclin-dependent kinases and also interacts with SKP2 to promote the ubiquitination and proteasomal degradation of p27(Kip1). Overexpression of CKS1B or SKP2 contributes to increased p27(Kip1) turnover, cell proliferation, and a poor prognosis in many tumor types. Using 4 MM cell lines harboring MAF-, FGFR3/MMSET-, or CCND1-activating translocations, we show that lentiviral delivery of shRNA directed against CKS1B resulted in ablation of CKS1B mRNA and protein with concomitant stabilization of p27(Kip1), cell cycle arrest, and apoptosis. Although shRNA-mediated knockdown of SKP2 and forced expression of a nondegradable form of p27(Kip1) (p27(T187A)) led to cell cycle arrest, apoptosis was modest. Of importance, while knockdown of SKP2 or overexpression of p27(T187A) induced cell cycle arrest in KMS28PE, an MM cell line with biallelic deletion of CDKN1B/p27(Kip1), CKS1B ablation induced strong apoptosis. These data suggest that CKS1B influences myeloma cell growth and survival through SKP2- and p27(Kip1)-dependent and -independent mechanisms and that therapeutic strategies aimed at abolishing CKS1B function may hold promise for the treatment of high-risk disease for which effective therapies are currently lacking.

  2. Intracellularly induced cyclophilins play an important role in stress adaptation and virulence of Brucella abortus.

    PubMed

    Roset, Mara S; García Fernández, Lucía; DelVecchio, Vito G; Briones, Gabriel

    2013-02-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells.

  3. Intracellularly Induced Cyclophilins Play an Important Role in Stress Adaptation and Virulence of Brucella abortus

    PubMed Central

    García Fernández, Lucía; DelVecchio, Vito G.; Briones, Gabriel

    2013-01-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells. PMID:23230297

  4. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria

    PubMed Central

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-01-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria. PMID:25009182

  5. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  6. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria.

    PubMed

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-29

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  7. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis.

    PubMed

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-12-01

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host-symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops.

  8. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis

    PubMed Central

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-01-01

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host–symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops. PMID:26598690

  9. IL-4 Induces Metallothionein 3- and SLC30A4-Dependent Increase in Intracellular Zn(2+) that Promotes Pathogen Persistence in Macrophages.

    PubMed

    Subramanian Vignesh, Kavitha; Landero Figueroa, Julio A; Porollo, Aleksey; Divanovic, Senad; Caruso, Joseph A; Deepe, George S

    2016-09-20

    Alternative activation of macrophages promotes wound healing but weakens antimicrobial defenses against intracellular pathogens. The mechanisms that suppress macrophage function to create a favorable environment for pathogen growth remain elusive. We show that interleukin (IL)-4 triggers a metallothionein 3 (MT3)- and Zn exporter SLC30A4-dependent increase in the labile Zn(2+) stores in macrophages and that intracellular pathogens can exploit this increase in Zn to survive. IL-4 regulates this pathway by shuttling extracellular Zn into macrophages and by activating cathepsins that act on MT3 to release bound Zn. We show that IL-4 can modulate Zn homeostasis in both human monocytes and mice. In vivo, MT3 can repress macrophage function in an M2-polarizing environment to promote pathogen persistence. Thus, MT3 and SLC30A4 dictate the size of the labile Zn(2+) pool and promote the survival of a prototypical intracellular pathogen in M2 macrophages. PMID:27653687

  10. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling.

    PubMed

    Corral-Jara, Karla F; Trujillo-Ochoa, Jorge L; Realpe, Mauricio; Panduro, Arturo; Gómez-Leyva, Juan F; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia; Fierro, Nora A

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  11. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling

    PubMed Central

    Corral-Jara, Karla F.; Gómez-Leyva, Juan F.; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  12. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling.

    PubMed

    Corral-Jara, Karla F; Trujillo-Ochoa, Jorge L; Realpe, Mauricio; Panduro, Arturo; Gómez-Leyva, Juan F; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia; Fierro, Nora A

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1.

  13. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.

    PubMed

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A Trey; Choi, Jungmin; Caradonna, Kacey L; Padmanabhan, Prasad; Ndegwa, David M; Temanni, M Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M; Burleigh, Barbara A

    2016-04-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  14. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection

    PubMed Central

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A. Trey; Choi, Jungmin; Caradonna, Kacey L.; Padmanabhan, Prasad; Ndegwa, David M.; Temanni, M. Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M.; Burleigh, Barbara A.

    2016-01-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  15. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.

    PubMed

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A Trey; Choi, Jungmin; Caradonna, Kacey L; Padmanabhan, Prasad; Ndegwa, David M; Temanni, M Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M; Burleigh, Barbara A

    2016-04-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  16. Stochastic models of intracellular calcium signals

    NASA Astrophysics Data System (ADS)

    Rüdiger, Sten

    2014-01-01

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels-one of the most important cellular signaling mechanisms-feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction-diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker-Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  17. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  18. Intracellular hyperthermia: Nanobubbles and their biomedical applications.

    PubMed

    Wen, Dongsheng

    2009-11-01

    Functionalised nanoparticles have been proposed as potential agents for non-invasive therapies where an external source such as a laser or an electro-magnetic wave is used to heat targeted particles for either drug release or malignant cell damage. It is desirable to have intracellular reactions to minimise the damage to health cells. However, it is still debatable from the thermal response point of view, whether intracellular hyperthermia is better than extracellular delivery due to conventional ideas of localisation of heat by nanoparticles. This work conducts an analytical study on the heating of a single nanoparticle by a pulsed laser and reveals the potential role of the formation of nanobubbles around heated particles. The rapid formation and contraction of bubbles around heated nanoparticles, associated with the propagation of pressure waves, could bring thermal-mechanical damage to surrounding cells at a dimension much larger than that of a nanoparticle. The challenges of the study of nanobubbles are highlighted and their potential healthcare implications are discussed.

  19. Mucolipins: Intracellular TRPML1-3 channels.

    PubMed

    Cheng, Xiping; Shen, Dongbiao; Samie, Mohammad; Xu, Haoxing

    2010-05-17

    The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.

  20. Mucolipins: Intracellular TRPML1-3 Channels

    PubMed Central

    Cheng, Xiping; Shen, Dongbiao; Samie, Mohammad; Xu, Haoxing

    2010-01-01

    The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal “recycling center” for biological “garbage”, are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously over-expressed have revealed the channel properties of TRPMLs in mediating cation (Ca2+/Fe2+) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration. PMID:20074572

  1. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease.

    PubMed

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Amoroso, Salvatore; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  2. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease

    PubMed Central

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  3. Intracellular Ca2+ signaling and preimplantation development.

    PubMed

    Armant, D Randall

    2015-01-01

    The key, versatile role of intracellular Ca2+ signaling during egg activation after fertilization has been appreciated for several decades. More recently, evidence has accumulated supporting the concept that cytoplasmic Ca2+ is also a major signaling nexus during subsequent development of the fertilized ovum. This chapter will review the molecular reactions that regulate intracellular Ca2+ levels and cell function, the role of Ca2+ signaling during egg activation and specific examples of repetitive Ca2+ signaling found throughout pre- and peri-implantation development. Many of the upstream and downstream pathways utilized during egg activation are also critical for specific processes that take place during embryonic development. Much remains to be done to elucidate the full complexity of Ca2+ signaling mechanisms in preimplantation embryos to the level of detail accomplished for egg activation. However, an emerging concept is that because this second messenger can be modulated downstream of numerous receptors and is able to bind and activate multiple cytoplasmic signaling proteins, it can help the coordination of development through up- and downstream pathways that change with each embryonic stage.

  4. Intracellular pathogens convert macrophages from death traps into hospitable homes.

    PubMed

    Barbier, Julien; Cintrat, Jean-Christophe; Gillet, Daniel

    2016-02-01

    Intracellular pathogens - bacteria, parasites and fungi - frequently infect macrophages in addition to other cells. They turn these deadly cells into harmless hosts to multiply and paralyze immunity. Understanding the complex mechanisms underlying this phenomenon may have a strong impact to identify new targets belonging to the pathogens but also to the host, thereby allowing the design of new therapeutic strategies.

  5. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells.

    PubMed

    Larsen, Anett K; Nymo, Ingebjørg H; Briquemont, Benjamin; Sørensen, Karen K; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72-96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  6. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    PubMed Central

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  7. Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles.

    PubMed

    Olofsson, Jenny; Axelsson-Olsson, Diana; Brudin, Lars; Olsen, Björn; Ellström, Patrik

    2013-01-01

    The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81-176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced. PMID:24223169

  8. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling.

    PubMed

    Rodríguez-Sinovas, Antonio; Cabestrero, Alberto; López, Diego; Torre, Iratxe; Morente, Miriam; Abellán, Arancha; Miró, Elisabet; Ruiz-Meana, Marisol; García-Dorado, David

    2007-01-01

    Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues, including, prominently, myocardium, where connexin 43 (Cx43) is the most important isoform. Previous studies have shown that GJ-mediated communication has an important role in the cellular response to stress or ischemia. However, recent evidence suggests that connexins, and in particular Cx43, may have additional effects that may be important in cell death and survival by mechanisms independent of cell to cell communication. Connexin hemichannels, located at the plasma membrane, may be important in paracrine signaling that could influence intracellular calcium and cell survival by releasing intracellular mediators as ATP, NAD(+), or glutamate. In addition, recent studies have shown the presence of connexins in cell structures other than the plasma membrane, including the cell nucleus, where it has been suggested that Cx43 influences cell growth and differentiation. In addition, translocation of Cx43 to mitochondria appears to be important for certain forms of cardioprotection. These findings open a new field of research of previously unsuspected roles of Cx43 intracellular signaling.

  9. Thermodynamic analysis of intracellular ice recrystallization in mouse oocytes.

    PubMed

    Kang, Jonghoon; Purnell, Crystal B; Fisher, Nathan R

    2010-08-01

    In a recent article published in Cryobiology, Seki and Mazur performed kinetic analysis to investigate the physicochemical mechanism of the intracellular ice formation in mouse oocytes subjected to rapid cooling. Based on their results, the authors calculated the activation energy for the ice recrystallization process to be 27.5 kcal/mol. In this letter, we report our analysis of the result in terms of the transition-state theory to show that the process is unfavorable in terms of enthalpy but favorable in terms of entropy accompanying molecular expansions. This report is expected to evoke interests in applying thermodynamics to the investigation of the intracellular ice formation.

  10. Pharmacological analysis of intracellular Ca2+ signalling: problems and pitfalls.

    PubMed

    Taylor, C W; Broad, L M

    1998-09-01

    The complex changes in intracellular Ca2+ concentration that follow cell stimulation reflect the concerted activities of Ca2+ channels in the plasma membrane and in the membranes of intracellular stores, and the opposing actions of the mechanisms that extrude Ca2+ from the cytosol. Disentangling the roles of each of these processes is hampered by the lack of adequately selective pharmacological tools. In this review, Colin Taylor and Lisa Broad summarize the more serious problems associated with some of the commonly used drugs, and describe specific situations in which the multiple effects of drugs on Ca2(+)-signalling pathways have confused analysis of these pathways.

  11. In vitro and ex vivo strategies for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Stewart, Martin P.; Sharei, Armon; Ding, Xiaoyun; Sahay, Gaurav; Langer, Robert; Jensen, Klavs F.

    2016-10-01

    Intracellular delivery of materials has become a critical component of genome-editing approaches, ex vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current technologies motivate development of next-generation systems that can deliver a broad variety of cargo to diverse cell types. Here we review in vitro and ex vivo intracellular delivery approaches with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and laboratory-on-chip technology in advancing the field.

  12. Intracellular parcel service: current issues in intracellular membrane trafficking.

    PubMed

    Herrmann, Johannes M; Spang, Anne

    2015-01-01

    Eukaryotic cells contain a multitude of membrane structures that are connected through a highly dynamic and complex exchange of their constituents. The vibrant instability of these structures challenges the classical view of defined, static compartments that are connected by different types of vesicles. Despite this astonishing complexity, proteins and lipids are accurately transported into the different intracellular membrane systems. Over the past few decades many factors have been identified that either mediate or regulate intracellular membrane trafficking. Like in a modern parcel sorting system of a logistics center, the cargo typically passes through several sequential sorting stations until it finally reaches the location that is specified by its individual address label. While each membrane system employs specific sets of factors, the transport processes typically operate on common principles. With the advent of genome- and proteome-wide screens, the availability of mutant collections, exciting new developments in microscope technology and sophisticated methods to study their dynamics, the future promises a broad and comprehensive picture of the processes by which eukaryotic cells sort their proteins.

  13. Intracellular fate of Mycobacterium avium: use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction.

    PubMed Central

    Oh, Y K; Straubinger, R M

    1996-01-01

    Mycobacterium avium is a facultative intracellular pathogen that can survive and replicate within macrophages. We tested the hypotheses that survival mechanisms may include alteration of phagosomal pH or inhibition of phagosome-lysosome fusion. M. avium was surface labeled with N-hydroxysuccinimidyl esters of carboxyfluorescein (CF) and rhodamine (Rho) to enable measurement of the pH of individual M. avium-containing phagosomes and the interactions of bacterium-containing phagosomes with labeled secondary lysosomes. CF fluorescence is pH sensitive, whereas Rho is pH insensitive; pH can be calculated from their fluorescence ratios. Surface labeling of M. avium did not affect viability in broth cultures or within J774, a murine macrophage-like cell line. By fluorescence spectroscopy, live M. avium was exposed to an environmental pH of approximately 5.7 at 6 h after phagocytosis, whereas similarly labeled Salmonella typhimurium, zymosan A, or heat-killed M. avium encountered an environmental pH of < 5.0. Video fluorescence and laser scanning confocal microscopy gave consistent pH results and demonstrated the heterogeneity of intracellular fate early in infection. pH became more homogeneous 6 h after infection. M. avium cells were coated with immunoglobulin G (IgG) or opsonized to investigate whether phagocytosis by the corresponding receptors would alter intracellular fate. Opsonized, unopsonized, and IgG-coated M. avium cells entered compartments of similar pH. Finally, the spatial distribution of intracellular bacteria and secondary lysosomes was compared. Only 18% of live fluorescent M. avium cells colocalized with fluorescent lysosomes, while 98% of heat-killed bacteria colocalized. Thus, both inhibition of phagosome-lysosome fusion and alteration of phagosomal pH may contribute to the intracellular survival of M. avium. PMID:8557358

  14. Intracellular targeting with engineered proteins.

    PubMed

    Miersch, Shane; Sidhu, Sachdev S

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action.

  15. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  16. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  17. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    PubMed

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms. PMID:27055246

  18. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation

    PubMed Central

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G. John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg’) shows that cells with the lowest value of intracellular Tg’ survive the freezing process better than cells with a higher intracellular Tg’. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms. PMID:27055246

  19. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy

    PubMed Central

    Giuliano, Mario; Hu, Huizhong; Wang, Yen-Chao; Fu, Xiaoyong; Nardone, Agostina; Herrera, Sabrina; Mao, Sufeng; Contreras, Alejandro; Gutierrez, Carolina; Wang, Tao; Hilsenbeck, Susan G.; De Angelis, Carmine; Wang, Nicholas J.; Heiser, Laura M.; Gray, Joe W.; Lopez-Tarruella, Sara; Pavlick, Anne C.; Trivedi, Meghana V.; Chamness, Gary C.; Chang, Jenny C.; Osborne, C. Kent; Rimawi, Mothaffar F.; Schiff, Rachel

    2015-01-01

    Purpose To investigate the direct effect and therapeutic consequences of epidermal growth factor receptor 2 (HER2)-targeting therapy on expression of estrogen receptor (ER) and Bcl2 in preclinical models and clinical tumor samples. Experimental design Archived xenograft tumors from two preclinical models (UACC812 and MCF7/HER2-18) treated with ER and HER2-targeting therapies, and also HER2+ clinical breast cancer specimens collected in a lapatinib neoadjuvant trial (baseline and week 2 post treatment), were used. Expression levels of ER and Bcl2 were evaluated by immunohistochemistry and western blot. The effects of Bcl2 and ER inhibition, by ABT-737 and fulvestrant respectively, were tested in parental versus lapatinib-resistant UACC812 cells in vitro. Results Expression of ER and Bcl2 was significantly increased in xenograft tumors with acquired resistance to anti-HER2 therapy, compared with untreated tumors, in both preclinical models (UACC812: ER p=0.0014; Bcl2 p<0.001. MCF7/HER2-18: ER p=0.0007; Bcl2 p=0.0306). In the neoadjuvant clinical study, lapatinib treatment for two weeks was associated with parallel upregulation of ER and Bcl2 (Spearman’s coefficient: 0.70; p=0.0002). Importantly, 18% of tumors originally ER-negative (ER−) converted to ER+ upon anti-HER2 therapy. In ER−/HER2+ MCF7/HER2-18 xenografts, ER re-expression was primarily observed in tumors responding to potent combination of anti-HER2 drugs. Estrogen deprivation added to this anti-HER2 regimen significantly delayed tumor progression (p=0.018). In the UACC812 cells, fulvestrant, but not ABT-737, was able to completely inhibit anti-HER2-resistant growth (p<0.0001). Conclusion HER2 inhibition can enhance or restore ER expression with parallel Bcl2 upregulation, representing an ER-dependent survival mechanism potentially leading to anti-HER2 resistance. PMID:26015514

  20. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: New insights into molecular mechanisms responsible for the disease

    SciTech Connect

    Hahnen, E.; Schoenling, J.; Zerres, K.

    1996-11-01

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive neurodegenerative disorder leading to weakness and atrophy of voluntary muscles. The survival motor-neuron gene (SMN), a strong candidate for SMA, is present in two highly homologous copies (telSMN and cenSMN) within the SMA region. Only five nucleotide differences within the region between intron 6 and exon 8 distinguish these homologues. Independent of the severity of the disease, 90%-98% of all SMA patients carry homozygous deletions in telSMN, affecting either exon 7 or both exons 7 and 8. We present the molecular analysis of 42 SMA patients who carry homozygous deletions of telSMN exon 7 but not of exon 8. The question arises whether in these cases the telSMN is truncated upstream of exon 8 or whether hybrid SMN genes exist that are composed of centromeric and telomeric sequences. By a simple PCR-based assay we demonstrate that in each case the remaining telSMN exon 8 is part of a hybrid SMN gene. Sequencing of cloned hybrid SMN genes from seven patients revealed the same composition in all but two patients: the base-pair differences in introns 6 and 7 and exon 7 are of centromeric origin whereas exon 8 is of telomeric origin. Nonetheless, haplotype analysis with polymorphic multicopy markers, Ag1-CA and C212, localized at the 5{prime} end of the SMN genes, suggests different mechanisms of occurrence, unequal rearrangements, and gene conversion involving both copies of the SMN genes. In approximately half of all patients, we identified a consensus haplotype, suggesting a common origin. Interestingly, we identified a putative recombination hot spot represented by recombination-simulating elements (TGGGG and TGAGGT) in exon 8 that is homologous to the human deletion-hot spot consensus sequence in the immunoglobulin switch region, the {alpha}-globin cluster, and the polymerase {alpha} arrest sites. This may explain why independent hybrid SMN genes show identical sequences. 35 refs., 4 figs., 1 tab.

  1. Candida glabrata survives and replicates in human osteoblasts.

    PubMed

    Muñoz-Duarte, Ana Rosa; Castrejón-Jiménez, Nayeli Shantal; Baltierra-Uribe, Shantal Lizbeth; Pérez-Rangel, Sofia Judith; Carapia-Minero, Natalee; Castañeda-Sánchez, Jorge Ismael; Luna-Herrera, Julieta; López-Santiago, Rubén; Rodríguez-Tovar, Aída Verónica; García-Pérez, Blanca Estela

    2016-06-01

    Candida glabrata is an opportunistic pathogen that is considered the second most common cause of candidiasis after Candida albicans Many characteristics of its mechanisms of pathogenicity remain unknown. Recent studies have focused on determining the events that underlie interactions between C. glabrata and immune cells, but the relationship between this yeast and osteoblasts has not been studied in detail. The aim of this study was to determine the mechanisms of interaction between human osteoblasts and C. glabrata, and to identify the roles played by some of the molecules that are produced by these cells in response to infection. We show that C. glabrata adheres to and is internalized by human osteoblasts. Adhesion is independent of opsonization, and internalization depends on the rearrangement of the actin cytoskeleton. We show that C. glabrata survives and replicates in osteoblasts and that this intracellular behavior is related to the level of production of nitric oxide and reactive oxygen species. Opsonized C. glabrata stimulates the production of IL-6, IL-8 and MCP-1 cytokines. Adhesion and internalization of the pathogen and the innate immune response of osteoblasts require viable C. glabrata These results suggest that C. glabrata modulates immunological mechanisms in osteoblasts to survive inside the cell.

  2. Candida glabrata survives and replicates in human osteoblasts.

    PubMed

    Muñoz-Duarte, Ana Rosa; Castrejón-Jiménez, Nayeli Shantal; Baltierra-Uribe, Shantal Lizbeth; Pérez-Rangel, Sofia Judith; Carapia-Minero, Natalee; Castañeda-Sánchez, Jorge Ismael; Luna-Herrera, Julieta; López-Santiago, Rubén; Rodríguez-Tovar, Aída Verónica; García-Pérez, Blanca Estela

    2016-06-01

    Candida glabrata is an opportunistic pathogen that is considered the second most common cause of candidiasis after Candida albicans Many characteristics of its mechanisms of pathogenicity remain unknown. Recent studies have focused on determining the events that underlie interactions between C. glabrata and immune cells, but the relationship between this yeast and osteoblasts has not been studied in detail. The aim of this study was to determine the mechanisms of interaction between human osteoblasts and C. glabrata, and to identify the roles played by some of the molecules that are produced by these cells in response to infection. We show that C. glabrata adheres to and is internalized by human osteoblasts. Adhesion is independent of opsonization, and internalization depends on the rearrangement of the actin cytoskeleton. We show that C. glabrata survives and replicates in osteoblasts and that this intracellular behavior is related to the level of production of nitric oxide and reactive oxygen species. Opsonized C. glabrata stimulates the production of IL-6, IL-8 and MCP-1 cytokines. Adhesion and internalization of the pathogen and the innate immune response of osteoblasts require viable C. glabrata These results suggest that C. glabrata modulates immunological mechanisms in osteoblasts to survive inside the cell. PMID:27073253

  3. Enhanced egress of intracellular Eimeria tenella sporozoites by splenic lymphocytes from coccidia-infected chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egress, which describes the mechanism that some intracellular parasites use to exit from parasitophorous vacuoles and host cells, plays a very important role in the parasite life cycle and is central to Eimeria propagation and pathogenesis. Despite the importance of egress in the intracellular paras...

  4. Intracellular Neural Recording with Pure Carbon Nanotube Probes

    PubMed Central

    Yoon, Inho; Hamaguchi, Kosuke; Borzenets, Ivan V.; Finkelstein, Gleb; Mooney, Richard; Donald, Bruce R.

    2013-01-01

    The computational complexity of the brain depends in part on a neuron’s capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications. PMID:23840357

  5. Intracellular transport of fat-soluble vitamins A and E.

    PubMed

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.

  6. How worms survive desiccation

    PubMed Central

    Erkut, Cihan; Penkov, Sider; Fahmy, Karim; Kurzchalia, Teymuras V.

    2012-01-01

    While life requires water, many organisms, known as anhydrobiotes, can survive in the absence of water for extended periods of time. Although discovered 300 years ago, we know very little about the fascinating phenomenon of anhydrobiosis. In this paper, we summarize our previous findings on the desiccation tolerance of the Caenorhabditis elegans dauer larva. A special emphasis is given to the role of trehalose in protecting membranes against desiccation. We also propose a simple mechanism for this process. PMID:24058825

  7. Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium.

    PubMed

    Joseph, Julie; Ametepe, Emmanuelle S; Haribabu, Naveen; Agbayani, Gerard; Krishnan, Lakshmi; Blais, Alexandre; Sad, Subash

    2016-01-01

    Virulent intracellular pathogens, such as the Salmonella species, engage numerous virulence factors to subvert host defence mechanisms to induce a chronic infection that leads to typhoid or exacerbation of other chronic inflammatory conditions. Here we show the role of the forkhead transcription factor FoxO3a during infection of mice with Salmonella typhimurium (ST). Although FoxO3a signalling does not affect the development of CD8(+) T cell responses to ST, FoxO3a has an important protective role, particularly during the chronic stage of infection, by limiting the persistence of oxidative stress. Furthermore, FoxO3a signalling regulates ERK signalling in macrophages, which results in the maintenance of a proinflammatory state. FoxO3a signalling does not affect cell proliferation or cell death. Thus, these results reveal mechanisms by which FoxO3a promotes host survival during infection with chronic, virulent intracellular bacteria. PMID:27599659

  8. Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium

    PubMed Central

    Joseph, Julie; Ametepe, Emmanuelle S.; Haribabu, Naveen; Agbayani, Gerard; Krishnan, Lakshmi; Blais, Alexandre; Sad, Subash

    2016-01-01

    Virulent intracellular pathogens, such as the Salmonella species, engage numerous virulence factors to subvert host defence mechanisms to induce a chronic infection that leads to typhoid or exacerbation of other chronic inflammatory conditions. Here we show the role of the forkhead transcription factor FoxO3a during infection of mice with Salmonella typhimurium (ST). Although FoxO3a signalling does not affect the development of CD8+ T cell responses to ST, FoxO3a has an important protective role, particularly during the chronic stage of infection, by limiting the persistence of oxidative stress. Furthermore, FoxO3a signalling regulates ERK signalling in macrophages, which results in the maintenance of a proinflammatory state. FoxO3a signalling does not affect cell proliferation or cell death. Thus, these results reveal mechanisms by which FoxO3a promotes host survival during infection with chronic, virulent intracellular bacteria. PMID:27599659

  9. Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming

    PubMed Central

    Liu, Xiaoyun; Gao, Beile; Novik, Veronica; Galán, Jorge E.

    2012-01-01

    Campylobacter jejuni is the major cause of bacterial food-borne illness in the USA and Europe. An important virulence attribute of this bacterial pathogen is its ability to enter and survive within host cells. Here we show through a quantitative proteomic analysis that upon entry into host cells, C. jejuni undergoes a significant metabolic downshift. Furthermore, our results indicate that intracellular C. jejuni reprograms its respiration, favoring the respiration of fumarate. These results explain the poor ability of C. jejuni obtained from infected cells to grow under standard laboratory conditions and provide the bases for the development of novel anti microbial strategies that would target relevant metabolic pathways. PMID:22412372

  10. Molecular mechanisms of Cl- transport by the renal Na(+)-K(+)-Cl- cotransporter. Identification of an intracellular locus that may form part of a high affinity Cl(-)-binding site.

    PubMed

    Gagnon, Edith; Bergeron, Marc J; Brunet, Geneviève M; Daigle, Nikolas D; Simard, Charles F; Isenring, Paul

    2004-02-13

    The 2nd transmembrane domain (tm) of the secretory Na(+)-K(+)-Cl(-) cotransporter (NKCC1) and of the kidney-specific isoform (NKCC2) has been shown to play an important role in cation transport. For NKCC2, by way of illustration, alternative splicing of exon 4, a 96-bp sequence from which tm2 is derived, leads to the formation of the NKCC2A and F variants that both exhibit unique affinities for cations. Of interest, the NKCC2 variants also exhibit substantial differences in Cl- affinity as well as in the residue composition of the first intracellular connecting segment (cs1a), which immediately follows tm2 and which too is derived from exon 4. In this study, we have prepared chimeras of the shark NKCC2A and F (saA and saF) to determine whether cs1a could play a role in Cl- transport; here, tm2 or cs1a in saF was replaced by the corresponding domain from saA (generating saA/F or saF/A, respectively). Functional analyses of these chimeras have shown that cs1a-specific residues account for most of the A-F difference in Cl- affinity. For example, Km(Cl-)s were approximately 8 mm for saF/A and saA, and approximately 70 mm for saA/F and saF. Intriguingly, variant residues in cs1a also affected cation transport; here, Km(Na+)s for the chimeras and for saA were all approximately 20 mM, and Km(Rb+) all approximately 2 mM. Regarding tm2, our studies have confirmed its importance in cation transport and have also identified novel properties for this domain. Taken together, our results demonstrate for the first time that an intracellular loop in NKCC contributes to the transport process perhaps by forming a flexible structure that positions itself between membrane spanning domains. PMID:14645215

  11. Are extracellular osmolality and sodium concentration determined by Donnan effects of intracellular protein charges and of pumped sodium?

    PubMed

    Kurbel, Sven

    2008-06-21

    counteracting the average Donnan effect of charges on cytoplasmic proteins. When the optimal ECF sodium concentration had once become the reference point for osmoreceptors (controlling thirst and ADH secretion) and other regulatory mechanisms (secretion of renin/angiotensin/aldosterone, natriuretic factors), it made an important survival advantage that allowed spreading of animal life in fresh water and conquering of earth. The actual common value had to be a compromise that reduces the average osmotic burden on body cells to zero. Individual cells can reduce eventual residual osmotic forces on their membrane through altering cell volume by chloride shift, and by modulating the Na+K+-ATPase function. PMID:18374361

  12. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.

    PubMed

    Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng

    2016-06-01

    Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular

  13. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.

    PubMed

    Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng

    2016-06-01

    Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular

  14. Analysing intracellular deformation of polymer capsules using structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cui, Jiwei; Sun, Huanli; Müllner, Markus; Yan, Yan; Noi, Ka Fung; Ping, Yuan; Caruso, Frank

    2016-06-01

    Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces, which induce capsule deformation during cell uptake, vary between cell lines, indicating that the capsules are exposed to higher mechanical forces in HeLa cells, followed by RAW264.7 and then differentiated THP-1 cells. Our study demonstrates the use of super-resolution SIM in analysing intracellular capsule deformation, offering important insights into the cellular processing of drug carriers in cells and providing fundamental knowledge of intracellular mechanobiology. Furthermore, this study may aid in the design of novel drug carriers that are sensitive to deformation for enhanced drug release properties.Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces

  15. Intracellular Delivery System for Antibody–Peptide Drug Conjugates

    PubMed Central

    Berguig, Geoffrey Y; Convertine, Anthony J; Frayo, Shani; Kern, Hanna B; Procko, Erik; Roy, Debashish; Srinivasan, Selvi; Margineantu, Daciana H; Booth, Garrett; Palanca-Wessels, Maria Corinna; Baker, David; Hockenbery, David; Press, Oliver W; Stayton, Patrick S

    2015-01-01

    Antibodies armed with biologic drugs could greatly expand the therapeutic potential of antibody–drug conjugates for cancer therapy, broadening their application to disease targets currently limited by intracellular delivery barriers. Additional selectivity and new therapeutic approaches could be realized with intracellular protein drugs that more specifically target dysregulated pathways in hematologic cancers and other malignancies. A multifunctional polymeric delivery system for enhanced cytosolic delivery of protein drugs has been developed that incorporates endosomal-releasing activity, antibody targeting, and a biocompatible long-chain ethylene glycol component for optimized safety, pharmacokinetics, and tumor biodistribution. The pH-responsive polymeric micelle carrier, with an internalizing anti-CD22 monoclonal targeting antibody, effectively delivered a proapoptotic Bcl-2 interacting mediator (BIM) peptide drug that suppressed tumor growth for the duration of treatment and prolonged survival in a xenograft mouse model of human B-cell lymphoma. Antitumor drug activity was correlated with a mechanistic induction of the Bcl-2 pathway biomarker cleaved caspase-3 and a marked decrease in the Ki-67 proliferation biomarker. Broadening the intracellular target space by more effective delivery of protein/peptide drugs could expand the repertoire of antibody–drug conjugates to currently undruggable disease-specific targets and permit tailored drug strategies to stratified subpopulations and personalized medicines. PMID:25669432

  16. Molecular crosstalk between apoptosis, necroptosis, and survival signaling

    PubMed Central

    Vanden Berghe, Tom; Kaiser, William J; Bertrand, Mathieu JM; Vandenabeele, Peter

    2015-01-01

    Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research. PMID:27308513

  17. Discovery of New Intracellular Pathogens by Amoebal Coculture and Amoebal Enrichment Approaches

    PubMed Central

    Jacquier, Nicolas; Aeby, Sébastien; Lienard, Julia; Greub, Gilbert

    2013-01-01

    Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes. PMID:24192667

  18. Small Non-Coding RNAs: New Insights in Modulation of Host Immune Response by Intracellular Bacterial Pathogens

    PubMed Central

    Ahmed, Waqas; Zheng, Ke; Liu, Zheng-Fei

    2016-01-01

    Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors and enable the bacteria to survive and proliferate within host cell. Small non-coding RNAs (sRNAs) have been identified as important regulators of gene expression in diverse biological contexts. Recent research has shown bacterial sRNAs involved in growth and development, cell proliferation, differentiation, metabolism, cell signaling, and immune response through regulating protein–protein interactions or via their ability to base pair with RNA and DNA. In this review, we provide a brief overview of mechanism of action employed by immune-related sRNAs, their known functions in immunity, and how they can be integrated into regulatory circuits that govern virulence, which will facilitate our understanding of pathogenesis and the development of novel, more effective therapeutic approaches to treat infections caused by intracellular bacterial pathogens. PMID:27803700

  19. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    PubMed

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-01

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  20. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation

    PubMed Central

    Matias, Andreza Cândido; Manieri, Tânia Maria; Cerchiaro, Giselle

    2016-01-01

    We report the molecular mechanism for zinc depletion caused by TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine) in neuroblastoma cells. The activation of p38 MAP kinase and subsequently caspase 3 is not due to or followed by redox imbalance or ROS generation, though these are commonly observed in literature. We found that TPEN is not responsible for ROS generation and the mechanism involves essentially lysosomal disruption caused by intracellular zinc depletion. We also observed a modest activation of Bax and no changes in the Bcl-2 proteins. As a result, we suggest that TPEN causes intracellular zinc depletion which can influence the breakdown of lysosomes and cell death without ROS generation. PMID:27123155

  1. Dynamics of intracellular information decoding

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  2. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intracellular ice formed in rapidly cooled embryonic axes of Acer saccharinum and was not necessarily lethal when ice crystals were small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic a...

  3. Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats.

    PubMed

    Hamson, D K; Wainwright, S R; Taylor, J R; Jones, B A; Watson, N V; Galea, L A M

    2013-09-01

    Gonadal steroids are potent regulators of adult neurogenesis. We previously reported that androgens, such as testosterone (T) and dihydrotestosterone (DHT), but not estradiol, increased the survival of new neurons in the dentate gyrus of the male rat. These results suggest androgens regulate hippocampal neurogenesis via the androgen receptor (AR). To test this supposition, we examined the role of ARs in hippocampal neurogenesis using 2 different approaches. In experiment 1, we examined neurogenesis in male rats insensitive to androgens due to a naturally occurring mutation in the gene encoding the AR (termed testicular feminization mutation) compared with wild-type males. In experiment 2, we injected the AR antagonist, flutamide, into castrated male rats and compared neurogenesis levels in the dentate gyrus of DHT and oil-treated controls. In experiment 1, chronic T increased hippocampal neurogenesis in wild-type males but not in androgen-insensitive testicular feminization mutation males. In experiment 2, DHT increased hippocampal neurogenesis via cell survival, an effect that was blocked by concurrent treatment with flutamide. DHT, however, did not affect cell proliferation. Interestingly, cells expressing doublecortin, a marker of immature neurons, did not colabel with ARs in the dentate gyrus, but ARs were robustly expressed in other regions of the hippocampus. Together these studies provide complementary evidence that androgens regulate adult neurogenesis in the hippocampus via the AR but at a site other than the dentate gyrus. Understanding where in the brain androgens act to increase the survival of new neurons in the adult brain may have implications for neurodegenerative disorders.

  4. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    PubMed

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-01

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  5. Contributions of intracellular ions to kv channel voltage sensor dynamics.

    PubMed

    Goodchild, Samuel J; Fedida, David

    2012-01-01

    Voltage-sensing domains (VSDs) of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K(+) ions to flow. Conformational transitions within the VSD are induced by changes in the applied voltage across the membrane field. However, several other factors not directly linked to the voltage-dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity, and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization, and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  6. The host genetic background of DNA repair mechanisms is an independent predictor of survival in diffuse large B-cell lymphoma.

    PubMed

    Rossi, Davide; Rasi, Silvia; Di Rocco, Alice; Fabbri, Alberto; Forconi, Francesco; Gloghini, Annunziata; Bruscaggin, Alessio; Franceschetti, Silvia; Fangazio, Marco; De Paoli, Lorenzo; Bruna, Riccardo; Capello, Daniela; Chiappella, Annalisa; Lobetti Bodoni, Chiara; Giachelia, Manuela; Tisi, Maria Chiara; Pogliani, Enrico M; Lauria, Francesco; Ladetto, Marco; Hohaus, Stefan; Martelli, Maurizio; Vitolo, Umberto; Carbone, Antonino; Foà, Robin; Gaidano, Gianluca

    2011-02-24

    Several drugs used for diffuse large B-cell lymphoma (DLBCL) treatment rely on DNA damage for tumor cell killing. We verified the prognostic impact of the host DNA repair genotype in 2 independent cohorts of DLBCL treated with R-CHOP21 (training cohort, 163 cases; validation cohort, 145 cases). Among 35 single nucleotide polymorphisms analyzed in the training series, MLH1 rs1799977 was the sole predicting overall survival. DLBCL carrying the MLH1 AG/GG genotype displayed an increased death risk (hazard ratio [HR] = 3.23; P < .001; q =0 .009) compared with patients carrying the AA genotype. Multivariate analysis adjusted for International Prognostic Index identified MLH1 AG/GG as an independent OS predictor (P < .001). The poor prognosis of MLH1 AG/GG was the result of an increased risk of failing both R-CHOP21 (HR = 2.02; P = .007) and platinum-based second-line (HR = 2.26; P = .044) treatment. Survival analysis in the validation series confirmed all outcomes predicted by MLH1 rs1799977. The effect on OS of MLH1, a component of the DNA mismatch repair system, is consistent with its role in regulating the genotoxic effects of doxorubicin and platinum compounds, which are a mainstay of DLBCL first- and second-line treatment.

  7. ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells

    PubMed Central

    Wang, Caixia; Hu, Xiaoke; Gao, Yan; Ji, Yinglu

    2015-01-01

    Owing to the wide use of novel nanoparticles (NPs) such as zinc oxide (ZnO) in all aspects of life, toxicological research on ZnO NPs is receiving increasing attention in these days. In this study, the toxicity of ZnO NPs in a human pulmonary adenocarcinoma cell line LTEP-a-2 was tested in vitro. Log-phase cells were exposed to different levels of ZnO NPs for hours, followed by colorimetric cell viability assay using tetrazolium salt and cell survival rate assay using trypan blue dye. Cell morphological changes were observed by Giemsa staining and light microscopy. Apoptosis was detected by using fluorescence microscopy and caspase-3 activity assay. Both intracellular reactive oxygen species (ROS) and reduced glutathione (GSH) were examined by a microplate-reader method. Results showed that ZnO NPs (≥0.01 μg/mL) significantly inhibited proliferation (P < 0.05) and induced substantial apoptosis in LTEP-a-2 cells after 4 h of exposure. The intracellular ROS level rose up to 30–40% corresponding to significant depletion (approximately 70–80%) in GSH content in LTEP-a-2 cells (P < 0.05), suggesting that ZnO NPs induced apoptosis mainly through increased ROS production. This study elucidates the toxicological mechanism of ZnO NPs in human pulmonary adenocarcinoma cells and provides reference data for application of nanomaterials in the environment. PMID:26339612

  8. ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells.

    PubMed

    Wang, Caixia; Hu, Xiaoke; Gao, Yan; Ji, Yinglu

    2015-01-01

    Owing to the wide use of novel nanoparticles (NPs) such as zinc oxide (ZnO) in all aspects of life, toxicological research on ZnO NPs is receiving increasing attention in these days. In this study, the toxicity of ZnO NPs in a human pulmonary adenocarcinoma cell line LTEP-a-2 was tested in vitro. Log-phase cells were exposed to different levels of ZnO NPs for hours, followed by colorimetric cell viability assay using tetrazolium salt and cell survival rate assay using trypan blue dye. Cell morphological changes were observed by Giemsa staining and light microscopy. Apoptosis was detected by using fluorescence microscopy and caspase-3 activity assay. Both intracellular reactive oxygen species (ROS) and reduced glutathione (GSH) were examined by a microplate-reader method. Results showed that ZnO NPs (≥ 0.01 μg/mL) significantly inhibited proliferation (P < 0.05) and induced substantial apoptosis in LTEP-a-2 cells after 4 h of exposure. The intracellular ROS level rose up to 30-40% corresponding to significant depletion (approximately 70-80%) in GSH content in LTEP-a-2 cells (P < 0.05), suggesting that ZnO NPs induced apoptosis mainly through increased ROS production. This study elucidates the toxicological mechanism of ZnO NPs in human pulmonary adenocarcinoma cells and provides reference data for application of nanomaterials in the environment. PMID:26339612

  9. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells

    PubMed Central

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels. PMID:26682007

  10. Intracellular Shuttle: The Lactate Aerobic Metabolism

    PubMed Central

    Cruz, Rogério Santos de Oliveira; de Aguiar, Rafael Alves; Turnes, Tiago; Penteado Dos Santos, Rafael; Fernandes Mendes de Oliveira, Mariana; Caputo, Fabrizio

    2012-01-01

    Lactate is a highly dynamic metabolite that can be used as a fuel by several cells of the human body, particularly during physical exercise. Traditionally, it has been believed that the first step of lactate oxidation occurs in cytosol; however, this idea was recently challenged. A new hypothesis has been presented based on the fact that lactate-to-pyruvate conversion cannot occur in cytosol, because the LDH enzyme characteristics and cytosolic environment do not allow the reaction in this way. Instead, the Intracellular Lactate Shuttle hypothesis states that lactate first enters in mitochondria and only then is metabolized. In several tissues of the human body this idea is well accepted but is quite resistant in skeletal muscle. In this paper, we will present not only the studies which are protagonists in this discussion, but the potential mechanism by which this oxidation occurs and also a link between lactate and mitochondrial proliferation. This new perspective brings some implications and comes to change our understanding of the interaction between the energy systems, because the product of one serves as a substrate for the other. PMID:22593684

  11. Intracellular events regulating cross-presentation

    PubMed Central

    Wagner, Claudia S.; Grotzke, Jeffrey E.; Cresswell, Peter

    2012-01-01

    Cross-presentation plays a fundamental role in the induction of CD8-T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process. First, antigens must be internalized into the cross-presenting cell. The involvement of different receptors, method of antigen uptake, and nature of the antigen can influence intracellular trafficking and access to the cross-presentation pathway. Once antigens access the endocytic system, different requirements for endosomal/phagosomal processing arise, such as proteolysis and reduction of disulfide bonds. The majority of cross-presented peptides are generated by proteasomal degradation. Therefore, antigens must cross a membrane barrier in a manner analogous to the fate of misfolded proteins in the endoplasmic reticulum (ER) that are retrotranslocated into the cytosol for degradation. Indeed, some components of the ER-associated degradation machinery have been implicated in cross-presentation. Further complicating the matter, endosomal and phagosomal compartments have been suggested as alternative sites to the ER for loading of peptides on major histocompatibility complex class I molecules. Finally, the antigen presenting cells involved, particularly dendritic cell subsets and their state of maturation, influence the efficiency of cross-presentation. PMID:22675326

  12. Intracellular Streptococcus pyogenes in Human Macrophages Display an Altered Gene Expression Profile

    PubMed Central

    Hertzén, Erika; Johansson, Linda; Kansal, Rita; Hecht, Alexander; Dahesh, Samira; Janos, Marton; Nizet, Victor; Kotb, Malak; Norrby-Teglund, Anna

    2012-01-01

    Streptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet unknown. To address this, the gene expression profile of S. pyogenes within human macrophages was determined and compared to that of extracellular bacteria using customized microarrays and real-time qRT-PCR. In order to model the early phase of infection involving adaptation to the intracellular compartment, samples were collected 2h post-infection. Microarray analysis revealed that the expression of 145 streptococcal genes was significantly altered in the intracellular environment. The majority of differentially regulated genes were associated with metabolic and energy-dependent processes. Key up-regulated genes in early phase intracellular bacteria were ihk and irr, encoding a two-component gene regulatory system (TCS). Comparison of gene expression of selected genes at 2h and 6h post-infection revealed a dramatic shift in response regulators over time with a down-regulation of ihk/irr genes concurring with an up-regulation of the covR/S TCS. In re-infection assays, intracellular bacteria from the 6h time point exhibited significantly greater survival within macrophages than did bacteria collected at the 2h time point. An isogenic S. pyogenes mutant deficient in ihk/irr displayed significantly reduced bacterial counts when compared to wild-type bacteria following infection of macrophages. The findings illustrate how gene expression of S. pyogenes during the intracellular life cycle is fine-tuned by temporal expression of specific two-component systems. PMID:22511985

  13. Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile.

    PubMed

    Hertzén, Erika; Johansson, Linda; Kansal, Rita; Hecht, Alexander; Dahesh, Samira; Janos, Marton; Nizet, Victor; Kotb, Malak; Norrby-Teglund, Anna

    2012-01-01

    Streptococcus pyogenes is an important human pathogen, which has recently gained recognition as an intracellular microorganism during the course of severe invasive infections such as necrotizing fasciitis. Although the surface anchored M protein has been identified as a pivotal factor affecting phagosomal maturation and S. pyogenes survival within macrophages, the overall transcriptional profile required for the pathogen to adapt and persist intracellularly is as of yet unknown. To address this, the gene expression profile of S. pyogenes within human macrophages was determined and compared to that of extracellular bacteria using customized microarrays and real-time qRT-PCR. In order to model the early phase of infection involving adaptation to the intracellular compartment, samples were collected 2h post-infection. Microarray analysis revealed that the expression of 145 streptococcal genes was significantly altered in the intracellular environment. The majority of differentially regulated genes were associated with metabolic and energy-dependent processes. Key up-regulated genes in early phase intracellular bacteria were ihk and irr, encoding a two-component gene regulatory system (TCS). Comparison of gene expression of selected genes at 2h and 6h post-infection revealed a dramatic shift in response regulators over time with a down-regulation of ihk/irr genes concurring with an up-regulation of the covR/S TCS. In re-infection assays, intracellular bacteria from the 6h time point exhibited significantly greater survival within macrophages than did bacteria collected at the 2h time point. An isogenic S. pyogenes mutant deficient in ihk/irr displayed significantly reduced bacterial counts when compared to wild-type bacteria following infection of macrophages. The findings illustrate how gene expression of S. pyogenes during the intracellular life cycle is fine-tuned by temporal expression of specific two-component systems.

  14. Stochastic resonance in an intracellular genetic perceptron

    NASA Astrophysics Data System (ADS)

    Bates, Russell; Blyuss, Oleg; Zaikin, Alexey

    2014-03-01

    Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence. We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon, which manifests itself in noise-induced increase of response in efficiency after the learning event under the conditions of optimal stochasticity.

  15. Visualization of Intracellular Tyrosinase Activity in vitro

    PubMed Central

    Setty, Subba Rao Gangi

    2016-01-01

    Melanocytes produce the melanin pigments in melanosomes and these organelles protect the skin against harmful ultraviolet rays. Tyrosinase is the key cuproenzyme which initiates the pigment synthesis using its substrate amino acid tyrosine or L-DOPA (L-3, 4-dihydroxyphenylalanine). Moreover, the activity of tyrosinase directly correlates to the cellular pigmentation. Defects in tyrosinase transport to melanosomes or mutations in the enzyme or reduced intracellular copper levels results in loss of tyrosinase activity in melanosomes, commonly observed in albinism. Here, we described a method to detect the intracellular activity of tyrosinase in mouse melanocytes. This protocol will visualize the active tyrosinase present in the intracellular vesicles or organelles including melanosomes. PMID:27231711

  16. Spatial aspects of intracellular information processing.

    PubMed

    Kinkhabwala, Ali; Bastiaens, Philippe I H

    2010-02-01

    The computational properties of intracellular biochemical networks, for which the cell is assumed to be a 'well-mixed' reactor, have already been widely characterized. What has so far not received systematic treatment is the important role of space in many intracellular computations. Spatial network computations can be divided into two broad categories: those required for essential spatial processes (e.g. polarization, chemotaxis, division, and development) and those for which space is simply used as an extra dimension to expand the computational power of the network. Several pertinent recent examples of each category are discussed that illustrate the often conceptually subtle role of space in the processing of intracellular information. PMID:20096560

  17. Transient Transfection and Expression in the Obligate Intracellular Parasite Toxoplasma gondii

    NASA Astrophysics Data System (ADS)

    Soldati, Dominique; Boothroyd, John C.

    1993-04-01

    Toxoplasma gondii is a protozoan pathogen that produces severe disease in humans and animals. This obligate intracellular parasite provides an excellent model for the study of how such pathogens are able to invade, survive, and replicate intracellularly. DNA encoding chloramphenicol acetyltransferase was introduced into T. gondii and transiently expressed with the use of three vectors based on different Toxoplasma genes. The ability to introduce genes and have them efficiently and faithfully expressed is an essential tool for understanding the structure-function relation of genes and their products.

  18. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    PubMed

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. PMID:26805764

  19. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation

    PubMed Central

    Liszewski, M. Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G.; Fara, Antonella F.; Subias, Marta; Pickering, Matthew C.; Drouet, Christian; Meri, Seppo; Arstila, T. Petteri; Pekkarinen, Pirkka T.; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P.; Kemper, Claudia

    2013-01-01

    Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  20. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

    PubMed

    Liszewski, M Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G; Fara, Antonella F; Subias, Marta; Pickering, Matthew C; Drouet, Christian; Meri, Seppo; Arstila, T Petteri; Pekkarinen, Pirkka T; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P; Kemper, Claudia

    2013-12-12

    Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  1. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    SciTech Connect

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We show here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.

  2. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release

    PubMed Central

    Singh, Ramandeep; Manjunatha, Ujjini; Boshoff, Helena I. M.; Ha, Young Hwan; Niyomrattanakit, Pornwaratt; Ledwidge, Richard; Dowd, Cynthia S.; Lee, Ill Young; Kim, Pilho; Zhang, Liang; Kang, Sunhee; Keller, Thomas H.; Jiricek, Jan; Barry, Clifton E.

    2009-01-01

    Bicyclic nitroimidazoles, including PA-824, are exciting candidates for the treatment of tuberculosis. These prodrugs require intracellular activation for their biological function. We found that Rv3547 is a deazaflavin-dependent nitroreductase (Ddn) that converts PA-824 into three primary metabolites; the major one is the corresponding des-nitroimidazole (des-nitro). When derivatives of PA-824 were used, the amount of des-nitro metabolite formed was highly correlated with anaerobic killing of Mycobacterium tuberculosis (Mtb). Des-nitro metabolite formation generated reactive nitrogen species, including nitric oxide (NO), which are the major effectors of the anaerobic activity of these compounds. Furthermore, NO scavengers protected the bacilli from the lethal effects of the drug. Thus, these compounds may act as intracellular NO donors and could augment a killing mechanism intrinsic to the innate immune system. PMID:19039139

  3. Highly potent intracellular membrane-associated Aβ seeds

    PubMed Central

    Marzesco, Anne-Marie; Flötenmeyer, Matthias; Bühler, Anika; Obermüller, Ulrike; Staufenbiel, Matthias; Jucker, Mathias; Baumann, Frank

    2016-01-01

    An early event in Alzheimer’s disease (AD) pathogenesis is the formation of extracellular aggregates of amyloid-β peptide (Aβ), thought to be initiated by a prion-like seeding mechanism. However, the molecular nature and location of the Aβ seeds remain rather elusive. Active Aβ seeds are found in crude homogenates of amyloid-laden brains and in the soluble fraction thereof. To analyze the seeding activity of the pellet fraction, we have either separated or directly immunoisolated membranes from such homogenates. Here, we found considerable Aβ seeding activity associated with membranes in the absence of detectable amyloid fibrils. We also found that Aβ seeds on mitochondrial or associated membranes efficiently induced Aβ aggregation in vitro and seed β-amyloidosis in vivo. Aβ seeds at intracellular membranes may contribute to the spreading of Aβ aggregation along neuronal pathways and to the induction of intracellular pathologies downstream of Aβ. PMID:27311744

  4. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  5. Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen

    PubMed Central

    Willett, Jonathan W.; Herrou, Julien; Briegel, Ariane; Rotskoff, Grant; Crosson, Sean

    2015-01-01

    We have functionally and structurally defined an essential protein phosphorelay that regulates expression of genes required for growth, division, and intracellular survival of the global zoonotic pathogen Brucella abortus. Our study delineates phosphoryl transfer through this molecular pathway, which initiates from the sensor kinase CckA and proceeds through the ChpT phosphotransferase to two regulatory substrates: CtrA and CpdR. Genetic perturbation of this system results in defects in cell growth and division site selection, and a specific viability deficit inside human phagocytic cells. Thus, proper control of B. abortus division site polarity is necessary for survival in the intracellular niche. We further define the structural foundations of signaling from the central phosphotransferase, ChpT, to its response regulator substrate, CtrA, and provide evidence that there are at least two modes of interaction between ChpT and CtrA, only one of which is competent to catalyze phosphoryltransfer. The structure and dynamics of the active site on each side of the ChpT homodimer are distinct, supporting a model in which quaternary structure of the 2:2 ChpT–CtrA complex enforces an asymmetric mechanism of phosphoryl transfer between ChpT and CtrA. Our study provides mechanistic understanding, from the cellular to the atomic scale, of a conserved transcriptional regulatory system that controls the cellular and infection biology of B. abortus. More generally, our results provide insight into the structural basis of two-component signal transduction, which is broadly conserved in bacteria, plants, and fungi. PMID:26124143

  6. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  7. On the Survival Stage.

    ERIC Educational Resources Information Center

    Callahan, Steven

    1997-01-01

    Presents a survival expert's model of survival. Characterizes survival in terms of being prepared for a crisis, escaping the immediate threat, avoiding disorientation and fear, and the survival routine, which includes hope, flexibility, and humor. Notes the impact of posttrauma situations and the need for continued vigilance. (RJM)

  8. Intracellular collagen fibrils: evidence of an intracellular source from experiments with tendon fibroblasts and fibroblastic tumour cells.

    PubMed Central

    Michna, H

    1988-01-01

    This study was designed to substantiate one or both of the two hypotheses for the explanation of intracellular collagen fibrils in collagen-producing cells. The more obvious is the phagocytosis of extracellular collagen fibrils by the cell and the other is a form of autophagocytosis of newly synthesised collagenous products. Information was collected on fibroblasts from murine tendons after exercise and simultaneously stimulating collagen synthesis by treatment with an anabolic steroid hormone. Moreover, in vivo and in vitro fibroblastic tumour cells which demonstrate enhanced protein synthesis were also treated with the anabolic steroid. The findings of intracellular collagen fibrils in tendon fibroblasts and the sarcoma cells after experimentally stimulating collagen synthesis are discussed in the light of the hypothesis that the findings may represent steps of autophagocytosis of newly synthesised collagenous products in the absence of a control mechanism to remove collagenous products which cannot be secreted. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:3225213

  9. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  10. Transmission of survival signals through Delta-like 1 on activated CD4+ T cells

    PubMed Central

    Furukawa, Takahiro; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Maekawa, Yoichi; Matsui, Naoko; Kaji, Ryuji; Yasutomo, Koji

    2016-01-01

    Notch expressed on CD4+ T cells transduces signals that mediate their effector functions and survival. Although Notch signaling is known to be cis-inhibited by Notch ligands expressed on the same cells, the role of Notch ligands on T cells remains unclear. In this report we demonstrate that the CD4+ T cell Notch ligand Dll1 transduces signals required for their survival. Co-transfer of CD4+ T cells from Dll1−/− and control mice into recipient mice followed by immunization revealed a rapid decline of CD4+ T cells from Dll1−/− mice compared with control cells. Dll1−/− mice exhibited lower clinical scores of experimental autoimmune encephalitis than control mice. The expression of Notch target genes in CD4+ T cells from Dll1−/− mice was not affected, suggesting that Dll1 deficiency in T cells does not affect cis Notch signaling. Overexpression of the intracellular domain of Dll1 in Dll1-deficient CD4+ T cells partially rescued impaired survival. Our data demonstrate that Dll1 is an independent regulator of Notch-signaling important for the survival of activated CD4+ T cells, and provide new insight into the physiological roles of Notch ligands as well as a regulatory mechanism important for maintaining adaptive immune responses. PMID:27659682

  11. Diatoms respire nitrate to survive dark and anoxic conditions

    PubMed Central

    Kamp, Anja; de Beer, Dirk; Nitsch, Jana L.; Lavik, Gaute; Stief, Peter

    2011-01-01

    Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO3− intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11–274 mM NO3− in their cells survived for 6–28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84–87% of its intracellular NO3− pool within 1 d. A stable-isotope labeling experiment proved that 15NO3− consumption was accompanied by the production and release of 15NH4+, indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO3− in sediment layers without O2 and NO3−. The rapid depletion of the intracellular NO3− storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH4+ source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones. PMID:21402908

  12. The invA gene of Brucella melitensis is involved in intracellular invasion and is required to establish infection in a mouse model.

    PubMed

    Alva-Pérez, Jorge; Arellano-Reynoso, Beatriz; Hernández-Castro, Rigoberto; Suárez-Güemes, Francisco

    2014-05-15

    Some of the mechanisms underlying the invasion and intracellular survival of B. melitensis are still unknown, including the role of a subfamily of NUDIX enzymes, which have been described in other bacterial species as invasins and are present in Brucella spp. We have generated a mutation in the coding gene of one of these proteins, the invA gene (BMEI0215) of B. melitensis strain 133, to understand its role in virulence. HeLa cell invasion results showed that mutant strain survival was decreased 5-fold compared with that of the parental strain at 2 h pi (P<0.001). In a goat macrophage infection assay, mutant strain replication was 8-fold less than in the parental strain at 24 h pi (P<0.001); yet, at 48 h pi, no significant differences in intracellular replication were observed. Additionally, colocalization of the invA mutant with calregulin was significantly lower at 24 h pi compared with that of the parental strain. Furthermore, the mutant strain exhibited a low level of colocalization with cathepsin D, which was similar to the parental strain colocalization at 24 h pi. In vivo infection results demonstrated that spleen colonization was significantly lower with the mutant than with the parental strain. The immune response, measured in terms of antibody switching and IFN-γ transcription, was similar for Rev1 and infection with the mutant, although it was lower than the immune response elicited by the parental strain. Consequently, these results indicate that the invA gene is important during invasion but not for intracellular replication. Additionally, mutation of the invA gene results in in vivo attenuation.

  13. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    PubMed

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  14. Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin.

    PubMed

    Fivaz, Marc; Meyer, Tobias

    2005-08-01

    The Ras/MAPK pathway regulates synaptic plasticity and cell survival in neurons of the central nervous system. Here, we show that KRas, but not HRas, acutely translocates from the plasma membrane (PM) to the Golgi complex and early/recycling endosomes in response to neuronal activity. Translocation is reversible and mediated by the polybasic-prenyl membrane targeting motif of KRas. We provide evidence that KRas translocation occurs through sequestration of the polybasic-prenyl motif by Ca2+/calmodulin (Ca2+/CaM) and subsequent release of KRas from the PM, in a process reminiscent of GDP dissociation inhibitor-mediated membrane recycling of Rab and Rho GTPases. KRas translocation was accompanied by partial intracellular redistribution of its activity. We conclude that the polybasic-prenyl motif acts as a Ca2+/CaM-regulated molecular switch that controls PM concentration of KRas and redistributes its activity to internal sites. Our data thus define a novel signaling mechanism that differentially regulates KRas and HRas localization and activity in neurons.

  15. Intracellular glycerol accumulation in light-limited Dunaliella tertiolecta culture is determined by partitioning of glycerol across the cell membrane.

    PubMed

    Ng, Daphne H P; Low, Chin Seng; Chow, Yvonne Y S; Lee, Yuan Kun

    2014-08-01

    Dunaliella accumulates intracellular glycerol to counterbalance the extracellular salinity. In N-limited chemostat cultures of D. tertiolecta, total glycerol production (sum of intracellular and extracellular) and intracellular glycerol content were proportional to the salinity of the culture medium. In the light-limited D. tertiolecta culture, total glycerol output (sum of intracellular and extracellular) was relatively constant at different salinities (0.5 and 2.0 M), while the intracellular glycerol content was proportional to the culture medium salinity, that is, the cells released less glycerol into the culture medium, rather than de novo synthesis of glycerol at high culture medium salinity. The study implies different regulatory mechanisms in the accumulation of intracellular glycerol in N-limited and light-limited D. tertiolecta in response to salinity. PMID:24966133

  16. Twenty years of fluorescence imaging of intracellular chloride

    PubMed Central

    Arosio, Daniele; Ratt