Science.gov

Sample records for intracellular survival mechanisms

  1. Invasion and Intracellular Survival by Protozoan Parasites

    PubMed Central

    Sibley, L. David

    2013-01-01

    Summary Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a nonfusigenic vacuole (e.g. Toxoplasma, Encephalitizoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunological responses and thereby prevent disease. PMID:21349087

  2. Strategies for Intracellular Survival of Burkholderia pseudomallei

    PubMed Central

    Allwood, Elizabeth M.; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  3. Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival.

    PubMed

    Bent, Zachary W; Poorey, Kunal; Brazel, David M; LaBauve, Annette E; Sinha, Anupama; Curtis, Deanna J; House, Samantha E; Tew, Karen E; Hamblin, Rachelle Y; Williams, Kelly P; Branda, Steven S; Young, Glenn M; Meagher, Robert J

    2015-07-01

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 °C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 °C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.

  4. A transcriptomic analysis of Yersinia enterocolitica biovar 1B infecting murine macrophages reveals new mechanisms of intracellular survival

    SciTech Connect

    Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; LaBauve, Annette E.; Sinha, Anupama; Curtis, Deanna Joy; House, Samantha E.; Tew, Karen E.; Hamblin, Rachelle Y.; Williams, Kelly Porter; Branda, Steven S.; Young, Glenn M.; Meagher, Robert J.

    2015-04-20

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.

  5. Mechanism of Asp24 Upregulation in Brucella abortus Rough Mutant with a Disrupted O-Antigen Export System and Effect of Asp24 in Bacterial Intracellular Survival

    PubMed Central

    Tian, Mingxing; Qu, Jing; Han, Xiangan; Ding, Chan; Wang, Shaohui; Peng, Daxin

    2014-01-01

    We previously showed that Brucella abortus rough mutant strain 2308 ΔATP (called the ΔrfbE mutant in this study) exhibits reduced intracellular survival in RAW264.7 cells and attenuated persistence in BALB/c mice. In this study, we performed microarray analysis to detect genes with differential expression between the ΔrfbE mutant and wild-type strain S2308. Interestingly, acid shock protein 24 gene (asp24) expression was significantly upregulated in the ΔrfbE mutant compared to S2308, as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Further studies using additional strains indicated that the upregulation of asp24 occurred only in rough mutants with disrupted O-antigen export system components, including the ATP-binding protein gene rfbE (bab1_0542) and the permease gene rfbD (bab1_0543), while the ΔwboA rough mutant (which lacks an O-antigen synthesis-related glycosyltransferase) and the RB51 strain (a vaccine strain with the rough phenotype) showed no significant changes in asp24 expression compared to S2308. In addition, abolishing the intracellular O-antigen synthesis of the ΔrfbE mutant by deleting the wboA gene (thereby creating the ΔrfbE ΔwboA double-knockout strain) recovered asp24 expression. These results indicated that asp24 upregulation is associated with intracellular O-antigen synthesis and accumulation but not with the bacterial rough phenotype. Further studies indicated that asp24 upregulation in the ΔrfbE mutant was associated neither with bacterial adherence and invasion nor with cellular necrosis on RAW264.7 macrophages. However, proper expression of the asp24 gene favors intracellular survival of Brucella in RAW264.7 cells and HeLa cells during an infection. This study reveals a novel mechanism for asp24 upregulation in B. abortus mutants. PMID:24752516

  6. Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival

    PubMed Central

    Poorey, Kunal; Brazel, David M.; LaBauve, Annette E.; Sinha, Anupama; Curtis, Deanna J.; House, Samantha E.; Tew, Karen E.; Hamblin, Rachelle Y.; Williams, Kelly P.; Branda, Steven S.; Young, Glenn M.

    2015-01-01

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies. PMID:25895974

  7. A transcriptomic analysis of Yersinia enterocolitica biovar 1B infecting murine macrophages reveals new mechanisms of intracellular survival

    DOE PAGES

    Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; ...

    2015-04-20

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish amore » baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.« less

  8. Intracellular survival of Burkholderia cepacia complex in phagocytic cells.

    PubMed

    Valvano, Miguel A

    2015-09-01

    Burkholderia cepacia complex (Bcc) species are a group of Gram-negative opportunistic pathogens that infect the airways of cystic fibrosis patients, and occasionally they infect other immunocompromised patients. Bcc bacteria display high-level multidrug resistance and chronically persist in the infected host while eliciting robust inflammatory responses. Studies using macrophages, neutrophils, and dendritic cells, combined with advances in the genetic manipulation of these bacteria, have increased our understanding of the molecular mechanisms of virulence in these pathogens and the molecular details of cell-host responses triggering inflammation. This article discusses our current view of the intracellular survival of Burkholderia cenocepacia within macrophages.

  9. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.

  10. Intracellular glasses and seed survival in the dry state.

    PubMed

    Buitink, Julia; Leprince, Olivier

    2008-10-01

    So-called orthodox seeds can resist complete desiccation and survive the dry state for extended periods of time. During drying, the cellular viscosity increases dramatically and in the dry state, the cytoplasm transforms into a glassy state. The formation of intracellular glasses is indispensable to survive the dry state. Indeed, the storage stability of seeds is related to the packing density and molecular mobility of the intracellular glass, suggesting that the physico-chemical properties of intracellular glasses provide stability for long-term survival. Whereas seeds contain large amounts of soluble non-reducing sugars, which are known to be good glass formers, detailed in vivo measurements using techniques such as FTIR and EPR spectroscopy reveal that these intracellular glasses have properties that are quite different from those of simple sugar glasses. Intracellular glasses exhibit slow molecular mobility and a high molecular packing, resembling glasses made of mixtures of sugars with proteins, which potentially interact with additional cytoplasmic components such as salts, organic acids and amino acids. Above the glass transition temperature, the cytoplasm of biological systems still exhibits a low molecular mobility and a high stability, which serves as an ecological advantage, keeping the seeds stable under adverse conditions of temperature or water content that bring the tissues out of the glassy state.

  11. Inter- and intra-cellular mechanism of NF-kB-dependent survival advantage and clonal expansion of radio-resistant cancer cells.

    PubMed

    Yu, Hui; Aravindan, Natarajan; Xu, Ji; Natarajan, Mohan

    2017-02-01

    Understanding the underlying mechanism by which cancer cells acquire resistance to radiation and favorably selected for its clonal expansion will provide molecular insight into tumor recurrence at the treatment site. In the present study, we investigated the molecular mechanisms prompted in MCF-7 breast cancer cells in response to clinical radiation and the associated coordination of intra- and inter-cellular signaling that orchestrate radio-resistance and tumor relapse/recurrence. Our findings showed that 2 or 10Gy of (137)Cs γ-rays at a dose rate of 1.03Gy/min trigger the activation of nuclear factor kappa B (NF-κB), its DNA-binding activity and recycles its own transcription. NF-κB DNA-binding kinetic analysis demonstrated both sustained and dual phase NF-κB activation with radiation. Gene manipulation approach revealed that radiation triggered NF-κB-mediated TNF-α transcriptional activity. TNF-α blocking approach confirmed that the de novo synthesis and secretion of TNF-α serves as a pre-requisite for the second phase of NF-κB activation and sustained maintenance. Radiation-associated NF-κB-dependent secretion of TNF-α from irradiated cells, in parallel, activates NF-κB in the non-targeted un-irradiated bystander cells. Together, these findings demonstrated that radiation-triggered NF-κB-dependent TNFα secretion is critical for self-sustenance of NF-κB (through autocrine positive feedback signaling) and for coordinating bystander response (through inter-cellular paracrine mechanism) after radiation exposure. Further, the data suggest that this self-sustained NF-κB in the irradiated cells determines radio-resistance, survival advantage and clonal expansion of the tumor cells at the treatment site. Parallel maintenance of NF-ΚB-TNF-α-NF-κB feedback-cycle in the un-irradiated non-targeted bystander cells initiates supportive mechanism for the promotion and progression of surviving tumor cells. Intervening this molecular pathway would help us to

  12. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus

    PubMed Central

    Sharma, Onkar; O’Seaghdha, Maghnus; Velarde, Jorge J.; Wessels, Michael R.

    2016-01-01

    A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS) has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase). When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO), and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase) that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells. PMID:26938870

  13. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  14. The role of TREM-2 in internalization and intracellular survival of Brucella abortus in murine macrophages.

    PubMed

    Wei, Pan; Lu, Qiang; Cui, Guimei; Guan, Zhenhong; Yang, Li; Sun, Changjiang; Sun, Wanchun; Peng, Qisheng

    2015-02-15

    Triggering receptor expressed on myeloid cells-2 (TREM-2) is a cell surface receptor primarily expressed on macrophages and dendritic cells. TREM-2 functions as a phagocytic receptor for bacteria as well as an inhibitor of Toll like receptors (TLR) induced inflammatory cytokines. However, the role of TREM-2 in Brucella intracellular growth remains unknown. To investigate whether TREM-2 is involved in Brucella intracellular survival, we chose bone marrow derived macrophages (BMDMs), in which TREM-2 is stably expressed, as cell model. Colony formation Units (CFUs) assay suggests that TREM-2 is involved in the internalization of Brucella abortus (B. abortus) by macrophages, while silencing of TREM-2 decreases intracellular survival of B. abortus. To further study the underlying mechanisms of TREM-2-mediated bacterial intracellular survival, we examined the activation of B. abortus-infected macrophages through determining the kinetics of activation of the three MAPKs, including ERK, JNK and p38, and measuring TNFα production in response to lipopolysaccharide (LPS) of Brucella (BrLPS) or B. abortus stimulation. Our data show that TREM-2 deficiency promotes activation of Brucella-infected macrophages. Moreover, our data also demonstrate that macrophage activation promotes killing of Brucella by enhancing nitric oxygen (NO), but not reactive oxygen species (ROS) production, macrophage apoptosis or cellular death. Taken together, these findings provide a novel interpretation of Brucella intracellular growth through inhibition of NO production produced by TREM-2-mediated activated macrophages.

  15. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence.

    PubMed

    Kasper, Lydia; Seider, Katja; Hube, Bernhard

    2015-08-01

    Candida glabrata is a successful human opportunistic pathogen which causes superficial but also life-threatening systemic infections. During infection, C. glabrata has to cope with cells of the innate immune system such as macrophages, which belong to the first line of defense against invading pathogens. Candida glabrata is able to survive and even replicate inside macrophages while causing surprisingly low damage and cytokine release. Here, we present an overview of recent studies dealing with the interaction of C. glabrata with macrophages, from phagocytosis to intracellular growth and escape. We review the strategies of C. glabrata that permit intracellular survival and replication, including poor host cell activation, modification of phagosome maturation and phagosome pH, adaptation to antimicrobial activities, and mechanisms to overcome the nutrient limitations within the phagosome. In summary, these studies suggest that survival within macrophages may be an immune evasion and persistence strategy of C. glabrata during infection.

  16. Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection

    PubMed Central

    Bendor, Liron; Weyrich, Laura S.; Linz, Bodo; Rolin, Olivier Y.; Taylor, Dawn L.; Goodfield, Laura L.; Smallridge, William E.; Kennett, Mary J.; Harvill, Eric T.

    2015-01-01

    The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease. PMID:26485303

  17. Type Six Secretion System of Bordetella bronchiseptica and Adaptive Immune Components Limit Intracellular Survival During Infection.

    PubMed

    Bendor, Liron; Weyrich, Laura S; Linz, Bodo; Rolin, Olivier Y; Taylor, Dawn L; Goodfield, Laura L; Smallridge, William E; Kennett, Mary J; Harvill, Eric T

    2015-01-01

    The Type Six Secretion System (T6SS) is required for Bordetella bronchiseptica cytotoxicity, cytokine modulation, infection, and persistence. However, one-third of recently sequenced Bordetella bronchiseptica strains of the predominantly human-associated Complex IV have lost their T6SS through gene deletion or degradation. Since most human B. bronchiseptica infections occur in immunocompromised patients, we determine here whether loss of Type Six Secretion is beneficial to B. bronchiseptica during infection of immunocompromised mice. Infection of mice lacking adaptive immunity (Rag1-/- mice) with a T6SS-deficient mutant results in a hypervirulent phenotype that is characterized by high numbers of intracellular bacteria in systemic organs. In contrast, wild-type B. bronchiseptica kill their eukaryotic cellular hosts via a T6SS-dependent mechanism that prevents survival in systemic organs. High numbers of intracellular bacteria recovered from immunodeficient mice but only low numbers from wild-type mice demonstrates that B. bronchiseptica survival in an intracellular niche is limited by B and T cell responses. Understanding the nature of intracellular survival during infection, and its effects on the generation and function of the host immune response, are important to contain and control the spread of Bordetella-caused disease.

  18. Survival of Brevibacterium linens during nutrient starvation and intracellular changes.

    PubMed

    Boyaval, P; Boyaval, E; Desmazeaud, M J

    1985-03-01

    The present work reports the survival capacity of a strain of Brevibacterium linens isolated from a French camembert cheese and the ensuing changes in cell composition. Exponentially growing cells were harvested, washed and resuspended with shaking in pH 8.0 buffer at 21 degrees C in the absence of a carbon source. The viability of this strain, assessed with slide cultures, is much less than that of coryneform bacteria isolated from soil samples, even though no cell lysis was detected. Intracellular RNA was rapidly consumed during the first few days although magnesium levels remained high. The quantity of DNA initially increased by 17% within 24 h and then remained stable during the 30 days of the experiment. During the same period, absorbance of the medium at 260 nm reached 2 absorbance units. Reserve polysaccharides in this strain are less abundant than in Arthrobacter and were rapidly consumed. Proteolysis was regular and thus maintained a pool of free amino acids which was greater than 60% of the initial value. There was a parallel accumulation of ammonia in the medium. Catalase activity decreased regularly during the first 80 h whereas the quantity of Adenosine-5'-triphosphate (ATP) dropped by 47% in 10 h, stabilizing at less than 10% of its initial value. Cell respiration declined very rapidly and was very low after 24 h.

  19. Mechanisms of cellular invasion by intracellular parasites.

    PubMed

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  20. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  1. Leishmania panamensis infection and antimonial drugs modulate expression of macrophage drug transporters and metabolizing enzymes: impact on intracellular parasite survival

    PubMed Central

    Gómez, Maria Adelaida; Navas, Adriana; Márquez, Ricardo; Rojas, Laura Jimena; Vargas, Deninson Alejandro; Blanco, Victor Manuel; Koren, Roni; Zilberstein, Dan; Saravia, Nancy Gore

    2014-01-01

    Objectives Treatment failure is multifactorial. Despite the importance of host cell drug transporters and metabolizing enzymes in the accumulation, distribution and metabolism of drugs targeting intracellular pathogens, their impact on the efficacy of antileishmanials is unknown. We examined the contribution of pharmacologically relevant determinants in human macrophages in the antimony-mediated killing of intracellular Leishmania panamensis and its relationship with the outcome of treatment with meglumine antimoniate. Methods Patients with cutaneous leishmaniasis who failed (n = 8) or responded (n = 8) to treatment were recruited. Gene expression profiling of pharmacological determinants in primary macrophages was evaluated by quantitative RT–PCR and correlated to the drug-mediated intracellular parasite killing. Functional validation was conducted through short hairpin RNA gene knockdown. Results Survival of L. panamensis after exposure to antimonials was significantly higher in macrophages from patients who failed treatment. Sixteen macrophage drug-response genes were modulated by infection and exposure to meglumine antimoniate. Correlation analyses of gene expression and intracellular parasite survival revealed the involvement of host cell metallothionein-2A and ABCB6 in the survival of Leishmania during exposure to antimonials. ABCB6 was functionally validated as a transporter of antimonial compounds localized in both the cell and phagolysosomal membranes of macrophages, revealing a novel mechanism of host cell-mediated regulation of intracellular drug exposure and parasite survival within phagocytes. Conclusions These results provide insight into host cell mechanisms regulating the intracellular exposure of Leishmania to antimonials and variations among individuals that impact parasite survival. Understanding of host cell determinants of intracellular pharmacokinetics/pharmacodynamics opens new avenues to improved drug efficacy for intracellular

  2. [Seed aging and survival mechanisms].

    PubMed

    Grappin, Philippe; Bourdais, Gildas; Collet, Boris; Godin, Béatrice; Job, Dominique; Ogé, Laurent; Jullien, Marc; Rajjou, Loïc

    2008-01-01

    Aging and death are universal to living systems. In temperate climate latitudes the mature seeds of higher plants are exposed to aging and have developed resistance mechanisms allowing survival and plant propagation. In addition to the physicochemical properties of the seed that confer stress resistance, the protein metabolism contributes importantly to longevity mechanisms. Recently, genetic studies have demonstrated the occurrence of the Protein L-isoaspartyl methyltransferase repair enzyme in controlling age-related protein damages and seed survival. These protective mechanisms by protein repair are widespread in all kingdoms, so that the use of seeds as models to study these controlling processes offers the prospect of understanding longevity mechanisms better.

  3. Mechanisms of Obligatory Intracellular Infection with Anaplasma phagocytophilum

    PubMed Central

    Rikihisa, Yasuko

    2011-01-01

    Summary: Anaplasma phagocytophilum persists in nature by cycling between mammals and ticks. Human infection by the bite of an infected tick leads to a potentially fatal emerging disease called human granulocytic anaplasmosis. A. phagocytophilum is an obligatory intracellular bacterium that replicates inside mammalian granulocytes and the salivary gland and midgut cells of ticks. A. phagocytophilum evolved the remarkable ability to hijack the regulatory system of host cells. A. phagocytophilum alters vesicular traffic to create an intracellular membrane-bound compartment that allows replication in seclusion from lysosomes. The bacterium downregulates or actively inhibits a number of innate immune responses of mammalian host cells, and it upregulates cellular cholesterol uptake to acquire cholesterol for survival. It also upregulates several genes critical for the infection of ticks, and it prolongs tick survival at freezing temperatures. Several host factors that exacerbate infection have been identified, including interleukin-8 (IL-8) and cholesterol. Host factors that overcome infection include IL-12 and gamma interferon (IFN-γ). Two bacterial type IV secretion effectors and several bacterial proteins that associate with inclusion membranes have been identified. An understanding of the molecular mechanisms underlying A. phagocytophilum infection will foster the development of creative ideas to prevent or treat this emerging tick-borne disease. PMID:21734244

  4. Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival.

    PubMed

    Verma, Smriti; Mohapatra, Gayatree; Ahmad, Salman Mustfa; Rana, Sarika; Jain, Swati; Khalsa, Jasneet Kaur; Srikanth, C V

    2015-09-01

    Posttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions. Here, we present the first report of modulation by intestinal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) of host SUMOylation, a PTM pathway central to all fundamental cellular processes. Both in cell culture and in a mouse model, we observed that S. Typhimurium infection led to a dynamic SUMO-conjugated proteome alteration. The intracellular survival of S. Typhimurium was dependent on SUMO status as revealed by reduced infection and Salmonella-induced filaments (SIFs) in SUMO-upregulated cells. S. Typhimurium-dependent SUMO modulation was seen as a result of depletion of crucial SUMO pathway enzymes Ubc-9 and PIAS1, at both the protein and the transcript levels. Mechanistically, depletion of Ubc-9 relied on upregulation of small noncoding RNAs miR30c and miR30e during S. Typhimurium infection. This was necessary and sufficient for both down-modulation of Ubc-9 and a successful infection. Thus, we demonstrate a novel strategy of pathogen-mediated perturbation of host SUMOylation, an integral mechanism underlying S. Typhimurium infection and intracellular survival.

  5. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages.

    PubMed

    Zou, Jun; Shankar, Nathan

    2016-06-01

    While many strains of Enterococcus faecalis have been reported to be capable of surviving within macrophages for extended periods, the exact mechanisms involved are largely unknown. In this study, we found that after phagocytosis by macrophages, enterococci-containing vacuoles resist acidification, and E. faecalis is resistant to low pH. Ultrastructural examination of the enterococci-containing vacuole by transmission electron microscopy revealed a single membrane envelope, with no evidence of the classical double-membraned autophagosomes. Western blot analysis further confirmed that E. faecalis could trigger inhibition of the production of LC3-II during infection. By employing cells transfected with RFP-LC3 plasmid and infected with GFP-labelled E. faecalis, we also observed that E. faecalis was not delivered into autophagosomes during macrophage infection. While these observations indicated no role for autophagy in elimination of intracellular E. faecalis, enhanced production of reactive oxygen species and nitric oxide were keys to this process. Stimulation of autophagy suppressed the intracellular survival of E. faecalis in macrophages in vitro and decreased the burden of E. faecalis in vivo. In summary, the results from this study offer new insights into the interaction of E. faecalis with host cells and may provide a new approach to treatment of enterococcal infections.

  6. Transposon-Derived Brucella abortus Rough Mutants Are Attenuated and Exhibit Reduced Intracellular Survival

    PubMed Central

    Allen, Chris A.; Adams, L. Garry; Ficht, Thomas A.

    1998-01-01

    The O antigen of Brucella abortus has been described as a major virulence determinant based on the attenuated survival of fortuitously isolated rough variants. However, the lack of genetic definition of these mutants and the virulence of naturally occurring rough species, Brucella ovis and Brucella canis, has confused interpretation. To better characterize the role of O antigen in virulence and survival, transposon mutagenesis was used to generate B. abortus rough mutants defective in O-antigen presentation. Sequence analysis of DNA flanking the site of Tn5 insertion was used to verify insertion in genes encoding lipopolysaccharide (LPS) biosynthetic functions. Not surprisingly, each of the rough mutants was attenuated for survival in mice, but unexpected differences among the mutants were observed. In an effort to define the basis for the observed differences, the structure of the rough LPS and the sensitivity of these mutants to individual killing mechanisms were examined in vitro. All of the B. abortus rough mutants exhibited a 4- to 5-log-unit increase, compared to the smooth parental strain, in sensitivity to complement-mediated lysis. Little change was evident in the sensitivity of these organisms to hydrogen peroxide, consistent with an inability of O antigen to exclude relatively small molecules. Sensitivity to polymyxin B, which was employed as a model cationic, amphipathic peptide similar to defensins found in phagocytic cells, revealed survival differences among the rough mutants similar to those observed in the mouse. One mutant in particular exhibited hypersensitivity to polymyxin B and reduced survival in mice. This mutant was characterized by a truncated rough LPS. DNA sequence analysis of this mutant revealed a transposon interruption in the gene encoding phosphomannomutase (pmm), suggesting that this activity may be required for the synthesis of a full-length core polysaccharide in addition to O antigen. B. abortus O antigen appears to be essential

  7. Intracellular mechanisms of solar water disinfection

    PubMed Central

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-01-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection. PMID:27909341

  8. Intracellular mechanisms of solar water disinfection.

    PubMed

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-02

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  9. Intracellular mechanisms of solar water disinfection

    NASA Astrophysics Data System (ADS)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  10. In vitro phagocytosis and intracellular survival of Campylobacter jejuni with phagocytes

    SciTech Connect

    Kiehlbauch, J.A.

    1986-01-01

    In vitro phagocytosis and intracellular survival of Campylobacter jejuni was studied using three types of mononuclear phagocytes: a J774G8 peritoneal macrophage line, resident BABL/c peritoneal macrophages and human peripheral blood monocytes. In phagocytosis assays using CFU determinations, phagocytosis increased steadily over an 8 hr time period. Results obtained using a /sup 51/Cr assay indicated no consistent significant difference between phagocytosis of C. jejuni between the three mononuclear phagocytes or PMN's and that maximum infection occurred prior to 0.5 hr and maintained throughout the 4 hr assay. Further investigation of the mechanism of attachment and entry of C. jejuni revealed this process required the expenditure of energy by the phagocyte, but was not inhibited by inhibitors of microfilament functions. In addition, phagocytosis was enhanced by the presence of 20% FCS,

  11. Proline Mechanisms of Stress Survival

    PubMed Central

    Liang, Xinwen; Zhang, Lu; Natarajan, Sathish Kumar

    2013-01-01

    Abstract Significance: The imino acid proline is utilized by different organisms to offset cellular imbalances caused by environmental stress. The wide use in nature of proline as a stress adaptor molecule indicates that proline has a fundamental biological role in stress response. Understanding the mechanisms by which proline enhances abiotic/biotic stress response will facilitate agricultural crop research and improve human health. Recent Advances: It is now recognized that proline metabolism propels cellular signaling processes that promote cellular apoptosis or survival. Studies have shown that proline metabolism influences signaling pathways by increasing reactive oxygen species (ROS) formation in the mitochondria via the electron transport chain. Enhanced ROS production due to proline metabolism has been implicated in the hypersensitive response in plants, lifespan extension in worms, and apoptosis, tumor suppression, and cell survival in animals. Critical Issues: The ability of proline to influence disparate cellular outcomes may be governed by ROS levels generated in the mitochondria. Defining the threshold at which proline metabolic enzyme expression switches from inducing survival pathways to cellular apoptosis would provide molecular insights into cellular redox regulation by proline. Are ROS the only mediators of proline metabolic signaling or are other factors involved? Future Directions: New evidence suggests that proline biosynthesis enzymes interact with redox proteins such as thioredoxin. An important future pursuit will be to identify other interacting partners of proline metabolic enzymes to uncover novel regulatory and signaling networks of cellular stress response. Antioxid. Redox Signal. 19, 998–1011. PMID:23581681

  12. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis

    PubMed Central

    Wang, Yufei; Ke, Yuehua; Xu, Jie; Wang, Ligui; Wang, Tongkun; Liang, Hui; Zhang, Wei; Gong, Chunli; Yuan, Jiuyun; Zhuang, Yubin; An, Chang; Lei, Shuangshuang; Du, Xinying; Wang, Zhoujia; Li, Wenna; Yuan, Xitong; Huang, Liuyu; Yang, Xiaoli; Chen, Zeliang

    2015-01-01

    Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival. PMID:25852653

  13. Intracellular survival of Clostridium chauvoei in bovine macrophages.

    PubMed

    Pires, Prhiscylla Sadanã; Santos, Renato Lima; da Paixão, Tatiane Alves; de Oliveira Bernardes, Laura Cristina; de Macêdo, Auricélio Alves; Gonçalves, Luciana Aramuni; de Oliveira Júnior, Carlos Augusto; Silva, Rodrigo Otávio Silveira; Lobato, Francisco Carlos Faria

    2017-02-01

    Clostridium chauvoei is the etiological agent of blackleg, a severe disease of domestic ruminants, causing myonecrosis and serious toxemia with high mortality. Despite the known importance of this agent, studies evaluating its pathogenesis of blackleg are scarce, and many are based on an unproven hypothesis that states that macrophages are responsible for carrying C. chauvoei spores from the intestines to muscles in the early stages of blackleg. Therefore, the present study aimed to investigate the survival of C. chauvoei vegetative cells or spores after phagocytosis by a murine macrophage cell line (RAW 264.7) and bovine monocyte-derived macrophages and to profile inflammatory and anti-inflammatory cytokine transcripts of bovine macrophages infected with C. chauvoei vegetative cells or spores. Both vegetative cells and spores of C. chauvoei remain viable after internalization by murine and bovine macrophages. Bovine macrophages infected with vegetative cells showed a pro-inflammatory profile, while those infected with spores displayed an anti-inflammatory profile. Together, these results corroborate the classical hypothesis that macrophages may play a role in the early pathogenesis of blackleg. Moreover, this is the first study to evaluate the infection kinetics and cytokine profile of bovine monocyte-derived macrophages infected with a Clostridium species.

  14. The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling

    PubMed Central

    Bröms, Jeanette E.; Sjöstedt, Anders; Lavander, Moa

    2010-01-01

    Francisella tularensis is a highly virulent gram-negative intracellular bacterium that causes the zoonotic disease tularemia. Essential for its virulence is the ability to multiply within host cells, in particular monocytic cells. The bacterium has developed intricate means to subvert host immune mechanisms and thereby facilitate its intracellular survival by preventing phagolysosomal fusion followed by escape into the cytosol, where it multiplies. Moreover, it targets and manipulates numerous host cell signaling pathways, thereby ameliorating the otherwise bactericidal capacity. Many of the underlying molecular mechanisms still remain unknown but key elements, directly or indirectly responsible for many of the aforementioned mechanisms, rely on the expression of proteins encoded by the Francisella pathogenicity island (FPI), suggested to constitute a type VI secretion system. We here describe the current knowledge regarding the components of the FPI and the roles that have been ascribed to them. PMID:21687753

  15. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    PubMed Central

    Lina, Taslima T.; Dunphy, Paige S.; Luo, Tian

    2016-01-01

    ABSTRACT Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD) occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40%) were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs) against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4) expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival. PMID:27381289

  16. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites.

    PubMed

    Toledo, Daniel A M; D'Avila, Heloísa; Melo, Rossana C N

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host-parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival.

  17. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites

    PubMed Central

    Toledo, Daniel A. M.; D’Avila, Heloísa; Melo, Rossana C. N.

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host–parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival. PMID:27199996

  18. Transposon Mutagenesis of Mycobacterium marinum Identifies a Locus Linking Pigmentation and Intracellular Survival

    PubMed Central

    Gao, Lian-Yong; Groger, Richard; Cox, Jeffery S.; Beverley, Stephen M.; Lawson, Elise H.; Brown, Eric J.

    2003-01-01

    Pathogenic mycobacteria survive and replicate within host macrophages, but the molecular mechanisms involved in this necessary step in the pathogenesis of infection are not completely understood. Mycobacterium marinum has recently been used as a model for aspects of the pathogenesis of tuberculosis because of its close genetic relationship to Mycobacterium tuberculosis and because of similarities in the pathology and course of infection caused by this organism in its natural hosts, fish and frogs, with tuberculosis in humans. In order to advance the utility of the M. marinum model, we have developed efficient transposon mutagenesis of the organism by using a Drosophila melanogaster mariner-based transposon. To determine the efficiency of transposition, we have analyzed pigmentation mutants from the transposon mutant library. In addition to insertions in four known genes in the pathway of pigment biosynthesis, two insertions in novel genes were identified in our mutant library. One of these is in a putative inhibitor of the carotenoid biosynthesis pathway. The second unexpected insertion is in an intergenic region between two genes homologous to Rv2603c and Rv2604c of M. tuberculosis. In addition to a pigmentation defect, this mutant showed increased susceptibility to singlet oxygen and grew poorly in murine macrophages. Complementation with M. tuberculosis genomic DNA encompassing Rv2603c to Rv2606c corrected the pigmentation and growth defects of the mutant. These data demonstrate the utility of mariner-based transposon mutagenesis of M. marinum and that M. marinum can be used to study the function of M. tuberculosis genes involved in intracellular survival and replication. PMID:12540574

  19. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  20. Cryptococcus neoformans Thermotolerance to Avian Body Temperature Is Sufficient For Extracellular Growth But Not Intracellular Survival In Macrophages

    PubMed Central

    Johnston, Simon A.; Voelz, Kerstin; May, Robin C.

    2016-01-01

    Cryptococcus neoformans is a fatal fungal pathogen of humans that efficiently parasitises macrophages. Birds can be colonised by cryptococci and can transmit cryptococcosis to humans via inhalation of inoculated bird excreta. However, colonisation of birds appears to occur in the absence of symptomatic infection. Here, using a pure population of primary bird macrophages, we demonstrate a mechanism for this relationship. We find that bird macrophages are able to suppress the growth of cryptococci seen in mammalian cells despite C. neoformans being able to grow at bird body temperature, and are able to escape from bird macrophages by vomocytosis. A small subset of cryptococci are able to adapt to the inhibitory intracellular environment of bird macrophages, exhibiting a large cell phenotype that rescues growth suppression. Thus, restriction of intracellular growth combined with survival at bird body temperature explains the ability of birds to efficiently spread C. neoformans in the environment whilst avoiding systemic disease. PMID:26883088

  1. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Riquelme, Sebastián; Varas, Macarena; Valenzuela, Camila; Velozo, Paula; Chahin, Nicolás; Aguilera, Paulina; Sabag, Andrea; Labra, Bayron; Álvarez, Sergio A.; Chávez, Francisco P.; Santiviago, Carlos A.

    2016-01-01

    The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host–pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected

  2. Relevant Genes Linked to Virulence Are Required for Salmonella Typhimurium to Survive Intracellularly in the Social Amoeba Dictyostelium discoideum.

    PubMed

    Riquelme, Sebastián; Varas, Macarena; Valenzuela, Camila; Velozo, Paula; Chahin, Nicolás; Aguilera, Paulina; Sabag, Andrea; Labra, Bayron; Álvarez, Sergio A; Chávez, Francisco P; Santiviago, Carlos A

    2016-01-01

    The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In this work, D. discoideum was used as a model to study the ability of Salmonella Typhimurium to survive in amoebae and to evaluate the contribution of selected genes in this process. To do this, we performed infection assays using axenic cultures of D. discoideum co-cultured with wild-type S. Typhimurium and/or defined mutant strains. Our results confirmed that wild-type S. Typhimurium is able to survive intracellularly in D. discoideum. In contrast, mutants ΔaroA and ΔwaaL are defective in intracellular survival in this amoeba. Next, we included in our study a group of mutants in genes directly linked to Salmonella virulence. Of note, mutants ΔinvA, ΔssaD, ΔclpV, and ΔphoPQ also showed an impaired ability to survive intracellularly in D. discoideum. This indicates that S. Typhimurium requires a functional biosynthetic pathway of aromatic compounds, a lipopolysaccharide containing a complete O-antigen, the type III secretion systems (T3SS) encoded in SPI-1 and SPI-2, the type VI secretion system (T6SS) encoded in SPI-6 and PhoP/PhoQ two-component system to survive in D. discoideum. To our knowledge, this is the first report on the requirement of O-antigen and T6SS in the survival of Salmonella within amoebae. In addition, mutants ΔinvA and ΔssaD were internalized in higher numbers than the wild-type strain during competitive infections, suggesting that S. Typhimurium requires the T3SS encoded in SPI-1 and SPI-2 to evade phagocytosis by D. discoideum. Altogether, these results indicate that S. Typhimurium exploits a common set of genes and molecular mechanisms to survive within amoeba and animal host cells. The use of D. discoideum as a model for host-pathogen interactions will allow us to discover the gene repertoire used by Salmonella to survive inside the amoeba and to study the cellular processes that are affected

  3. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  4. Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells.

    PubMed Central

    Wintermeyer, E; Ludwig, B; Steinert, M; Schmidt, B; Fischer, G; Hacker, J

    1995-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is able to survive intracellularly in eukaryotic cells such as monocytes, macrophages, and protozoan organisms. The Mip (macrophage infectivity potentiator) protein represents a factor of L. pneumophila necessary for optimal intracellular survival. Interestingly, Mip belongs to the substance class of FK 506-binding proteins and exhibits peptidyl-prolyl cis/trans isomerase (PPIase) activity that can be inhibited by the immunosuppressant FK506. In order to identify amino acids most likely to be involved in the enzymatic activity of Mip, site-directed mutagenized Mip proteins were constructed and characterized. It was shown that an Asp-142 to Leu-142 mutation and a Tyr-185 to Ala-185 substitution resulted in strongly reduced PPIase activity of the recombinant Mip proteins (5.3 and 0.6% of the activity of the wild-type Mip, respectively). Genes coding for the wild-type and for site-directed-mutagenized Mip proteins were used to complement three different Mip-negative mutants of the L. pneumophila Corby, Philadelphia I, and Wadsworth. While Mip protein expression could be restored in the corresponding complementants, significant Mip-specific PPIase activity could be detected only in Mip mutants complemented with wild-type mip genes. To investigate the influence of the PPIase activity of Mip on intracellular survival of L. pneumophila, invasion assays were performed using the macrophage-like cell line U937, human blood monocytes, and Acanthamoeba castellanii. The Mip-negative mutants were approximately 50- to 100-fold less infective for A. castellanii and for human mononuclear phagocytes in vitro compared with their isogenic Mip-positive parental strains. The wild-type invasion rate could be restored by introducing an intact copy of the mip gene into Mip-negative strains. In addition, no differences in intracellular survival were observed between the wild-type isolates and the Legionella strains

  5. Intracellular Survival of Brucella spp. in Human Monocytes Involves Conventional Uptake but Special Phagosomes

    PubMed Central

    Rittig, Michael G.; Alvarez-Martinez, Maria-Teresa; Porte, Françoise; Liautard, Jean-Pierre; Rouot, Bruno

    2001-01-01

    Brucella spp. are facultative intracellular parasites of various mammals, including humans, typically infecting lymphoid as well as reproductive organs. We have investigated how B. suis and B. melitensis enter human monocytes and in which compartment they survive. Peripheral blood monocytes readily internalized nonopsonized brucellae and killed most of them within 12 to 18 h. The presence of Brucella-specific antibodies (but not complement) increased the uptake of bacteria without increasing their intracellular survival, whereas adherence of the monocytes or incubation in Ca2+- and Mg2+-free medium reduced the uptake. Engulfment of all Brucella organisms (regardless of bacterial viability or virulence) initially resulted in phagosomes with tightly apposed walls (TP). Most TP were fully fusiogenic and matured to spacious phagolysosomes containing degraded bacteria, whereas some TP (more in monocyte-derived macrophages, HeLa cells, and CHO cells than in monocytes) remained tightly apposed to intact bacteria. Immediate treatment of infected host cells with the lysosomotropic base ammonium chloride caused a swelling of all phagosomes and a rise in the intraphagosomal pH, abolishing the intracellular survival of Brucella. These results indicate that (i) human monocytes readily internalize Brucella in a conventional way using various phagocytosis-promoting receptors, (ii) the maturation of some Brucella phagosomes is passively arrested between the steps of acidification and phagosome-lysosome fusion, (iii) brucellae are killed in maturing but not in arrested phagosomes, and (iv) survival of internalized Brucella depends on an acidic intraphagosomal pH and/or close contact with the phagosomal wall. PMID:11349069

  6. Adherence and intracellular survival within human macrophages of Enterococcus faecalis isolates from coastal marine sediment.

    PubMed

    Sabatino, Raffaella; Di Cesare, Andrea; Pasquaroli, Sonia; Vignaroli, Carla; Citterio, Barbara; Amiri, Mehdi; Rossi, Luigia; Magnani, Mauro; Mauro, Alessandro; Biavasco, Francesca

    2015-09-01

    Enterococcus faecalis is part of the human intestinal microbiota and an important nosocomial pathogen. It can be found in the marine environment, where it is also employed as a fecal indicator. To assess the pathogenic potential of marine E. faecalis, four strains isolated from marine sediment were analyzed for their ability to survive in human macrophages. Escherichia coli DH5α was used as a negative control. The number of adherent and intracellular bacteria was determined 2.5 h after the infection (T0) and after further 24h (T24) by CFU and qPCR counts. At T24 adherent and intracellular enterococcal CFU counts were increased for all strains, the increment in intracellular bacteria being particularly marked. No CFU of E. coli DH5α were detected. In contrast, qPCR counts of intracellular enterococcal and E. coli bacteria were similar at both time points. These findings suggest that whereas E. coli was killed within macrophages (no CFU, positive qPCR), the E. faecalis isolates not only escaped killing, but actually multiplied, as demonstrated by the increase in the viable cell population. These findings support earlier data by our group, further documenting that marine sediment can be a reservoir of pathogenic enterococci.

  7. The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed.

    PubMed

    Raymond, Méliane R; Wharton, David A

    2016-07-01

    A few species of nematodes can survive extensive intracellular freezing throughout all their tissues, an event that is usually thought to be fatal to cells. How are they able to survive in this remarkable way? The pattern and distribution of ice formed, after freezing at -10°C, can be observed using freeze substitution and transmission electron microscopy, which preserves the former position of ice as white spaces. We compared the pattern and distribution of ice formed in a nematode that survives intracellular freezing well (Panagrolaimus sp. DAW1), one that survives poorly (Panagrellus redivivus) and one with intermediate levels of survival (Plectus murrayi). We also examined Panagrolaimus sp. in which the survival of freezing had been compromised by starvation. Levels of survival were as expected and the use of vital dyes indicated cellular damage in those that survived poorly (starved Panagrolaimus sp. and P. murrayi). In fed Panagrolaimus sp. the intracellular ice spaces were small and uniform, whereas in P. redivivus and starved Panagrolaimus sp. there were some large spaces that may be causing cellular damage. The pattern and distribution of ice formed was different in P. murrayi, with a greater number of individuals having no ice or only small intracellular ice spaces. Control of the size of the ice formed is thus important for the survival of intracellular freezing in nematodes.

  8. Survival mechanisms in Antarctic lakes.

    PubMed Central

    Laybourn-Parry, Johanna

    2002-01-01

    In Antarctic lakes, organisms are confronted by continuous low temperatures as well as a poor light climate and nutrient limitation. Such extreme environments support truncated food webs with no fish, few metazoans and a dominance of microbial plankton. The key to success lies in entering the short Antarctic summer with actively growing populations. In many cases, the most successful organisms continue to function throughout the year. The few crustacean zooplankton remain active in the winter months, surviving on endogenous energy reserves and, in some cases, continuing development. Among the Protozoa, mixotrophy is an important nutritional strategy. In the extreme lakes of the McMurdo Dry Valleys, planktonic cryptophytes are forced to sustain a mixotrophic strategy and cannot survive by photosynthesis alone. The dependence on ingesting bacteria varies seasonally and with depth in the water column. In the Vestfold Hills, Pyramimonas, which dominates the plankton of some of the saline lakes, also resorts to mixotrophy, but does become entirely photosynthetic at mid-summer. Mixotrophic ciliates are also common and the entirely photosynthetic ciliate Mesodinium rubrum has a widespread distribution in the saline lakes of the Vestfold Hills, where it attains high concentrations. Bacteria continue to grow all year, showing cycles that appear to be related to the availability of dissolved organic carbon. In saline lakes, bacteria experience sub-zero temperatures for long periods of the year and have developed biochemical adaptations that include anti-freeze proteins, changes in the concentrations of polyunsaturated fatty acids in their membranes and suites of low-temperature enzymes. PMID:12171649

  9. Swedish isolates of Vibrio cholerae enhance their survival when interacted intracellularly with Acanthamoeba castellanii

    PubMed Central

    Shanan, Salah; Bayoumi, Magdi; Saeed, Amir; Sandström, Gunnar; Abd, Hadi

    2016-01-01

    Vibrio cholerae is a Gram-negative bacterium that occurs naturally in aquatic environment. Only V. cholerae O1 and V. cholerae O139 produce cholera toxin and cause cholera, other serogroups can cause gastroenteritis, open wounds infection, and septicaemia. V. cholerae O1 and V. cholerae O139 grow and survive inside Acanthamoeba castellanii. The aim of this study is to investigate the interactions of the Swedish clinical isolates V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 with A. castellanii. The interaction between A. castellanii and V. cholerae strains was studied by means of amoeba cell counts, viable counts of the bacteria in the absence or presence of amoebae, and of the intracellularly growing bacteria, visualised by electron microscopy. These results show that all V. cholerae can grow and survive outside and inside the amoebae, disclosing that V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 all can be considered as facultative intracellular bacteria. PMID:27118300

  10. Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages.

    PubMed

    Rodríguez, Nilda E; Gaur, Upasna; Wilson, Mary E

    2006-07-01

    Caveolae are membrane microdomains enriched in cholesterol, ganglioside M1 (GM1) and caveolin-1. We explored whether caveolae facilitate the entry of Leishmania chagasi into murine macrophages. Transient depletion of macrophage membrane cholesterol by 1 h exposure to methyl-beta-cyclodextrin (MbetaCD) impaired the phagocytosis of non-opsonized and serum-opsonized virulent L. chagasi. In contrast, MbetaCD did not affect the phagocytosis of opsonized attenuated L. chagasi. As early as 5 min after phagocytosis, virulent L. chagasi colocalized with the caveolae markers GM1 and caveolin-1, and colocalization continued for over 48 h. We explored the kinetics of lysosome fusion. Whereas fluorescent-labelled dextran entered macrophage lysosomes by 30 min after addition, localization of L. chagasi in lysosomes was delayed for 24-48 h after phagocytosis. However, after transient depletion of cholesterol from macrophage membrane with MbetaCD, the proportion of L. chagasi-containing phagosomes that fused with lysosomes increased significantly. Furthermore, intracellular replication was impaired in parasites entering after transient cholesterol depletion, even though lipid microdomains were restored by 4 h after treatment. These observations suggest that virulent L. chagasi localize in caveolae during phagocytosis by host macrophages, and that cholesterol-containing macrophage membrane domains, such as caveolae, target parasites to a pathway that promotes delay of lysosome fusion and intracellular survival.

  11. The Mechanical Environment Modulates Intracellular Calcium Oscillation Activities of Myofibroblasts

    PubMed Central

    Godbout, Charles; Follonier Castella, Lysianne; Smith, Eric A.; Talele, Nilesh; Chow, Melissa L.; Garonna, Adriano; Hinz, Boris

    2013-01-01

    Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair. PMID:23691248

  12. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production

    PubMed Central

    Marques, Maria Angela M.; Berrêdo-Pinho, Marcia; Rosa, Thabatta L. S. A.; Pujari, Venugopal; Lemes, Robertha M. R.; Lery, Leticia M. S.; Silva, Carlos Adriano M.; Guimarães, Ana Carolina R.; Atella, Georgia C.; Wheat, William H.; Brennan, Patrick J.; Crick, Dean C.; Belisle, John T.

    2015-01-01

    ABSTRACT Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3β-hydroxysteroid dehydrogenase (3β-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-14C]cholesterol or [26-14C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in

  13. Bacterial proteases in disease - role in intracellular survival, evasion of coagulation/ fibrinolysis innate defenses, toxicoses and viral infections.

    PubMed

    Dubin, Grzegorz; Koziel, Joanna; Pyrc, Krzysztof; Wladyka, Benedykt; Potempa, Jan

    2013-01-01

    Pathogenic bacteria have evolved multiple mechanisms aimed to evade host defenses. This review summarizes selected examples of how bacteria utilize proteolytic enzymes to efficiently establish and spread infection systemically. First, the role of proteases in intracellular survival and persistence - the primary means used by bacteria to endure phagocytosis and/or avoid the vigilance of the immune system - is discussed. Second, it is demonstrated how some bacteria escape entanglement in fibrin(ogen) meshes, by inducing their proteolytic dissolution while other species modify the proteolytic cascade of mesh formation to divert this important innate immune defense for their own benefit. Third, bacterial proteolytic toxins are introduced, which allow microorganisms to exert and take advantage of systemic effects already during primary, localized infection. Finally, it is discussed how viruses utilize bacterial proteases by taking advantage of concurrent infection, and how pathogens may even mutually benefit from the joint presence of other pathogens. The reviewed adaptations are often essential for pathogen survival in the hostile environment of a host organism. As such, the potential benefits of pharmacological interference in relevant pathways for the struggle against bacterial pathogens are also discussed.

  14. Intracellular Trafficking Modulation by Ginsenoside Rg3 Inhibits Brucella abortus Uptake and Intracellular Survival within RAW 264.7 Cells.

    PubMed

    Huy, Tran Xuan Ngoc; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, WonGi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2017-03-28

    Ginsenoside Rg3, a saponin extracted from ginseng, has various pharmacological and biological activities; however, its effects against Brucella infection are still unclear. Herein, the inhibitory effects of ginsenoside Rg3 against intracellular parasitic Brucella infection were evaluated through bacterial infection, adherence assays, and LAMP-1 colocalization, as well as immunoblotting and FACS for detecting MAPK signaling proteins and F-actin polymerization, respectively. The internalization, intracellular growth, and adherence of Brucella abortus in Rg3-treated RAW 264.7 cells were significantly decreased compared with the Rg3-untreated control. Furthermore, an apparent reduction of F-actin content and intensity of F-actin fluorescence in Rg3-treated cells was observed compared with B. abortus-infected cells without treatment by flow cytometry analysis and confocal microscopy, respectively. In addition, treating cells with Rg3 decreased the phosphorylation of MAPK signaling proteins such as ERK 1/2 and p38 compared with untreated cells. Moreover, the colocalization of B. abortus-containing phagosomes with LAMP-1 was markedly increased in Rg3-treated cells. These findings suggest that ginsenoside Rg3 inhibits B. abortus infection in mammalian cells and can be used as an alternative approach in the treatment of brucellosis.

  15. Subcellular Localization of the Intracellular Survival-Enhancing Eis Protein of Mycobacterium tuberculosis

    PubMed Central

    Dahl, John L.; Wei, Jun; Moulder, James W.; Laal, Suman; Friedman, Richard L.

    2001-01-01

    Mycobacterium tuberculosis is a facultative intracellular pathogen that has evolved the ability to survive and multiply within human macrophages. It is not clear how M. tuberculosis avoids the destructive action of macrophages, but this ability is fundamental in the pathogenicity of tuberculosis. A gene previously identified in M. tuberculosis, designated eis, was found to enhance intracellular survival of Mycobacterium smegmatis in the human macrophage-like cell line U-937 (J. Wei et al., J. Bacteriol. 182:377–384, 2000). When eis was introduced into M. smegmatis on a multicopy vector, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the appearance of a unique 42-kDa protein band corresponding to the predicted molecular weight of the eis gene product. This band was electroeluted from the gel with a purity of >90% and subjected to N-terminal amino acid sequencing, which demonstrated that the 42-kDa band was indeed the protein product of eis. The Eis protein produced by M. tuberculosis H37Ra had an identical N-terminal amino acid sequence. A synthetic polypeptide corresponding to a carboxyl-terminal region of the deduced eis protein sequence was used to generate affinity-purified rabbit polyclonal antibodies that reacted with the 42-kDa protein in Western blot analysis. Hydropathy profile analysis showed the Eis protein to be predominantly hydrophilic with a potential hydrophobic amino terminus. Phase separation of M. tuberculosis H37Ra lysates by the nonionic detergent Triton X-114 revealed the Eis protein in both the aqueous and detergent phases. After fractionation of M. tuberculosis by differential centrifugation, Eis protein appeared mainly in the cytoplasmic fraction but also in the membrane, cell wall, and culture supernatant fractions as well. Forty percent of the sera from pulmonary tuberculosis patients tested for anti-Eis antibody gave positive reactions in Western blot analysis. Although the function of Eis remains unknown, evidence

  16. Intracellular survival and replication of Vibrio cholerae O139 in aquatic free-living amoebae.

    PubMed

    Abd, Hadi; Weintraub, Andrej; Sandström, Gunnar

    2005-07-01

    Vibrio cholerae is a highly infectious bacterium responsible for large outbreaks of cholera among humans at regular intervals. A seasonal distribution of epidemics is known but the role of naturally occurring habitats are virtually unknown. Plankton has been suggested to play a role, because bacteria can attach to such organisms forming a biofilm. Acanthamoebea castellanii is an environmental amoeba that has been shown to be able to ingest and promote growth of several bacteria of different origin. The aim of the present study was to determine whether or not an intra-amoebic behaviour of V. cholerae O139 exists. Interaction between these microorganisms in co-culture was studied by culturable counts, gentamicin assay, electron microscopy, and polymerase chain reaction. The interaction resulted in intra-amoebic growth and survival of V. cholerae in the cytoplasm of trophozoites as well as in the cysts of A. castellanii. These data show symbiosis between these microorganisms, a facultative intracellular behaviour of V. cholerae contradicting the generally held view, and a role of free-living amoebae as hosts for V. cholerae O139. Taken together, this opens new doors to study the ecology, immunity, epidemiology, and treatment of cholera.

  17. Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages

    PubMed Central

    Saunders, Eleanor C.; Kloehn, Joachim; Rupasinghe, Thusitha W.; Brown, Tracey J.; McConville, Malcolm J.

    2015-01-01

    Abstract Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites. PMID:26334531

  18. Transcription of innate immunity genes and cytokine secretion by canine macrophages resistant or susceptible to intracellular survival of Leishmania infantum.

    PubMed

    Turchetti, Andréia Pereira; da Costa, Luciana Fachini; Romão, Everton de Lima; Fujiwara, Ricardo Toshio; da Paixão, Tatiane Alves; Santos, Renato Lima

    2015-01-15

    In this study we assessed the basal transcription of genes associated with innate immunity (i.e. Nramp1, NOD1, NOD2, TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR9) in canine monocyte-derived macrophages from Leishmania-free dogs. Additionally, secretion of cytokines (IL-10, IL-12, TNF-α and IFN-γ) and nitric oxide in culture supernatants of macrophages with higher or lower resistance to intracellular survival of Leishmania infantum was also measured. Constitutive transcription of TLR9 and NOD2 were negligible; NOD1, TLR1, and TLR7 had low levels of transcription, whereas Nramp1 and TLR2, 3, 4, 5, and 6 had higher levels of constitutive transcription in canine monocyte-derived macrophages. There were no significant differences in transcription between macrophages with higher or lower resistance to intracellular survival of L. infantum. Secretion of TNF-α was higher in more resistant macrophages (designated as resistant) at 24h after infection when compared to less resistant macrophages (designated as susceptible), as well as the secretion of IFN-γ at 72 h post infection. Secretion of IL-10 was lower in resistant macrophages at 24h after infection. No detectable production of nitric oxide was observed. Interestingly, there was a negative correlation between NOD2 transcript levels and intracellular survival of L. infantum in resistant macrophages. This study demonstrated that decreased intracellular survival of L. infantum in canine macrophages was associated with increased production of TNF-α and IFN-γ and decreased production of IL-10; and that constitutive transcription of Nramp1, TLR and NLR does not interfere in intracellular survival of L. infantum.

  19. Mechanisms of cell survival in myocardial hibernation.

    PubMed

    Depre, Christophe; Vatner, Stephen F

    2005-04-01

    Myocardial hibernation represents a condition of regional ventricular dysfunction in patients with chronic coronary artery disease, which reverses gradually after revascularization. The precise mechanism mediating the regional dysfunction is still debated. One hypothesis suggests that chronic hypoperfusion results in a self-protecting downregulation in myocardial function and metabolism to match the decreased oxygen supply. An alternative hypothesis suggests that the myocardium is subject to repetitive episodes of ischemic dysfunction resulting from an imbalance between myocardial metabolic demand and supply that eventually creates a sustained depression of contractility. It is generally agreed that hibernating myocardium is submitted repeatedly to ischemic stress, and therefore one question persists: how do myocytes survive in the setting of chronic ischemia? The hallmark of hibernating myocardium is a maintained viability of the dysfunctional myocardium which relies on an increased uptake of glucose. We propose that, in addition to this metabolic adjustment, there must be molecular switches that confer resistance to ischemia in hibernating myocardium. Such mechanisms include the activation of a genomic program of cell survival as well as autophagy. These protective mechanisms are induced by ischemia and remain activated chronically as long as either sustained or intermittent ischemia persists.

  20. The role of PIP2 and the IP3/DAG pathway in intracellular calcium release and cell survival during nanosecond electric pulse exposures

    NASA Astrophysics Data System (ADS)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Estlack, Larry E.; Roth, Caleb C.; Ibey, Bennett L.

    2015-03-01

    Phosphatidylinositol4,5-biphosphate (PIP2) is a membrane phospholipid of particular importance in cell-signaling pathways. Hydrolysis of PIP2 releases inositol-1,4,5-triphosphate (IP3) from the membrane, activating IP3 receptors on the smooth endoplasmic reticulum (ER) and facilitating a release of intracellular calcium stores and activation of protein kinase C (PKC). Recent studies suggest that nanosecond pulsed electric fields (nsPEF) cause depletion of PIP2 in the cellular membrane, activating the IP3 signaling pathway. However, the exact mechanism(s) causing this observed depletion of PIP2 are unknown. Complicating the matter, nsPEF create nanopores in the plasma membrane, allowing calcium to enter the cell and thus causing an increase in intracellular calcium. While elevated intracellular calcium can cause activation of phospholipase C (PLC) (a known catalyst of PIP2 hydrolysis), PIP2 depletion has been shown to occur in the absence of both extracellular and intracellular calcium. These observations have led to the hypothesis that the high electric field itself may be playing a direct role in the hydrolysis of PIP2 from the plasma membrane. To support this hypothesis, we used edelfosine to block PLC and prevent activation of the IP3/DAG pathway in Chinese Hamster Ovarian (CHO) cells prior to applying nsPEF. Fluorescence microscopy was used to monitor intracellular calcium bursts during nsPEF, while MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) survivability assays were utilized to determine whether edelfosine improved cell survival during nsPEF exposure. This work is critical to refine the role of PIP2 in the cellular response to nsPEF, and also to determine the fundamental biological effects of high electric field exposures.

  1. Pathogenic intracellular and autoimmune mechanisms in urticaria and angioedema.

    PubMed

    Altman, Katherine; Chang, Christopher

    2013-08-01

    Urticaria and angioedema are common disorders. Chronic urticaria is defined as lasting longer than 6 weeks. Causes of chronic urticaria fall into the following categories: physical, allergic, hereditary, autoimmune, and idiopathic. Basophils and mast cells are the primary effector cells responsible for clinical symptoms and signs. These cells produce and secrete a variety of mediators including histamine, leukotrienes, prostaglandins, cytokines, chemokines, and other pro-inflammatory mediators. This leads to vasodilation, fluid exudation, increased vascular permeability, and accumulation of additional secondary inflammatory cells. Two mechanisms have been investigated as possibly contributing to the pathogenesis of chronic urticaria. One is the development of autoantibodies to FcεRI or IgE on mast cells and basophils. This appears to be responsible for 30-50 % of cases. The other is dysregulation of intracellular signaling pathways involving Syk, SHIP-1, or SHIP-2 in basophils and mast cells. The primary treatment for chronic urticaria is to treat the underlying pathology, if any can be identified. Otherwise, in idiopathic cases, H1 antihistamines, H2 antihistamines, antileukotrienes, and corticosteroids constitute the main pharmacologic treatment modalities. In severe and recalcitrant cases of chronic and autoimmune urticaria, immunosuppressive drugs have been used, most commonly cyclosporin. More recent experimental studies have also suggested that omalizumab, an anti-IgE therapy, may be of benefit. Currently, inhibitors of Syk are also being developed and tested in the laboratory and in animal models. As our understanding of the pathogenesis of idiopathic urticaria increases, development of additional drugs targeting these pathways may provide relief for the significant physical and psychological morbidity experienced by patients with this disorder.

  2. Role of Metal-Dependent Regulation of ESX-3 Secretion in Intracellular Survival of Mycobacterium tuberculosis

    PubMed Central

    Tinaztepe, Emir; Wei, Jun-Rong; Raynowska, Jenelle; Portal-Celhay, Cynthia; Thompson, Victor

    2016-01-01

    More people die every year from Mycobacterium tuberculosis infection than from infection by any other bacterial pathogen. Type VII secretion systems (T7SS) are used by both environmental and pathogenic mycobacteria to secrete proteins across their complex cell envelope. In the nonpathogen Mycobacterium smegmatis, the ESX-1 T7SS plays a role in conjugation, and the ESX-3 T7SS is involved in metal homeostasis. In M. tuberculosis, these secretion systems have taken on roles in virulence, and they also are targets of the host immune response. ESX-3 secretes a heterodimer composed of EsxG (TB9.8) and EsxH (TB10.4), which impairs phagosome maturation in macrophages and is essential for virulence in mice. Given the importance of EsxG and EsxH during infection, we examined their regulation. With M. tuberculosis, the secretion of EsxG and EsxH was regulated in response to iron and zinc, in accordance with the previously described transcriptional response of the esx-3 locus to these metals. While iron regulated the esx-3 expression in both M. tuberculosis and M. smegmatis, there is a significant difference in the dynamics of this regulation. In M. smegmatis, the esx-3 locus behaved like other iron-regulated genes such as mbtB. In M. tuberculosis, both iron and zinc modestly repressed esx-3 expression. Diminished secretion of EsxG and EsxH in response to these metals altered the interaction of M. tuberculosis with macrophages, leading to impaired intracellular M. tuberculosis survival. Our findings detail the regulatory differences of esx-3 in M. tuberculosis and M. smegmatis and demonstrate the importance of metal-dependent regulation of ESX-3 for virulence in M. tuberculosis. PMID:27245412

  3. Role of Metal-Dependent Regulation of ESX-3 Secretion in Intracellular Survival of Mycobacterium tuberculosis.

    PubMed

    Tinaztepe, Emir; Wei, Jun-Rong; Raynowska, Jenelle; Portal-Celhay, Cynthia; Thompson, Victor; Philips, Jennifer A

    2016-08-01

    More people die every year from Mycobacterium tuberculosis infection than from infection by any other bacterial pathogen. Type VII secretion systems (T7SS) are used by both environmental and pathogenic mycobacteria to secrete proteins across their complex cell envelope. In the nonpathogen Mycobacterium smegmatis, the ESX-1 T7SS plays a role in conjugation, and the ESX-3 T7SS is involved in metal homeostasis. In M. tuberculosis, these secretion systems have taken on roles in virulence, and they also are targets of the host immune response. ESX-3 secretes a heterodimer composed of EsxG (TB9.8) and EsxH (TB10.4), which impairs phagosome maturation in macrophages and is essential for virulence in mice. Given the importance of EsxG and EsxH during infection, we examined their regulation. With M. tuberculosis, the secretion of EsxG and EsxH was regulated in response to iron and zinc, in accordance with the previously described transcriptional response of the esx-3 locus to these metals. While iron regulated the esx-3 expression in both M. tuberculosis and M. smegmatis, there is a significant difference in the dynamics of this regulation. In M. smegmatis, the esx-3 locus behaved like other iron-regulated genes such as mbtB In M. tuberculosis, both iron and zinc modestly repressed esx-3 expression. Diminished secretion of EsxG and EsxH in response to these metals altered the interaction of M. tuberculosis with macrophages, leading to impaired intracellular M. tuberculosis survival. Our findings detail the regulatory differences of esx-3 in M. tuberculosis and M. smegmatis and demonstrate the importance of metal-dependent regulation of ESX-3 for virulence in M. tuberculosis.

  4. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages.

    PubMed

    Reyes, Alisha Wehdnesday Bernardo; Arayan, Lauren Togonon; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Min, WonGi; Lee, Hu Jang; Kim, Dong Hee; Chang, Hong Hee; Kim, Suk

    2016-02-01

    Brucellosis is one of the major zoonoses worldwide that inflicts important health problems in animal and human. Here, we demonstrated that dextran sulfate sodium (DSS) significantly increased adhesion of Brucella (B.) abortus in murine macrophages compared to untreated cells. Even without infection, Brucella uptake into macrophages increased and F-actin reorganization was induced compared with untreated cells. Furthermore, DSS increased the phosphorylation of MAPKs (ERK1/2 and p38α) in Brucella-infected, DSS-treated cells compared with the control cells. Lastly, DSS markedly increased the intracellular survival of Brucella abortus in macrophages by up to 48 h. These results suggest that DSS enhanced the adhesion and phagocytosis of B. abortus into murine macrophages by stimulating the MAPK signaling proteins phospho-ERK1/2 and p38α and that DSS increased the intracellular survival of B. abortus by inhibiting colocalization of Brucella-containing vacuoles (BCVs) with the late endosome marker LAMP-1. This study emphasizes the enhancement of the phagocytic and intracellular modulatory effects of DSS, which may suppress the innate immune system and contribute to prolonged Brucella survival and chronic infection.

  5. TceSR two-component regulatory system of Brucella melitensis 16M is involved in invasion, intracellular survival and regulated cytotoxicity for macrophages.

    PubMed

    Li, Z; Fu, Q; Wang, Z; Li, T; Zhang, H; Guo, F; Wang, Y; Zhang, J; Chen, C

    2015-06-01

    The mechanisms of invasion and intracellular survival of Brucella are still poorly understood. Previous studies showed that the two-component regulatory systems (TCSs) play an important role in the intracellular survival of Brucella. To investigate if TCSs involve in the virulence and cytotoxicity of Brucella melitensis, we introduced a mutation into one of the TCSs in chromosome II in Br. melitensis 16M strain, and generated 16MΔTceSR, a mutant of Br. melitensis 16M strain. In vitro infection experiments using murine macrophage cell line (RAW 264.7) showed that the survival of 16MΔTceSR mutant in macrophages decreased 0·91-log compared with that of wild type Br. melitensis 16M strain at 2 h postinfection, replication of 16MΔTceSR mutant in macrophages was 5·65-log, which was much lower than that wild type strain. Results of lactate dehydrogenase cytotoxicity assays in macrophages demonstrated high dose infection with wide type strain produced high level cytotoxicity to macrophages, but 16MΔTceSR mutant had very low level cytotoxicity, indicating mutation of TCSs impaired the cytotoxicity of Br. melitensis to macrophages. Animal experiments showed that the spleen colonization of 16MΔTceSR was significantly reduced compared with its wild type strains. The lower levels of survival of 16MΔTceSR in various stress conditions suggested that the mutation of the TCSs of Br. melitensis was the causative factor of its reduced resistance to stress conditions. Taken together, our results demonstrated TCS TceSR involves in the intracellular survival, virulence and cytotoxicity of Br. melitensis during its infection. Significance and impact of the study: Two-component systems (TCSs) are predominant bacterial signal transduction mechanisms. The pathogenicity of Brucella is due to its ability to adapt to the intracellular environment including low levels of acidic pH, high-salt and heat shock. TCSs are designed to sense diverse stimuli, transfer signals and enact an

  6. Mechanisms of Borrelia burgdorferi internalization and intracellular innate immune signaling.

    PubMed

    Petnicki-Ocwieja, Tanja; Kern, Aurelie

    2014-01-01

    Lyme disease is a long-term infection whose most severe pathology is characterized by inflammatory arthritis of the lower bearing joints, carditis, and neuropathy. The inflammatory cascades are initiated through the early recognition of invading Borrelia burgdorferi spirochetes by cells of the innate immune response, such as neutrophils and macrophage. B. burgdorferi does not have an intracellular niche and thus much research has focused on immune pathways activated by pathogen recognition molecules at the cell surface, such as the Toll-like receptors (TLRs). However, in recent years, studies have shown that internalization of the bacterium by host cells is an important component of the defense machinery in response to B. burgdorferi. Upon internalization, B. burgdorferi is trafficked through an endo/lysosomal pathway resulting in the activation of a number of intracellular pathogen recognition receptors including TLRs and Nod-like receptors (NLRs). Here we will review the innate immune molecules that participate in both cell surface and intracellular immune activation by B. burgdorferi.

  7. Effects of age and macrophage lineage on intracellular survival and cytokine induction after infection with Rhodococcus equi.

    PubMed

    Berghaus, Londa J; Giguère, Steeve; Sturgill, Tracy L

    2014-07-15

    Rhodococcus equi, a facultative intracellular pathogen of macrophages, causes life-threatening pneumonia in foals and in people with underlying immune deficiencies. As a basis for this study, we hypothesized that macrophage lineage and age would affect intracellular survival of R. equi and cytokine induction after infection. Monocyte-derived and bronchoalveolar macrophages from 10 adult horses and from 10 foals (sampled at 1-3 days, 2 weeks, 1 month, 3 months, and 5 months of age) were infected ex vivo with virulent R. equi. Intracellular R. equi were quantified and mRNA expression of IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12 p40, IL-18, IFN-γ, and TNF-α was measured. Intracellular replication of R. equi was significantly (P<0.001) greater in bronchoalveolar than in monocyte-derived macrophages, regardless of age. Regardless of the macrophage lineage, replication of R. equi was significantly (P=0.002) higher in 3-month-old foals than in 3-day old foals, 2-week-old foals, 1-month-old foals, and adult horses. Expression of IL-4 mRNA was significantly higher in monocyte-derived macrophages whereas expression of IL-6, IL-18, and TNF-α was significantly higher in bronchoalveolar macrophages. Induction of IL-1β, IL-10, IL-12 p40, and IL-8 mRNA in bronchoalveolar macrophages of 1-3-day old foals was significantly higher than in older foals or adult horses. Preferential intracellular survival of R. equi in bronchoalveolar macrophages of juvenile horses may play a role in the pulmonary tropism of the pathogen and in the window of age susceptibility to infection.

  8. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  9. Differential Legionella spp. survival between intracellular and extracellular forms in thermal spring environments.

    PubMed

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Hsu, Shih-Yung; Huang, Jen-Te; Liu, Jorn-Hon; Huang, Yu-Li

    2013-05-01

    Legionella are commonly found in natural and man-made aquatic environments and are able to inhabit various species of protozoa. The relationship between the occurrence of Legionella spp. within protozoa and human legionellosis has been demonstrated; however, the proportions of intracellular and extracellular Legionella spp. in the aquatic environment were rarely reported. In this study, we developed a new method to differentiate intracellular and extracellular Legionella spp. in the aquatic environment. Water samples from three thermal spring recreational areas in southeastern Taiwan were collected and analyzed. For each water sample, concurrent measurements were performed for Legionella spp. and their free-living amoebae hosts. The overall detection rate was 32 % (16/50) for intracellular Legionella spp. and 12 % (6/50) for extracellular Legionella spp. The most prevalent host of Legionella spp. was Hartmannella vermiformis. The identified Legionella spp. differed substantially between intracellular and extracellular forms. The results showed that it may be necessary to differentiate intracellular and extracellular forms of Legionella spp.

  10. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    SciTech Connect

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O.

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  11. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryogenic technologies are required to preserve embryonic axes of recalcitrant seeds. Formation of potentially lethal intracellular ice limits successful cryopreservation; thus, it is important to understand the relationships among cryo-exposure techniques, water content and survival. In this pap...

  12. Severe anemia is an important negative predictor for survival with disseminated Mycobacterium avium-intracellulare in acquired immunodeficiency syndrome.

    PubMed

    Sathe, S S; Gascon, P; Lo, W; Pinto, R; Reichman, L B; Gascone, P

    1990-12-01

    Disseminated Mycobacterium avium-intracellulare (MAI) in patients with the acquired immunodeficiency syndrome (AIDS) is usually unresponsive to antimycobacterial therapy. We examined clinical and laboratory characteristics of MAI organisms and their relationship to the length of survival. We studied factors influencing survival and compared these in 76 patients with AIDS with and without MAI. Serum levels of p24 antigen and erythropoietin, and CD4-positive helper T-lymphocytes in blood were assessed in 36 additional patients with various clinical stages of HIV infection. In patients with MAI infection, survival was significantly related only to total lymphocyte count, hematocrit, platelet count, and sex. Of these, hematocrit and total lymphocyte count were the only linear predictors of survival. Anemia was significantly more profound in patients with AIDS and MAI than in the other patients. This anemia in patients with MAI could not be ascribed to increased peripheral destruction of red cells, deficient nutritional factors, or erythropoietin production, HIV viral or bacterial load, or a general effect on other blood elements such as neutrophils or platelets. The influence of MAI on survival in patients with AIDS did depend upon whether the MAI occurred as an index infection or was preceded by other opportunistic infections. Patients with other preceding opportunistic infection lived for a much shorter duration from the time of diagnosis of MAI.

  13. Cognitive functions of intracellular mechanisms for contextual amplification.

    PubMed

    Phillips, William A

    2017-03-01

    Evidence for the hypothesis that input to the apical tufts of neocortical pyramidal cells plays a central role in cognition by amplifying their responses to feedforward input is reviewed. Apical tufts are electrically remote from the soma, and their inputs come from diverse sources including direct feedback from higher cortical regions, indirect feedback via the thalamus, and long-range lateral connections both within and between cortical regions. This suggests that input to tuft dendrites may amplify the cell's response to basal inputs that they receive via layer 4 and which have synapses closer to the soma. ERP data supporting this inference is noted. Intracellular studies of apical amplification (AA) and of disamplification by inhibitory interneurons targeted only at tufts are reviewed. Cognitive processes that have been related to them by computational, electrophysiological, and psychopathological studies are then outlined. These processes include: figure-ground segregation and Gestalt grouping; contextual disambiguation in perception and sentence comprehension; priming; winner-take-all competition; attention and working memory; setting the level of consciousness; cognitive control; and learning. It is argued that theories in cognitive neuroscience should not assume that all neurons function as integrate-and-fire point processors, but should use the capabilities of cells with distinct sites of integration for driving and modulatory inputs. Potentially 'unifying' theories that depend upon these capabilities are reviewed. It is concluded that evolution of the primitives of AA and disamplification in neocortex may have extended cognitive capabilities beyond those built from the long-established primitives of excitation, inhibition, and disinhibition.

  14. STING-Dependent 2'-5' Oligoadenylate Synthetase-Like Production Is Required for Intracellular Mycobacterium leprae Survival.

    PubMed

    de Toledo-Pinto, Thiago Gomes; Ferreira, Anna Beatriz Robottom; Ribeiro-Alves, Marcelo; Rodrigues, Luciana Silva; Batista-Silva, Leonardo Ribeiro; Silva, Bruno Jorge de Andrade; Lemes, Robertha Mariana Rodrigues; Martinez, Alejandra Nóbrega; Sandoval, Felipe Galvan; Alvarado-Arnez, Lucia Elena; Rosa, Patrícia Sammarco; Shannon, Edward Joseph; Pessolani, Maria Cristina Vidal; Pinheiro, Roberta Olmo; Antunes, Sérgio Luís Gomes; Sarno, Euzenir Nunes; Lara, Flávio Alves; Williams, Diana Lynn; Ozório Moraes, Milton

    2016-07-15

    Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen.

  15. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes.

    PubMed

    Vicencio, Jose Miguel; Ibarra, Cristian; Estrada, Manuel; Chiong, Mario; Soto, Dagoberto; Parra, Valentina; Diaz-Araya, Guillermo; Jaimovich, Enrique; Lavandero, Sergio

    2006-03-01

    Androgens are associated with important effects on the heart, such as hypertrophy or apoptosis. These responses involve the intracellular androgen receptor. However, the mechanisms of how androgens activate several membrane signaling pathways are not fully elucidated. We have investigated the effect of testosterone on intracellular calcium in cultured rat cardiac myocytes. Using fluo3-AM and epifluorescence microscopy, we found that exposure to testosterone rapidly (1-7 min) led to an increase of intracellular Ca2+, an effect that persisted in the absence of external Ca2+. Immunocytochemical analysis showed that these effects occurred before translocation of the intracellular androgen receptor to the perinuclear zone. Pretreatment of the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethylester and thapsigargin blocked this response, suggesting the involvement of internal Ca2+ stores. U-73122, an inhibitor of phospholipase C, and xestospongin C, an inhibitor of inositol 1,4,5-trisphosphate receptor, abolished the Ca2+ signal. The rise in intracellular Ca2+ was not inhibited by cyproterone, an antagonist of intracellular androgen receptor. Moreover, the cell impermeant testosterone-BSA complex also produced the Ca2+ signal, indicating its origin in the plasma membrane. This effect was observed in cultured neonatal and adult rat cardiac myocytes. Pertussis toxin and the adenoviral transduction of beta- adrenergic receptor kinase carboxy terminal peptide, a peptide inhibitor of betagamma-subunits of G protein, abolished the testosterone-induced Ca2+ release. In summary, this is the first study of rapid, nongenomic intracellular Ca2+ signaling of testosterone in cardiac myocytes. Using various inhibitors and testosterone-BSA complex, the mechanism for the rapid, testosterone-induced increase in intracellular Ca2+ is through activation of a plasma membrane receptor associated with a Pertussis toxin-sensitive G protein-phospholipase C

  16. Mechanisms of HIV-1 Nef Function and Intracellular Signaling

    PubMed Central

    Foster, John L.; Denial, Sarah J.; Temple, Brenda R. S.; Garcia, J. Victor

    2013-01-01

    Advances in the last several years have enhanced mechanistic understanding of Nef induced CD4 and MHCI downregulation and have suggested a new paradigm for analyzing Nef function. In both of these cases, Nef acts by forming ternary complexes with significant contributions to stability imparted by non-canonical interactions. The mutational analyses and binding assays that have led to these conclusions are discussed. The recent progress has been dependent on conservative mutations and multi-protein binding assays. The poorly understood Nef functions of p21 activated protein kinase (PAK2) activation, enhancement of virion infectivity, and inhibition of immunoglobulin class switching are also likely to involve ternary complexes and non-canonical interactions. Hence, investigation of these latter Nef functions should benefit from a similar approach. Six historically used alanine substitutions for determining structure-function relationships of Nef are discussed. These are M20A, E62A/E63A/E64A/E65A (AAAA), P72A/P75A (AXXA), R106A, L164A/L165A, and D174A/D175A. Investigations of less disruptive mutations in place of AAAA and AXXA have led to different interpretations of mechanism. Two recent examples of this alternate approach applied to PAK2 activation F191 and critical residue D123 are presented. The implications of the new findings and the resulting new paradigm for Nef structure-function are discussed with respect to creating a map of Nef functions on the protein surface. We report the results of a PPI-Pred analysis for protein-protein interfaces. There are three predicted patches produced by the analysis which describe regions consistent with the currently known mutational analyses of Nef function. PMID:21336563

  17. Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes

    PubMed Central

    Boitz, Jan M.; Gilroy, Caslin A.; Olenyik, Tamara D.; Paradis, Dustin; Perdeh, Jasmine; Dearman, Kristie; Davis, Madison J.; Yates, Phillip A.; Li, Yuexin; Riscoe, Michael K.; Ullman, Buddy

    2016-01-01

    ABSTRACT Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani. To test ARG function in intact parasites, we generated Δarg null mutants in L. donovani and evaluated their ability to proliferate in vitro and trigger infections in mice. The Δarg knockout was incapable of growth in the absence of polyamine supplementation, but the auxotrophic phenotype could be bypassed by addition of either millimolar concentrations of ornithine or micromolar concentrations of putrescine or by complementation with either glycosomal or cytosolic versions of ARG. Spermidine supplementation of the medium did not circumvent the polyamine auxotrophy of the Δarg line. Although ARG was found to be essential for ornithine and polyamine synthesis, ornithine decarboxylase appeared to be the rate-limiting enzyme for polyamine production. Mouse infectivity studies revealed that the Δarg lesion reduced parasite burdens in livers by an order of magnitude but had little impact on the numbers of parasites recovered from spleens. Thus, ARG is essential for proliferation of promastigotes but not intracellular amastigotes. Coupled with previous studies, these data support a model in which L. donovani amastigotes readily salvage ornithine and have some access to host spermidine pools, while host putrescine appears to be unavailable for salvage by the parasite. PMID:27795357

  18. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival.

    PubMed

    Massimi, Mara; Cardarelli, Silvia; Galli, Francesca; Giardi, Maria Federica; Ragusa, Federica; Panera, Nadia; Cinque, Benedetta; Cifone, Maria Grazia; Biagioni, Stefano; Giorgi, Mauro

    2017-06-01

    Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 μM) and DC-TA-46 (0.5 μM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc.

  19. Intracellular Production of Brucella L Forms II. Induction and Survival of Brucella abortus L Forms in Tissue Culture1

    PubMed Central

    Hatten, Betty A.; Sulkin, S. Edward

    1966-01-01

    Hatten, Betty A. (The University of Texas Southwestern Medical School, Dallas), and S. Edward Sulkin. Intracellular production of Brucella L forms. II. Induction and survival of Brucella abortus L forms in tissue culture. J. Bacteriol. 91:14–20. 1966.—Intracellular survival of altered brucellae, possibly L forms, was not greatly affected by penicillin or streptomycin in concentrations ranging from 5.0 to 40 μg/ml, but a combination of these two antibiotics (2.5 to 20 μg/ml each) reduced the number of positive L-form cultures. Tetracycline (2.0 μg/ml) decreased the number of positive L-form cultures at about the same rate as combinations of the higher concentrations of penicillin and streptomycin. Various concentrations of tetracycline (0.1 to 2.0 μg/ml) with 5.0 μg/ml of penicillin or streptomycin significantly reduced the number of positive L-form cultures. L forms were recovered for several days after elimination of bacteria from the cultures by all of the antibiotics tested. L-form production was not dependent upon the presence of antibiotics in the culture medium, but they were recovered in greater numbers when bacteria were still present in the hamster kidney cells. Addition of thallium acetate to infected cells (at varying intervals of time after infection) to control bacterial growth and conversion to the L phase during cellular disintegration decreased the number of positive L-form cultures obtained over a 10-day period. Comparison of the antibiotic sensitivity of bacteria recovered from infected tissue culture cells with the stock strain of Brucella abortus indicated that some resistance to penicillin and tetracycline had developed. A marked resistance to streptomycin was observed in those bacteria recovered from cells maintained in the presence of this antibiotic. PMID:4955246

  20. Effect of Warming Rate on the Survival of Vitrified Mouse Oocytes and on the Recrystallization of Intracellular Ice1

    PubMed Central

    Seki, Shinsuke; Mazur, Peter

    2008-01-01

    Successful cryopreservation demands there be little or no intracellular ice. One procedure is classical slow equilibrium freezing, and it has been successful in many cases. However, for some important cell types, including some mammalian oocytes, it has not. For the latter, there are increasing attempts to cryopreserve them by vitrification. However, even if intracellular ice formation (IIF) is prevented during cooling, it can still occur during the warming of a vitrified sample. Here, we examine two aspects of this occurrence in mouse oocytes. One took place in oocytes that were partly dehydrated by an initial hold for 12 min at −25°C. They were then cooled rapidly to −70°C and warmed slowly, or they were warmed rapidly to intermediate temperatures and held. These oocytes underwent no IIF during cooling but blackened from IIF during warming. The blackening rate increased about 5-fold for each five-degree rise in temperature. Upon thawing, they were dead. The second aspect involved oocytes that had been vitrified by cooling to −196°C while suspended in a concentrated solution of cryoprotectants and warmed at rates ranging from 140°C/min to 3300°C/min. Survivals after warming at 140°C/min and 250°C/min were low (<30%). Survivals after warming at ≥2200°C/min were high (80%). When warmed slowly, they were killed, apparently by the recrystallization of previously formed small internal ice crystals. The similarities and differences in the consequences of the two types of freezing are discussed. PMID:18562703

  1. Effects of Equex from different sources on post-thaw survival, longevity and intracellular Ca2+ concentration of dog spermatozoa.

    PubMed

    Peña, Ana I; Lugilde, Luz L; Barrio, Mónica; Herradón, Pedro G; Quintela, Luis A

    2003-04-15

    The aims of the present study were to compare the effects of two commercial preparations (Equex STM Paste or Equex Pasta), whose active ingredient is sodium dodecyl sulphate (SDS), added to a Tris-egg yolk-based extender, on post-thaw sperm survival and longevity, as well as on the intracellular Ca(2+) concentration of dog spermatozoa during incubation at 38 degrees C. One ejaculate was collected from each of eight dogs. Each ejaculate was centrifuged, the semen plasma discarded, and the sperm pellet rediluted with a Tris-glucose-egg yolk extender containing 3% glycerol (Ext-1) at a sperm concentration of 200 x 10(6) spermatozoa (spz)/ml. The diluted semen was divided in three aliquots of equal volume and allowed to equilibrate for 1h at 4 degrees C. After equilibration, the same volume of three different second extenders was added, respectively, to each of the three aliquots: (A) Ext-2A (same composition as Ext-1 except that it contained 7% glycerol and 1% Equex STM Paste), (B) Ext-2B (same composition as that of Ext-1 except that it contained 7% glycerol and 1% Equex Pasta), and (C) Ext-2 (CONTROL: same composition as that of Ext-1 except that it contained 7% glycerol). Semen samples were packed in 0.5 ml straws and frozen on a rack 4 cm above liquid nitrogen (LN(2)) in a styrofoam box. Thawing was at 70 degrees C for 8s. Sperm motility was evaluated after thawing and at 1 h intervals for 5h at 38 degrees C by subjective examination and by using a CASA system. Plasma membrane integrity and acrosomal status were evaluated at 1, 4 and 7h post-thaw using a triple staining procedure and flow cytometry. Intracellular Ca(2+) concentration of live spermatozoa was evaluated by flow cytometry at 1, 4 and 7h post-thaw after co-loading the sperm cells with the Ca(2+) indicators Fluo 3 AM and Fura Red AM, and with PI. Post-thaw sperm survival and longevity, as well as the quality of the sperm movement, were significantly better (P<0.005) when Ext-2A (containing Equex STM

  2. Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Are Immunogenic, Alter Cytokine Profile and Aid in Intracellular Survival

    PubMed Central

    Pandey, Saurabh; Tripathi, Deeksha; Khubaib, Mohd; Kumar, Ashutosh; Sheikh, Javaid A.; Sumanlatha, Gaddam; Ehtesham, Nasreen Z.; Hasnain, Seyed E.

    2017-01-01

    Mycobacterium tuberculosis (M. tb) has two peptidyl-prolyl isomerases (Ppiases) PpiA and PpiB, popularly known as cyclophilin A and cyclophilin B. The role of cyclophilins in processes such as signaling, cell surface recognition, chaperoning, and heat shock response has been well-documented. We present evidence that M. tb Ppiases modulate the host immune response. ELISA results revealed significant presence of antibodies to M. tb Ppiases in patient sera as compared to sera from healthy individuals. Treatment of THP-1 cells with increasing concentrations of rPpiA, induced secretion of pro-inflammatory cytokines TNF-α and IL-6. Alternatively, treatment with rPpiB inhibited secretion of TNF-α and induced secretion of IL-10. Furthermore, heterologous expression of M. tb PpiA and PpiB in Mycobacterium smegmatis increased bacterial survival in THP-1 cells as compared to those transformed with the vector control. Our results demonstrate that M. tb Ppiases are immunogenic proteins that can possibly modulate host immune response and enhance persistence of the pathogen within the host by subverting host cell generated stresses. PMID:28261567

  3. Swine TRIM21 restricts FMDV infection via an intracellular neutralization mechanism.

    PubMed

    Fan, Wenchun; Zhang, Dong; Qian, Ping; Qian, Suhong; Wu, Mengge; Chen, Huanchun; Li, Xiangmin

    2016-03-01

    The tripartite motif protein 21 (TRIM21) is a ubiquitously expressed E3 ubiquitin ligase and an intracellular antibody receptor. TRIM21 mediates antibody-dependent intracellular neutralization (ADIN) in cytosol and provides an intracellular immune response to protect host defense against pathogen infection. In this study, swine TRIM21 (sTRIM21) was cloned and its role in ADIN was investigated. The expression of sTRIM21 is induced by type I interferon in PK-15 cells. sTRIM21 restricts FMDV infection in the presence of FMDV specific antibodies. Furthermore, sTRIM21 interacts with Fc fragment of swine immunoglobulin G (sFc) fused VP1 of FMDV and thereby causing its degradation. Both the RING and SPRY domains are essential for sTRIM21 to degrade sFc-fused VP1. These results suggest that the intracellular neutralization features of FMDV contribute to the antiviral activity of sTRIM21. sTRIM21 provide another intracellular mechanism to inhibit FMDV infection in infected cells.

  4. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms

    PubMed Central

    Donlan, Rodney M.; Costerton, J. William

    2002-01-01

    Though biofilms were first described by Antonie van Leeuwenhoek, the theory describing the biofilm process was not developed until 1978. We now understand that biofilms are universal, occurring in aquatic and industrial water systems as well as a large number of environments and medical devices relevant for public health. Using tools such as the scanning electron microscope and, more recently, the confocal laser scanning microscope, biofilm researchers now understand that biofilms are not unstructured, homogeneous deposits of cells and accumulated slime, but complex communities of surface-associated cells enclosed in a polymer matrix containing open water channels. Further studies have shown that the biofilm phenotype can be described in terms of the genes expressed by biofilm-associated cells. Microorganisms growing in a biofilm are highly resistant to antimicrobial agents by one or more mechanisms. Biofilm-associated microorganisms have been shown to be associated with several human diseases, such as native valve endocarditis and cystic fibrosis, and to colonize a wide variety of medical devices. Though epidemiologic evidence points to biofilms as a source of several infectious diseases, the exact mechanisms by which biofilm-associated microorganisms elicit disease are poorly understood. Detachment of cells or cell aggregates, production of endotoxin, increased resistance to the host immune system, and provision of a niche for the generation of resistant organisms are all biofilm processes which could initiate the disease process. Effective strategies to prevent or control biofilms on medical devices must take into consideration the unique and tenacious nature of biofilms. Current intervention strategies are designed to prevent initial device colonization, minimize microbial cell attachment to the device, penetrate the biofilm matrix and kill the associated cells, or remove the device from the patient. In the future, treatments may be based on inhibition of genes

  5. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7.

    PubMed

    Hosein, Althea M; Breidt, Frederick; Smith, Charles E

    2011-02-01

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.

  6. Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles

    PubMed Central

    von dem Bussche, Annette; Yi, Xin; Qiu, Yang; Wang, Zhongying; Weston, Paula; Hurt, Robert H.; Kane, Agnes B.; Gao, Huajian

    2016-01-01

    Understanding the behavior of low-dimensional nanomaterials confined in intracellular vesicles has been limited by the resolution of bioimaging techniques and the complex nature of the problem. Recent studies report that long, stiff carbon nanotubes are more cytotoxic than flexible varieties, but the mechanistic link between stiffness and cytotoxicity is not understood. Here we combine analytical modeling, molecular dynamics simulations, and in vitro intracellular imaging methods to reveal 1D carbon nanotube behavior within intracellular vesicles. We show that stiff nanotubes beyond a critical length are compressed by lysosomal membranes causing persistent tip contact with the inner membrane leaflet, leading to lipid extraction, lysosomal permeabilization, release of cathepsin B (a lysosomal protease) into the cytoplasm, and cell death. The precise material parameters needed to activate this unique mechanical pathway of nanomaterials interaction with intracellular vesicles were identified through coupled modeling, simulation, and experimental studies on carbon nanomaterials with wide variation in size, shape, and stiffness, leading to a generalized classification diagram for 1D nanocarbons that distinguishes pathogenic from biocompatible varieties based on a nanomechanical buckling criterion. For a wide variety of other 1D material classes (metal, oxide, polymer), this generalized classification diagram shows a critical threshold in length/width space that represents a transition from biologically soft to stiff, and thus identifies the important subset of all 1D materials with the potential to induce lysosomal permeability by the nanomechanical mechanism under investigation. PMID:27791073

  7. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization

    PubMed Central

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  8. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    PubMed

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  9. The pore-forming toxin listeriolysin O is degraded by neutrophil metalloproteinase-8 and fails to mediate Listeria monocytogenes intracellular survival in neutrophils.

    PubMed

    Arnett, Eusondia; Vadia, Stephen; Nackerman, Colleen C; Oghumu, Steve; Satoskar, Abhay R; McLeish, Kenneth R; Uriarte, Silvia M; Seveau, Stephanie

    2014-01-01

    The pore-forming toxin listeriolysin O (LLO) is a major virulence factor secreted by the facultative intracellular pathogen Listeria monocytogenes. This toxin facilitates L. monocytogenes intracellular survival in macrophages and diverse nonphagocytic cells by disrupting the internalization vesicle, releasing the bacterium into its replicative niche, the cytosol. Neutrophils are innate immune cells that play an important role in the control of infections, yet it was unknown if LLO could confer a survival advantage to L. monocytogenes in neutrophils. We report that LLO can enhance the phagocytic efficiency of human neutrophils and is unable to protect L. monocytogenes from intracellular killing. To explain the absence of L. monocytogenes survival in neutrophils, we hypothesized that neutrophil degranulation leads to the release of LLO-neutralizing molecules in the forming phagosome. In support of this, L. monocytogenes is a potent inducer of neutrophil degranulation, since its virulence factors, such as LLO, facilitate granule exocytosis. Within the first few minutes of interaction with L. monocytogenes, granules can fuse with the plasma membrane at the bacterial interaction site before closure of the phagosome. Furthermore, granule products directly degrade LLO, irreversibly inhibiting its activity. The matrix metalloproteinase-8, stored in secondary granules, was identified as an endoprotease that degrades LLO, and blocking neutrophil proteases increased L. monocytogenes intracellular survival. In conclusion, we propose that LLO degradation by matrix metalloproteinase-8 during phagocytosis protects neutrophil membranes from perforation and contributes to maintaining L. monocytogenes in a bactericidal phagosome from which it cannot escape.

  10. Campylobacter protein oxidation influences epithelial cell invasion or intracellular survival as well as intestinal tract colonization in chickens.

    PubMed

    Lasica, A M; Wyszynska, A; Szymanek, K; Majewski, P; Jagusztyn-Krynicka, E K

    2010-01-01

    The Dsb family of redox proteins catalyzes disulfide bond formation and isomerization. Since mutations in dsb genes change the conformation and stability of many extracytoplasmic proteins, and since many virulence factors of pathogenic bacteria are extracytoplasmic, inactivation of dsb genes often results in pathogen attenuation. This study investigated the role of 2 membrane-bound oxidoreductases, DsbB and DsbI, in the Campylobacter jejuni oxidative Dsb pathway. Campylobacter mutants, lacking DsbB or DsbI or both, were constructed by allelic replacement and used in the human intestinal epithelial T84 cell line for the gentamicin protection assay (invasion assay) and chicken colonization experiments. In C. coli strain 23/1, the inactivation of the dsbB or dsbI gene separately did not significantly affect the colonization process. However, simultaneous disruption of both membrane-bound oxidoreductase genes significantly decreased the strain’s ability to colonize chicken intestines. Moreover, C. jejuni strain 81-176 with mutated dsbB or dsbI genes showed reduced invasion/intracellular survival abilities. No cells of the double mutants (dsbB⁻ dsbI⁻) of C. jejuni 81-176 were recovered from human cells after 3 h of invasion.

  11. Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii.

    PubMed

    Abd, Hadi; Saeed, Amir; Weintraub, Andrej; Nair, G Balakrish; Sandström, Gunnar

    2007-04-01

    Vibrio cholerae species are extracellular, waterborne, gram-negative bacteria that are overwhelmed by predators in aquatic environments. The unencapsulated serogroup V. cholerae O1 and encapsulated V. cholerae O139 cause epidemic and pandemic outbreaks of cholera. It has recently been shown that the aquatic and free-living amoeba Acanthamoeba castellanii is not a predator to V. cholerae O139; rather, V. cholerae O139 has shown an intracellular compatibility with this host. The aim of this study was to examine the ability of V. cholerae O1 classical and El Tor strains to grow and survive in A. castellanii. The interaction between A. castellanii and V. cholerae O1 strains was studied by means of amoeba cell counts and viable counts of the bacteria in the absence or presence of amoebae. The viable count of intracellularly growing bacteria was estimated by utilizing gentamicin assay. Confocal microscopy and electron microscopy were used to determine the intracellular localization of V. cholerae in A. castellanii. The results showed that V. cholerae O1 classical and El Tor strains grew and survived intracellularly in the cytoplasm of trophozoites, and that the bacteria were also found in the cysts of A. castellanii. The interaction showed a facultative intracellular behaviour of V. cholerae O1 classical and El Tor strains and a possible role of A. castellanii as an environmental host of V. cholerae species.

  12. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery.

    PubMed

    Cardarelli, Francesco; Digiacomo, Luca; Marchini, Cristina; Amici, Augusto; Salomone, Fabrizio; Fiume, Giuseppe; Rossetta, Alessandro; Gratton, Enrico; Pozzi, Daniela; Caracciolo, Giulio

    2016-05-11

    Lipofectamine reagents are widely accepted as "gold-standard" for the safe delivery of exogenous DNA or RNA into cells. Despite this, a satisfactory mechanism-based explanation of their superior efficacy has remained mostly elusive thus far. Here we apply a straightforward combination of live cell imaging, single-particle tracking microscopy, and quantitative transfection-efficiency assays on live cells to unveil the intracellular trafficking mechanism of Lipofectamine/DNA complexes. We find that Lipofectamine, contrary to alternative formulations, is able to efficiently avoid active intracellular transport along microtubules, and the subsequent entrapment and degradation of the payload within acidic/digestive lysosomal compartments. This result is achieved by random Brownian motion of Lipofectamine-containing vesicles within the cytoplasm. We demonstrate here that Brownian diffusion is an efficient route for Lipofectamine/DNA complexes to avoid metabolic degradation, thus leading to optimal transfection. By contrast, active transport along microtubules results in DNA degradation and subsequent poor transfection. Intracellular trafficking, endosomal escape and lysosomal degradation appear therefore as highly interdependent phenomena, in such a way that they should be viewed as a single barrier on the route for efficient transfection. As a matter of fact, they should be evaluated in their entirety for the development of optimized non-viral gene delivery vectors.

  13. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery

    PubMed Central

    Cardarelli, Francesco; Digiacomo, Luca; Marchini, Cristina; Amici, Augusto; Salomone, Fabrizio; Fiume, Giuseppe; Rossetta, Alessandro; Gratton, Enrico; Pozzi, Daniela; Caracciolo, Giulio

    2016-01-01

    Lipofectamine reagents are widely accepted as “gold-standard” for the safe delivery of exogenous DNA or RNA into cells. Despite this, a satisfactory mechanism-based explanation of their superior efficacy has remained mostly elusive thus far. Here we apply a straightforward combination of live cell imaging, single-particle tracking microscopy, and quantitative transfection-efficiency assays on live cells to unveil the intracellular trafficking mechanism of Lipofectamine/DNA complexes. We find that Lipofectamine, contrary to alternative formulations, is able to efficiently avoid active intracellular transport along microtubules, and the subsequent entrapment and degradation of the payload within acidic/digestive lysosomal compartments. This result is achieved by random Brownian motion of Lipofectamine-containing vesicles within the cytoplasm. We demonstrate here that Brownian diffusion is an efficient route for Lipofectamine/DNA complexes to avoid metabolic degradation, thus leading to optimal transfection. By contrast, active transport along microtubules results in DNA degradation and subsequent poor transfection. Intracellular trafficking, endosomal escape and lysosomal degradation appear therefore as highly interdependent phenomena, in such a way that they should be viewed as a single barrier on the route for efficient transfection. As a matter of fact, they should be evaluated in their entirety for the development of optimized non-viral gene delivery vectors. PMID:27165510

  14. Surface transport properties of reticulopodia: do intracellular and extracellular motility share a common mechanism?

    PubMed

    Bowser, S S; Israel, H A; McGee-Russell, S M; Rieder, C L

    1984-12-01

    The reticulopodial networks of the foraminiferan protozoans Allogromia sp., strain NF, and A. laticollaris display rapid (up to 11 microns/second) and bidirectional saltatory transport of membrane surface markers (polystyrene microspheres). Electron microscopy shows that microspheres adhere directly to the reticulopodial surface glycocalyx. A videomicroscopic analysis of this phenomenon reveals that microsphere movement is typically independent of pseudopod extension/withdrawal and that particles of different sizes and surface properties display similar motile characteristics. The motile properties of surface-associated microspheres appear identical to those of saltating intracellular organelles. Indeed, in some instances the surface-attached microspheres appear transiently linked in motion to these underlying organelles. Our observations suggest that, in reticulopodia, surface transport of microspheres and intracellular transport of organelles are driven by a common mechanism.

  15. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival.

    PubMed

    Naikare, Hemant; Palyada, Kiran; Panciera, Roger; Marlow, Denver; Stintzi, Alain

    2006-10-01

    To assess the importance of ferrous iron acquisition in Campylobacter physiology and pathogenesis, we disrupted and characterized the Fe2+ iron transporter, FeoB, in Campylobacter jejuni NCTC 11168, 81-176, and ATCC 43431. The feoB mutant was significantly affected in its ability to transport 55Fe2+. It accumulated half the amount of iron than the wild-type strain during growth in an iron-containing medium. The intracellular iron of the feoB mutant was localized in the periplasmic space versus the cytoplasm for the wild-type strain. These results indicate that the feoB gene of C. jejuni encodes a functional ferrous iron transport system. Reverse transcriptase PCR analysis revealed the cotranscription of feoB and Cj1397, which encodes a homolog of Escherichia coli feoA. C. jejuni 81-176 feoB mutants exhibited reduced ability to persist in human INT-407 embryonic intestinal cells and porcine IPEC-1 small intestinal epithelial cells compared to the wild type. C. jejuni NCTC 11168 feoB mutant was outcompeted by the wild type for colonization and/or survival in the rabbit ileal loop. The feoB mutants of the three C. jejuni strains were significantly affected in their ability to colonize the chick cecum. And finally, the three feoB mutants were outcompeted by their respective wild-type strains for infection of the intestinal tracts of colostrum-deprived piglets. Taken together, these results demonstrate that FeoB-mediated ferrous iron acquisition contributes significantly to colonization of the gastrointestinal tract during both commensal and infectious relationship, and thus it plays an important role in Campylobacter pathogenesis.

  16. [Mechanisms of pathogenicity and host defense in infections by intracellular parasitic microbes].

    PubMed

    Mitsuyama, M; Suzuki, K

    2000-09-01

    Mycobacterium tuberculosis is one of the intracellular parasitic bacteria escaping the intracellular killing inside macrophages. The aim of this symposium was to get some insight into the mechanism of pathogenicity and host defense in M. tuberculosis infection, which has not yet been elucidated well, by the presentation of up-to-date knowledge on these aspect in infection with different intracellular parasitic microbes. Dr. Yoshikai (Nagoya Univ.) indicated that TLR is involved in the initial response of host against S. choleraesuis. Among the cytokines contributing to the induction of specific immunity, the importance of IL-15 was emphasized, based on their own experimental data using IL-15 transgenic mice and the application of anti-IL-15 antibody in vivo. Dr. Yoshida (Kyushu Univ.) reviewed the mechanisms of intracellular growth of Legionellae. Several genes so far identified as essential genes in intra-macrophage growth appeared to be similar to those encoding type 3 secretion system observed in Shigellae. There is a significant strain difference in the growth of L. pneumophila inside macrophages and such difference seemed to be under the control of a gene at chromosome 13, Lgn 1. The investigation of difference in the mode of escape among various Legionella. spp. may provide a novel mechansim in bacterial invasion and escape. Dr. Kawamura (Kyoto Univ.) summarized some new reports on the molecular mechanism of the inhibition of P-L fusion by M. tuberculosis. He emphasized the importance of the alteration in phagosomal maturation as indicated by the accumulation of TACO protein. The possible involvement of TLR in the recognition of Mycobacterial cells and its LAM was discussed. Dr. Kawakami (Ryukyu Univ.) first discussed the possibility that Cryptococcus neoformans, a fungal pathogen, could be regarded as one of the intracellular parasitic microbes. His presentation mainly focused on the TH1-Th2 balance in the expression of host defense against C. neoformans in

  17. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  18. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    PubMed

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases.

  19. Comparative intracellular uptake of adriamycin and 4'-deoxydoxorubicin by non-small cell lung tumor cells in culture and its relationship to cell survival.

    PubMed

    Kerr, D J; Kerr, A M; Freshney, R I; Kaye, S B

    1986-08-15

    4'-Deoxydoxorubicin (4'-deoxy) is a new adriamycin analogue with a similar spectrum of antitumour activity but is significantly more lipophilic than the parent compound. We report the kinetics and uptake of the two drugs by human non-small cell lung tumour cells in monolayer culture and the relationship between intracellular drug levels and cytotoxicity. The rate and degree of cell uptake of 4'-deoxy (Vmax = 30 ng/10(5) cells/min) was greater than that of adriamycin (Vmax = 0.15 ng/10(5) cells/min). Although for a given intracellular drug concentration adriamycin was more lethal, on the basis of extracellular drug concentration, cell kill was virtually identical. The log cell survival vs intracellular drug concentration plot was linear for adriamycin but biphasic for 4'-deoxy. Intracellular distribution of the two drugs was followed by fluorescent microscopy and it was apparent that adriamycin was localized mainly within the nucleus whereas 4'-deoxy accumulated within the cytoplasm. Our results suggest that the relationship between intracellular distribution of the two drugs could reflect different modes of action for the drugs with respect to binding sites or could be a non-specific phenomenon, unrelated to lethal effects.

  20. Capacitation inducers act through diverse intracellular mechanisms in cryopreserved bovine sperm.

    PubMed

    Breininger, E; Cetica, P D; Beconi, M T

    2010-10-01

    The effect of various capacitation inducers, i.e. heparin, superoxide anion, bicarbonate, adenosine, and caffeine, and their role in intracellular mechanisms involved in capacitation, were studied in cryopreserved bovine sperm. Capacitation was determined by epifluorescence chlortetracycline, protein tyrosine phosphorylation, and the ability of capacitated sperm to undergo an acrosome reaction and fertilize in vitro matured oocytes. Participation of membrane adenylate cyclase and protein kinases (protein kinase A, protein kinase C, and protein tyrosine kinase) was evaluated indirectly (with specific inhibitors). Involvement of reactive oxygen species (ROS) was determined with scavengers of superoxide anion, hydrogen peroxide, or nitric oxide. Percentages of capacitated (27-29%) and acrosome-reacted sperm (23-26%) did not differ (P > 0.05) among various capacitation inducers. Significantly higher rates of IVF were obtained with heparin (43%) or bicarbonate plus caffeine (45%), when compared with control samples (17%). Adding the membrane adenylate cyclase inhibitor diminished capacitation rates with heparin (8%) or adenosine (10%). There was differential protein kinase participation in response to inducers; protein kinase inhibitors diminished cleavage rates in heparin-capacitated sperm relative to controls. There were differences between and within the studied inducers in protein tyrosine phosphorylation patterns. We inferred that capacitation in cryopreserved bovine sperm was promoted through diverse pathways. Mechanisms triggered by heparin, or caffeine plus bicarbonate-induced capacitation, involved activation of intracellular pathways to optimize fertilizing capability of cryopreserved bovine sperm.

  1. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  2. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria

    PubMed Central

    Miao, Edward A.; Leaf, Irina A.; Treuting, Piper M.; Mao, Dat P.; Dors, Monica; Sarkar, Anasuya; Warren, Sarah E.; Wewers, Mark D.; Aderem, Alan

    2010-01-01

    Summary Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of IL-1β and IL-18. While wild type Salmonella typhimurium infection is lethal to mice, a strain that persistently expresses flagellin was cleared by the cytosolic flagellin detection pathway via NLRC4 activation of caspase-1; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1 induced pyroptotic cell death, released bacteria from macrophages and exposed them to uptake and killing by reactive oxygen species in neutrophils. Similarly, caspase-1 cleared unmanipulated Legionella and Burkholderia by cytokine-independent mechanisms. This demonstrates for the first time that caspase-1 clears intracellular bacteria in vivo independent of IL-1β and IL-18, and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system. PMID:21057511

  3. Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism.

    PubMed

    Lane, Darius J R; Chikhani, Sherin; Richardson, Vera; Richardson, Des R

    2013-06-01

    Although ascorbate has long been known to stimulate dietary iron (Fe) absorption and non-transferrin Fe uptake, the role of ascorbate in transferrin Fe uptake is unknown. Transferrin is a serum Fe transport protein supplying almost all cellular Fe under physiological conditions. We sought to examine ascorbate's role in this process, particularly as cultured cells are typically ascorbate-deficient. At typical plasma concentrations, ascorbate significantly increased (59)Fe uptake from transferrin by 1.5-2-fold in a range of cells. Moreover, ascorbate enhanced ferritin expression and increased (59)Fe accumulation in ferritin. The lack of effect of cycloheximide or the cytosolic aconitase inhibitor, oxalomalate, on ascorbate-mediated (59)Fe uptake from transferrin indicate increased ferritin synthesis or cytosolic aconitase activity was not responsible for ascorbate's activity. Experiments with membrane-permeant and -impermeant ascorbate-oxidizing reagents indicate that while extracellular ascorbate is required for stimulation of (59)Fe uptake from (59)Fe-citrate, only intracellular ascorbate is needed for transferrin (59)Fe uptake. Additionally, experiments with l-ascorbate analogs indicate ascorbate's reducing ene-diol moiety is necessary for its stimulatory activity. Importantly, neither N-acetylcysteine nor buthionine sulfoximine, which increase or decrease intracellular glutathione, respectively, affected transferrin-dependent (59)Fe uptake. Thus, ascorbate's stimulatory effect is not due to a general increase in cellular reducing capacity. Ascorbate also did not affect expression of transferrin receptor 1 or (125)I-transferrin cellular flux. However, transferrin receptors, endocytosis, vacuolar-type ATPase activity and endosomal acidification were required for ascorbate's stimulatory activity. Therefore, ascorbate is a novel modulator of the classical transferrin Fe uptake pathway, acting via an intracellular reductive mechanism.

  4. Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells.

    PubMed

    Verdiguel-Fernández, L; Oropeza-Navarro, R; Basurto-Alcántara, Francisco J; Castañeda-Ramírez, A; Verdugo-Rodríguez, Antonio

    2017-04-05

    Brucellosis is an infectious disease that affects practically all species of mammals, including human, and is a major zoonosis worldwide. Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in phagocytic and nonphagocytic cells such as trophoblast and epithelial cells. Among the six recognized species of the genus Brucella, Brucella melitensis is the main etiological agent involved in goat brucellosis and is also the most pathogenic for human. It causes significant losses in livestock production as a result of abortions, metritis, infertility, and birth of weak animals. Outer membrane proteins (OMPs) are exposed on the bacterial surface and are in contact with cells and effectors of the host immune response, whereby they could be important virulence factors of Brucella species. To evaluate this hypothesis, the gene encoding for the major outer membrane protein Omp31 was amplified, cloned into pUC18 plasmid, and inactivated by inserting a kanamycin cassette, rendering pLVM31 plasmid which was transformed into B. melitensis wild-type strain to obtain LVM31 mutant strain. The Outer membrane (OM) properties of the mutant strain were compared with B. melitensis Bm133 wild-type and B. melitensis Rev1 vaccine strains, in assessing its susceptibility to polymyxin B, sodium deoxycholate, and nonimmune serum. The mutant strain was assessed in vitro with survival assays in murine macrophages J774.A1 and HeLa cells. Our results demonstrate that LVM31 mutant is more susceptible to polymyxin B, sodium deoxycholate, and nonimmune serum than control strains; moreover, Omp31 mutation caused a decrease in the internalization and a significant decrease in the intracellular survival compared with the reference strains in both cell lines. These results allow us to conclude that Omp31 is important for maintaining OM integrity, but also it is necessary for bacterial internalization, establishment and development of an optimal replication

  5. Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms.

    PubMed

    Dayanithi, G; Sabatier, N; Widmer, H

    2000-03-01

    Oxytocin and vasopressin, released at the soma and dendrites of neurones, bind to specific autoreceptors and induce an increase in [Ca2+]i. In oxytocin cells, the increase results from a mobilisation of Ca2+ from intracellular stores, whereas in vasopressin cells, it results mainly from an influx of Ca2+ through voltage-dependent channels. The response to vasopressin is coupled to phospholipase C and adenylyl-cyclase pathways which are activated by V1 (V1a and V1b)- and V2-type receptors respectively. Measurements of [Ca2+]i in response to V1a and V2 agonists and antagonists suggest the functional expression of these two types of receptors in vasopressin neurones. The intracellular mechanisms involved are similar to those observed for the action of the pituitary adenylyl-cyclase-activating peptide (PACAP). Isolated vasopressin neurones exhibit spontaneous [Ca2+]i oscillations and these are synchronised with phasic bursts of electrical activity. Vasopressin modulates these spontaneous [Ca2+]i oscillations in a manner that depends on the initial state of the neurone, and such varied effects of vasopressin may be related to those observed on the electrical activity of vasopressin neurones in vivo.

  6. Active site structure and catalytic mechanism of phosphodiesterase for degradation of intracellular second messengers

    NASA Astrophysics Data System (ADS)

    Zhan, Chang-Guo

    2002-03-01

    Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by performing first-principles quantum chemical calculations on models of the active site. All the results obtained indicate that this critical bridging ligand in the active site of the reported X-ray crystal structure is a hydroxide ion, rather than a water molecule, expected to serve as the nucleophile to initialize the catalytic degradation of the intracellular second messengers.

  7. An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure.

    PubMed

    Gudelj, Ivana; Weitz, Joshua S; Ferenci, Tom; Claire Horner-Devine, M; Marx, Christopher J; Meyer, Justin R; Forde, Samantha E

    2010-09-01

    Trade-offs have been put forward as essential to the generation and maintenance of diversity. However, variation in trade-offs is often determined at the molecular level, outside the scope of conventional ecological inquiry. In this study, we propose that understanding the intracellular basis for trade-offs in microbial systems can aid in predicting and interpreting patterns of diversity. First, we show how laboratory experiments and mathematical models have unveiled the hidden intracellular mechanisms underlying trade-offs key to microbial diversity: (i) metabolic and regulatory trade-offs in bacteria and yeast; (ii) life-history trade-offs in bacterial viruses. Next, we examine recent studies of marine microbes that have taken steps toward reconciling the molecular and the ecological views of trade-offs, despite the challenges in doing so in natural settings. Finally, we suggest avenues for research where mathematical modelling, experiments and studies of natural microbial communities provide a unique opportunity to integrate studies of diversity across multiple scales.

  8. Survival Predictions of Ceramic Crowns Using Statistical Fracture Mechanics.

    PubMed

    Nasrin, S; Katsube, N; Seghi, R R; Rokhlin, S I

    2017-01-01

    This work establishes a survival probability methodology for interface-initiated fatigue failures of monolithic ceramic crowns under simulated masticatory loading. A complete 3-dimensional (3D) finite element analysis model of a minimally reduced molar crown was developed using commercially available hardware and software. Estimates of material surface flaw distributions and fatigue parameters for 3 reinforced glass-ceramics (fluormica [FM], leucite [LR], and lithium disilicate [LD]) and a dense sintered yttrium-stabilized zirconia (YZ) were obtained from the literature and incorporated into the model. Utilizing the proposed fracture mechanics-based model, crown survival probability as a function of loading cycles was obtained from simulations performed on the 4 ceramic materials utilizing identical crown geometries and loading conditions. The weaker ceramic materials (FM and LR) resulted in lower survival rates than the more recently developed higher-strength ceramic materials (LD and YZ). The simulated 10-y survival rate of crowns fabricated from YZ was only slightly better than those fabricated from LD. In addition, 2 of the model crown systems (FM and LD) were expanded to determine regional-dependent failure probabilities. This analysis predicted that the LD-based crowns were more likely to fail from fractures initiating from margin areas, whereas the FM-based crowns showed a slightly higher probability of failure from fractures initiating from the occlusal table below the contact areas. These 2 predicted fracture initiation locations have some agreement with reported fractographic analyses of failed crowns. In this model, we considered the maximum tensile stress tangential to the interfacial surface, as opposed to the more universally reported maximum principal stress, because it more directly impacts crack propagation. While the accuracy of these predictions needs to be experimentally verified, the model can provide a fundamental understanding of the

  9. Spatio-temporal PLC activation in parallel with intracellular Ca2+ wave propagation in mechanically stimulated single MDCK cells.

    PubMed

    Tsukamoto, Akira; Hayashida, Yasunori; Furukawa, Katsuko S; Ushida, Takashi

    2010-03-01

    Intracellular Ca2+ transients are evoked either by the opening of Ca2+ channels on the plasma membrane or by phospholipase C (PLC) activation resulting in IP3 production. Ca2+ wave propagation is known to occur in mechanically stimulated cells; however, it remains uncertain whether and how PLC activation is involved in intracellular Ca2+ wave propagation in mechanically stimulated cells. To answer these questions, it is indispensable to clarify the spatio-temporal relations between intracellular Ca2+ wave propagation and PLC activation. Thus, we visualized both cytosolic Ca2+ and PLC activation using a real-time dual-imaging system in individual Mardin-Darby Canine Kidney (MDCK) cells. This system allowed us to simultaneously observe intracellular Ca2+ wave propagation and PLC activation in a spatio-temporal manner in a single mechanically stimulated MDCK cell. The results showed that PLC was activated not only in the mechanically stimulated region but also in other subcellular regions in parallel with intracellular Ca2+ wave propagation. These results support a model in which PLC is involved in Ca2+ signaling amplification in mechanically stimulated cells.

  10. Non-adrenergic non-cholinergic inhibition of gastrointestinal smooth muscle and its intracellular mechanism(s).

    PubMed

    Matsuda, Nilce Mitiko; Miller, Steven M

    2010-06-01

    Relaxation of gastrointestinal smooth muscle caused by release of non-adrenergic non-cholinergic (NANC) transmitters from enteric nerves occurs in several physiologic digestive reflexes. Likely candidate NANC inhibitory agents include nitric oxide (NO), adenosine triphosphate (ATP), vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), carbon monoxide (CO), protease-activated receptors (PARs), hydrogen sulfide (H2S), neurotensin (NT) and beta-nicotinamide adenine dinucleotide (beta-NAD). Multiple NANC transmitters work in concert, are pharmacologically coupled and are closely coordinated. Individual contribution varies regionally in the gastrointestinal tract and between species. NANC inhibition of gastrointestinal smooth muscle involves several intracellular mechanisms, including increase of cyclic guanosine monophosphate (cGMP), increase of cyclic adenosine monophosphate (cAMP) and hyperpolarization of the cell membrane via direct or indirect activation of potassium ion (K+) channels.

  11. Existence of two groups of Staphylococcus aureus strains isolated from bovine mastitis based on biofilm formation, intracellular survival, capsular profile and agr-typing.

    PubMed

    Bardiau, Marjorie; Caplin, Jonathan; Detilleux, Johann; Graber, Hans; Moroni, Paolo; Taminiau, Bernard; Mainil, Jacques G

    2016-03-15

    Staphylococcus (S.) aureus is recognised worldwide as an important pathogen causing contagious acute and chronic bovine mastitis. Chronic mastitis account for a significant part of all bovine cases and represent an important economic problem for dairy producers. Several properties (biofilm formation, intracellular survival, capsular expression and group agr) are thought to be associated with this chronic status. In a previous study, we found the existence of two groups of strains based on the association of these features. The aim of the present work was to confirm on a large international and non-related collection of strains the existence of these clusters and to associate them with case history records. In addition, the genomes of eight strains were sequenced to study the genomic differences between strains of each cluster. The results confirmed the existence of both groups based on capsular typing, intracellular survival and agr-typing: strains cap8-positive, belonging to agr group II, showing a low invasion rate and strains cap5-positive, belonging to agr group I, showing a high invasion rate. None of the two clusters were associated with the chronic status of the cow. When comparing the genomes of strains belonging to both clusters, the genes specific to the group "cap5-agrI" would suggest that these strains are better adapted to live in hostile environment. The existence of these two groups is highly important as they may represent two clusters that are adapted differently to the host and/or the surrounding environment.

  12. Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels.

    PubMed Central

    Tapia, Lucía; González-Agüero, Mauricio; Cisternas, Mónica F; Suazo, Miriam; Cambiazo, Verónica; Uauy, Ricardo; González, Mauricio

    2004-01-01

    MTs (metallothioneins) increase the resistance of cells to exposure to high Cu (copper) levels. Characterization of the MT-Cu complex suggests that MT has an important role in the cellular storage and/or delivery of Cu ions to cuproenzymes. In this work we investigate how these properties contribute to Cu homoeostasis by evaluating the uptake, accumulation and efflux of Cu in wild-type and MT I/II null rat fibroblast cell lines. We also assessed changes in the expression of Cu metabolism-related genes in response to Cu exposure. At sub-physiological Cu levels (0.4 microM), the metal content was not dependent on MT; however, when extracellular Cu was increased to physiological levels (10 microM), MTs were required for the cell's ability to accumulate the metal. The subcellular localization of the accumulated metal in the cytoplasm was MT-dependent. Following supra-physiological Cu exposure (>50 microM), MT null cells had a decreased capacity for Cu storage and an elevated sensitivity to a minor increment in intracellular metal levels, suggesting that intracellular Cu toxicity is due not to the metal content but to the interactions of the metal with cellular components. Moreover, MT null cells failed to show increased levels of mRNAs encoding MT I, SOD1 (superoxide dismutase 1) and Ccs1 (Cu chaperone for SOD) in response to Cu exposure. These results support a role for MT in the storage of Cu in a safe compartment and in sequestering an intracellular excess of Cu in response to supra-physiological Cu exposure. Gene expression analysis suggests the necessity of having MT as part of the signalling pathway that induces gene expression in response to Cu. PMID:14627437

  13. The Lly protein protects Legionella pneumophila from light but does not directly influence its intracellular survival in Hartmannella vermiformis.

    PubMed Central

    Steinert, M; Engelhard, H; Flügel, M; Wintermeyer, E; Hacker, J

    1995-01-01

    The lly locus (legiolysin) mediates the browning of the culture medium of Legionella pneumophila in the late stationary growth phase, presumably as a result of synthesis of homogentisic acid. Mutagenesis of the lly gene of the L. pneumophila Philadelphia I derivative JR32 did not affect intracellular replication in the natural host Hartmannella vermiformis. The Lly-negative mutant, however, showed a markedly decreased resistance to ordinary light. The cloned lly gene conferred an increased resistance to light in recombinant L. pneumophila and Escherichia coli K-12, indicating a contribution of the Lly protein to ecological adaptation of Legionella species. PMID:7793965

  14. Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines.

    PubMed

    Lee, Younghee; Gotoh, Akihiko; Kwon, Hyung-Joo; You, Minute; Kohli, Lisa; Mantel, Charlie; Cooper, Scott; Hangoc, Giao; Miyazawa, Keisuke; Ohyashiki, Kazuma; Broxmeyer, Hal E

    2002-06-15

    Stromal cell-derived factor 1 (SDF-1/CXCL12) is a multifunctional cytokine. We previously reported that myelopoiesis was enhanced in SDF-1 alpha transgenic mice, probably due in part to SDF-1 alpha enhancement of myeloid progenitor cell (MPC) survival. To understand signaling pathways involved in this activity, we studied the effects on factor-dependent cell line MO7e cells incubated with SDF-1 alpha alone or in combination with other cytokines. SDF-1 alpha induced transient activation of extracellular stress-regulated kinase (ERK1/2), ribosomal S6 kinase (p90RSK) and Akt, molecules implicated in cell survival. Moreover, ERK1/2, p90RSK, and Akt were synergistically activated by SDF-1 alpha in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), Steel factor (SLF), or thrombopoietin (TPO). Similar effects were seen after pretreatment of MO7e cells with SDF-1 alpha followed by stimulation with the other cytokines, suggesting a priming effect of SDF-1 alpha. Nuclear factor-kappa B (NF-kappa B) did not appear to be involved in SDF-1 alpha actions, alone or in combination with other cytokines. These intracellular effects were consistent with enhanced myeloid progenitor cell survival by SDF-1 alpha after delayed addition of growth factors. SDF-1 alpha alone supported survival of highly purified human cord blood CD34(+++) cells, less purified human cord blood, and MO7e cells; this effect was synergistically enhanced when SDF-1 alpha was combined with low amounts of other survival-promoting cytokines (GM-CSF, SLF, TPO, and FL). SDF-1 may contribute to maintenance of MPCs in bone marrow by enhancing cell survival alone and in combination with other cytokines.

  15. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading

    PubMed Central

    Jing, Da; Baik, Andrew D.; Lu, X. Lucas; Zhou, Bin; Lai, Xiaohan; Wang, Liyun; Luo, Erping; Guo, X. Edward

    2014-01-01

    Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca2+) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized bone matrix under dynamic loading remains unknown. Using a novel synchronized loading/imaging technique, we successfully visualized in real time and quantified Ca2+ responses in osteocytes and bone surface cells in situ under controlled dynamic loading on intact mouse tibia. The resultant fluid-induced shear stress on the osteocyte in the lacunocanalicular system (LCS) was also quantified. Osteocytes, but not surface cells, displayed repetitive Ca2+ spikes in response to dynamic loading, with spike frequency and magnitude dependent on load magnitude, tissue strain, and shear stress in the LCS. The Ca2+ oscillations were significantly reduced by endoplasmic reticulum (ER) depletion and P2 purinergic receptor (P2R)/phospholipase C (PLC) inhibition. This study provides direct evidence that osteocytes respond to in situ mechanical loading by Ca2+ oscillations, which are dependent on the P2R/PLC/inositol trisphosphate/ER pathway. This study develops a novel approach in skeletal mechanobiology and also advances our fundamental knowledge of bone mechanotransduction.—Jing, D., Baik, A. D., Lu, X. L., Zhou, B., Lai, X., Wang, L., Luo, E., Guo, X. E. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. PMID:24347610

  16. Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells.

    PubMed

    Sylvester, Paul W; Shah, Sumit

    2005-01-01

    Tocotrienols and tocopherols represent the two subgroups that make up the vitamin E family of compounds. However, tocotrienols display significantly more potent apoptotic activity in neoplastic mammary epithelial cells than tocopherols. Studies were conducted to determine the intracellular mechanism(s) mediating tocotrienol-induced apoptosis in neoplastic +SA mouse mammary epithelial cells in vitro. An initial step in apoptosis is the activation of 'initiator' caspases (caspase-8 or -9) that subsequently activate 'effector' caspases (caspase-3, -6 and -7) and induce apoptosis. Treatment with cytotoxic doses of alpha-tocotrienol (20 microM) resulted in a time-dependent increase in caspase-8 and caspase-3 activity. Combined treatment with specific caspase-8 or caspase-3 inhibitors completely blocked alpha-tocotrienol-induced apoptosis and caspase-8 or caspase-3 activity, respectively. In contrast, alpha-tocotrienol treatment had no effect on caspase-9 activation, and combined treatment with a specific caspase-9 inhibitor did not block alpha-tocotrienol-induced apoptosis in (+)SA cells. Since caspase-8 activation is associated with the activation of death receptors, such as Fas, tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL) receptors, studies were conducted to determine the exact death receptor(s) and ligand(s) involved in mediating tocotrienol-induced caspase-8 activation and apoptosis. Treatment with Fas-ligand (FasL), Fas-activating antibody, or TRAIL failed to induce cell death in (+)SA neoplastic mammary epithelial cells, suggesting that these cells are resistant to death receptor-induced apoptosis. Moreover, treatment with cytotoxic doses of alpha-tocotrienol did not alter the intracellular levels of Fas, FasL, or Fas-associated death domain (FADD) in these cells. Western blot analysis also showed that alpha-tocotrienol did not induce FasL or FADD translocation from the cytosolic to membrane fraction in these cells. Finally

  17. Use of agent-based modeling to explore the mechanisms of intracellular phosphorus heterogeneity in cultured phytoplankton.

    PubMed

    Fredrick, Neil D; Berges, John A; Twining, Benjamin S; Nuñez-Milland, Daliangelis; Hellweger, Ferdi L

    2013-07-01

    There can be significant intraspecific individual-level heterogeneity in the intracellular P of phytoplankton, which can affect the population-level growth rate. Several mechanisms can create this heterogeneity, including phenotypic variability in various physiological functions (e.g., nutrient uptake rate). Here, we use modeling to explore the contribution of various mechanisms to the heterogeneity in phytoplankton grown in a laboratory culture. An agent-based model simulates individual cells and their intracellular P. Heterogeneity is introduced by randomizing parameters (e.g., maximum uptake rate) of daughter cells at division. The model was calibrated to observations of the P quota of individual cells of the centric diatom Thalassiosira pseudonana, which were obtained using synchrotron X-ray fluorescence (SXRF). A number of simulations, with individual mechanisms of heterogeneity turned off, then were performed. Comparison of the coefficient of variation (CV) of these and the baseline simulation (i.e., all mechanisms turned on) provides an estimate of the relative contribution of these mechanisms. The results show that the mechanism with the largest contribution to variability is the parameter characterizing the maximum intracellular P, which, when removed, results in a CV of 0.21 compared to a CV of 0.37 with all mechanisms turned on. This suggests that nutrient/element storage capabilities/mechanisms are important determinants of intrapopulation heterogeneity.

  18. Mechanism of histone survival during transcription by RNA polymerase II.

    PubMed

    Kulaeva, Olga I; Studitsky, Vasily M

    2010-01-01

    This work is related to and stems from our recent NSMB paper, "Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II" (December 2009). Synopsis. Recent genomic studies from many laboratories have suggested that nucleosomes are not displaced from moderately transcribed genes. Furthermore, histones H3/H4 carrying the primary epigenetic marks are not displaced or exchanged (in contrast to H2A/H2B histones) during moderate transcription by RNA polymerase II (Pol II) in vivo. These exciting observations suggest that the large molecule of Pol II passes through chromatin structure without even transient displacement of H3/H4 histones. The most recent analysis of the RNA polymerase II (Pol II)-type mechanism of chromatin remodeling in vitro (described in our NSMB 2009 paper) suggests that nucleosome survival is tightly coupled with formation of a novel intermediate: a very small intranucleosomal DNA loop (Ø-loop) containing transcribing Pol II. In the submitted manuscript we critically evaluate one of the key predictions of this model: the lack of even transient displacement of histones H3/H4 during Pol II transcription in vitro. The data suggest that, indeed, histones H3/H4 are not displaced during Pol II transcription in vitro. These studies are directly connected with the observation in vivo on the lack of exchange of histones H3/H4 during Pol II transcription.

  19. Phytoestrogens modulate prostaglandin production in bovine endometrium: cell type specificity and intracellular mechanisms.

    PubMed

    Woclawek-Potocka, Izabela; Acosta, Tomas J; Korzekwa, Anna; Bah, Mamadou M; Shibaya, Masami; Okuda, Kiyoshi; Skarzynski, Dariusz J

    2005-05-01

    Prostaglandins (PGs) are known to modulate the proper cyclicity of bovine reproductive organs. The main luteolytic agent in ruminants is PGF2alpha, whereas PGE2 has luteotropic actions. Estradiol 17beta (E2) regulates uterus function by influencing PG synthesis. Phytoestrogens structurally resemble E2 and possess estrogenic activity; therefore, they may mimic the effects of E2 on PG synthesis and influence the reproductive system. Using a cell-culture system of bovine epithelial and stromal cells, we determined cell-specific effects of phytoestrogens (i.e., daidzein, genistein), their metabolites (i.e., equol and para-ethyl-phenol, respectively), and E2 on PGF2alpha and PGE2 synthesis and examined the intracellular mechanisms of their actions. Both PGs produced by stromal and epithelial cells were significantly stimulated by phytoestrogens and their metabolites. However, PGF2alpha synthesis by both kinds of cells was greater stimulated than PGE2 synthesis. Moreover, epithelial cells treated with phytoestrogens synthesized more PGF2alpha than stromal cells, increasing the PGF2alpha to PGE2 ratio. The epithelial and stromal cells were preincubated with an estrogen-receptor (ER) antagonist (i.e., ICI), a translation inhibitor (i.e., actinomycin D), a protein kinase A inhibitor (i.e., staurosporin), and a phospholipase C inhibitor (i.e., U73122) for 0.5 hrs and then stimulated with equol, para-ethyl-phenol, or E2. Although the action of E2 on PGF2alpha synthesis was blocked by all reagents, the stimulatory effect of phytoestrogens was blocked only by ICI and actinomycin D in both cell types. Moreover, in contrast to E2 action, phytoestrogens did not cause intracellular calcium mobilization in either epithelial or stromal cells. Phytoestrogens stimulate both PGF2alpha and PGE2 in both cell types of bovine endometrium via an ER-dependent genomic pathway. However, because phytoestrogens preferentially stimulated PGF2alpha synthesis in epithelial cells of bovine

  20. An Invertron-Like Linear Plasmid Mediates Intracellular Survival and Virulence in Bovine Isolates of Rhodococcus equi

    PubMed Central

    Valero-Rello, Ana; Hapeshi, Alexia; Anastasi, Elisa; Alvarez, Sonsiray; Scortti, Mariela; Meijer, Wim G.; MacArthur, Iain

    2015-01-01

    We report a novel host-associated virulence plasmid in Rhodococcus equi, pVAPN, carried by bovine isolates of this facultative intracellular pathogenic actinomycete. Surprisingly, pVAPN is a 120-kb invertron-like linear replicon unrelated to the circular virulence plasmids associated with equine (pVAPA) and porcine (pVAPB variant) R. equi isolates. pVAPN is similar to the linear plasmid pNSL1 from Rhodococcus sp. NS1 and harbors six new vap multigene family members (vapN to vapS) in a vap pathogenicity locus presumably acquired via en bloc mobilization from a direct predecessor of equine pVAPA. Loss of pVAPN rendered R. equi avirulent in macrophages and mice. Mating experiments using an in vivo transconjugant selection strategy demonstrated that pVAPN transfer is sufficient to confer virulence to a plasmid-cured R. equi recipient. Phylogenetic analyses assigned the vap multigene family complement from pVAPN, pVAPA, and pVAPB to seven monophyletic clades, each containing plasmid type-specific allelic variants of a precursor vap gene carried by the nearest vap island ancestor. Deletion of vapN, the predicted “bovine-type” allelic counterpart of vapA, essential for virulence in pVAPA, abrogated pVAPN-mediated intramacrophage proliferation and virulence in mice. Our findings support a model in which R. equi virulence is conferred by host-adapted plasmids. Their central role is mediating intracellular proliferation in macrophages, promoted by a key vap determinant present in the common ancestor of the plasmid-specific vap islands, with host tropism as a secondary trait selected during coevolution with specific animal species. PMID:25895973

  1. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens.

    PubMed

    Casadevall, Arturo; Pirofski, Liise-anne

    2006-01-01

    Sometime in the mid to late twentieth century the study of antibody-mediated immunity (AMI) entered the doldrums, as many immunologists believed that the function of AMI was well understood, and was no longer deserving of intensive investigation. However, beginning in the 1990s studies using monoclonal antibodies (mAbs) revealed new functions for antibodies, including direct antimicrobial effects and their ability to modify host inflammatory and cellular responses. Furthermore, the demonstration that mAbs to several intracellular bacterial and fungal pathogens were protective issued a serious challenge to the paradigm that host defense against such microbes was strictly governed by cell-mediated immunity (CMI). Hence, a new view of AMI is emerging. This view is based on the concept that a major function of antibody (Ab) is to amplify or subdue the inflammatory response to a microbe. In this regard, the "damage-response framework" of microbial pathogenesis provides a new conceptual viewpoint for understanding mechanisms of AMI. According to this view, the ability of an Ab to affect the outcome of a host-microbe interaction is a function of its capacity to modify the damage ensuing from such an interaction. In fact, it is increasingly apparent that the efficacy of an Ab cannot be defined either by immunoglobulin or epitope characteristics alone, but rather by a complex function of Ab variables, such as specificity, isotype, and amount, host variables, such as genetic background and immune status, and microbial variables, such as inoculum, mechanisms of avoiding host immune surveillance and pathogenic strategy. Consequently, far from being understood, recent findings in AMI imply a system with unfathomable complexity and the field is poised for a long overdue renaissance.

  2. Polycystin-1 Mediates Mechanical Strain-Induced Osteoblastic Mechanoresponses via Potentiation of Intracellular Calcium and Akt/β-Catenin Pathway

    PubMed Central

    Wang, Hua; Sun, Wen; Ma, Junqing; Pan, Yongchu; Wang, Lin; Zhang, Weibing

    2014-01-01

    Mechanical regulation of bone formation involves a complex biophysical process, yet the underlying mechanisms remain poorly understood. Polycystin-1 (PC1) is postulated to function as a mechanosensory molecule mediating mechanical signal transduction in renal epithelial cells. To investigate the involvement of PC1 in mechanical strain-induced signaling cascades controlling osteogenesis, PKD1 gene was stably silenced in osteoblastic cell line MC3T3-E1 by using lentivirus-mediated shRNA technology. Here, our findings showed that mechanical tensile strain sufficiently enhanced osteogenic gene expressions and osteoblastic proliferation. However, PC1 deficiency resulted in the loss of the ability to sense external mechanical stimuli thereby promoting osteoblastic osteogenesis and proliferation. The signal pathways implicated in this process were intracellular calcium and Akt/β-catenin pathway. The basal levels of intracellular calcium, phospho-Akt, phospho-GSK-3β and nuclear accumulation of active β-catenin were significantly attenuated in PC1 deficient osteoblasts. In addition, PC1 deficiency impaired mechanical strain-induced potentiation of intracellular calcium, and activation of Akt-dependent and Wnt/β-catenin pathways, which was able to be partially reversed by calcium ionophore A23187 treatment. Furthermore, applications of LiCl or A23187 in PC1 deficient osteoblasts could promote osteoblastic differentiation and proliferation under mechanical strain conditions. Therefore, our results demonstrated that osteoblasts require mechanosensory molecule PC1 to adapt to external mechanical tensile strain thereby inducing osteoblastic mechanoresponse, partially through the potentiation of intracellular calcium and downstream Akt/β-catenin signaling pathway. PMID:24618832

  3. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria

    PubMed Central

    Jia, Qiong; Hu, Xinling; Shi, Dawei; Zhang, Yan; Sun, Meihao; Wang, Jianwei; Mi, Kaixia; Zhu, Guofeng

    2016-01-01

    The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells. PMID:27762279

  4. Intracellular Trafficking in Drosophila Visual System Development: A Basis for Pattern Formation Through Simple Mechanisms

    PubMed Central

    Chan, Chih-Chiang; Epstein, Daniel; Hiesinger, P. Robin

    2012-01-01

    Intracellular trafficking underlies cellular functions ranging from membrane remodeling to receptor activation. During multicellular organ development, these basic cell biological functions are required as both passive machinery and active signaling regulators. Exocytosis, endocytosis, and recycling of several key signaling receptors have long been known to actively regulate morphogenesis and pattern formation during Drosophila eye development. Hence, intracellular membrane trafficking not only sets the cell biological stage for receptor-mediated signaling but also actively controls signaling through spatiotemporally regulated receptor localization. In contrast to eye development, the role of intracellular trafficking for the establishment of the eye-to-brain connectivity map has only recently received more attention. It is still poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Yet, the Drosophila visual system provides some of the most striking examples for the regulatory role of intracellular trafficking during multicellular organ development. In this review we will first highlight the experimental and conceptual advances that motivate the study of intracellular trafficking during Drosophila visual system development. We will then illuminate the development of the eye, the eye-to-brain connectivity map and the optic lobe from the perspective of cell biological dynamics. Finally, we provide a conceptual framework that seeks to explain how the interplay of simple genetically encoded intracellular trafficking events governs the seemingly complex cellular behaviors, which in turn determine the developmental product. PMID:21714102

  5. Mechanisms Associated with Activation of Intracellular Metabotropic Glutamate Receptor, mGluR5.

    PubMed

    Jong, Yuh-Jiin I; O'Malley, Karen L

    2017-01-01

    The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5.

  6. Hypoxia Affects Neprilysin Expression Through Caspase Activation and an APP Intracellular Domain-dependent Mechanism

    PubMed Central

    Kerridge, Caroline; Kozlova, Daria I.; Nalivaeva, Natalia N.; Turner, Anthony J.

    2015-01-01

    While gene mutations in the amyloid precursor protein (APP) and the presenilins lead to an accumulation of the amyloid β-peptide (Aβ) in the brain causing neurodegeneration and familial Alzheimer's disease (AD), over 95% of all AD cases are sporadic. Despite the pathologies being indistinguishable, relatively little is known about the mechanisms affecting generation of Aβ in the sporadic cases. Vascular disorders such as ischaemia and stroke are well established risk factors for the development of neurodegenerative diseases and systemic hypoxic episodes have been shown to increase Aβ production and accumulation. We have previously shown that hypoxia causes a significant decrease in the expression of the major Aβ-degrading enzyme neprilysin (NEP) which might deregulate Aβ clearance. Aβ itself is derived from the transmembrane APP along with several other biologically active metabolites including the C-terminal fragment (CTF) termed the APP intracellular domain (AICD), which regulates the expression of NEP and some other genes in neuronal cells. Here we show that in hypoxia there is a significantly increased expression of caspase-3, 8, and 9 in human neuroblastoma NB7 cells, which can degrade AICD. Using chromatin immunoprecipitation we have revealed that there was also a reduction of AICD bound to the NEP promoter region which underlies the decreased expression and activity of the enzyme under hypoxic conditions. Incubation of the cells with a caspase-3 inhibitor Z-DEVD-FMK could rescue the effect of hypoxia on NEP activity protecting the levels of AICD capable of binding the NEP promoter. These data suggest that activation of caspases might play an important role in regulation of NEP levels in the brain under pathological conditions such as hypoxia and ischaemia leading to a deficit of Aβ clearance and increasing the risk of development of AD. PMID:26617481

  7. A Campylobacter jejuni Dps Homolog Has a Role in Intracellular Survival and in the Development of Campylobacterosis in Neonate Piglets

    PubMed Central

    Theoret, James R.; Cooper, Kerry K.; Glock, Robert D.

    2011-01-01

    Abstract Iron acquisition is an absolute requirement by most microorganisms for host survival. In this work, we investigated the Campylobacter jejuni iron binding Dps protein for a potential role in virulence. In vitro assays using J774A.1 macrophage-like cells demonstrated a 2.5 log reduction in C. jejuni survival of the Dps mutant and a reduction of four logs in invasion of HEp-2 epithelial cells compared to the wild-type strain. To examine the role of the dps gene in host pathogenesis, the piglet model was used in C. jejuni challenge studies. In vivo inoculation studies of newborn piglets with wild-type C. jejuni demonstrated an 11-fold upregulation of the dps gene and intestinal lesion production typical of campylobacteriosis in humans. In contrast, piglets inoculated with the dps mutant were not colonized and remained normal throughout the study period. Mucosal lesion production was restored in piglets inoculated with the complemented Dps mutant strain. Based on these results, we conclude that the C. jejuni Dps homolog is a virulence factor in the production of campylobacteriosis, and warrants further investigation. PMID:21854265

  8. A Campylobacter jejuni Dps homolog has a role in intracellular survival and in the development of campylobacterosis in neonate piglets.

    PubMed

    Theoret, James R; Cooper, Kerry K; Glock, Robert D; Joens, Lynn A

    2011-12-01

    Iron acquisition is an absolute requirement by most microorganisms for host survival. In this work, we investigated the Campylobacter jejuni iron binding Dps protein for a potential role in virulence. In vitro assays using J774A.1 macrophage-like cells demonstrated a 2.5 log reduction in C. jejuni survival of the Dps mutant and a reduction of four logs in invasion of HEp-2 epithelial cells compared to the wild-type strain. To examine the role of the dps gene in host pathogenesis, the piglet model was used in C. jejuni challenge studies. In vivo inoculation studies of newborn piglets with wild-type C. jejuni demonstrated an 11-fold upregulation of the dps gene and intestinal lesion production typical of campylobacteriosis in humans. In contrast, piglets inoculated with the dps mutant were not colonized and remained normal throughout the study period. Mucosal lesion production was restored in piglets inoculated with the complemented Dps mutant strain. Based on these results, we conclude that the C. jejuni Dps homolog is a virulence factor in the production of campylobacteriosis, and warrants further investigation.

  9. Combating Enhanced Intracellular Survival (Eis)-Mediated Kanamycin Resistance of Mycobacterium tuberculosis by Novel Pyrrolo[1,5-a]pyrazine-Based Eis Inhibitors.

    PubMed

    Garzan, Atefeh; Willby, Melisa J; Ngo, Huy X; Gajadeera, Chathurada S; Green, Keith D; Holbrook, Selina Y L; Hou, Caixia; Posey, James E; Tsodikov, Oleg V; Garneau-Tsodikova, Sylvie

    2017-02-17

    Tuberculosis (TB) remains one of the leading causes of mortality worldwide. Hence, the identification of highly effective antitubercular drugs with novel modes of action is crucial. In this paper, we report the discovery and development of pyrrolo[1,5-a]pyrazine-based analogues as highly potent inhibitors of the Mycobacterium tuberculosis (Mtb) acetyltransferase enhanced intracellular survival (Eis), whose up-regulation causes clinically observed resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN). We performed a structure-activity relationship (SAR) study to optimize these compounds as potent Eis inhibitors both against purified enzyme and in mycobacterial cells. A crystal structure of Eis in complex with one of the most potent inhibitors reveals that the compound is bound to Eis in the AG binding pocket, serving as the structural basis for the SAR. These Eis inhibitors have no observed cytotoxicity to mammalian cells and are promising leads for the development of innovative AG adjuvant therapies against drug-resistant TB.

  10. Intracellular Nanoparticle Aggregation as a Mechanism for Inducing Apoptosis in Breast Cancer Cells

    DTIC Science & Technology

    2010-09-01

    Viral nanoparticles as tools for intravital vascular imaging . Nature Medicine, 2006. 12(3): p. 354-360. 16. Speelmans, G., et al., Transport Studies of...hydrodynamic diameter of 25.4 ± 0.4 nm and TEM images showing distinct nanoparticles. Task 2: Coupling of chemotherapeutic molecules to protein...examined. The images indicate cellular uptake and an accumulation of D381C-AF532M within intracellular compartments, but minimal uptake of free AF532M

  11. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?

    USGS Publications Warehouse

    McDowell, Nate G.; Pockman, William T.; Allen, Craig D.; Breshears, David D.; Cobb, Neil; Kolb, Thomas; Plaut, Jennifer; Sperry, John; West, Adam; Williams, David G.; Yepez, Enrico A.

    2008-01-01

    Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.

  12. Homeostatic Systems--Mechanisms for Survival. Science IV.

    ERIC Educational Resources Information Center

    Pfeiffer, Carl H.

    The two student notebooks in this set provide the basic outline and assignments for the fourth and last year of a senior high school unified science program which builds on the technical third year course, Science IIIA (see SE 012 149). An introductory section considers the problems of survival inherent in living systems, matter-energy…

  13. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  14. Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells

    PubMed Central

    1976-01-01

    The mode of entry and intracellular fate of epimastigotes and trypomastigotes of Trypanosoma cruzi in cultured cells was studied. Electron microscopic observations indicated the uptake by phagocytosis of both forms into mouse peritoneal macrophages and of trypomastigotes and transition forms into other cultured cell types. In each instance the organisms were initially surrounded by a plasma membrane-derived phagosome. Trypsin and chymotrypsin treatment of the macrophages completely abolished attachment and ingestion of both forms, indicating that protease-sensitive structures on the macrophage plasma membrane mediate ingestion. The macrophage Fc or C3b receptors were not essential for uptake of T. cruzi in the conditions used. Cytochalasin B inhibited ingestion but not the attachment of both forms by macrophages. Epimastigotes were not taken up by HeLa, L cells, and calf embryo fibroblasts. In macrophages, epimastigotes were killed and digested within phagolysosomes. In contrast, trypomastigotes and transition forms escaped from the phagocytic vacuole and then multiplied in the cytoplasmic matrix. Amastigotes released from infected cells exhibited properties similar to those of trypomastigotes and were able to enter all cell types studied and multiply intracellularly. PMID:775012

  15. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites.

    PubMed

    Louisse, Jochem; Bai, Yanqing; Verwei, Miriam; van de Sandt, Johannes J M; Blaauboer, Bas J; Rietjens, Ivonne M C M

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH(i)) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH(i)in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH(i) of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na(+)/H(+)-antiporter, corroborating an important role of the pH(i) in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH(i) may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  16. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    SciTech Connect

    Louisse, Jochem; Verwei, Miriam; Sandt, Johannes J.M. van de; Rietjens, Ivonne M.C.M.

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH{sub i}) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH{sub i}in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH{sub i} of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na{sup +}/H{sup +}-antiporter, corroborating an important role of the pH{sub i} in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH{sub i} may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  17. Growth and Survival Mechanisms Associated with Perineural Invasion in Prostate Cancer

    DTIC Science & Technology

    2004-09-01

    CANCER RESEARCH 64, 6082–6090, September 1, 2004] Growth and Survival Mechanisms Associated with Perineural Invasion in Prostate Cancer Gustavo E...Departments of 1Pathology, 2Urology, and 3Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas ABSTRACT Perineural invasion (PNI) is...PNI. Cancer cells in a perineural location acquire a survival and growth advantage using a NFB survival pathway. Targeting PNI might help detain local

  18. Mechanism of the association between Na+ binding and conformations at the intracellular gate in neurotransmitter:sodium symporters

    DOE PAGES

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; ...

    2015-04-13

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. Here we describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two differentmore » perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Furthermore, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. Lastly, that the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.« less

  19. The mechanism of improved intracellular organic selenium and glutathione contents in selenium-enriched Candida utilis by acid stress.

    PubMed

    Zhang, Gao-Chuan; Wang, Da-Hui; Wang, Dong-Hua; Wei, Gong-Yuan

    2017-03-01

    Batch culture of Candida utilis CCTCC M 209298 for the preparation of selenium (Se)-enriched yeast was carried out under different pH conditions, and maximal intracellular organic Se and glutathione (GSH) contents were obtained in a moderate acid stress environment (pH 3.5). In order to elucidate the physiological mechanism of improved performance of Se-enriched yeast by acid stress, assays of the key enzymes involved in GSH biosynthesis and determinations of energy supply and regeneration were performed. The results indicated that moderate acid stress increased the activity of γ-glutamylcysteine synthetase and the ratios of NADH/NAD(+) and ATP/ADP, although no significant changes in intracellular pH were observed. In addition, the molecular mechanism of moderate acid stress favoring the improvement of Se-yeast performance was revealed by comparing whole transcriptomes of yeast cells cultured at pH 3.5 and 5.5. Comparative analysis of RNA-Seq data indicated that 882 genes were significantly up-regulated by moderate acid stress. Functional annotation of the up-regulated genes based on gene ontology and the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway showed that these genes are involved in ATP synthesis and sulfur metabolism, including the biosynthesis of methionine, cysteine, and GSH in yeast cells. Increased intracellular ATP supply and more amounts of sulfur-containing substances in turn contributed to Na2SeO3 assimilation and biotransformation, which ultimately improved the performance of the Se-enriched C. utilis.

  20. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters.

    PubMed

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J; Javitch, Jonathan A; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-05-29

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na(+)-dependent reuptake of released neurotransmitters. Previous studies suggested that Na(+)-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na(+) binding and transport (i.e. replacing Na(+) with Li(+) or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na(+) cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na(+) dependence. Thus, the detailed AIN generated from our method is shown to connect Na(+) binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na(+) binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.

  1. Impact of mechanical shear on Listeria monocytogenes survival on surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial inactivation using high temperatures is well known process and has contributed significantly toward food safety and shelf life extension for the food industry. Mechanical high pressure (hydrostatic) treatment is also gaining interest in food processing applications for achieving microbial...

  2. Intracellular membrane association of the Aplysia cAMP phosphodiesterase long and short forms via different targeting mechanisms.

    PubMed

    Kim, Kun-Hyung; Jun, Yong-Woo; Park, Yongsoo; Lee, Jin-A; Suh, Byung-Chang; Lim, Chae-Seok; Lee, Yong-Seok; Kaang, Bong-Kiun; Jang, Deok-Jin

    2014-09-12

    Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively.

  3. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  4. A selective Gβγ-linked intracellular mechanism for modulation of a ligand-gated ion channel by ethanol

    PubMed Central

    Yevenes, Gonzalo E.; Moraga-Cid, Gustavo; Peoples, Robert W.; Schmalzing, Günther; Aguayo, Luis G.

    2008-01-01

    The current understanding about ethanol effects on the ligand-gated ion channel (LGIC) superfamily has been restricted to identify potential binding sites within transmembrane (TM) domains in the Cys-loop family. Here, we demonstrate a key role of the TM3–4 intracellular loop and Gβγ signaling for potentiation of glycine receptors (GlyRs) by ethanol. We discovered 2 motifs within the large intracellular loop of the GlyR α1 subunit that are critical for the actions of pharmacological concentrations of ethanol. Significantly, the sites were ethanol-specific because they did not alter the sensitivity to general anesthetics, neurosteroids, or longer n-alcohols. Furthermore, Gβγ scavengers selectively attenuated the ethanol effects on recombinant and native neuronal GlyRs. These results show a selective mechanism for low-ethanol concentration effects on the GlyR and provide a mechanism on ethanol pharmacology, which may be applicable to other LGIC members. Moreover, these data provide an opportunity to develop new genetically modified animal models and novel drugs to treat alcohol-related medical concerns. PMID:19074265

  5. TcI Isolates of Trypanosoma cruzi Exploit the Antioxidant Network for Enhanced Intracellular Survival in Macrophages and Virulence in Mice

    PubMed Central

    Hosakote, Yashoda M.; Koo, Sue-jie; Dhiman, Monisha; Piñeyro, María Dolores; Parodi-Talice, Adriana; Basombrio, Miguel A.; Robello, Carlos

    2016-01-01

    Trypanosoma cruzi species is categorized into six discrete typing units (TcI to TcVI) of which TcI is most abundantly noted in the sylvatic transmission cycle and considered the major cause of human disease. In our study, the TcI strains Colombiana (COL), SylvioX10/4 (SYL), and a cultured clone (TCC) exhibited different biological behavior in a murine model, ranging from high parasitemia and symptomatic cardiomyopathy (SYL), mild parasitemia and high tissue tropism (COL), to no pathogenicity (TCC). Proteomic profiling of the insect (epimastigote) and infective (trypomastigote) forms by two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization–time of flight mass spectrometry, followed by functional annotation of the differential proteome data sets (≥2-fold change, P < 0.05), showed that several proteins involved in (i) cytoskeletal assembly and remodeling, essential for flagellar wave frequency and amplitude and forward motility of the parasite, and (ii) the parasite-specific antioxidant network were enhanced in COL and SYL (versus TCC) trypomastigotes. Western blotting confirmed the enhanced protein levels of cytosolic and mitochondrial tryparedoxin peroxidases and their substrate (tryparedoxin) and iron superoxide dismutase in COL and SYL (versus TCC) trypomastigotes. Further, COL and SYL (but not TCC) were resistant to exogenous treatment with stable oxidants (H2O2 and peroxynitrite [ONOO−]) and dampened the intracellular superoxide and nitric oxide response in macrophages, and thus these isolates escaped from macrophages. Our findings suggest that protein expression conducive to increase in motility and control of macrophage-derived free radicals provides survival and persistence benefits to TcI isolates of T. cruzi. PMID:27068090

  6. Anabolic androgenic steroids and intracellular calcium signaling: a mini review on mechanisms and physiological implications.

    PubMed

    Vicencio, J M; Estrada, M; Galvis, D; Bravo, R; Contreras, A E; Rotter, D; Szabadkai, G; Hill, J A; Rothermel, B A; Jaimovich, E; Lavandero, S

    2011-05-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses.

  7. AMPK: energy sensor and survival mechanism in the ischemic heart.

    PubMed

    Qi, Dake; Young, Lawrence H

    2015-08-01

    AMP-activated protein kinase (AMPK) is a critical regulator of cellular metabolism and plays an important role in diabetes, cancer, and vascular disease. In the heart, AMPK activation is an essential component of the adaptive response to cardiomyocyte stress that occurs during myocardial ischemia. During ischemia-reperfusion, AMPK activation modulates glucose and fatty acid metabolism, mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. Pharmacological activation of AMPK prevents myocardial necrosis and contractile dysfunction during ischemia-reperfusion and potentially represents a cardioprotective strategy for the treatment of myocardial infarction. This review discusses novel mechanisms of AMPK activation in the ischemic heart, the role of endogenous AMPK activation during ischemia, and the potential therapeutic applications for AMPK-directed therapy.

  8. Mechanisms of cellular uptake, intracellular transportation, and degradation of CIGB-300, a Tat-conjugated peptide, in tumor cell lines.

    PubMed

    Benavent Acero, Fernando R; Perera Negrin, Yasser; Alonso, Daniel F; Perea, Silvio E; Gomez, Daniel E; Farina, Hernán G

    2014-06-02

    CIGB-300 is a cyclic synthetic peptide that induces apoptosis in malignant cells, elicits antitumor activity in cancer animal models, and shows tumor reduction signs when assayed in first-in-human phase I trial in patients with cervical tumors. CIGB-300 impairs phosphorylation by casein kinase 2 through targeting the substrate's phosphoacceptor domain. CIGB-300 was linked to the cell penetrating peptide Tat to facilitate the delivery into cells. Previously, we showed that CIGB-300 had a differential antiproliferative behavior in different tumor cell lines. In this work, we studied differential antiproliferative behavior in terms of cellular uptake, intracellular transportation, and degradation in tumor cell lines with dissimilar sensitivity to CIGB-300. The internalization of CIGB-300 was studied in different malignant cell lines. We found that the cell membrane heparan sulfate proteoglycans act as main receptors for extracellular CIGB-300 uptake. The most sensitive tumor cell lines showed higher intracellular incorporation of CIGB-300 in comparison to less sensitive cell lines. Furthermore, CIGB-300 uptake is time- and concentration-dependent in all studied cell lines. It was shown that CIGB-300 has the ability to penetrate cells mainly by direct membrane translocation. However, a minor proportion of the peptide uses an energy-dependent endocytic pathway mechanism to gain access into cells. CIGB-300 is internalized and transported into cells preferentially by caveolae-mediated endocytosis. Lysosomes are involved in CIGB-300 degradation; highly sensitive cell lines showed degradation at earlier times compared to low sensitive cells. Altogether, our data suggests a mechanism of internalization, vesicular transportation, and degradation for CIGB-300 in tumor cells.

  9. Protection of Cells against Oxidative Stress by Nanomolar Levels of Hydroxyflavones Indicates a New Type of Intracellular Antioxidant Mechanism

    PubMed Central

    Hájek, Jan; Staňková, Veronika; Filipský, Tomáš; Balducci, Valentina; De Vito, Paolo; Leone, Stefano; Bavavea, Eugenia I.; Silvestri, Ilaria Proietti; Righi, Giuliana; Luly, Paolo; Saso, Luciano; Bovicelli, Paolo; Pedersen, Jens Z.; Incerpi, Sandra

    2013-01-01

    Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous

  10. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    PubMed

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  11. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism

    PubMed Central

    Marquer, Catherine; Tian, Huasong; Yi, Julie; Bastien, Jayson; Dall'Armi, Claudia; Yang-Klingler, YoungJoo; Zhou, Bowen; Chan, Robin Barry; Di Paolo, Gilbert

    2016-01-01

    Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann–Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer. PMID:27336679

  12. [Vesicular intracellular transport in the digestive organs. Membrane vesicle--the universal mechanism of the functional transport].

    PubMed

    Morozov, I A

    2014-01-01

    On the basis of long-term research of the morpho-functional characteristics of the cells of the stomach, small intestine and gallbladder the mechanism and function of membrane vesicles in the implementation of the main functions of these organs sets out in this article: the secretion of hydrochloric acid by parietal cells, the absorption of nutrients in the small intestine and the fluid at a concentration of bile epitheliocytes of gallbladder. Proofs of the intracellular formation of hydrochloric acid in tubulovesicles of the parietal cells and turnover of its secretory membranes in the process of secretory cycle, that has ensured the re-use and explained the extraordinary life of these unique cells are presented. The credible mechanism of HCl output oppression by H(+)-K(+)-ATPase activity blockers has set out on this basis. The article provides detailed endocytosis mechanism of the ions and nutrients absorption by enterocytes. The mechanism of participation of the apical contractile complex of brush border of epithelial cells in the initiation of endocytosis and cytoplasmic microtubules in transport of membrane vesicles in the cytoplasm was analyzed. Based on our research and numerous of the world scientific proceedings the conclusion was done about the existence of two energy dependent types of transport in the absorptive epithelium of the digestive--transmembrane (ionic and nutritive) homeostatic type which is realized by the ATP-system of the basal plasmalemma, and vesicular (endocytosis) type which is impltmented by apical contractile complex of brush border and cytoplasmic microtubules. Both types of transport are interrelated and are under constant cellular control. This observation is relevant to the majority of cells, including those involved in the secretion of various substances: hydrochloric acid by parietal cells, enzymes by main cells of the gastric glands and exocrinocytes of the pancreas, hormone by endocrine cells of the APUD system and, finally

  13. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    SciTech Connect

    Arai, Roberto J.; Debbas, Victor; Stern, Arnold; Monteiro, Hugo P.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.

  14. Increased extracellular and intracellular Ca{sup 2+} lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms

    SciTech Connect

    Hashimoto, Ryota; Katoh, Youichi; Miyamoto, Yuki; Itoh, Seigo; Daida, Hiroyuki; Nakazato, Yuji; Okada, Takao

    2015-02-20

    Mesenchymal stem cells found in bone marrow stromal cells (BMSCs) are the common progenitors for both adipocyte and osteoblast. An increase in marrow adipogenesis is associated with age-related osteopenia and anemia. Both extracellular and intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub o} and [Ca{sup 2+}]{sub i}) are versatile signaling molecules that are involved in the regulation of cell functions, including proliferation and differentiation. We have recently reported that upon treatment of BMSCs with insulin and dexamethasone, both high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} enhanced adipocyte accumulation, which suggested that increases in [Ca{sup 2+}]{sub o} caused by bone resorption may accelerate adipocyte accumulation in aging and diabetic patients. In this study, we used primary mouse BMSCs to investigate the mechanisms by which high [Ca{sup 2+}]{sub o} and high [Ca{sup 2+}]{sub i} may enhance adipocyte accumulation. In the process of adipocyte accumulation, two important keys are adipocyte differentiation and the proliferation of BMSCs, which have the potential to differentiate into adipocytes. Use of MTT assay and real-time RT-PCR revealed that high [Ca{sup 2+}]{sub i} (ionomycin)-dependent adipocyte accumulation is caused by enhanced proliferation of BMSCs but not enhanced differentiation into adipocytes. Using fura-2 fluorescence-based approaches, we showed that high [Ca{sup 2+}]{sub o} (addition of CaCl{sub 2}) leads to increases in [Ca{sup 2+}]{sub i}. Flow cytometric methods revealed that high [Ca{sup 2+}]{sub o} suppressed the phosphorylation of ERK independently of intracellular Ca{sup 2+}. The inhibition of ERK by U0126 and PD0325901 enhanced the differentiation of BMSCs into adipocytes. These data suggest that increased extracellular Ca{sup 2+} provides the differentiation of BMSCs into adipocytes by the suppression of ERK activity independently of increased intracellular Ca{sup 2+}, which results in BMSC proliferation. - Highlights:

  15. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. 1: Responses to intracellular current

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog sacculus are specifically adapted to sense small-amplitude, high-frequency linear accelerations. These hair cells display many properties that are undesirable or inappropriate for hair cells that must provide static gravity sensitivity. This study resulted in part due to an interest in seeing how the transduction mechanisms of hair cells in a gravity-sensing otolith endorgan would differ from those in the bullfrog sacculus. The bullfrog utriculus is an appropriate model for these studies, because its structure is representative of higher vertebrates in general and its function as a sensor of static gravity and dynamic linear acceleration is well known. Hair cells in the bullfrog utriculus, classifiable as Type 2 by cell body and synapse morphology, differ markedly in hair bundle morphology from those in the bullfrog sacculus. Moreover, the hair bundle morphologies of utricular hair cells, unlike those in the sacculus, differ in different membrane regions.

  16. Actin-based mechanisms for light-dependent intracellular positioning of nuclei and chloroplasts in Arabidopsis.

    PubMed

    Iwabuchi, Kosei; Takagi, Shingo

    2010-08-01

    The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.

  17. Identification of the clpB and bipA genes and an evaluation of their expression as related to intracellular survival for the bacterial pathogen Piscirickettsia salmonis.

    PubMed

    Isla, A; Haussmann, D; Vera, T; Kausel, G; Figueroa, J

    2014-10-10

    Piscirickettsia salmonis is the pathogen responsible for salmonid rickettsial septicemia (SRS), a disease that affects a wide variety of marine cultivated fish species and causes economic losses for the aquaculture industry worldwide. Many in vitro studies have reported on the capacity of this microorganism to replicate in the interior of cytoplasmic vesicles from varied fish cell lines. However, the mechanisms used by this bacteria to survive, replicate, and propagate in cell lines, especially in macrophages and monocytes, are unknown. A number of studies have described the diverse proteins in pathogens such as Legionella pneumophila, Coxiella burnetii, and Francisella tularensis which allow these to evade the cellular immune response and replicate in the interior of macrophages in different hosts. Some of these proteins are the virulence factor BipA/TypA and the heat shock protein ClpB, both of which have been widely characterized. The results of the current study present the complete coding sequence of the genes clpB and bipA from the P. salmonis genome. Moreover, the experimental results suggest that during the infectious process of the SHK-1 cellular line in P. salmonis, the pathogen significantly increases the expression of proteins ClpB and BipA. This would permit the pathogen to adapt to the hostile conditions produced by the macrophage and thus evade mechanisms of cellular degradation while facilitating replication in the interior of this salmon cell line.

  18. Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review.

    PubMed

    Chen, Ting-Jung; Wu, Chia-Ching; Su, Fong-Chin

    2012-12-01

    The cytoskeleton, which is the major mechanical component of cells, supports the cell body and regulates the cellular motility to assist the cell in performing its biological functions. Several cytoskeletal network models have been proposed to investigate the mechanical properties of cells. This review paper summarizes these models with a focus on the prestressed cable network, the semi-flexible chain network, the open-cell foam, the tensegrity, and the granular models. The components, material parameters, types of connection joints, tension conditions, and the advantages and disadvantages of each model are evaluated from a structural and biological point of view. The underlying mechanisms that are associated with the morphological changes of spreading cells are expected to be simulated using a cytoskeletal model; however, it is still paid less attention most likely due to the lack of a suitable cytoskeletal model that can accurately model the spreading process. In this review article, the established cytoskeletal models are hoped to provide useful information for the development of future cytoskeletal models with different degrees of cell attachment for the study of the mechanical mechanisms underlying the cellular behaviors in response to external stimulations.

  19. Intracellular mechanisms of cocaine-memory reconsolidation in the basolateral amygdala and dorsal hippocampus

    NASA Astrophysics Data System (ADS)

    Wells, Audrey Marie

    The ability of cocaine-associated environmental contexts to promote relapse in abstinent humans and reinstatement of cocaine-seeking behavior in laboratory animals depends on the formation and maintenance of maladaptive context-response-cocaine associative memories, the latter of which can be disrupted by manipulations that interfere with memory reconsolidation. Memory reconsolidation refers to a protein synthesis-dependent phenomenon whereby memory traces are reincorporated back into long-term memory storage following their retrieval and subsequent destabilization. To elucidate the distinctive roles of the basolateral amygdala (BLA) and dorsal hippocampus (DH) in the reconsolidation of context-response-cocaine memories, Experiments 1-3 evaluated novel molecular mechanisms within each structure that control this phenomenon. Experiment 1 tested the hypothesis that activation of the extracellular signal-regulated kinase (ERK) in the BLA and nucleus accumbens core (NACc - a substrate for Pavlovian cocaine-memory reconsolidation) would critically control instrumental cocaine-memory reconsolidation. To determine this, rats were re-exposed to a context that had previously been used for cocaine self-administration (i.e., cocaine memory-reactivation) and immediately thereafter received bilateral intra-BLA or intra-NACc microinfusions of the ERK inhibitor U0126 or vehicle (VEH) and were subsequently tested for drug context-induced cocaine-seeking behavior (non-reinforced lever responding) ~72 h later. Re-exposure to the cocaine-paired context at test fully reinstated cocaine-seeking behavior, relative to responding in an alternate, extinction context, and post-reactivation U0126 treatment in the BLA, but not the NACc, impaired cocaine-seeking behavior, relative to VEH. This effect was associated with a temporary increase in ERK2, but not ERK1, phosphorylation in the BLA and required explicit reactivation of the target memory trace (i.e., did not similarly manifest when U

  20. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    PubMed

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  1. Intracellular pH-regulating mechanism of the squid axon. Interaction between DNDS and extracellular Na+ and HCO3-

    PubMed Central

    1989-01-01

    Intracellular pH (pHi) of the squid axon is regulated by a stilbenesensitive transporter that couples the influx of Na+ and HCO3- (or the equivalent) to the efflux of Cl-. According to one model, the extracellular ion pair NaCO3- exchanges for intracellular Cl-. In the present study, the ion-pair model was tested by examining the interaction of the reversible stilbene derivative 4,4'-dinitrostilbene- 2,2'-disulfonate (DNDS) with extracellular Na+ and HCO3-. Axons (initial pHi approximately 7.4) were internally dialyzed with a pH 6.5 solution containing 400 mM Cl- but no Na+. After pHi, as measured with a glass microelectrode, had fallen to approximately 6.6, dialysis was halted. In the presence of both external Na+ and HCO3- (pHo = 8.0, 22 degrees C), pHi increased due to the pHi-regulating mechanism. At a fixed [Na+]o of 425 mM and [HCO3-]o of 12 mM, DNDS reversibly reduced the equivalent acid-extrusion rate (JH) calculated from the rate of pHi recovery. The best-fit value for maximal inhibition was 104%, and for the [DNDS]o at half-maximal inhibition, 0.3 mM. At a [Na+]o of 425 mM, the [HCO3-]o dependence of JH was examined at 0, 0.1, and 0.25 mM DNDS. Although Jmax was always approximately 20 pmol cm-2 s-1, Km(HCO3-) was 2.6, 5.7, and 12.7 mM, respectively. Thus, DNDS is competitive with HCO3-. At a [HCO3-]o of 12 mM, the [Na+]o dependence of JH was examined at 0 and 0.1 mM DNDS. Although Jmax was approximately 20 pmol cm-2 s-1 in both cases, Km(Na+) was 71 and 179 mM, respectively. At a [HCO3-]o of 48 mM, Jmax was approximately 20 pmol cm-2 s-1 at [DNDS]o levels of 0, 0.1, and 0.25 mM. However, Km(Na+) was 22, 45, and 90 mM, respectively. Thus, DNDS (an anion) is also competitive with Na+. The results are consistent with simple competition between DNDS and NaCO3-, and place severe restrictions on other kinetic models. PMID:2915212

  2. Hospital closures and survivals: an analysis of operating characteristics and regulatory mechanisms in three states.

    PubMed Central

    Kennedy, L; Dumas, M B

    1983-01-01

    This article examines factors related to hospital closures, using a longitudinal sample of surviving and closed hospitals. The hospitals are drawn from three states with different regulatory programs. Size of hospital and occupancy rate are shown to be related to likelihood of closure, while ownership, length of stay, and expenditures are not. These findings are observed both in the aggregate and within the individual states between 1960 and 1980. The three states--Arizona, Pennsylvania, and Maryland--represent different population trends and regulatory mechanisms and goals. The findings indicate that some programs appear to guarantee survival, whereas others are more neutral. PMID:6668180

  3. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  4. Monocyte-derived macrophages from Zebu (Bos taurus indicus) are more efficient to control Brucella abortus intracellular survival than macrophages from European cattle (Bos taurus taurus).

    PubMed

    Macedo, A A; Costa, E A; Silva, A P C; Paixão, T A; Santos, R L

    2013-02-15

    Brucellosis is one of the most important zoonotic diseases in the world. Considering its strict zoonotic nature, understanding of the pathogenesis and immunity of Brucella spp. in natural animal hosts is essential to prevent human infections. Natural resistance against brucellosis has been demonstrated in cattle, and it is associated with the ability of macrophages to prevent intracellular replication of Brucella abortus. Identification of breeds that are resistant to B. abortus may contribute for controlling and eradicating brucellosis in cattle. This study aimed to compare macrophages from Nelore (Bos taurus indicus) or Holstein (Bos taurus taurus) regarding their resistance to B. abortus infection. Macrophages from Nelore were significantly more efficient in controlling intracellular growth of B. abortus when compared to Holstein macrophages even under intralysosomal iron restricting conditions. Furthermore, Nelore macrophages had higher transcription levels of inducible nitric oxide synthase (iNOS) and TNF-α at 12h post-infection (hpi) and higher levels of IL-12 at 24 hpi when compared to Holstein macrophages. Conversely, Holstein macrophages had higher levels of IL-10 transcripts at 24 hpi. Macrohages from Nelore also generated more nitric oxide (NO) in response to B. abortus infection when compared to Holstein macrophages. In conclusion, cultured Nelore macrophages are more effective in controlling intracellular replication of B. abortus, suggesting that Nelore cattle is likely to have a higher degree of natural resistance to brucellosis than Holstein.

  5. Metal intracellular partitioning as a detoxification mechanism for mummichogs (Fundulus heteroclitus) living in metal-polluted salt marshes.

    PubMed

    Goto, Daisuke; Wallace, William G

    2010-04-01

    Intracellular partitioning of trace metals is critical to metal detoxification in aquatic organisms. In the present study, we assessed metal (Cd, Cu, Pb, and Zn) handling capacities of mummichogs (Fundulus heteroclitus) in metal-polluted salt marshes in New York, USA by examining metal intracellular partitioning. Despite the lack of differences in the whole body burdens, partitioning patterns of metals in intracellular components (heat-stable proteins, heat-denaturable proteins, organelles, and metal-rich granules) revealed clear differential metal handling capacities among the populations of mummichogs. In general, mummichogs living in metal-polluted sites stored a large amount of metals in detoxifying cellular components, particularly metal-rich granules (MRG). Moreover, only metals associated with MRG were consistently correlated with variations in the whole body burdens. These findings suggest that metal detoxification through intracellular partitioning, particularly the sequestration to MRG, may have important implications for metal tolerance of mummichogs living in chronically metal-polluted habitats.

  6. Excretion of lead as a mechanism for survival in Chrissia halyi (Ferguson, 1969)

    SciTech Connect

    Prasuna, G.; Zeba, M.; Khan, M.A.

    1996-12-31

    In general organisms develop or use a number of mechanisms to overcome the adverse influence of such toxicants as heavy metals. These mechanisms may be avoidance, immobilization, excretion and mechanisms involving enzymatic changes. Tolerant organisms may possess certain storage organs which are particularly involved in heavy metal immobilization as suggested by Hopkin and Martin (1985). Chrissia halyi (Crustacea, Ostracoda) were observed to be surviving in waters which are highly polluted with lead. Besides they were found feeding voraciously on contaminated blue green algae, and excreting large pellets. Therefore the present work has been taken up to see the lead in the excreted pellets. 10 refs., 1 tab.

  7. Longest Event-Free Survival without Anticoagulation in a Mechanical Aortic Valve Replacement

    PubMed Central

    Salmane, Chadi; Pandya, Bhavi; Lafferty, Kristen; Patel, Nileshkumar J; McCord, Donald

    2016-01-01

    Sixty percent of the patients going for valve replacement opt for mechanical valves and the remaining 40% choose bioprosthetics. Mechanical valves are known to have a higher risk of thrombosis; this risk further varies depending on the type of valve, its position, and certain individual factors. According to current guidelines, long-term anticoagulation is indicated in patients with metallic prosthetic valve disease. We report two unique cases of patients who survived 27 and 37 years event free, respectively, after mechanical aortic valve replacement (AVR) without being on any form of anticoagulation. The latter case described the longest survival in a human with a prosthetic aortic valve without anticoagulation. A review of literature demonstrated few cases of prosthetic valves with no anticoagulation in the long term without significant embolic events reported as case reports. These cases have been summarized in this article. Some cases of long-term survival (in the absence of anticoagulation) were attributed to good luck, and others as the result of genetic variations. New mechanical prosthetic valves can be promising, such as microporus-surfaced valves that may be used without full anticoagulation. The use of dual antiplatelet agents alone can be currently recommended only when a patient cannot take oral anticoagulation after AVR, and it should be followed with measuring and monitoring of platelet reactivity. PMID:27053922

  8. Mathematical Modeling of Therapy-induced Cancer Drug Resistance: Connecting Cancer Mechanisms to Population Survival Rates

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Bao, Jiguang; Shao, Yongzhao

    2016-03-01

    Drug resistance significantly limits the long-term effectiveness of targeted therapeutics for cancer patients. Recent experimental studies have demonstrated that cancer cell heterogeneity and microenvironment adaptations to targeted therapy play important roles in promoting the rapid acquisition of drug resistance and in increasing cancer metastasis. The systematic development of effective therapeutics to overcome drug resistance mechanisms poses a major challenge. In this study, we used a modeling approach to connect cellular mechanisms underlying cancer drug resistance to population-level patient survival. To predict progression-free survival in cancer patients with metastatic melanoma, we developed a set of stochastic differential equations to describe the dynamics of heterogeneous cell populations while taking into account micro-environment adaptations. Clinical data on survival and circulating tumor cell DNA (ctDNA) concentrations were used to confirm the effectiveness of our model. Moreover, our model predicted distinct patterns of dose-dependent synergy when evaluating a combination of BRAF and MEK inhibitors versus a combination of BRAF and PI3K inhibitors. These predictions were consistent with the findings in previously reported studies. The impact of the drug metabolism rate on patient survival was also discussed. The proposed model might facilitate the quantitative evaluation and optimization of combination therapeutics and cancer clinical trial design.

  9. Mathematical Modeling of Therapy-induced Cancer Drug Resistance: Connecting Cancer Mechanisms to Population Survival Rates.

    PubMed

    Sun, Xiaoqiang; Bao, Jiguang; Shao, Yongzhao

    2016-03-01

    Drug resistance significantly limits the long-term effectiveness of targeted therapeutics for cancer patients. Recent experimental studies have demonstrated that cancer cell heterogeneity and microenvironment adaptations to targeted therapy play important roles in promoting the rapid acquisition of drug resistance and in increasing cancer metastasis. The systematic development of effective therapeutics to overcome drug resistance mechanisms poses a major challenge. In this study, we used a modeling approach to connect cellular mechanisms underlying cancer drug resistance to population-level patient survival. To predict progression-free survival in cancer patients with metastatic melanoma, we developed a set of stochastic differential equations to describe the dynamics of heterogeneous cell populations while taking into account micro-environment adaptations. Clinical data on survival and circulating tumor cell DNA (ctDNA) concentrations were used to confirm the effectiveness of our model. Moreover, our model predicted distinct patterns of dose-dependent synergy when evaluating a combination of BRAF and MEK inhibitors versus a combination of BRAF and PI3K inhibitors. These predictions were consistent with the findings in previously reported studies. The impact of the drug metabolism rate on patient survival was also discussed. The proposed model might facilitate the quantitative evaluation and optimization of combination therapeutics and cancer clinical trial design.

  10. Mathematical Modeling of Therapy-induced Cancer Drug Resistance: Connecting Cancer Mechanisms to Population Survival Rates

    PubMed Central

    Sun, Xiaoqiang; Bao, Jiguang; Shao, Yongzhao

    2016-01-01

    Drug resistance significantly limits the long-term effectiveness of targeted therapeutics for cancer patients. Recent experimental studies have demonstrated that cancer cell heterogeneity and microenvironment adaptations to targeted therapy play important roles in promoting the rapid acquisition of drug resistance and in increasing cancer metastasis. The systematic development of effective therapeutics to overcome drug resistance mechanisms poses a major challenge. In this study, we used a modeling approach to connect cellular mechanisms underlying cancer drug resistance to population-level patient survival. To predict progression-free survival in cancer patients with metastatic melanoma, we developed a set of stochastic differential equations to describe the dynamics of heterogeneous cell populations while taking into account micro-environment adaptations. Clinical data on survival and circulating tumor cell DNA (ctDNA) concentrations were used to confirm the effectiveness of our model. Moreover, our model predicted distinct patterns of dose-dependent synergy when evaluating a combination of BRAF and MEK inhibitors versus a combination of BRAF and PI3K inhibitors. These predictions were consistent with the findings in previously reported studies. The impact of the drug metabolism rate on patient survival was also discussed. The proposed model might facilitate the quantitative evaluation and optimization of combination therapeutics and cancer clinical trial design. PMID:26928089

  11. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2.

    PubMed

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V; Khelashvili, George; Weinstein, Harel

    2014-11-12

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT(2A)R) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT(2A)R is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT(2A)R agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT(2A)R interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. The findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT(2A)R activation.

  12. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    SciTech Connect

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; Khelashvili, George; Weinstein, Harel

    2014-10-14

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT2AR) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT2AR activation.

  13. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    DOE PAGES

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; ...

    2014-10-14

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT2AR) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT2ARmore » is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT2AR activation.« less

  14. Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii.

    PubMed

    Sousa, M J; Rodrigues, F; Côrte-Real, M; Leão, C

    1998-03-01

    Zygosaccharomyces bailii ISA 1307 displays biphasic growth in a medium containing a mixture of glucose (0.5%, w/v) and acetic acid (0.5%, w/v), pH 5.0 and 3.0. In cells harvested during the first growth phase, no activity of a mediated acetic acid transport system was found. Incubation of these cells in phosphate buffer with cycloheximide for 1 h restored activity of an acetic acid carrier which behaved as the one present in glucose-grown cells. These results indicated that the acetic acid carrier is probably present in cells from the first growth phase of the mixed medium but its activity was affected by the presence of acetic acid in the culture medium. In glucose-grown cells, after incubation in phosphate buffer with glucose and acetic acid, the activity of the acetic acid carrier decreased significantly with increased acid concentration in the incubation buffer. At acid concentrations above 16.7 mM, no significant carrier activity was detectable. Furthermore, the intracellular acid concentration increased with the extracellular one and was inversely correlated with the activity of the acetic acid carrier, suggesting the involvement of a feedback inhibition mechanism in the regulation of the carrier. During biphasic growth, the first phase corresponded to a simultaneous consumption of glucose and acetic acid, and the second to the utilization of the remaining acid. The enzyme acetyl-CoA synthetase was active in both growth phases, even in the presence of glucose. Activity of isocitrate lyase and phosphoenolpyruvate carboxykinase was found only in acetic-acid-grown cells. Thus it appears that both membrane transport and acetyl-CoA synthetase and their regulation are important for Z. bailii to metabolize acetic acid in the presence of glucose. This fact correlates with the high resistance of this yeast to environments with mixtures of sugars and acetic acid such as those often present during wine fermentation.

  15. Notch1 promotes survival of E2A-deficient T cell lymphomas through pre-T cell receptor-dependent and -independent mechanisms.

    PubMed

    Reschly, Erica J; Spaulding, Christina; Vilimas, Tomas; Graham, W Vallen; Brumbaugh, Rachel L; Aifantis, Iannis; Pear, Warren S; Kee, Barbara L

    2006-05-15

    Loss of E2A transcription factor activity or activation of the intracellular form of Notch1 (ICN) leads to the development of leukemia or lymphoma in humans or mice, respectively. Current models propose that ICN functions by suppressing E2A through a pre-T cell receptor (TCR)-dependent mechanism. Here we show that lymphomas arising in E2A(-/-) mice require the activation of Notch1 for their survival and have accumulated mutations in, or near, the Notch1 PEST domain, resulting in increased stability and signaling. In contrast, lymphomas arising in p53(-/-) mice show the activation of Notch1, but no mutations were identified in ICN. The requirement for Notch1 signaling in E2A(-/-) lymphomas cannot be overcome by ectopic expression of pTalpha; however, pTalpha is required for optimal survival and expansion of these cells. Our findings indicate that the activation of Notch1 is an important "second hit" for the transformation of E2A(-/-) T cell lymphomas and that Notch1 promotes survival through pre-TCR-dependent and -independent mechanisms.

  16. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages

    PubMed Central

    Macedo, Auricelio A.; Silva, Ana P. C.; Mol, Juliana P. S.; Costa, Luciana F.; Garcia, Luize N. N.; Araújo, Marcio S.; Martins Filho, Olindo A.; Paixão, Tatiane A.; Santos, Renato L.

    2015-01-01

    Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS) during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi). In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment. PMID:26366863

  17. IglE Is an Outer Membrane-Associated Lipoprotein Essential for Intracellular Survival and Murine Virulence of Type A Francisella tularensis

    PubMed Central

    Robertson, Gregory T.; Child, Robert; Ingle, Christine; Celli, Jean

    2013-01-01

    IglE is a small, hypothetical protein encoded by the duplicated Francisella pathogenicity island (FPI). Inactivation of both copies of iglE rendered Francisella tularensis subsp. tularensis Schu S4 avirulent and incapable of intracellular replication, owing to an inability to escape the phagosome. This defect was fully reversed following single-copy expression of iglE in trans from attTn7 under the control of the Francisella rpsL promoter, thereby establishing that the loss of iglE, and not polar effects on downstream vgrG gene expression, was responsible for the defect. IglE is exported to the Francisella outer membrane as an ∼13.9-kDa lipoprotein, determined on the basis of a combination of selective Triton X-114 solubilization, radiolabeling with [3H]palmitic acid, and sucrose density gradient membrane partitioning studies. Lastly, a genetic screen using the iglE-null live vaccine strain resulted in the identification of key regions in the carboxyl terminus of IglE that are required for intracellular replication of Francisella tularensis in J774A.1 macrophages. Thus, IglE is essential for Francisella tularensis virulence. Our data support a model that likely includes protein-protein interactions at or near the bacterial cell surface that are unknown at present. PMID:23959721

  18. Modeling the effects of sodium chloride, acetic acid and intracellular pH on the survival of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primar...

  19. Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions.

    PubMed

    Moen, Birgitte; Oust, Astrid; Langsrud, Øyvind; Dorrell, Nick; Marsden, Gemma L; Hinds, Jason; Kohler, Achim; Wren, Brendan W; Rudi, Knut

    2005-04-01

    Explorative approaches such as DNA microarray experiments are becoming increasingly important in microbial research. Despite these major technical advancements, approaches to study multifactor experiments are still lacking. We have addressed this problem by using rotation testing and a novel multivariate analysis of variance (MANOVA) approach (50-50 MANOVA) to investigate interacting experimental factors in a complex experimental design. Furthermore, a new rotation testing based method was introduced to calculate false-discovery rates for each response. This novel analytical concept was used to investigate global survival mechanisms in the environment of the major food-borne pathogen C. jejuni. We simulated nongrowth environmental conditions by investigating combinations of the factors temperature (5 and 25 degrees C) and oxygen tension (anaerobic, microaerobic, and aerobic). Data were generated with DNA microarrays for information about gene expression patterns and Fourier transform infrared (FT-IR) spectroscopy to study global macromolecular changes in the cell. Microarray analyses showed that most genes were either unchanged or down regulated compared to the reference (day 0) for the conditions tested and that the 25 degrees C anaerobic condition gave the most distinct expression pattern with the fewest genes expressed. The few up-regulated genes were generally stress related and/or related to the cell envelope. We found, using FT-IR spectroscopy, that the amount of polysaccharides and oligosaccharides increased under the nongrowth survival conditions. Potential mechanisms for survival could be to down regulate most functions to save energy and to produce polysaccharides and oligosaccharides for protection against harsh environments. Basic knowledge about the survival mechanisms is of fundamental importance in preventing transmission of this bacterium through the food chain.

  20. Biofilm formation by algae as a mechanism for surviving on mine tailings.

    PubMed

    García-Meza, J Viridiana; Barrangue, Christiane; Admiraal, Wim

    2005-03-01

    Photosynthetic biofilms successfully colonize the sediments of a mine tailings reservoir (Guanajuato, Mexico) despite the high metal concentrations that are present. To elucidate the mechanisms of biofilm survival despite metal ores, experiments were performed to evaluate the response of seminatural biofilms to Cu, Zn, and a combination of both metals at concentrations observed in the field. The biofilms were composed mostly of the chlorophyte Chlorococcum sp. and the cyanobacterium Phormidium sp., and their response to the two added metals was described by measurements of extracellular polymeric substances (EPS) and in vivo fluorescence. The photosynthetic efficiency and the minimal chlorophyll fluorescence of dark-adapted cells were measured by multiwavelength pulse amplitude-modulated fluorometry. The photosynthetic efficiency of light-adapted cells (phi(PSII)) also was measured. Metal exposure increased the EPS production of biofilms, as visualized with confocal laser-scanning microscopy. Extracellular polymeric substances enhanced the extracellular metal accumulation from the first day of metal exposure. Metals provoked changes in the relative abundance of the dominant taxa because of a species-specific response to the metals when added individually. Metals affected the phi(PSII) less than the total biomass, suggesting ongoing activity of the surviving biofilms. Survival of individual biofilm photosynthetic cells was found to resume from the embedding in the mucilaginous structure, which immobilizes the metals extracellularly. The survival of biofilms under mixed-metal exposure has practical applications in the remediation of mine tailings.

  1. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis

    PubMed Central

    Garfoot, Andrew L.; Rappleye, Chad A.

    2016-01-01

    The fungal pathogen Histoplasma capsulatum causes respiratory and disseminated disease, even in immunocompetent hosts. In contrast to opportunistic pathogens, which are readily controlled by phagocytic cells, H. capsulatum yeasts are able to infect macrophages, survive antimicrobial defenses, and proliferate as an intracellular pathogen. In this review, we discuss some of the molecular mechanisms that enable H. capsulatum yeasts to overcome obstacles to intracellular pathogenesis. H. capsulatum yeasts gain refuge from extracellular obstacles such as antimicrobial lung surfactant proteins by engaging the β-integrin family of phagocytic receptors to promote entry into macrophages. In addition, H. capsulatum yeasts conceal immunostimulatory β-glucans to avoid triggering signaling receptors such as the β-glucan receptor Dectin-1. H. capsulatum yeasts counteract phagocyte-produced reactive oxygen species by expression of oxidative stress defense enzymes including an extracellular superoxide dismutase and an extracellular catalase. Within the phagosome, H. capsulatum yeasts block phagosome acidification, acquire essential metals such as iron and zinc, and utilize de novo biosynthesis pathways to overcome nutritional limitations. These mechanisms explain how H. capsulatum yeasts avoid and negate macrophage defense strategies and establish a hospitable intracellular niche, making H. capsulatum a successful intracellular pathogen of macrophages. PMID:26235362

  2. Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms

    PubMed Central

    Hasbi, Ahmed; O’Dowd, Brian F.; George, Susan R.

    2009-01-01

    The repertoire of signal transduction pathways activated by dopamine in brain includes the increase of intracellular calcium. However the mechanism(s) by which dopamine activated this important second messenger system was unknown. Although we showed that activation of the D5 dopamine receptor increased calcium concentrations, the restricted anatomic distribution of this receptor made this unlikely to be the major mechanism in brain. We have identified novel heteromeric dopamine receptor complexes that are linked to calcium signaling. The calcium pathway activated through the D1–D2 receptor heteromer involved coupling to Gq, through phospholipase C and IP3 receptors to result in a rise in intracellular calcium. The calcium rise activated through the D2–D5 receptor heteromer involved a small rise in intracellular calcium through the Gq pathway that triggered a store operated channel mediated influx of extracellular calcium. These novel receptor heteromeric complexes, for the first time, establish the link between dopamine action and rapid calcium signaling. PMID:19897420

  3. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells.

    PubMed

    Han, Lina; Qiu, Peng; Zeng, Zhihong; Jorgensen, Jeffrey L; Mak, Duncan H; Burks, Jared K; Schober, Wendy; McQueen, Teresa J; Cortes, Jorge; Tanner, Scott D; Roboz, Gail J; Kantarjian, Hagop M; Kornblau, Steven M; Guzman, Monica L; Andreeff, Michael; Konopleva, Marina

    2015-04-01

    Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single-cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen-defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor and BEZ235-induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p-4EBP1, p-AKT, and p-S6, particularly in CD34(+) subsets. We evaluated multiple signaling pathways in antigen-defined subpopulations in primary AML cells with FLT3-ITD mutations. The data demonstrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p-4EBP1 and p-S6 were exclusively found in FLT3-ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen-defined subpopulations in primary AML, which may

  4. Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria.

    PubMed

    Kumari, Ruma; Singh, Susmita K; Singh, Diwakar K; Singh, Pramod K; Chaurasiya, Shivendra K; Srivastava, Kishore K

    2012-10-01

    Serine/threonine protein kinases (STPKs) are predominantly involved in growth, development, division, differentiation, and in regulating immune responses in mycobacteria. A wide variety of functions of mycobacterial STPKs persuade mycobacterial growth and further its survival in the hosts. The polymorphic studies have shown that a full length gene of Rv3080c (pknK) is present in the slow growing mycobacteria. The wild type Mycobacterium smegmatis containing only vector (M. smegmatis) and M. smegmatis containing Rv3080c (pknK) cloned in pMV261 vector (M. smegmatis::K) were cultured in different growth media. The studies have shown that M. smegmatis did not differ in the growth and in survival while a substantial reduction in the growth (four-ten-folds) and a significant delay in the colony formation were observed in M. smegmatis::K. In order to look for the stage specific and modulated expression of PknK, the study was comprehended to quantitate pknK transcripts at different phases of cultures. The mycobacterium, containing high copy number of pknK specific RNA was unable to multiply. The study thus highlights that Rv3080c is largely accountable for changing the fate of avirulent mycobacteria and hence the protein can be utilized as an important molecule to target pathogenesis.

  5. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages.

    PubMed

    Verneuil, Nicolas; Sanguinetti, Maurizio; Le Breton, Yoann; Posteraro, Brunella; Fadda, Giovanni; Auffray, Yanick; Hartke, Axel; Giard, Jean-Christophe

    2004-08-01

    In order to identify regulators of the oxidative stress response in Enterococcus faecalis, an important human pathogen, several genes annotated as coding for transcriptional regulators were inactivated by insertional mutagenesis. One mutant, affected in the ef2958 locus (designated hypR [hydrogen peroxide regulator]), appeared to be highly sensitive to oxidative challenge caused by hydrogen peroxide. Moreover, testing of the hypR mutant by using an in vivo-in vitro macrophage infection model resulted in a highly significant reduction in survival compared to the survival of parent strain JH2-2. Northern blot analyses were carried out with probes specific for genes encoding known antioxidant enzymes, and they showed that the ahpCF (alkyl hydroperoxide reductase) transcript was expressed less in mutant cells. Mobility shift protein-DNA binding assays revealed that HypR regulated directly the expression of hypR itself and the ahpCF operon. Our combined results showed that HypR appeared to be directly involved in the expression of ahpCF genes under oxidative stress conditions and suggested that this regulator could contribute to the virulence of E. faecalis.

  6. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism.

    PubMed

    Zubair, Haseeb; Azim, Shafquat; Khan, Husain Yar; Ullah, Mohammad Fahad; Wu, Daocheng; Singh, Ajay Pratap; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-06-20

    There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS) that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  7. Disruption of the intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes

    SciTech Connect

    Fu Min; Wu Meng; Wang Jifeng; Qiao Yanjiang; Wang Zhao . E-mail: zwang@tsinghua.edu.cn

    2007-03-23

    Aconitine is an effective ingredient in Aconite tuber, an important traditional Chinese medicine. Aconitine is also known to be a highly toxic diterpenoid alkaloid with arrhythmogenic effects. In the present study, we have characterized the properties of arrhythmic cytotoxicity and explored the possible mechanisms of aconitine-induced cardiomyocytes. Results show that aconitine induces significant abnormity in the spontaneous beating rate, amplitude of spontaneous oscillations and the relative intracellular Ca{sup 2+} concentration. Also, mRNA transcription levels and protein expressions of SR Ca{sup 2+} release channel RyR{sub 2} and sarcolemmal NCX were elevated in aconitine-induced cardiomyocytes. However, co-treatment with ruthenium red (RR), a RyR channel inhibitor, could reverse the aconitine-induced abnormity in intracellular Ca{sup 2+} signals. These results demonstrate that disruption of intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling (EC coupling) is a crucial mechanism of arrhythmic cytotoxicity in aconitine-induced cardiomyocytes. Moreover, certain inhibitors appear to play an important role in the detoxification of aconitine-induced Ca{sup 2+}-dependent arrhythmias.

  8. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments

    PubMed Central

    Finn, Sarah; Condell, Orla; McClure, Peter; Amézquita, Alejandro; Fanning, Séamus

    2013-01-01

    Some Enterobacteriaceae possess the ability to survive in low-moisture environments for extended periods of time. Many of the reported food-borne outbreaks associated with low-moisture foods involve Salmonella contamination. The control of Salmonella in low-moisture foods and their production environments represents a significant challenge for all food manufacturers. This review summarizes the current state of knowledge with respect to Salmonella survival in intermediate- and low-moisture food matrices and their production environments. The mechanisms utilized by this bacterium to ensure their survival in these dry conditions remain to be fully elucidated, however, in depth transcriptomic data is now beginning to emerge regarding this observation. Earlier research work described the effect(s) that low-moisture can exert on the long-term persistence and heat tolerance of Salmonella, however, data are also now available highlighting the potential cross-tolerance to other stressors including commonly used microbicidal agents. Sources and potential control measures to reduce the risk of contamination will be explored. By extending our understanding of these geno- and phenotypes, we may be able to exploit them to improve food safety and protect public health. PMID:24294212

  9. Innate Immunity to Intracellular Pathogens: Lessons Learned from Legionella pneumophila.

    PubMed

    Shin, Sunny

    2012-01-01

    Intracellular bacterial pathogens have the remarkable ability to manipulate host cell processes in order to establish a replicative niche within the host cell. In response, the host can initiate immune defenses that lead to the eventual restriction and clearance of intracellular infection. The bacterial pathogen Legionella pneumophila has evolved elaborate virulence mechanisms that allow for its survival inside protozoa within a specialized membrane-bound organelle. These strategies also enable L. pneumophila to survive and replicate within alveolar macrophages, and can result in the severe pneumonia Legionnaires' disease. Essential to L. pneumophila's intracellular lifestyle is a specialized type IV secretion system, termed Dot/Icm, that translocates bacterial effector proteins into host cells. The ease with which L. pneumophila can be genetically manipulated has facilitated the comparison of host responses to virulent and isogenic avirulent mutants lacking a functional Dot/Icm system. This has made L. pneumophila an excellent model for understanding how the host discriminates between pathogenic and nonpathogenic bacteria and for systematically dissecting host defense mechanisms against intracellular pathogens. In this chapter, I discuss a few examples demonstrating how the study of immune responses triggered specifically by the L. pneumophila type IV secretion system has provided unique insight into our understanding of host immunity against intracellular bacterial pathogens.

  10. In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments

    SciTech Connect

    Krumholz, Lee R.

    2005-06-01

    Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 are model subsurface organisms for studying genes involving in situ radionuclide transformation and sediment survival. Our research objective for this project has been to develop a signature-tagged mutagenesis (STM) procedure and use it to identify mutants in genes of these subsurface bacteria involved in sediment survival and radionuclide reduction. The mutant genes identified in these studies allow us for the first time to describe at the genetic level microbial processes that are actually being used by environmental bacteria while growing in their natural ecosystems. Identification of these genes revealed facets of microbial physiology and ecology that are not accessible through laboratory studies. Ultimately, this information may be used to optimize bioremediation or other engineered microbial processes. Furthermore, the identification of a mutant in a gene conferring multidrug resistance in strain MR-1 shows that this widespread mechanism of antibiotic resistance, likely has its origins as a mechanism of bacterial defense against naturally occurring toxins. Studies with D. desulfuricans G20: The STM procedure first involved generating a library of 5760 G20 mutants and screening for potential non-survivors in subsurface sediment microcosms. After two rounds of screening, a total of 117 mutants were confirmed to be true non-survivors. 97 transposon insertion regions have been sequenced to date. Upon further analysis of these mutants, we classified the sediment survival genes into COG functional categories. STM mutant insertions were located in genes encoding proteins related to metabolism (33%), cellular processes (42%), and information storage and processing (17%). We also noted 8% of STM mutants identified had insertions in genes for hypothetical proteins or unknown functions. Interestingly, at least 64 of these genes encode cytoplasmic proteins, 46 encode inner membrane proteins, and only 7 encode

  11. Early down-regulation of PKCδ as a pro-survival mechanism in Huntington's disease.

    PubMed

    Rué, Laura; Alcalá-Vida, Rafael; López-Soop, Graciela; Creus-Muncunill, Jordi; Alberch, Jordi; Pérez-Navarro, Esther

    2014-03-01

    A balance between cell survival and apoptosis is crucial to avoid neurodegeneration. Here, we analyzed whether the pro-apoptotic protein PKCδ, and the pro-survival PKCα and βII, were dysregulated in the brain of R6/1 mouse model of Huntington's disease (HD). Protein levels of the three PKCs examined were reduced in all the brain regions analyzed being PKCδ the most affected isoform. Interestingly, PKCδ protein levels were also decreased in the striatum and cortex of R6/2 and Hdh(Q111/Q111) mice, and in the putamen of HD patients. Nuclear PKCδ induces apoptosis, but we detected reduced PKCδ in both cytoplasmic and nuclear enriched fractions from R6/1 mouse striatum, cortex and hippocampus. In addition, we show that phosphorylation and ubiquitination of PKCδ are increased in 30-week-old R6/1 mouse brain. All together these results suggest a pro-survival role of reduced PKCδ levels in response to mutant huntingtin-induced toxicity. In fact, we show that over-expression of PKCδ increases mutant huntingtin-induced cell death in vitro, whereas over-expression of a PKCδ dominant negative form or silencing of endogenous PKCδ partially blocks mutant huntingtin-induced cell death. Finally, we show that the analysis of lamin B protein levels could be a good marker of PKCδ activity, but it is not involved in PKCδ-mediated cell death in mutant huntingtin-expressing cells. In conclusion, our results suggest that neurons increase the degradation of PKCδ as a compensatory pro-survival mechanism in response to mutant huntingtin-induced toxicity that can help to understand why cell death appears late in the disease.

  12. Mycobacterium tuberculosis PE_PGRS18 enhances the intracellular survival of M. smegmatis via altering host macrophage cytokine profiling and attenuating the cell apoptosis.

    PubMed

    Yang, Wenmin; Deng, Wanyan; Zeng, Jie; Ren, Sai; Ali, Md Kaisar; Gu, Yinzhong; Li, Yangyuling; Xie, Jianping

    2017-04-01

    Mycobacterium tuberculosis PE/PPE family proteins, named after the presence of conserved PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains at N-terminal, are prevalent in M. tuberculosis genome. The function of most PE/PPE family proteins remains elusive. To characterize the function of PE_PGRS18, the encoding gene was heterologously expressed in M. smegmatis, a nonpathogenic mycobacterium. The recombinant PE_PGRS18 is cell wall associated. M. smegmatis PE_PGRS18 recombinant showed differential response to stresses and altered the production of host cytokines IL-6, IL-1β, IL-12p40 and IL-10, as well as enhanced survival within macrophages largely via attenuating the apoptosis of macrophages. In summary, the study firstly unveiled the role of PE_PGRS18 in physiology and pathogenesis of mycobacterium.

  13. Landmark discoveries in intracellular transport and secretion

    PubMed Central

    Paknikar, Kishore M

    2007-01-01

    Abstract Cellular protein transport and secretion is fundamental to the very existence of an organism, regulating important physiological functions such as reproduction, digestion, energy production, growth, neurotransmission, hormone release, water and ion transport, etc., all required for the survival and maintenance of homeostasis within an organism. Molecular understanding of transport and secretion of intracellular product has therefore been of paramount importance and aggressively investigated for over six decades. Only in the last 20 years, the general molecular mechanism of the process has come to light, following discovery of key proteins involved in ER-Golgi transport, and discovery of the ‘porosome’– the universal secretion machinery in cells. PMID:17635635

  14. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms

    PubMed Central

    Mansilla Pareja, Maria Eugenia; Colombo, Maria I.

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance. PMID:24137567

  15. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  16. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    PubMed

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus.

  17. Corynebacterium diphtheriae putative tellurite-resistance protein (CDCE8392_0813) contributes to the intracellular survival in human epithelial cells and lethality of Caenorhabditis elegans.

    PubMed

    Santos, Louisy Sanches Dos; Antunes, Camila Azevedo; Santos, Cintia Silva Dos; Pereira, José Augusto Adler; Sabbadini, Priscila Soares; Luna, Maria das Graças de; Azevedo, Vasco; Hirata Júnior, Raphael; Burkovski, Andreas; Asad, Lídia Maria Buarque de Oliveira; Mattos-Guaraldi, Ana Luíza

    2015-08-01

    Corynebacterium diphtheriae, the aetiologic agent of diphtheria, also represents a global medical challenge because of the existence of invasive strains as causative agents of systemic infections. Although tellurite (TeO32-) is toxic to most microorganisms, TeO32--resistant bacteria, including C. diphtheriae, exist in nature. The presence of TeO32--resistance (TeR) determinants in pathogenic bacteria might provide selective advantages in the natural environment. In the present study, we investigated the role of the putative TeR determinant (CDCE8392_813gene) in the virulence attributes of diphtheria bacilli. The disruption of CDCE8392_0813 gene expression in the LDCIC-L1 mutant increased susceptibility to TeO32- and reactive oxygen species (hydrogen peroxide), but not to other antimicrobial agents. The LDCIC-L1 mutant also showed a decrease in both the lethality of Caenorhabditis elegans and the survival inside of human epithelial cells compared to wild-type strain. Conversely, the haemagglutinating activity and adherence to and formation of biofilms on different abiotic surfaces were not regulated through the CDCE8392_0813 gene. In conclusion, the CDCE8392_813 gene contributes to the TeR and pathogenic potential of C. diphtheriae.

  18. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells

    PubMed Central

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells. PMID:27536106

  19. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    PubMed

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.

  20. An inducible and secreted eukaryote-like serine/threonine kinase of Salmonella enterica serovar Typhi promotes intracellular survival and pathogenesis.

    PubMed

    Theeya, Nagaraja; Ta, Atri; Das, Sayan; Mandal, Rahul S; Chakrabarti, Oishee; Chakrabarti, Saikat; Ghosh, Amar N; Das, Santasabuj

    2015-02-01

    Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs in Salmonella enterica serovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of the t4519 locus of Salmonella Typhi Ty2 have all the signatures of eukaryotic superfamily kinases. t4519 encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activities in vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis of Salmonella Typhi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519 strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK of Salmonella Typhi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in the in vivo pathogenesis of Salmonella spp.

  1. Delayed apoptosis allows islet β-cells to implement an autophagic mechanism to promote cell survival

    PubMed Central

    Hayes, Heather L.; Peterson, Brett S.; Haldeman, Jonathan M.; Newgard, Christopher B.; Hohmeier, Hans E.

    2017-01-01

    Increased β-cell death coupled with the inability to replicate existing β-cells drives the decline in β-cell mass observed in the progression of both major forms of diabetes. Understanding endogenous mechanisms of islet cell survival could have considerable value for the development of novel strategies to limit β-cell loss and thereby promote β-cell recovery. Insulinoma cells have provided useful insight into β-cell death pathways but observations made in cell lines sometimes fail to translate to primary islets. Here, we report dramatic differences in the temporal regulation and engagement of the apoptotic program in primary rodent islets relative to the INS-1 derived 832/13 cell line. As expected, 832/13 cells rapidly induced cell stress markers in response to ER stress or DNA damage and were fully committed to apoptosis, resulting in >80% cell death within 24 h. In contrast, primary rat islets were largely refractory to cell death in response to ER stress and DNA damage, despite rapid induction of stress markers, such as XBP-1(s), CHOP, and PUMA. Gene expression profiling revealed a general suppression of pro-apoptotic machinery, such as Apaf-1 and caspase 3, and sustained levels of pro-survival factors, such as cIAP-1, cIAP-2, and XIAP, in rat islets. Furthermore, we observed sustained induction of autophagy following chronic ER stress and found that inhibition of autophagy rendered islet β-cells highly vulnerable to ER stress-induced cell death. We propose that islet β-cells dampen the apoptotic response to delay the onset of cell death, providing a temporal window in which autophagy can be activated to limit cellular damage and promote survival. PMID:28212395

  2. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    PubMed

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  3. Survival mechanisms of vertebrate ectotherms at subfreezing temperatures: applications in cryomedicine.

    PubMed

    Costanzo, J P; Lee, R E; DeVries, A L; Wang, T; Layne, J R

    1995-03-01

    Various marine fishes, amphibians, and reptiles survive at temperatures several degrees below the freezing point of their body fluids by virtue of adaptive mechanisms that promote freeze avoidance or freeze tolerance. Freezing is avoided by a colligative depression of the blood freezing point, supercooling of the body fluids, or the biosynthesis of unique antifreeze proteins that inhibit the propagation of ice within body fluids. Conversely, freeze tolerance is an adaptation for the survival of tissue freezing under ecologically relevant thermal and temporal conditions that is conferred by the biosynthesis of permeating carbohydrate cryoprotectants and an extensive dehydration of tissues and organs. Such cryoprotective responses, invoked by the onset of freezing, mitigate the osmotic stress associated with freeze-concentration of cytoplasm, attendant metabolic perturbations, and physical damage. Cryomedical research has historically relied on mammalian models for experimentation even though endotherms do not naturally experience subfreezing temperatures. Some vertebrate ectotherms have "solved" not only the problem of freezing individual tissues and organs, but also that of simultaneously freezing all organ systems. An emerging paradigm in cryomedicine is the application of principles governing natural cold hardiness to the development of protocols for the cryopreservation of mammalian tissues and organs.

  4. Compartmentation of malic acid in mesophyll cells of Kalanchoee daigremontiana: indications of a intracellular cytosolic vesicle transport mechanism

    SciTech Connect

    Balsamo, R.A.; Uribe, E.G.

    1987-04-01

    Leaf tissue was harvested over a 24hr period at one to three hour intervals. The malic acid levels in the tissue were assayed spectrophotometrically and the percent cell volume occupied by cytosolic vesicles in replicate samples was determined. The total volume of the cytosolic vesicles fluctuated throughout the photoperiod concommitantly with malic acid concentrations present in the tissue. An intact leaf tissue section (10.2cm/sup 2/) was radiolabeled with /sup 14/CO/sub 2/ seven hours into the dark period for thirty minutes. Two dimensional thin layer chromatography and electrophoresis of the tissue determined that 96% of the label was incorporated into malic acid. A freeze substitution procedure was initiated followed by microautoradiography (Fisher 1971) which allowed for the tracing of intracellular malic acid migration and compartmentation within the mesophyll cells. The results and interpretation of this experiment will be presented.

  5. Mechanism of the association between Na+ binding and conformations at the intracellular gate in neurotransmitter:sodium symporters

    SciTech Connect

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J.; Javitch, Jonathan A.; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-04-13

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. Here we describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Furthermore, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. Lastly, that the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.

  6. INTRA-CELLULAR STAPHYLOCOCCUS AUREUS ALONE CAUSES INFECTION IN VIVO#

    PubMed Central

    Hamza, Therwa; Dietz, Matthew; Pham, Danh; Clovis, Nina; Danley, Suzanne; Li, Bingyun

    2013-01-01

    Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus) is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can “hide” in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years. PMID:23832687

  7. Intra-cellular Staphylococcus aureus alone causes infection in vivo.

    PubMed

    Hamza, T; Dietz, M; Pham, D; Clovis, N; Danley, S; Li, B

    2013-07-08

    Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus) is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can "hide" in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years.

  8. Molecular Mechanism of Flocculation Self-Recognition in Yeast and Its Role in Mating and Survival

    PubMed Central

    Goossens, Katty V. Y.; Ielasi, Francesco S.; Nookaew, Intawat; Stals, Ingeborg; Alonso-Sarduy, Livan; Daenen, Luk; Van Mulders, Sebastiaan E.; Stassen, Catherine; van Eijsden, Rudy G. E.; Siewers, Verena; Delvaux, Freddy R.; Kasas, Sandor; Nielsen, Jens; Devreese, Bart

    2015-01-01

    ABSTRACT We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. PMID:25873380

  9. Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells.

    PubMed

    Shao, Jingwei; Dai, Yongchao; Zhao, Wenna; Xie, Jingjing; Xue, Jinping; Ye, Jianhui; Jia, Lee

    2013-03-01

    Zinc(II)-phthalocyanine (ZnPc) is a metal photosensitizer. In the present study, we formulated the poorly-soluble ZnPc in Cremophor EL solution to enhance its solubility and determined its intracellular distribution and mechanisms of action on human hepatocellular carcinoma HepG2 cells. ZnPc uptake by the cells reached a plateau by 8h. ZnPc primarily located in mitochondria, lysosome and endoplasmic reticulum. The concentration-growth inhibition curves of ZnPc on the cell lines were pharmacodynamically enhanced by 10-50 folds by irradiation. Once irradiated, ZnPc produced significant amount of reactive oxygen species (ROS), activated caspase-3 and caspase-9, arrested cell cycle mainly at G2/M stage, and decreased membrane potential (ΔΨm) of HepG2 cells. In conclusion, the present study first elucidated cellular and molecular mechanisms of ZnPc on HepG2 cells.

  10. Simultaneous monitoring of superoxides and intracellular calcium ions in neutrophils by chemiluminescence and fluorescence: evaluation of action mechanisms of bioactive compounds in foods.

    PubMed

    Kazumura, Kimiko; Sato, Yukiko; Satozono, Hiroshi; Koike, Takashi; Tsuchiya, Hiroshi; Hiramatsu, Mitsuo; Katsumata, Masakazu; Okazaki, Shigetoshi

    2013-10-01

    We have developed a measuring system for simultaneous monitoring of chemiluminescence and fluorescence, which indicate respectively, (i) generation of superoxide anion radicals (O2(-•)) and (ii) change in the intracellular calcium ion concentration ([Ca(2+)]i) of neutrophils triggered by the mechanism of innate immune response. We applied this measuring system for establishing a method to distinguish between anti-inflammatory actions and antioxidant actions caused by bioactive compounds. We evaluated anti-inflammatory agents (zinc ion [Zn(2+)] and ibuprofen) and antioxidants (superoxide dismutase [SOD] and ascorbic acid). It was shown that ibuprofen and Zn(2+) were anti-inflammatory while SOD and ascorbic acid were anti-oxidative. We conclude that it is possible to determine the mechanism of action of bioactive compounds using this method.

  11. Desensitization of ETA endothelin receptor-mediated negative chronotropic response in right atria–species difference and intracellular mechanisms

    PubMed Central

    Ono, Kageyoshi; Sakamoto, Aiji; Masaki, Tomoh; Satake, Motoyoshi

    1998-01-01

    Desensitization of ETA endothelin receptor (ETAR) was compared between the rat and guinea-pig with regard to negative chronotropic response (NC) in the right atria (RA).ET-1 (100 nM) produced distinct NC in the presence of BQ788 (300 nM), and positive chronotropic response (PC) in the presence of BQ123 (1 μM) in both species, showing that ETAR and ETB endothelin receptor (ETBR) mediate NC and PC, respectively.Repetitive applications of ET-1 (50 nM) desensitized PC, and the second application only induced a strong NC in both species. Later applications of ET-1 produced virtually no response in the rat RA, whereas they produced BQ123-sensitive NCs repetitively in guinea-pig RA, exhibiting marked species difference in desensitization of ETAR-mediated NC.Pretreatment with staurosporine (100 nM) prevented desensitization of ETAR in the rat RA altogether. However, phorbol 12-myristate 13-acetate (PMA, 300 nM) failed to induce, but rather hampered, desensitization of ETAR.Partial amino acid sequencing of ETARs, spanning from the 2nd through the 4th intracellular loops, revealed that all the potential Ser/Thr phosphorylation sites, including a protein kinase C (PKC) site, are conserved among guinea-pigs, rats, rabbits, bovines and humans.In guinea pig RA, pretreatment with okadaic acid (1 μg ml−1) and PMA did not facilitate desensitization of ETAR whereas these agents successfully desensitized ETAR during combined stimulation of β-adrenoceptor and ETAR by isoproterenol (300 nM) and ET-1 (100 nM).These results suggest that species differences in desensitization of ETAR are not caused by differences in the site(s) of, but caused by differences in the environment for phosphorylation of the receptor. Desensitization of ETAR appears to require phosphorylation of the receptor by PKC as well as a kinase stimulated by β-adrenoceptor activation. PMID:9831916

  12. Thrombolytic Therapy for Right-Sided Mechanical Pulmonic and Tricuspid Valves: The Largest Survival Analysis to Date.

    PubMed

    Taherkhani, Maryam; Hashemi, Seyed Reza; Hekmat, Manouchehr; Safi, Morteza; Taherkhani, Adineh; Movahed, Mohammad Reza

    2015-12-01

    Data regarding thrombolytic treatment of right-sided mechanical valve thrombosis are almost nonexistent, and all current guidelines arise from very small case series. We retrospectively studied the in-hospital and long-term outcome data of a larger series of patients who had received, from September 2005 through June 2012, thrombolytic therapy for right-sided mechanical pulmonary valve or tricuspid valve thrombosis. We identified 16 patients aged 8-67 years who had undergone thrombolytic therapy for definite thrombotic mechanical valve obstruction in the tricuspid or pulmonary valve position (8 in each position). All study patients except one had subtherapeutic international normalized ratios. The 8 patients with pulmonary mechanical valve thrombosis had a 100% response rate to thrombolytic therapy, and their in-hospital survival rate was also 100%. The 8 patients with tricuspid mechanical valve thrombosis had a 75% response rate to thrombolytic therapy, with an in-hospital survival rate of 87.5%. The one-year survival rate for mechanical valve thrombosis treated with thrombolytic therapy (whether pulmonary or tricuspid) was 87.5%. On the basis of our data, we recommend that thrombolytic therapy remain the first-line therapy for right-sided mechanical valve thrombosis in adults or children-including children with complex congenital heart disease and patients with mechanical pulmonary valve thrombosis. Surgery should be reserved for patients in whom this treatment fails.

  13. Thrombolytic Therapy for Right-Sided Mechanical Pulmonic and Tricuspid Valves: The Largest Survival Analysis to Date

    PubMed Central

    Taherkhani, Maryam; Hashemi, Seyed Reza; Hekmat, Manouchehr; Safi, Morteza; Taherkhani, Adineh

    2015-01-01

    Data regarding thrombolytic treatment of right-sided mechanical valve thrombosis are almost nonexistent, and all current guidelines arise from very small case series. We retrospectively studied the in-hospital and long-term outcome data of a larger series of patients who had received, from September 2005 through June 2012, thrombolytic therapy for right-sided mechanical pulmonary valve or tricuspid valve thrombosis. We identified 16 patients aged 8–67 years who had undergone thrombolytic therapy for definite thrombotic mechanical valve obstruction in the tricuspid or pulmonary valve position (8 in each position). All study patients except one had subtherapeutic international normalized ratios. The 8 patients with pulmonary mechanical valve thrombosis had a 100% response rate to thrombolytic therapy, and their in-hospital survival rate was also 100%. The 8 patients with tricuspid mechanical valve thrombosis had a 75% response rate to thrombolytic therapy, with an in-hospital survival rate of 87.5%. The one-year survival rate for mechanical valve thrombosis treated with thrombolytic therapy (whether pulmonary or tricuspid) was 87.5%. On the basis of our data, we recommend that thrombolytic therapy remain the first-line therapy for right-sided mechanical valve thrombosis in adults or children—including children with complex congenital heart disease and patients with mechanical pulmonary valve thrombosis. Surgery should be reserved for patients in whom this treatment fails. PMID:26664307

  14. Selection by differential molecular survival: a possible mechanism of early chemical evolution.

    PubMed Central

    de Duve, C

    1987-01-01

    A model is proposed to account for selective chemical evolution, progressing from a relatively simple initial set of abiotic synthetic phenomena up to the elaborately sophisticated processes that are almost certainly required to produce the complex molecules, such as replicatable RNA-like oligonucleotides, needed for a Darwinian form of selection to start operating. The model makes the following assumptions: (i) that a small number of micromolecular substances were present at high concentration; (ii) that a random assembly mechanism combined these molecules into a variety of multimeric compounds comprising a wide repertoire of rudimentary catalytic activities; and (iii) that a lytic system capable of breaking down the assembled products existed. The model assumes further that catalysts supplied with substrates were significantly protected against breakdown. It is shown that, by granting these assumptions, an increasingly complex network of metabolic pathways would progressively be established. At the same time, the catalysts concerned would accumulate selectively to become choice substrates for elongation and other modifications that could enhance their efficiency, as well as their survival. Chemical evolution would thus proceed by a dual process of metabolic extension and catalytic innovation. Such a process should be largely deterministic and predictable from initial conditions. PMID:3479788

  15. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea.

    PubMed

    Storey, Kenneth B; Lant, Benjamin; Anozie, Obiajulu O; Storey, Janet M

    2013-08-01

    The gastropod mollusk, Littorina littorea L., is a common inhabitant of the intertidal zone along rocky coastlines of the north Atlantic. This species has well-developed anoxia tolerance and freeze tolerance and is extensively used as a model for exploring the biochemical adaptations that support these tolerances as well as for toxicological studies aimed at identifying effective biomarkers of aquatic pollution. This article highlights our current understanding of the molecular mechanisms involved in anaerobiosis and freezing survival of periwinkles, particularly with respect to anoxia-induced metabolic rate depression. Analysis of foot muscle and hepatopancreas metabolism includes anoxia-responsive changes in enzyme regulation, signal transduction, gene expression, post-transcriptional regulation of mRNA, control of translation, and cytoprotective strategies including chaperones and antioxidant defenses. New studies describe the regulation of glucose-6-phosphate dehydrogenase by reversible protein phosphorylation, the role of microRNAs in suppressing mRNA translation in the hypometabolic state, modulation of glutathione S-transferase isozyme patterns, and the regulation of the unfolded protein response.

  16. Sulfide toxicity: Mechanical ventilation and hypotension determine survival rate and brain necrosis

    SciTech Connect

    Baldelli, R.J.; Green, F.H.Y.; Auer, R.N. )

    1993-09-01

    Occupational exposure to hydrogen sulfide is one of the leading causes of sudden death in the workplace, especially in the oil and gas industry. High-dose exposure causes immediate neurogenic apnea and death; lower doses cause [open quotes]knockdown[close quotes] (transient loss of consciousness, with apnea). Because permanent neurological sequelae have been reported, the authors sought to determine whether sulfide can directly kill central nervous system neurons. Ventilated and unventilated rats were studied to allow administration of higher doses of sulfide and to facilitate physiological monitoring. It was extremely difficult to produce cerebral necrosis with sulfide. Only one of eight surviving unventilated rats given high-dose sulfide (a dose that was lethal in [ge]50% of animals) showed cerebral necrosis. Mechanical ventilation shifted the dose that was lethal in 50% of the animals to 190 mg/kg from 94 mg/kg in the unventilated rats. Sulfide was found to potently depress blood pressure. Cerebral necrosis was absent in the ventilated rats (n = 11), except in one rat that showed profound and sustained hypotension to [le]35 Torr. Electroencephalogram activity ceased during exposure but recovered when the animals regained consciousness. The authors conclude that very-high-dose sulfide is incapable of producing cerebral necrosis by a direct histotoxic effect. 32 refs., 5 figs.

  17. A Robust In Vivo-Like Persistent Firing Supported by a Hybrid of Intracellular and Synaptic Mechanisms

    PubMed Central

    Jochems, Arthur; Yoshida, Motoharu

    2015-01-01

    Persistent firing is believed to support short-term information retention in the brain. Established hypotheses make use of the recurrent synaptic connectivity to support persistent firing. However, this mechanism is known to suffer from a lack of robustness. On the other hand, persistent firing can be supported by an intrinsic cellular mechanism in multiple brain areas. However, the consequences of having both the intrinsic and the synaptic mechanisms (a hybrid model) on persistent firing remain largely unknown. The goal of this study is to investigate whether a hybrid neural network model with these two mechanisms has advantages over a conventional recurrent network based model. Our computer simulations were based on in vitro recordings obtained from hippocampal CA3 pyramidal cells under cholinergic receptor activation. Calcium activated non-specific cationic (CAN) current supported persistent firing in the Hodgkin-Huxley style cellular models. Our results suggest that the hybrid model supports persistent firing within a physiological frequency range over a wide range of different parameters, eliminating parameter sensitivity issues generally recognized in network based persistent firing. In addition, persistent firing in the hybrid model is substantially more robust against distracting inputs, can coexist with theta frequency oscillations, and supports pattern completion. PMID:25901969

  18. Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth

    NASA Astrophysics Data System (ADS)

    Islamov, R. R.; Mishagina, E. A.; Tyapkina, O. V.; Shajmardanova, G. F.; Eremeev, A. A.; Kozlovskaya, I. B.; Nikolskij, E. E.; Grigorjev, A. I.

    2011-05-01

    It was previously shown that different cell types in vivo and in vitro may die via apoptosis under weightlessness conditions in space as well as in simulated hypogravity on the Earth. We assessed survivability of spinal motoneurons of rats after 35-day antiorthostatic hind limb suspension. Following weight bearing, unloading the total protein content in lumbar spinal cord is dropped by 21%. The electrophysiological studies of m. gastrocnemius revealed an elevated motoneurons' reflex excitability and conduction disturbances in the sciatic nerve axons. The number of myelinated fibers in the ventral root of experimental animals was insignificantly increased by 35-day of antiorthostatic hind limb suspension, although the retrograde axonal transport was significantly decreased during the first week of simulated hypogravity. The results of the immunohistochemical assay with antibodies against proapoptotic protein caspase 9 and cytotoxicity marker neuron specific nitric oxide synthase (nNOS) and the TUNEL staining did not reveal any signs of apoptosis in motoneurons of suspended and control animals. To examine the possible adaptation mechanisms activated in motoneurons in response to simulated hypogravity we investigated immunoexpression of Hsp25 and Hsp70 in lumbar spinal cord of the rats after 35-day antiorthostatic hind limb suspension. Comparative analysis of the immunohistochemical reaction with anti-Hsp25 antibodies revealed differential staining of motoneurons in intact and experimental animals. The density of immunoprecipitate with anti-Hsp25 antibodies was substantially higher in motoneurons of the 35-day suspended than control rats and the more intensive precipitate in this reaction was observed in motoneuron neuritis. Quantitative analysis of Hsp25 expression demonstrated an increase in the Hsp25 level by 95% in experimental rats compared to the control. The immunoexpression of Hsp70 found no qualitative and quantitative differences in control and experimental

  19. Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction.

    PubMed

    Yun, Sung-Sik; Yoon, Sang Youl; Song, Min-Kyung; Im, Sin-Hyeog; Kim, Sohee; Lee, Jong-Hyun; Yang, Sung

    2010-06-07

    This paper presents a handheld mechanical cell lysis chip with ultra-sharp nano-blade arrays fabricated by simple and cost effective crystalline wet etching of (110) silicon. The ultra-sharp nano-blade array is simply formed by the undercutting of (110) silicon during the crystalline wet etching process. Cells can be easily disrupted by the silicon nano-blade array without the help of additional reagents or electrical sources. Based on the bench-top test of the proposed device, a handheld mechanical cell lysis chip with the nano-blade arrays is designed and fabricated for direct connection to a commercial syringe. The direct connection to a syringe provides rapid cell lysis, easy handling, and minimization of the lysate dead volume. The protein concentration in the cell lysate obtained by the proposed lysis chip is quantitatively comparable to the one prepared by a conventional chemical lysis method.

  20. Intracellular Organisms as Placental Invaders

    PubMed Central

    Vigliani, Marguerite B.; Bakardjiev, Anna I.

    2015-01-01

    In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications. PMID:27695204

  1. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    PubMed Central

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  2. Nitric oxide regulates cardiac intracellular Na⁺ and Ca²⁺ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism.

    PubMed

    Pavlovic, Davor; Hall, Andrew R; Kennington, Erika J; Aughton, Karen; Boguslavskyi, Andrii; Fuller, William; Despa, Sanda; Bers, Donald M; Shattock, Michael J

    2013-08-01

    In the heart, Na/K-ATPase regulates intracellular Na(+) and Ca(2+) (via NCX), thereby preventing Na(+) and Ca(2+) overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na(+) and Ca(2+) and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p<0.05, n=6) and all were abolished by Ca(2+)-chelation (EGTA 10mM) or NOS inhibition l-NAME (1mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50=3.8 μM; n=6/grp), via decrease in Km, in PLM(WT) but not PLM(KO) or PLM(3SA) myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na(+) (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM(3SA) mouse hearts but not PLM(WT) and PLM(KO). We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na(+) and Ca(2+) overload and arrhythmias. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".

  3. Insight concerning the mechanism of therapeutic ultrasound facilitating gene delivery: increasing cell membrane permeability or interfering with intracellular pathways?

    PubMed

    Duvshani-Eshet, Maayan; Haber, Tom; Machluf, Marcelle

    2014-02-01

    Nonviral gene delivery methods encounter major barriers in plasmid DNA (pDNA) trafficking toward the nucleus. The present study aims to understand the role and contribution of therapeutic ultrasound (TUS), if any, in pDNA trafficking in primary cells such as fibroblasts and cell lines (e.g., baby hamster kidney [BHK]) during the transfection process. Using compounds that alter the endocytic pathways and the cytoskeletal network, we show that after TUS application, pDNA trafficking in the cytoplasm is not mediated by endocytosis or by the cytoskeletal network. Transfection studies and confocal analyses showed that the actin fibers impeded TUS-mediated transfection in BHK cells, but not in fibroblasts. Flow cytometric analyses indicated that pDNA uptake by cells occurs primarily when the pDNA is added before and not after TUS application. Taken together, these results suggest that TUS by itself operates as a mechanical force driving the pDNA through the cell membrane, traversing the cytoplasmic network and into the nucleus.

  4. Soluble uric acid increases intracellular calcium through an angiotensin II-dependent mechanism in immortalized human mesangial cells.

    PubMed

    Albertoni, Guilherme; Maquigussa, Edgar; Pessoa, Edson; Barreto, Jose Augusto; Borges, Fernanda; Schor, Nestor

    2010-07-01

    Hyperuricemia is associated with increases in cardiovascular risk and renal disease. Mesangial cells regulate glomerular filtration rates through the release of hormones and vasoactive substances. This study evaluates the signaling pathway of uric acid (UA) in immortalized human mesangial cells (ihMCs). To evaluate cell proliferation, ihMCs were exposed to UA (6-10 mg/dL) for 24-144 h. In further experiments, ihMCs were treated with UA (6-10 mg/dL) for 12 and 24 h simultaneously with losartan (10(-7) mmol/L). Angiotensin II (AII) and endothelin-1 (ET-1) were assessed using the enzyme-linked immunosorbent assay (ELISA) technique. Pre-pro-ET mRNA was evaluated by the real-time PCR technique. It was observed that soluble UA (8 and 10 mg/dL) stimulated cellular proliferation. UA (10 mg/dL) for 12 h significantly increased AII protein synthesis and ET-1 expression and protein production was increased after 24 h. Furthermore, UA increased [Ca(2+)](i), and this effect was significantly blocked when ihMCs were preincubated with losartan. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. In addition, UA can potentially affect glomerular function due to UA-induced proliferation and contraction of mesangial cells. The latter mechanism could be related to the long-term effects of UA on renal function and chronic kidney disease.

  5. Immune oppression array elucidating immune escape and survival mechanisms in uveal melanoma

    PubMed Central

    Hou, Fang; Huang, Qi-Ming; Hu, Dan-Ning; Jonas, Jost B.; Wei, Wen-Bin

    2016-01-01

    AIM To examine the genetic profile of primary uveal melanoma (UM) as compared to UM in immune escape. METHODS Dendritic cells (DC) loaded with lysates of UM cells of high metastatic potential were used to stimulate CTLs(CTLs). When CTLs co-cultured with the UM cells, most UM cells could be eliminated. Survival UM cells grew slowly and were considered to be survival variants and examined by a microarray analysis. These differential genes were analyzed further with Venn Diagrams and functions related to immune escape. We additionally examined transcriptional changes of manually selected survival variants of UM cells and of clinical UM samples by quantitative real-time polymerase chain reaction (qRT-PCR), and analyzed the correlation of these expressions and patients' survival. RESULTS Gene expression analyses revealed a marked up-regulation of SLAMF7 and CCL22 and a significant down-regulation of KRT10, FXYD3 and ABCC2. The expression of these genes in the relapsed UM was significantly greater than those in primary UM. UM patients with overexpression of these genes had a shorter survival period as compared with those of their underexpression. CONCLUSION Gene expression, in particular of SLAMF7, CCL22, KRT10, FXYD3 and ABCC2, differed between primary UM cells and survival variants of UM cells. PMID:28003967

  6. Review: Intracardiac intracellular angiotensin system in diabetes

    PubMed Central

    Kumar, Rajesh; Yong, Qian Chen; Thomas, Candice M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies. PMID:22170614

  7. Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms.

    PubMed

    Bainton, N J; Lynch, J M; Naseby, D; Way, J A

    2004-10-01

    The antibiotic 2,4-diacetylphloroglucinol (Phl) is produced by a range of naturally occurring fluorescent pseudomonads. One isolate, Pseudomonas fluorescens F113, protects pea plants from the pathogenic fungus Pythium ultimum by reducing the number of pathogenic lesions on plant roots, but with a concurrent reduction in the emergence of plants such as pea. The genes responsible for Phl production have been shown to be functionally conserved between the wild-type (wt) P. fluorescens strains F113 and Q2-87. In this study the genes from F113 were isolated using an optimized long PCR method and a 6.7-kb gene cluster inserted into the chromosome of the non-Phl-producing P. fluorescens strain SBW25 EeZY6KX. This strain is a lacZY, km(R) marked derivative of the wt SBW25 which effects biological control against the plant pathogen Pythium ultimum by competitive exclusion as a result of its strong rhizosphere-colonizing ability. We describe here the integration of the Phl antifungal and competitive exclusion mechanisms into a single strain, and the impact this has on survival and plant emergence in microcosms. The insertion of the Phl biosynthetic genes from the F113 into the SBW25 chromosome gave a Phl-producing transformant (strain Pa21) able to suppress P. ultimum through antibiotic production. The growth of Pa21 was not reduced in flask culture at 20 degrees C compared with its parent strain. When inoculated on pea seedlings, the strain containing the Phl operon behaved similarly to the SBW25 EeZY6KX parent but did not show the tendency of the wt Phl producer F113 to cause lower pea seed emergence. Pea roots inoculated with SBW25 EeZY6KX have significantly lower indigenous populations than with F113 and the control. This is indicative of this strain's strong colonising presence. Pa21, the Phl-modified strain, is able to exclude the resident population from roots to the same degree as the SBW25 EeZY6KX from which it is derived. This suggests that it has maintained its

  8. A novel domain-by-domain survivable mechanism in multi-domain wavelength-division-multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Wang, Xingwei; Li, Ying; Wang, Chongshan; Li, Hongming; Wang, Hongpeng; Liu, Xin

    2009-03-01

    In multi-domain wavelength-division-multiplexing (WDM) optical networks, the inter-domain routing is a challenge since each single-domain cannot view the full network topology. At the same time, survivability is also an important issue in optical networks since the failures of fiber links or network nodes may lead to a lot of traffic being blocked. In this paper, we study the survivability in multi-domain WDM optical networks, and propose a new survivable mechanism called load balanced domain-by-domain routing (LBDDR). In LBDDR, in order to obtain the efficient inter-domain survivable routes, we present the domain-by-domain routing (DDR) method which can find the intra-domain sub-working path and sub-backup path in each single-domain to form the inter-domain working path and backup path for each demand. In order to reduce the blocking probability, we present the load balanced routing method which can encourage the traffic to be uniformly distributed on the links with more free wavelengths. Simulation results show that, compared with conventional mechanism, LBDDR can obtain better performances.

  9. Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx.

    PubMed

    Cohen, R A; Weisbrod, R M; Gericke, M; Yaghoubi, M; Bierl, C; Bolotina, V M

    1999-02-05

    The precise mechanisms by which nitric oxide (NO) decreases free [Ca2+]i, inhibits Ca2+ influx, and relaxes vascular smooth muscle are poorly understood. In rabbit and mouse aorta, agonist-induced contractions and increases in [Ca2+]i were resistant to nifedipine, suggesting Ca2+ entry through non-L-type Ca2+ channels. Relaxations to NO were inhibited by thapsigargin (TG) or cyclopiazonic acid (CPA) indicating the involvement of sarcoplasmic reticulum ATPase (SERCA). Studies of the effect of NO on [Ca2+]i and the rate of Mn2+ influx with fura-2 fluorometry in rabbit aortic smooth muscle cells in primary culture were designed to test how SERCA is involved in mediating the response to NO. When cells were stimulated with angiotensin II (AII), NO accelerated the removal of Ca2+ from the cytoplasm, decreased [Ca2+]i, and inhibited Ca2+ and Mn2+ influx. Inhibition of SERCA abolished all the effects of NO. In contrast, inhibition of the Na+/Ca2+exchanger or the plasma membrane Ca2+ ATPase had no influence on the ability of NO to decrease [Ca2+]i. NO maximally decreased [Ca2+]i within 5 s, whereas significant inhibition of AII-induced Ca2+ and Mn2+ influx required more than 15 s. The inhibition of cation influx strictly depended on [Ca2+]o and functional SERCA, suggesting that during the delay before NO inhibits Ca2+ influx, the influx of Ca2+ and the uptake into intracellular stores are required. In the absence of [Ca2+]o, NO diminished the AII-induced [Ca2+]i transient by a SERCA-dependent mechanism and increased the amount of Ca2+ in the stores subsequently released by ionomycin. The present study indicates that the initial rapid decrease in [Ca2+]i caused by NO in vascular smooth muscle is accounted for by the uptake of Ca2+ by SERCA into intracellular stores. It is proposed that the refilling of the stores inhibits store-operated Ca2+ influx through non-L-type Ca2+ conducting ion channels and that this maintains the decrease in [Ca2+]i and NO-induced relaxation.

  10. Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway.

    PubMed

    Said, Hamid M; Wang, Shuling; Ma, Thomas Y

    2005-07-15

    In mammalian cells (including those of the ocular system), the water-soluble vitamin B2 (riboflavin, RF) assumes an essential role in a variety of metabolic reactions and is critical for normal cellular functions, growth and development. Cells of the human retinal pigment epithelium (hRPE) play an important role in providing a sufficient supply of RF to the retina, but nothing is known about the mechanism of the vitamin uptake by these cells and its regulation. Our aim in the present study was to address this issue using the hRPE ARPE-19 cells as the retinal epithelial model. Our results show RF uptake in the hRPE to be: (1) energy and temperature dependent and occurring without metabolic alteration in the transported substrate, (2) pH but not Na+ dependent, (3) saturable as a function of concentration with an apparent Km of 80 +/- 14 nM, (4) trans-stimulated by unlabelled RF and its structural analogue lumiflavine, (5) cis-inhibited by the RF structural analogues lumiflavine and lumichrome but not by unrelated compounds, and (6) inhibited by the anion transport inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) as well as by the Na+ -H+ exchange inhibitor amiloride and the sulfhydryl group inhibitor p-chloromercuriphenylsulphonate (p-CMPS). Maintaining the hRPE cells in a RF-deficient medium led to a specific and significant up-regulation in RF uptake which was mediated via changes in the number and affinity of the RF uptake carriers. While modulating the activities of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, protein tyrosine kinase (PTK)-, and nitric oxide (NO)-mediated pathways were found to have no role in regulating RF uptake, a role for the Ca2+ -calmodulin-mediated pathway was observed. These studies demonstrate for the first time the involvement of a specialized carrier-mediated mechanism for RF uptake by hRPE cells and show that the process is

  11. Exploring mechanisms of survival in rainbow trout selectively bred for increased resistance to Flavobacterium psychrophilum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A challenge for selective breeding programs is to better understand how artificial selection alters host pathophysiologic and immunologic response following pathogen exposure. The National Center for Cool and Cold Water Aquaculture is exploring this in rainbow trout bred for increased survival (ARS...

  12. Intracellularly-retained decorin lacking the C-terminal ear repeat causes ER stress: a cell-based etiological mechanism for congenital stromal corneal dystrophy.

    PubMed

    Chen, Shoujun; Sun, Mei; Iozzo, Renato V; Kao, Winston W-Y; Birk, David E

    2013-07-01

    Decorin, a small leucine-rich proteoglycan (SLRP), is involved in the pathophysiology of human congenital stromal corneal dystrophy (CSCD). This disease is characterized by corneal opacities and vision impairment. In reported cases, the human gene encoding decorin contains point mutations in exon 10, generating a truncated form of decorin lacking the C-terminal 33 amino acid residues. We have previously described a transgenic mouse model carrying a similar mutation in the decorin gene that leads to an ocular phenotype characterized by corneal opacities identical to CSCD in humans. We have also identified abnormal synthesis and secretion of various SLRPs in mutant mouse corneas. In the present study, we found that mutant C-terminal truncated decorin was retained in the cytoplasm of mouse keratocytes in vivo and of transfected human embryonic kidney cells. This resulted in endoplasmic reticulum stress and an unfolded protein response. Thus, we propose a novel cell-based mechanism underlying CSCD in which a truncated SLRP protein core is retained intracellularly, its accumulation triggering endoplasmic reticulum stress that results in abnormal SLRP synthesis and secretion, which ultimately affects stromal structure and corneal transparency.

  13. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    PubMed Central

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  14. Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism.

    PubMed

    Ferguson, C; Kern, M; Audesirk, G

    2000-06-01

    Inorganic lead (Pb2+) activates calmodulin, which in turn may stimulate many other cellular processes. The plasma membrane Ca2+ ATPase is a calmodulin-stimulated enzyme that plays the major role in regulating the "resting" intracellular free Ca2+ ion concentration, [Ca2+]i. We hypothesized that exposing neurons to low levels of Pb2+ would cause Pb2+ to enter the cytoplasm, and that intracellular Pb2+, by activating calmodulin, would stimulate plasma membrane Ca2+ ATPase activity, thereby increasing Ca2+ extrusion and reducing [Ca2+]i. We used the ratiometric Ca2+ indicator fura-2 to estimate changes in [Ca2+]i. In vitro calibrations of fura-2 with solutions of defined free Ca2+ and free Pb2+ concentrations showed that, at free Ca2+ concentrations from 10 nM to 1000 nM, adding Pb2+ caused either no significant change in the F340/F380 ratio (free Pb2+ concentrations from 100 fM to 1 pM) or increased the F340/F380 ratio (free Pb2+ concentrations from 5 to 50 pM). Therefore, fura-2 should be suitable for estimating Pb2+-induced decreases in [Ca2+]i, but not increases in [Ca2+]i. We exposed cultured embryonic rat hippocampal neurons to 100 nM Pb2+ for periods from 1 hour to 2 days and measured the F340/F380 ratio; the ratio decreased significantly by 9 to 16% at all time points, indicating that Pb2+ exposure decreased [Ca2+]i. In neurons loaded with 45Ca, Pb2+ exposure increased Ca2+ efflux for at least two hours; by 24 hours, Ca2+ efflux returned to control levels. Influx of 45Ca was not altered by Pb2+ exposure. Low concentrations (250 nM) of the calmodulin inhibitor calmidazolium had no effect on either 45Ca efflux or on the F340/F380 ratio in fura-loaded control neurons, but completely eliminated the increase in 45Ca efflux and decrease in F340/F380 ratio in Pb2+-exposed neurons. Zaldoride, another calmodulin inhibitor, also eliminated the decrease in F340/F380 ratio in Pb2+-exposed neurons. We conclude that Pb2+ exposure decreases [Ca2+]i and increases Ca2+ efflux

  15. Studies on the mechanism of long term survival of Taenia taeniaeformis in rats.

    PubMed

    Kwa, B H; Liew, F Y

    1978-03-01

    An attempt was made to determine if blocking antibody is involved in protecting cysticerci of Taenia taeniaeformis against a host immune response. Immunoflourescence microscopy confirmed that host antibody is presnet on the parasite surface within the capsule. To test if the larvae can still survive after such a coat of blocking antibody is removed, the larvae were trysinised and then implanted into recipients. The results indicate that blocking antibody could be involved in the survival of 1 year old established larvae. Untrypsinised larvae were normal 14 days after implantation into control or immunised rats. Trypsinised larvae implanted in control rats were alive but showed on intense cell adherence on their surface. On the other hand, trypsinised larvae implanted into immunised rats were dead and completely encapsulated. However, experiments with 1 month old larvae were inconclusive.

  16. Metabolic rate suppression as a mechanism for surviving environmental challenge in fish.

    PubMed

    Richards, Jeffrey G

    2010-01-01

    The ability to reduce metabolic rate during exposure to environmental stress, termed metabolic rate suppression, is thought to be an important component to enhance survival in many organisms. Metabolic rate suppression can be achieved through modifications to behavior, physiology, and cellular biochemistry, all of which act to reduce whole organisms energy expenditure. This chapter will critically evaluate the use of metabolic rate suppression as a response to environmental challenge in fish using three metabolic states: aestivation, hypoxia/anoxia exposure, and diapause.

  17. Motility, Survival and Proliferation

    PubMed Central

    Gerthoffer, William T.; Schaafsma, Dedmer; Sharma, Pawan; Ghavami, Saeid; Halayko, Andrew J

    2014-01-01

    Airway smooth muscle has classically been of interest for its contractile response linked to bronchoconstriction. However, terminally differentiated smooth muscle cells are phenotypically plastic and have multifunctional capacity for proliferation, cellular hypertrophy, migration, and the synthesis of extracellular matrix and inflammatory mediators. These latter properties of airway smooth muscle are important in airway remodeling which is a structural alteration that compounds the impact of contractile responses on limiting airway conductance. In this overview we describe the important signaling components and the functional evidence supporting a view of smooth muscle cells at the core of fibroproliferative remodeling of hollow organs. Signal transduction components and events are summarized that control the basic cellular processes of proliferation, cell survival, apoptosis and cellular migration. We delineate known intracellular control mechanisms and suggest future areas of interest to pursue to more fully understand factors that regulate normal myocyte function and airway remodeling in obstructive lung diseases. PMID:23728975

  18. Influence of Transplant Center Procedural Volume on Survival Outcomes of Heart Transplantation for Children Bridged with Mechanical Circulatory Support.

    PubMed

    Hsieh, Alex; Tumin, Dmitry; McConnell, Patrick I; Galantowicz, Mark; Tobias, Joseph D; Hayes, Don

    2017-02-01

    Transplant center expertise improves survival after heart transplant (HTx) but it is unknown whether center expertise ameliorates risk associated with mechanical circulatory support (MCS) bridge to transplantation. This study investigated whether center HTx volume reduced survival disparities among pediatric HTx patients bridged with extracorporeal membrane oxygenation (ECMO), left ventricular assist device (LVAD), or no MCS. Patients ≤18 years of age receiving first-time HTx between 2005 and 2015 were identified in the United Network of Organ Sharing registry. Center volume was the total number of HTx during the study period, classified into tertiles. The primary outcome was 1 year post-transplant survival, and MCS type was interacted with center volume in Cox proportional hazards regression. The study cohort included 4131 patients, of whom 719 were supported with LVAD and 230 with ECMO. In small centers (≤133 HTx over study period), patients bridged with ECMO had increased post-transplant mortality hazard compared to patients bridged with LVAD (HR 0.29, 95% CI 0.12, 0.71; p = 0.006) and patients with no MCS (HR 0.33, 95% CI 0.19, 0.57; p < 0.001). Interactions of MCS type with medium or large center volume were not statistically significant, and the same differences in survival by MCS type were observed in medium- or large-volume centers (136-208 or ≥214 HTx over the study period). Post-HTx survival disadvantage of pediatric patients bridged with ECMO persisted regardless of transplant program volume. The role of institutional ECMO expertise outside the transplant setting for improving outcomes of ECMO bridge to HTx should be explored.

  19. Evidence that additional mechanisms to cyclic GMP mediate the decrease in intracellular calcium and relaxation of rabbit aortic smooth muscle to nitric oxide

    PubMed Central

    Weisbrod, Robert M; Griswold, Mark C; Yaghoubi, Mohammad; Komalavilas, Padmini; Lincoln, Thomas M; Cohen, Richard A

    1998-01-01

    The role of cyclic GMP in the ability of nitric oxide (NO) to decrease intracellular free calcium concentration [Ca2+]i and divalent cation influx was studied in rabbit aortic smooth muscle cells in primary culture. In cells stimulated with angiotensin II (AII, 10−7 M), NO (10−10–10−6 M) increased cyclic GMP levels measured by radioimmunoassay and decreased [Ca2+]i and cation influx as indicated by fura-2 fluorimetry.Zaprinast (10−4 M), increased NO-stimulated levels of cyclic GMP by 3–20 fold. Although the phosphodiesterase inhibitor lowered the level of [Ca2+]i reached after administration of NO, the initial decreases in [Ca2+]i initiated by NO were not significantly different in magnitude or duration from those that occurred in the absence of zaprinast.The guanylyl cyclase inhibitor, H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (ODQ, 10−5 M), blocked cyclic GMP accumulation and activation of protein kinase G, as measured by back phosphorylation of the inositol trisphosphate receptor. ODQ and Rp-8-Br-cyclic GMPS, a protein kinase G inhibitor, decreased the effects of NO, 10−10–10−8 M, but the decrease in [Ca2+]i or cation influx caused by higher concentrations of NO (10−7–10−6 M) were unaffected. Relaxation of intact rabbit aorta rings to NO (10−7–10−5 M) also persisted in the presence of ODQ without a significant increase in cyclic GMP. Rp-8-Br-cyclic GMPS blocked the decreases in cation influx caused by a cell permeable cyclic GMP analog, but ODQ and/or the protein kinase G inhibitor had no significant effect on the decrease caused by NO.Although inhibitors of cyclic GMP, protein kinase G and phosphodiesterase can be shown to affect the decrease in [Ca2+]i and cation influx via protein kinase G, these studies indicate that when these mechanisms are blocked, cyclic GMP-independent mechanisms also contribute significantly to the decrease in [Ca2+]i and smooth muscle relaxation to NO. PMID:9886761

  20. Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile.

    PubMed

    Gomes, Susana I L; Soares, Amadeu M V M; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2013-06-15

    Silver has antimicrobial properties and silver nanoparticles (Ag-NPs) have been some of the most widely used NPs. Information regarding their effects is still insufficient, in particular for soil dwelling organisms. The standard soil Oligochaete Enchytraeus albidus was used to study the effects of Ag in soils, using differential gene expression (microarray) and population (survival, reproduction) response to Ag-NPs (PVP coated) and AgNO₃. Results showed higher toxicity of AgNO₃ (EC₅₀<50 mg/kg) compared to toxicity of Ag-NPs (EC₅₀=225 mg/kg). Based on the biological and material identity, the difference in toxicity between Ag-NPs and AgNO₃ could possibly be explained by a release of Ag(+) ions from the particles or by a slower uptake of Ag-NPs. The indications were that the responses to Ag-NPs reflect an effect of Ag ions and Ag-NPs given the extent of similar/dissimilar genes activated. The particles characterization supports this deduction as there were limited free ions measured in soil extracts, maybe related to little oxidation and/or complexation in the soil matrix. The possibility that gene differences were due to different levels of biological impact (i.e. physiological responses) should not be excluded. Testing of Ag-NPs seem to require longer exposure period to be comparable in terms of effect/risk assessment with other chemicals.

  1. Inhibition Mechanism of the Intracellular Transporter Ca2+-Pump from Sarco-Endoplasmic Reticulum by the Antitumor Agent Dimethyl-Celecoxib

    PubMed Central

    Cortés-Castell, Ernesto; Gil-Guillén, Vicente; Fernández-Belda, Francisco

    2014-01-01

    Dimethyl-celecoxib is a celecoxib analog that lacks the capacity as cyclo-oxygenase-2 inhibitor and therefore the life-threatening effects but retains the antineoplastic properties. The action mechanism at the molecular level is unclear. Our in vitro assays using a sarcoplasmic reticulum preparation from rabbit skeletal muscle demonstrate that dimethyl-celecoxib inhibits Ca2+-ATPase activity and ATP-dependent Ca2+ transport in a concentration-dependent manner. Celecoxib was a more potent inhibitor of Ca2+-ATPase activity than dimethyl-celecoxib, as deduced from the half-maximum effect but dimethyl-celecoxib exhibited higher inhibition potency when Ca2+ transport was evaluated. Since Ca2+ transport was more sensitive to inhibition than Ca2+-ATPase activity the drugs under study caused Ca2+/Pi uncoupling. Dimethyl-celecoxib provoked greater uncoupling and the effect was dependent on drug concentration but independent of Ca2+-pump functioning. Dimethyl-celecoxib prevented Ca2+ binding by stabilizing the inactive Ca2+-free conformation of the pump. The effect on the kinetics of phosphoenzyme accumulation and the dependence of the phosphoenzyme level on dimethyl-celecoxib concentration were independent of whether or not the Ca2+–pump was exposed to the drug in the presence of Ca2+ before phosphorylation. This provided evidence of non-preferential interaction with the Ca2+-free conformation. Likewise, the decreased phosphoenzyme level in the presence of dimethyl-celecoxib that was partially relieved by increasing Ca2+ was consistent with the mentioned effect on Ca2+ binding. The kinetics of phosphoenzyme decomposition under turnover conditions was not altered by dimethyl-celecoxib. The dual effect of the drug involves Ca2+-pump inhibition and membrane permeabilization activity. The reported data can explain the cytotoxic and anti-proliferative effects that have been attributed to the celecoxib analog. Ligand docking simulation predicts interaction of celecoxib and

  2. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  3. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation.

    PubMed

    Bar-Eyal, Leeat; Eisenberg, Ido; Faust, Adam; Raanan, Hagai; Nevo, Reinat; Rappaport, Fabrice; Krieger-Liszkay, Anja; Sétif, Pierre; Thurotte, Adrien; Reich, Ziv; Kaplan, Aaron; Ohad, Itzhak; Paltiel, Yossi; Keren, Nir

    2015-10-01

    Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency.

  4. Activities of Antimicrobial Agents against Intracellular Pneumococci

    PubMed Central

    Mandell, Gerald L.; Coleman, Elizabeth J.

    2000-01-01

    Pneumococci can enter and survive inside human lung alveolar carcinoma cells. We examined the activity of azithromycin, gentamicin, levofloxacin, moxifloxacin, penicillin G, rifampin, telithromycin, and trovafloxacin against pneumococci inside and outside cells. We found that moxifloxacin, trovafloxacin, and telithromycin were the most active, but only telithromycin killed all intracellular organisms. PMID:10952618

  5. Autophagy as a Survival Mechanism for Squamous Cell Carcinoma Cells in Endonuclease G-Mediated Apoptosis

    PubMed Central

    Masui, Atsushi; Hamada, Masakazu; Kameyama, Hiroyasu; Wakabayashi, Ken; Takasu, Ayako; Imai, Tomoaki; Iwai, Soichi; Yura, Yoshiaki

    2016-01-01

    Safingol, L- threo-dihydrosphingosine, induces cell death in human oral squamous cell carcinoma (SCC) cells through an endonuclease G (endoG) -mediated pathway. We herein determined whether safingol induced apoptosis and autophagy in oral SCC cells. Safingol induced apoptotic cell death in oral SCC cells in a dose-dependent manner. In safingol-treated cells, microtubule-associated protein 1 light chain 3 (LC3)-I was changed to LC3-II and the cytoplasmic expression of LC3, amount of acidic vesicular organelles (AVOs) stained by acridine orange and autophagic vacuoles were increased, indicating the occurrence of autophagy. An inhibitor of autophagy, 3-methyladenine (3-MA), enhanced the suppressive effects of safingol on cell viability, and this was accompanied by an increase in the number of apoptotic cells and extent of nuclear fragmentation. The nuclear translocation of endoG was minimal at a low concentration of safingol, but markedly increased when combined with 3-MA. The suppressive effects of safingol and 3-MA on cell viability were reduced in endoG siRNA- transfected cells. The scavenging of reactive oxygen species (ROS) prevented cell death induced by the combinational treatment, whereas a pretreatment with a pan-caspase inhibitor z-VAD-fmk did not. These results indicated that safingol induced apoptosis and autophagy in SCC cells and that the suppression of autophagy by 3-MA enhanced apoptosis. Autophagy supports cell survival, but not cell death in the SCC cell system in which apoptosis occurs in an endoG-mediated manner. PMID:27658240

  6. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  7. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    NASA Astrophysics Data System (ADS)

    Zrelli, K.; Galy, O.; Latour-Lambert, P.; Kirwan, L.; Ghigo, J. M.; Beloin, C.; Henry, N.

    2013-12-01

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms.

  8. Long-term survival in elderly patients with a do-not-intubate order treated with noninvasive mechanical ventilation

    PubMed Central

    Scarpazza, Paolo; Incorvaia, Cristoforo; Amboni, Paolo; di Franco, Giuseppe; Raschi, Stefania; Usai, Pierfranco; Bernareggi, Monica; Bonacina, Cristiano; Melacini, Chiara; Cattaneo, Roberta; Bencini, Serena; Pravettoni, Chiara; Riario-Sforza, Gian Galeazzo; Passalacqua, Gianni; Casali, Walter

    2011-01-01

    Background: Noninvasive mechanical ventilation (NIMV) is an effective tool in treating patients with acute respiratory failure (ARF), since it reduces both the need for endotracheal intubation and the mortality in comparison with nonventilated patients. A particular issue is represented by the outcome of NIMV in patients referred to the emergency department for ARF and with a do-not-intubate (DNI) status because of advanced age or excessively critical conditions. This study evaluated long-term survival in a group of elderly patients with acute hypercapnic ARF who had a DNI order and who were successfully treated by NIMV. Methods: The population consisted of 54 patients with a favorable outcome after NIMV for ARF. They were followed up for 3 years by regular control visits, with at least one visit every 4 months, or as needed according to the patient’s condition. Of these, 31 continued NIMV at home and 23 were on long-term oxygen therapy (LTOT) alone. Results: A total of 16 of the 52 patients had not survived at the 1-year follow-up, and another eight patients died during the 3-year observation, with an overall mortality rate of 30.8% after 1 year and 46.2% after 3 years. Comparing patients who continued NIMV at home with those who were on LTOT alone, 9 of the 29 patients on home NIMV died (6 after 1 year and 3 after 3 years) and 15 of the 23 patients on LTOT alone died (10 after 1 year and 5 after 3 years). Conclusion: These results show that elderly patients with ARF successfully treated by NIMV following a DNI order have a satisfactory long-term survival. PMID:21814461

  9. Delivery of host cell-directed therapeutics for intracellular pathogen clearance

    PubMed Central

    Collier, Michael A.; Gallovic, Matthew D.; Peine, Kevin J.; Duong, Anthony D.; Bachelder, Eric M.; Gunn, John S.; Schlesinger, Larry S.; Ainslie, Kristy M.

    2014-01-01

    Intracellular pathogens present a major health risk because of their innate ability to evade clearance. Their location within host cells and ability to react to the host environment by mutation or transcriptional changes often enables survival mechanisms to resist standard therapies. Host-directed drugs do not target the pathogen, minimizing the potential development of drug resistance; however, they can be difficult to deliver efficiently to intracellular sites. Vehicle delivery of host-mediated response drugs not only improves drug distribution and toxicity profiles, but can reduce the total amount of drug necessary to clear infection. In this article, we will review some host-directed drugs and current drug delivery techniques that can be used to efficiently clear intracellular infections. PMID:24134600

  10. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    PubMed

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  11. Bacillus and other spore-forming genera: variations in responses and mechanisms for survival.

    PubMed

    Checinska, Aleksandra; Paszczynski, Andrzej; Burbank, Malcolm

    2015-01-01

    The ubiquity of Bacilli endospores in soils facilitates their easy transfer routes to other environments, including cleanrooms and low-biomass sites required by many industries such as food production and processing. A bacterial endospore is a metabolically dormant form of life that is much more resistant to heat, desiccation, lack of nutrients, exposure to UV and gamma radiation, organic chemicals, and oxidizing agents than is a vegetative cell. For example, the heat tolerance of endospores depends on multiple factors such as sporulation temperature, core dehydration, and the presence of minerals and small, acid-soluble proteins (SASPs) in the core. This review describes our current understanding of the persistence mechanisms related to sporeformers' biochemical properties and discusses in detail spores' heat, radiation, and reactive chemical resistance. In addition, it discusses the impact of contamination with spores on many areas of human activity, spore adhesive properties, and biofilm contribution to resistance.

  12. Mechanisms for monovalent cation-dependent depletion of intracellular Mg2+:Na+-independent Mg2+ pathways in guinea-pig smooth muscle

    PubMed Central

    Nakayama, Shinsuke; Nomura, Hideki; Smith, Lorraine M; Clark, Joseph F; Uetani, Tadayuki; Matsubara, Tatsuaki

    2003-01-01

    It has been suggested that magnesium deficiency is correlated with many diseases. 31P NMR experiments were carried out in order to investigate the effects of Na+ substitution on Mg2+ depletion in smooth muscle under divalent cation-free conditions. In the taenia of guinea-pig caeci, the intracellular free Mg2+ concentration ([Mg2+]i) was estimated from the chemical shifts of (1) the β-ATP peak alone and (2) β- and γ-ATP peaks. Both estimations indicated that [Mg2+]i decreased only very slowly in Mg2+-free, Ca2+-free solutions in which Na+ was substituted with large cations such as NMDG (N-methyl-D-glucamine) and choline. Furthermore, the measurements of tension development supported the suggestion of preservation of intracellular Mg2+ with NMDG substitution. Substituting extracellular Na+ with the small cation, Li+, also shifted the β-ATP peak towards a lower frequency, but the frequency shift was significantly less than that seen upon Na+ substitution with K+. The estimated [Mg2+]i depletion was, however, comparable with that seen after Na+ substitution with K+ using the titration curves of metal-free and Mg2+-bound ATP obtained in Li+-based model solutions. It was concluded that Mg2+ rapidly decreases only when small cations were the major electrolyte of the extracellular medium. Na+ substitutions with NMDG, choline or Li+ had little effect on intracellular ATP concentration after 100 min treatment. PMID:12844514

  13. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    SciTech Connect

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  14. Long-term cumulative survival and mechanical complications of single-tooth Ankylos Implants: focus on the abutment neck fractures

    PubMed Central

    2015-01-01

    PURPOSE To evaluate the cumulative survival rate (CSR) and mechanical complications of single-tooth Ankylos® implants. MATERIALS AND METHODS This was a retrospective clinical study that analyzed 450 single Ankylos® implants installed in 275 patients between December 2005 and December 2012. The main outcomes were survival results CSR and implant failure) and mechanical complications (screw loosening, fracture, and cumulative fracture rate [CFR]). The main outcomes were analyzed according to age, sex, implant length or diameter, bone graft, arch, and position. RESULTS The 8-year CSR was 96.9%. Thirteen (2.9%) implants failed because of early osseointegration failure in 3, marginal bone loss in 6, and abutment fracture in 4. Screw loosening occurred in 10 implants (2.2%), and 10 abutment fractures occurred. All abutment fractures were located in the neck, and concurrent screw fractures were observed. The CSR and rate of screw loosening did not differ significantly according to factors. The CFR was higher in middle-aged patients (5.3% vs 0.0% in younger and older patients); for teeth in a molar position (5.8% vs 0.0% for premolar or 1.1% for anterior position); and for larger-diameter implants (4.5% for 4.5 mm and 6.7% for 5.5 mm diameter vs 0.5% for 3.5 mm diameter) (all P<.05). CONCLUSION The Ankylos® implant is suitable for single-tooth restoration in Koreans. However, relatively frequent abutment fractures (2.2%) were observed and some fractures resulted in implant failures. Middle-aged patients, the molar position, and a large implant diameter were associated with a high incidence of abutment fracture. PMID:26813443

  15. Intracellular mechanisms involved in copper-gonadotropin-releasing hormone (Cu-GnRH) complex-induced cAMP/PKA signaling in female rat anterior pituitary cells in vitro.

    PubMed

    Gajewska, Alina; Zielinska-Gorska, Marlena; Wolinska-Witort, Ewa; Siawrys, Gabriela; Baran, Marta; Kotarba, Grzegorz; Biernacka, Katarzyna

    2016-01-01

    The copper-gonadotropin-releasing hormone molecule (Cu-GnRH) is a GnRH analog, which preserves its amino acid sequence, but which contains a Cu(2+) ion stably bound to the nitrogen atoms including that of the imidazole ring of Histidine(2). A previous report indicated that Cu-GnRH was able to activate cAMP/PKA signaling in anterior pituitary cells in vitro, but raised the question of which intracellular mechanism(s) mediated the Cu-GnRH-induced cAMP synthesis in gonadotropes. To investigate this mechanism, in the present study, female rat anterior pituitary cells in vitro were pretreated with 0.1 μM antide, a GnRH antagonist; 0.1 μM cetrorelix, a GnRH receptor antagonist; 0.1 μM PACAP6-38, a PAC-1 receptor antagonist; 2 μM GF109203X, a protein kinase C inhibitor; 50 mM PMA, a protein kinase C activator; the protein kinase A inhibitors H89 (30 μM) and KT5720 (60 nM); factors affecting intracellular calcium activity: 2.5 mM EGTA; 2 μM thapsigargin; 5 μM A23187, a Ca(2+) ionophore; or 10 μg/ml cycloheximide, a protein synthesis inhibitor. After one of the above pretreatments, cells were incubated in the presence of 0.1 μM Cu-GnRH for 0.5, 1, and 3 h. Radioimmunoassay analysis of cAMP confirmed the functional link between Cu-GnRH stimulation and cAMP/PKA signal transduction in rat anterior pituitary cells, demonstrating increased intracellular cAMP, which was reduced in the presence of specific PKA inhibitors. The stimulatory effect of Cu-GnRH on cAMP production was partly dependent on GnRH receptor activation. In addition, an indirect and Ca(2+)-dependent mechanism might be involved in intracellular adenylate cyclase stimulation. Neither activation of protein kinase C nor new protein synthesis was involved in the Cu-GnRH-induced increase of cAMP in the rat anterior pituitary primary cultures. Presented data indicate that conformational changes of GnRH molecule resulting from cooper ion coordination affect specific pharmacological properties of Cu

  16. 2-Deoxy-D-glucose inhibits intracellular multiplication and promotes intracellular killing of Legionella pneumophila in A/J mouse macrophages.

    PubMed Central

    Ogawa, M; Yoshida, S; Mizuguchi, Y

    1994-01-01

    Legionella pneumophila can grow intracellularly in A/J mouse macrophages. 2-Deoxy-D-glucose (2dG) (0.1, 1, and 10 mM) inhibited intracellular multiplication and promoted intracellular killing of L. pneumophila dose dependently when it was added to the culture medium of macrophage monolayers, whereas it did not inhibit the bacterial growth in buffered yeast extract broth, which was used for an L. pneumophila culture. The effect of 2dG was reversible because the surviving bacteria resumed intracellular multiplication after the washing away of 2dG from the culture. The effect of 2dG was also competitively inhibited by high concentrations of glucose. The inhibitory effect of 2dG was not attributed to the inhibition of bacterial phagocytosis by macrophages. Furthermore, sodium fluoride (0.1 and 1 mM), cycloheximide (0.1 and 1 microgram/ml), and tunicamycin (1, 2, and 5 micrograms/ml) did not promote the killing of L. pneumophila in macrophages, implying that the inhibitory effect of 2dG cannot be attributed to the inhibition of glycolysis, protein synthesis, and protein glycosylation in macrophages. We suggest that 2dG promotes intracellular killing of L. pneumophila by activating some novel killing mechanism of macrophages. PMID:8262638

  17. Posttranslational regulation of BCL2 levels in cerebellar granule cells: A mechanism of neuronal survival.

    PubMed

    Lossi, Laura; Gambino, Graziana; Ferrini, Francesco; Alasia, Silvia; Merighi, Adalberto

    2009-11-01

    Apoptosis can be modulated by K(+) and Ca(2+) inside the cell and/or in the extracellular milieu. In murine organotypic cultures, membrane potential-regulated Ca(2+) signaling through calcineurin phosphatase has a pivotal role in development and maturation of cerebellar granule cells (CGCs). P8 cultures were used to analyze the levels of expression of B cell lymphoma 2 (BCL2) protein, and, after particle-mediated gene transfer in CGCs, to study the posttranslational modifications of BCL2 fused to a fluorescent tag in response to a perturbation of K(+)/Ca(2+) homeostasis. There are no changes in Bcl2 mRNA after real time PCR, whereas the levels of the fusion protein (monitored by calculating the density of transfected CGCs under the fluorescence microscope) and of BCL2 (inWestern blotting) are increased. After using a series of agonists/antagonists for ion channels at the cell membrane or the endoplasmic reticulum (ER), and drugs affecting protein synthesis/degradation, accumulation of BCL2 was related to a reduction in posttranslational cleavage by macroautophagy. The ER functionally links the [K(+)](e) and [Ca(2+)](i) to the BCL2 content in CGCs along two different pathways. The first, triggered by elevated [K(+)](e) under conditions of immaturity, is independent of extracellular Ca(2+) and operates via IP3 channels. The second leads to influx of extracellular Ca(2+) following activation of ryanodine channels in the presence of physiological [K(+)](e), when CGCs are maintained in mature status. This study identifies novel mechanisms of neuroprotection in immature and mature CGCs involving the posttranslational regulation of BCL2.

  18. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  19. Characterization of the proapoptotic intracellular mechanisms induced by a toxic conformer of the recombinant human prion protein fragment 90-231.

    PubMed

    Villa, Valentina; Corsaro, Alessandro; Thellung, Stefano; Paludi, Domenico; Chiovitti, Katia; Venezia, Valentina; Nizzari, Mario; Russo, Claudio; Schettini, Gennaro; Aceto, Antonio; Florio, Tullio

    2006-12-01

    Prion diseases comprise a group of fatal neurodegenerative disorders that affect both animals and humans. The transition of the prion protein (PrP) from a mainly alpha-structured isoform (PrPC) to a prevalent beta-sheet-containing protein (PrPSc) is believed to represent a major pathogenetic mechanism in prion diseases. To investigate the linkage between PrP neurotoxicity and its conformation, we used a recombinant prion protein fragment corresponding to the amino acidic sequence 90-231 of human prion protein (hPrP90-231). Using thermal denaturation, we set up an experimental model to induce the process of conversion from PrPC to PrPSc. We report that partial thermal denaturation converts hPrP90-231 into a beta-sheet-rich isoform, displaying a temperature- and time-dependent conversion into oligomeric structures that share some physico-chemical characteristics with brain PrPSc. SH-SY5Y cells were chosen to characterize the potential neurotoxic effect of hPrP90-231 in its different structural conformations. We demonstrated that hPrP90-231 in beta-conformation, but not when alpha-structured, powerfully affected the survival of these cells. hPrP90-231 beta-structured caused DNA fragmentation and a significant increase in caspase-3 proteolytic activity (maximal effects+170%), suggesting the occurrence of apoptotic cell death. Finally, we investigated the involvement of MAP kinases in the regulation of beta-hPrP90-231-dependent apoptosis. We observed that the p38 MAP kinase blocker SB203580 prevented the apoptotic cell death evoked by hPrP90-231, and Western blot analysis revealed that the exposure of the cells to the peptide induced p38 phosphorylation. In conclusion, we demonstrate that the hPrP90-231 elicits proapoptotic activity when in beta-sheet-rich conformation and that this effect is mediated by p38 and caspase-3 activation.

  20. Umami changes intracellular Ca2+ levels using intracellular and extracellular sources in mouse taste receptor cells.

    PubMed

    Narukawa, Masataka; Mori, Tomohiko; Hayashi, Yukako

    2006-11-01

    Recently, candidates for umami receptors have been identified in taste cells, but the precise transduction mechanisms of the downstream receptor remain unknown. To investigate how intracellular Ca(2+) increases in the umami transduction pathway, we measured changes in intracellular Ca(2+) levels in response to umami stimuli monosodium glutamate (MSG), IMP, and MSG + IMP in mouse taste receptor cells (TRCs) by Ca(2+) imaging. Even when extracellular Ca(2+) was absent, 1/3 of umami-responsive TRCs exhibited increased intracellular Ca(2+) levels. When intracellular Ca(2+) was depleted, half of the TRCs retained their response to umami. These results suggest that umami-responsive TRCs increase their intracellular Ca(2+) levels through two pathways: by releasing Ca(2+) from intracellular stores and by an influx of Ca(2+) from extracellular sources. We conclude that the Ca(2+) influx from extracellular source might play an important role in the synergistic effect between MSG and IMP.

  1. Intracellular mechanism of the action of inhibin on the secretion of follicular stimulating hormone and of luteinizing hormone induced by LH-RH in vitro

    NASA Technical Reports Server (NTRS)

    Lecomte-Yerna, M. J.; Hazee-Hagelstein, M. T.; Charlet-Renard, C.; Franchimont, P.

    1982-01-01

    The FSH secretion-inhibiting action of inhibin in vitro under basal conditions and also in the presence of LH-RH is suppressed by the addition of MIX, a phosphodiesterase inhibitor. In the presence of LH-RH, inhibin reduces significantly the intracellular level of cAMP in isolated pituitary cells. In contrast, the simultaneous addition of MIX and inhibin raises the cAMP level, and this stimulation is comparable to the increase observed when MIX is added alone. These observations suggest that one mode of action of inhibin could be mediated by a reduction in cAMP within the pituitary gonadotropic cell.

  2. Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis.

    PubMed

    Halter, David; Casiot, Corinne; Heipieper, Hermann J; Plewniak, Frédéric; Marchal, Marie; Simon, Stéphane; Arsène-Ploetze, Florence; Bertin, Philippe N

    2012-02-01

    Euglena mutabilis is a protist ubiquitously found in extreme environments such as acid mine drainages which are often rich in arsenic. The response of E. mutabilis to this metalloid was compared to that of Euglena gracilis, a protist not found in such environments. Membrane fatty acid composition, cell surface properties, arsenic accumulation kinetics, and intracellular arsenic speciation were determined. The results revealed a modification in fatty acid composition leading to an increased membrane fluidity in both Euglena species under sublethal arsenic concentrations exposure. This increased membrane fluidity correlated to an induced gliding motility observed in E. mutabilis in the presence of this metalloid but did not affect the flagellar dependent motility of E. gracilis. Moreover, when compared to E. gracilis, E. mutabilis showed highly hydrophobic cell surface properties and a higher tolerance to water-soluble arsenical compounds but not to hydrophobic ones. Finally, E. mutabilis showed a lower accumulation of total arsenic in the intracellular compartment and an absence of arsenic methylated species in contrast to E. gracilis. Taken together, our results revealed the existence of a specific arsenical response of E. mutabilis that may play a role in its hypertolerance to this toxic metalloid.

  3. Glucagon-like peptide-2 intracellularly stimulates eNOS phosphorylation and specifically induces submucosal arteriole vasodilation via a sheer stress-independent, local neural mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract, including enhancing mucosal cell survival and proliferation, mucosal blood flow, luminal nutrient uptake, and suppressing gastric motility and secretion. We have shown th...

  4. TRIM21-dependent intracellular antibody neutralization of virus infection.

    PubMed

    McEwan, William A; James, Leo C

    2015-01-01

    The ability of antibodies to prevent viral infection has long been recognized. In vitro neutralization assays, which take place in the absence of professional immune effector mechanisms, have demonstrated that the process of neutralization can occur by a variety of molecular mechanisms. Most known mechanisms involve the blocking of an event essential for infection, for instance, the steric inhibition of attachment to entry receptors. As such, neutralization is often thought of as a passive process that can occur without the need for host effector machinery. In contrast to this view, it has recently been demonstrated that neutralization can depend on the widely expressed cytosolic Fc binding protein TRIM21. This unique and novel Ig receptor directs the ubiquitin and proteasome-dependent degradation of intracellular antibody-bound viral particles and prevents infection. It has been further demonstrated that detection of cytosolic antibody by TRIM21 activates inflammatory signaling pathways and promotes the production of cytokines and chemokines. Studies in a TRIM21-null mouse demonstrate the importance of these activities: homozygous knockouts suffer fatal viral infection where wild-type mice survive. Though there is much to be learned about the role of TRIM21 in immunity, it is clear that there is a hitherto unappreciated role for antibodies in the intracellular environment.

  5. The survival of Coxiella burnetii in soils

    NASA Astrophysics Data System (ADS)

    Evstigneeva, A. S.; Ul'Yanova, T. Yu.; Tarasevich, I. V.

    2007-05-01

    Coxiella burnetii is a pathogen of Q-fever—a widespread zoonosis. The effective adaptation of C. burnetii to intracellular existence is in contrast with its ability to survive in the environment outside the host cells and its resistance to chemical and physical agents. Its mechanism of survival remains unknown. However, its survival appears to be related to the developmental cycle of the microorganism itself, i.e., to the formation of its dormant forms. The survival of Coxiella burnetii was studied for the first time. The pathogenic microorganism was inoculated into different types of soil and cultivated under different temperatures. The survival of the pathogen was verified using a model with laboratory animals (mice). Viable C. burnetii were found in the soil even 20 days after their inoculation. The relationship between the organic carbon content in the soils and the survival of C. burnetii was revealed. Thus, the results obtained were the first to demonstrate that the soil may serve as a reservoir for the preservation and further spreading of the Q-fever pathogen in the environment, on the one hand, and reduce the risk of epidemics, on the other.

  6. Revisiting intracellular calcium signaling semantics.

    PubMed

    Haiech, Jacques; Audran, Emilie; Fève, Marie; Ranjeva, Raoul; Kilhoffer, Marie-Claude

    2011-12-01

    Cells use intracellular free calcium concentration changes for signaling. Signal encoding occurs through both spatial and temporal modulation of the free calcium concentration. The encoded message is detected by an ensemble of intracellular sensors forming the family of calcium-binding proteins (CaBPs) which must faithfully translate the message using a new syntax that is recognized by the cell. The cell is home to a significant although limited number of genes coding for proteins involved in the signal encoding and decoding processes. In a cell, only a subset of this ensemble of genes is expressed, leading to a genetic regulation of the calcium signal pathways. Calmodulin (CaM), the most ubiquitous expressed intracellular calcium-binding protein, plays a major role in calcium signal translation. Similar to a hub, it is central to a large and finely tuned network, receiving information, integrating it and dispatching the cognate response. In this review, we examine the different steps starting with an external stimulus up to a cellular response, with special emphasis on CaM and the mechanism by which it decodes calcium signals and translates it into exquisitely coordinated cellular events. By this means, we will revisit the calcium signaling semantics, hoping that we will ease communication between scientists dealing with calcium signals in different biological systems and different domains.

  7. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  8. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis.

    PubMed

    Biswas, Silpak; Raoult, Didier; Rolain, Jean-Marc

    2008-09-01

    Intracellular bacteria survive within eukaryotic host cells and are difficult to kill with certain antibiotics. As a result, antibiotic resistance in intracellular bacteria is becoming commonplace in healthcare institutions. Owing to the lack of methods available for transforming these bacteria, we evaluated the mechanisms of resistance using molecular methods and in silico genome analysis. The objective of this review was to understand the molecular mechanisms of antibiotic resistance through in silico comparisons of the genomes of obligate and facultative intracellular bacteria. The available data on in vitro mutants reported for intracellular bacteria were also reviewed. These genomic data were analysed to find natural mutations in known target genes involved in antibiotic resistance and to look for the presence or absence of different resistance determinants. Our analysis revealed the presence of tetracycline resistance protein (Tet) in Bartonella quintana, Francisella tularensis and Brucella ovis; moreover, most of the Francisella strains possessed the blaA gene, AmpG protein and metallo-beta-lactamase family protein. The presence or absence of folP (dihydropteroate synthase) and folA (dihydrofolate reductase) genes in the genome could explain natural resistance to co-trimoxazole. Finally, multiple genes encoding different efflux pumps were studied. This in silico approach was an effective method for understanding the mechanisms of antibiotic resistance in intracellular bacteria. The whole genome sequence analysis will help to predict several important phenotypic characteristics, in particular resistance to different antibiotics. In the future, stable mutants should be obtained through transformation methods in order to demonstrate experimentally the determinants of resistance in intracellular bacteria.

  9. Surviving the macrophage: tools and tricks employed by Mycobacterium tuberculosis.

    PubMed

    Jayachandran, Rajesh; BoseDasgupta, Somdeb; Pieters, Jean

    2013-01-01

    Mycobacterium tuberculosis has evolved to withstand one of the most inhospitable cells within the human body, namely the macrophage, a cell that is normally geared toward the destruction of any invading microbe. How M. tuberculosis achieves this is still incompletely understood; however, a number of mechanisms are now known that provide advantages to M. tuberculosis for its survival and proliferation inside the macrophage. While some of these mechanisms are mediated by factors released by M. tuberculosis, others rely on host components that are being hijacked to benefit survival of M. tuberculosis within the macrophage as well to avoid the generation of an effective immune response. Here, we describe several of these mechanisms, also pointing out the potential usage of this knowledge toward the development of novel strategies to treat tuberculosis. Furthermore, we attempt to put the 'macrophage niche' into context with other intracellular pathogens and discuss some of the generalities as well as specializations that M. tuberculosis employs to survive.

  10. Surviving the crisis: Adaptive wisdom, coping mechanisms and local responses to avian influenza threats in Haining, China.

    PubMed

    Zhang, Letian; Pan, Tianshu

    2008-04-01

    Based on ethnographic research conducted in the summer of 2006, this paper examines local responses to the imminent threat of avian flu in Haining County of Zhejiang Province. During our field investigation, we conducted interviews with officials from local medical institutions (including the hospitals, the animal husbandry and veterinary station, and health clinics), to bureaus of public health and agro-economy. We also visited chicken farms, restaurants and farming households. We address the following factors that commonly structured the perceptions and actions of different social actors in the area of study: The changing mode of information-sharing and communication practices in the local communities; the official drive to professionalize the emergency response management system in the county; and the coping mechanisms that helped the villagers and town residents to weather the storm of avian flu. Our field research suggests that collective survival consciousness was translated into a spirit of voluntarism during the crisis. One important practical lesson we have learned from this study is that the adaptive wisdom embedded in local memories demonstrated its operational worth as a resourceful knowledge base for ordinary farmers to deal with food shortage, famine, plague and future pandemics.

  11. HIF-1α-mediated upregulation of SERCA2b: The endogenous mechanism for alleviating the ischemia-induced intracellular Ca(2+) store dysfunction in CA1 and CA3 hippocampal neurons.

    PubMed

    Kopach, Olga; Maistrenko, Anastasiia; Lushnikova, Iryna; Belan, Pavel; Skibo, Galina; Voitenko, Nana

    2016-05-01

    Pyramidal neurons of the hippocampus possess differential susceptibility to the ischemia-induced damage with the highest vulnerability of CA1 and the lower sensitivity of CA3 neurons. This damage is triggered by Ca(2+)-dependent excitotoxicity and can result in a delayed cell death that might be potentially suspended through activation of endogenous neuroprotection with the hypoxia-inducible transcription factors (HIF). However, the molecular mechanisms of this neuroprotection remain poorly understood. Here we show that prolonged (30min) oxygen and glucose deprivation (OGD) in situ impairs intracellular Ca(2+) regulation in CA1 rather than in CA3 neurons with the differently altered expression of genes coding Ca(2+)-ATPases: the mRNA level of plasmalemmal Ca(2+)-ATPases (PMCA1 and PMCA2 subtypes) was downregulated in CA1 neurons, whereas the mRNA level of the endoplasmic reticulum Ca(2+)-ATPases (SERCA2b subtype) was increased in CA3 neurons at 4h of re-oxygenation after prolonged OGD. These demonstrate distinct susceptibility of CA1 and CA3 neurons to the ischemic impairments in intracellular Ca(2+) regulation and Ca(2+)-ATPase expression. Stabilization of HIF-1α by inhibiting HIF-1α hydroxylation prevented the ischemic decrease in both PMCA1 and PMCA2 mRNAs in CA1 neurons, upregulated the SERCA2b mRNA level and eliminated the OGD-induced Ca(2+) store dysfunction in these neurons. Cumulatively, these findings reveal the previously unknown HIF-1α-driven upregulation of Ca(2+)-ATPases as a mechanism opposing the ischemic impairments in intracellular Ca(2+) regulation in hippocampal neurons. The ability of HIF-1α to modulate expression of genes coding Ca(2+)-ATPases suggests SERCA2b as a novel target for HIF-1 and may provide potential implications for HIF-1α-stabilizing strategy in activating endogenous neuroprotection.

  12. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment.

    PubMed

    Cerella, Claudia; Teiten, Marie-Hélène; Radogna, Flavia; Dicato, Mario; Diederich, Marc

    2014-11-01

    Cell death is an important physiological regulator during development, tissue homeostasis and stress response but it is also a protective tumor suppressive mechanism. Tumor cells almost universally acquire the ability to evade cell death pathways that in normal cells act as a protective mechanism to remove damaged cells. As a result, a population of death-resistant cells with accumulating genetic and epigenetic abnormalities contributes to malignant transformation. Any alteration of the homeostatic balance between survival and death is therefore a critical factor in carcinogenesis. Several forms of cell death exist and cross talk among them is emerging; however, we still miss many molecular details. It becomes essential to revisit the role of each type of cell death to understand interconnections existing between different cell death pathways as well as the network of their mediators to eventually develop new effective strategies to kill cancer cells. More specifically, new therapies based on compounds selectively triggering apoptosis, necrosis or autophagy recently became both appealing and challenging. Despite the rather clear classification of the different cell death modalities according to morphological criteria and the attempt to describe them with distinct signaling pathways, the reality reveals a complex interplay between apoptosis, regulated necrosis and autophagy involving a heterogeneous mix of molecular mediators. Nature, presenting an almost endless plenitude of bioactive scaffolds, can efficiently contribute compounds that allow deciphering the intricate pathways of cell death pathways and thus eventually contribute to selectively target cancer-type specific pathways in an attempt to personalize cancer patient treatment depending on cancer death pathway specificities. The aim of this review is to provide first an overview of molecular cell death specificities and to highlight how compounds of natural origins, with or without hemisynthetic

  13. Mechanisms of pH-Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer.

    PubMed

    Wang, Dishi; Zhou, Yanxia; Li, Xinru; Qu, Xiaoyou; Deng, Yunqiang; Wang, Ziqi; He, Chuyu; Zou, Yang; Jin, Yiguang; Liu, Yan

    2017-03-01

    pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pKa was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their

  14. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker

    PubMed Central

    Lakatta, Edward G.; Maltsev, Victor A.; Vinogradova, Tatiana M.

    2010-01-01

    Ion channels on the surface membrane of sinoatrial nodal pacemaker cells (SANC) are the proximal cause of an action potential. Each individual channel type has been thoroughly characterized under voltage clamp, and the ensemble of the ion channel currents reconstructed in silico generates rhythmic action potentials. Thus, this ensemble can be envisioned as a surface “membrane clock” (M clock). Localized subsarcolemmal Ca2+ releases are generated by the sarcoplasmic reticulum via ryanodine receptors during late diastolic depolarization and are referred to as an intracellular “Ca2+ clock”, because their spontaneous occurrence is periodic during voltage clamp or in detergent-permeabilized SANC, and in silico as well. In spontaneously firing SANC, the M and Ca2+ clocks do not operate in isolation, but work together via numerous interactions modulated by membrane voltage, subsarcolemmal Ca2+, and PKA and CaMKII-dependent protein phosphorylation. Through these interactions the two subsystem clocks become mutually entrained to form a robust, stable, coupled-clock system that drives normal cardiac pacemaker cell automaticity. G-protein coupled-receptors signaling creates pacemaker flexibility, i.e. effects changes in the rhythmic action potential firing rate, by impacting on these very same factors that regulate robust basal coupled-clock system function. This review examines evidence that forms the basis of this coupled-clock system concept in cardiac SANC. PMID:20203315

  15. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons.

    PubMed

    Suto, Kaori; Urabe, Ken; Naruse, Kouji; Uchida, Kentaro; Matsuura, Terumasa; Mikuni-Takagaki, Yuko; Suto, Mitsutoshi; Nemoto, Noriko; Kamiya, Kentaro; Itoman, Moritoshi

    2012-03-01

    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze-thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze-thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze-thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze-thaw cycles. In patella tendons, the ultimate stress, Young's modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze-thaw cycles. In conclusion, we identified that cells surviving after freeze-thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze-thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity.

  16. Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3 dependent mechanism in mice

    PubMed Central

    Minamishima, Shizuka; Bougaki, Masahiko; Sips, Patrick Y.; De Yu, Jia; Minamishima, Yoji Andrew; Elrod, John W.; Lefer, David J.; Bloch, Kenneth D.; Ichinose, Fumito

    2009-01-01

    Background Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. We sought to evaluate the impact of hydrogen sulfide (H2S) on the outcome after CA and cardiopulmonary resuscitation (CPR) in mouse. Methods and Results Mice were subjected to 8 min of normothermic CA and resuscitated with chest compression and mechanical ventilation. Seven minutes after the onset of CA, mice received sodium sulfide (Na2S, 0.55 mg/kg i.v.) or vehicle 1 min before CPR. There was no difference in the rate of return of spontaneous circulation (ROSC), CPR time to ROSC, and left ventricular (LV) function at ROSC between groups. Administration of Na2S 1 min before CPR markedly improved survival rate at 24h after CPR (15/15) compared to vehicle (10/26, P=0.0001 vs Na2S). Administration of Na2S prevented CA/CPR-induced oxidative stress and ameliorated LV and neurological dysfunction 24h after CPR. Delayed administration of Na2S at 10 min after CPR did not improve outcomes after CA/CPR. Cardioprotective effects of Na2S were confirmed in isolated-perfused mouse hearts subjected to global ischemia and reperfusion. Cardiomyocyte-specific overexpression of cystathionine γ-lyase (CGL, an enzyme that produces H2S) markedly improved outcomes of CA/CPR. Na2S increased phosphorylation of NOS3 in LV and brain cortex, increased serum nitrite/nitrate levels, and attenuated CA-induced mitochondrial injury and cell death. NOS3 deficiency abrogated the protective effects of Na2S on the outcome of CA/CPR. Conclusions These results suggest that administration of Na2S at the time of CPR improves outcome after cardiac arrest possibly via an NOS3-dependent signaling pathway. PMID:19704099

  17. Effect of ionizing radiation dose, temperature, and atmosphere on the survival of Salmonella typhimurium in sterile, mechanically deboned chicken meat

    SciTech Connect

    Thayer, D.W.; Boyd, G. )

    1991-02-01

    The response to gamma radiation (0 to 3.60 kGy; 100 krad = 1 kGy) of Salmonella typhimurium was tested in otherwise sterile, mechanically deboned chicken meat (MDCM) in the absence of competing microflora. Response was determined at temperatures of -20 to +20 C and when the MDCM was packaged in vacuum or in the presence of air. A central composite response-surface design was used to test the response of the pathogen to the treatments in a single experiment. Predictive equations were developed from the analyses of variances of the resulting data. The accuracy of each predictive equation was tested by further studies of the effects of gamma radiation on S. typhimurium in the presence or absence of air at -20, 0, and +20 C. All data were then analyzed to refine the predictive equations further. Both the original and the refined equations adequately predicted the response of S. typhimurium in MDCM to gamma radiation doses up to 3.60 kGy in the presence of air or in vacuo. Gamma irradiation was significantly more lethal for S. typhimurium in the presence of air and at higher temperatures. The final equations predict a reduction in the number of surviving Salmonella in MDCM irradiated to 1.50 kGy at -20 C of 2.53 logs in air or 2.12 logs if irradiated in vacuum. If the contaminated MDCM were to receive a dose of 3.0 kGy at -20 C in air, the number of Salmonella would be decreased by 4.78 logs, and if irradiated in vacuum, by 4.29 logs.

  18. Evolution of cytokine responses: IL-1beta directly affects intracellular Ca2+ concentration of teleost fish leukocytes through a receptor-mediated mechanism.

    PubMed

    Benedetti, S; Randelli, E; Buonocore, F; Zou, J; Secombes, C J; Scapigliati, G

    2006-04-01

    In this work we studied the biological activities of recombinant IL-1beta from the teleosts sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) by investigating the effects induced on intracellular Ca2+ concentrations ([Ca2+]i) of spleen leucocytes. Splenocytes were loaded with the Ca2+-permeant Fura-2AM, and then stimulated with rIL-1beta. The emitted fluorescence was read for 5 min at 1 min intervals on a dual excitation fluorescence fluorimeter. Results showed that rIL-1beta induced in both species a rise in [Ca2+]i, and a subsequent decrease until 5 min after stimulation. The stimulating effect was dose-dependent in both species reaching a plateau at 200 ng/ml of rIL-1beta, was abolished by heat-treatment of rIL-1beta, and affected in a dose-dependent fashion by treatment of leucocytes with trypsin. These features suggested a functional IL-1 receptor was involved in the binding. The observed rise in [Ca2+]i was not detected in human PBMC and was species-specific, since rIL-1beta from sea bass, trout, and human were unable to interfere each other in the assay. Moreover, incubation of splenocytes with rIL-1beta induced a rapid tyrosine phosphorylation of a 24 kDa polypeptide in both species. This work represents the first evidence of a direct effect on [Ca2+]i induced by IL-1beta and suggests that in the evolution of IL-1 activities, teleost fishes display a peculiar IL-1-associated behaviour that is lacking in mammals.

  19. Bordetella parapertussis Survives the Innate Interaction with Human Neutrophils by Impairing Bactericidal Trafficking inside the Cell through a Lipid Raft-Dependent Mechanism Mediated by the Lipopolysaccharide O Antigen

    PubMed Central

    Gorgojo, Juan; Lamberti, Yanina; Valdez, Hugo; Harvill, Eric T.

    2012-01-01

    Whooping cough is a reemerging disease caused by two closely related pathogens, Bordetella pertussis and Bordetella parapertussis. The incidence of B. parapertussis in whooping cough cases has been increasing since the introduction of acellular pertussis vaccines containing purified antigens that are common to both strains. Recently published results demonstrated that these vaccines do not protect against B. parapertussis due to the presence of the O antigen on the bacterial surface that impairs antibody access to shared antigens. We have investigated the effect of the lack of opsonization of B. parapertussis on the outcome of its interaction with human neutrophils (polymorphonuclear leukocytes [PMNs]). In the absence of opsonic antibodies, PMN interaction with B. parapertussis resulted in nonbactericidal trafficking upon phagocytosis. A high percentage of nonopsonized B. parapertussis was found in nonacidic lysosome marker (lysosome-associated membrane protein [LAMP])-negative phagosomes with access to the host cell-recycling pathway of external nutrients, allowing bacterial survival as determined by intracellular CFU counts. The lipopolysaccharide (LPS) O antigen was found to be involved in directing B. parapertussis to PMN lipid rafts, eventually determining the nonbactericidal fate inside the PMN. IgG opsonization of B. parapertussis drastically changed this interaction by not only inducing efficient PMN phagocytosis but also promoting PMN bacterial killing. These data provide new insights into the immune mechanisms of hosts against B. parapertussis and document the crucial importance of opsonic antibodies in immunity to this pathogen. PMID:23027528

  20. GTPases in intracellular trafficking: an overview.

    PubMed

    Segev, Nava

    2011-02-01

    Small GTPases that belong to the ras sub-families of Rab, Arf, and Rho, and the large GTPase dynamin, regulate intracellular trafficking. This issue of Seminars of Cell and Developmental Biology highlights topics regarding mechanisms by which these GTPases regulate the different steps of vesicular transport: vesicle formation, scission, targeting and fusion. In addition, the emerging roles of GTPases in coordination of individual transport steps as well as coordination of intracellular trafficking with other cellular processes are reviewed. Finally, common structures and mechanisms underlying the function of the ras-like GTPases and the importance of their function to human health and disease are discussed.

  1. Connexin 43 hemichannels and intracellular signaling in bone cells

    PubMed Central

    Plotkin, Lilian I.

    2014-01-01

    Cell function and survival are controlled by intracellular signals, and modulated by surrounding cells and the extracellular environment. Connexin channels participate in these processes by mediating cell-to-cell communication. In bone cells, gap junction channels were detected in the early 1970s, and are present among bone resorbing osteoclasts, bone forming osteoblasts, and osteocytes - mature osteoblasts embedded in the mineralized matrix. These channels are composed mainly by Cx43, although the expression of other connexins (45, 46, and 37) has also been reported. It is now believed that undocked Cx43 hemichannels (connexons) formed in unopposed cell membranes facing the extracellular environment participate in the interaction of bone cells with the extracellular environment, and in their communication with neighboring cells. Thus, we and others demonstrated the presence of active hemichannels in osteoblastic and osteocytic cells. These hemichannels open in response to pharmacological and mechanical stimulation. In particular, preservation of the viability of osteoblasts and osteocytes by the anti-osteoporotic drugs bisphosphonates depends on Cx43 expression in vitro and in vivo, and is mediated by undocked hemichannels. Cx43 hemichannels are also required for the release of prostaglandins and ATP by osteocytes, and for cell survival induced by mechanical stimulation in vitro. Moreover, they are required for the anti-apoptotic effect of parathyroid hormone in osteoblastic cells. This review summarizes the current knowledge on the presence and function of undocked connexons, and the role of hemichannel regulation for the maintenance of bone cell viability and, potentially, bone health. PMID:24772090

  2. Anomalous dynamics in intracellular transport

    NASA Astrophysics Data System (ADS)

    Dinner, Aaron

    2013-03-01

    This talk will describe quantitative analyses of particle tracking data for systems with cytoskeletally associated molecular motors to better understand the motions contributing to intracellular transport and, more generally, means for characterizing systems far from equilibrium. In particular, we have studied the motions of insulin-containing vesicles (granules) in a pancreatic beta cell line. We find subdiffusive behavior with correlations in both space and time. These data can be modeled by subordinating an ergodic random walk process to a non-ergodic one. We relate the dynamics to the underlying microtubule structure by imaging in the presence of the drug vinblastine. Our results provide a simple physical mechanism for how diverse pools of insulin granules and, in turn, biphasic secretion could arise. Time permitting, these dynamics will be compared with those of actomyosin assemblies.

  3. Addition of anti-neu antibody to local irradiation can improve tumor-bearing BALB/c mouse survival through immune-mediated mechanisms.

    PubMed

    Ma, Sun Young; Song, Hyunkeun; Park, Jin-Hee; Choi, Jae-Hyeog; Kim, Jin-Ho; Kim, Ki Hyang; Park, SungJae; Park, Dong Hyen; Kang, Mi Seon; Kwak, Minjung; Fu, Yang-Xin; Choi, Inhak; Cho, Heunglae; Park, SaeGwang

    2015-03-01

    This study investigated the therapeutic effects of combined local irradiation and anti-HER2/neu antibody in a mixed tumor mouse model comprised of a nonmetastatic neu-positive tumor and a metastatic neu-negative tumor. While local irradiation alone could control the primary tumor in a dose-dependent manner, it did not improve mouse survival. Combined treatment comprised of local irradiation and anti-neu antibody of tumor-bearing BALB/c mice significantly improved mouse survival (P < 0.5), even though the tumor growth was similar to that of the irradiated-alone group. The combined treatment significantly reduced metastatic tumor masses in the lung and increased immune cell infiltration in primary tumor tissues. However, immune deficient nude mice with tumors did not exhibit prolonged survival in response to the combined treatment. Collectively, these results show that combined local irradiation and anti-neu antibody can elicit an immune-mediated abscopal effect to extend survival. Although the mechanism for abscopal effects induced by the combined treatment of radiation and anti-HER2/neu antibody was not elucidated, to our knowledge this is the first published study to describe the abscopal effect induced by the combination of local irradiation and the anti-HER2/neu antibody.

  4. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  5. Evolution of intracellular compartmentalization.

    PubMed

    Diekmann, Yoan; Pereira-Leal, José B

    2013-01-15

    Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.

  6. A Ca2+-dependent Mechanism of Neuronal Survival Mediated by the Microtubule-associated Protein p600*

    PubMed Central

    Belzil, Camille; Neumayer, Gernot; Vassilev, Alex P.; Yap, Kyoko L.; Konishi, Hiroaki; Rivest, Serge; Sanada, Kamon; Ikura, Mitsuhiko; Nakatani, Yoshihiro; Nguyen, Minh Dang

    2013-01-01

    In acute and chronic neurodegeneration, Ca2+ mishandling and disruption of the cytoskeleton compromise neuronal integrity, yet abnormalities in the signaling roles of cytoskeletal proteins remain largely unexplored. We now report that the microtubule-associated protein p600 (also known as UBR4) promotes neuronal survival. Following depletion of p600, glutamate-induced Ca2+ influx through NMDA receptors, but not AMPA receptors, initiates a degenerative process characterized by endoplasmic reticulum fragmentation and endoplasmic reticulum Ca2+ release via inositol 1,4,5-trisphosphate receptors. Downstream of NMDA receptors, p600 associates with the calmodulin·calmodulin-dependent protein kinase IIα complex. A direct and atypical p600/calmodulin interaction is required for neuronal survival. Thus, p600 counteracts specific Ca2+-induced death pathways through regulation of Ca2+ homeostasis and signaling. PMID:23861403

  7. Targeted intracellular delivery of therapeutics: an overview.

    PubMed

    Rawat, A; Vaidya, B; Khatri, K; Goyal, A K; Gupta, P N; Mahor, S; Paliwal, R; Rai, S; Vyas, S P

    2007-09-01

    During the last decade, intracellular drug delivery has become an emerging area of research in the medical and pharmaceutical field. Many therapeutic agents such as drugs and DNA/oligonucleotides can be delivered not just to the cell but also to a particular compartment of that cell to achieve better activity e.g. proapoptotic drugs to the mitochondria, antibiotics and enzymes to the lysosomes and various anticancer drugs and gene to the nucleus. The lipidic nature of biological membrans is the major obstacle to the intracellular delivery of macromolecular and ionic drugs. Additionally, after endocytosis, the lysosome, the major degradation compartment, needs to be avoided for better activity. To avoid these problems, various carriers have been investigated for efficient intracellular delivery, either by direct entry to cytoplasm or by escaping the endosomal compartment. These include cell penetrating peptides, and carrier systems such as liposomes, cationic lipids and polymers, polymeric nanoparticles, etc. Various properties of these carriers, including size, surface charge, composition and the presence of cell specific ligands, alter their efficacy and specificity towards particular cells. This review summarizes various aspects of targeted intracellular delivery of therapeutics including pathways, mechanisms and approaches. Various carrier constructs having potential for targeted intracellular delivery are also been discussed.

  8. Dynamics of Actin Stress Fibers and Focal Adhesions during Slow Migration in Swiss 3T3 Fibroblasts: Intracellular Mechanism of Cell Turning

    PubMed Central

    Miyoshi, Hiromi; Miura, Takuya; Tanaka, Hiroto; Tsubota, Ken-ichi; Liu, Hao

    2016-01-01

    To understand the mechanism regulating the spontaneous change in polarity that leads to cell turning, we quantitatively analyzed the dynamics of focal adhesions (FAs) coupling with the self-assembling actin cytoskeletal structure in Swiss 3T3 fibroblasts. Fluorescent images were acquired from cells expressing GFP-actin and RFP-zyxin by laser confocal microscopy. On the basis of the maximum area, duration, and relocation distance of FAs extracted from the RFP-zyxin images, the cells could be divided into 3 regions: the front region, intermediate lateral region, and rear region. In the intermediate lateral region, FAs appeared close to the leading edge and were stabilized gradually as its area increased. Simultaneously, bundled actin stress fibers (SFs) were observed vertically from the positions of these FAs, and they connected to the other SFs parallel to the leading edge. Finally, these connecting SFs fused to form a single SF with matured FAs at both ends. This change in SF organization with cell retraction in the first cycle of migration followed by a newly formed protrusion in the next cycle is assumed to lead to cell turning in migrating Swiss 3T3 fibroblasts. PMID:28119928

  9. Conformational rearrangements to the intracellular open states of the LeuT and ApcT transporters are modulated by common mechanisms.

    PubMed

    Shi, Lei; Weinstein, Harel

    2010-12-15

    Recent crystallographic studies revealed that five transporter families without much sequence similarities among them have similar structure folds to LeuT, a bacterial neurotransmitter:sodium symporter homolog. The LeuT fold is characterized by an internal twofold structural pseudosymmetry. The transport cycle of some members of each of these families is dependent on a sodium gradient across the membrane, whereas in some others the role of sodium is mimicked by proton. We report on the identification of common structure-dynamics elements of the transporters with LeuT fold, which are recognizable in the conformational transitions related to function. The findings from comparative computational modeling and simulation studies of LeuT, and ApcT from the amino acid-polyamine-organocation transporter family define the intramolecular mechanisms by which Na+ binding couples to the transport process, and single out the lead/active role of TM1a in the transition to inward-open conformation. These mechanistic insights are derived in the context of collaborative investigations of LeuT dynamics with both single-molecule fluorescence and simulations that have produced excellent agreement of the dynamic details, and are found to be generalizable across the transporter families and to transcend sequence and motif similarities.

  10. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment.

    PubMed

    Leon-Sicairos, Nidia; Reyes-Cortes, Ruth; Guadrón-Llanos, Alma M; Madueña-Molina, Jesús; Leon-Sicairos, Claudia; Canizalez-Román, Adrian

    2015-01-01

    Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.

  11. Strategies of Intracellular Pathogens for Obtaining Iron from the Environment

    PubMed Central

    Leon-Sicairos, Nidia; Reyes-Cortes, Ruth; Guadrón-Llanos, Alma M.; Madueña-Molina, Jesús; Leon-Sicairos, Claudia; Canizalez-Román, Adrian

    2015-01-01

    Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed. PMID:26120582

  12. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  13. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism

    PubMed Central

    Wei, Zhiliang; Cao, Shougen; Liu, Shanglong; Yao, Zengwu; Sun, Teng; Li, Yi; Li, Jiante; Zhang, Dongfeng; Zhou, Yanbing

    2016-01-01

    Evidences have shown that dysbiosis could promote the progression of colorectal cancer (CRC). However, the association of dysbiosis and prognosis of CRC is barely investigated. Therefore, we used 16S rRNA gene sequencing approach to determine differences in microbiota among tumor tissues of different prognosis and found that Fusobacterium nucleatum and Bacteroides fragilis were more abundant in worse prognosis groups, while Faecalibacterium prausnitzii displayed higher abundance in survival group. To further explore the prognostic value of the found bacteria, Kaplan–Meier and Cox proportional regression analyses were used and the results exhibited that high abundance of F. nucleatum and B. fragilis were independent indicators of poor patient's survival. Besides, the expression of major inflammatory mediator were analyzed using PCR and western blot methods, and it turned out that high abundance of F. nucleatum was associated with increased expression of TNF-α, β-catenin and NF-κB, while COX-2, MMP-9 and NF-κB were positively related with high B. fragilis level, and high level of F. prausnitzii showed lower expression of β-catenin, MMP-9 and NF-κB. Moreover, immunohistochemical analysis indicated that KRAS and BRAF expression were prominent in F. nucleatum and B. fragilis high abundance group, while MLH1 showed lower expression. In conclusion, F. nucleatum, B. fragilis and F. prausnitzii can be identified as useful prognostic biomarkers for CRC, and dysbiosis might worsen the patients' prognosis by up-regulating gut inflammation level. PMID:27323816

  14. IL-1RAcPb signaling regulates adaptive mechanisms in neurons that promote their long-term survival following excitotoxic insults

    PubMed Central

    Gosselin, David; Bellavance, Marc-André; Rivest, Serge

    2012-01-01

    Excitotoxicity is a major component of neurodegenerative diseases and is typically accompanied by an inflammatory response. Cytokines IL-1alpha and IL-1beta are key regulators of this inflammatory response and modulate the activity of numerous cell types, including neurons. IL-1RAcPb is an isoform of IL-1RAcP expressed specifically in neurons and promotes their survival during acute inflammation. Here, we investigated in vivo whether IL-1RAcPb also promotes neuronal survival in a model of excitotoxicity. Intrastriatal injection of kainic acid (KA) in mice caused a strong induction of IL-1 cytokines mRNA in the brain. The stress response of cortical neurons at 12 h post-injection, as measured by expression of Atf3, FoxO3a, and Bdnf mRNAs, was similar in WT and AcPb-deficient mice. Importantly however, a delayed upregulation in the transcription of calpastatin was significantly higher in WT than in AcPb-deficient mice. Finally, although absence of AcPb signaling had no effect on damage to neurons in the cortex at early time points, it significantly impaired their long-term survival. These data suggest that in a context of excitotoxicity, stimulation of IL-1RAcPb signaling may promote the activity of a key neuroprotective mechanism. PMID:23423359

  15. Molecular mechanisms of (-)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line.

    PubMed

    Granado-Serrano, Ana Belén; Martín, María Angeles; Izquierdo-Pulido, María; Goya, Luis; Bravo, Laura; Ramos, Sonia

    2007-03-07

    Dietary polyphenols have been associated with reduced risk of chronic diseases, but the precise molecular mechanisms of protection remain unclear. This work was aimed at studying the effect of (-)-epicatechin (EC) and chlorogenic acid (CGA) on the regulation of apoptotic and survival/proliferation pathways in a human hepatoma cell line (HepG2). EC or CGA treatment for 18 h had a slight effect on cell viability and decreased reactive oxygen species formation, and EC alone promoted cell proliferation, whereas CGA increased glutathione levels. Phenols neither induced the caspase cascade for apoptosis nor affected expression levels of Bcl-xL or Bax. A sustained activation of the major survival signals AKT/PI-3-kinase and ERK was shown in EC-treated cells, rather than in CGA-exposed cells. These data suggest that EC and CGA have no effect on apoptosis and enhance the intrinsic cellular tolerance against oxidative insults either by activating survival/proliferation pathways or by increasing antioxidant potential in HepG2.

  16. Hepatocytes display a compensatory survival response against cadmium toxicity by a mechanism mediated by EGFR and Src.

    PubMed

    Martínez Flores, K; Uribe Marín, B C; Souza Arroyo, V; Bucio Ortiz, L; López Reyes, A; Gómez-Quiroz, L E; Rojas del Castillo, E; Gutiérrez Ruiz, M C

    2013-04-01

    Although the liver is a cadmium-target organ, hepatocyte response involved in its toxicity is not yet elucidated. A link between this heavy metal treatment and Stat3 signaling pathways was examined in primary mouse hepatocytes. We provided evidence of a novel link among NADPH oxidase and Stat3 signaling, mediated by Src, EGFR, and Erk1/2. Cadmium activates NADPH oxidase. ROS produced by this oxidase activates Src, enable that in turn, transactivates EGFR that activates Stat3 in tyrosine, allowing its dimerization. Also, ROS from NADPH oxidase favors ERK1/2 activation that phosphorylates Stat3 in serine, resulting in a compensatory or adaptive survival response such as production of metallothionein-II in short Cd exposure times. However, after 12h CdCl2 treatment, cell viability diminished in 50%, accompanied by a drastic decrease of metallothionein-II production, and an increase in p53 activation and the pro-apoptotic protein Bax.

  17. The contribution of both oxygen and nitrogen intermediates to the intracellular killing mechanisms of C1q-opsonized Listeria monocytogenes by the macrophage-like IC-21 cell line.

    PubMed

    Alvarez-Domínguez, C; Carrasco-Marín, E; López-Mato, P; Leyva-Cobián, F

    2000-09-01

    Listeria monocytogenes is a facultative intracellular pathogen which is internalized by host mammalian cells upon binding to their surface. Further listerial growth occurs in the cytosol after escape from the phagosomal-endosomal compartment. We have previously reported that C1q is able to potentiate L. monocytogenes phagocytosis upon bacterial opsonization by ingestion through C1q-binding structures. In this report, we analysed the post-phagocytic events upon internalization of C1q-opsonized L. monocytogenes and found an induction of macrophage (Mphi)-like IC-21 cell bactericidal mechanisms displayed by the production of oxygen and nitrogen metabolites. Both types of molecules are effective in L. monocytogenes killing. Further analysis of the cellular responses promoted by interaction of C1q with its surface binding structures, leads us to consider C1q as a collaborative molecule involved in Mphi activation. Upon interaction with surface binding structures, C1q was able to trigger and/or amplify the production of reactive oxygen and nitrogen intermediates induced by stimuli such as interferon-gamma and L. monocytogenes phagocytosis.

  18. A quantum mechanical study on phosphotyrosyl peptide binding to the SH2 domain of p56lck tyrosine kinase with insights into the biochemistry of intracellular signal transduction events.

    PubMed

    Pichierri, Fabio

    2004-05-01

    A study on the interaction between a phosphotyrosyl peptide with the SH2 domain of Lck kinase has been undertaken with the aid of semiempirical linear-scaling quantum mechanical methods. The structure of this complex has been solved at atomic resolution and, hence, it represents the ideal candidate for studying the charge deformation effects induced by the phosphopeptide on the binding site. Substantial changes in the charge of amino acid residues located in the binding pocket of the protein are observed upon ligand binding. More specifically, our quantum chemical calculations indicate that H-bonds involving charged side-chains are subject to consistent charge deformation effects whereas those forming salt bridges are unaffected by ligand binding. Furthermore, ligand binding has the effect of changing both the magnitude and direction of the protein's macrodipole, which rotates approximately 150 degrees with respect that of the unliganded protein. This suggests that a change in the polarization state of the protein might acts as a switch during the transmission of intracellular signals. The binding energy calculated with the aid of the COSMO solvation model corresponds to about -200 kcal/mol, most of which is attributed to the interaction of the phosphotyrosine head with the amino acid chains located in the binding site of the SH2 domain.

  19. MDMA causes a redistribution of serotonin transporter from the cell surface to the intracellular compartment by a mechanism independent of phospho-p38-mitogen activated protein kinase activation.

    PubMed

    Kivell, B; Day, D; Bosch, P; Schenk, S; Miller, J

    2010-06-16

    3,4-methylenedioxymethamphetamine (MDMA) causes long-term serotonin depletion and reduced serotonin transporter (SERT) function in humans and in animal models. Using quantitative Western blotting and real-time PCR, we have shown that total SERT protein in the striatum and nucleus accumbens and mRNA levels in the dorsal raphe nucleus were not significantly changed following MDMA exposure in rats (4 x 2 h i.p. injections, 10 mg/kg each). In mouse neuroblastoma (N(2)A) cells transiently expressing green fluorescent protein-tagged human SERT (GFP-hSERT), we have shown redistribution of SERT from the cell surface to intracellular vesicles on exposure to MDMA using cell surface biotinylation, total internal reflection fluorescence microscopy (TIRFM) and live-cell confocal microscopy. To investigate the mechanism responsible for SERT redistribution, we used specific antibodies to phospho-p38-mitogen activated protein kinase (p38 MAPK), a known signalling pathway involved in SERT membrane expression. We found that p38 MAPK activation was not involved in the MDMA-induced redistribution of SERT from the cell-surface to the cell interior. A loss of SERT from the cell surface on acute exposure to MDMA may contribute to the decreased SERT function seen in rats exposed to MDMA.

  20. Green tea catechins: Proposed mechanisms of action in breast cancer focusing on the interplay between survival and apoptosis.

    PubMed

    Yiannakopoulou, Eugenia Ch

    2014-02-01

    Recent data have shown strong chemopreventive and possibly cancer chemotherapeutic effects of green tea polyphenols against cancer. Despite advances in breast cancer treatment, mortality from breast cancer is still high. Undoubtedly novel treatment strategies are needed for chemoprevention of high risk women and for the treatment of receptor negative breast cancer. Green tea catechins have been shown to inhibit proliferation of breast cancer cells and to block carcinogenesis. This review attempts a critical presentation of the mechanisms of action of green tea catechins in breast cancer. Several mechanisms of action of green tea catechins in breast cancer have been proposed including modulation of extracellular signalling, induction of apoptosis through redox regulation, or through modulation of epigenetic alterations. A number of molecular targets of green tea catechins have been suggested i.e molecular chaperones, telomerase, apoptotic cascade. Although the molecular links among the proposed mechanisms of action of green tea catechins are often missing, it must be emphasized that all the proposed mechanisms indicate that green tea catechins inhibit growth and /or promote apoptosis. It would be interesting if future experimental trials could take into account that green tea catechins are multi-target agents and attempt to link every novel proposed target with the other already proposed targets of green tea catechins.

  1. Secretome of obligate intracellular Rickettsia

    PubMed Central

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  2. Impact of photosensitizers activation on intracellular trafficking and viscosity.

    PubMed

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K A; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact.

  3. Impact of Photosensitizers Activation on Intracellular Trafficking and Viscosity

    PubMed Central

    Aubertin, Kelly; Bonneau, Stéphanie; Silva, Amanda K. A.; Bacri, Jean-Claude; Gallet, François; Wilhelm, Claire

    2013-01-01

    The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact. PMID:24386423

  4. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  5. Survival, Differentiation, and Neuroprotective Mechanisms of Human Stem Cells Complexed With Neurotrophin-3-Releasing Pharmacologically Active Microcarriers in an Ex Vivo Model of Parkinson’s Disease

    PubMed Central

    Daviaud, Nicolas; Garbayo, Elisa; Sindji, Laurence; Martínez-Serrano, Alberto; Schiller, Paul C.

    2015-01-01

    Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson’s disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. Significance Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson’s disease (PD). The present work elucidates and compares the survival, differentiation, and

  6. Mechanisms of increased survival after lipopolysaccharide-induced endotoxic shock in mice consuming olive oil-enriched diet.

    PubMed

    Leite, Milane S; Pacheco, Patrícia; Gomes, Rachel N; Guedes, Alexandre T; Castro-Faria-Neto, Hugo C; Bozza, Patrícia T; Koatz, Vera Lúcia G

    2005-02-01

    We examined the impact of dietary fatty acid intake on lipopolysaccharide (LPS)-induced endotoxic shock. C57Bl/6J mice were fed for 6 weeks with a commercial laboratory chow (CC) or with test chows containing 7% (w/w) canola oil (CO), sesame oil (SeO), soybean oil (SO), or virgin olive oil (OO). The increase in body weight and energy consumption were similar for all diets tested. In the sixth week, mice were injected intraperitoneally with 400 microg of bacterial LPS to induce endotoxic shock. LPS induced a massive neutrophil infiltration into the peritoneal cavity and an increase in lipid body (LB) formation in leukocytes recovered from the peritoneal fluid of mice fed with CC, CO, SeO, or SO. In addition, there were increases in prostaglandin E(2) (PGE(2)), leukotriene B4 (LTB(4)), and cytokines IL-6, IL-10, and MCP-1 in peritoneal lavage, as well as in plasma TNF-alpha. In contrast, mice fed with OO exhibited reduced neutrophil accumulation and LB formation, and also had lower levels of PGE(2), LTB(4), MCP-1, and TNF-alpha. All mice fed with CC, CO, SeO, or SO died within 48 to 72 h after LPS injection. Interestingly, mice fed with the OO diet were resistant to endotoxic shock, with 60% survival at 168 h. These data indicate that intake of OO may have a beneficial role, reducing the magnitude of the inflammatory process triggered by endotoxic shock through modulation of LB formation and of the production of inflammatory mediators.

  7. The Mutualistic Side of Wolbachia–Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria

    PubMed Central

    Braquart-Varnier, Christine; Altinli, Mine; Pigeault, Romain; Chevalier, Frédéric D.; Grève, Pierre; Bouchon, Didier; Sicard, Mathieu

    2015-01-01

    Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts. PMID:26733946

  8. Intracellular nicotinamide adenine dinucleotide promotes TNF-induced necroptosis in a sirtuin-dependent manner

    PubMed Central

    Preyat, N; Rossi, M; Kers, J; Chen, L; Bertin, J; Gough, P J; Le Moine, A; Rongvaux, A; Van Gool, F; Leo, O

    2016-01-01

    Cellular necrosis has long been regarded as an incidental and uncontrolled form of cell death. However, a regulated form of cell death termed necroptosis has been identified recently. Necroptosis can be induced by extracellular cytokines, pathogens and several pharmacological compounds, which share the property of triggering the formation of a RIPK3-containing molecular complex supporting cell death. Of interest, most ligands known to induce necroptosis (including notably TNF and FASL) can also promote apoptosis, and the mechanisms regulating the decision of cells to commit to one form of cell death or the other are still poorly defined. We demonstrate herein that intracellular nicotinamide adenine dinucleotide (NAD+) has an important role in supporting cell progression to necroptosis. Using a panel of pharmacological and genetic approaches, we show that intracellular NAD+ promotes necroptosis of the L929 cell line in response to TNF. Use of a pan-sirtuin inhibitor and shRNA-mediated protein knockdown led us to uncover a role for the NAD+-dependent family of sirtuins, and in particular for SIRT2 and SIRT5, in the regulation of the necroptotic cell death program. Thus, and in contrast to a generally held view, intracellular NAD+ does not represent a universal pro-survival factor, but rather acts as a key metabolite regulating the choice of cell demise in response to both intrinsic and extrinsic factors. PMID:26001219

  9. Identification of new FGF1 binding partners—Implications for its intracellular function

    PubMed Central

    Bober, Joanna; Olsnes, Sjur; Kostas, Michal; Bogacz, Marek

    2016-01-01

    Abstract Besides its classical mode of action through activation of specific receptors at the cell surface, fibroblast growth factor 1 (FGF1) can also cross the cellular membrane and translocate into the cytosol and further to the nucleus. The mechanism of this translocation is described partially, but the role of FGF1 inside the cell remains unknown. The aim of our work was to identify novel binding partners of FGF1 to predict its intracellular functions. We combined three methods of identification of such partners based on different principles: yeast two‐hybrid screen and mass spectrometry (MS) analysis of complexes obtained by Tandem Affinity Purification (TAP) or by co‐precipitation from cell lysate using recombinant FGF1. Altogether, we identified twenty novel intracellular proteins interacting with FGF1. For selected proteins, their direct interaction with FGF1 was confirmed by pull‐down assays and SPR measurements. Interestingly, half of the proteins found are involved in processes related to cell viability, such as apoptosis, cell proliferation, and cell cycle regulation. Thus, our study indicates that the role of intracellular FGF1 is to protect the cell against stress conditions by providing an additional signal for cell survival, independently of receptor‐activated signaling cascades. © 2016 IUBMB Life, 68(3):242–251, 2016 PMID:26840910

  10. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation.

    PubMed

    Roth, Michael; Will, Britta; Simkin, Guillermo; Narayanagari, Swathi; Barreyro, Laura; Bartholdy, Boris; Tamari, Roni; Mitsiades, Constantine S; Verma, Amit; Steidl, Ulrich

    2012-07-12

    Eltrombopag (EP) is a small-molecule, nonpeptide thrombopoietin receptor (TPO-R) agonist that has been approved recently for the treatment of thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Prior studies have shown that EP stimulates megakaryopoiesis in BM cells from patients with acute myeloid leukemia and myelodysplastic syndrome, and the results also suggested that it may inhibit leukemia cell growth. In the present study, we studied the effects of EP on leukemia cell proliferation and the mechanism of its antiproliferative effects. We found that EP leads to a decreased cell division rate, a block in G(1) phase of cell cycle, and increased differentiation in human and murine leukemia cells. Because EP is species specific in that it can only bind TPO-R in human and primate cells, these findings further suggested that the antileukemic effect is independent of TPO-R. We found that treatment with EP leads to a reduction in free intracellular iron in leukemic cells in a dose-dependent manner. Experimental increase of intracellular iron abrogated the antiproliferative and differentiation-inducing effects of EP, demonstrating that its antileukemic effects are mediated through modulation of intracellular iron content. Finally, determination of EP's antileukemic activity in vivo demonstrated its ability to prolong survival in 2 mouse models of leukemia.

  11. Survivability of Escherichia coli O157:H7 in mechanically tenderized beef steaks subjected to lactic acid application and cooking under simulated industry conditions.

    PubMed

    Chancey, C C; Brooks, J C; Martin, J N; Echeverry, A; Jackson, S P; Thompson, L D; Brashears, M M

    2013-10-01

    Mechanical tenderization improves the palatability of beef; however, it increases the risk of translocating pathogenic bacteria to the interior of beef cuts. This study investigated the efficacies of lactic acid spray (LA; 5 % ), storage, and cooking on the survivability of Escherichia coli O157:H7 in mechanically tenderized beef steaks managed under simulated industry conditions. Beef subprimals inoculated with either high (10(5) CFU/ml) or low (10(3) CFU/ml) levels of E. coli O157:H7 were treated (LA or control) and stored for 21 days prior to mechanical tenderization, steak portioning (2.54 cm), and additional storage for 7 days. Steaks were then cooked to an internal temperature of 55, 60, 65, 70, or 75°C. Samples were enumerated and analyzed using DNA-based methods. Treatment with LA immediately reduced E. coli O157:H7 on the lean and fat surfaces of high- and low-inoculum-treated subprimals by more than 1.0 log CFU/cm(2) (P < 0.05). Storage for 21 days reduced surface populations of E. coli O157:H7 regardless of the inoculation level; however, the populations on LA- and control-treated lean surfaces of high- and low-inoculum-treated subprimals were not different after 21 days (P > 0.05). E. coli O157:H7 was detected in core samples from high-inoculum-treated steaks cooked to 55, 60, or 70°C. Conversely, E. coli O157:H7 was not detected in core samples from low-inoculum-treated steaks, regardless of the internal cooking temperature. These data suggest that LA- and storage-mediated reduction of pathogens on subprimals exposed to typical industry contamination levels (10(1) CFU/cm(2)) reduces the risk of pathogen translocation and subsequent survival after cooking.

  12. Staphylococcus aureus Strain USA300 Perturbs Acquisition of Lysosomal Enzymes and Requires Phagosomal Acidification for Survival inside Macrophages

    PubMed Central

    Tranchemontagne, Zachary R.; Camire, Ryan B.; O'Donnell, Vanessa J.; Baugh, Jessfor

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) causes invasive, drug-resistant skin and soft tissue infections. Reports that S. aureus bacteria survive inside macrophages suggest that the intramacrophage environment may be a niche for persistent infection; however, mechanisms by which the bacteria might evade macrophage phagosomal defenses are unclear. We examined the fate of the S. aureus-containing phagosome in THP-1 macrophages by evaluating bacterial intracellular survival and phagosomal acidification and maturation and by testing the impact of phagosomal conditions on bacterial viability. Multiple strains of S. aureus survived inside macrophages, and in studies using the MRSA USA300 clone, the USA300-containing phagosome acidified rapidly and acquired the late endosome and lysosome protein LAMP1. However, fewer phagosomes containing live USA300 bacteria than those containing dead bacteria associated with the lysosomal hydrolases cathepsin D and β-glucuronidase. Inhibiting lysosomal hydrolase activity had no impact on intracellular survival of USA300 or other S. aureus strains, suggesting that S. aureus perturbs acquisition of lysosomal enzymes. We examined the impact of acidification on S. aureus intramacrophage viability and found that inhibitors of phagosomal acidification significantly impaired USA300 intracellular survival. Inhibition of macrophage phagosomal acidification resulted in a 30-fold reduction in USA300 expression of the staphylococcal virulence regulator agr but had little effect on expression of sarA, saeR, or sigB. Bacterial exposure to acidic pH in vitro increased agr expression. Together, these results suggest that S. aureus survives inside macrophages by perturbing normal phagolysosome formation and that USA300 may sense phagosomal conditions and upregulate expression of a key virulence regulator that enables its intracellular survival. PMID:26502911

  13. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers.

    PubMed

    Greenlee, John E; Clawson, Susan A; Hill, Kenneth E; Wood, Blair; Clardy, Stacey L; Tsunoda, Ikuo; Carlson, Noel G

    2015-01-01

    Anti-Yo antibodies are immunoglobulin G (IgG) autoantibodies reactive with a 62 kDa Purkinje cell cytoplasmic protein. These antibodies are closely associated with paraneoplastic cerebellar degeneration in the setting of gynecological and breast malignancies. We have previously demonstrated that incubation of rat cerebellar slice cultures with patient sera and cerebrospinal fluid containing anti-Yo antibodies resulted in Purkinje cell death. The present study addressed three fundamental questions regarding the role of anti-Yo antibodies in disease pathogenesis: 1) Whether the Purkinje cell cytotoxicity required binding of anti-Yo antibody to its intraneuronal 62 kDa target antigen; 2) whether Purkinje cell death might be initiated by antibody-dependent cellular cytotoxicity rather than intracellular antibody binding; and 3) whether Purkinje cell death might simply be a more general result of intracellular antibody accumulation, rather than of specific antibody-antigen interaction. In our study, incubation of rat cerebellar slice cultures with anti-Yo IgG resulted in intracellular antibody binding, and cell death. Infiltration of the Purkinje cell layer by cells of macrophage/microglia lineage was not observed until extensive cell death was already present. Adsorption of anti-Yo IgG with its 62 kDa target antigen abolished both antibody accumulation and cytotoxicity. Antibodies to other intracellular Purkinje cell proteins were also taken up by Purkinje cells and accumulated intracellularly; these included calbindin, calmodulin, PCP-2, and patient anti-Purkinje cell antibodies not reactive with the 62 kDa Yo antigen. However, intracellular accumulation of these antibodies did not affect Purkinje cell viability. The present study is the first to demonstrate that anti-Yo antibodies cause Purkinje cell death by binding to the intracellular 62 kDa Yo antigen. Anti-Yo antibody cytotoxicity did not involve other antibodies or factors present in patient serum and was not

  14. A top-down survival mechanism during early marine residency explains coho salmon year-class strength in southeast Alaska

    NASA Astrophysics Data System (ADS)

    LaCroix, Jacob J.; Wertheimer, Alex C.; Orsi, Joseph A.; Sturdevant, Molly V.; Fergusson, Emily A.; Bond, Nicholas A.

    2009-12-01

    Coho salmon ( Oncorhynchus kisutch) are a vital component in the southeast Alaska marine ecosystem and are an important regional fishery resource; consequently, understanding mechanisms affecting their year-class strength is necessary from both scientific and management perspectives. We examined correlations among juvenile coho salmon indices, associated biophysical variables, and adult coho salmon harvest data from southeast Alaska over the years 1997-2006. We found no relationship between summer indices of juvenile coho salmon growth, condition, or abundance with subsequent harvest of adult coho salmon in the region. However, using stepwise regression, we found that variation in adult coho salmon harvest was largely explained by indices of juvenile pink salmon ( Oncorhynchus gorbuscha) abundance (67%) and zooplankton abundance (24%). To determine if high juvenile pink salmon abundance indicates favorable "bottom-up" lower trophic level environmental conditions for juvenile coho salmon, we plotted abundance of juvenile pink salmon against growth and condition of juvenile coho salmon. No change in growth or condition of juvenile coho salmon was observed in relation to the abundance index for juvenile pink salmon. Therefore, we hypothesize that coho salmon year-class strength in southeast Alaska is influenced by a "top-down" predator control mechanism that results from more abundant juvenile pink salmon, which serve as a predator buffer during early marine residency.

  15. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  16. Final report: Hydraulic mechanisms of survival and mortality during drought in pinon-juniper woodlands of southwestern USA

    SciTech Connect

    Pockman, William

    2016-11-23

    The goal of this project was to use rainfall manipulation of an intact pinon-juniper woodland in central New Mexico to understand the mechanisms that control the response of these species to extremes of rainfall. Experimental plots were installed in a pinon-juniper woodland at the Sevilleta National Wildlife Refuge and treatments were imposed in August 2007. Treatments consisted of 1) a Drought treatment imposed by diverting approximately 45% of precipitation away from the plot, 2) and Irrigation treatment imposed by applying six 19 mm simulated rainfall events at regular intervals during the growing season, 3) a Cover Control treatment designed to assess the impact of the plastic troughs constructed on Drought plots without imposing the rainfall diversion, and 4) an untreated control that received no modification. Extensive pinon mortality was observed beginning one year after the start of drought treatment on hillslope plots, while a third drought plot on deeper soils did not exhibit pinon mortality until the fifth year of drought treatment. Pinon mortality occurred in the context of high levels of bark beetle activity, motivating the installation of two additional plots in 2010: a control plot and a drought plot built to the same standards as the original treatments but with bark beetle control maintained by pesticide application to the bole of target trees from 2010 - 2016. Although the drought treatment created similar conditions to those experienced on hillslope drought plots, the drought plot with bark beetle control exhibited no pinon mortality for 5 years even in the presence of high regional bark beetle activity in 2012/13. One of the goals of the research was to identify the mechanism of drought-induced mortality in pinon and juniper: 1) mortality due to catastrophic failure of water transport through plant tissues (hydraulic failure), 2) mortality due to limitations in carbon uptake (carbon starvation) and 3) either of the first two mechanisms with the

  17. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  18. A method for functional trans-complementation of intracellular Francisella tularensis.

    PubMed

    Steele, Shaun; Taft-Benz, Sharon; Kawula, Thomas

    2014-01-01

    Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1β secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1β secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional trans

  19. Intracellular alkalization causes pain sensation through activation of TRPA1 in mice

    PubMed Central

    Fujita, Fumitaka; Uchida, Kunitoshi; Moriyama, Tomoko; Shima, Asako; Shibasaki, Koji; Inada, Hitoshi; Sokabe, Takaaki; Tominaga, Makoto

    2008-01-01

    Vertebrate cells require a very narrow pH range for survival. Cells accordingly possess sensory and defense mechanisms for situations where the pH deviates from the viable range. Although the monitoring of acidic pH by sensory neurons has been attributed to several ion channels, including transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs), the mechanisms by which these cells detect alkaline pH are not well understood. Here, using Ca2+ imaging and patch-clamp recording, we showed that alkaline pH activated transient receptor potential cation channel, subfamily A, member 1 (TRPA1) and that activation of this ion channel was involved in nociception. In addition, intracellular alkalization activated TRPA1 at the whole-cell level, and single-channel openings were observed in the inside-out configuration, indicating that alkaline pH activated TRPA1 from the inside. Analyses of mutants suggested that the two N-terminal cysteine residues in TRPA1 were involved in activation by intracellular alkalization. Furthermore, intraplantar injection of ammonium chloride into the mouse hind paw caused pain-related behaviors that were not observed in TRPA1-deficient mice. These results suggest that alkaline pH causes pain sensation through activation of TRPA1 and may provide a molecular explanation for some of the human alkaline pH–related sensory disorders whose mechanisms are largely unknown. PMID:19033673

  20. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids.

  1. Surviving or thriving: quality assurance mechanisms to promote innovation in the development of evidence-based parenting interventions.

    PubMed

    Sanders, Matthew R; Kirby, James N

    2015-04-01

    Parenting interventions have the potential to make a significant impact to the prevention and treatment of major social and mental health problems of children. However, parenting interventions fail to do so because program developers pay insufficient attention to the broader ecological context that influences the adoption and implementation of evidence-based interventions. This context includes the professional and scientific community, end users, consumers, and broader sociopolitical environment within which parenting services are delivered. This paper presents an iterative stage model of quality assurance steps to guide ongoing research and development particularly those related to program innovations including theory building, intervention development, pilot testing, efficacy and effectiveness trials, program refinement, dissemination, and planning for implementation and political advocacy. The key challenges associated with each phase of the research and development process are identified. Stronger consumer participation throughout the entire process from initial program design to wider community dissemination is an important, but an often ignored part of the process. Specific quality assurance mechanisms are discussed that increase accountability, professional, and consumer confidence in an intervention and the evidence supporting its efficacy.

  2. Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages

    PubMed Central

    Batista-Silva, L. R.; Rodrigues, Luciana Silva; Vivarini, Aislan de Carvalho; Costa, Fabrício da Mota Ramalho; Mattos, Katherine Antunes de; Costa, Maria Renata Sales Nogueira; Rosa, Patricia Sammarco; Toledo-Pinto, T. G.; Dias, André Alves; Moura, Danielle Fonseca; Sarno, Euzenir Nunes; Lopes, Ulisses Gazos; Pessolani, Maria Cristina Vidal

    2016-01-01

    Mycobacterium leprae (ML), the etiologic agent of leprosy, can subvert macrophage antimicrobial activity by mechanisms that remain only partially understood. In the present study, the participation of hormone insulin-like growth factor I (IGF-I) in this phenomenum was investigated. Macrophages from the dermal lesions of the disseminated multibacillary lepromatous form (LL) of leprosy expressed higher levels of IGF-I than those from the self-limited paucibacillary tuberculoid form (BT). Higher levels of IGF-I secretion by ML-infected macrophages were confirmed in ex vivo and in vitro studies. Of note, the dampening of IGF-I signaling reverted the capacity of ML-infected human and murine macrophages to produce antimicrobial molecules and promoted bacterial killing. Moreover, IGF-I was shown to inhibit the JAK/STAT1-dependent signaling pathways triggered by both mycobacteria and IFN-γ most probably through its capacity to induce the suppressor of cytokine signaling-3 (SOCS3). Finally, these in vitro findings were corroborated by in vivo observations in which higher SOCS3 expression and lower phosphorylation of STAT1 levels were found in LL versus BT dermal lesions. Altogether, our data strongly suggest that IGF-I contributes to the maintenance of a functional program in infected macrophages that suits ML persistence in the host, reinforcing a key role for IGF-I in leprosy pathogenesis. PMID:27282338

  3. Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs.

    PubMed

    Hayashi, Teruo

    2015-01-01

    Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER) membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane). In specific types of neurons (e.g., those at the spinal cord), sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions.

  4. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes.

    PubMed

    Cano, Victoria; March, Catalina; Insua, Jose Luis; Aguiló, Nacho; Llobet, Enrique; Moranta, David; Regueiro, Verónica; Brennan, Gerard P; Millán-Lou, Maria Isabel; Martín, Carlos; Garmendia, Junkal; Bengoechea, José A

    2015-11-01

    Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not co-localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down-regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.

  5. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus.

    PubMed

    Lehar, Sophie M; Pillow, Thomas; Xu, Min; Staben, Leanna; Kajihara, Kimberly K; Vandlen, Richard; DePalatis, Laura; Raab, Helga; Hazenbos, Wouter L; Morisaki, J Hiroshi; Kim, Janice; Park, Summer; Darwish, Martine; Lee, Byoung-Chul; Hernandez, Hilda; Loyet, Kelly M; Lupardus, Patrick; Fong, Rina; Yan, Donghong; Chalouni, Cecile; Luis, Elizabeth; Khalfin, Yana; Plise, Emile; Cheong, Jonathan; Lyssikatos, Joseph P; Strandh, Magnus; Koefoed, Klaus; Andersen, Peter S; Flygare, John A; Wah Tan, Man; Brown, Eric J; Mariathasan, Sanjeev

    2015-11-19

    Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.

  6. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    NASA Technical Reports Server (NTRS)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  7. Intracellular Pressure Dynamics in Blebbing Cells.

    PubMed

    Strychalski, Wanda; Guy, Robert D

    2016-03-08

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.

  8. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    SciTech Connect

    Damodaran, T.V.; Attia, M.K.; Abou-Donia, M.B.

    2011-11-15

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7-14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  9. Modulation of Host miRNAs by Intracellular Bacterial Pathogens

    PubMed Central

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  10. The EGFR/ErbB3 Pathway Acts as a Compensatory Survival Mechanism upon c-Met Inhibition in Human c-Met+ Hepatocellular Carcinoma

    PubMed Central

    Steinway, Steven N.; Dang, Hien; You, Hanning; Rountree, C. Bart; Ding, Wei

    2015-01-01

    Background c-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF), plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC) patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance. Methods We utilized the human MHCC97-H c-Met positive (c-Met+) HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells) were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses. Results We have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate

  11. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  12. The Intracellular Life of Cryptococcus neoformans

    PubMed Central

    Coelho, Carolina; Bocca, Anamelia L.; Casadevall, Arturo

    2016-01-01

    Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells. PMID:24050625

  13. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  14. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  15. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    PubMed Central

    Pitangui, Nayla de Souza; Sardi, Janaina de Cássia Orlandi; Voltan, Aline R.; dos Santos, Claudia T.; da Silva, Julhiany de Fátima; da Silva, Rosangela A. M.; Souza, Felipe O.; Soares, Christiane P.; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms. PMID:26793172

  16. Invasion of the Central Nervous System by Intracellular Bacteria

    PubMed Central

    Drevets, Douglas A.; Leenen, Pieter J. M.; Greenfield, Ronald A.

    2004-01-01

    Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens. PMID:15084504

  17. Intracellular dynamics of hippocampal place cells during virtual navigation

    PubMed Central

    Harvey, Christopher D.; Collman, Forrest; Dombeck, Daniel A.; Tank, David W.

    2009-01-01

    Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, we measured the intracellular dynamics of place cells by combining in vivo whole cell recordings with a virtual reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual environment to perform spatial behaviors. Robust place cell activity was present during movement along a virtual linear track. From whole cell recordings, we identified three subthreshold signatures of place fields: (1) an asymmetric ramp-like depolarization of the baseline membrane potential; (2) an increase in the amplitude of intracellular theta oscillations; and, (3) a phase precession of the intracellular theta oscillation relative to the extracellularly-recorded theta rhythm. These intracellular dynamics underlie the primary features of place cell rate and temporal codes. The virtual reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation. PMID:19829374

  18. Sensing and surviving hypoxia in vertebrates.

    PubMed

    Jonz, Michael G; Buck, Leslie T; Perry, Steve F; Schwerte, Thorsten; Zaccone, Giacomo

    2016-02-01

    Surviving hypoxia is one of the most critical challenges faced by vertebrates. Most species have adapted to changing levels of oxygen in their environment with specialized organs that sense hypoxia, while only few have been uniquely adapted to survive prolonged periods of anoxia. The goal of this review is to present the most recent research on oxygen sensing, adaptation to hypoxia, and mechanisms of anoxia tolerance in nonmammalian vertebrates. We discuss the respiratory structures in fish, including the skin, gills, and air-breathing organs, and recent evidence for chemosensory neuroepithelial cells (NECs) in these tissues that initiate reflex responses to hypoxia. The use of the zebrafish as a genetic and developmental model has allowed observation of the ontogenesis of respiratory and chemosensory systems, demonstration of a putative intracellular O2 sensor in chemoreceptors that may initiate transduction of the hypoxia signal, and investigation into the effects of extreme hypoxia on cardiorespiratory development. Other organisms, such as goldfish and freshwater turtles, display a high degree of anoxia tolerance, and these models are revealing important adaptations at the cellular level, such as the regulation of glutamatergic and GABAergic neurotransmission in defense of homeostasis in central neurons.

  19. What are the intracellular targets and intratissue target cells for radiation effects?

    PubMed

    Hamada, Nobuyuki

    2014-01-01

    Exactly a century after Röntgen's discovery of X rays, I entered a university to major in radiological sciences. At that time, I felt that, despite extensive use and indispensable roles of ionizing radiation in medicine and industry, many fascinating questions have yet to be answered concerning its biological mechanisms of action, and thus I decided to get into the field of radiation research. Fifteen years have passed since I started radiobiological studies in 1998, during which time various basic tenets I initially learned in my late teens and early twenties have been challenged by recent observations. Of these, this brief overview particularly focuses on the following five different albeit non mutually exclusive questions: (i) "Is nuclear DNA the only intracellular target for radiation effects?"; (ii) "What is the significance of delayed cell death in clonogenic survival?"; (iii) "Does an irradiated cell become a cancer cell?"; (iv) "Are cataracts tissue reactions?"; and (v) "Why is high-LET radiation biologically effective?".

  20. Streptococcus pneumoniae resists intracellular killing by olfactory ensheathing cells but not by microglia

    PubMed Central

    Macedo-Ramos, Hugo; Ruiz-Mendoza, Susana; Mariante, Rafael M.; Guimarães, Erick V.; Quadros-de-Souza, Lucas C.; Paiva, Mauricio M.; Ferreira, Eliane de O.; Pinto, Tatiana C. A.; Teixeira, Lucia M.; Allodi, Silvana; Baetas-da-Cruz, Wagner

    2016-01-01

    Olfactory ensheathing cells (OECs) are a type of specialized glial cell currently considered as having a double function in the nervous system: one regenerative, and another immune. Streptococcus pneumoniae is a major agent of severe infections in humans, including meningitis. It is commonly found in the nasopharynx of asymptomatic carriers, and, under certain still unknown conditions, can invade the brain. We evaluated whether pneumococcal cells recovered from lysed OECs and microglia are able to survive by manipulating the host cell activation. An intracellular-survival assay of S. pneumoniae in OECs showed a significant number of bacterial CFU recovered after 3 h of infection. In contrast, microglia assays resulted in a reduced number of CFU. Electron-microscopy analysis revealed a large number of pneumococci with apparently intact morphology. However, microglia cells showed endocytic vesicles containing only bacterial cell debris. Infection of OEC cultures resulted in continuous NF-κB activation. The IFN-γ-induced increase of iNOS expression was reversed in infected OECs. OECs are susceptible to S. pneumoniae infection, which can suppress their cytotoxic mechanisms in order to survive. We suggest that, in contrast to microglia, OECs might serve as safe targets for pneumococci, providing a more stable environment for evasion of the immune system. PMID:27827453

  1. Fluorescent acid-fast microscopy for measuring phagocytosis of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum by Tetrahymena pyriformis and their intracellular growth.

    PubMed

    Strahl, E D; Gillaspy, G E; Falkinham, J O

    2001-10-01

    Fluorescent acid-fast microscopy (FAM) was used to enumerate intracellular Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in the ciliated phagocytic protozoan Tetrahymena pyriformis. There was a linear relationship between FAM and colony counts of M. avium cells both from cultures and within protozoa. The Ziehl-Neelsen acid-fast stain could not be used to enumerate intracellular mycobacteria because uninfected protozoa contained acid-fast, bacterium-like particles. Starved, 7-day-old cultures of T. pyriformis transferred into fresh medium readily phagocytized M. avium, M. intracellulare, and M. scrofulaceum. Phagocytosis was rapid and reached a maximum in 30 min. M. avium, M. intracellulare, and M. scrofulaceum grew within T. pyriformis, increasing by factors of 4- to 40-fold after 5 days at 30 degrees C. Intracellular M. avium numbers remained constant over a 25-day period of growth (by transfer) of T. pyriformis. Intracellular M. avium cells also survived protozoan encystment and germination. The growth and viability of T. pyriformis were not affected by mycobacterial infection. The results suggest that free-living phagocytic protozoa may be natural hosts and reservoirs for M. avium, M. intracellulare, and M. scrofulaceum.

  2. Sensitivity of Francisella tularensis to ultrapure water and deoxycholate: implications for bacterial intracellular growth assay in macrophages

    PubMed Central

    Chalabaev, Sabina; Anderson, Christine A.; Onderdonk, Andrew B.; Kasper, Dennis L.

    2011-01-01

    The ability of Francisella tularensis to replicate in macrophages is critical for its pathogenesis, therefore intracellular growth assays are important tools for assessing virulence. We show that two lysis solutions commonly used in these assays, deionized water and deoxycholate in PBS, lead to highly inaccurate measurements of intracellular bacterial survival. PMID:21420447

  3. Cell adhesion and intracellular calcium signaling in neurons

    PubMed Central

    2013-01-01

    Cell adhesion molecules (CAMs) play indispensable roles in the developing and mature brain by regulating neuronal migration and differentiation, neurite outgrowth, axonal fasciculation, synapse formation and synaptic plasticity. CAM-mediated changes in neuronal behavior depend on a number of intracellular signaling cascades including changes in various second messengers, among which CAM-dependent changes in intracellular Ca2+ levels play a prominent role. Ca2+ is an essential secondary intracellular signaling molecule that regulates fundamental cellular functions in various cell types, including neurons. We present a systematic review of the studies reporting changes in intracellular Ca2+ levels in response to activation of the immunoglobulin superfamily CAMs, cadherins and integrins in neurons. We also analyze current experimental evidence on the Ca2+ sources and channels involved in intracellular Ca2+ increases mediated by CAMs of these families, and systematically review the role of the voltage-dependent Ca2+ channels (VDCCs) in neurite outgrowth induced by activation of these CAMs. Molecular mechanisms linking CAMs to VDCCs and intracellular Ca2+ stores in neurons are discussed. PMID:24330678

  4. Intracellular Signalling in Retinal Ischemia

    DTIC Science & Technology

    1990-07-01

    36) However, vascularization of the RPE is not known to occur in human diseases of photoreceptor degeneration, such as retinitis pigmentosa ...A.C. (1986) Retinitis pigmentosa and retinal neovascularization. Ophthalmology 91, 1599- 1603. Figure la: Control rat retina, 8 weeks of age, central...TITLE (Include Security Classification) Intracellular Signalling in Retinal Ischemia 12. PERSONAL AUTHOR(S) Burns, Margaret Sue; Bellhorn, Roy William

  5. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  6. Effects of Triclosan on Neural Stem Cell Viability and Survival

    PubMed Central

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  7. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms

    PubMed Central

    Colla, Simona; Wu, Xiaosong; Chen, Bangzheng; Stewart, James P.; Kuehl, W. Michael; Barlogie, Bart

    2007-01-01

    Overexpression of CKS1B, a gene mapping within a minimally amplified region between 153 to 154 Mb of chromosome 1q21, is linked to a poor prognosis in multiple myeloma (MM). CKS1B binds to and activates cyclin-dependent kinases and also interacts with SKP2 to promote the ubiquitination and proteasomal degradation of p27Kip1. Overexpression of CKS1B or SKP2 contributes to increased p27Kip1 turnover, cell proliferation, and a poor prognosis in many tumor types. Using 4 MM cell lines harboring MAF-, FGFR3/MMSET-, or CCND1-activating translocations, we show that lentiviral delivery of shRNA directed against CKS1B resulted in ablation of CKS1B mRNA and protein with concomitant stabilization of p27Kip1, cell cycle arrest, and apoptosis. Although shRNA-mediated knockdown of SKP2 and forced expression of a nondegradable form of p27Kip1 (p27T187A) led to cell cycle arrest, apoptosis was modest. Of importance, while knockdown of SKP2 or overexpression of p27T187A induced cell cycle arrest in KMS28PE, an MM cell line with biallelic deletion of CDKN1B/p27Kip1, CKS1B ablation induced strong apoptosis. These data suggest that CKS1B influences myeloma cell growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms and that therapeutic strategies aimed at abolishing CKS1B function may hold promise for the treatment of high-risk disease for which effective therapies are currently lacking. PMID:17303695

  8. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth

    PubMed Central

    Lee, Kang-In; Whang, Jake; Choi, Han-Gyu; Son, Yeo-Jin; Jeon, Haet Sal; Back, Yong Woo; Park, Hye-Soo; Paik, Seungwha; Park, Jeong-Kyu; Choi, Chul Hee; Kim, Hwa-Jung

    2016-01-01

    Mycobacterium avium complex induces macrophage apoptosis. However, the M. avium components that inhibit or trigger apoptosis and their regulating mechanisms remain unclear. We recently identified the immunodominant MAV2054 protein by fractionating M. avium culture filtrate protein by multistep chromatography; this protein showed strong immuno-reactivity in M. avium complex pulmonary disease and in patients with tuberculosis. Here, we investigated the biological effects of MAV2054 on murine macrophages. Recombinant MAV2054 induced caspase-dependent macrophage apoptosis. Enhanced reactive oxygen species production and JNK activation were essential for MAV2054-mediated apoptosis and MAV2054-induced interleukin-6, tumour necrosis factor, and monocyte chemoattractant protein-1 production. MAV2054 was targeted to the mitochondrial compartment of macrophages treated with MAV2054 and infected with M. avium. Dissipation of the mitochondrial transmembrane potential (ΔΨm) and depletion of cytochrome c also occurred in MAV2054-treated macrophages. Apoptotic response, reactive oxygen species production, and ΔΨm collapse were significantly increased in bone marrow-derived macrophages infected with Mycobacterium smegmatis expressing MAV2054, compared to that in M. smegmatis control. Furthermore, MAV2054 expression suppressed intracellular growth of M. smegmatis and increased the survival rate of M. smegmatis-infected mice. Thus, MAV2054 induces apoptosis via a mitochondrial pathway in macrophages, which may be an innate cellular response to limit intracellular M. avium multiplication. PMID:27901051

  9. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria

    PubMed Central

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-01-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria. PMID:25009182

  10. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria.

    PubMed

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-29

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  11. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  12. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling

    PubMed Central

    Corral-Jara, Karla F.; Gómez-Leyva, Juan F.; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  13. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling.

    PubMed

    Corral-Jara, Karla F; Trujillo-Ochoa, Jorge L; Realpe, Mauricio; Panduro, Arturo; Gómez-Leyva, Juan F; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia; Fierro, Nora A

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1.

  14. Intracellularly induced cyclophilins play an important role in stress adaptation and virulence of Brucella abortus.

    PubMed

    Roset, Mara S; García Fernández, Lucía; DelVecchio, Vito G; Briones, Gabriel

    2013-02-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells.

  15. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease

    PubMed Central

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  16. Small Peptide Recognition Sequence for Intracellular Sorting

    PubMed Central

    Pandey, Kailash N.

    2010-01-01

    Increasing evidence indicate that complex arrays of short signals and recognition peptide sequence ensure accurate trafficking and distribution of transmembrane receptors and/or proteins and their ligands into intracellular compartments. Internalization and subsequent trafficking of cell-surface receptors into the cell interior is mediated by specific short-sequence peptide signals within the cytoplasmic domains of these receptor proteins. The short signals usually consist of small linear amino acid sequences, which are recognized by adaptor coat proteins along the endocytic and sorting pathways. In recent years, much has been learned about the function and mechanisms of endocytic pathways responsible for the trafficking and molecular sorting of membrane receptors and their ligands into intracellular compartments, however, the significance and scope of the short sequence motifs in these cellular events is not well understood. Here a particular emphasis has been given to the functions of short-sequence signal motifs responsible for the itinerary and destination of membrane receptors and proteins moving into subcellular compartments. PMID:20817434

  17. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  18. Intracellular trafficking of hybrid gene delivery vectors.

    PubMed

    Keswani, Rahul K; Lazebnik, Mihael; Pack, Daniel W

    2015-06-10

    Viral and non-viral gene delivery vectors are in development for human gene therapy, but both exhibit disadvantages such as inadequate efficiency, lack of cell-specific targeting or safety concerns. We have recently reported the design of hybrid delivery vectors combining retrovirus-like particles with synthetic polymers or lipids that are efficient, provide sustained gene expression and are more stable compared to native retroviruses. To guide further development of this promising class of gene delivery vectors, we have investigated their mechanisms of intracellular trafficking. Moloney murine leukemia virus-like particles (M-VLPs) were complexed with chitosan (Chi) or liposomes (Lip) comprising DOTAP, DOPE and cholesterol to form the hybrid vectors (Chi/M-VLPs and Lip/M-VLPs, respectively). Transfection efficiency and cellular internalization of the vectors were quantified in the presence of a panel of inhibitors of various endocytic pathways. Intracellular transport and trafficking kinetics of the hybrid vectors were dependent on the synthetic component and used a combination of clathrin- and caveolar-dependent endocytosis and macropinocytosis. Chi/M-VLPs were slower to transfect compared to Lip/M-VLPs due to the delayed detachment of the synthetic component. The synthetic component of hybrid gene delivery vectors plays a significant role in their cellular interactions and processing and is a key parameter for the design of more efficient gene delivery vehicles.

  19. Survival assays using Caenorhabditis elegans

    PubMed Central

    Park, Hae-Eun H.; Jung, Yoonji; Lee, Seung-Jae V.

    2017-01-01

    Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans. PMID:28241407

  20. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis.

    PubMed

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-12-08

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host-symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops.

  1. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis

    PubMed Central

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-01-01

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host–symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops. PMID:26598690

  2. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response.

    PubMed

    Kuiper, Caroline; Dachs, Gabi U; Currie, Margaret J; Vissers, Margreet C M

    2014-04-01

    Hypoxia-inducible factor (HIF)-1 drives the transcription of hundreds of genes to support cell survival under conditions of microenvironmental and metabolic stress. HIF-1 is downregulated by iron-containing 2-oxoglutarate-dependent enzymes that require ascorbate as a cofactor. The HIF hydroxylases control both protein stability and the formation of an active transcription complex and, consequently, ascorbate could affect HIF-1α stabilization and/or gene expression, but the relative effect of ascorbate on these separate processes has not been well characterized. In this study we examined the effects of known intracellular ascorbate concentrations on both processes in response to various means of hydroxylase inhibition, including CoCl2, NiCl2, desferrioxamine, dimethyloxalylglycine, and hypoxia. Ascorbate inhibited HIF-1 activity most dramatically with all mechanisms of iron competition. In addition, HIF-1-dependent gene expression was effectively prevented by ascorbate and was inhibited even under conditions that allowed HIF-1α protein stabilization. This suggests that (1) ascorbate acts primarily to stabilize and reduce the iron atom in the hydroxylase active site and (2) the asparagine hydroxylase controlling HIF-1 transcriptional activity is particularly susceptible to fluctuations in intracellular ascorbate. These findings suggest that ascorbate plays a significant role in supporting HIF-hydroxylase function and that it could thereby modulate the cell survival response.

  3. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival.

    PubMed

    Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian

    2017-03-21

    Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity.IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis, are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role for

  4. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  5. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  6. An evolutionary strategy for a stealthy intracellular Brucella pathogen.

    PubMed

    Martirosyan, Anna; Moreno, Edgardo; Gorvel, Jean-Pierre

    2011-03-01

    Brucella is an intracellular bacterial pathogen that causes abortion and infertility in mammals and leads to a debilitating febrile illness that can progress into a long lasting disease with severe complications in humans. Its virulence depends on survival and replication properties in host cells. In this review, we describe the stealthy strategy used by Brucella to escape recognition of the innate immunity and the means by which this bacterium evades intracellular destruction. We also discuss the development of adaptive immunity and its modulation during brucellosis that in course leads to chronic infections. Brucella has developed specific strategies to influence antigen presentation mediated by cells. There is increasing evidence that Brucella also modulates signaling events during host adaptive immune responses.

  7. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea?

    PubMed

    Jump, Robin L P; Pultz, Michael J; Donskey, Curtis J

    2007-08-01

    Proton pump inhibitors (PPIs) have been identified as a risk factor for Clostridium difficile-associated diarrhea (CDAD), though the mechanism is unclear because gastric acid does not kill C. difficile spores. We hypothesized that the vegetative form of C. difficile, which is killed by acid, could contribute to disease pathogenesis if it survives in room air and in gastric contents with elevated pH. We compared the numbers of C. difficile spores and vegetative cells in stools of patients prior to and during the treatment of CDAD. We assessed the survival of vegetative cells on moist or dry surfaces in room air versus anaerobic conditions and in human gastric contents, in pH-adjusted gastric contents, and in gastric contents from individuals receiving PPI therapy. Stool samples obtained from patients prior to the initiation of antibiotic treatment for C. difficile contained approximately 10-fold more vegetative cells than spores. On dry surfaces, vegetative C. difficile cells died rapidly, whereas they remained viable for up to 6 h on moist surfaces in room air. Vegetative C. difficile cells had only marginal survival in gastric contents at low pH; adjustment to a pH of >5 resulted in survival similar to that in the phosphate-buffered saline control. The survival of vegetative C. difficile in gastric contents obtained from patients receiving PPIs was also increased at a pH of >5. The ability of the vegetative form of C. difficile to survive on moist surfaces and in gastric contents with an elevated pH suggests a potential mechanism by which PPI therapy could increase the risk of acquiring C. difficile.

  8. In vitro and ex vivo strategies for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Stewart, Martin P.; Sharei, Armon; Ding, Xiaoyun; Sahay, Gaurav; Langer, Robert; Jensen, Klavs F.

    2016-10-01

    Intracellular delivery of materials has become a critical component of genome-editing approaches, ex vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current technologies motivate development of next-generation systems that can deliver a broad variety of cargo to diverse cell types. Here we review in vitro and ex vivo intracellular delivery approaches with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and laboratory-on-chip technology in advancing the field.

  9. Campylobacter jejuni Actively Invades the Amoeba Acanthamoeba polyphaga and Survives within Non Digestive Vacuoles

    PubMed Central

    Olofsson, Jenny; Axelsson-Olsson, Diana; Brudin, Lars; Olsen, Björn; Ellström, Patrik

    2013-01-01

    The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81–176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced. PMID:24223169

  10. Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles.

    PubMed

    Olofsson, Jenny; Axelsson-Olsson, Diana; Brudin, Lars; Olsen, Björn; Ellström, Patrik

    2013-01-01

    The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81-176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced.

  11. Intracellular recording from a spider vibration receptor.

    PubMed

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  12. Myometrial oxytocin receptor expression and intracellular pathways.

    PubMed

    Yulia, A; Johnson, M R

    2014-06-01

    Oxytocin (OT) signalling plays a fundamental role in the mechanisms of parturition. OT is one of the most frequently used drugs in obstetrics, promoting uterine contractions for labor induction and augmentation and to prevent postpartum hemorrhage (PPH). Expression of the oxytocin receptor (OTR) in the human myometrium is tightly regulated during pregnancy and its levels have been shown to peak upon labour onset and to fall sharply in advanced labour and the postpartum period, when the uterus become refractive to OT. However, uterine sensitivity to OT varies between pregnant women, probably reflecting differences in their myometrial OTR expression. Control of OTR expression is mediated by a combination of steroid hormone stimulation, stretch, and inflammation. This review summarises current knowledge regarding the complex regulation of myometrial OTR expression and its associated intracellular signaling pathways.

  13. [Measurement of intracellular pH].

    PubMed

    Hanaoka, K; Imai, M; Yoshitomi, K

    1992-09-01

    Since various cellular processes depend on changes in pH, the regulation of intracellular pH (pHi) is important both for the individual cell and for the organism. The mechanisms of the regulation of pHi can be investigated by monitoring pHi. In this report, we discuss the four major techniques available for measuring pHi, which are 1) Distribution of weak acids and bases, 2) pH-sensitive microelectrodes, 3) pH-sensitive dyes, and 4) Nuclear magnetic resonance. Among four techniques, the advantage of the microelectrode approach is that it can monitor membrane potential at the same time and be applied to a single cell. The dye technique is a relative new developing technique, which has lots of advantages. It is easy to use, and is capable of monitoring rapid pHi changes, and being applied to a smaller cell, or a single cell.

  14. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy

    PubMed Central

    Giuliano, Mario; Hu, Huizhong; Wang, Yen-Chao; Fu, Xiaoyong; Nardone, Agostina; Herrera, Sabrina; Mao, Sufeng; Contreras, Alejandro; Gutierrez, Carolina; Wang, Tao; Hilsenbeck, Susan G.; De Angelis, Carmine; Wang, Nicholas J.; Heiser, Laura M.; Gray, Joe W.; Lopez-Tarruella, Sara; Pavlick, Anne C.; Trivedi, Meghana V.; Chamness, Gary C.; Chang, Jenny C.; Osborne, C. Kent; Rimawi, Mothaffar F.; Schiff, Rachel

    2015-01-01

    Purpose To investigate the direct effect and therapeutic consequences of epidermal growth factor receptor 2 (HER2)-targeting therapy on expression of estrogen receptor (ER) and Bcl2 in preclinical models and clinical tumor samples. Experimental design Archived xenograft tumors from two preclinical models (UACC812 and MCF7/HER2-18) treated with ER and HER2-targeting therapies, and also HER2+ clinical breast cancer specimens collected in a lapatinib neoadjuvant trial (baseline and week 2 post treatment), were used. Expression levels of ER and Bcl2 were evaluated by immunohistochemistry and western blot. The effects of Bcl2 and ER inhibition, by ABT-737 and fulvestrant respectively, were tested in parental versus lapatinib-resistant UACC812 cells in vitro. Results Expression of ER and Bcl2 was significantly increased in xenograft tumors with acquired resistance to anti-HER2 therapy, compared with untreated tumors, in both preclinical models (UACC812: ER p=0.0014; Bcl2 p<0.001. MCF7/HER2-18: ER p=0.0007; Bcl2 p=0.0306). In the neoadjuvant clinical study, lapatinib treatment for two weeks was associated with parallel upregulation of ER and Bcl2 (Spearman’s coefficient: 0.70; p=0.0002). Importantly, 18% of tumors originally ER-negative (ER−) converted to ER+ upon anti-HER2 therapy. In ER−/HER2+ MCF7/HER2-18 xenografts, ER re-expression was primarily observed in tumors responding to potent combination of anti-HER2 drugs. Estrogen deprivation added to this anti-HER2 regimen significantly delayed tumor progression (p=0.018). In the UACC812 cells, fulvestrant, but not ABT-737, was able to completely inhibit anti-HER2-resistant growth (p<0.0001). Conclusion HER2 inhibition can enhance or restore ER expression with parallel Bcl2 upregulation, representing an ER-dependent survival mechanism potentially leading to anti-HER2 resistance. PMID:26015514

  15. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: New insights into molecular mechanisms responsible for the disease

    SciTech Connect

    Hahnen, E.; Schoenling, J.; Zerres, K.

    1996-11-01

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive neurodegenerative disorder leading to weakness and atrophy of voluntary muscles. The survival motor-neuron gene (SMN), a strong candidate for SMA, is present in two highly homologous copies (telSMN and cenSMN) within the SMA region. Only five nucleotide differences within the region between intron 6 and exon 8 distinguish these homologues. Independent of the severity of the disease, 90%-98% of all SMA patients carry homozygous deletions in telSMN, affecting either exon 7 or both exons 7 and 8. We present the molecular analysis of 42 SMA patients who carry homozygous deletions of telSMN exon 7 but not of exon 8. The question arises whether in these cases the telSMN is truncated upstream of exon 8 or whether hybrid SMN genes exist that are composed of centromeric and telomeric sequences. By a simple PCR-based assay we demonstrate that in each case the remaining telSMN exon 8 is part of a hybrid SMN gene. Sequencing of cloned hybrid SMN genes from seven patients revealed the same composition in all but two patients: the base-pair differences in introns 6 and 7 and exon 7 are of centromeric origin whereas exon 8 is of telomeric origin. Nonetheless, haplotype analysis with polymorphic multicopy markers, Ag1-CA and C212, localized at the 5{prime} end of the SMN genes, suggests different mechanisms of occurrence, unequal rearrangements, and gene conversion involving both copies of the SMN genes. In approximately half of all patients, we identified a consensus haplotype, suggesting a common origin. Interestingly, we identified a putative recombination hot spot represented by recombination-simulating elements (TGGGG and TGAGGT) in exon 8 that is homologous to the human deletion-hot spot consensus sequence in the immunoglobulin switch region, the {alpha}-globin cluster, and the polymerase {alpha} arrest sites. This may explain why independent hybrid SMN genes show identical sequences. 35 refs., 4 figs., 1 tab.

  16. Neuronal Recordings with Solid-Conductor Intracellular Nanoelectrodes (SCINEs)

    PubMed Central

    Angle, Matthew R.; Schaefer, Andreas T.

    2012-01-01

    Direct electrical recording of the neuronal transmembrane potential has been crucial to our understanding of the biophysical mechanisms subserving neuronal computation. Existing intracellular recording techniques, however, limit the accuracy and duration of such measurements by changing intracellular biochemistry and/or by damaging the plasma membrane. Here we demonstrate that nanoengineered electrodes can be used to record neuronal transmembrane potentials in brain tissue without causing these physiological perturbations. Using focused ion beam milling, we have fabricated Solid-Conductor Intracellular NanoElectrodes (SCINEs), from conventional tungsten microelectrodes. SCINEs have tips that are <300 nm in diameter for several micrometers, but can be easily handled and can be inserted into brain tissue. Performing simultaneous whole-cell patch recordings, we show that SCINEs can record action potentials (APs) as well as slower, subthreshold neuronal potentials without altering cellular properties. These results show a key role for nanotechnology in the development of new electrical recording techniques in neuroscience. PMID:22905231

  17. Azole fungicides disturb intracellular Ca2+ in an additive manner in dopaminergic PC12 cells.

    PubMed

    Heusinkveld, Harm J; Molendijk, Jeffrey; van den Berg, Martin; Westerink, Remco H S

    2013-08-01

    Humans are exposed to complex mixtures of pesticides and other compounds, mainly via food. Azole fungicides are broad spectrum antifungal compounds used in agriculture and in human and veterinary medicine. The mechanism of antifungal action relies on inhibition of CYP51, resulting in inhibition of fungal cell growth. Known adverse health effects of azole fungicides are mainly linked to CYP inhibition. Additionally, azole fungicide-induced neurotoxicity has been reported, though the underlying mechanism(s) are largely unknown. We therefore investigated the effects of a group of six azole fungicides (imazalil, flusilazole, fluconazole, tebuconazole, triadimefon, and cyproconazole) on cell viability using a combined alamar Blue/CFDA-AM assay and on oxidative stress using a H2-DCFDA fluorescent assay. As calcium plays a pivotal role in neuronal survival and functioning, effects of these six azole fungicides and binary and quaternary mixtures of azole fungicides on the intracellular calcium concentration ([Ca(2+)]i) were investigated using single-cell fluorescence microscopy in dopaminergic PC12 cells loaded with the calcium-sensitive fluorescent dye Fura-2. Only modest changes in cell viability and ROS production were observed. However, five out of six azole fungicides induced a nonspecific inhibition of voltage-gated calcium channels (VGCCs), though with varying potency. Experiments using binary IC20 and quaternary IC10 mixtures indicated that the inhibitory effects on VGCCs are additive. The combined findings demonstrate modulation of intracellular Ca(2+) via inhibition of VGCCs as a novel mode of action of azole fungicides. Furthermore, mixtures of azole fungicides display additivity, illustrating the need to take mixture effects into account in human risk assessment.

  18. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation

    PubMed Central

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G. John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg’) shows that cells with the lowest value of intracellular Tg’ survive the freezing process better than cells with a higher intracellular Tg’. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms. PMID:27055246

  19. Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii

    PubMed Central

    2012-01-01

    Background Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre-exposure to heat, starvation, oxidative or osmotic stresses encountered in the environment may affect the subsequent interaction of C. jejuni with free-living protozoa. To test this hypothesis, we examined the impact of environmental stress on expression of virulence-associated genes (ciaB, dnaJ, and htrA) of C. jejuni and on its uptake by and intracellular survival within Acanthamoeba castellanii. Results Heat, starvation and osmotic stress reduced the survival of C. jejuni significantly, whereas oxidative stress had no effect. Quantitative RT-PCR experiments showed that the transcription of virulence genes was slightly up-regulated under heat and oxidative stresses but down-regulated under starvation and osmotic stresses, the htrA gene showing the largest down-regulation in response to osmotic stress. Pre-exposure of bacteria to low nutrient or osmotic stress reduced bacterial uptake by amoeba, but no effect of heat or oxidative stress was observed. Finally, C. jejuni rapidly lost viability within amoeba cells and pre-exposure to oxidative stress had no significant effect on intracellular survival. However, the numbers of intracellular bacteria recovered 5 h post-gentamicin treatment were lower with starved, heat treated or osmotically stressed bacteria than with control bacteria. Also, while ~1.5 × 103 colony forming unit/ml internalized bacteria could typically be recovered 24 h post-gentamicin treatment with control bacteria, no starved, heat treated or osmotically stressed bacteria could be recovered at this time point. Overall, pre-exposure of C. jejuni to environmental stresses did not promote intracellular survival in A. castellanii. Conclusions Together, these

  20. Intracellular Neural Recording with Pure Carbon Nanotube Probes

    PubMed Central

    Yoon, Inho; Hamaguchi, Kosuke; Borzenets, Ivan V.; Finkelstein, Gleb; Mooney, Richard; Donald, Bruce R.

    2013-01-01

    The computational complexity of the brain depends in part on a neuron’s capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications. PMID:23840357

  1. Intracellular transport of fat-soluble vitamins A and E.

    PubMed

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.

  2. Candida glabrata survives and replicates in human osteoblasts.

    PubMed

    Muñoz-Duarte, Ana Rosa; Castrejón-Jiménez, Nayeli Shantal; Baltierra-Uribe, Shantal Lizbeth; Pérez-Rangel, Sofia Judith; Carapia-Minero, Natalee; Castañeda-Sánchez, Jorge Ismael; Luna-Herrera, Julieta; López-Santiago, Rubén; Rodríguez-Tovar, Aída Verónica; García-Pérez, Blanca Estela

    2016-06-01

    Candida glabrata is an opportunistic pathogen that is considered the second most common cause of candidiasis after Candida albicans Many characteristics of its mechanisms of pathogenicity remain unknown. Recent studies have focused on determining the events that underlie interactions between C. glabrata and immune cells, but the relationship between this yeast and osteoblasts has not been studied in detail. The aim of this study was to determine the mechanisms of interaction between human osteoblasts and C. glabrata, and to identify the roles played by some of the molecules that are produced by these cells in response to infection. We show that C. glabrata adheres to and is internalized by human osteoblasts. Adhesion is independent of opsonization, and internalization depends on the rearrangement of the actin cytoskeleton. We show that C. glabrata survives and replicates in osteoblasts and that this intracellular behavior is related to the level of production of nitric oxide and reactive oxygen species. Opsonized C. glabrata stimulates the production of IL-6, IL-8 and MCP-1 cytokines. Adhesion and internalization of the pathogen and the innate immune response of osteoblasts require viable C. glabrata These results suggest that C. glabrata modulates immunological mechanisms in osteoblasts to survive inside the cell.

  3. Enhanced egress of intracellular Eimeria tenella sporozoites by splenic lymphocytes from coccidia-infected chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egress, which describes the mechanism that some intracellular parasites use to exit from parasitophorous vacuoles and host cells, plays a very important role in the parasite life cycle and is central to Eimeria propagation and pathogenesis. Despite the importance of egress in the intracellular paras...

  4. Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium

    PubMed Central

    Joseph, Julie; Ametepe, Emmanuelle S.; Haribabu, Naveen; Agbayani, Gerard; Krishnan, Lakshmi; Blais, Alexandre; Sad, Subash

    2016-01-01

    Virulent intracellular pathogens, such as the Salmonella species, engage numerous virulence factors to subvert host defence mechanisms to induce a chronic infection that leads to typhoid or exacerbation of other chronic inflammatory conditions. Here we show the role of the forkhead transcription factor FoxO3a during infection of mice with Salmonella typhimurium (ST). Although FoxO3a signalling does not affect the development of CD8+ T cell responses to ST, FoxO3a has an important protective role, particularly during the chronic stage of infection, by limiting the persistence of oxidative stress. Furthermore, FoxO3a signalling regulates ERK signalling in macrophages, which results in the maintenance of a proinflammatory state. FoxO3a signalling does not affect cell proliferation or cell death. Thus, these results reveal mechanisms by which FoxO3a promotes host survival during infection with chronic, virulent intracellular bacteria. PMID:27599659

  5. Intracellular Assessment of ATP Levels in Caenorhabditis elegans

    PubMed Central

    Palikaras, Konstantinos; Tavernarakis, Nektarios

    2017-01-01

    Eukaryotic cells heavily depend on adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS) within mitochondria. ATP is the major energy currency molecule, which fuels cell to carry out numerous processes, including growth, differentiation, transportation and cell death among others (Khakh and Burnstock, 2009). Therefore, ATP levels can serve as a metabolic gauge for cellular homeostasis and survival (Artal-Sanz and Tavernarakis, 2009; Gomes et al., 2011; Palikaras et al., 2015). In this protocol, we describe a method for the determination of intracellular ATP levels using a bioluminescence approach in the nematode Caenorhabditis elegans. PMID:28194429

  6. THE ALTERATION OF INTRACELLULAR ENZYMES

    PubMed Central

    Kaplan, J. Gordin

    1954-01-01

    1. The ability of homologous series of alcohols, ketones, and aldehydes to cause alteration of intracellular catalase increases approximately threefold for each methylene group added, thus following Traube's rule. Equiactive concentrations of alcohols (methanol to octanol) varied over a 4,000-fold range, yet the average corresponding surface tension was 42 ± 2 dynes/cm., that for ketones 43 ± 2, and for aldehydes (above C1) 41 ± 3. 2. Above C8 the altering activity of alcohols ceased to follow Traube's rule, and at C18 was nil. Yet the surface activities of alcohols from nonanol to dodecanol did follow Traube's rule. These two facts show that the interface which is being affected by these agents is not the cell surface, for if it were, altering activity should not fall off between C9 and C12 where surface activity is undiminished; they show also that micelle formation by short range association of hydrocarbon "tails," usually invoked to explain decrease in biological activity of compounds above C8, is not responsible for this effect in these experiments, in which permeability of the cell membrane probably is involved. 3. The most soluble alcohols and aldehydes (alcohols C1 to C8; aldehydes C1, C2), but not ketones, cause, above optimal concentration, an irreversible inhibition of yeast catalase. 4. The critical concentration of altering agent (i.e., that concentration just sufficient to cause doubling of the catalase activity of the yeast suspension) was independent of the concentration of the yeast cells. 5. Viability studies show that the number of yeast cells killed by the altering agents was not related to the degree of activation of the catalase produced. While all the cells were invariably killed by concentrations of altering agent which produced complete activation, all the cells had been killed by concentrations which were insufficient to cause more than 50 per cent maximal activation. Further, the evidence suggested that the catalase may be partially

  7. Analysing intracellular deformation of polymer capsules using structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cui, Jiwei; Sun, Huanli; Müllner, Markus; Yan, Yan; Noi, Ka Fung; Ping, Yuan; Caruso, Frank

    2016-06-01

    Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces, which induce capsule deformation during cell uptake, vary between cell lines, indicating that the capsules are exposed to higher mechanical forces in HeLa cells, followed by RAW264.7 and then differentiated THP-1 cells. Our study demonstrates the use of super-resolution SIM in analysing intracellular capsule deformation, offering important insights into the cellular processing of drug carriers in cells and providing fundamental knowledge of intracellular mechanobiology. Furthermore, this study may aid in the design of novel drug carriers that are sensitive to deformation for enhanced drug release properties.Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces

  8. Heterogeneous ribonucleoprotein C displays a repressor activity mediated by T-cell intracellular antigen-1-related/like protein to modulate Fas exon 6 splicing through a mechanism involving Hu antigen R.

    PubMed

    Izquierdo, José M

    2010-12-01

    T-cell intracellular antigen (TIA)-proteins are known regulators of alternative pre-mRNA splicing. In this study, pull-down experiments and mass spectrometry indicate that TIAR/TIAL1 and hnRNP C1/C2 are associated in HeLa nuclear extracts. Co-immunoprecipitation and GST-pull-down assays confirmed this interaction. Interestingly, binding requires the glutamine-rich (Q-rich) C-terminal domain of TIAR and the leucine-rich plus acidic residues-rich C-terminal domains of hnRNP C1/C2. This interaction also occurs in an RNA-dependent manner. Recombinant GFP-TIAR and RFP-hnRNP C1 proteins display partial nuclear co-localization when overexpressed in HeLa cells, and this requires the Q-rich domain of TIAR. hnRNP C1 overexpression in the presence of rate-limiting amounts of TIAR in HeLa and HEK293 cells affects alternative splicing of Fas and FGFR2 minigenes, promoting Fas exon 6 and FGFR2 exon K-SAM skipping, respectively. The repressor activity of hnRNP C1 on Fas exon 6 splicing is mediated by Hu antigen R (HuR). Experiments involving tethering approaches showed that the repressor capacity of hnRNP C1 is associated with an exonic splicing silencer in Fas exon 6. This effect was reversed by splice-site strengthening and is linked to its basic leucine zipper-like motif. These results suggest that hnRNP C1/C2 acts as a bridge between HuR and TIAR to modulate alternative Fas splicing.

  9. Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry.

    PubMed

    Cheng, Changyong; Yang, Yongchun; Dong, Zhimei; Wang, Xiaowen; Fang, Chun; Yang, Menghua; Sun, Jing; Xiao, Liya; Fang, Weihuan; Song, Houhui

    2015-01-01

    Listeria monocytogenes, a food-borne pathogen, has the capacity to maintain intracellular pH (pHi) homeostasis in acidic environments, but the underlying mechanisms remain elusive. Here, we report a simple microplate-based fluorescent method to determine pHi of listerial cells that were prelabeled with the fluorescent dye carboxyfluorescein diacetate N-succinimidyl ester and subjected to acid stress. We found that L. monocytogenes responds differently among strains toward organic and inorganic acids to maintain pHi homeostasis. The capacity of L. monocytogenes to maintain pHi at extracellular pH 4.5 (pHex) was compromised in the presence of acetic acid and lactic acid, but not by hydrochloric acid and citric acid. Organic acids exhibited more inhibitory effects than hydrochloric acid at certain pH conditions. Furthermore, the virulent stains L. monocytogenes EGDe, 850658 and 10403S was more resistant to acidic stress than the avirulent M7 which showed a defect in maintaining pHi homeostasis. Deletion of sigB, a stress-responsive alternative sigma factor from 10403S, markedly altered intracellular pHi homeostasis, and showed a significant growth and survival defect under acidic conditions. Thus, this work provides new insights into bacterial survival mechanism to acidic stresses.

  10. Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry

    PubMed Central

    Cheng, Changyong; Yang, Yongchun; Dong, Zhimei; Wang, Xiaowen; Fang, Chun; Yang, Menghua; Sun, Jing; Xiao, Liya; Fang, Weihuan; Song, Houhui

    2015-01-01

    Listeria monocytogenes, a food-borne pathogen, has the capacity to maintain intracellular pH (pHi) homeostasis in acidic environments, but the underlying mechanisms remain elusive. Here, we report a simple microplate-based fluorescent method to determine pHi of listerial cells that were prelabeled with the fluorescent dye carboxyfluorescein diacetate N-succinimidyl ester and subjected to acid stress. We found that L. monocytogenes responds differently among strains toward organic and inorganic acids to maintain pHi homeostasis. The capacity of L. monocytogenes to maintain pHi at extracellular pH 4.5 (pHex) was compromised in the presence of acetic acid and lactic acid, but not by hydrochloric acid and citric acid. Organic acids exhibited more inhibitory effects than hydrochloric acid at certain pH conditions. Furthermore, the virulent stains L. monocytogenes EGDe, 850658 and 10403S was more resistant to acidic stress than the avirulent M7 which showed a defect in maintaining pHi homeostasis. Deletion of sigB, a stress-responsive alternative sigma factor from 10403S, markedly altered intracellular pHi homeostasis, and showed a significant growth and survival defect under acidic conditions. Thus, this work provides new insights into bacterial survival mechanism to acidic stresses. PMID:25667585

  11. Uncoupling Caveolae from Intracellular Signaling In Vivo

    PubMed Central

    Kraehling, Jan R.; Hao, Zhengrong; Lee, Monica Y.; Vinyard, David J.; Velazquez, Heino; Liu, X.; Stan, Radu V.; Brudvig, Gary W.; Sessa, William C.

    2015-01-01

    Rationale Caveolin-1 negatively regulates eNOS derived NO production and this has been mapped to several residues on Cav-1 including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. Objective This study was designed to separate caveolae formation from its downstream signaling effects. Methods and Results An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of VASP were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of Cav-2, sucrose gradient and electron microscopy. Histological analysis of heart and lung, echocardiography and signaling were performed. Conclusions This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms. PMID:26602865

  12. Molecular crosstalk between apoptosis, necroptosis, and survival signaling

    PubMed Central

    Vanden Berghe, Tom; Kaiser, William J; Bertrand, Mathieu JM; Vandenabeele, Peter

    2015-01-01

    Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research. PMID:27308513

  13. Discovery of new intracellular pathogens by amoebal coculture and amoebal enrichment approaches.

    PubMed

    Jacquier, Nicolas; Aeby, Sébastien; Lienard, Julia; Greub, Gilbert

    2013-10-27

    Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes.

  14. Discovery of New Intracellular Pathogens by Amoebal Coculture and Amoebal Enrichment Approaches

    PubMed Central

    Jacquier, Nicolas; Aeby, Sébastien; Lienard, Julia; Greub, Gilbert

    2013-01-01

    Intracellular pathogens such as legionella, mycobacteria and Chlamydia-like organisms are difficult to isolate because they often grow poorly or not at all on selective media that are usually used to cultivate bacteria. For this reason, many of these pathogens were discovered only recently or following important outbreaks. These pathogens are often associated with amoebae, which serve as host-cell and allow the survival and growth of the bacteria. We intend here to provide a demonstration of two techniques that allow isolation and characterization of intracellular pathogens present in clinical or environmental samples: the amoebal coculture and the amoebal enrichment. Amoebal coculture allows recovery of intracellular bacteria by inoculating the investigated sample onto an amoebal lawn that can be infected and lysed by the intracellular bacteria present in the sample. Amoebal enrichment allows recovery of amoebae present in a clinical or environmental sample. This can lead to discovery of new amoebal species but also of new intracellular bacteria growing specifically in these amoebae. Together, these two techniques help to discover new intracellular bacteria able to grow in amoebae. Because of their ability to infect amoebae and resist phagocytosis, these intracellular bacteria might also escape phagocytosis by macrophages and thus, be pathogenic for higher eukaryotes. PMID:24192667

  15. Small Non-Coding RNAs: New Insights in Modulation of Host Immune Response by Intracellular Bacterial Pathogens

    PubMed Central

    Ahmed, Waqas; Zheng, Ke; Liu, Zheng-Fei

    2016-01-01

    Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors and enable the bacteria to survive and proliferate within host cell. Small non-coding RNAs (sRNAs) have been identified as important regulators of gene expression in diverse biological contexts. Recent research has shown bacterial sRNAs involved in growth and development, cell proliferation, differentiation, metabolism, cell signaling, and immune response through regulating protein–protein interactions or via their ability to base pair with RNA and DNA. In this review, we provide a brief overview of mechanism of action employed by immune-related sRNAs, their known functions in immunity, and how they can be integrated into regulatory circuits that govern virulence, which will facilitate our understanding of pathogenesis and the development of novel, more effective therapeutic approaches to treat infections caused by intracellular bacterial pathogens. PMID:27803700

  16. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth.

    PubMed

    Kentner, David; Martano, Giuseppe; Callon, Morgane; Chiquet, Petra; Brodmann, Maj; Burton, Olga; Wahlander, Asa; Nanni, Paolo; Delmotte, Nathanaël; Grossmann, Jonas; Limenitakis, Julien; Schlapbach, Ralph; Kiefer, Patrick; Vorholt, Julia A; Hiller, Sebastian; Bumann, Dirk

    2014-07-08

    Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.

  17. G protein-coupled receptors provide survival signals in prostate cancer.

    PubMed

    Yowell, Charles W; Daaka, Yehia

    2002-12-01

    Prostate cancer is the leading cause for noncutaneous cancer-related deaths among men in the United States. The disease is biologically characterized as being either androgen dependent or androgen independent. Whereas androgen-dependent prostate cancer can be successfully treated with androgen ablative therapy, to date no cure exists for androgen-independent disease. Mechanisms involved in the progression of prostate cancer to androgen independence are not known. Here we present evidence that in addition to growth factor receptor tyrosine kinases, G protein- coupled receptors can mediate survival signals in prostate cancer cells. The G protein- coupled receptors exert their effects by activating multiple intracellular signal transduction networks that promote prostate cancer cell survival, including the activation of c-Jun N-terminal kinase, protein kinase B (Akt) and nuclear factor-kB. Prostate-expressed G protein- coupled receptors and their downstream effectors may prove to be effective targets in the treatment of advanced prostate cancer.

  18. PDCD10/CCM3 acts downstream of {gamma}-protocadherins to regulate neuronal survival.

    PubMed

    Lin, Chengyi; Meng, Shuxia; Zhu, Tina; Wang, Xiaozhong

    2010-12-31

    γ-Protocadherins (PCDH-γ) regulate neuronal survival in the vertebrate central nervous system. The molecular mechanisms of how PCDH-γ mediates this function are still not understood. In this study, we show that through their common cytoplasmic domain, different PCDH-γ isoforms interact with an intracellular adaptor protein named PDCD10 (programmed cell death 10). PDCD10 is also known as CCM3, a causative genetic defect for cerebral cavernous malformations in humans. Using RNAi-mediated knockdown, we demonstrate that PDCD10 is required for the occurrence of apoptosis upon PCDH-γ depletion in developing chicken spinal neurons. Moreover, overexpression of PDCD10 is sufficient to induce neuronal apoptosis. Taken together, our data reveal a novel function for PDCD10/CCM3, acting as a critical regulator of neuronal survival during development.

  19. Microsporidia Are Natural Intracellular Parasites of the Nematode Caenorhabditis elegans

    PubMed Central

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-01-01

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes. PMID:19071962

  20. Ultraviolet-irradiated monocytes efficiently inhibit the intracellular replication of Mycobacterium avium intracellulare.

    PubMed Central

    Mirando, W S; Shiratsuchi, H; Tubesing, K; Toba, H; Ellner, J J; Elmets, C A

    1992-01-01

    The purpose of this study was to evaluate the effect of ultraviolet (UV) radiation on the antimicrobial activities of monocytes for the intracellular pathogen Mycobacterium avium intracellulare (MAI). UV radiation augmented monocyte antimicrobial activity for MAI in a dose-dependent fashion. UVB doses of greater than or equal to 25 J/m2 resulted in a 50-100-fold reduction in MAI growth 7 d after initiation of culture. The increased monocyte antibacterial effect could be blocked by a plate glass filter, indicating that wavelengths within the UVB were responsible for the effect. UV radiation did not stimulate monocyte phagocytosis, and enhanced inhibition of MAI growth was observed in populations of adherent mononuclear cells that were devoid of T cells. This suggested that UV radiation acted directly to augment intrinsic monocyte antimicrobial activities. The administration of 8-methoxypsoralen plus UVA radiation to monocytes also augmented their antimicrobial activities against MAI. UV radiation thus may serve as a unique agent by which to evaluate the mechanisms by which mononuclear phagocytes control the growth of MAI. Images PMID:1556188

  1. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation

    PubMed Central

    Matias, Andreza Cândido; Manieri, Tânia Maria; Cerchiaro, Giselle

    2016-01-01

    We report the molecular mechanism for zinc depletion caused by TPEN (N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine) in neuroblastoma cells. The activation of p38 MAP kinase and subsequently caspase 3 is not due to or followed by redox imbalance or ROS generation, though these are commonly observed in literature. We found that TPEN is not responsible for ROS generation and the mechanism involves essentially lysosomal disruption caused by intracellular zinc depletion. We also observed a modest activation of Bax and no changes in the Bcl-2 proteins. As a result, we suggest that TPEN causes intracellular zinc depletion which can influence the breakdown of lysosomes and cell death without ROS generation. PMID:27123155

  2. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    PubMed

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-04

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  3. Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats.

    PubMed

    Hamson, D K; Wainwright, S R; Taylor, J R; Jones, B A; Watson, N V; Galea, L A M

    2013-09-01

    Gonadal steroids are potent regulators of adult neurogenesis. We previously reported that androgens, such as testosterone (T) and dihydrotestosterone (DHT), but not estradiol, increased the survival of new neurons in the dentate gyrus of the male rat. These results suggest androgens regulate hippocampal neurogenesis via the androgen receptor (AR). To test this supposition, we examined the role of ARs in hippocampal neurogenesis using 2 different approaches. In experiment 1, we examined neurogenesis in male rats insensitive to androgens due to a naturally occurring mutation in the gene encoding the AR (termed testicular feminization mutation) compared with wild-type males. In experiment 2, we injected the AR antagonist, flutamide, into castrated male rats and compared neurogenesis levels in the dentate gyrus of DHT and oil-treated controls. In experiment 1, chronic T increased hippocampal neurogenesis in wild-type males but not in androgen-insensitive testicular feminization mutation males. In experiment 2, DHT increased hippocampal neurogenesis via cell survival, an effect that was blocked by concurrent treatment with flutamide. DHT, however, did not affect cell proliferation. Interestingly, cells expressing doublecortin, a marker of immature neurons, did not colabel with ARs in the dentate gyrus, but ARs were robustly expressed in other regions of the hippocampus. Together these studies provide complementary evidence that androgens regulate adult neurogenesis in the hippocampus via the AR but at a site other than the dentate gyrus. Understanding where in the brain androgens act to increase the survival of new neurons in the adult brain may have implications for neurodegenerative disorders.

  4. Long-term survival using intra-aortic balloon pump and percutaneous right ventricular assist device for biventricular mechanical support of cardiogenic shock.

    PubMed

    Atwater, Brett D; Nee, Lisa M; Gimelli, Giorgio

    2008-07-01

    Right ventricular (RV) involvement in acute inferior left ventricular (LV) myocardial infarction increases the risks of cardiogenic shock and in-hospital mortality. Acutely impaired RV performance results in reduced LV preload and, in combination with impaired LV contractility, causes severely reduced LV stroke volume and cardiac output. Here we report long-term patient survival after acute biventricular myocardial infarction (MI) using simultaneous RV support with a TandemHeart percutaneous ventricular assist device (Cardiac Assist Technologies, Pittsburgh, Pennsylvania) and LV support with an intra-aortic balloon pump. Further evaluation of completely percutaneous biventricular support in acute MI is warranted.

  5. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intracellular ice formed in rapidly cooled embryonic axes of Acer saccharinum and was not necessarily lethal when ice crystals were small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic a...

  6. Cardiac alternans and intracellular calcium cycling

    PubMed Central

    Edwards, Joshua N.; Blatter, Lothar A.

    2014-01-01

    Cardiac alternans refers to a condition in which there is a periodic beat-to-beat oscillation in electrical activity and the strength of cardiac muscle contraction at a constant heart rate. Clinically, cardiac alternans occurs in settings that are typical for cardiac arrhythmias and has been causally linked to these conditions. At the cellular level, alternans is defined as beat-to-beat alternations in contraction amplitude (mechanical alternans), action potential duration (APD; electrical or APD alternans), and Ca2+ transient amplitude (Ca2+ alternans). The cause of alternans is multifactorial, however alternans always originate from disturbances of the bi-directional coupling between membrane voltage (Vm) and intracellular calcium ([Ca2+]i). Bi-directional coupling refers to the fact that in cardiac cells, Vm depolarization and the generation of action potentials cause the elevation of [Ca2+]i that is required for contraction (a process referred to as excitation-contraction coupling), the changes of [Ca2+]i on the other hand control Vm because important membrane currents are Ca2+-dependent. Evidence is mounting that alternans is ultimately caused by disturbances of cellular Ca2+ signaling. Here we review how two key factors of cardiac cellular Ca2+ cycling - the release of Ca2+ from internal stores and the capability of clearing the cytosol from Ca2+ after each beat - determine the conditions under which alternans occurs. The contributions from key Ca2+ handling proteins - surface membrane channels, ion pumps and transporters, and internal Ca2+ release channels - are discussed. PMID:25040398

  7. Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages.

    PubMed

    Owen, Katherine A; Meyer, Corey B; Bouton, Amy H; Casanova, James E

    2014-06-01

    Autophagy has emerged as an important antimicrobial host defense mechanism that not only orchestrates the systemic immune response, but also functions in a cell autonomous manner to directly eliminate invading pathogens. Pathogenic bacteria such as Salmonella have evolved adaptations to protect themselves from autophagic elimination. Here we show that signaling through the non-receptor tyrosine kinase focal adhesion kinase (FAK) is actively manipulated by the Salmonella SPI-2 system in macrophages to promote intracellular survival. In wild-type macrophages, FAK is recruited to the surface of the Salmonella-containing vacuole (SCV), leading to amplified signaling through the Akt-mTOR axis and inhibition of the autophagic response. In FAK-deficient macrophages, Akt/mTOR signaling is attenuated and autophagic capture of intracellular bacteria is enhanced, resulting in reduced bacterial survival. We further demonstrate that enhanced autophagy in FAK(-/-) macrophages requires the activity of Atg5 and ULK1 in a process that is distinct from LC3-assisted phagocytosis (LAP). In vivo, selective knockout of FAK in macrophages resulted in more rapid clearance of bacteria from tissues after oral infection with S. typhimurium. Clearance was correlated with reduced infiltration of inflammatory cell types into infected tissues and reduced tissue damage. Together, these data demonstrate that FAK is specifically targeted by S. typhimurium as a novel means of suppressing autophagy in macrophages, thereby enhancing their intracellular survival.

  8. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells.

    PubMed

    Hou, Ya-Qin; Yao, Yao; Bao, Yong-Li; Song, Zhen-Bo; Yang, Cheng; Gao, Xiu-Li; Zhang, Wen-Jing; Sun, Lu-Guo; Yu, Chun-Lei; Huang, Yan-Xin; Wang, Guan-Nan; Li, Yu-Xin

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels.

  9. Transient Transfection and Expression in the Obligate Intracellular Parasite Toxoplasma gondii

    NASA Astrophysics Data System (ADS)

    Soldati, Dominique; Boothroyd, John C.

    1993-04-01

    Toxoplasma gondii is a protozoan pathogen that produces severe disease in humans and animals. This obligate intracellular parasite provides an excellent model for the study of how such pathogens are able to invade, survive, and replicate intracellularly. DNA encoding chloramphenicol acetyltransferase was introduced into T. gondii and transiently expressed with the use of three vectors based on different Toxoplasma genes. The ability to introduce genes and have them efficiently and faithfully expressed is an essential tool for understanding the structure-function relation of genes and their products.

  10. Legionella dumoffii DjlA, a Member of the DnaJ Family, Is Required for Intracellular Growth

    PubMed Central

    Ohnishi, Hiroko; Mizunoe, Yoshimitsu; Takade, Akemi; Tanaka, Yoshitaka; Miyamoto, Hiroshi; Harada, Mine; Yoshida, Shin-ichi

    2004-01-01

    Legionella dumoffii is one of the common causes of Legionnaires' disease and is capable of replicating in macrophages. To understand the mechanism of survival within macrophages, transposon mutagenesis was employed to isolate the genes necessary for intracellular growth. We identified four defective mutants after screening 790 transposon insertion mutants. Two transposon insertions were in genes homologous to icmB or dotC, within dot/icm loci, required for intracellular multiplication of L. pneumophila. The third was in a gene whose product is homologous to the 17-kDa antigen forming part of the VirB/VirD4 type IV secretion system of Bartonella henselae. The fourth was in the djlA (for “dnaj-like A”) gene. DjlA is a member of the DnaJ/Hsp40 family. Transcomplementation of the djlA mutant restored the parental phenotype in J774 macrophages, A549 human alveolar epithelial cells, and the amoeba Acanthamoeba culbertsoni. Using confocal laser-scanning microscopy and transmission electron microscopy, we revealed that in contrast to the wild-type strain, L. dumoffii djlA mutant-containing phagosomes were unable to inhibit phagosome-lysosome fusion. Transmission electron microscopy also showed that in contrast to the virulent parental strain, the djlA mutant was not able to recruit host cell rough endoplasmic reticulum. Furthermore, the stationary-phase L. dumoffii djlA mutants were more susceptible to H2O2, high osmolarity, high temperature, and low pH than was their parental strain. These results indicate that DjlA is required for intracellular growth and organelle trafficking, as well as bacterial resistance to environmental stress. This is the first report demonstrating that a single DjlA-deficient mutant exhibits a distinct phenotype. PMID:15155669

  11. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation.

    PubMed

    Liszewski, M Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G; Fara, Antonella F; Subias, Marta; Pickering, Matthew C; Drouet, Christian; Meri, Seppo; Arstila, T Petteri; Pekkarinen, Pirkka T; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P; Kemper, Claudia

    2013-12-12

    Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.

  12. Intracellular minerals and metal deposits in prokaryotes.

    PubMed

    Edwards, K J; Bazylinski, D A

    2008-06-01

    Thanks to the work of Terrance J. Beveridge and other pioneers in the field of metal-microbe interactions, prokaryotes are well known to sequester metals and other ions intracellularly in various forms. These forms range from poorly ordered deposits of metals to well-ordered mineral crystals. Studies on well-ordered crystalline structures have generally focused on intracellular organelles produced by magnetotactic bacteria that are ubiquitous in terrestrial and marine environments that precipitate Fe(3)O(4) or Fe(3)S(4), Fe-bearing minerals that have magnetic properties and are enclosed in intracellular membranes. In contrast, studies on less-well ordered minerals have focused on Fe-, As-, Mn-, Au-, Se- and Cd-precipitates that occur intracellularly. The biological and environmental function of these particles remains a matter of debate.

  13. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  14. Regulatory role of intracellular sodium ions in neurotransmitter secretion.

    PubMed

    Melinek, R; Lev-Tov, A; Meiri, H; Erulkar, S D; Rahamimoff, R

    1982-01-01

    Calcium ions are the main inducer of quantal transmitter release of the frog neuromuscular junction; but even in their virtual absence from the extracellular medium, nerve stimulation causes a prolonged augmentation of transmitter release. These facts led to the hypothesis that an accumulation of intracellular sodium can serve as a slow secondary regulator of neurosecretion. Three lines of evidence presented in this article substantiate this hypothesis: firstly, veratridine, which is known to increase sodium fluxes through the voltage-dependent sodium channels, increases transmitter release after nerve stimulation. Secondly, monensin, which was shown to induce sodium transport through nerve membranes, increases evoked transmitter release, tetanic potentiation and posttetanic potentiation. Thirdly, sodium-filled phosphatidylcholine liposomes increase transmitter release. These effects of sodium are probably not due to a direct effect on the transmitter release mechanism, but are caused by sodium-induced calcium translocation from intracellular stores.

  15. Roles of cell confluency and fluid shear in 3-dimensional intracellular forces in endothelial cells.

    PubMed

    Hur, Sung Sik; del Álamo, Juan C; Park, Joon Seok; Li, Yi-Shuan; Nguyen, Hong A; Teng, Dayu; Wang, Kuei-Chun; Flores, Leona; Alonso-Latorre, Baldomero; Lasheras, Juan C; Chien, Shu

    2012-07-10

    We use a novel 3D inter-/intracellular force microscopy technique based on 3D traction force microscopy to measure the cell-cell junctional and intracellular tensions in subconfluent and confluent vascular endothelial cell (EC) monolayers under static and shear flow conditions. We found that z-direction cell-cell junctional tensions are higher in confluent EC monolayers than those in subconfluent ECs, which cannot be revealed in the previous 2D methods. Under static conditions, subconfluent cells are under spatially non-uniform tensions, whereas cells in confluent monolayers are under uniform tensions. The shear modulations of EC cytoskeletal remodeling, extracellular matrix (ECM) adhesions, and cell-cell junctions lead to significant changes in intracellular tensions. When a confluent monolayer is subjected to flow shear stresses with a high forward component comparable to that seen in the straight part of the arterial system, the intracellular and junction tensions preferentially increase along the flow direction over time, which may be related to the relocation of adherens junction proteins. The increases in intracellular tensions are shown to be a result of chemo-mechanical responses of the ECs under flow shear rather than a direct result of mechanical loading. In contrast, the intracellular tensions do not show a preferential orientation under oscillatory flow with a very low mean shear. These differences in the directionality and magnitude of intracellular tensions may modulate translation and transcription of ECs under different flow patterns, thus affecting their susceptibility for atherogenesis.

  16. Intracellular Protein Delivery for Treating Breast Cancer

    DTIC Science & Technology

    2014-08-01

    nanocapsules with specific cancer cell targeting ligands; Task 3. Preparing and testing of MMP activatable cell penetrating peptides (ACCPs)-coupled...AD_________________ Award Number: W81XWH-11-1-0371 TITLE: Intracellular Protein Delivery for Treating Breast Cancer PRINCIPAL INVESTIGATOR: Dr...SUBTITLE Intracellular Protein Delivery for Treating Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0371 5c. PROGRAM ELEMENT NUMBER 6

  17. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  18. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  19. Intracellular signal modulation by nanomaterials.

    PubMed

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  20. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms.

    PubMed

    Mead, Ben; Tomarev, Stanislav

    2017-04-01

    The loss of retinal ganglion cells (RGC) and their axons is one of the leading causes of blindness and includes traumatic (optic neuropathy) and degenerative (glaucoma) eye diseases. Although no clinical therapies are in use, mesenchymal stem cells (MSC) have demonstrated significant neuroprotective and axogenic effects on RGC in both of the aforementioned models. Recent evidence has shown that MSC secrete exosomes, membrane enclosed vesicles (30-100 nm) containing proteins, mRNA and miRNA which can be delivered to nearby cells. The present study aimed to isolate exosomes from bone marrow-derived MSC (BMSC) and test them in a rat optic nerve crush (ONC) model. Treatment of primary retinal cultures with BMSC-exosomes demonstrated significant neuroprotective and neuritogenic effects. Twenty-one days after ONC and weekly intravitreal exosome injections; optical coherence tomography, electroretinography, and immunohistochemistry was performed. BMSC-derived exosomes promoted statistically significant survival of RGC and regeneration of their axons while partially preventing RGC axonal loss and RGC dysfunction. Exosomes successfully delivered their cargo into inner retinal layers and the effects were reliant on miRNA, demonstrated by the diminished therapeutic effects of exosomes derived from BMSC after knockdown of Argonaute-2, a key miRNA effector molecule. This study supports the use of BMSC-derived exosomes as a cell-free therapy for traumatic and degenerative ocular disease. Stem Cells Translational Medicine 2017;6:1273-1285.

  1. Citrobacter koseri brain abscess in the neonatal rat: survival and replication within human and rat macrophages.

    PubMed

    Townsend, Stacy M; Pollack, Harvey A; Gonzalez-Gomez, Ignacio; Shimada, Hiroyuki; Badger, Julie L

    2003-10-01

    A unique feature of Citrobacter koseri is the extremely high propensity to initiate brain abscesses during neonatal meningitis. Previous clinical reports and studies on infant rats have documented many Citrobacter-filled macrophages within the ventricles and brain abscesses. It has been hypothesized that intracellular survival and replication within macrophages may be a mechanism by which C. koseri subverts the host response and elicits chronic infection, resulting in brain abscess formation. In this study, we showed that C. koseri causes meningitis and brain abscesses in the neonatal rat model, and we utilized histology and magnetic resonance imaging technology to visualize brain abscess formation. Histology and electron microscopy (EM) revealed that macrophages (and not fibroblasts, astrocytes, oligodendrocytes, or neurons) were the primary target for long-term C. koseri infection. To better understand C. koseri pathogenesis, we have characterized the interactions of C. koseri with human macrophages. We found that C. koseri survives and replicates within macrophages in vitro and that uptake of C. koseri increases in the presence of human pooled serum in a dose-dependent manner. EM studies lend support to the hypothesis that C. koseri uses morphologically different methods of uptake to enter macrophages. FcgammaRI blocking experiments show that this receptor primarily facilitates the entry of opsonized C. koseri into macrophages. Further, confocal fluorescence microscopy demonstrates that C. koseri survives phagolysosomal fusion and that more than 90% of intracellular C. koseri organisms are colocalized within phagolysosomes. The ability of C. koseri to survive phagolysosome fusion and replicate within macrophages may contribute to the establishment of chronic central nervous system infection including brain abscesses.

  2. Silicon nanowires as intracellular devices

    NASA Astrophysics Data System (ADS)

    Zimmerman, John F.

    Semiconductor nanowire devices are an exciting class of materials for biomedical and electrophysiology applications, with current studies primarily delivering substrate bound devices through mechanical abrasion or electroporation. However, the ability to distribute these devices in a drug-like fashion is an important step in developing next-generation active therapeutic devices. In this work, we will discuss the interaction of label free Silicon nanowires (SiNWs) with cellular systems, showing that they can be internalized in multiple cell lines, and undergo an active 'burst-like' transport process. (Abstract shortened by ProQuest.).

  3. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    PubMed

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  4. Survival of Environmental Mycobacteria in Acanthamoeba polyphaga

    PubMed Central

    Adékambi, Toïdi; Ben Salah, Skandar; Khlif, Mohamed; Raoult, Didier; Drancourt, Michel

    2006-01-01

    Free-living amoebae in water are hosts to many bacterial species living in such an environment. Such an association enables bacteria to select virulence factors and survive in adverse conditions. Waterborne mycobacteria (WBM) are important sources of community- and hospital-acquired outbreaks of nontuberculosis mycobacterial infections. However, the interactions between WBM and free-living amoebae in water have been demonstrated for only few Mycobacterium spp. We investigated the ability of a number (n = 26) of Mycobacterium spp. to survive in the trophozoites and cysts of Acanthamoeba polyphaga. All the species tested entered the trophozoites of A. polyphaga and survived at this location over a period of 5 days. Moreover, all Mycobacterium spp. survived inside cysts for a period of 15 days. Intracellular Mycobacterium spp. within amoeba cysts survived when exposed to free chlorine (15 mg/liter) for 24 h. These data document the interactions between free-living amoebae and the majority of waterborne Mycobacterium spp. Further studies are required to examine the effects of various germicidal agents on the survival of WBM in an aquatic environment. PMID:16957218

  5. The invA gene of Brucella melitensis is involved in intracellular invasion and is required to establish infection in a mouse model.

    PubMed

    Alva-Pérez, Jorge; Arellano-Reynoso, Beatriz; Hernández-Castro, Rigoberto; Suárez-Güemes, Francisco

    2014-05-15

    Some of the mechanisms underlying the invasion and intracellular survival of B. melitensis are still unknown, including the role of a subfamily of NUDIX enzymes, which have been described in other bacterial species as invasins and are present in Brucella spp. We have generated a mutation in the coding gene of one of these proteins, the invA gene (BMEI0215) of B. melitensis strain 133, to understand its role in virulence. HeLa cell invasion results showed that mutant strain survival was decreased 5-fold compared with that of the parental strain at 2 h pi (P<0.001). In a goat macrophage infection assay, mutant strain replication was 8-fold less than in the parental strain at 24 h pi (P<0.001); yet, at 48 h pi, no significant differences in intracellular replication were observed. Additionally, colocalization of the invA mutant with calregulin was significantly lower at 24 h pi compared with that of the parental strain. Furthermore, the mutant strain exhibited a low level of colocalization with cathepsin D, which was similar to the parental strain colocalization at 24 h pi. In vivo infection results demonstrated that spleen colonization was significantly lower with the mutant than with the parental strain. The immune response, measured in terms of antibody switching and IFN-γ transcription, was similar for Rev1 and infection with the mutant, although it was lower than the immune response elicited by the parental strain. Consequently, these results indicate that the invA gene is important during invasion but not for intracellular replication. Additionally, mutation of the invA gene results in in vivo attenuation.

  6. Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation

    PubMed Central

    Sorg, Robin A.; Lin, Leo; van Doorn, G. Sander; Sorg, Moritz; Olson, Joshua; Nizet, Victor; Veening, Jan-Willem

    2016-01-01

    The structure and composition of bacterial communities can compromise antibiotic efficacy. For example, the secretion of β-lactamase by individual bacteria provides passive resistance for all residents within a polymicrobial environment. Here, we uncover that collective resistance can also develop via intracellular antibiotic deactivation. Real-time luminescence measurements and single-cell analysis demonstrate that the opportunistic human pathogen Streptococcus pneumoniae grows in medium supplemented with chloramphenicol (Cm) when resistant bacteria expressing Cm acetyltransferase (CAT) are present. We show that CAT processes Cm intracellularly but not extracellularly. In a mouse pneumonia model, more susceptible pneumococci survive Cm treatment when coinfected with a CAT-expressing strain. Mathematical modeling predicts that stable coexistence is only possible when antibiotic resistance comes at a fitness cost. Strikingly, CAT-expressing pneumococci in mouse lungs were outcompeted by susceptible cells even during Cm treatment. Our results highlight the importance of the microbial context during infectious disease as a potential complicating factor to antibiotic therapy. PMID:28027306

  7. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed.

  8. Intracellular siderophore but not extracellular siderophore is required for full virulence in Metarhizium robertsii.

    PubMed

    Giuliano Garisto Donzelli, Bruno; Gibson, Donna M; Krasnoff, Stuart B

    2015-09-01

    Efficient iron acquisition mechanisms are fundamental for microbial survival in the environment and for pathogen virulence within their hosts. M. robertsii produces two known iron-binding natural products: metachelins, which are used to scavenge extracellular iron, and ferricrocin, which is strictly intracellular. To study the contribution of siderophore-mediated iron uptake and storage to M. robertsii fitness, we generated null mutants for each siderophore synthase gene (mrsidD and mrsidC, respectively), as well as for the iron uptake transcriptional repressor mrsreA. All of these mutants showed impaired germination speed, differential sensitivity to hydrogen peroxide, and differential ability to overcome iron chelation on growth-limiting iron concentrations. RT-qPCR data supported regulation of mrsreA, mrsidC, and mrsidD by supplied iron in vitro and during growth within the insect host, Spodoptera exigua. We also observed strong upregulation of the insect iron-binding proteins, transferrins, during infection. Insect bioassays revealed that ferricrocin is required for full virulence against S. exigua; neither the loss of metachelin production nor the deletion of the transcription factor mrsreA significantly affected M. robertsii virulence.

  9. Mitochondrial and Postmitochondrial Survival Signaling in Cancer

    PubMed Central

    Yadav, Neelu; Chandra, Dhyan

    2014-01-01

    Cancer cells are resistant to conventional chemotherapy and radiotherapy, however, the molecular mechanisms of resistance to therapy remain unclear. Cellular survival machinery protects mitochondrial integrity against endogenous or exogenous stresses. Prodeath molecules orchestrate around mitochondria to initiate and execute cell death in cancer, and also play an under appreciated role in survival of cancer cells. Prosurvival mechanisms can operate at mitochondrial and postmitochondrial levels to attenuate core apoptotic death program. It is intriguing to explore how prosurvival and prodeath molecules crosstalk to regulate mitochondrial functions leading to increased cancer cell survival. This review describes some putative survival mechanisms at mitochondria, which may play significant role in designing effective agents for cancer prevention and therapy. These survival pathways may also have significance in understanding other human pathophysiological conditions including diabetes, cardiovascular, autoimmune, and neurodegenerative diseases. PMID:24333692

  10. Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling.

    PubMed

    Skvortsova, Ira; Debbage, Paul; Kumar, Vinod; Skvortsov, Sergej

    2015-12-01

    Despite the fact that radiation therapy is a highly effective therapeutic approach, a small intratumoral cell subpopulation known as "cancer stem cells" (CSCs) is radiation-resistant and possesses specific molecular properties protecting it against radiation-induced damage. The exact mechanisms of this radioresistance are still not fully elucidated, but they relate to these cells' enhanced DNA repair capacities and their low intracellular ROS concentrations, resulting from their up-regulation of ROS scavengers. The low ROS content is accompanied by disturbances in cell cycle regulation, so it can be assumed that either CSCs are quiescent or dormant themselves, or that this cell population consists of at least two cell subpopulations: the normally and the slowly proliferating cells (quiescent or dormant cells). Slowly dividing CSCs show concomitant dysregulation of the signaling molecules mediating both cell cycle progression and maintenance of cell stemness. Despite a massive accumulation of data concerning the mechanisms underlying DNA damage response in CSCs, it represents a challenge to researchers in the era of personalized medicine to elucidate the role of intracellular ROS and of signaling pathways associated with the radiation resistance of these cells; there is a clear need to understand the molecular mechanisms helping CSCs to survive radiation exposure.

  11. Intracellular calcium buffering declines in aging adrenergic nerves.

    PubMed

    Tsai, H; Hewitt, C W; Buchholz, J N; Duckles, S P

    1997-01-01

    Stimulation-evoked norepinephrine release from rat tail artery adrenergic nerves increased with advancing age in the Fischer-344 rat when function of norepinephrine uptake mechanisms and prejunctional alpha-2 adrenoceptors were blocked. When calcium channels were bypassed with the ionophore, ionomycin (4 microM), norepinephrine release from aged nerves (20 months) was still elevated as compared to 6-month-old nerves. Norepinephrine release stimulated by high K+ was also higher in 20-month nerves. The intracellular calcium chelator, 1,2 bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetomethylester (BAPTA/AM), was used to determine whether age-related increases in norepinephrine release could be reversed with the addition of an artificial intracellular calcium buffer. Exposure to BAPTA/AM decreased stimulation-evoked norepinephrine release in both old and young tail arteries; however, the effect was significantly greater in older arteries. When mitochondrial calcium uptake was compromised using the uncoupler of mitochondrial oxidative phosphorylation, dinitrophenol, BAPTA caused a further decrease in stimulation-evoked norepinephrine release in 20-month tail arteries with much less effect in 6-month-old nerves. These results suggest that intracellular calcium buffering is less efficient in older nerves.

  12. Twenty years of fluorescence imaging of intracellular chloride

    PubMed Central

    Arosio, Daniele; Ratto, Gian Michele

    2014-01-01

    Chloride homeostasis has a pivotal role in controlling neuronal excitability in the adult brain and during development. The intracellular concentration of chloride is regulated by the dynamic equilibrium between passive fluxes through membrane conductances and the active transport mediated by importers and exporters. In cortical neurons, chloride fluxes are coupled to network activity by the opening of the ionotropic GABAA receptors that provides a direct link between the activity of interneurons and chloride fluxes. These molecular mechanisms are not evenly distributed and regulated over the neuron surface and this fact can lead to a compartmentalized control of the intracellular concentration of chloride. The inhibitory drive provided by the activity of the GABAA receptors depends on the direction and strength of the associated currents, which are ultimately dictated by the gradient of chloride, the main charge carrier flowing through the GABAA channel. Thus, the intracellular distribution of chloride determines the local strength of ionotropic inhibition and influences the interaction between converging excitation and inhibition. The importance of chloride regulation is also underlined by its involvement in several brain pathologies, including epilepsy and disorders of the autistic spectra. The full comprehension of the physiological meaning of GABAergic activity on neurons requires the measurement of the spatiotemporal dynamics of chloride fluxes across the membrane. Nowadays, there are several available tools for the task, and both synthetic and genetically encoded indicators have been successfully used for chloride imaging. Here, we will review the available sensors analyzing their properties and outlining desirable future developments. PMID:25221475

  13. Human TDP-43 and FUS selectively affect motor neuron maturation and survival in a murine cell model of ALS by non-cell-autonomous mechanisms.

    PubMed

    Wächter, Nicole; Storch, Alexander; Hermann, Andreas

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) were recently found to cause familial and sporadic amyotrophic lateral sclerosis (ALS). The mechanisms by which mutations within these genes cause ALS are not understood. We established murine embryonic stem cell (ESC)-based cell models that stably express the human wild-type (WT) and various ALS causing mutations of TDP-43 (A315T) and FUS (R514S, R521C and P525L). We investigated their effect on pan-neuron as well as motor neuron degeneration. Finally, non-cell-autonomous mediated neurodegeneration by muscle cells was investigated. Expression of mutant hTDP-43, but not wild-type TDP-43, as well as wild-type and mutant hFUS proteins induced neuronal degeneration with partial selectivity for motor neurons. Motor neuron loss was accompanied by abnormal neurite morphology and length. In chimeric coculture experiments with control motor neurons and mutant muscle cells (as their major target cells), we detected that mutant hTDP-43 A315T as well as wild-type and hFUS P525L expression only in muscle cells is sufficient to exert degenerative effects on control motor neurons. In conclusion, our data indicate that a selective vulnerability of motor neurons expressing the pathogenic ALS-causing genes TDP-43 and FUS, is, at least in part, mediated through non-cell-autonomous mechanisms.

  14. Internal affairs: investigating the Brucella intracellular lifestyle.

    PubMed

    von Bargen, Kristine; Gorvel, Jean-Pierre; Salcedo, Suzana P

    2012-05-01

    Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.

  15. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Captain, Burjor; Sortino, Salvatore; Callan, John F; Raymo, Françisco M

    2015-09-07

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.

  16. Lipid raft-dependent uptake, signaling, and intracellular fate of Porphyromonas gingivalis in mouse macrophages

    PubMed Central

    Wang, Min; Hajishengallis, George

    2009-01-01

    Summary Lipid rafts are cholesterol-enriched microdomains involved in cellular trafficking and implicated as portals for certain pathogens. We sought to determine whether the oral pathogen Porphyromonas gingivalis enters macrophages via lipid rafts, and if so, to examine the impact of raft entry on its intracellular fate. Using J774A.1 mouse macrophages, we found that P. gingivalis colocalizes with lipid rafts in a cholesterol-dependent way. Depletion of cellular cholesterol using methyl-β-cyclodextrin resulted in about 50% inhibition of P. gingivalis uptake, although this effect was reversed by cholesterol reconstitution. The intracellular survival of P. gingivalis was dramatically inhibited in cholesterol-depleted cells relative to untreated or cholesterol-reconstituted cells, even when infections were adjusted to allow equilibration of the initial intracellular bacterial load. P. gingivalis thus appeared to exploit raft-mediated uptake for promoting its survival. Consistent with this, lipid raft disruption enhanced the colocalization of internalized P. gingivalis with lysosomes. In contrast, raft disruption did not affect the expression of host receptors interacting with P. gingivalis, although it significantly inhibited signal transduction. In summary, P. gingivalis uses macrophage lipid rafts as signaling and entry platforms, which determine its intracellular fate to the pathogen’s own advantage. PMID:18547335

  17. KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    PubMed Central

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-01-01

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the

  18. KRIT1 regulates the homeostasis of intracellular reactive oxygen species.

    PubMed

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-07-26

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1(-/-) cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1(-/-) cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45alpha, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell

  19. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    PubMed

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  20. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

    PubMed Central

    Bütepage, Mareike; Eckei, Laura; Verheugd, Patricia; Lüscher, Bernhard

    2015-01-01

    A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. PMID:26426055

  1. BDI-modelling of complex intracellular dynamics.

    PubMed

    Jonker, C M; Snoep, J L; Treur, J; Westerhoff, H V; Wijngaards, W C A

    2008-03-07

    A BDI-based continuous-time modelling approach for intracellular dynamics is presented. It is shown how temporalized BDI-models make it possible to model intracellular biochemical processes as decision processes. By abstracting from some of the details of the biochemical pathways, the model achieves understanding in nearly intuitive terms, without losing veracity: classical intentional state properties such as beliefs, desires and intentions are founded in reality through precise biochemical relations. In an extensive example, the complex regulation of Escherichia coli vis-à-vis lactose, glucose and oxygen is simulated as a discrete-state, continuous-time temporal decision manager. Thus a bridge is introduced between two different scientific areas: the area of BDI-modelling and the area of intracellular dynamics.

  2. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force

    PubMed Central

    Glasser, Nathaniel R.; Kern, Suzanne E.

    2014-01-01

    Summary While many studies have explored the growth of Pseudomonas aeruginosa, comparatively few have focused on its survival. Previously, we reported that endogenous phenazines support the anaerobic survival of P. aeruginosa, yet the physiological mechanism underpinning survival was unknown. Here, we demonstrate that phenazine redox cycling enables P. aeruginosa to oxidize glucose and pyruvate into acetate, which promotes survival by coupling acetate and ATP synthesis through the activity of acetate kinase. By measuring intracellular NAD(H) and ATP concentrations, we show that survival is correlated with ATP synthesis, which is tightly coupled to redox homeostasis during pyruvate fermentation but not during arginine fermentation. We also show that ATP hydrolysis is required to generate a proton-motive force using the ATP synthase complex during fermentation. Together, our results suggest that phenazines enable maintenance of the proton-motive force by promoting redox homeostasis and ATP synthesis. This work demonstrates the more general principle that extracellular redox-active molecules, such as phenazines, can broaden the metabolic versatility of microorganisms by facilitating energy generation. PMID:24612454

  3. A Winter Survival Unit.

    ERIC Educational Resources Information Center

    Phillips, Ronald E.

    1979-01-01

    The article is a condensation of materials from the winter survival unit of a Canadian snow ecology course. The unit covers: cold physiology, frostbite, snowblindness, hypothermia, winter campout, and survival strategies. (SB)

  4. The mystery of intracellular developmental programmes and timers.

    PubMed

    Raff, M

    2006-11-01

    There has been a revolution in understanding animal development in the last 25 years or so, but there is at least one area of development that has been relatively neglected and therefore remains largely mysterious. This is the intracellular programmes and timers that run in developing precursor cells and change the cells over time. The molecular mechanisms underlying these programmes are largely unknown. My colleagues and I have studied such programmes in two types of rodent neural precursor cells: those that give rise to oligodendrocytes, which make myelin in the CNS (central nervous system), and those that give rise to the various cell types i