Science.gov

Sample records for intranasal nanoparticle transit

  1. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles.

    PubMed

    Baltzley, Sarah; Mohammad, Atiquzzaman; Malkawi, Ahmad H; Al-Ghananeem, Abeer M

    2014-12-01

    The aim of this study was to investigate olanzapine (OZ) systemic absolute bioavailability after intranasal (i.n.) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of olanzapine following intranasal administration. Olanzapine-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions and studied in terms of their size, drug loading, and in vitro release. The OZ nanoparticles were administered i.n. to rabbits, and OZ plasma concentration at predetermined time points was compared to i.n. administration of OZ in solution. The concentrations of OZ in plasma were analyzed by ultra performance liquid chromatography mass spectroscopy (UPLC/MS). OZ-loaded chitosan nanoparticles significantly (p < 0.05) enhanced systemic absorption with 51 ± 11.2% absolute bioavailability as compared to 28 ± 6.7% after i.n. administration of OZ solution. The results of the present study suggest that intranasal administration of OZ-loaded chitosan nanoparticles formulation could be an attractive modality for delivery of OZ systemically.

  2. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration.

    PubMed

    Stano, Armando; van der Vlies, André J; Martino, Mikael M; Swartz, Melody A; Hubbell, Jeffrey A; Simeoni, Eleonora

    2011-01-17

    Degradable polymer nanoparticles (NPs, 50 nm) based on polypropylene sulfide (PPS) were conjugated to thiolated antigen and adjuvant proteins by reversible disulfide bonds and evaluated in mucosal vaccination. Ovalbumin was used as a model antigen, and antigen-conjugated NPs were administered intranasally in the mouse. We show penetration of nasal mucosae, transit via M cells, and uptake by antigen-presenting cells in the nasal-associated lymphoid tissue. Ovalbumin-conjugated NPs induced cytotoxic T lymphocytic responses in lung and spleen tissues, as well as humoral response in mucosal airways. Co-conjugation of the TLR5 ligand flagellin further enhanced humoral responses in the airways as well as in the distant vaginal and rectal mucosal compartments and induced cellular immune responses with a Th1 bias, in contrast with free flagellin. The PPS NP platform thus appears interesting as a platform for intranasally-administered mucosal vaccination for inducing broad mucosal immunity.

  3. Intranasal Delivery of pGDNF Nanoparticles for Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Harmon, Brendan Trevor

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects the dopaminergic A9 nigrostriatal tract. For dopamine neurons specifically, glial cell-derived neurotrophic factor (GDNF) has been shown to promote their survival and proliferation both in culture and in vivo. GDNF has also proven to be neuroprotective and restorative in various animal models of PD and some human clinical trials. However, its delivery to the brain has required invasive surgical routes which are not clinically practical for many patients. The main objective of this project was to test intranasal delivery to the brain of a nanoparticle vector incorporating an expression plasmid for GDNF (pGDNF). The intranasal route circumvents the blood-brain barrier, allowing larger sized vectors into the central nervous system while avoiding peripheral distribution. This approach would provide a renewable source of GDNF within the target areas of the brain, the striatum and the substantia nigra (SN) without the need for surgical injections or frequent re-dosing. A PEGylated polylysine compacted plasmid nanoparticle vector (PEG-CK30), developed by Copernicus Therapeutics, Inc., has been shown to transfect neurons and glial cells in vivo while lacking the safety issues present with other vectors. The first goal of this work was to determine if these PEG-CK30 compacted plasmid nanoparticles can successfully transfect cells and express the reporter protein, enhanced green fluorescent protein (eGFP) in the rat brain after intranasal administration. Initial in vivo experiments utilized the expression plasmid pCG, expressing eGFP under the fast-acting cytomegalovirus (CMV) promoter. Intranasal administration of pCG nanoparticles resulted in evidence of transfection of brain cells, as shown both qualitatively, by GFP-immunohistochemistry, and quantitatively, by GFP-ELISA. Expression was detected throughout the rat brain two days post-administration. Following the proof

  4. Systemic and behavioral effects of intranasal administration of silver nanoparticles.

    PubMed

    Davenport, Laurie L; Hsieh, Heidi; Eppert, Bryan L; Carreira, Vinicius S; Krishan, Mansi; Ingle, Taylor; Howard, Paul C; Williams, Michael T; Vorhees, Charles V; Genter, Mary Beth

    2015-01-01

    Use of silver nanoparticles (AgNPs) for their antimicrobial properties is widespread. Much of the previous work on the toxicity of AgNPs has been conducted in vitro or following oral or intravenous administration in vivo. Intranasal (IN) instillation of AgNPs mimics inhalation exposure and allows further exploration of the toxicity of these particles via respiratory tract exposure. The present study involved 1) single-dose exposures to assess tissue distribution and toxicity and 2) repeated exposures to assess behavioral effects of IN AgNP exposure (nominally uncoated 25 nm AgNP). AgNP deposition was localized in the liver, gut-associated lymphoid tissue, and brain. Decrease cellularity in spleen follicles was observed in treated mice, along with changes in cell number and populations in the spleen. The splenic GSH:GSSG ratio was also reduced following AgNP exposure. Expression of the oxidative stress-responsive gene Hmox1 was elevated in the hippocampus, but not cortex of treated mice, as was the level of HMOX1 protein. Mice receiving 7 days of IN exposure to 50 mg/kg AgNPs exhibited similar learning- and memory-related behaviors to control mice, except that treated mice spent significantly less time in the target quadrant of the Morris Water Maze during the acquisition phase probe trial. These findings indicate systemic distribution and toxicity following IN administration of AgNPs.

  5. Systemic and Behavioral Effects of Intranasal Administration of Silver Nanoparticles

    PubMed Central

    Davenport, Laurie L.; Hsieh, Heidi; Eppert, Bryan L.; Carreira, Vinicius S.; Krishan, Mansi; Ingle, Taylor; Howard, Paul C.; Williams, Michael T.; Vorhees, Charles V.; Genter, Mary Beth

    2015-01-01

    Use of silver nanoparticles (AgNPs) for their antimicrobial properties is widespread. Much of the previous work on the toxicity of AgNPs has been conducted in vitro or following oral or intravenous administration in vivo. Intranasal (IN) instillation of AgNPs mimics inhalation exposure and allows further exploration of the toxicity of these particles via respiratory tract exposure. The present study involved 1) single-dose exposures to assess tissue distribution and toxicity and 2) repeated exposures to assess behavioral effects of IN AgNP exposure (nominally uncoated 25 nm AgNP). AgNP deposition was localized in the liver, gut-associated lymphoid tissue, and brain. Decrease cellularity in spleen follicles was observed in treated mice, along with changes in cell number and populations in the spleen. The splenic GSH:GSSG ratio was also reduced following AgNP exposure. Expression of the oxidative stress-responsive gene Hmox1 was elevated in the hippocampus, but not cortex of treated mice, as was the level of HMOX1 protein. Mice receiving 7 days of IN exposure to 50 mg/kg AgNPs exhibited similar learning- and memory-related behaviors to control mice, except that treated mice spent significantly less time in the target quadrant of the Morris Water Maze during the acquisition phase probe trial. These findings indicate systemic distribution and toxicity following IN administration of AgNPs. PMID:26340819

  6. UEA I-bearing nanoparticles for brain delivery following intranasal administration.

    PubMed

    Gao, Xiaoling; Chen, Jun; Tao, Weixing; Zhu, Jianhua; Zhang, Qizhi; Chen, Hongzhuan; Jiang, Xinguo

    2007-08-01

    Surface engineering of nanoparticles with lectins opened a novel pathway to improve the brain uptake of agents loaded by biodegradable PEG-PLA nanoparticles following intranasal administration. Ulex europeus agglutinin I (UEA I), specifically binding to l-fucose, which is largely located in the olfactory epithelium, was selected as a promising targeting ligand and conjugated onto the PEG-PLA nanoparticles surface with an optimized protocol relying on maleimide-mediated covalent binding technique. The in vivo results in rats suggested that UEA I modification at the nanoparticles surface facilitated the absorption of a fluorescent marker--6-coumarin associated with the nanoparticles into the brain following intranasal administration with significant increase in the area under the concentration-time curve (about 1.7 times) in different brain tissues compared with that of coumarin incorporated in the unmodified ones. UEA I-conjugation also elevated the brain-targeting efficiency of nanoparticles. Inhibition experiment of specific sugar suggested that the interactions between the nasal mucosa and the lectinised nanoparticles were due to the immobilization of carbohydrate-binding pockets on the surface of the nanoparticles. Distribution profiles of UEA I-modified nanoparticles indicated their higher affinity to the olfactory mucosa than to the respiratory one. Therefore, the UEA I-modified nanoparticles might serve as potential carriers for brain drug delivery, especially for mental therapeutics with multiple biological effects.

  7. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease.

    PubMed

    Zhang, Chi; Chen, Jie; Feng, Chengcheng; Shao, Xiayan; Liu, Qingfeng; Zhang, Qizhi; Pang, Zhiqing; Jiang, Xinguo

    2014-01-30

    Disabilities caused by neurodegeneration have become one of the main causes of mortality in elderly population, with drug distribution to the brain remaining one of the most difficult challenges in the treatment of the central nervous system (CNS) diseases due to the existence of blood-brain barrier. Lectins modified polyethylene glycol-polylactide-polyglycolide (PEG-PLGA) nanoparticles could enhance the drug delivery to the brain following intranasal administration. In this study, basic fibroblast growth factor (bFGF) was entrapped in nanoparticles conjugated with Solanum tuberosum lectin (STL), which selectively binds to N-acetylglucosamine on the nasal epithelial membrane for its brain delivery. The resulting nanoparticles had uniform particle size and negative zeta potential. The brain distribution of the formulations following intranasal administration was assessed using radioisotopic tracing method. The areas under the concentration-time curve of (125)I-bFGF in the olfactory bulb, cerebrum, and cerebellum of rats following nasal application of STL modified nanoparticles (STL-bFGF-NP) were 1.79-5.17 folds of that of rats with intravenous administration, and 0.61-2.21 and 0.19-1.07 folds higher compared with intranasal solution and unmodified nanoparticles, respectively. Neuroprotective effect was evaluated using Mirror water maze task in rats with intracerebroventricular injection of β-amyloid25-35 and ibotenic acid. The spatial learning and memory of Alzheimer's disease (AD) rats in STL-bFGF-NP group were significantly improved compared with AD model group, and were also better than other preparations. The results were consistent with the value of choline acetyltransferase activity of rat hippocampus as well as the histological observations of rat hippocampal region. The histopathology assays also confirmed the in vivo safety of STL-bFGF-NP. These results clearly indicated that STL-NP was a promising drug delivery system for peptide and protein drugs such as

  8. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration.

    PubMed

    Xia, Huimin; Gao, Xiaoling; Gu, Guangzhi; Liu, Zhongyang; Zeng, Ni; Hu, Quanyin; Song, Qingxiang; Yao, Lei; Pang, Zhiqing; Jiang, Xinguo; Chen, Jun; Chen, Hongzhuan

    2011-12-01

    The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. Low-molecular-weight protamine (LMWP) as a cell-penetrating peptide possesses distinct advantages including high cell translocation potency, absence of toxicity of peptide itself, and the feasibility as an efficient carrier for delivering therapeutics. Therefore, it was hypothesized that brain delivery of nanoparticles conjugated with LMWP should be efficiently enhanced following intranasal administration. LMWP was functionalized to the surface of PEG-PLA nanoparticles (NP) via a maleimide-mediated covalent binding procedure. Important parameters such as particle size distribution, zeta potential and surface content were determined, which confirmed the conjugation of LMWP to the surface of nanoparticle. Using 16HBE14o- cells as the cell model, LMWP-NP was found to exhibit significantly enhanced cellular accumulation than that of unmodified NP via both lipid raft-mediated endocytosis and direct translocation processes without causing observable cytotoxic effects. Following intranasal administration of coumarin-6-loaded LMWP-NP, the AUC(0-8 h) of the fluorescent probe detected in the rat cerebrum, cerebellum, olfactory tract and olfactory bulb was found to be 2.03, 2.55, 2.68 and 2.82 folds, respectively, compared to that of coumarin carried by NP. Brain distribution analysis suggested LMWP-NP after intranasal administration could be delivered to the central nervous system along both the olfactory and trigeminal nerves pathways. The findings clearly indicated that the brain delivery of nanoparticles could be greatly facilitated by LMWP and the LMWP-functionalized nanoparticles appears as a effective and safe carrier for nose-to-brain drug delivery in potential diagnostic and therapeutic applications.

  9. Intranasal delivery of chitosan-siRNA nanoparticle formulation to the brain.

    PubMed

    Malhotra, Meenakshi; Tomaro-Duchesneau, Catherine; Saha, Shyamali; Prakash, Satya

    2014-01-01

    Neurodegeneration is characterized by a progressive loss of neuron structure and function. Most neurodegenerative diseases progress slowly over the time. There is currently no cure available for any neurodegenerative disease, and the existing therapeutic interventions only alleviate the symptoms of the disease. The advances in the drug discovery research have come to a halt with a lack of effective means to deliver drugs at the targeted site. In addition, the route of delivering the drugs is equally important as most invasive techniques lead to postoperative complications. This chapter focuses on a non-invasive, intranasal mode of therapeutic delivery using nanoparticles, which is currently being explored. The intranasal route of delivery is a well-established route to deliver drugs via the olfactory and trigeminal neuronal pathways. It is known to be the fastest and most effective way to bypass the blood-brain barrier to reach the central nervous system. The presented chapter highlights the method of intranasal delivery in mice using chitosan-siRNA nanoparticle formulation, under mild anesthesia and the identification of successful siRNA delivery in the brain tissues, through histology and other well-established laboratory protocols.

  10. Intranasal delivery of nanoparticle-based vaccine increases protection against S. pneumoniae

    NASA Astrophysics Data System (ADS)

    Mott, Brittney; Thamake, Sanjay; Vishwanatha, Jamboor; Jones, Harlan P.

    2013-05-01

    Nanoparticle (NP) technologies are becoming commonplace in the development of vaccine delivery systems to protect against various diseases. The current study determined the efficacy of intranasal delivery of a 234 ± 87.5 nm poly lactic-co-glycolic acid nanoparticle vaccine construct in establishing protection against experimental respiratory pneumococcal infection. Nanoparticles encapsulating heat-killed Streptococcus pneumoniae (NP-HKSP) were retained in the lungs 11 days following nasal administration compared to empty NP. Immunization with NP-HKSP produced significant resistance against S. pneumoniae infection compared to administration of HKSP alone. Increased protection correlated with a significant increase in antigen-specific Th1-associated IFN-γ cytokine response by pulmonary lymphocytes. This study establishes the efficacy of NP-based technology as a non-invasive and targeted approach for nasal-pulmonary immunization against pulmonary infections.

  11. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression.

    PubMed

    Haque, Shadabul; Md, Shadab; Sahni, Jasjeet Kaur; Ali, Javed; Baboota, Sanjula

    2014-01-01

    The purpose of the present study was to investigate the potential of Venlafaxine loaded alginate nanoparticles (VLF AG-NPs) for treatment of depression via intranasal (i.n.) nose to brain delivery route. The VLF AG-NPs were prepared and optimized on the basis of various physio-chemical characteristics. Pharmacodynamic studies of the VLF AG-NPs for antidepressant activity were carried in-vivo by forced swimming test and locomotor activity test on albino Wistar rats. VLF AG-NPsi.n. treatment significantly improved the behavioural analysis parameters i.e. swimming, climbing, and immobility in comparison to the VLF solutioni.n. and VLF tabletoral. The intranasal VLF AG-NPs also improved locomotor activity when compared with VLF solutioni.n. and VLF tabletoral. Confocal laser scanning fluorescence microscopy studies were performed on isolated organs of rats after intravenous and intranasal administrations of Rodamine-123 loaded alginate nanoparticles to determine its efficacy for nose to brain delivery and also for its qualitative distribution to other organs. Brain uptake and pharmacokinetic studies were performed by determination of VLF concentration in blood and brain respectively for VLF AG-NPsi.n., VLF solutioni.n. and VLF solutioni.v. The greater brain/blood ratios for VLF AG-NPsi.n. in comparison to VLF solutioni.n. and VLF solutioni.v. respectively at 30 min are indicative of superiority of alginate nanoparticles for direct nose to brain transport of VLF. Thus, VLF AG-NPsi.n. delivered greater VLF to the brain in comparison to VLF solution which indicates that VLF AG-NPs could be a promising approach for the treatment of depression.

  12. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer's disease.

    PubMed

    Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid

    2016-09-20

    Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (<200nm) as determined by dynamic light scattering technique and transmission electron microscopy, assured transcellular transport across olfactory axons whose diameter was ≈200nm and then paving a direct path to brain. TFB-NPs and TFB-SLNs resulted in 64.11±2.21% and 57.81±5.32% entrapment efficiencies respectively which again asserted protection of drug from chemical and biological degradation in nasal cavity. In vitro release studies proved the sustained release of TFB from TFB-NPs and TFB-SLNs in comparison with pure drug, indicating prolonged residence times of drug at targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles.

  13. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens

    PubMed Central

    Ochyl, Lukasz J.; Akerberg, Jonathan; Moon, James J.

    2015-01-01

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50 ~0.2 mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50 > 4 mg/ml), as measured with bone marrow dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8+ T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, compared with the lack of sero-conversion in mice immunized with the equivalent doses of soluble F1-V vaccine. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  14. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens.

    PubMed

    Fan, Yuchen; Sahdev, Preety; Ochyl, Lukasz J; J Akerberg, Jonathan; Moon, James J

    2015-06-28

    Here we report the development of a new cationic liposome-hyaluronic acid (HA) hybrid nanoparticle (NP) system and present our characterization of these NPs as an intranasal vaccine platform using a model antigen and F1-V, a candidate recombinant antigen for Yersinia pestis, the causative agent of plague. Incubation of cationic liposomes composed of DOTAP and DOPE with anionic HA biopolymer led to efficient ionic complexation and formation of homogenous liposome-polymer hybrid NPs, as evidenced by fluorescence resonance energy transfer, dynamic light scattering, and nanoparticle tracking analyses. Incorporation of cationic liposomes with thiolated HA allowed for facile surface decoration of NPs with thiol-PEG, resulting in the formation of DOTAP/HA core-PEG shell nanostructures. These NPs, termed DOTAP-HA NPs, exhibited improved colloidal stability and prolonged antigen release. In addition, cytotoxicity associated with DOTAP liposomes (LC50~0.2mg/ml) was significantly reduced by at least 20-fold with DOTAP-HA NPs (LC50>4mg/ml), as measured with bone marrow derived dendritic cells (BMDCs). Furthermore, NPs co-loaded with ovalbumin (OVA) and a molecular adjuvant, monophosphoryl lipid A (MPLA) promoted BMDC maturation and upregulation of co-stimulatory markers, including CD40, CD86, and MHC-II, and C57BL/6 mice vaccinated with NPs via intranasal route generated robust OVA-specific CD8(+) T cell and antibody responses. Importantly, intranasal vaccination with NPs co-loaded with F1-V and MPLA induced potent humoral immune responses with 11-, 23-, and 15-fold increases in F1-V-specific total IgG, IgG1, and IgG2c titers in immune sera by day 77, respectively, and induced balanced Th1/Th2 humoral immune responses, whereas mice immunized with the equivalent doses of soluble F1-V vaccine failed to achieve sero-conversion. Overall, these results suggest that liposome-polymer hybrid NPs may serve as a promising vaccine delivery platform for intranasal vaccination against Y

  15. Development, Optimization, and Evaluation of Carvedilol-Loaded Solid Lipid Nanoparticles for Intranasal Drug Delivery.

    PubMed

    Aboud, Heba M; El Komy, Mohammed H; Ali, Adel A; El Menshawe, Shahira F; Abd Elbary, Ahmed

    2016-12-01

    Carvedilol, a beta-adrenergic blocker, suffers from poor systemic availability (25%) due to first-pass metabolism. The aim of this work was to improve carvedilol bioavailability through developing carvedilol-loaded solid lipid nanoparticles (SLNs) for nasal administration. SLNs were prepared by emulsion/solvent evaporation method. A 2(3) factorial design was employed with lipid type (Compritol or Precirol), surfactant (1 or 2% w/v poloxamer 188), and co-surfactant (0.25 or 0.5% w/v lecithin) concentrations as independent variables, while entrapment efficiency (EE%), particle size, and amount of carvedilol permeated/unit area in 24 h (Q 24) were the dependent variables. Regression analysis was performed to identify the optimum formulation conditions. The in vivo behavior was evaluated in rabbits comparing the bioavailability of carvedilol after intravenous, nasal, and oral administration. The results revealed high drug EE% ranging from 68 to 87.62%. Carvedilol-loaded SLNs showed a spherical shape with an enriched core drug loading pattern having a particle size in the range of 66 to 352 nm. The developed SLNs exhibited significant high amounts of carvedilol permeated through the nasal mucosa as confirmed by confocal laser scanning microscopy. The in vivo pharmacokinetic study revealed that the absolute bioavailability of the optimized intranasal SLNs (50.63%) was significantly higher than oral carvedilol formulation (24.11%). Hence, we conclude that our developed SLNs represent a promising carrier for the nasal delivery of carvedilol.

  16. Using Gelatin Nanoparticle Mediated Intranasal Delivery of Neuropeptide Substance P to Enhance Neuro-Recovery in Hemiparkinsonian Rats

    PubMed Central

    Xiang, Qi; Yu, Wen-Ze; Lin, Qian; Tian, Fu-Rong; Mao, Kai-Li; Lv, Chuan-Zhu; Wáng, Yi-Xiáng J.; Lu, Cui-Tao

    2016-01-01

    Purpose Intranasal administration of phospholipid-based gelatin nanoparticles (GNP) was prepared to investigate the neuro-recovery effects of neuropeptide Substance P (SP) on hemiparkinsonian rats. Methods The SP-loaded gelatin nanoparticles (SP-GNP) were prepared by a water-in-water emulsion method and possessed high stability, encapsulating efficiency and loading capacity. PC-12 cells were used to examine the growth enhancement of SP-GNP in vitro by MTT assays and flow cytometry (FCM). The therapeutic effects of SP-GNP on 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats were assessed by quantifying rotational behavior and the levels of tyrosine hydroxylase (TH), phosphorylated c-Jun protein (p-c-Jun) and Caspase-3 (Cas-3) expressed in substantia nigra (SN) region of hemiparkinsonian rats. Results PC-12 cells under SP-GNP treatment showed better cell viability and lower degree of apoptosis than those under SP solution treatment. Hemiparkinsonian rats under intranasal SP-GNP administration demonstrated better behavioral improvement, higher level of TH in SN along with much lower extent of p-c-Jun and Cas-3 than those under intranasal SP solution administration and intravenous SP-GNP administration. Conclusions With the advantages of GNP and nose-to-brain pathway, SP can be effectively delivered into the damaged SN region and exhibit its neuro-recovery function through the inhibition on JNK pathway and dopaminergic neuron apoptosis. PMID:26894626

  17. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain.

    PubMed

    Liu, Qingfeng; Shao, Xiayan; Chen, Jie; Shen, Yehong; Feng, Chengcheng; Gao, Xiaoling; Zhao, Yue; Li, Jingwei; Zhang, Qizhi; Jiang, Xinguo

    2011-02-15

    Biodegradable polymer-based nanoparticles have been widely studied to deliver therapeutic agents to the brain after intranasal administration. However, knowledge as to the side effects of nanoparticle delivery system to the brain is limited. The aim of this study was to investigate the in vivo toxicity and immunogenicity of wheat germ agglutinin (WGA) conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles (WGA-NP) after intranasal instillation. Sprague-Dawley rats were intranasally given WGA-NP for 7 continuous days. Amino acid neurotransmitters, lactate dehydrogenase (LDH) activity, reduced glutathione (GSH), acetylcholine, acetylcholinesterase activity, tumor necrosis factor α (TNF-α) and interleukin-8 (IL-8) in rat olfactory bulb (OB) and brain were measured to estimate the in vivo toxicity of WGA-NP. Balb/C mice were intranasally immunized by WGA-NP and then WGA-specific antibodies in serum and nasal wash were detected by indirect ELISA. WGA-NP showed slight toxicity to brain tissue, as evidenced by increased glutamate level in rat brain and enhanced LDH activity in rat OB. No significant changes in acetylcholine level, acetylcholinesterase activity, GSH level, TNF-α level and IL-8 level were observed in rat OB and brain for the WGA-NP group. WGA-specific antibodies in mice serum and nasal wash were not increased after two intranasal immunizations of WGA-NP. These results demonstrate that WGA-NP is a safe carrier system for intranasal delivery of therapeutic agents to the brain.

  18. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain

    SciTech Connect

    Liu Qingfeng; Shao Xiayan; Chen Jie; Shen Yehong; Feng Chengcheng; Gao Xiaoling; Zhao Yue; Li Jingwei; Zhang Qizhi Jiang, Xinguo

    2011-02-15

    Biodegradable polymer-based nanoparticles have been widely studied to deliver therapeutic agents to the brain after intranasal administration. However, knowledge as to the side effects of nanoparticle delivery system to the brain is limited. The aim of this study was to investigate the in vivo toxicity and immunogenicity of wheat germ agglutinin (WGA) conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles (WGA-NP) after intranasal instillation. Sprague-Dawley rats were intranasally given WGA-NP for 7 continuous days. Amino acid neurotransmitters, lactate dehydrogenase (LDH) activity, reduced glutathione (GSH), acetylcholine, acetylcholinesterase activity, tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-8 (IL-8) in rat olfactory bulb (OB) and brain were measured to estimate the in vivo toxicity of WGA-NP. Balb/C mice were intranasally immunized by WGA-NP and then WGA-specific antibodies in serum and nasal wash were detected by indirect ELISA. WGA-NP showed slight toxicity to brain tissue, as evidenced by increased glutamate level in rat brain and enhanced LDH activity in rat OB. No significant changes in acetylcholine level, acetylcholinesterase activity, GSH level, TNF-{alpha} level and IL-8 level were observed in rat OB and brain for the WGA-NP group. WGA-specific antibodies in mice serum and nasal wash were not increased after two intranasal immunizations of WGA-NP. These results demonstrate that WGA-NP is a safe carrier system for intranasal delivery of therapeutic agents to the brain.

  19. Intranasal Administration of Novel Chitosan Nanoparticle/DNA Complexes Induces Antibody Response to Hepatitis B Surface Antigen in Mice.

    PubMed

    Lebre, F; Borchard, G; Faneca, H; Pedroso de Lima, M C; Borges, O

    2016-02-01

    The generation of strong pathogen-specific immune responses at mucosal surfaces where hepatitis B virus (HBV) transmission can occur is still a major challenge. Therefore, new vaccines are urgently needed in order to overcome the limitations of existing parenteral ones. Recent studies show that this may be achieved by intranasal immunization. Chitosan has gained attention as a nonviral gene delivery system; however, its use in vivo is limited due to low transfection efficiency mostly related to strong interaction between the negatively charged DNA and the positively charged chitosan. We hypothesize that the adsorption of negatively charged human serum albumin (HSA) onto the surface of the chitosan particles would facilitate the intracellular release of DNA, enhancing transfection activity. Here, we demonstrate that a robust systemic immune response was induced after vaccination using HSA-loaded chitosan nanoparticle/DNA (HSA-CH NP/DNA) complexes. Furthermore, intranasal immunization with HSA-CH NP/DNA complexes induced HBV specific IgA in nasal and vaginal secretions; no systemic or mucosal responses were detected after immunization with DNA alone. Overall, our results show that chitosan-based DNA complexes elicited both humoral and mucosal immune response, making them an interesting and valuable gene delivery system for nasal vaccination against HBV.

  20. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson's disease treatment.

    PubMed

    Bi, Chenchen; Wang, Aiping; Chu, Yongchao; Liu, Sha; Mu, Hongjie; Liu, Wanhui; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    Sustainable and safe delivery of brain-targeted drugs is highly important for successful therapy in Parkinson's disease (PD). This study was designed to formulate biodegradable poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles (NPs), which were surface-modified with lactoferrin (Lf), for efficient intranasal delivery of rotigotine to the brain for the treatment of PD. Rotigotine NPs were prepared by nanoprecipitation, and the effect of various independent process variables on the resulting properties of NPs was investigated by a Box-Behnken experimental design. The physicochemical and pharmaceutical properties of the NPs and Lf-NPs were characterized, and the release kinetics suggested that both NPs and Lf-NPs provided continuous, slow release of rotigotine for 48 h. Neither rotigotine NPs nor Lf-NPs reduced the viability of 16HBE and SH-SY5Y cells; in contrast, free rotigotine was cytotoxic. Qualitative and quantitative cellular uptake studies demonstrated that accumulation of Lf-NPs was greater than that of NPs in 16HBE and SH-SY5Y cells. Following intranasal administration, brain delivery of rotigotine was much more effective with Lf-NPs than with NPs. The brain distribution of rotigotine was heterogeneous, with a higher concentration in the striatum, the primary region affected in PD. This strongly suggested that Lf-NPs enable the targeted delivery of rotigotine for the treatment of PD. Taken together, these results demonstrated that Lf-NPs have potential as a carrier for nose-to-brain delivery of rotigotine for the treatment of PD.

  1. NMR-based metabonomics study of sub-acute hepatotoxicity induced by silica nanoparticles in rats after intranasal exposure.

    PubMed

    Parveen, A; Rizvi, S H M; Gupta, A; Singh, R; Ahmad, I; Mahdi, F; Mahdi, A A

    2012-12-22

    Silica nanoparticles (SiO(2) NPs) are widely used commercially; however, their potential toxicity on human health has attracted particular attention. In the present study, the intranasal toxicological effect of 10nm and 80nm SiO(2) NPs (dosed at 150μg for 90 days) on rats was investigated using conventional approaches and metabonomics analysis of serum. Oxidative stress was measured by assessing Lipid peroxide (LPO) levels and enzymatic activities of Superoxide dismutase (SOD), Catalase (CAT), and Glutathione (GSH) levels in liver tissue homogenate. These biochemical observations were supplemented by histological examination of liver sections. SiO(2) NPs enhanced lipid peroxidation with concomitant reduction in SOD, CAT, and GSH content. In addition, SiO(2) NPs also produced alterations in hepatic histopathology. We also evaluated the effect of SiO(2) NPs on the activities of hepatic enzymes such as aminotransferases (ALT/AST) and alkaline phosphatase (ALP) which revealed significant increase in their activity when compared with control. Metabonomic profile of 90 days SiO(2) NPs treated rat sera exhibited significant increase in lactate, alanine, acetate, creatine and choline coupled with a considerable decrease in glucose level. These perturbations, on the whole, implicate impairment in tricarboxylic acid cycle and liver metabolism, which suggests that silica nanoparticles may have a potential to induce hepatotoxicity in rats.

  2. Gelatin nanoparticles for use as a vaccine adjuvant in intranasal immunizations

    NASA Astrophysics Data System (ADS)

    Washington, Tara D.

    Vaccine adjuvants are used to increase the immune response in the delivery of subunit antigens. Currently the only FDA approved adjuvants are aluminum based and must be delivered parenterally. Nasal mucoadhesive vaccine administration can decrease cost, increase efficiency and increase patient compliance. The purpose of this study was to develop a mucoadhesive gelatin nanoparticle >500 nm in diameter that can be used to encapsulate a model protein antigen. The particles were prepared by nanoprecipitation of a gelatin solution with acetone. Thiol groups were incubated with gelatin to increase mucoadhesivness at 20, 40, and 80 mg per 1 gram of gelatin. The thiolation chemistry was characterized using UV-Vis and x-ray photoelectron spectroscopy (XPS). The total amount of sulfur present in the gelatin was determined to be 7.48, 30.53, and 46.75 mmol/gram respectively. However XPS analysis revealed that there was no substantial difference between surface sulfur content of the unmodified gelatin nanoparticles and the gelatin nanoparticles modified with 80 mg of iminothiolane. Particle size, charge and morphology were determined using laser light diffraction, atomic force microscopy microscopy and electron microscopy. The average diameter of the unmodified gelatin was 171 nm. The average diameter of the thiolated gelatin nanoparticles was 275 nm. The polydispersity index was approximately 0.61 +/- 0 .04 for all nanoparticles. The zeta (zeta) potential of the unmodified gelatin nanoparticles was -21.5 +/- 2.0 mV and the zeta-potential of the modified gelatin nanoparticles was -25.2 +/- 1.5, -27.3 +/- 0.8, and -28.6 +/- 3.0 mV for the 20, 40, and 80 thiolated gelatin nanoparticles. Particle encapsulation efficiency (EE) and release kinetics were conducted using fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) as a model antigen. The EE of the nanoparticles increased from 35.0% (unmodified gelatin) to 82.5% (highest modified gelatin). Particles encapsulated with

  3. Intranasal Piperine-Loaded Chitosan Nanoparticles as Brain-Targeted Therapy in Alzheimer's Disease: Optimization, Biological Efficacy, and Potential Toxicity.

    PubMed

    Elnaggar, Yosra S R; Etman, Samar M; Abdelmonsif, Doaa A; Abdallah, Ossama Y

    2015-10-01

    Piperine (PIP) is a phytopharmaceutical with reported neuroprotective potential in Alzheimer's disease (AD). Oral PIP delivery suffers from its hydrophobicity and pre-systemic metabolism. In this article, mono-disperse intranasal chitosan nanoparticles (CS-NPs) were elaborated for brain targeting of PIP. Formula optimization was based on particle size (PS), zeta potential (ZP), polydispersity index (PDI), % entrapment efficiency (% EE), release studies, and transmission electron microscopy. AD was induced in 48 male Wistar rats on which full behavioral and biochemical testing was conducted. Brain toxicity was assessed based on Caspase-3 assay for apoptosis and tumor necrosis factor for inflammation. Spherical NPs with optimum % EE (81.70), PS (248.50 nm), PDI (0.24), and ZP (+56.30 mV) were elaborated. PIP-NPs could significantly improve cognitive functions as efficient as standard drug (donpezil injection) with additional advantages of dual mechanism (Ach esterase inhibition and antioxidant effect). CS-NPs could significantly alleviate PIP nasal irritation and showed no brain toxicity. This work was the first to report additional mechanism of PIP in AD via anti-apoptosis and anti-inflammatory effects. To conclude, mucoadhesive CS-NPs were successfully tailored for effective, safe, and non-invasive PIP delivery with 20-folds decrease in oral dose, opening a gate for a future with lower AD morbidity.

  4. "Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route* ".

    PubMed

    Shah, Brijesh; Khunt, Dignesh; Misra, Manju; Padh, Harish

    2016-08-01

    The objective of the present investigation was to optimize and develop quetiapine fumarate (QF) loaded chitosan nanoparticles (QF-NP) by ionic gelation method using Box-Behnken design. Three independent variables viz., X1-Concentration of chitosan, X2-Concentration of sodium tripolyphosphate and X3-Volume of sodium tripolyphosphate were taken to investigate their effect on dependent variables (Y1-Size, Y2-PDI and Y3-%EE). Optimized formula of QF-NP was selected from the design space which was further evaluated for physicochemical, morphological, solid state characterization, nasal diffusion and in-vivo distribution for brain targeting following non-invasive intranasal administration. The average particle size, PDI, %EE and nasal diffusion were found to be 131.08±7.45nm, 0.252±0.064, 89.93±3.85% and 65.24±5.26% respectively. Neither toxicity nor structural damage on nasal mucosa was observed upon histopathological examination. Significantly higher brain/blood ratio and 2 folds higher nasal bioavailability in brain with QF-NP in comparison to drug solution following intranasal administration revealed preferential nose to brain transport bypassing blood-brain barrier and prolonged retention of QF at site of action suggesting superiority of chitosan as permeability enhancer. Overall, the above finding shows promising results in the area of developing non-invasive intranasal route as an alternative to oral route for brain delivery.

  5. Brain-targeted distribution and high retention of silver by chronic intranasal instillation of silver nanoparticles and ions in Sprague-Dawley rats.

    PubMed

    Wen, Ruoxi; Yang, Xiaoxi; Hu, Ligang; Sun, Cheng; Zhou, Qunfang; Jiang, Guibin

    2016-03-01

    The wide applications of silver nanoparticles (AgNPs) have been concerned regarding their unintentional toxicities. Different exposure modes may cause distinct accumulation, retention and elimination profiles, which are closely related with their toxicities. Unlike silver accumulation profiles through other regular administration modes, the biodistribution, accumulation and elimination of AgNPs by intranasal instillation are not fully understood. This study conducted intranasal instillation of polyvinylpyrrolidone-coated AgNPs in neonatal Sprague-Dawley rats at doses of 1 and 0.1 mg kg(-1) day(-1) for 4 and 12 weeks, respectively. The 4-week recovery was also designed after the 12-week exposure. Silver concentrations in the main tissues or organs were periodically monitored. Parallel exposures using silver ion were performed for the comparative studies. No physiological alterations were observed in AgNP exposures. In comparison, 1 mg kg(-1) day(-1) silver ions decreased body weight gain and caused mortality of 18.2%, showing ionic silver had a relatively higher toxicity than AgNPs. A relatively higher silver accumulation was observed in silver ion groups than AgNP groups. The silver ion release could not fully explain silver accumulation in AgNP exposures, showing silver distribution caused by particulate silver occurred in vivo. The highest silver concentration was in the liver at week 4, while it shifted to the brain after a 12-week exposure. Dose-related silver accumulation occurred for both AgNP and silver ion groups. The time course revealed a uniquely high concentration and retention of brain silver, implying chronic intranasal instillation caused brain-targeted silver accumulation. These findings provided substantial evidence on the potential neuronal threat from the intranasal administration of AgNPs or silver colloid-based products.

  6. Intranasal ethmoidectomy.

    PubMed

    Jafek, B W

    1985-02-01

    Intranasal ethmoidectomy is a safe procedure that provides predictable, positive surgical results when accomplished by a knowledgeable rhinologic surgeon. Previously described as "the most dangerous operation in all of surgery," it should be mastered through detailed study of the pertinent surgical anatomy and meticulous attention to technique.

  7. Intranasal delivery of antipsychotic drugs.

    PubMed

    Katare, Yogesh K; Piazza, Justin E; Bhandari, Jayant; Daya, Ritesh P; Akilan, Kosalan; Simpson, Madeline J; Hoare, Todd; Mishra, Ram K

    2016-11-29

    Antipsychotic drugs are used to treat psychotic disorders that afflict millions globally and cause tremendous emotional, economic and healthcare burdens. However, the potential of intranasal delivery to improve brain-specific targeting remains unrealized. In this article, we review the mechanisms and methods used for brain targeting via the intranasal (IN) route as well as the potential advantages of improving this type of delivery. We extensively review experimental studies relevant to intranasal delivery of therapeutic agents for the treatment of psychosis and mental illnesses. We also review clinical studies in which intranasal delivery of peptides, like oxytocin (7 studies) and desmopressin (1), were used as an adjuvant to antipsychotic treatment with promising results. Experimental animal studies (17) investigating intranasal delivery of mainstream antipsychotic drugs have revealed successful targeting to the brain as suggested by pharmacokinetic parameters and behavioral effects. To improve delivery to the brain, nanotechnology-based carriers like nanoparticles and nanoemulsions have been used in several studies. However, human studies assessing intranasal delivery of mainstream antipsychotic drugs are lacking, and the potential toxicity of nanoformulations used in animal studies has not been explored. A brief discussion of future directions anticipates that if limitations of low aqueous solubility of antipsychotic drugs can be overcome and non-toxic formulations used, IN delivery (particularly targeting specific tissues within the brain) will gain more importance moving forward given the inherent benefits of IN delivery in comparison to other methods.

  8. Quantification of rutin in rat's brain by UHPLC/ESI-Q-TOF-MS/MS after intranasal administration of rutin loaded chitosan nanoparticles

    PubMed Central

    Ahmad, Niyaz; Ahmad, Rizwan; Naqvi, Atta Abbas; Alam, Md Aftab; Samim, Mohd; Iqbal, Zeenat; Ahmad, Farhan Jalees

    2016-01-01

    Rutin (RT), an antioxidant drug, has been utilized to treat cerebral ischemia hence a sensitive quantification method for estimation of RT in brain homogenate is necessary to develop. This study aims to prepare RT loaded Chitosan Nanoparticles (RT-CS-NPs) develop and validate ultra-high performance liquid chromatography-electrospray ionization-synapt mass spectrometric method Synapt Mass Spectrometry (Synapt MS) (UHPLC/ESI-QTOF-MS/MS) for quantification of RT in brain homogenate from Wistar rat. The process of chromatographic separation was carried out on Waters ACQUITY UPLC™ with the components of separation in detail as; column: BEH C-18 with dimension as 2.1 mm×100 mm and particle size 1.7 µm, mobile phase: acetonitrile (85 % v/v/v): 2 mM ammonium formate (15 % v/v/v): formic acid (0.1 % v/v/v) and flow rate: 0.25 mL/min. Liquid-liquid extraction method (LLE), in mixture, i.e. ethyl acetate:acetonitrile, was considered to optimize the recovery of analyte from the brain homogenate of Wistar rat. Over a total run time of 5 minutes, the elution time for RT and internal standard (IS), i.e. Tolbutamide, observed was 2.67 and 2.82 min respectively whereas the transition observed for RT and IS was at m/z 611.1023/303.1071 and 271.1263/155.1073, respectively. Results, regarding various processes and parameters studied for RT as summarized, established a linear dynamic range over a concentration range of 1.00 ng/mL - 1000.0 ng/mL with r2; 0.9991±0.0010. Accuracy for intra and inter-assay in terms of % CV revealed a range of 0.45- 2.11 whereas lower limit of detection (LOD) and quantitation (LOQ) observed was 0.09 ng/mL and 0.142 ng/mL, respectively. The analyte stability as well as method specificity and accuracy, i.e. recovery > 86 %, supports the idea for application of current developed method in order to quantify and evaluate the RT-loaded-CS-NPs for RT determination in brain homogenate after intranasal drug delivery. PMID:28096783

  9. Interband optical transitions in ellipsoidal shaped nanoparticles

    NASA Astrophysics Data System (ADS)

    Kereselidze, Tamaz; Tchelidze, Tamar; Devdariani, Alexander

    2017-04-01

    The optical properties of crystalline semiconductor nanoparticles with ellipsoidal shape are investigated and discussed as a function of the shape-anisotropy parameter. The optical transition-matrix elements are calculated in the dipole approximation using perturbation theory and with a direct diagonalization of the appropriate Hamiltonian. The matrix elements involving the ground and first excited states are monotonic functions of the shape-anisotropy parameter, whereas matrix elements involving the highly excited states have zeros and extrema that are reflected in the behaviour of the corresponding transition probabilities. Moreover, some matrix elements involving the excited states have discontinuity. We demonstrate that, nanoparticles with ellipsoidal shape can be grown with the infrared as well as ultraviolet features.

  10. The Percolation Transition in the DNA-Gold Nanoparticle System

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa; Ramos, Rona

    2002-03-01

    Melting and hybridization of DNA-capped gold nanoparticle networks are investigated with optical absorption spectroscopy and transmission electron microscopy. Single-stranded, 12-base DNA-capped gold nanoparticles are linked with complementary, single-stranded, 24-base linker DNA to form particle networks. Compared to free DNA, a sharp melting transition is seen in these networked DNA-nanoparticle systems. The sharpness is explained by percolation transition phenomena.

  11. Phase transition of DNA-linked gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2003-04-01

    Melting and hybridization of DNA-capped gold nanoparticle networks are investigated with optical absorption spectroscopy. Single-stranded, 12-base DNA-capped gold nanoparticles are linked with complementary, single-stranded, 24-base linker DNA to form particle networks. Compared to free DNA, a sharp melting transition is seen in these networked DNA-nanoparticle systems. The sharpness is explained by percolation transition phenomena.

  12. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment

    PubMed Central

    Bi, Chenchen; Wang, Aiping; Chu, Yongchao; Liu, Sha; Mu, Hongjie; Liu, Wanhui; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    2016-01-01

    Sustainable and safe delivery of brain-targeted drugs is highly important for successful therapy in Parkinson’s disease (PD). This study was designed to formulate biodegradable poly(ethylene glycol)–poly(lactic-co-glycolic acid) (PEG-PLGA) nanoparticles (NPs), which were surface-modified with lactoferrin (Lf), for efficient intranasal delivery of rotigotine to the brain for the treatment of PD. Rotigotine NPs were prepared by nanoprecipitation, and the effect of various independent process variables on the resulting properties of NPs was investigated by a Box–Behnken experimental design. The physicochemical and pharmaceutical properties of the NPs and Lf-NPs were characterized, and the release kinetics suggested that both NPs and Lf-NPs provided continuous, slow release of rotigotine for 48 h. Neither rotigotine NPs nor Lf-NPs reduced the viability of 16HBE and SH-SY5Y cells; in contrast, free rotigotine was cytotoxic. Qualitative and quantitative cellular uptake studies demonstrated that accumulation of Lf-NPs was greater than that of NPs in 16HBE and SH-SY5Y cells. Following intranasal administration, brain delivery of rotigotine was much more effective with Lf-NPs than with NPs. The brain distribution of rotigotine was heterogeneous, with a higher concentration in the striatum, the primary region affected in PD. This strongly suggested that Lf-NPs enable the targeted delivery of rotigotine for the treatment of PD. Taken together, these results demonstrated that Lf-NPs have potential as a carrier for nose-to-brain delivery of rotigotine for the treatment of PD. PMID:27994458

  13. Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Sanpo, Noppakun; Tharajak, Jirasak; Li, Yuncang; Berndt, Christopher C.; Wen, Cuie; Wang, James

    2014-07-01

    Transition metals of copper, zinc, manganese, and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental compositions of the nanoparticles were characterized using scanning electron microscopy combined with energy dispersive X-ray spectroscopy. The particle size of the nanoparticles was investigated using particle size analyzer, and the zeta potentials were measured using zeta potential analyzer. The phase components of the synthesized transition metal-substituted cobalt ferrite nanoparticles were studied using Raman spectroscopy. The biocompatibility of the nanoparticles was assessed using osteoblast-like cells. Results indicated that the substitution of transition metals strongly influences the physical, chemical properties, and biocompatibility of the cobalt ferrite nanoparticles.

  14. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters.

    PubMed

    Shah, Brijesh; Khunt, Dignesh; Bhatt, Himanshu; Misra, Manju; Padh, Harish

    2015-10-12

    In the present investigation, Quality by Design (QbD) approach was applied on the development and optimization of solid lipid nanoparticle (SLN) formulation of hydrophilic drug rivastigmine (RHT). RHT SLN were formulated by homogenization and ultrasonication method using Compritol 888 ATO, tween-80 and poloxamer-188 as lipid, surfactant and stabilizer respectively. The effect of independent variables (X1 - drug: lipid ratio, X2 - surfactant concentration and X3 - homogenization time) on quality attributes of SLN i.e. dependent variables (Y1 - size, Y2 - PDI and Y3 - %entrapment efficiency (%EE)) were investigated using 3(3) factorial design. Multiple linear regression analysis and ANOVA were employed to indentify and estimate the main effect, 2FI, quadratic and cubic effect. Optimized RHT SLN formula was derived from an overlay plot on which further effect of probe sonication was evaluated. Final RHT SLN showed narrow size distribution (PDI- 0.132±0.016) with particle size of 82.5±4.07 nm and %EE of 66.84±2.49. DSC and XRD study showed incorporation of RHT into imperfect crystal lattice of Compritol 888 ATO. In comparison to RHT solution, RHT SLN showed higher in-vitro and ex-vivo diffusion. The diffusion followed Higuchi model indicating drug diffusion from the lipid matrix due to erosion. Histopathology study showed intact nasal mucosa with RHT SLN indicating safety of RHT SLN for intranasal administration.

  15. Concanavalin A-conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal drug delivery to the cervical lymph nodes.

    PubMed

    Shao, Xiayan; Liu, Qingfeng; Zhang, Chi; Zheng, Xiaoyao; Chen, Jie; Zha, Yuan; Qian, Yong; Zhang, Xi; Zhang, Qizhi; Jiang, Xinguo

    2013-01-01

    Concanavalin A (ConA)-conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles (ConA-NPs) were prepared for targeted drug delivery to the cervical lymph nodes after intranasal administration. ConA, a lectin specifically binding to α-mannose and α-glucose, was covalently conjugated on NPs without loss of its carbohydrates binding bioactivity. In vitro cellular uptake experiment demonstrated that NPs could be uptaken by Calu-3 cells in a time- and concentration-dependent manner, and conjugation of ConA on NPs could significantly increase the rate and amount of cellular uptake. ConA-NP showed no obvious toxicity to Calu-3 cells in vitro or to the nasal cilia of rats in vivo. Compared with NPs without ConA, ConA-NP is more effective in targeting drugs to the deep cervical lymph nodes, as evidenced by 1.36-2.52 times increase of targeting efficiency, demonstrating that ConA-NP is a potential carrier for targeted drug delivery to the cervical lymph nodes via nasal route.

  16. Brain Targeting of Temozolomide via the Intranasal Route Using Lipid-Based Nanoparticles: Brain Pharmacokinetic and Scintigraphic Analyses.

    PubMed

    Khan, Anam; Imam, Syed Sarim; Aqil, Mohammed; Ahad, Abdul; Sultana, Yasmin; Ali, Asgar; Khan, Khalid

    2016-11-07

    The aim of the present work was to investigate the efficacy of temozolomide nanostructured lipid carriers (TMZ-NLCs) to enhance brain targeting via nasal route administration. The formulation was optimized by applying a four-factor, three-level Box-Behnken design. The developed formulations and the functional relationships between their independent and dependent variables were observed. The independent variables used in the formulation were gelucire (X1), liquid lipid/total lipid (X2), Tween 80 (X3), and sonication time (X4), and their effects were observed with regard to size (Y1), % drug release (Y2), and drug loading (Y3). The optimized TMZ-NLC was further evaluated for its surface morphology as well as ex vivo permeation and in vivo studies. All TMZ-NLC formulations showed sizes in the nanometer range, with high drug loading and prolonged drug release. The optimized formulation (TMZ-NLCopt) showed an entrapment efficiency of 81.64 ± 3.71%, zeta potential of 15.21 ± 3.11 mV, and polydispersity index of less than 0.2. The enhancement ratio was found to be 2.32-fold that of the control formulation (TMZ-disp). In vivo studies in mice showed that the brain/blood ratio of TMZ-NLCopt was found to be significantly higher compared to that of TMZ-disp (intranasal, intravenous). Scintigraphy images of mouse brain showed the presence of a high concentration of TMZ. The AUC ratio of TMZ-NLCopt to TMZ-disp in the brain was the highest among the organs. The findings of this study substantiate the existence of a direct nose-to-brain delivery route for NLCs.

  17. Aqueous medium induced optical transitions in cerium oxide nanoparticles

    SciTech Connect

    Inerbaev, Talgat M.; Karakoti, Ajay S.; Kuchibhatla, S. V. N. T.; Kumar, Amit; Masunov, Artem E.; Seal, Sudipta

    2015-03-07

    Experimental and theoretical investigations were performed to investigate the effect of water on optical properties of nanoceria as a function of Ce3+ concentration. Theoretical studies based on density functional plane-wave calculations reveal that the indirect optical transitions in bare ceria nanoparticles are red-shifted with an increase in the concentration of Ce3+. However, ceria nanoparticles model with adsorbed water molecules show a blue shift in the indirect optical spectra under identical conditions. Direct optical transitions are almost independent of Ce3+ concentration but show a pronounced blue shift in the aqueous environment relative to the bare nanoparticles. The theoretical study is consistent with our experimental observation in difference of shift behaviour in bare and aqueous suspended ceria nanoparticles. This change from red- to blue-shift in indirect optical transitions is associated with the polarization effect of water molecules on f-electron states.

  18. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles.

  19. Melting transition of directly linked gold nanoparticle DNA assembly

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Harris, N. C.; Kiang, C.-H.

    2005-05-01

    DNA melting and hybridization is a fundamental biological process as well as a crucial step in many modern biotechnology applications. DNA confined on surfaces exhibits a behavior different from that in free solutions. The system of DNA-capped gold nanoparticles exhibits unique phase transitions and represents a new class of complex fluids. Depending on the sequence of the DNA, particles can be linked to each other through direct complementary DNA sequences or via a ‘linker’ DNA, whose sequence is complementary to the sequence attached to the gold nanoparticles. We observed different melting transitions for these two distinct systems.

  20. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice

    SciTech Connect

    Ballester, Marie; Jeanbart, Laura; de Titta, Alexandre; Nembrini, Chiara; Marsland, Benjamin J.; Hubbell, Jeffrey A.; Swartz, Melody A.

    2015-09-21

    An emerging strategy in preventing and treating airway allergy consists of modulating the immune response induced against allergens in the lungs. CpG oligodeoxynucleotides have been investigated in airway allergy studies, but even if promising, efficacy requires further substantiation. We investigated the effect of pulmonary delivery of nanoparticle (NP)-conjugated CpG on lung immunity and found that NP-CpG led to enhanced recruitment of activated dendritic cells and to Th1 immunity compared to free CpG. We then evaluated if pulmonary delivery of NP-CpG could prevent and treat house dust mite-induced allergy by modulating immunity directly in lungs. When CpG was administered as immunomodulatory therapy prior to allergen sensitization, we found that NP-CpG significantly reduced eosinophilia, IgE levels, mucus production and Th2 cytokines, while free CpG had only a moderate effect on these parameters. In a therapeutic setting where CpG was administered after allergen sensitization, we found that although both free CpG and NP-CpG reduced eosinophilia and IgE levels to the same extent, NP conjugation of CpG significantly enhanced reduction of Th2 cytokines in lungs of allergic mice. Taken together, these data highlight benefits of NP conjugation and the relevance of NP-CpG as allergen-free therapy to modulate lung immunity and treat airway allergy.

  1. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice

    DOE PAGES

    Ballester, Marie; Jeanbart, Laura; de Titta, Alexandre; ...

    2015-09-21

    An emerging strategy in preventing and treating airway allergy consists of modulating the immune response induced against allergens in the lungs. CpG oligodeoxynucleotides have been investigated in airway allergy studies, but even if promising, efficacy requires further substantiation. We investigated the effect of pulmonary delivery of nanoparticle (NP)-conjugated CpG on lung immunity and found that NP-CpG led to enhanced recruitment of activated dendritic cells and to Th1 immunity compared to free CpG. We then evaluated if pulmonary delivery of NP-CpG could prevent and treat house dust mite-induced allergy by modulating immunity directly in lungs. When CpG was administered as immunomodulatorymore » therapy prior to allergen sensitization, we found that NP-CpG significantly reduced eosinophilia, IgE levels, mucus production and Th2 cytokines, while free CpG had only a moderate effect on these parameters. In a therapeutic setting where CpG was administered after allergen sensitization, we found that although both free CpG and NP-CpG reduced eosinophilia and IgE levels to the same extent, NP conjugation of CpG significantly enhanced reduction of Th2 cytokines in lungs of allergic mice. Taken together, these data highlight benefits of NP conjugation and the relevance of NP-CpG as allergen-free therapy to modulate lung immunity and treat airway allergy.« less

  2. Adsorbate Diffusion on Transition Metal Nanoparticles

    DTIC Science & Technology

    2015-01-01

    systematically studied adsorption and diffusion of atomic and diatomic species (H, C, N, O, CO, and NO) on nanometer-sized Pt and Cu nanoparticles with...species and two diatomic molecules (H, C, N, O, CO, and NO) as adsorbates and study the adsorption and diffusion of these adsorbates across the edges

  3. Transferrin receptor antibody-modified α-cobrotoxin-loaded nanoparticles enable drug delivery across the blood-brain barrier by intranasal administration

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Xiangyi; Li, Wuchao; Sun, Haozhen; Lou, Yan; Zhang, Xingguo; Li, Fanzhu

    2013-11-01

    A novel drug carrier for brain delivery, maleimide-poly(ethyleneglycol)-poly(lactide) (maleimide-PEG-PLA) nanoparticles (NPs) conjugated with mouse-anti-rat monoclonal antibody OX26 (OX26-NPs), was developed and its brain delivery property was evaluated. The diblock copolymers of maleimide-PEG-PLA were synthesized and applied to α-cobrotoxin (αCT)-loaded NPs which were characterized by transmission electron micrograph imaging, Fourier-transform IR, and X-ray diffraction. The NPs encapsulating αCT had a round and vesicle-like shape with a mean diameter around 100 nm, and the OX26 had covalently conjugated to the surface of NPs. MTT studies in brain microvascular endothelial cells (BMEC) revealed a moderate decrease in the cell viability of αCT, when incorporated in OX26-NPs compared to free αCT in solution. A higher affinity of the OX26-αCT-NPs to the BMEC was shown in comparison to αCT-NPs. Then, OX26-αCT-NPs were intranasally (i.n.) administered to rats, and αCT in the periaqueductal gray was monitored for up to 480 min using microdialysis technique in free-moving rats, with i.n. αCT-NPs, i.n. OX26-αCT-NPs, intramuscular injection (i.m.) αCT-NPs, and i.m. OX26-αCT-NPs. The brain transport results showed that the corresponding absolute bioavailability ( F abs) of i.n. OX26-αCT-NPs were about 125 and 155 % with i.n. αCT-NPs and i.m. OX26-αCT-NPs, respectively, and it was found that both the C max and AUC of the four groups were as follows: i.n. OX26-αCT-NPs > i.n. αCT-NPs > i.m. OX26-αCT-NPs > i.m. αCT-NPs, while αCT solution, as control groups, could hardly enter the brain. These results indicated that OX26-NPs are promising carriers for peptide brain delivery.

  4. Order-disorder transition of aragonite nanoparticles in nacre.

    PubMed

    Huang, Zaiwang; Li, Xiaodong

    2012-07-13

    Understanding nacre's bottom-up biomineralization mechanism, particularly, how individual aragonite platelets are formed, has long remained elusive due to its crystallographic peculiarity and structural complexity. Here we report that crystallographic order-disorder transition can be triggered within individual aragonite platelets in pristine nacre by means of heat treatment and/or inelastic deformation, offering a unique opportunity to discriminate mysterious aragonite nanoparticles in transmission electron microscopy. Our findings unambiguously uncover why aragonite nanoparticles in pristine nacre have long been inaccessible under TEM observation, which is attributed to the monocrystal-polycrystal duality of the aragonite platelet. The underlying physical mechanism for why an individual aragonite platelet adopts a highly oriented attachment of aragonite nanoparticles as its crystallization pathway is, for the first time, explained in terms of the thermodynamics. The finding of an order-disorder transition in nacre provides a new perspective for understanding the formation for other biominerals.

  5. Order-Disorder Transition of Aragonite Nanoparticles in Nacre

    NASA Astrophysics Data System (ADS)

    Huang, Zaiwang; Li, Xiaodong

    2012-07-01

    Understanding nacre’s bottom-up biomineralization mechanism, particularly, how individual aragonite platelets are formed, has long remained elusive due to its crystallographic peculiarity and structural complexity. Here we report that crystallographic order-disorder transition can be triggered within individual aragonite platelets in pristine nacre by means of heat treatment and/or inelastic deformation, offering a unique opportunity to discriminate mysterious aragonite nanoparticles in transmission electron microscopy. Our findings unambiguously uncover why aragonite nanoparticles in pristine nacre have long been inaccessible under TEM observation, which is attributed to the monocrystal-polycrystal duality of the aragonite platelet. The underlying physical mechanism for why an individual aragonite platelet adopts a highly oriented attachment of aragonite nanoparticles as its crystallization pathway is, for the first time, explained in terms of the thermodynamics. The finding of an order-disorder transition in nacre provides a new perspective for understanding the formation for other biominerals.

  6. Size dependence of phase transitions in aerosol nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Su, Hang; Koop, Thomas; Mikhailov, Eugene; Pöschl, Ulrich

    2015-04-01

    Phase transitions of nanoparticles are of fundamental importance in atmospheric sciences. Current understanding is insufficient to explain observations at the nano-scale. In particular, discrepancies exist between observations and model predictions of deliquescence and efflorescence transitions and the hygroscopic growth of salt nanoparticles. Here we show that these discrepancies can be resolved by consideration of particle size effects with consistent thermodynamic data. We present a new method for the determination of water and solute activities and interfacial energies in highly supersaturated aqueous solution droplets. Our analysis reveals that particle size can strongly alter the characteristic concentration of phase separation in mixed systems, resembling the influence of temperature. Due to similar effects, atmospheric secondary organic aerosol particles at room temperature are expected to be always liquid at diameters below ~20 nm. We thus propose and demonstrate that particle size should be included as an additional dimension in the equilibrium phase diagram of aerosol nanoparticles. Reference: Cheng, Y. et al. Size dependence of phase transitions in aerosol nanoparticles. Nature Communications. 5:5923 doi: 10.1038/ncomms6850 (2015).

  7. Induced phase transitions of nanoparticle-stabilized emulsions

    NASA Astrophysics Data System (ADS)

    Frijters, Stefan; Günther, Florian; Harting, Jens

    2013-11-01

    Nanoparticles can stabilize fluid-fluid interfaces over long timescales and are nowadays commonly used, e.g. in emulsions. However, their fundamental properties are as of yet poorly understood. Nanoparticle-stabilized emulsions can exhibit different phases, such as Pickering emulsions or bijels, which can be characterized by their different topologies and rheology. We investigate the effect of various initial conditions on random mixtures of two fluids and nanoparticles - in particular, the final state these systems will reach. For this, we use the well-established 3D lattice Boltzmann method, extended to allow for the added nanoparticles. After the evolution of the emulsions has stopped, we induce transitions from one state to another by gradually changing the wettability of the nanoparticles over time. This changes the preferential local curvature of the interfaces, which strongly affects the global state. We observe strong hysteresis effects because of the energy barrier presented by the necessary massive reordering of the particles. Being able to change emulsion states in situ has potential application possibilities in filtering technology, or creating particle scaffolds.

  8. Blindness after intranasal ethmoidectomy.

    PubMed

    Sözeri, B; Ataman, M; Gürsel, B

    1993-06-01

    Orbital haemorrhage is an unusual and frustrating complication of ethmoid surgery. A case of reversible blindness which was due to intra-operative orbital haemorrhage occurring after intranasal ethmoidectomy is presented. Prevention and management of this kind of blindness can be reversed, if treated aggressively.

  9. Effects of interband transitions on Faraday rotation in metallic nanoparticles.

    PubMed

    Wysin, G M; Chikan, Viktor; Young, Nathan; Dani, Raj Kumar

    2013-08-14

    The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the dielectric function ϵ(ω) in the presence of a DC magnetic field B. We focus on effects in ϵ(ω) due to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals used in plasmonics. The dielectric function is found using the perturbation of the electron density matrix due to the optical field of the incident electromagnetic radiation. The calculation is applied to transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective optical frequency causing IBTs by ±μBB/ħ, where opposite signs are associated with left/right circular polarizations. The Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles is measured and compared with both the IBT theory and a simpler Drude model for the bound electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are also discussed.

  10. The superspin glass transition in zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaman, O.; Kořínková, T.; Jirák, Z.; Maryško, M.; Veverka, M.

    2015-05-01

    Nanoparticles of the ZnxFe3-xO4 (x = 0.3-0.4) spinel phase having 5 and 15 nm size were synthesized by thermal decomposition of the respective acetylacetonates in a high boiling-point solvent employing surfactants. The collective behaviour of the nanoparticles was probed by dc and ac magnetic measurements of tightly compressed pellets of the particles and silica coated products which were prepared by reverse microemulsion technique. The assembly of bare 5 nm particles remains in the superparamagnetic state with Curie-Weiss characteristics down to 35 K when a rather sharp freezing of superspins is detected. The larger particles show a similar but more diffusive transition at 250 K. The cores encapsulated into the diamagnetic silica do not exhibit glassy freezing.

  11. Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions.

    PubMed

    Wang, Changlong; Ciganda, Roberto; Salmon, Lionel; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2016-02-24

    A ligand design is proposed for transition metal nanoparticle (TMNP) catalysts in aqueous solution. Thus, a tris(triazolyl)-polyethylene glycol (tris-trz-PEG) amphiphilic ligand, 2, is used for the synthesis of very small TMNPs with Fe, Co, Ni, Cu, Ru, Pd, Ag, Pt, and Au. These TMNP-2 catalysts were evaluated and compared for the model 4-nitrophenol reduction, and proved to be extremely efficient. High catalytic efficiencies involving the use of only a few ppm metal of PdNPs, RuNPs, and CuNPs were also exemplified in Suzuki-Miyaura, transfer hydrogenation, and click reactions, respectively.

  12. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model.

    PubMed

    Amidi, Maryam; Romeijn, Stefan G; Verhoef, J Coos; Junginger, Hans E; Bungener, Laura; Huckriede, Anke; Crommelin, Daan J A; Jiskoot, Wim

    2007-01-02

    In this study, the potential of N-trimethyl chitosan (TMC) nanoparticles as a carrier system for the nasal delivery of a monovalent influenza subunit vaccine was investigated. The antigen-loaded nanoparticles were prepared by mixing a solution containing TMC and monovalent influenza A subunit H3N2 with a tripolyphosphate (TPP) solution, at ambient temperature and pH 7.4 while stirring. The nanoparticles had an average size of about 800 nm with a narrow size distribution and a positive surface charge. The nanoparticles showed a loading efficiency of 78% and a loading capacity of 13% (w/w). It was shown that more than 75% of the protein remained associated with the TMC nanoparticles upon incubation of the particles in PBS for 3h. The molecular weight and antigenicity of the entrapped hemagglutinin was maintained as shown by polyacrylamide gel electrophoresis and Western blotting, respectively. Single i.n. or i.m. immunization with antigen-loaded TMC nanoparticles resulted in strong hemagglutination inhibition and total IgG responses. These responses were significantly higher than those achieved after i.m. administration of the subunit antigen, whereas the IgG1/IgG2a profile did not change substantially. The i.n. administered antigen-TMC nanoparticles induced higher immune responses compared to the other i.n. antigen formulations, and these responses were enhanced by i.n. booster vaccinations. Moreover, among the tested formulations only i.n. administered antigen-containing TMC nanoparticles induced significant IgA levels in nasal washes of all mice. In conclusion, these findings demonstrate that TMC nanoparticles are a potent new delivery system for i.n. administered influenza antigens.

  13. Complications of endoscopic intranasal ethmoidectomy.

    PubMed

    Stankiewicz, J A

    1987-11-01

    A consecutive series of 90 patients undergoing endoscopic intranasal ethmoidectomy was reviewed. There were 26 complications (29%) in 19 patients in this group. Eight complications (8%) including CSF leak, temporary blindness, and hemorrhage were considered major with the latter occurring most commonly. Synechiae were the most commonly occurring minor complications. Endoscopic nasal sinus surgery performed by inexperienced operators carries with it the same risks and complications as traditional intranasal sinus surgery. Any surgeon who does not routinely perform traditional intranasal ethmoidectomy should accrue endoscopic experience through appropriate didactic training and multiple cadaver dissections (akin to otologic training).

  14. Pitfalls of intranasal naloxone.

    PubMed

    Zuckerman, Matthew; Weisberg, Stacy N; Boyer, Edward W

    2014-01-01

    We present a case of failed prehospital treatment of fentanyl induced apnea with intranasal (IN) naloxone. While IN administration of naloxone is becoming more common in both lay and pre-hospital settings, older EMS protocols utilized intravenous (IV) administration. Longer-acting, higher potency opioids, such as fentanyl, may not be as easily reversed as heroin, and studies evaluating IN administration in this population are lacking. In order to contribute to our understanding of the strengths and limitations of IN administration of naloxone, we present a case where it failed to restore ventilation. We also describe peer reviewed literature that supports the use of IV naloxone following heroin overdose and explore possible limitations of generalizing this literature to opioids other than heroin and to IN routes of administration.

  15. Intranasal scopolamine preparation and method

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi (Inventor); Cintron, Nitza M. (Inventor)

    1991-01-01

    A new method and preparation for intranasal delivery of scopolamine provides a safe and effective treatment for motion sickness and other conditions requiring anticholinergic therapy. The preparation can be in the form of aqueous nasal drops, mist spray, gel or oinment. Intranasal delivery of scopolamine has similar bioavailability and effect of intravenous delivery and is far superior to oral dosage. Scopolamine is prepared in a buffered saline solution at the desired dosage rate for effective anticholinergic response.

  16. Neurosurgical complications after intranasal ethmoidectomy.

    PubMed

    Toselli, R M; dePapp, A; Harbaugh, R E; Saunders, R L

    1991-05-01

    Intranasal ethmoidectomy is a common otolaryngological procedure. Despite the potential for serious intracranial complications, there is a paucity of reports describing the neurosurgical complications of the procedure. Two patients with intracranial complications of intranasal ethmoidectomy, and the relevant medical literature, are reviewed. The anatomy of the ethmoid air cells and their relation to the intracranial cavity are described. The importance of definitive, emergent repair with attention to the potential for vascular injury is discussed.

  17. Neurosurgical complications after intranasal ethmoidectomy.

    PubMed Central

    Toselli, R M; dePapp, A; Harbaugh, R E; Saunders, R L

    1991-01-01

    Intranasal ethmoidectomy is a common otolaryngological procedure. Despite the potential for serious intracranial complications, there is a paucity of reports describing the neurosurgical complications of the procedure. Two patients with intracranial complications of intranasal ethmoidectomy, and the relevant medical literature, are reviewed. The anatomy of the ethmoid air cells and their relation to the intracranial cavity are described. The importance of definitive, emergent repair with attention to the potential for vascular injury is discussed. PMID:1865214

  18. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-11-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm-1 μm) with metal-oxide core-shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg-Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  19. Potential of nanoparticulate drug delivery systems by intranasal administration.

    PubMed

    Ali, Javed; Ali, Mushir; Baboota, Sanjula; Sahani, Jasjeet Kaur; Ramassamy, Charles; Dao, Lé; Bhavna

    2010-05-01

    Due to number of problems related with oral, parenteral, rectal and other routes of drug administration, the interest of pharmaceutical scientists has increased towards exploring the possibilities of intranasal delivery of various drugs. Nasal drug delivery system is commonly known for the treatment of local ailments like cold, cough, rhinitis, etc. Efforts have been made to deliver various drugs, especially peptides and proteins, through nasal route for systemic use; utilizing the principles and concepts of various nanoparticulate drug delivery systems using various polymers and absorption promoters. The incorporation of drugs into nanoparticles might be a promising approach, since colloidal formulations have been shown to protect them from the degrading milieu in the nasal cavity and facilitate their transport across the mucosal barriers. The use of nanoparticles for vaccine delivery provides beneficial effect, by achieving good immune responses. This could be due to the fact that small particles can be transported preferentially by the lymphoid tissue of the nasal cavity (NALT). The brain gets benefited through the intranasal delivery as direct olfactory transport bypasses the blood brain barrier and nanoparticles are taken up and conveyed along cell processes of olfactory neurons through the cribriform plate to synaptic junctions with neurons of the olfactory bulb. The intranasal delivery is aimed at optimizing drug bioavailability for systemic drugs, as absorption decreases with increasing molecular weight, and for drugs, which are susceptible to enzymatic degradation such as proteins and polypeptides. This review discusses the potential benefits of using nanoparticles for nasal delivery of drugs and vaccines for brain, systemic and topical delivery. The article aims at giving an insight into nasal cavity, consideration of factors affecting and strategies to improve drug absorption through nasal route, pharmaceutical dosage forms and delivery systems with

  20. Freedericksz transition in smectic-A liquid crystals doped by ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Poursamad, J. B.; Hallaji, T.

    2017-01-01

    The structure, orientation and physical properties of liquid crystals is significantly affected by doping of ferroic (ferromagnetic and ferroelectric) nanoparticles into liquid crystals. Behavior of these suspensions in external fields depends on anchoring energy, volume fraction of doped nanoparticles, and sign of dielectric anisotropy of liquid crystals as well as relative orientation of director and local polarization of nanoparticles. Here, the threshold voltage for molecular reorientation (Freedericksz transition) is estimated theoretically in smectic-A liquid crystals doped by spherical ferroelectric nanoparticles, near the smectic-A to smectic-C transition temperature taking into account local electric field effects. It is shown that the threshold voltage is decreased by doping ferroelectric nanoparticles into liquid crystals.

  1. Development of an effective delivery system for intranasal immunization against Mycobacterium tuberculosis ESAT-6 antigen.

    PubMed

    Amini, Yousef; Tebianian, Majid; Mosavari, Nader; Fasihi Ramandi, Mahdi; Ebrahimi, Seyyd Mahmoud; Najminejad, Hamid; Dabaghian, Mehran; Abdollahpour, Meghdad

    2017-03-01

    Introduction The early secreted antigenic target 6-kDa protein (ESAT-6) plays an important role in immune protection against Tuberculosis. Owing to its great potential to increase immune response, chitosan can be considered as a suitable biodegradable polymer for intranasal administration. Methods The physiochemical properties of the nanoparticle were measured in vitro. Two weeks after the last intranasal administration, blood samples were collected and specific IgG, IFN-gama, and IL-4 levels were measured by ELISA. Results Chitosan nanoparticles containing ESAT-6 demonstrated stronger ability to induce IFN-gama, IL-4, and IgG antibody level than the control groups. Conclusion Administration of chitosan nanoparticles can be a suitable method to induce more appropriate immune responses against low inherent immunogenic tuberculosis proteins through intranasal routs.

  2. A systematic review of inhaled intranasal therapy for central nervous system neoplasms: an emerging therapeutic option.

    PubMed

    Peterson, Asa; Bansal, Amy; Hofman, Florence; Chen, Thomas C; Zada, Gabriel

    2014-02-01

    The intranasal route for drug delivery is rapidly evolving as a viable means for treating selected central nervous system (CNS) conditions. We aimed to identify studies pertaining to the application of intranasal drug administration for the treatment of primary CNS tumors. A systematic literature review was conducted to identify all studies published in the English language pertaining to intranasal therapy for CNS neoplasms, and/or general mechanisms and pharmacokinetics regarding targeted intranasal CNS drug delivery. A total of 194 abstracts were identified and screened. Thirty-seven studies met inclusion criteria. Of these, 21 focused on intranasal treatment of specific primary CNS tumors, including gliomas (11), meningiomas (1), and pituitary adenomas (4). An additional 16 studies focused on general mechanisms of intranasal therapy and drug delivery to the CNS using copolymer micelles, viral vectors, and nanoparticles. Inhaled compounds/substances investigated included perillyl alcohol, vesicular stomatitis virus, parvovirus, telomerase inhibitors, neural stem and progenitor cells, antimetabolites, somatostatin analogues, and dopamine agonists. Radiolabeling, CSF concentration measurement, imaging studies, and histological examination were utilized to clarify the mechanism and distribution by which drugs were delivered to the CNS. Successful drug delivery and tumor/symptom response was reported in all 21 tumor-specific studies. The intranasal route holds tremendous potential as a viable option for drug delivery for CNS neoplasms. A variety of antitumoral agents may be delivered via this route, thereby potentially offering a more direct delivery approach and ameliorating the adverse effects associated with systemic drug delivery.

  3. Preparation of transition metal nanoparticles and surfaces modified with (CO) polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-10-25

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surface modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a collidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as fuctionalization with a variety of different chemical groups, expanding their utility and application.

  4. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  5. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  6. Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light.

    PubMed

    Saleh, Rosari; Djaja, Nadia Febiana

    2014-09-15

    ZnO nanoparticles doped with transition metals (Mn and Co) were prepared by a co-precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-rays, Fourier transform infrared spectroscopy, electron spin resonance spectroscopy and diffuse reflectance spectroscopy. The photocatalytic activities of the transition-metal-doped ZnO nanoparticles were evaluated in the degradation of methyl orange under UV irradiation. ZnO nanoparticles doped with 12 at.% of Mn and Co ions exhibited the maximum photodegradation efficiency. The experiment also demonstrated that the photodegradation efficiency of Mn-doped ZnO nanoparticles was higher than that of Co-doped ZnO nanoparticles. These results indicate that charge trapping states due to the doping were the decisive factor rather than the average particle size and energy gap. Moreover the effect of pH values on the degradation efficiency was discussed in the photocatalytic experiments using 12 at.% Mn- and Co-doped ZnO nanoparticles.

  7. Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light

    NASA Astrophysics Data System (ADS)

    Saleh, Rosari; Djaja, Nadia Febiana

    2014-09-01

    ZnO nanoparticles doped with transition metals (Mn and Co) were prepared by a co-precipitation method. The synthesized nanoparticles were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-rays, Fourier transform infrared spectroscopy, electron spin resonance spectroscopy and diffuse reflectance spectroscopy. The photocatalytic activities of the transition-metal-doped ZnO nanoparticles were evaluated in the degradation of methyl orange under UV irradiation. ZnO nanoparticles doped with 12 at.% of Mn and Co ions exhibited the maximum photodegradation efficiency. The experiment also demonstrated that the photodegradation efficiency of Mn-doped ZnO nanoparticles was higher than that of Co-doped ZnO nanoparticles. These results indicate that charge trapping states due to the doping were the decisive factor rather than the average particle size and energy gap. Moreover the effect of pH values on the degradation efficiency was discussed in the photocatalytic experiments using 12 at.% Mn- and Co-doped ZnO nanoparticles.

  8. Intranasal Oxytocin: Myths and Delusions.

    PubMed

    Leng, Gareth; Ludwig, Mike

    2016-02-01

    Despite widespread reports that intranasal application of oxytocin has a variety of behavioral effects, very little of the huge amounts applied intranasally appears to reach the cerebrospinal fluid. However, peripheral concentrations are increased to supraphysiologic levels, with likely effects on diverse targets including the gastrointestinal tract, heart, and reproductive tract. The wish to believe in the effectiveness of intranasal oxytocin appears to be widespread and needs to be guarded against with scepticism and rigor. Preregistering trials, declaring primary and secondary outcomes in advance, specifying the statistical methods to be applied, and making all data openly available should minimize problems of publication bias and questionable post hoc analyses. Effects of intranasal oxytocin also need proper dose-response studies, and such studies need to include control subjects for peripheral effects, by administering oxytocin peripherally and by blocking peripheral actions with antagonists. Reports in the literature of oxytocin measurements include many that have been made with discredited methodology. Claims that peripheral measurements of oxytocin reflect central release are questionable at best.

  9. Intranasal sedatives in pediatric dentistry

    PubMed Central

    AlSarheed, Maha A.

    2016-01-01

    Objectives: To identify the intranasal (IN) sedatives used to achieve conscious sedation during dental procedures amongst children. Methods: A literature review was conducted by identifying relevant studies through searches on Medline. Search included IN of midazolam, ketamine, sufentanil, dexmedetomidine, clonidine, haloperidol and loranzepam. Studies included were conducted amongst individuals below 18 years, published in English, and were not restricted by year. Exclusion criteria were articles that did not focus on pediatric dentistry. Results: Twenty studies were included. The most commonly used sedatives were midazolam, followed by ketamine and sufentanil. Onset of action for IN midazolam was 5-15 minutes (min), however, IN ketamine was faster (mean 5.74 min), while both IN sufentanil (mean 20 min) and IN dexmedetomidine (mean 25 min) were slow in comparison. Midazolam was effective for modifying behavior in mild to moderately anxious children, however, for more invasive or prolonged procedures, stronger sedatives, such as IN ketamine, IN sufentanil were recommended. In addition, ketamine fared better in overall success rate (89%) when compared with IN midazolam (69%). Intranasal dexmedetomidine was only used as pre-medication amongst children. While its’ onset of action is longer when compared with IN midazolam, it produced deeper sedation at the time of separation from the parent and at the time of anesthesia induction. Conclusion: Intranasal midazolam, ketamine and sufentanil are effective and safe for conscious sedation, while intranasal midazolam, dexmedetomidine and sufentanil have proven to be effective premedications. PMID:27570849

  10. Intranasal ethmoidectomy and concurrent procedures.

    PubMed

    Taylor, J S; Crocker, P V; Keebler, J S

    1982-07-01

    In this review of 526 intranasal ethmoidectomy procedures, there was a complication rate of 2.5% with no blindness, meningitis, or deaths. The rationale for associated concurrent procedures is presented. The use of an absorbable hemostatic sinus sponge and an easily removable Telfa nasal packing made possible just a two-night hospital stay in over 90% of these patients.

  11. The effect of nanoparticle location and shape on thermal transitions observed in hydrated layer-by-layer assemblies.

    PubMed

    Puhr, Joseph T; Swerdlow, Benjamin E; Reid, Dariya K; Lutkenhaus, Jodie L

    2014-10-28

    Nanoparticles can have a profound effect on thermal transitions observed in polymer nanocomposites. Many layer-by-layer (LbL) assemblies contain nanoparticles for added functionality, but the resulting effects of nanoparticles on an LbL film's thermal properties are not known. Previously, we have shown that a nanoparticle-free LbL film containing strong polyelectrolytes, poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/PSS), exhibited a single reversible thermal transition much like a glass-melt transition. In the work presented here, nanoparticles of either spherical (SiO2) or platelet (Laponite clay) shape are inserted at varying vertical locations throughout PDAC/PSS LbL films. Temperature-controlled quartz crystal microbalance (QCM-D) and modulated differential scanning calorimetry (MDSC) are applied, for which QCM-D proved to be more sensitive to the transition. All Laponite-containing films possess two thermal transitions. During growth, Laponite-containing films exhibit steady increases in dissipation, which is proposed to arise from mechanically decoupled regions separated by the Laponite nanoparticles. For SiO2-containing films, three transitions are detectable only when the SiO2 nanoparticles are placed in the middle of the film; no transitions are observed for SiO2 placed at the bottom or top, perhaps because of a weakening of the transition. The lowest transition is close in value to that of neat PDAC/PSS LbL films, and was assigned to a "bulk" response. The higher transition(s) is attributed to polymer chains in an interfacial region near the nanoparticle. We propose that nanoparticles restrict segmental mobility, thus elevating the transition temperature in the interfacial region.

  12. Size effect on order-disorder transition kinetics of FePt nanoparticles

    SciTech Connect

    Zhang, Shuaidi; Qi, Weihong; Huang, Baiyun

    2014-01-28

    The kinetics of order-disorder transition of FePt nanoparticles during high temperature annealing is theoretically investigated. A model is developed to address the influence of large surface to volume ratio of nanoparticles on both the thermodynamic and kinetic aspect of the ordering process; specifically, the nucleation and growth of L1{sub 0} ordered domain within disordered nanoparticles. The size- and shape-dependence of transition kinetics are quantitatively addressed by a revised Johnson-Mehl-Avrami equation that included corrections for deviations caused by the domination of surface nucleation in nanoscale systems and the non-negligible size of the ordered nuclei. Calculation results based on the model suggested that smaller nanoparticles are kinetically more active but thermodynamically less transformable. The major obstacle in obtaining completely ordered nanoparticles is the elimination of antiphase boundaries. The results also quantitatively confirmed the existence of a size-limit in ordering, beyond which, inducing order-disorder transitions through annealing is impossible. A good agreement is observed between theory, experiment, and computer simulation results.

  13. The Effect of Nanoparticles on the Thermal Transitions of Hydrated Layer-by-Layer Assemblies

    NASA Astrophysics Data System (ADS)

    Puhr, Joseph; Lutkenhaus, Jodie

    2014-03-01

    The incorporation of nanoparticles into layer-by-layer (LbL) assemblies has been shown to impart functionalities that are useful in a number of applications. However very little is known regarding the effect of nanoparticles on an LbL film's properties. In a previous study involving nanoparticle-free LbL films of the strong polyelectrolytes, poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/PSS), we observed a thermal transition akin to a glass transition using quartz crystal microblance with dissipation (QCM-D) and modulated differential scanning calorimetry (MDSC). In the work presented here, layers of negatively charged nanoparticles of either spherical or platelet morphology have been inserted at varying locations throughout PDAC/PSS LbL films assembled. QCM-D and MDSC were used to determine the effect that these nanoparticles have on the previously measured thermal transitions as a function of placement within the film and particle shape. Additionally, the Sauerbrey and the Voigt models were utilized to gain an insight into the film properties during both the assembly and the thermal analysis experiments.

  14. Calcitonin intranasal--unigene: Salcatonin intranasal--unigene.

    PubMed

    2004-01-01

    An intranasal spray formulation of recombinant salmon calcitonin [salcatonin] is in development with Unigene Laboratories as therapy for postmenopausal osteoporosis. Calcitonin is an endogenous polypeptide hormone that regulates calcium and bone metabolism. It is produced by the parafollicular cells of the thyroid gland in humans and other species. Calcitonin inhibits bone loss through the suppression of osteoclast activity. Salmon calcitonin is approximately 40-50 times more potent than natural human calcitonin at inhibiting osteoclast function. It can be obtained naturally from salmon or can be synthesised with the same chemical structure. Calcitonin was originally available only as an injectable formulation, but in recent years more convenient formulations have become available. Unigene is actively seeking to license its intranasal calcitonin product in Europe and other territories outside the US. nigene licensed its intranasal calcitonin product to Upsher-Smith Laboratories in December 2002, under a $US10 million exclusive US licensing agreement. Under the terms of the agreement, Unigene received an upfront payment of $US3 million from Upsher-Smith and will be eligible to receive milestone payments and royalty payments on product sales. Unigene will be responsible for manufacturing the product at its Boonton facility in New Jersey, USA, and will sell finished calcitonin product to Upsher-Smith. Upsher-Smith will package, market and distribute the product nationwide. Unigene granted an exclusive license to Faran Laboratories in September 2003 for its intranasal calcitonin osteoporosis product in Greece. Unigene will sell the finished product to Faran, who will promote and market it throughout the country after Unigene obtains European regulatory approval and local pricing approval. Unigene will receive an upfront payment and is eligible to receive milestone payments prior to product launch. Faran will pay Unigene a fixed price for each unit of product received

  15. Surface-Induced First-Order Transition in Athermal Polymer-Nanoparticle Blends

    NASA Astrophysics Data System (ADS)

    McGarrity, E. S.; Frischknecht, A. L.; Frink, L. J. D.; Mackay, M. E.

    2007-12-01

    We investigate the phase behavior of athermal polymer-nanoparticle blends near a substrate. We apply a recent fluids density functional theory of Tripathi and Chapman to a simple model of the blend as a mixture of hard spheres and freely jointed hard chains, near a hard wall. We find that there is a first-order phase transition in which the nanoparticles expel the polymer from the surface to form a monolayer. The nanoparticle transition density depends on the length of the polymer and the overall bulk density of the system. The effect is due both to packing entropy effects related to size asymmetry between the components and to the polymer configurational entropy. The simplicity of the system allows us to understand the so-called “entropic-push” observed in experiments.

  16. Amorphous to crystalline transition of magnesium silicate and silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Fabian, D.; Jäger, C.; Henning, Th.; Dorschne, J.; Mutschke, H.

    2000-11-01

    Amorphous magnesium silicate and silica nanoparticles (smoke) have been transformed into the crystalline state by the process of thermal annealing. It has been shown that the magnesium silicate smoke evolves into crystalline forsterite (c- Mg2SiO4), tridymite (a crystalline modification of SiO2) and amorphous silica (a-SiO2) according to the initial Mg/Si-ratio of the smoke. Crystallization took place within a few hours for the Mg2SiO4 smoke and within one day for the MgSiO3 smoke. Amorphous silica nanoparticles have been annealed at 1220 K and are characterized by distinctly lower rates of thermal evolution compared to the magnesium silicates. Silica changed into cristobalite and tridymite.

  17. Stark spectroscopy of charge-transfer transitions in catechol-sensitized TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nawrocka, Agnieszka; Zdyb, Agata; Krawczyk, Stanisław

    2009-06-01

    Electronic excited states of catechol bound to titanium dioxide nanoparticles were investigated using electroabsorption (Stark effect) spectroscopy. The electronic transition at about 400 nm, characteristic for catechol bound to TiO 2 is associated with a change in permanent dipole moment by f · |Δ μ| = 15.7 D (where f is the local field correction factor), and a small negative change in the polarizability. Electron transfer distance points to the strong charge-transfer character of this transition. The electroabsorption spectra show also another electronic transition 7000 cm -1 higher energy, partially masked by the TiO 2 absorption.

  18. Transition of temperature coefficient of conductance in weakly coupled gold nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guan, Changrong; Sun, Jinling; Peng, Lianmao; Liao, Jianhui

    2014-12-01

    A unique positive-to-negative transition of temperature coefficient of conductance (TCC) was observed in self-assembled close-packed Au nanoparticle (AuNP) arrays. The transition of TCC can be interpreted properly with a diffusive hopping model, in which the Coulomb charging energy Ea plays a significant role. Two parameters of AuNP arrays, the nearest neighboring number and the particle core size, have been varied to tune Ea. Our data show that the positive-to-negative transitions of TCC are relevant to both parameters, which confirms the validity of the diffusive hopping model.

  19. Electrical Freedericksz transitions in nematic liquid crystals containing ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Stoian, Victor

    2015-03-01

    A new theoretical approach was elaborated to explain the contradictions reported in many papers about the electric threshold for Freedericksz transition in nematic liquid crystal (NLC) with ferroparticles additives. The free energy density of the mixture was estimated and the contributions of the interaction energy of NLC molecules with ferroparticles surface were calculated. Experimental results for 5CB-BaTiO3 mixture are given.

  20. 21 CFR 874.4780 - Intranasal splint.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intranasal splint. 874.4780 Section 874.4780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a)...

  1. 21 CFR 874.4780 - Intranasal splint.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intranasal splint. 874.4780 Section 874.4780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a)...

  2. 21 CFR 874.4780 - Intranasal splint.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intranasal splint. 874.4780 Section 874.4780 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a)...

  3. A molecular dynamics study of the phase transition in bcc metal nanoparticles.

    PubMed

    Shibuta, Yasushi; Suzuki, Toshio

    2008-10-14

    The phase transition between liquid and solid phases in body-centered cubic (bcc) metal nanoparticles of iron, chromium, molybdenum, and tungsten with size ranging from 2000 to 31,250 atoms was investigated using a molecular dynamics simulation. The nucleation from an undercooled liquid droplet was observed during cooling in all nanoparticles considered. It was found that a nucleus was generated near one side of the particle and solidification spread toward the other side the during nucleation process. On the other hand, the surface melting and subsequent inward melting of the solid core of the nanoparticles were observed during heating. The depression of the melting point was proportional to the inverse of the particle radius due to the Gibbs-Thomson effect. On the other hand, the depression of the nucleation temperature during cooling was not monotonic with respect to the particle radius since the nucleation from an undercooled liquid depends on the event probability of an embryo or a nucleus.

  4. Reconstruction of the Intranasal Lining.

    PubMed

    Zenga, Joseph; Chi, John J

    2017-02-01

    Reconstruction of full-thickness nasal defects has been the subject of surgical inquiry and innovation for over 2,000 years. The replacement of the internal nasal lining is a critical feature of complex nasal reconstruction. Successful reconstruction can prevent cicatricial contraction, external distortion, and internal stenosis. An array of reconstructive possibilities has been described, including cutaneous, mucosal, and fascial options. The challenge to the reconstructive surgeon is to select the repair that maximizes internal stability, while maintaining a patent nasal airway, minimizing morbidity, and meeting patient expectations. This article reviews the options available for the reconstruction of the intranasal lining.

  5. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    PubMed

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  6. Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles.

    PubMed

    Ceolín, Marcelo; Gálvez, Natividad; Domínguez-Vera, José M

    2008-08-07

    Nanocrystalline metals display interesting basic and technological properties related to their chemical and structural properties. Among other properties, they display a richer phase diagram due to the additional degree of freedom introduced by the nanoparticles surface. Metal nanoparticles encapsulated within biological macromolecules have the additional advantage of biocompatibility. In this paper we investigate the thermal evolution of the structure and dynamics of apoferritin encapsulated nanocrystalline copper. We determined the occurrence of a yet unexpected phase transition from a low temperature FCC to a complex high temperature phase including a (putative) amorphous precursor. The occurrence of a FCC-icosahedral transition is also discussed as a possible explanation to our results. The lattice dynamics of the FCC phase (monitored by its Debye temperature) differs from the behaviour expected for nanosized structures.

  7. Transition-sized Au92 nanoparticle bridging non-fcc-structured gold nanoclusters and fcc-structured gold nanocrystals.

    PubMed

    Liao, Lingwen; Chen, Jishi; Wang, Chengming; Zhuang, Shengli; Yan, Nan; Yao, Chuanhao; Xia, Nan; Li, Lingling; Bao, Xiaoli; Wu, Zhikun

    2016-10-04

    Herein, we report the intriguing structure, optical absorption and electrochemical properties of the transition-sized Au92(TBBT)44 (Au92 for short, TBBT = 4-tert-butylbenzenethiolate) nanoparticle. An interesting observation is the 4H phase array of Au92 nanoparticles in the unit cells of single crystals.

  8. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun

    2016-11-01

    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  9. Emission quenching of magnetic dipole transitions near an absorbing nanoparticle (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chigrin, Dmitry N.; Kumar, Deepu; von Plessen, Gero

    2016-09-01

    Emission quenching is analysed at nanometer distances from the surface of an absorbing nanoparticle. It is demonstrated that emission quenching at small distances to the surface is much weaker for magnetic-dipole (MD) than for electric-dipole (ED) transitions. This difference is explained by the fact that the electric field induced by a magnetic dipole has a weaker distance dependence than the electric field of an electric dipole. It is also demonstrated that in the extreme near-field regime the non-locality of the optical response of the metal results in additional emission quenching for both ED and MD transitions.

  10. Spin transition in arrays of gold nanoparticles and spin crossover molecules.

    PubMed

    Devid, Edwin J; Martinho, Paulo N; Kamalakar, M Venkata; Šalitroš, Ivan; Prendergast, Úna; Dayen, Jean-François; Meded, Velimir; Lemma, Tibebe; González-Prieto, Rodrigo; Evers, Ferdinand; Keyes, Tia E; Ruben, Mario; Doudin, Bernard; van der Molen, Sense Jan

    2015-04-28

    We investigate if the functionality of spin crossover molecules is preserved when they are assembled into an interfacial device structure. Specifically, we prepare and investigate gold nanoparticle arrays, into which room-temperature spin crossover molecules are introduced, more precisely, [Fe(AcS-BPP)2](ClO4)2, where AcS-BPP = (S)-(4-{[2,6-(dipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)ethanethioate (in short, Fe(S-BPP)2). We combine three complementary experiments to characterize the molecule-nanoparticle structure in detail. Temperature-dependent Raman measurements provide direct evidence for a (partial) spin transition in the Fe(S-BPP)2-based arrays. This transition is qualitatively confirmed by magnetization measurements. Finally, charge transport measurements on the Fe(S-BPP)2-gold nanoparticle devices reveal a minimum in device resistance versus temperature, R(T), curves around 260-290 K. This is in contrast to similar networks containing passive molecules only that show monotonically decreasing R(T) characteristics. Backed by density functional theory calculations on single molecular conductance values for both spin states, we propose to relate the resistance minimum in R(T) to a spin transition under the hypothesis that (1) the molecular resistance of the high spin state is larger than that of the low spin state and (2) transport in the array is governed by a percolation model.

  11. Adhesion and Wetting of Soft Nanoparticles on Textured Surfaces: Transition between Wenzel and Cassie-Baxter States

    DOE PAGES

    Cao, Zhen; Stevens, Mark J.; Carrillo, Jan-Michael Y.; ...

    2015-01-16

    We use a combination of the molecular dynamics simulations and scaling analysis to study interactions between gel-like nanoparticles and substrates covered with rectangular shape posts. Our simulations have shown that nanoparticle in contact with substrate undergo first order transition between Wenzel and Cassie-Baxter state which location depends on nanoparticle shear modulus, the strength of nanoparticle-substrate interactions, height of the substrate posts and nanoparticle size, Rp. There is a range of system parameters where these two states coexist such that the average indentation δ produced by substrate posts changes monotonically with nanoparticle shear modulus, Gp. We have developed a scaling modelmore » that describes deformation of nanoparticle in contact with patterned substrate. In the framework of this model the effect of the patterned substrate can be taken into account by introducing an effective work of adhesion, Weff, which describes the first order transition between Wenzel and Cassie-Baxter states. There are two different shape deformation regimes for nanoparticles with shear modulus Gp and surface tension γp. Shape of small nanoparticles with size Rp < γp 3/2Gp-1 Weff-1/2 is controlled by capillary forces while deformation of large nanoparticles, Rp > γp 3/2Gp-1 Weff-1/2« less

  12. Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting.

    PubMed

    Ma, Liang; Wang, Jinlan; Yip, Joanne; Ding, Feng

    2014-04-03

    Catalytic cutting by transition-metal (TM) particles is a promising method for the synthesizing of high-quality graphene quantum dots and nanoribbons with smooth edges. Experimentally, it is observed that the cutting always results in channels with zigzag (ZZ) or armchair (AC) edges. However, the driving force that is responsible for such a cutting behavior remains a puzzle. Here, by calculating the interfacial formation energies of the TM-graphene edges with ab initio method, we show that the surface of a catalyst particle tends to be aligned along either AC or ZZ direction of the graphene lattice, and thus the cutting of graphene is guided as such. The different cutting behaviors of various catalysts are well-explained based on the competition between TM-passivated graphene edges and the etching-agent-terminated ones. Furthermore, the kinetics of graphene catalytic cutting along ZZ and AC directions, respectively, are explored at the atomic level.

  13. Size and shape effects on the order-disorder phase transition in CoPt nanoparticles

    NASA Astrophysics Data System (ADS)

    Alloyeau, D.; Ricolleau, C.; Mottet, C.; Oikawa, T.; Langlois, C.; Le Bouar, Y.; Braidy, N.; Loiseau, A.

    2009-12-01

    Chemically ordered bimetallic nanoparticles are promising candidates for magnetic-storage applications. However, the use of sub-10nm nanomagnets requires further study of possible size effects on their physical properties. Here, the effects of size and morphology on the order-disorder phase transition temperature of CoPt nanoparticles (TCNP) have been investigated experimentally, using transmission electron microscopy, and theoretically, with canonical Monte Carlo simulations. For 2.4-3-nm particles, TCNP is found to be 325-175∘C lower than the bulk material transition temperature, consistent with our Monte Carlo simulations. Furthermore, we establish that TCNP is also sensitive to the shape of the nanoparticles, because only one dimension of the particle (that is, in-plane size or thickness) smaller than 3nm is sufficient to induce a considerable depression of TCNP. This work emphasizes the necessity of taking into account the three-dimensional morphology of nano-objects to understand and control their structural properties.

  14. Multicolor luminescence from transition metal ion (Mn2+ and Cu2+) doped ZnS nanoparticles.

    PubMed

    Datta, Anuja; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra

    2007-10-01

    Mn and Cu doped ZnS nanoparticles in powder form were prepared by a simple solvothermal route. Particle size and crystal structure of the products were investigated through X-ray diffraction study revealing the formation of cubic ZnS nanoparticles of average diameter 2.5 nm. Particle size was also verified by the high resolution transmission electron microscopic images. Blue emission at approximately 445 nm was observed from the undoped sample, which was attributed to the presence of large surface defects. With increasing doping concentration the defect related emission gradually quenches and subsequently the impurity related emissions appeared. Mn doped samples exhibited orange emission at approximately 580 nm which may be attributed to the transition between (4)T1 and (6)A1 energy levels of the Mn2+ 3d states. Whereas, the Cu doped ZnS nanoparticles exhibited a red shifted strong blue emission at approximately 466 nm which is attributed to the transition of the electrons from the surface states to the 't2' levels of Cu impurities.

  15. Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state.

    PubMed

    Gerasimov, V S; Ershov, A E; Gavrilyuk, A P; Karpov, S V; Ågren, H; Polyutov, S P

    2016-11-14

    Significant suppression of resonant properties of single gold nanoparticles at the surface plasmon frequency during heating and subsequent transition to the liquid state has been demonstrated experimentally and explained for the first time. The results for plasmonic absorption of the nanoparticles have been analyzed by means of Mie theory using experimental values of the optical constants for the liquid and solid metal. The good qualitative agreement between calculated and experimental spectra support the idea that the process of melting is accompanied by an abrupt increase of the relaxation constants, which depends, beside electron-phonon coupling, on electron scattering at a rising number of lattice defects in a particle upon growth of its temperature, and subsequent melting as a major cause for the observed plasmonic suppression. It is emphasized that observed effect is fully reversible and may underlie nonlinear optical responses of nanocolloids and composite materials containing plasmonic nanoparticles and their aggregates in conditions of local heating and in general, manifest itself in a wide range of plasmonics phenomena associated with strong heating of nanoparticles.

  16. Size dependent transition enthalpy in PbTiO3 nanoparticles due to a cubic surface layer

    NASA Astrophysics Data System (ADS)

    Ma, Wenhui

    2013-05-01

    Size dependence of transition enthalpy observed in ferroelectric PbTiO3 nanoparticles has been shown to result from volume averaging or the surface dilution effect rather than size induced reduction of spontaneous polarization at the first-order phase transition temperature. The PbTiO3 nanoparticles are suggested to be composed of a cubic surface layer with size independent thickness and a ferroelectric core having nonzero and size independent spontaneous polarization at the transition point. Based on a surface layer model, thickness of the cubic surface layer at the Curie temperature is estimated to be around 5-8 nm for PbTiO3 nanoparticles from the literature-reported transition enthalpy data. The present analyses indicate that the size effect in ferroelectrics is possibly a surface related extrinsic effect.

  17. Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure.

    PubMed

    Schmitt, Julien; Hajiw, Stéphanie; Lecchi, Amélie; Degrouard, Jéril; Salonen, Anniina; Impéror-Clerc, Marianne; Pansu, Brigitte

    2016-06-30

    An efficient method to form 3D superlattices of gold nanoparticles inside oil emulsion droplets is presented. We demonstrate that this method relies on Ostwald ripening, a well-known phenomenon occurring during the aging of emulsions. The key point is that the nanoparticle concentration inside the smaller droplets is increasing very slowly with time, thus inducing the crystallization of the nanoparticles into superlattices. Using oil-in-water emulsions doped with hydrophobic gold nanoparticles, we demonstrate that this method is efficient for different types of oils (toluene, cyclohexane, dodecane, and hexadecane). 3D superlattices of the nanoparticles are obtained, with dimensions reaching a hundred nanometers. The kinetics of the crystallization depends on the solubility of the oil in water but also on the initial concentration of the gold nanoparticles in oil. This method also provides an innovative way to obtain the complete phase diagram of nanoparticle suspensions with concentration. Indeed, during this slow crystallization process, a transition from a disordered suspension to a fcc structure is observed, followed by a transition toward a bcc structure. This evolution with time provides key results to understand the role played by the ligands located at the surface of the nanoparticles in order to control the type of superlattices which are formed.

  18. Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles.

    PubMed

    Gatselou, Vasiliki; Christodouleas, Dionysios C; Kouloumpis, Antonios; Gournis, Dimitrios; Giokas, Dimosthenis L

    2016-08-17

    This work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e., catechins, gallates, cinnamates, and dihydroxybenzoic acids) were found to cause changes in the size and localized surface plasmon resonance of rhodium nanoparticles, and therefore, give rise to analyte-specific spectral and color transitions in the rhodium nanoparticle suspensions. Upon reaction with phenolic compounds (mainly dithydroxybenzoate derivatives, and trihydroxybenzoate derivatives), new absorbance peaks at 350 nm and 450 nm were observed. Upon reaction with trihydroxybenzoate derivatives, however, an additional absorbance peak at 580 nm was observed facilitating the speciation of phenolic compounds in the sample. Both absorbance peaks at 450 nm and 580 nm increased with increasing concentration of phenolic compounds over a linear range of 0-500 μM. Detection limits at the mid-micromolar levels were achieved, depending on the phenolic compound involved, and with satisfactory reproducibility (<7.3%). On the basis of these findings, two rhodium nanoparticles-based assays for the determination of the total phenolic content and total catechin content were developed and applied in tea samples. The obtained results correlated favorably with commonly used methods (i.e., Folin-Ciocalteu and aluminum complexation assay). Not the least, the finding that rhodium nanoparticles can react with analytes and exhibit unique localized surface plasmon resonance bands in the visible region, can open new opportunities for developing new optical and sensing analytical applications.

  19. Adhesion and Wetting of Soft Nanoparticles on Textured Surfaces: Transition between Wenzel and Cassie-Baxter States

    SciTech Connect

    Cao, Zhen; Stevens, Mark J.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.

    2015-01-16

    We use a combination of the molecular dynamics simulations and scaling analysis to study interactions between gel-like nanoparticles and substrates covered with rectangular shape posts. Our simulations have shown that nanoparticle in contact with substrate undergo first order transition between Wenzel and Cassie-Baxter state which location depends on nanoparticle shear modulus, the strength of nanoparticle-substrate interactions, height of the substrate posts and nanoparticle size, Rp. There is a range of system parameters where these two states coexist such that the average indentation δ produced by substrate posts changes monotonically with nanoparticle shear modulus, Gp. We have developed a scaling model that describes deformation of nanoparticle in contact with patterned substrate. In the framework of this model the effect of the patterned substrate can be taken into account by introducing an effective work of adhesion, Weff, which describes the first order transition between Wenzel and Cassie-Baxter states. There are two different shape deformation regimes for nanoparticles with shear modulus Gp and surface tension γp. Shape of small nanoparticles with size Rp < γp 3/2Gp-1 Weff-1/2 is controlled by capillary forces while deformation of large nanoparticles, Rp > γp 3/2Gp-1 Weff-1/2nanoparticle elastic and contact free energies. The model predictions are in a good agreement with simulation results.

  20. Synthesis and study of optical properties of transition metals doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramasamy, V.; Praba, K.; Murugadoss, G.

    2012-10-01

    ZnS and transition metal (Mn, Co, Ni, Cu, Ag and Cd) doped ZnS were synthesized using chemical precipitation method in an air atmosphere. The structural and optical properties were studied using various techniques. The X-ray diffraction (XRD) analysis show that the particles are in cubic structure. The mean size of the nanoparticles calculated through Scherrer equation is in the range of 4-6.1 nm. Elemental dispersive (EDX) analysis of doped samples reveals the presence of doping ions. The scanning electron microscopic (SEM) and transmission electron microscopic (TEM) studies show that the synthesized particles are in spherical shape. Optical characterization of both undoped and doped samples was carried out by ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The absorption spectra of all the samples are blue shifted from the bulk ZnS. An optimum doping level of the transition metals for enhanced PL properties are found through optical study.

  1. Effect of Cu doping on the structure and phase transition of directly synthesized FePt nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Hanbin; Li, Yang; Chen, Xu; Shu, Dan; Liu, Xiang; Wang, Xina; Zhang, Jun; Wang, Hao; Wang, Yi; Ruterana, Pierre

    2017-01-01

    In this work, ternary Cu doped FePt nanoparticles were prepared in hexadecylamine at 320 °C by choosing FeCl2 as the Fe source. The experimental results showed that without Cu doping the as-prepared FePt nanoparticles possessed fcc structure and gradually exhibited typical fct diffraction peaks after increasing the Cu doping concentration. TEM images showed that the FePt nanoparticles had larger size and wider size distribution after introducing Cu additive. Magnetic property measurement showed that a coercivity of 4800 Oe was obtained when the composition of the ternary nanoparticles reached Fe35Pt45Cu20, in which the content of Fe+Cu was higher than Pt. The research indicates that Cu doping promotes the phase transition of FePt nanoparticles at temperature as low as 320 °C.

  2. Understanding the Enhanced Catalytic Performance of Ultrafine Transition Metal Nanoparticles-Graphene Composites

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Meng, Changgong; Han, Yu

    2015-09-01

    Catalysis, as the key to minimize the energy requirement and environmental impact of today's chemical industry, plays a vital role in many fields directly related to our daily life and economy, including energy generation, environment control, manufacture of chemicals, medicine synthesis, etc. Rational design and fabrication of highly efficient catalysts have become the ultimate goal of today's catalysis research. For the purpose of handling and product separation, heterogeneous catalysts are highly preferred for industrial applications and a large part of which are the composites of transition metal nanoparticles (TMNPs). With the fast development of nanoscience and nanotechnology and assisted with theoretical investigations, basic understanding on tailoring the electronic structure of these nanocomposites has been gained, mainly by precise control of the composition, morphology, interfacial structure and electronic states. With the rise of graphene, chemical routes to prepare graphene were developed and various graphene-based composites were fabricated. Transition metal nanoparticles-reduced graphene oxide (TMNPs-rGO) composites have attracted considerable attention, because of their intriguing catalytic performance which have been extensively explored for energy- and environment-related applications to date. This review summarizes our recent experimental and theoretical efforts on understanding the superior catalytic performance of subnanosized TMNPs-rGO composites.

  3. Direct Evidence for Percolation of Immobilized Polymer Layer around Nanoparticles Accounting for Sol-Gel Transition in Fumed Silica Dispersions.

    PubMed

    Zheng, Zhong; Song, Yihu; Yang, Ruiquan; Zheng, Qiang

    2015-12-22

    Immobilized polymer fractions have been claimed to be of vital importance for sol-gel transitions generally observed in nanoparticle dispersions but remain a matter of debate regarding mechanism and difficulty for prediction. Here we investigate the immobilized layer structures of trifunctionality polyether polyol (PPG) near the surfaces of hydrophilic and hydrophobic fumed silica (FS) nanoparticles to reveal the role of surface chemistry on the molecular dynamics and sol-gel transitions of the dispersions. Using modulated differential scanning calorimetry, we measure the specific heat capacity during glass transition and the enthalpy during cold-crystallization. Comparing with hydrophobic FS that forms a fully immobilized (glassy) layer, we find that hydrophilic FS immobilizes more PPG, forming a partially immobilized outer layer being unable to crystallize next to the inner glassy layer. By correlating the thickness of the glassy layer with half of the minimum spacing between nanoparticles, we directly evidence the percolation of this layer along the nearest neighbor nanoparticles responsible for the sol-gel transition. Using effective volume fraction including the glassy layer, we successfully construct master curves of relative viscosity of both hydrophilic and hydrophobic FS dispersions, pointing to a common sol-gel transition mechanism mediated by the surface chemistry.

  4. Influenza (Flu) vaccine (Live, Intranasal): What you need to know

    MedlinePlus

    ... is taken in its entirety from the CDC Influenza Live, Intranasal Flu Vaccine Information Statement (VIS): www.cdc.gov/vaccines/ ... flulive.html . CDC review information for Live, Intranasal Influenza VIS: Vaccine Information Statement Influenza Page last reviewed: ...

  5. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  6. The pressure-induced phase transition studies of In2S3 and In2S3:Ce nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Binbin; Zhu, Hongyang; Wang, Shuangming; Wang, Pan; Zhang, Mingzhe

    2014-02-01

    A novel method, gas-liquid phase chemical deposition is developed to prepare In2S3 and In2S3:Ce nanoparticles. The structural, morphology and composition feature of these two nanoparticles is studied by XRD, HRTEM, and XPS. In situ high-pressure synchrotron X-ray diffraction studies were carried out by using a diamond-anvil cell. The doping does not influence the tetragonal-to-cubic phase transition path while results in a lower phase transition pressure of In2S3:Ce nanoparticles (4.3 GPa) than that of In2S3 nanoparticles (7.1 GPa). The bulk moduli of tetragonal phases are B0=87.1±4.3 GPa and B0=55.6±4.1 GPa, respectively. The distinct high-pressure behaviors can be explained in term of the doped ions, causing lattice distortion and reducing structural stability of the In2S3 nanoparticles and further accelerating the phase transition.

  7. Complications in endoscopic intranasal ethmoidectomy: an update.

    PubMed

    Stankiewicz, J A

    1989-07-01

    A previous publication by this author discussing complications of endoscopic intranasal ethmoidectomy indicated an overall complication rate of 29% in 90 patients (17% in 150 ethmoidectomies). Compared to published complications rates for traditional intranasal ethmoidectomy (2.7% to 3.7%), 17% is alarming and of concern. The complication results in 300 ethmoidectomies performed on 180 patients are presented. The overall complication rate was 9.3%. Only two further complications have occurred since the first reported series: a cerebrospinal fluid leak and one case of subcutaneous emphysema. Methods and techniques that have led to the reduction of complications are briefly discussed. Endoscopic ethmoidectomy is a valid, safe procedure in experienced hands.

  8. Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: behavioral and biochemical assessment.

    PubMed

    Kaur, Prabhjot; Garg, Tarun; Vaidya, Bhuvaneshwar; Prakash, Atish; Rath, Goutam; Goyal, Amit K

    2015-04-01

    This study was aimed for brain delivery of Tramadol HCl (centrally acting synthetic opioid) following intranasal administration for treatment of depression. Chitosan nanoparticles (NPs) were prepared by ionic gelation method followed by the addition of developed NPs with in the Pluronic and HPMC-based mucoadhesive thermo-reversible gel. Developed formulation optimized based on the various parameters such as particle size, entrapment efficiency, in vitro release study. Depression induction was done by forced swim test and evaluated by various behavioral and biochemical parameters. Furthermore, results showed significantly increased in locomotors activity, body weight as compared to control group. It also showed alteration in biochemical parameters such glutathione level and catalase levels significantly increased other than lipid peroxidation and nitrite level was found to be decreased after intranasal administration of formulation. Thus, intranasal TRM HCl NP-loaded in situ gel was found to be a promising formulation for the treatment of depression.

  9. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts.

    PubMed

    Tonga, Gulen Yesilbag; Jeong, Youngdo; Duncan, Bradley; Mizuhara, Tsukasa; Mout, Rubul; Das, Riddha; Kim, Sung Tae; Yeh, Yi-Cheun; Yan, Bo; Hou, Singyuk; Rotello, Vincent M

    2015-07-01

    Bioorthogonal catalysis broadens the functional possibilities of intracellular chemistry. Effective delivery and regulation of synthetic catalytic systems in cells are challenging due to the complex intracellular environment and catalyst instability. Here, we report the fabrication of protein-sized bioorthogonal nanozymes through the encapsulation of hydrophobic transition metal catalysts into the monolayer of water-soluble gold nanoparticles. The activity of these catalysts can be reversibly controlled by binding a supramolecular cucurbit[7]uril 'gate-keeper' onto the monolayer surface, providing a biomimetic control mechanism that mimics the allosteric regulation of enzymes. The potential of this gated nanozyme for use in imaging and therapeutic applications was demonstrated through triggered cleavage of allylcarbamates for pro-fluorophore activation and propargyl groups for prodrug activation inside living cells.

  10. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Tonga, Gulen Yesilbag; Jeong, Youngdo; Duncan, Bradley; Mizuhara, Tsukasa; Mout, Rubul; Das, Riddha; Kim, Sung Tae; Yeh, Yi-Cheun; Yan, Bo; Hou, Singyuk; Rotello, Vincent M.

    2015-07-01

    Bioorthogonal catalysis broadens the functional possibilities of intracellular chemistry. Effective delivery and regulation of synthetic catalytic systems in cells are challenging due to the complex intracellular environment and catalyst instability. Here, we report the fabrication of protein-sized bioorthogonal nanozymes through the encapsulation of hydrophobic transition metal catalysts into the monolayer of water-soluble gold nanoparticles. The activity of these catalysts can be reversibly controlled by binding a supramolecular cucurbit[7]uril ‘gate-keeper’ onto the monolayer surface, providing a biomimetic control mechanism that mimics the allosteric regulation of enzymes. The potential of this gated nanozyme for use in imaging and therapeutic applications was demonstrated through triggered cleavage of allylcarbamates for pro-fluorophore activation and propargyl groups for prodrug activation inside living cells.

  11. Very sharp zinc blende-wurtzite phase transition of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Márquez-Marín, J.; Torres-Castanedo, C. G.; Torres-Delgado, G.; Aguilar-Frutis, M. A.; Castanedo-Pérez, R.; Zelaya-Ángel, O.

    2017-02-01

    Cadmium sulfide nanoparticles, in the size range of 6-20 nm, were prepared on glass substrates in the growth temperature (Tb) interval of 60-97 °C by microwaves assisted chemical bath synthesis. The nanoparticle size was controlled by the bath temperature. The crystalline phase, shown in the X ray diffraction patterns, depends on the Tb range. In the intervals 60≤ Tb ≤ 93 °C and 95≤ Tb ≤ 97 °C the lattice is cubic zinc-blende (ZB) and hexagonal wurtzite (W), respectively. In Tb = 94 °C, the critical temperature of transition (Tbc), the films have crystals in both cubic and hexagonal phases. The films grow with preferred orientation in (111) for ZB and (002) for W, perpendiculars to the substrate. Lattice interplanar spacing indicates that the lattice experiences uniaxial contraction along the (111) direction in films grown at Tb in a region near to Tbc. Raman measurements reveal softening of LO in other directions. This compression on the lattice is probably caused by the formation of Cd-vacancies and Cd-interstitials originated by the zincblende-wurtzite phase transformation around Tbc.

  12. 21 CFR 874.4780 - Intranasal splint.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a) Identification... septum and the nasal cavity. It is placed in the nasal cavity after surgery or trauma. The...

  13. 21 CFR 874.4780 - Intranasal splint.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4780 Intranasal splint. (a) Identification... septum and the nasal cavity. It is placed in the nasal cavity after surgery or trauma. The...

  14. Anti-ferromagnetic/ferromagnetic transition in half-metallic Co9Se8 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Jai; Kumar, Pushpendra

    2015-09-01

    The size, shape and defects of the half-metallic Co9Se8 nanoparticles (NPs) play a crucial role in the magnetic transition at the local magnetic regime at low temperatures. A general, non-injection, one-pot reaction route without toxic reagents, such as TOPO/TOPSe, surfactant and/or chelating agent, were used to synthesize gram scale of well-dispersed, high-quality Co9Se8 NPs. The calculated mean crystallite size of the NPs was ∼10 nm, which is consistent with the transmission electron microscope data. This study reveals an unusual anti-ferromagnetic/ferromagnetic transition with some super-paramagnetic character in the low temperature region of Co9Se8 NPs. These investigations are expected not only to help the observed phenomenon, but also help in identifying new half-metallic magnetic NPs for spintronics devices. The outcome provides better understanding of the occurrence of superparamagnetism at low temperatures in the nano-regime, for half-metallic systems.

  15. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes

    PubMed Central

    Santhosh, Poornima Budime; Drašler, Barbara; Drobne, Damjana; Kreft, Mateja Erdani; Kralj, Slavko; Makovec, Darko; Ulrih, Nataša Poklar

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with multifunctional properties have shown great promise in theranostics. The aim of our work was to compare the effects of SPIONs on the fluidity and phase transition of the liposomal membranes prepared with zwitterionic phosphatidylcholine lipids. In order to study if the surface modification of SPIONs has any influence on these membrane properties, we have used four types of differently functionalized SPIONs, such as: plain SPIONs (primary size was shown to bê11 nm), silica-coated SPIONs, SPIONs coated with silica and functionalized with positively charged amino groups or negatively charged carboxyl groups (the primary size of all the surface-modified SPIONs was ~20 nm). Small unilamellar vesicles prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids and multilamellar vesicles prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids were encapsulated or incubated with the plain and surface-modified SPIONs to determine the fluidity and phase transition temperature of the bilayer lipids, respectively. Fluorescent anisotropy and differential scanning calorimetric measurements of the liposomes that were either encapsulated or incubated with the suspension of SPIONs did not show a significant difference in the lipid ordering and fluidity; though the encapsulated SPIONs showed a slightly increased effect on the fluidity of the model membranes in comparison with the incubated SPIONs. This indicates the low potential of the SPIONs to interact with the nontargeted cell membranes, which is a desirable factor for in vivo applications. PMID:26491286

  16. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes.

    PubMed

    Santhosh, Poornima Budime; Drašler, Barbara; Drobne, Damjana; Kreft, Mateja Erdani; Kralj, Slavko; Makovec, Darko; Ulrih, Nataša Poklar

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with multifunctional properties have shown great promise in theranostics. The aim of our work was to compare the effects of SPIONs on the fluidity and phase transition of the liposomal membranes prepared with zwitterionic phosphatidylcholine lipids. In order to study if the surface modification of SPIONs has any influence on these membrane properties, we have used four types of differently functionalized SPIONs, such as: plain SPIONs (primary size was shown to bê11 nm), silica-coated SPIONs, SPIONs coated with silica and functionalized with positively charged amino groups or negatively charged carboxyl groups (the primary size of all the surface-modified SPIONs was ~20 nm). Small unilamellar vesicles prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids and multilamellar vesicles prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids were encapsulated or incubated with the plain and surface-modified SPIONs to determine the fluidity and phase transition temperature of the bilayer lipids, respectively. Fluorescent anisotropy and differential scanning calorimetric measurements of the liposomes that were either encapsulated or incubated with the suspension of SPIONs did not show a significant difference in the lipid ordering and fluidity; though the encapsulated SPIONs showed a slightly increased effect on the fluidity of the model membranes in comparison with the incubated SPIONs. This indicates the low potential of the SPIONs to interact with the nontargeted cell membranes, which is a desirable factor for in vivo applications.

  17. Pressure-dependent Transition from Atoms to Nanoparticles in Magnetron Sputtering: Effect on WSi2 Film Roughness and Stress

    SciTech Connect

    Zhou, L.; Wang, Y; Zhou, H; Li, M; Headrick, R; MacArthur, K; Shi, B; Conley, R; Macrander, A

    2010-01-01

    We report on the transition between two regimes from several-atom clusters to much larger nanoparticles in Ar magnetron sputter deposition of WSi{sub 2}, and the effect of nanoparticles on the properties of amorphous thin films and multilayers. Sputter deposition of thin films is monitored by in situ x-ray scattering, including x-ray reflectivity and grazing incidence small-angle x-ray scattering. The results show an abrupt transition at an Ar background pressure P{sub c}; the transition is associated with the threshold for energetic particle thermalization, which is known to scale as the product of the Ar pressure and the working distance between the magnetron source and the substrate surface. Below P{sub c} smooth films are produced while above P{sub c} roughness increases abruptly, consistent with a model in which particles aggregate in the deposition flux before reaching the growth surface. The results from WSi{sub 2} films are correlated with in situ measurement of stress in WSi{sub 2}/Si multilayers, which exhibits a corresponding transition from compressive to tensile stress at P{sub c}. The tensile stress is attributed to coalescence of nanoparticles and the elimination of nanovoids.

  18. Intranasal immunization of mice against Pasteurella multocida.

    PubMed Central

    Smith, R H; Babiuk, L A; Stockdale, P H

    1981-01-01

    A potassium thiocyanate (KSCN) extract of Pasteurella multocida serotype III:A was shown to protect mice from an intranasal challenge with up to 300 50% lethal doses of P. multocida. In addition to preventing death, bacteria were rapidly cleared from the lungs of immunized mice so that by 72 to 96 h postchallenge no bacteria were present in the lungs of immunized mice, whereas up to 10(9) bacteria were present in lungs of nonimmunized mice. Immunization by the intranasal route was slightly better than that by the intramuscular route. Protection was considered specific, since immunization with P. multocida protected only against P. multocida and not against Salmonella agona. Furthermore, a similar KSCN extract from P. haemolytica did not protect against P. multocida challenge. A comparison of the KSCN extract with a Formalin-killed bacterin suggested that the KSCN extract may be superior to the bacterin. PMID:7216441

  19. The intranasal ethmoidectomy: a 12-year perspective.

    PubMed

    Eichel, B S

    1982-01-01

    Two hundred thirty-six intranasal ethmoidectomies were performed on 123 patients during a 12-year period. Four complications representing an incidence of 1.7% are reported with no mortality, blindness, or permanent orbital injuries. An overall 83% (38 patients) success rate in controlling nasal polyposis is recorded in dealing with 46 obstructed nasal polyposis-pansinusitis patients. A subgrouping of 26 patients having had prior polypectomy sinus surgical treatment revealed an 81% (21 patients) control of nasal polyposis. With revision ethmoidectomy surgical treatment, a 91% (42 patients) overall success rate is recorded, and a 92% (24 patients) success rate is noted in the subgrouping. There appears to be no difference between these two groups, implying that the intranasal ethmoidectomy procedure may be the important factor in the control of nasal polyposis.

  20. Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions.

    PubMed

    Lin, Mouhong; Huang, Haoliang; Liu, Zuotao; Liu, Yingju; Ge, Junbin; Fang, Yueping

    2013-12-10

    Magnetic nanoparticle clusters (MNCs) are a class of secondary structural materials that comprise chemically defined nanoparticles assembled into clusters of defined size. Herein, MNCs are fabricated through a one-pot solvothermal reaction featuring self-limiting assembly of building blocks and the controlled reorganization process. Such growth-dissolution-regrowth fabrication mechanism overcomes some limitations of conventional solvothermal fabrication methods with regard to restricted available feature size and structural complexity, which can be extended to other oxides (as long as one can be chelated by EDTA-2Na). Based on this method, the nanoparticle size of MNCs is tuned between 6.8 and 31.2 nm at a fixed cluster diameter of 120 nm, wherein the critical size for superparamagnetic-ferromagnetic transition is estimated from 13.5 to 15.7 nm. Control over the nature and secondary structure of MNCs gives an excellent model system to understand the nanoparticle size-dependent magnetic properties of MNCs. MNCs have potential applications in many different areas, while this work evaluates their cytotoxicity and Pb(2+) adsorption capacity as initial application study.

  1. Classical intranasal ethmoidectomy: does the endoscope have a role?

    PubMed

    O'Halloran, G L; Kern, E B

    1991-12-01

    The major advantage of intranasal endoscopy is that it allows a magnified view of the osteomeatal region and the frontal recess. Performing intranasal ethmoidectomy with nasal endoscopes may be hazardous, particularly in the hands of inexperienced surgeons. The use of 2-power loops for performing intranasal ethmoidectomy has several advantages, including direct binocular vision and visualization of external anatomic landmarks. The use of loops does not preclude the use of endoscopes.

  2. ENERGY CONVERSION FOR THE TRANSITION FROM Al TO γ-Al2O3 NANOPARTICLES

    NASA Astrophysics Data System (ADS)

    Wang, Shulin; Li, Shengjuan; Xu, Bo; Jian, Dunliang; Zhu, Yufang

    2013-07-01

    We have successfully converted large volume Al particles into γ-Al2O3 nanostructures by vibration milling at room temperature and successive treatment. We show that there exist special relationships among stacking fault energy (SFE), strain energy (SRE), and surface energy (SE) of the materials, including interdependence, intercompetition, and interconversion during the phase transition. SFE and SRE perform the same changing tendency, while SE just does the opposite. However, it is not the particle size but the energy state that determines the reactivity of the materials. And it is the SE that can directly determine the physical chemical reaction and the conversion into the end product rather than SFE and SRE. When SE goes up, the material reactivity and the product yield will be enhanced; and when SE goes down, the reaction and the product yield will decay. However, the state of SE depends closely on the change tendency of the SFE and SRE. That is, when SFE and SRE goes up, SE will goes down; if SFE and SRE goes down, SE will goes up. It seems that energy conservation law may be followed in a sense in the particle system if the external input keeps constant. The work may be significant for energy conversion in nano-scale and mechanosynthesis of oxide nanoparticles.

  3. Extensive Parallelism between Crystal Parameters and Magnetic Phase Transitions of Unusually Ferromagnetic Praseodymium Manganite Nanoparticles.

    PubMed

    Sadhu, Anustup; Salunke, Hemant G; Shivaprasad, Sonnada M; Bhattacharyya, Sayan

    2016-08-15

    The alterations in physical property across different space groups of the same material are sometimes conveniently reflected by the crystal structure as a function of temperature. However, mirroring the physical property and crystal parameters over a wide range of temperatures within the same space group is quite unusual. Remarkably, Rietveld analyses of the X-ray diffraction patterns of PrMn0.9O3 (ABO3) nanoparticles (NPs) with a constant Pnma space group from 300 to 10 K could successfully predict the four magnetic phases, viz. paramagnetic, antiferromagnetic (AFM), ferromagnetic (FM), and spin-glass-like ordering. The increase in Mn-O-Mn bond angles and tolerance factor leads to FM ordering below ∼100 K in usually AFM PrMn0.9O3 NPs. The concurrent decrease of lattice cell volume and Mn-O-Mn bond angles near the AFM to FM transition temperature (Tc) suggests that the AFM character increases just above Tc due to atomic deformations and reduced Mn-Mn separation. The predictions from crystal structure refinement were successfully verified from the cooling path of the temperature-dependent field-cooled magnetization measurements. A mechanism involving incoherent spin reversal due to competition between the neighboring spins undergoing antiparallel to parallel spin rotations was suggested. The structure-property parallelism was cross-checked with the A-site vacant Pr0.9MnO3.2 NPs.

  4. Defect-induced weak ferromagnetism in transition metal-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mandal, Debabrata; Sharma, Lalit Kumar; Mukherjee, Samrat

    2016-12-01

    In this work, citric acid-capped and ethylene glycol-stabilized pristine and transition metal (TM=Co, Fe, Mn and Ni)-doped ZnO nanoparticles with the generic formula Zn1- x TM x O, x = 0.01 and 0.02, have been synthesized by sol-gel method. XRD confirmed the phase purity of all the samples. Average crystallite size calculated from Scherrer formula was within the range of 43 ± 25 nm for different doped samples. The Raman spectra of (Co, Mn and Ni)-doped ZnO show strong E 2 (high) and E 1 (LO) modes. The synthesized samples also show strong luminescent emission from inherent Zn and O point defects (interstitial and vacancies) along with a sharp excitonic peak centred at 362 nm. Magnetic studies at 300 K reveal that all samples show weak room-temperature ferromagnetism at low magnetic fields with unsaturated M-H plot up to a measuring field of 5 T.

  5. Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions.

    PubMed

    Song, Hyon-Min; Zink, Jeffrey I; Khashab, Niveen M

    2015-07-28

    A series of magnetically active ferrite nanoparticles (NPs) are prepared by using Mn oxide NPs as seeds. A Verwey transition is identified in Fe3O4 NPs with an average diameter of 14.5 nm at 96 K, where a sharp drop of magnetic susceptibility occurs. In MnFe2O4 NPs, a spin glass-like state is observed with the decrease in magnetization below the blocking temperature due to the disordered spins during the freezing process. From these MnFe2O4 NPs, MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs are prepared by seeded growth. The structure of the core is cubic spinel (Fd3¯m), and the shell is composed of iron-manganese oxide (Mn(x)Fe(1-x)O) with a rock salt structure (Fm3¯m). Moiré fringes appear perpendicular to the 〈110〉 directions on the cubic shape NPs through the plane-matched epitaxial growth. These fringes are due to the difference in the lattice spacings between MnFe2O4 and Mn(x)Fe(1-x)O. Exchange bias is observed in these MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs with an enhanced coercivity, as well as the shift of hysteresis along the field direction.

  6. Revisiting the role of sucrose in PLGA-PEG nanocarrier for potential intranasal delivery.

    PubMed

    Bonaccorso, A; Musumeci, T; Carbone, C; Vicari, L; Lauro, M Rosaria; Puglisi, G

    2017-01-27

    The efficient design of nanocarriers is a major challenge and must be correlated to the route of administration. Intranasal route is studied for local, systemic or cerebral treatments. In order to develop nanocarriers with suitable properties for intranasal delivery, to achieve brain, and to market the product, it is extremely important the simplification of the formulation in terms of raw materials. Surfactants and cryoprotectants are often added to improve structuration and/or storage of polymeric nanoparticles. PLGA-PEG nanocarriers were prepared by nanoprecipitation method evaluating the critical role of sucrose as surfactant-like and cryoprotectant, with the aim to obtain a simpler formulation compared to those proposed in other papers. Photon Correlation Spectroscopy and Turbiscan analysis show that sucrose is a useful excipient during the preparation process and it effectively cryo-protects nanoparticles. Among the investigated nanocarriers with different degree of PEG, PEGylated PLGA (5%) confers weak interaction between nanoparticles and mucin as demonstrated by thermal analysis and mucin particle method. Furthermore, in vitro biological studies on HT29, as epithelium cell line, does not show cytotoxicity effect for this nanocarrier at all texted concentrations. The selected nanosystem was also studied to load docetaxel, as model drug, and characterized by a technological point of view.

  7. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  8. Visualizing the Cu/Cu2O Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.

    PubMed

    LaGrow, Alec P; Ward, Michael R; Lloyd, David C; Gai, Pratibha L; Boyes, Edward D

    2017-01-11

    Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ in real time with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (Z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu2O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu2O interface having a relationship of Cu{111}//Cu2O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.

  9. Intranasal approach to the sella turcica.

    PubMed

    Freidberg, S R; Hybels, R L; Oliver, P

    1979-08-01

    A transseptal approach to the sella turcica is described which is entirely intranasal and avoids the sublabial incision. The first incision is unilateral along the caudal edge of the septum, and the second incision is made across the base of the nasal columella. This allows the speculum to open the width of both nasal chambers, giving adequate exposure. The septal cartilage is either preserved or resected except for a caudal strut. The difficult dissection of mucosa from the nasal floor and maxillary crest is avoided. This technique is rapid and straightforward and results in a cosmetically acceptable scar.

  10. Vibrio cholerae lipopolysaccharide loaded chitosan nanoparticle could save life by induction of specific immunoglobulin isotype.

    PubMed

    Fasihi-Ramandi, Mahdi; Ghobadi-Ghadikolaee, Hamideh; Ahmadi-Renani, Sajjad; Taheri, Ramezan Ali; Ahmadi, Kazem

    2017-02-28

    The lipopolysaccharide (LPS) of Vibrio cholerae (V. cholerae) plays an important role in cholera disease and the induction of primary protection. In this study, we evaluate mice humoral immune response in intranasal and intraperitoneal administrated V. cholerae LPS. The results showed that the intranasal administration of LPS-chitosan nanoparticle induced the high level of antibodies compared to intraperitoneal injection of antigen without chitosan (P < .001). These results indicated that intranasal and intraperitoneal administration of LPS has been able to induce the high level of antibodies both in the sera and lavage fluid and confirmed our strategy for using intranasal administration of antigen.

  11. Poly-ε-caprolactone/Chitosan and Chitosan Particles: Two Recombinant Antigen Delivery Systems for Intranasal Vaccination.

    PubMed

    Jesus, Sandra; Soares, Edna; Borges, Olga

    2016-01-01

    Several evidences converge on the idea that among the mucosal administration routes, the nasal mucosa is the most attractive site for the delivery of vaccines. Mucoadhesive particulate adjuvants should be able to increase the residence time of antigens in nasal cavity in order to increase their probability of being taken up by nasopharynx-associated lymphoid tissue (NALT) cells and subsequently to initiate the innate and adaptive immune response. Focusing on chitosan, a mucoadhesive biopolymer, we describe in this chapter a method to prepare antigen loaded chitosan nanoparticles and a second method to prepare antigen loaded poly-ε-caprolactone/chitosan nanoparticles. Additionally the methodology for the assessment of mucoadhesivity of the delivery system is also described. The two critical procedures in mice intranasal immunization experiments include challenges in the intranasal administration itself due to the small mouse nose, and the other is related with the collection of mucosal secretions to assess the sIgA. The techniques are difficult to perform without advanced training. Therefore, protocols followed in our laboratory, as well as some tips, are described in this chapter.

  12. Intranasal drug delivery in neuropsychiatry: focus on intranasal ketamine for refractory depression.

    PubMed

    Andrade, Chittaranjan

    2015-05-01

    Intranasal drug delivery (INDD) systems offer a route to the brain that bypasses problems related to gastrointestinal absorption, first-pass metabolism, and the blood-brain barrier; onset of therapeutic action is rapid, and the inconvenience and discomfort of parenteral administration are avoided. INDD has found several applications in neuropsychiatry, such as to treat migraine, acute and chronic pain, Parkinson disease, disorders of cognition, autism, schizophrenia, social phobia, and depression. INDD has also been used to test experimental drugs, such as peptides, for neuropsychiatric indications; these drugs cannot easily be administered by other routes. This article examines the advantages and applications of INDD in neuropsychiatry; provides examples of test, experimental, and approved INDD treatments; and focuses especially on the potential of intranasal ketamine for the acute and maintenance therapy of refractory depression.

  13. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces

    NASA Astrophysics Data System (ADS)

    Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi

    2015-12-01

    We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems.

  14. Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial-mesenchymal transition for oral cancer.

    PubMed

    Ma, Chuan; Shi, Leilei; Huang, Yu; Shen, Lingyue; Peng, Hao; Zhu, Xinyuan; Zhou, Guoyu

    2017-02-28

    Activation of the epithelial to mesenchymal transition (EMT) in photodynamic therapy (PDT) can lead to the recurrence and progression of tumors. To enhance the effects of PDT, it is essential to inhibit the Wnt/β-catenin signaling pathway involved in EMT progression. Herein, we used polyethylene glycol-polyethyleneimine-chlorin e6 (PEG-PEI-Ce6) nanoparticles to efficiently deliver Wnt-1 small interfering RNA (siRNA) to the cytoplasm of KB cells (oral squamous cell carcinoma) that were subjected to PDT. Wnt-1 siRNA effectively inhibited the Wnt/β-catenin signaling pathway, reducing the expression of Wnt-1, β-catenin and vimentin that are crucial to the EMT. Combined with Wnt-1 siRNA, PEG-PEI-Ce6 nanoparticle mediated PDT inhibited cell growth and enhanced the cancer cell killing effect remarkably. Our results show the promise of combination therapy of PEG-PEI-Ce6 nanoparticles for delivery of Wnt-1 siRNA along with PDT in the treatment of oral cancer.

  15. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces

    PubMed Central

    Orsi, Davide; Guzmán, Eduardo; Liggieri, Libero; Ravera, Francesca; Ruta, Beatrice; Chushkin, Yuriy; Rimoldi, Tiziano; Cristofolini, Luigi

    2015-01-01

    We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems. PMID:26658474

  16. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route.

    PubMed

    Jain, Darshana S; Bajaj, Amrita N; Athawale, Rajani B; Shikhande, Shruti S; Pandey, Abhijeet; Goel, Peeyush N; Gude, Rajiv P; Patil, Satish; Raut, Preeti

    2016-06-01

    Delivery of drugs to the brain via nasal route has been studied by many researchers. However, low residence time, mucociliary clearance and enzymatically active environment of nasal cavity pose many challenges to successful nasal delivery of drugs. We aim to deliver methotrexate by designing thermosensitive nanodispersion exhibiting enhanced residence time in nasal cavity and bypassing the blood brain barrier (BBB). PLA nanoparticles were developed using solvent evaporation technique. The developed nanoparticles were further dispersed in prepared thermosensitive vehicle of poloxamer 188 and Carbopol 934 to impart the property of increased residence time. The formulated nanoparticles demonstrated no interaction with the simulated nasal fluids (SNF), mucin, serum proteins and erythrocytes which demonstrate the safety of developed formulation for nasal administration. The penetration property of nanoparticles though the nasal mucosa was higher than the pure drug due to low mucociliary clearance. The developed nanoparticles diffused though the membrane pores and rapidly distributed into the brain portions compared to the pure drug. There was detectable and quantifiable amount of drug seen in the brain as demonstrated by in vivo brain distribution studies with considerably low amount of drug deposition in the lungs. The pharmacokinetic parameters demonstrated the enhancement in circulation half life, area under curve (AUC) and Cmax of the drug when administered intranasal in encapsulated form. Thus, the thermosensitive nanodispersions are surely promising delivery systems for delivering anticancer agents though the nasal route for potential treatment of brain tumors.

  17. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.

    PubMed

    Page, Alister J; Yamane, Honami; Ohta, Yasuhito; Irle, Stephan; Morokuma, Keiji

    2010-11-10

    The mechanism and kinetics of single-walled carbon nanotube (SWNT) nucleation from Fe- and Ni-carbide nanoparticle precursors have been investigated using quantum chemical molecular dynamics (QM/MD) methods. The dependence of the nucleation mechanism and its kinetics on environmental factors, including temperature and metal-carbide carbon concentration, has also been elucidated. It was observed that SWNT nucleation occurred via three distinct stages, viz. the precipitation of the carbon from the metal-carbide, the formation of a "surface/subsurface" carbide intermediate species, and finally the formation of a nascent sp(2)-hybidrized carbon structure supported by the metal catalyst. The SWNT cap nucleation mechanism itself was unaffected by carbon concentration and/or temperature. However, the kinetics of SWNT nucleation exhibited distinct dependences on these same factors. In particular, SWNT nucleation from Ni(x)C(y) nanoparticles proceeded more favorably compared to nucleation from Fe(x)C(y) nanoparticles. Although SWNT nucleation from Fe(x)C(y) and Ni(x)C(y) nanoparticle precursors occurred via an identical route, the ultimate outcomes of these processes also differed substantially. Explicitly, the Ni(x)-supported sp(2)-hybridized carbon structures tended to encapsulate the catalyst particle itself, whereas the Fe(x)-supported structures tended to form isolated SWNT cap structures on the catalyst surface. These differences in SWNT nucleation kinetics were attributed directly to the relative strengths of the metal-carbon interaction, which also dictates the precipitation of carbon from the nanoparticle bulk and the longevity of the resultant surface/subsurface carbide species. The stability of the surface/subsurface carbide was also influenced by the phase of the nanoparticle itself. The observations agree well with experimentally available data for SWNT growth on iron and nickel catalyst particles.

  18. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition…

  19. Chronic invasive fungal sinusitis associated with intranasal drug use.

    PubMed

    Pekala, Kelly R; Clavenna, Matthew J; Shockley, Ross; Weiss, Vivian L; Turner, Justin H

    2015-12-01

    Chronic invasive fungal sinusitis (CIFS) is a rare but potentially aggressive form of invasive fungal disease that occurs in immunocompetent patients. We report a case of CIFS in an otherwise healthy young adult associated with intranasal illicit drug abuse. The patient presented with nonhealing nasal septal and palatal perforations. Biopsy demonstrated invasive Aspergillus flavus requiring surgical debridement and extended intravenous antifungal therapy. Tissue necrosis and ulceration related to intranasal drug use should be recognized as a potential risk factor for invasive fungal sinusitis.

  20. Demystifying FluMist, a new intranasal, live influenza vaccine.

    PubMed

    Mossad, Sherif B

    2003-09-01

    FluMist--a cold-adapted, live-attenuated, trivalent, intranasal influenza virus vaccine approved by the US Food and Drug Administration on June 17, 2003--has been shown to be safe and effective, but its role in the general prevention of influenza is yet to be defined. Intranasal administration is expected to be more acceptable than parenteral, particularly in children, but the potential for the shedding of live virus may pose a risk to anyone with a compromised immune system.

  1. Hydrophobicity/hydrophilicity tunable hyperbranched polystyrenes as novel supports for transition-metal nanoparticles.

    PubMed

    Kojima, Keisuke; Chikama, Katsumi; Ishikawa, Makoto; Tanaka, Akihiro; Nishikata, Takashi; Tsutsumi, Hironori; Igawa, Kazunobu; Nagashima, Hideo

    2012-11-07

    Development of a new preparative procedure for hyperbranched polystyrene having Cl end groups (HPS-Cl) enables to prepare HPS-NR(3)(+)Cl(-), for which the hydrophobicity/hydrophilicity is tunable by the R groups. The resulting ammonium salts behave as a good support of platinum nanoparticles, which is useful for catalytic biphasic hydrogenation of alkenes.

  2. Non-Clinical Safety Evaluation of Intranasal Iota-Carrageenan

    PubMed Central

    Hebar, Alexandra; Koller, Christiane; Seifert, Jan-Marcus; Chabicovsky, Monika; Bodenteich, Angelika; Bernkop-Schnürch, Andreas; Grassauer, Andreas; Prieschl-Grassauer, Eva

    2015-01-01

    Carrageenan has been widely used as food additive for decades and therefore, an extended oral data set is available in the public domain. Less data are available for other routes of administration, especially intranasal administration. The current publication describes the non-clinical safety and toxicity of native (non-degraded) iota-carrageenan when applied intranasally or via inhalation. Intranasally applied iota-carrageenan is a topically applied, locally acting compound with no need of systemic bioavailability for the drug’s action. Animal experiments included repeated dose local tolerance and toxicity studies with intranasally applied 0.12% iota-carrageenan for 7 or 28 days in New Zealand White rabbits and nebulized 0.12% iota-carrageenan administered to F344 rats for 7 days. Permeation studies revealed no penetration of iota-carrageenan across nasal mucosa, demonstrating that iota-carrageenan does not reach the blood stream. Consistent with this, no relevant toxic or secondary pharmacological effects due to systemic exposure were observed in the rabbit or rat repeated dose toxicity studies. Data do not provide any evidence for local intolerance or toxicity, when carrageenan is applied intranasally or by inhalation. No signs for immunogenicity or immunotoxicity have been observed in the in vivo studies. This is substantiated by in vitro assays showing no stimulation of a panel of pro-inflammatory cytokines by iota-carrageenan. In conclusion, 0.12% iota-carrageenan is safe for clinical use via intranasal application. PMID:25875737

  3. Abnormal cubic-tetragonal phase transition of barium strontium titanate nanoparticles studied by in situ Raman spectroscopy and transmission electron microscopy heating experiments

    SciTech Connect

    Zhang, Yin; Chen, Chen; Gao, Ran; Xia, Feng; Li, YueSheng; Che, Renchao

    2015-11-02

    Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transition from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.

  4. Optical Imaging of Phase Transition and Li-Ion Diffusion Kinetics of Single LiCoO2 Nanoparticles During Electrochemical Cycling.

    PubMed

    Jiang, Dan; Jiang, Yingyan; Li, Zhimin; Liu, Tao; Wo, Xiang; Fang, Yimin; Tao, Nongjian; Wang, Wei; Chen, Hong-Yuan

    2017-01-11

    Understanding the phase transition and Li-ion diffusion kinetics of Li-ion storage nanomaterials holds promising keys to further improve the cycle life and charge rate of the Li-ion battery. Traditional electrochemical studies were often based on a bulk electrode consisting of billions of electroactive nanoparticles, which washed out the intrinsic heterogeneity among individuals. Here, we employ optical microscopy, termed surface plasmon resonance microscopy (SPRM), to image electrochemical current of single LiCoO2 nanoparticles down to 50 fA during electrochemical cycling, from which the phase transition and Li-ion diffusion kinetics can be quantitatively resolved in a single nanoparticle, in operando and high throughput manner. SPRM maps the refractive index (RI) of single LiCoO2 nanoparticles, which significantly decreases with the gradual extraction of Li-ions, enabling the optical read-out of single nanoparticle electrochemistry. Further scanning electron microscopy characterization of the same batch of nanoparticles led to a bottom-up strategy for studying the structure-activity relationship. As RI is an intrinsic property of any material, the present approach is anticipated to be applicable for versatile kinds of anode and cathode materials, and to facilitate the rational design and optimization toward durable and fast-charging electrode materials.

  5. Effect of polymer-nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Agapov, Alexander L; Stevens, Derrick; Sokolov, Alexei P; Kidder, Michelle; Jacobs,; Koerner, Hilmar; Vaia, Richard; More, Karren Leslie; Sauers, Isidor

    2012-01-01

    We report on the glass transition dynamics and the conductivity properties of a nanodielectric system composed of pre-synthesized TiO{sub 2} nanoparticles embedded in thermoplastic polyurethane. Increase of TiO{sub 2} loading results in enhanced segmental mobility of the composites and less steep temperature dependence, i.e., lower fragility index. The decrease in the fragility index and glass transition temperature is discussed based on the FTIR results. We observe different behavior of conductivity for temperatures above and below the glass transition temperature. At high temperatures the composites exhibit conductivity values more than 2 orders of magnitude higher than those in the pristine matrix. At the same time, at sub-Tg temperatures composites are characterized by superior electrical insulation properties compared to pristine matrix material. Such drastic temperature dependence of the conductivity/insulating ability of the flexible and light-weight, low-Tg composite material can be utilized in various applications including sensing and temperature switching materials.

  6. Proinflammatory responses in the murine brain after intranasal delivery of cholera toxin: implications for the use of AB toxins as adjuvants in intranasal vaccines.

    PubMed

    Armstrong, Michelle E; Lavelle, Ed C; Loscher, Christine E; Lynch, Marina A; Mills, Kingston H G

    2005-11-01

    Intranasal delivery of vaccines provides an attractive alternative to parenteral delivery, but it requires appropriate mucosal adjuvants. Cholera toxin (CT) is a powerful mucosal adjuvant, but it can undergo retrograde transport to the brain via the olfactory system after intranasal delivery. We demonstrate that intranasal delivery of CT increases the expression of interleukin-1 beta , cyclooxygenase-2, and chemokine messenger RNA in the murine hypothalamus, whereas parenterally delivered CT has little effect. Our findings suggest that CT can induce proinflammatory mediators in the brain when it is administered intranasally but not parenterally, and they raise concerns about the use of AB toxins as adjuvants in intranasal vaccines.

  7. Intranasal oxytocin effects on social cognition: a critique.

    PubMed

    Evans, Simon L; Dal Monte, Olga; Noble, Pamela; Averbeck, Bruno B

    2014-09-11

    The last decade has seen a large number of published findings supporting the hypothesis that intranasally delivered oxytocin (OT) can enhance the processing of social stimuli and regulate social emotion-related behaviors such as trust, memory, fidelity, and anxiety. The use of nasal spray for administering OT in behavioral research has become a standard method, but many questions still exist regarding its action. OT is a peptide that cannot cross the blood-brain barrier, and it has yet to be shown that it does indeed reach the brain when delivered intranasally. Given the evidence, it seems highly likely that OT does affect behavior when delivered as a nasal spray. These effects may be driven by at least three possible mechanisms. First, the intranasally delivered OT may diffuse directly into the CNS where it directly engages OT receptors. Second, the intranasally delivered OT may trigger increased central release via an indirect peripheral mechanism. And third, the indirect peripheral effects may directly lead to behavioral effects via some mechanism other than increased central release. Although intranasally delivered OT likely affects behavior, there are conflicting reports as to the exact nature of those behavioral changes: some studies suggest that OT effects are not always "pro-social" and others suggest effects on social behaviors are due to a more general anxiolytic effect. In this critique, we draw from work in healthy human populations and the animal literature to review the mechanistic aspects of intranasal OT delivery, and to discuss intranasal OT effects on social cognition and behavior. We conclude that future work should control carefully for anxiolytic and gender effects, which could underlie inconsistencies in the existing literature. This article is part of a Special Issue entitled Oxytocin and Social Behav.

  8. nanoparticles

    NASA Astrophysics Data System (ADS)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  9. On the origin of multi-step spin transition behaviour in 1D nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiruta, Daniel; Jureschi, Catalin-Maricel; Linares, Jorge; Dahoo, Pierre Richard; Garcia, Yann; Rotaru, Aurelian

    2015-09-01

    To investigate the spin state switching mechanism in spin crossover (SCO) nanoparticles, a special attention is given to three-step thermally induced SCO behavior in 1D chains. An additional term is included in the standard Ising-like Hamiltonian to account for the border interaction between SCO molecules and its local environment. It is shown that this additional interaction, together with the short range interaction, drives the multi-steps thermal hysteretic behavior in 1D SCO systems. The relation between a polymeric matrix and this particular multi-step SCO phenomenon is discussed accordingly. Finally, the environmental influence on the SCO system's size is analyzed as well.

  10. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts.

    PubMed

    Zimnyakov, D A; Sevrugin, A V; Yuvchenko, S A; Fedorov, F S; Tretyachenko, E V; Vikulova, M A; Kovaleva, D S; Krugova, E Y; Gorokhovsky, A V

    2016-06-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka-Munk function reveals a presence of local maxima in the regions 0.5-1.5 eV and 1.6-3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction.

  11. Pharmacokinetics of Intranasal Scopolamine Gel Formulation (Inscop)

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Du, Brian; Daniels, Vernie; Simmons, Rita; Buckey, Jay; Putcha, Lakshmi

    2009-01-01

    Space Motion Sickness (SMS) is commonly experienced by astronauts and often requires treatment with medications during early flight days of space missions. Orally administered scopolamine is commonly used by astronauts to prevent SMS. Bioavailability of oral (PO) SMS medications is often low and highly variable. Intranasal (IN) administration of medications achieves higher and more reliable bioavailability than from an equivalent PO dose. Methods: To test the safety and reliability of INSCOP, two clinical studies were performed, a dose escalation study and a comparison study administering INSCOP during normal ambulation and head down tilt bedrest. Efficacy was evaluated by testing INSCOP with two, different motion sickness inducing paradigms. Results: Preliminary results indicate that INSCOP demonstrates linear pharmacokinetics and a low side effect profile. In head down tilt bedrest, relative bioavailability of INSCOP was increased for females at both doses (0.2 and 0.4 mg) and for males at the higher dose (0.4 mg) but is reduced at the lower dose (0.2 mg) compared to normal ambulation. INSCOP displays gender specific differences during ABR. One of the treatment efficacy trials conducted at Dartmouth Hitchcock Medical Center demonstrated that INSCOP is efficacious at both doses (0.2 and 0.4 mg) in suppressing motion sickness symptoms as indicated by longer chair ride times with INSCOP administration than with placebo, and efficacy increases with dose. Similar results were seen using another motion sickness simulator, the motion simulator dome, at the Naval Aerospace Medical Research Laboratory, with significantly increased time in the dome in motion-susceptible subjects when using INSCOP compared to untreated controls. Conclusion: Higher bioavailability, linear pharmacokinetics, a low incidence of side effects, and a favorable efficacy profile make INSCOP a desirable formulation for prophylactic and rescue treatment of astronauts in space and military personnel on

  12. Aerosol characterization of nebulized intranasal glucocorticoid formulations.

    PubMed

    Berlinski, A; Waldrep, J C

    2001-01-01

    Inhaled glucocorticoids (GCs) are the mainstay of long-term therapy for asthma. The lack of suitable preparations in the United States has induced clinicians to use intranasal (IN) GC formulations as "nebulizer suspensions" for off-label therapy. However, no data are available regarding aerosol production and characteristics. The aim of this study was to characterize drug outputs and aerodynamic profiles of four nebulized IN GC formulations with further analysis of flunisolide (Flu), and to test the influence of different delivery system/formulation combinations. The aerodynamic profiles and drug outputs were determined by impaction and chemical analysis. The solution output was determined by the gravimetric technique. Triamcinole acetonide (TAA), fluticasone propionate (Flut), beclomethasone dipropionate (Bec), and Flu (550, 500, 840, and 250 microg, respectively) diluted to 4 mL with saline solution were tested with the Sidestream (SID) and Aero-Tech II (AT2) nebulizers. Subsequently, Flu was tested with four additional nebulizers (Pari LC + [PARI] Acorn II, Hudson T Up-draft II, and Raindrop). All the aerosols were heterodisperse and had a particle size range optimal for peripheral airway deposition (1.85 to 3.67 microm). Flu had the highest drug output in the respirable range (22.8 and 20.3 microg/min with the AT and SID, respectively). Flu was 5-11 times more efficiently nebulized than the other formulations tested. No differences were detected in the solution outputs (0.25 to 0.3 mL/min). In subsequent testing of Flu, the PARI, AT, and SID showed the best performances. The LC+ achieved the highest drug and solution output (27.4 microg/min and 0.89 mL/min, respectively). In conclusion, Flu showed the best aerosol performance characteristics. These data do not endorse the off-label utilization of nebulized IN GC, but underscores the importance of in vitro testing before selecting any formulation/nebulizer combinations for clinical use.

  13. Comparison of intranasal hypertonic dead sea saline spray and intranasal aqueous triamcinolone spray in seasonal allergic rhinitis.

    PubMed

    Cordray, Scott; Harjo, Jim B; Miner, Linda

    2005-07-01

    Intranasal corticosteroids are well known to be efficacious in the treatment of allergic rhinitis. Nasal irrigation with saline, including hypertonic saline, has long been recommended for the treatment of sinonasal disease, and it has been shown to have a positive effect on the physiology of the nasal mucosa. Until now, no study of the clinical efficacy of intranasal hypertonic Dead Sea saline as a monotherapy for seasonal allergic rhinitis has been reported. We conducted a prospective, randomized, single-blind, placebo-controlled comparison of intranasal hypertonic Dead Sea saline spray and intranasal aqueous triamcinolone spray in 15 patients with seasonal allergic rhinitis. Results were based on a 7-day regimen. Based on Rhinoconjunctivitis Quality of Life Questionnaire scores, clinically and statistically significant (p < 0.0001) improvements were seen in both active-treatment groups; as expected, the corticosteroid spray was the more effective of the two treatments. No significant improvement occurred in the control group. Our preliminary results not only confirm the efficacy of intranasal corticosteroid therapy in moderate-to-severe allergic rhinitis, they also suggest that the Dead Sea saline solution can be an effective alternative in mild-to-moderate allergic rhinitis, particularly with respect to nasal and eye symptoms. The hypertonicity of the Dead Sea solution may have a positive effect on the physiology of the nasal mucosa by improving mucociliary clearance. In addition, the dominant cation in the Dead Sea solution--magnesium--probably exerts anti-inflammatory effects on the nasal mucosa and on the systemic immune response.

  14. Intranasal delivery of biologics to the central nervous system.

    PubMed

    Lochhead, Jeffrey J; Thorne, Robert G

    2012-05-15

    Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.

  15. Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi{sub 2} film roughness and stress

    SciTech Connect

    Zhou Lan; Wang Yiping; Zhou Hua; Li Minghao; Headrick, Randall L.; MacArthur, Kimberly; Shi Bing; Conley, Ray; Macrander, Albert T.

    2010-08-15

    We report on the transition between two regimes from several-atom clusters to much larger nanoparticles in Ar magnetron sputter deposition of WSi{sub 2}, and the effect of nanoparticles on the properties of amorphous thin films and multilayers. Sputter deposition of thin films is monitored by in situ x-ray scattering, including x-ray reflectivity and grazing incidence small-angle x-ray scattering. The results show an abrupt transition at an Ar background pressure P{sub c}; the transition is associated with the threshold for energetic particle thermalization, which is known to scale as the product of the Ar pressure and the working distance between the magnetron source and the substrate surface. Below P{sub c} smooth films are produced while above P{sub c} roughness increases abruptly, consistent with a model in which particles aggregate in the deposition flux before reaching the growth surface. The results from WSi{sub 2} films are correlated with in situ measurement of stress in WSi{sub 2}/Si multilayers, which exhibits a corresponding transition from compressive to tensile stress at P{sub c}. The tensile stress is attributed to coalescence of nanoparticles and the elimination of nanovoids.

  16. Thermodynamics of a phase transition of silicon nanoparticles at the annealing and carbonization of porous silicon

    SciTech Connect

    Nagornov, Yu. S.

    2015-12-15

    The formation of SiC nanocrystals of the cubic modification in the process of high-temperature carbonization of porous silicon has been analyzed. A thermodynamic model has been proposed to describe the experimental data obtained by atomic-force microscopy, Raman scattering, spectral analysis, Auger spectroscopy, and X-ray diffraction spectroscopy. It has been shown that the surface energy of silicon nanoparticles and quantum filaments is released in the process of annealing and carbonization. The Monte Carlo simulation has shown that the released energy makes it possible to overcome the nucleation barrier and to form SiC nanocrystals. The processes of laser annealing and electron irradiation of carbonized porous silicon have been analyzed.

  17. Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Altman, A.; Shames, A. I.; Osipov, V. Yu; Aleksenskiy, A. E.; Vul', A. Ya

    2011-03-01

    We report on a 1H NMR study of diamond nanoparticles decorated by copper and cobalt. Increase in the 1H relaxation rate under decoration results from the interactions of hydrogen nuclear spins of the surface hydrocarbon and hydroxyl groups with paramagnetic copper and cobalt ions. This finding reveals the appearance of paramagnetic Cu2+ or Co2+ ions on the detonation nanodiamond (DND) surface rather than as a separate phase, which is consistent with the 13C NMR data of the same samples. Our results shed light on the mechanism of ion incorporation. A topological model for relative position of paramagnetic Cu2+ or Co2+ ions and hydrogen atoms on the DND surface is suggested. An application of the studied nanomaterials in the field of biomedicine is discussed.

  18. Structural transition of kidney cystatin induced by silicon dioxide nanoparticles: An implication for renal diseases.

    PubMed

    Shamsi, Anas; Ahmed, Azaj; Bano, Bilqees

    2017-01-01

    Nanotechnology is one of the fastest growing fields of science owing to use of nanomaterials in industries and medicine across the globe. Currently silicon dioxide nanoparticles (SiO2 NPs) are one of the most popular nanomaterials owing to their inert toxicity profile and hence exposure to SiO2 nanoparticles is on the increase. Cystatins are thiol proteinase inhibitors (TPIs) ubiquitously distributed in plants and animals and they are now at the heed of a number of normal and pathological conditions and shouldn't be regarded solely as TPIs. Up till now many studies have targeted the potential toxicity of NPs on pulmonary target; although little focus is given to kidney which is a secondary target organ. The objective of this work is to study the structural changes in buffalo kidney cystatin (BKC) induced by SiO2 NPs. UV and Fluorescence spectroscopy shows BKC transformation from native to non-native form evident by decreased absorbance and increased fluorescence. FTIR and CD spectroscopy further confirmed secondary structure disruption of BKC. Isothermal titration calorimetry (ITC) and microscopy were resorted to visualize interaction between SiO2 NPs and BKC. Comet assay and MTT assay were utilized to perceive the toxicity of SiO2 NPs incubated BKC; decreased cell viability clearly suggesting toxicity of SiO2 NPs incubated BKC. Our work suggests that SiO2 NPs have a deteriorating effect on BKC thereby causing a decrease in its ability to inhibit papain and hence less functionality. This study also shows that BKC transforms to a toxic non-native form in presence of SiO2 NPs.

  19. Intranasal vaccine trial for canine infectious tracheobronchitis (kennel cough).

    PubMed

    Glickman, L T; Appel, M J

    1981-08-01

    Two field trials were conducted during periods of endemic (summer) and epizootic (winter) canine infectious tracheobronchitis activity to evaluate the efficacy of three intranasal vaccines in a closed commercial beagle breeding kennel. A trivalent vaccine containing Bordetella bronchiseptica, canine parainfluenza, and canine adenovirus-2 was administered at 3 weeks of age. The vaccine was 71.2% and 81.8% effective in decreasing the incidence of coughing during the winter and summer trials, respectively. The number of deaths was lower in each of the vaccine groups than in the placebo groups. No adverse reactions were observed with any of the intranasal vaccines.

  20. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine.

    PubMed

    Qian, Shuai; Wong, Yin Cheong; Zuo, Zhong

    2014-07-01

    The present study aimed to develop an in situ gel formulation for intranasal delivery of tacrine (THA), an anti-Alzheimer's drug. Thermosensitive polymer Pluronic F-127 was used to prepare THA in situ gels. Sol-gel transition temperature (Tsol-gel), rheological properties, in vitro release, and in vivo nasal mucociliary transport time were optimized. The pharmacokinetics and brain dispositions of in situ gel were compared with that from THA oral solution in rats. The in situ gel demonstrated a liquid state with Newtonian fluid behavior under 20 °C, while it exhibited as non-flowing gel with pseudoplastic fluid behavior beyond its Tsol-gel of 28.5 °C. Based on nasal mucociliary transport time, the in situ gel significantly prolonged its retention in nasal cavity compared to solution form. Moreover, the in situ gel achieved 2-3 fold higher peak plasma concentration (Cmax) and area under the curve (AUC) of THA in plasma and brain tissue, but lowered Cmax and AUC of the THA metabolites compared to that of oral solution. The enhanced nasal residence time, improved bioavailability, increased brain uptake of parent drug and decreased exposure of metabolites suggested that the in situ gel could be an effective intranasal formulation for THA.

  1. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    PubMed

    Mann, Alex J; Noulin, Nicolas; Catchpole, Andrew; Stittelaar, Koert J; de Waal, Leon; Veldhuis Kroeze, Edwin J B; Hinchcliffe, Michael; Smith, Alan; Montomoli, Emanuele; Piccirella, Simona; Osterhaus, Albert D M E; Knight, Alastair; Oxford, John S; Lapini, Giulia; Cox, Rebecca; Lambkin-Williams, Rob

    2014-01-01

    We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and

  2. Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance

    SciTech Connect

    Flores-Arias, Yesica Vázquez-Victorio, Gabriela; Ortega-Zempoalteca, Raul; Acevedo-Salas, Ulises; Valenzuela, Raul; Ammar, Souad

    2015-05-07

    Ferrite magnetic nanoparticles in the composition Zn{sub 0.7}Ni{sub 0.3}Fe{sub 2}O{sub 4} were synthesized by the polyol method, with an average size of 8 nm. Electron spin resonance (ESR) measurements were carried out at a frequency of 9.45 GHz in the 100–500 K temperature range. Obtained results exhibited a characteristic ESR signal in terms of resonance field, H{sub res}, linewidth, ΔH, and peak ratio, R, for each magnetic phase. At low temperatures, the ferrimagnetic phase showed low H{sub res}, broad ΔH, and asymmetric R. At high temperatures, these parameters exhibited opposite values: high H{sub res}, small ΔH, and R ∼ 1. For intermediate temperatures, a different phase was observed, which was identified as a superparamagnetic phase by means of zero-field cooling-field cooling and hysteresis loops measurements. The observed differences were explained in terms of the internal fields and especially due to the cubic anisotropy in the ordered phase.

  3. Effect of Food Status on the Gastrointestinal Transit of Amphotericin B-Containing Solid Lipid Nanoparticles in Rats.

    PubMed

    Amekyeh, Hilda; Billa, Nashiru; Yuen, Kah-Hay; Lim, Sheau Chin Sherlyn

    2016-10-01

    Amphotericin B (AmB) is poorly absorbed from the gastrointestinal tract. Recent studies have suggested enhanced drug absorption from solid lipid nanoparticles (SLN). Little is known of the fate of AmB absorption within the gastrointestinal tract, and no gastrointestinal transit study has yet been performed on AmB-containing nano-formulations. We aimed to investigate the effect of food on the gastrointestinal transit properties of an AmB-containing SLN in rats. Three SLNs containing AmB, paracetamol, or sulfasalazine were formulated using cocoa butter and beeswax as lipid matrices and simultaneously administered orally to Sprague-Dawley rats. Paracetamol and sulfapyridine were used as marker drugs for estimating gastric emptying and cecal arrival, respectively. The pharmacokinetic data generated for paracetamol and sulfapyridine were used in estimating the absorption of the AmB SLNs in the small and large intestines, respectively. A delayed rate of AmB absorption was observed in the fed state; however, the extent of absorption was not affected by food. Specifically, the percentages of AmB absorption during the fasted state in the stomach, small intestine, and colon were not significantly different from absorption within the respective regions in the fed state. In both states, however, absorption was highest in the colon and appeared to be a combination of absorption from the small intestine plus absorption proper within the colon. The study suggests that AmB SLN, irrespective of food status, is slowly but predominantly taken up by the lymph, making the small intestine the most favorable site for the delivery of the AmB SLNs.

  4. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2015-09-01

    We herein report that the adsorption/desorption of citrate-capped gold nanoparticles (AuNPs) transiently causes leakage in fluid phase DOPC liposomes, while the liposomes do not leak with AuNPs capped with mercaptopropionic acid (MPA). Leakage also fails to occur for gel phase DPPC liposomes. Citrate-capped (but not MPA-capped) AuNPs raise the phase transition temperature of DPPC. We conclude that citrate-capped AuNPs interact with the PC liposomes very strongly, inducing a local fluid-to-gel lipid phase transition for DOPC. Leakage takes place during this transition, and the membrane integrity is resumed after the transition. Citrate-capped AuNPs allow stronger van der Waals forces than MPA-capped AuNPs with PC liposomes, since the latter are separated from the liposome surface by the ~0.3 nm MPA layer.We herein report that the adsorption/desorption of citrate-capped gold nanoparticles (AuNPs) transiently causes leakage in fluid phase DOPC liposomes, while the liposomes do not leak with AuNPs capped with mercaptopropionic acid (MPA). Leakage also fails to occur for gel phase DPPC liposomes. Citrate-capped (but not MPA-capped) AuNPs raise the phase transition temperature of DPPC. We conclude that citrate-capped AuNPs interact with the PC liposomes very strongly, inducing a local fluid-to-gel lipid phase transition for DOPC. Leakage takes place during this transition, and the membrane integrity is resumed after the transition. Citrate-capped AuNPs allow stronger van der Waals forces than MPA-capped AuNPs with PC liposomes, since the latter are separated from the liposome surface by the ~0.3 nm MPA layer. Electronic supplementary information (ESI) available: Methods, TEM, UV-vis and DLS data. See DOI: 10.1039/c5nr04805b

  5. Photochemical Fabrication of Transition Metal Nanoparticles Using CdS Template and Their Co-Catalysis Effects for TiO2 Photocatalysis

    NASA Astrophysics Data System (ADS)

    Badhwar, Nidhi; Gupta, Nidhi; Pal, Bonamali

    2013-09-01

    Transition metal nanoparticles were prepared by chemical dissolution of CdS template from metal photodeposited CdS nanorod (length = 70-85 nm and width = 5-6 nm) heterocomposites. Size (9-10 nm) of metal nanoparticles obtained after CdS removal was larger than the size (4-6 nm) of metal nanodeposits over CdS template. The obtained Au nanoparticles displayed a broad red shifted absorption band at 660 nm, whereas Pt, Pd and Rh nanoparticles exhibit featureless absorption spectra. Elemental analysis confirms the complete removal of CdS template from Au-CdS (Au — 2.65 at.%) and Ag-CdS (Ag — 2.06 at.%) composites showing no Cd peak. These metal nanoparticles imparted dissimilar co-catalytic activity of TiO2 for photocatalytic degradation of salicylic acid in the order Au > Pt > Pd > Ag > Rh as a function of their nature, electronegativity, redox potential and work function.

  6. Intranasal delivery of a peptide with antidepressant-like effect.

    PubMed

    Brown, Virginia; Liu, Fang

    2014-08-01

    A critical issue in drug development is developing effective, noninvasive delivery routes to the central nervous system (CNS). Major depressive disorder (MDD) is an illness associated with significant morbidity. Even with multiple antidepressant trials, 10-15% of patients continue to experience persistent depressive symptoms. We previously developed an interfering peptide that has antidepressant-like effects in rats when injected directly into the brain. To be clinically viable, it must demonstrate efficacy via a noninvasive administration route. We report here that the interfering peptide designed to disrupt the interaction between the D1 and D2 dopamine receptors can be delivered to relevant brain areas using the Pressurized Olfactory Device (POD), a novel intranasal delivery system developed by Impel NeuroPharma. We validate this delivery method by demonstrating that, at doses ⩾1.67 nmol/g, the D1-D2 interfering peptide has a significant antidepressant-like effect comparable to that of imipramine in the forced swimming test (FST), a common test for antidepressant efficacy. The antidepressant-like effect of the interfering peptide can be detected for 2 h after intranasal administration. Furthermore, we show that the interfering peptide disrupts the D1-D2 interaction and it can be detected in the prefrontal cortex after intranasal administration. This study provides strong preclinical support for intranasal administration of the D1-D2 interfering peptide as a new treatment option for patients suffering from MDD.

  7. Intranasal clobazam delivery in the treatment of status epilepticus.

    PubMed

    Florence, Kiruba; Manisha, Lalan; Kumar, Babbar Anil; Ankur, Kaul; Kumar, Mishra Anil; Ambikanandan, Misra

    2011-02-01

    The aim of the present investigation was to prepare and characterize clobazam mucoadhesive microemulsion (CZMME) to assess brain drug uptake and protection against pentylenetetrazole (PTZ)-induced convulsions in mice. Clobazam microemulsion (CZME) and CZMME were prepared by titration method and characterized. Brain uptake and pharmacokinetic parameters were calculated from drug concentration in mice brain versus time plots following intranasal administration of radiolabeled CZME and CZMME, intravenous and intranasal administration of radiolabeled clobazam solution. Gamma scintigraphy imaging of rabbit brain following intranasal administration was performed. Formulations were investigated for the onset of seizures in PTZ-challenged mice. Brain targeting efficiency and direct nose-to-brain transport percentage for mucoadhesive microemulsion suggested an improved brain uptake following intranasal administration. The findings were supported by gamma scintigraphy images. Delay in onset of PTZ-induced seizures with CZMME compared with positive control and placebo-treated groups confirmed the improved brain uptake. However, extensive animal studies followed by clinical trials are necessary to develop a product suitable for emergencies of acute seizures in status epilepticus and patients suffering from drug tolerance and hepatic impairment on long-term use in treatment of epilepsy, schizophrenia, and anxiety.

  8. Use of nasal packs and intranasal septal splints following septoplasty.

    PubMed

    Ardehali, M M; Bastaninejad, S

    2009-10-01

    The aim of this study was to compare the efficacy of a trans-septum suturing technique with conventional nasal packing and intranasal splints in the classic septoplasty operation. The study is a prospective, randomized clinical trial. 114 patients underwent septoplasty for septal deviation and ensuing nasal obstruction. These patients were divided into two groups: packing (using intranasal septal splints and antibiotic meshes at the end of the operation) and non-packing (using four separate trans-septum through and through horizontal mattress sutures without any mesh or intranasal splint insertion). Randomization was performed using the four block randomization system. Patients who failed the regular follow-up were excluded, and the two groups were compared for postoperative bleeding, hematoma, perforation and synechiae. Patients were asked to record pain levels using a visual analogue scale. The authors found no significant statistical differences between the two groups in the parameters studied, but significantly higher pain levels were noted in the patients in the packing group. The final results confirmed that patients who underwent septoplasty, intranasal packing and septal splint insertion did not benefit more than those who had trans-septum through and through suturing.

  9. Thermally-induced transition of lamellae orientation in block-copolymer films on ‘neutral’ nanoparticle-coated substrates

    SciTech Connect

    Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; Satija, Sushil K.; Page, Kirt A.; Patton, Derek L.; Jones, Ronald L.; Karin, Alamgir; Douglas, Jack F.

    2015-06-01

    Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmed using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.

  10. Thermally-induced transition of lamellae orientation in block-copolymer films on ‘neutral’ nanoparticle-coated substrates

    DOE PAGES

    Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; ...

    2015-06-01

    Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmedmore » using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.« less

  11. Sol-gel transition of nanoparticles/polymer mixtures for sustained delivery of exenatide to treat type 2 diabetes mellitus.

    PubMed

    Oh, Keun Sang; Kim, Jae Yeon; Yoon, Byeong Deok; Lee, Minae; Kim, Heejoo; Kim, Michelle; Seo, Jae Hong; Yuk, Soon Hong

    2014-11-01

    The sol-gel transition of nanoparticles (NPs)/polymer mixture in aqueous medium was investigated for the sustained delivery of exenatide to treat type 2 diabetes mellitus. Exenatide-loaded multilayer NPs were prepared using a layer-by-layer approach which utilized the interaction between Pluronics and lipid bilayers as the main driving force for the construction of the multilayer. Pluronic F-127 was the polymer used, and it forms a gel at body temperature. Although the antidiabetic effects of exenatide-loaded multilayer NPs have been demonstrated previously in an animal model, in this work, the attempt was made to demonstrate the extended duration of antidiabetic effects, which was accomplished by localizing the exenatide-loaded NPs in muscular areas in the body through the gelation of Pluronic F-127. Transmittance electron microscopy and dynamic light scattering were used to examine the morphology of the multilayer NPs/polymer mixture. A change in the release pattern of exenatide was observed after gel formation at body temperature, and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis was performed using native exenatide and a reference biomarker as control to observe whether exenatide extracted from the multilayer NPs and the multilayer NPs/Pluronic F-127 mixture degraded or not. We then observed the antidiabetic effect of exenatide-loaded multilayer NPs/Pluronic F-127 mixture by monitoring blood-glucose levels in db/db mice. In vitro and in vivo correlation was discussed regarding structural variation in the delivery vehicles.

  12. Morphological transitions and buckling characteristics in a nanoparticle-laden sessile droplet resting on a heated hydrophobic substrate.

    PubMed

    Bansal, Lalit; Miglani, Ankur; Basu, Saptarshi

    2016-04-01

    In this work, we have established the evaporation-liquid flow coupling mechanism by which sessile nanofluid droplets on a hydrophobic substrate evaporate and agglomerate to form unique morphological features under controlled external heating. It is well understood that evaporation coupled with internal liquid flow controls particle transport in a spatiotemporal sense. Flow characteristics inside the heated droplet are investigated and found to be driven by the buoyancy effects. Velocity magnitudes are observed to increase by an order at higher temperatures with similar looking flow profiles. The recirculating flow induced particle transport coupled with collision of particles and shear interaction between them leads to the formation of dome shaped viscoelastic shells of different dimensions depending on the surface temperature. These shells undergo sol-gel transition and subsequently undergo buckling instability leading to the formation of daughter cavities. With an increase in the surface temperature, droplets exhibit buckling from multiple sites over a larger sector in the top half of the droplet. Irrespective of the initial nanoparticle concentration and substrate temperature, growth of a daughter cavity (subsequent to buckling) inside the droplet is found to be controlled by the solvent evaporation rate from the droplet periphery and is shown to exhibit a universal trend.

  13. Nanoscale confinement and interfacial effects on the dynamics and glass transition/crystallinity of thin adsorbed films on silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Madathingal, Rajesh Raman

    in the latter case bridging of PMMA between aggregates occurred. The anchoring point densities were comparable to the silanol densities, suggesting that PMMA adsorbed as trains rather than loops. For hydrophilic SiO2, Tg increased with [SiOH], as more carbonyl groups hydrogen bonded to the silanols, and was independent of particle morphology. For methylated silica, (CH3) 3-SiO2, the adsorption isotherms were identical for colloidal and fumed silica, but Tg was depressed for the former, and comparable to the bulk value for the latter. The increased Tg of PMMA adsorbed onto fumed (CH3)3-SiO2 was attributed to the larger loops formed by the bridging PMMA chains between the silica aggregates. For nanocomposites the interphase region becomes more important as the surface/volume ratio of the nanoparticles increases. Polymers have chain dimensions (characterized by the radius of gyration, Rg) similar to the nanoparticles (Rnanoparticle) themselves, so that chain conformation, mobility and crystallinity can be affected by Rg/Rnanoparticle. Here, both the glass transition temperature (Tg) and degree of crystallinity (Xc) of polyethylene oxide (PEO) on individual SiO 2 nanoparticles of nominal 15, 50 and 100 nm diameter (2 RSiO2 ) , in which Rg (PEO) was greater, equal to or less than RSiO2 was investigated. Plateau adsorption of PEO on SiO2 nanoparticles (PEO-SiO2) increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm). At plateau adsorption after melting and solidification, the samples were completely amorphous. The Tg of the adsorbed PEO increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm); since the Tgs were above 25°C in all cases, the PEO behaved more like a brittle solid than an elastomer. For comparable amounts of PEO that were adsorbed from solution but not melted, the melt endotherm increased in the order PEO-SiO2 (15 nm) > PEO-SiO2 (50 nm) > PEO-SiO 2 (100 nm). These trends were interpreted as due to an increase

  14. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    DOE PAGES

    Velizhanin, Kirill A.

    2016-05-25

    We report that unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron–photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, asmore » such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. Lastly, as an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ~2.« less

  15. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    SciTech Connect

    Velizhanin, Kirill A.

    2016-05-25

    We report that unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron–photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, as such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. Lastly, as an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ~2.

  16. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    NASA Astrophysics Data System (ADS)

    Velizhanin, Kirill A.

    2016-12-01

    Unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron-photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, as such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. As an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ∼ 2.

  17. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis

    NASA Astrophysics Data System (ADS)

    Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.

    2015-03-01

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological

  18. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis.

    PubMed

    Castellanos, Milagros; Carrillo, Pablo J P; Mateu, Mauricio G

    2015-03-19

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.

  19. Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles

    SciTech Connect

    Djerdj, Igor Arcon, Denis; Jaglicic, Zvonko; Niederberger, Markus

    2008-07-15

    The liquid-phase synthesis of metal oxide nanoparticles in organic solvents under exclusion of water is nowadays a well-established alternative to aqueous sol-gel chemistry. In this article, we highlight some of the advantages of these routes based on selected examples. The first part reviews some recent developments in the synthesis of ternary metal oxide nanoparticles by surfactant-free nonaqueous sol-gel routes, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the presentation of structural peculiarities of manganese oxide nanoparticles with an ordered Mn vacancy superstructure. These examples show that nonaqueous systems, on the one hand, allow the preparation of compositionally complex oxides, and, on the other hand, make use of the organic components (initially present or formed in situ) in the reaction mixture to tailor the morphology. Furthermore, obviously even the crystal structure can differ from the corresponding bulk material like in the case of MnO nanoparticles. In the second part of the paper we present original results regarding the synthesis of dilute magnetic semiconductor TiO{sub 2} nanoparticles doped with cobalt and iron. The structural characterization as well as the magnetic properties with special attention to the doping efficiency is discussed. - Graphical abstract: In the first part of this article, nonaqueous sol-gel routes to ternary metal oxide nanoparticles are briefly reviewed, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the appearance of an unprecedented superstructure in MnO nanoparticles. In the second part, doping experiments of TiO{sub 2} with Fe and Co are presented, along with their characterization including magnetic measurements.

  20. Effects of ultrasonic processing on phase transition of flame-synthesized anatase TiO{sub 2} nanoparticles

    SciTech Connect

    Lee, Gyo Woo; Byeon, Jeong Hoon

    2009-12-15

    The effect of ultrasonic processing on the phase transformation of flame-synthesized anatase TiO{sub 2} nanoparticles heated to the rutile phase was investigated. TiO{sub 2} nanoparticles of various sizes were prepared using a coflow hydrogen diffusion flame and an ultrasonic processor. Smaller nanoparticles having a similar portion of anatase phase using the ultrasonic processor were produced. On the basis of scanning electron microscopy images and specific surface areas, we observed that smaller nanoparticles tended to be sintered more easily than larger nanoparticles. From X-ray diffraction analysis, we demonstrated that when heated, TiO{sub 2} nanoparticles synthesized using the ultrasonic processor at 60% of its maximum amplitude were transformed from the anatase phase to the rutile phase more easily than those formed without or with the ultrasonic processor operated at 20% of its maximum amplitude.

  1. Assessment of the pharmacodynamics of intranasal, intravenous and oral scopolamine

    NASA Technical Reports Server (NTRS)

    Tietze, Karen J.

    1990-01-01

    Space motion sickness is an important issue in the space medical sciences program. One of the objectives of the ongoing clinical experimental protocol Pharmacokinetics of Intranasal Scopolamine in Normal Subjects is to evaluate the pharmacodynamics of scopolamine using salivary flow rate and pH profiles and cognitive performance tests as pharmacodynamic parameters. Normal volunteers collected saliva and performed the NTI Multiresource Performance Battery tests at designed time intervals to establish control saliva flow rates, salivary pH profiles, and the characteristics of the learning curve for the performance program under normal conditions. In the clinical part of the study, saliva samples and performance test scores are collected from healthy nonsmoking subjects after receiving a single 0.4 mg dose of either intranasal, intravenous, or oral scopolamine.

  2. Intranasal midazolam for seizure cessation in the community setting

    PubMed Central

    Zelcer, Michal; Goldman, Ran D.

    2016-01-01

    Question There are times when parents arrive to my clinic after their child has had a seizure and a second seizure takes place in the clinic. While waiting for transport to the hospital, are there ways to stop the seizures without the need to obtain intravenous access in the clinic? Answer Intravenous diazepam has been a first-line therapy to stop seizures in children for many years. Other routes of drug administration such as intramuscular, rectal, and buccal are available but have several limitations. More evidence suggests that the intranasal route to administer drugs is quick and effective in children, and the use of midazolam has been continuing to show promise in seizure cessation. With its good safety profile, intranasal midazolam can be used in the clinic and prehospital setting for seizure cessation in children. PMID:27412207

  3. Blindness and intranasal endoscopic ethmoidectomy: prevention and management.

    PubMed

    Stankiewicz, J A

    1989-09-01

    Blindness is one of the major complications that can occur during and after intranasal ethmoidectomy. Two mechanisms for blindness are apparent: (1) direct injury to the optic nerve and (2) retrobulbar (orbital) hematoma, which increases orbital pressure and compromises vascular supply and drainage to and from the eye. While several publications have discussed the management of blindness from a delayed operative vantage point, no publication has discussed the immediate management of blindness from intraoperative or immediate postoperative occurrence, stressing specific medical and surgical treatment. A review of the literature and the author's personal experience will be used as a basis to discuss the prevention and management of blindness during endoscopic intranasal ethmoidectomy. Case studies will be used to illustrate methods for prevention and management of blindness. If treated aggressively, blindness associated with retrobulbar hematoma can be reversed medically.

  4. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    PubMed Central

    Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.

    2016-01-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  5. Effects of nanoparticle doping on the phase transitional behaviour of ferroelectric liquid crystal Langmuir-Blodgett composite films

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Raina, K. K.

    2015-12-01

    Langmuir-Blodgett films of ferroelectric liquid crystals (FLCs) doped with a low concentration of functionalized Al: ZnO (AZO) nanoparticles were prepared and characterized. Pressure-area isotherms show that the nanoparticles as well as FLC composite systems have the capability to form stable monolayers at the air-water interface. The molecular interaction between nanoparticles and FLC molecules increased during barrier compression, which resulted in increased surface pressure. We observed various phases in isotherms with increasing concentration of nanoparticles in the FLC matrix. An X-ray diffraction profile at a low angle confirmed that FLCs retain their layer structure at a low concentration doping of AZO nanoparticles in the FLC matrix. Atomic force microscopy images indicate that low wt% composites are uniformly deposited without disturbing the translation behaviour of SmC* liquid crystals.

  6. Gene therapy prospects--intranasal delivery of therapeutic genes.

    PubMed

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  7. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V.; Chow, Diana S. L.; Putcha, Lakshmi

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP.

  8. Intranasal delivery of antiepileptic medications for treatment of seizures.

    PubMed

    Wermeling, Daniel P

    2009-04-01

    Acute isolated seizure, repetitive or recurrent seizures, and status epilepticus are all deemed medical emergencies. Mortality and worse neurologic outcome are directly associated with the duration of seizure activity. A number of recent reviews have described consensus statements regarding the pharmacologic treatment protocols for seizures when patients are in pre-hospital, institutional, and home-bound settings. Benzodiazepines, such as lorazepam, diazepam, midazolam, and clonazepam are considered to be medications of first choice. The rapidity by which a medication can be delivered to the systemic circulation and then to the brain plays a significant role in reducing the time needed to treat seizures and reduce opportunity for damage to the CNS. Speed of delivery, particularly outside of the hospital, is enhanced when transmucosal routes of delivery are used in place of an intravenous injection. Intranasal transmucosal delivery of benzodiazepines is useful in reducing time to drug administration and cessation of seizures in the pre-hospital setting, when actively seizing patients arrive in the emergency room, and at home where caregivers treat their dependents. This review summarizes factors to consider when choosing a benzodiazepine for intranasal administration, including formulation and device considerations, pharmacology and pharmacokinetic/pharmacodynamic profiles. A review of the most relevant clinical studies in epilepsy patients will provide context for the relative success of this technique with a number of benzodiazepines and relatively less sophisticated nasal preparations. Neuropeptides delivered intranasally, crossing the blood-brain barrier via the olfactory system, may increase the availability of medications for treatment of epilepsy. Consequently, there remains a significant unmet medical need to serve the pharamcotherapeutic requirements of epilepsy patients through commercial development and marketing of intranasal antiepileptic products.

  9. Pharmaceutical Product Development: Intranasal Scopolamine (INSCOP) Metered Dose Spray

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Crady, Camille; Putcha, Lakshmi

    2012-01-01

    Motion sickness (MS) has been a problem associated with space flight, the modern military and commercial air and water transportation for many years. Clinical studies have shown that scopolamine is the most effective medication for the prevention of motion sickness (Dornhoffer et al, 2004); however, the two most common methods of administration (transdermal and oral) have performance limitations that compromise its utility. Intranasal administration offers a noninvasive treatment modality, and has been shown to counter many of the problems associated with oral and transdermal administration. With the elimination of the first pass effect by the liver, intranasal delivery achieves higher and more reliable bioavailability than an equivalent oral dose. This allows for the potential of enhanced efficacy at a reduced dose, thus minimizing the occurrence of untoward side effects. An Intranasal scopolamine (INSCOP) gel formulation was prepared and tested in four ground-based clinical trials under an active Investigational New Drug (IND) application with the Food and Drug Administration (FDA). Although there were early indicators that the intranasal gel formulation was effective, there were aspects of formulation viscosity and the delivery system that were less desirable. The INSCOP gel formulation has since been reformulated into an aqueous spray dosage form packaged in a precise, metered dose delivery system; thereby enhancing dose uniformity, increased user satisfaction and palatability, and a potentially more rapid onset of action. Recent reports of new therapeutic indications for scopolamine has prompted a wide spread interest in new scopolamine dosage forms. The novel dosage form and delivery system of INSCOP spray shows promise as an effective treatment for motion sickness targeted at the armed forces, spaceflight, and commercial sea, air, and space travel markets, as well as prospective psychotherapy for mental and emotional disorders.

  10. Microdialysis pharmacokinetic study of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration.

    PubMed

    Wei, Yan; Ying, Mingzhen; Xu, Shuai; Wang, Feng; Zou, Aifeng; Cao, Shilei; Jiang, Xinguo; Wang, Yajie

    2016-01-01

    The purpose of this study was to investigate the microdialysis pharmacokinetic of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration. The pharmacokinetic study of subcutaneous and oral administration was also performed in rats. From the in vivo results, scopolamine intranasal administration can avoid hepatic first-pass effect. Tmax plasma samples after intranasal administration were significantly faster than oral administration and subcutaneous injection. The relative bioavailability of intranasal administrations was 51.8-70% when compared with subcutaneous injection. Moreover, one can see that in comparison with scopolamine subcutaneous administration, scopolamine intranasal gel and solutions can increased drug target index (DTI) with olfactory bulb 1.69 and 2.05, vestibule 1.80 and 2.15, respectively. The results indicated that scopolamine can be absorbed directly through the olfactory mucosa into the olfactory bulb, and then transported to various brain tissue after intranasal administration, with the characteristics of brain drug delivery.

  11. Dose escalation pharmacokinetics of intranasal scopolamine gel formulation.

    PubMed

    Wu, Lei; Boyd, Jason L; Daniels, Vernie; Wang, Zuwei; Chow, Diana S-L; Putcha, Lakshmi

    2015-02-01

    Astronauts experience Space Motion Sickness requiring treatment with an anti-motion sickness medication, scopolamine during space missions. Bioavailability after oral administration of scopolamine is low and variable, and absorption form transdermal patch is slow and prolonged. Intranasal administration achieves faster absorption and higher bioavailability of drugs that are subject to extrahepatic, first pass metabolism after oral dosing. We examined pharmacokinetics of 0.1, 0.2, and 0.4 mg doses of the Investigational New Drug formulation of intranasal scopolamine gel (INSCOP) in 12 healthy subjects using a randomized, double-blind cross-over study design. Subjects received one squirt of 0.1 g of gel containing either 0.1 mg or 0.2 mg/0.1 mL scopolamine or placebo in each nostril. Serial blood samples and total urine voids were collected after dosing and drug concentrations were determined using a modified LC-MS-MS method. Results indicate dose-linear pharmacokinetics of scopolamine with linear increases in Cmax and AUC within the dose range tested. Plasma drug concentrations were significantly lower in females than in males after administration of 0.4 dose. All three doses were well tolerated with no unexpected or serious adverse side effects reported. These results suggest that intranasal scopolamine gel formulation (INSCOP) offers a fast, reliable, and safe alternative for the treatment of motion sickness.

  12. Use of intranasal cromolyn sodium for allergic rhinitis.

    PubMed

    Ratner, Paul H; Ehrlich, Paul M; Fineman, Stanley M; Meltzer, Eli O; Skoner, David P

    2002-04-01

    Allergic rhinitis affects 10% to 20% of Americans. It frequently coexists with other conditions, such as allergic conjunctivitis, sinusitis, and asthma, and is associated with impaired occupational function and performance in school, decreased quality of life, and increased health care costs. An efficacious agent with minimal adverse effects and a lack of drug interactions is needed to help simplify treatment of allergic rhinitis, especially in patients with comorbidities. Controlled studies of intranasal cromolyn sodium therapy for patients with seasonal and perennial allergic rhinitis are reviewed, and appropriate candidates for treatment with this agent are discussed. Cromolyn inhibits the degranulation of sensitized mast cells, thereby blocking the release of inflammatory and allergic mediators. It reduces symptoms of allergic rhinitis, and, when used prophylactically, cromolyn can prevent symptoms from occurring. Controlled studies comparing cromolyn with placebo, intranasal corticosteroids, and antihistamines have shown the efficacy of cromolyn in relieving rhinitis symptoms. In addition, because cromolyn is poorly absorbed systemically, it is well tolerated and not associated with drug interactions. Intranasal cromolyn has an excellent safety record, is available as an over-the-counter medication, and has been proved to be efficacious in patients with allergic rhinitis.

  13. [Effectiveness of intranasal salmon calcitonin treatment in postmenopausal osteoporosis].

    PubMed

    Kopaliani, M

    2005-04-01

    The aim of this study was to assess clinical efficacy of intranasal salmon calcitonin (Miacalcic, Novartis pharma) treatment in women with established postmenopausal osteoporosis. 30 women of the main group with established postmenopausal osteoporosis(T-score < -2,5) were treated with intranasal salmon calcitonin: 200 IU daily for 2 months with subsequent pause of 2 months (3 cycles), 12 months in total. Age matched control group was formed by 25 postmenopausal women with similar clinical status. SOS (speed of sound) of cortical bone was measured in the middle of the tibia by ultrasound densitometer--Sound Scan Compact (Myriad-Israel). Patients of both groups received 500 mg Ca and 200 IU vit.D3 (CaD3 Nycomed) two times daily in the same regimen (two months treatment--two months pause). Our results showed that intranasal treatment with 200 IU daily effectively influence the back pain, reduces bone turnover and significantly increases cortical BMD. Significant changes were not observed in patients of the control group, who received only CaD3 Nycomed, that showed that Calcium and vitamin D supplementation is more effective for prevention of bone lose in postmenopausal women, rather for treatment of established osteoporosis.

  14. Intranasal Rapamycin Rescues Mice from Staphylococcal Enterotoxin B-Induced Shock

    DTIC Science & Technology

    2012-09-18

    immunoglobulins administered shortly after SEB exposure. Intranasal SEB induces long-lasting lung injury which requires prolonged drug treatment. We...shock. Intranasal rapamycin represents a novel use of an immunosuppressant targeting directly to site of toxin exposure, reducing dosages needed and...treatment except for the use of intravenous immunoglobulins administered shortly after SEB exposure. Intranasal SEB induces long-lasting lung injury which

  15. Formulations for Intranasal Delivery of Pharmacological Agents to Combat Brain Disease: A New Opportunity to Tackle GBM?

    PubMed Central

    van Woensel, Matthias; Wauthoz, Nathalie; Rosière, Rémi; Amighi, Karim; Mathieu, Véronique; Lefranc, Florence; van Gool, Stefaan W.; de Vleeschouwer, Steven

    2013-01-01

    Despite recent advances in tumor imaging and chemoradiotherapy, the median overall survival of patients diagnosed with glioblastoma multiforme does not exceed 15 months. Infiltration of glioma cells into the brain parenchyma, and the blood-brain barrier are important hurdles to further increase the efficacy of classic therapeutic tools. Local administration methods of therapeutic agents, such as convection enhanced delivery and intracerebral injections, are often associated with adverse events. The intranasal pathway has been proposed as a non-invasive alternative route to deliver therapeutics to the brain. This route will bypass the blood-brain barrier and limit systemic side effects. Upon presentation at the nasal cavity, pharmacological agents reach the brain via the olfactory and trigeminal nerves. Recently, formulations have been developed to further enhance this nose-to-brain transport, mainly with the use of nanoparticles. In this review, the focus will be on formulations of pharmacological agents, which increase the nasal permeation of hydrophilic agents to the brain, improve delivery at a constant and slow release rate, protect therapeutics from degradation along the pathway, increase mucoadhesion, and facilitate overall nasal transport. A mounting body of evidence is accumulating that the underexplored intranasal delivery route might represent a major breakthrough to combat glioblastoma. PMID:24202332

  16. Comparison of incidence of hyponatremia between intranasal and oral desmopressin in patients with central diabetes insipidus.

    PubMed

    Kataoka, Yuko; Nishida, Sachi; Hirakawa, Akihiro; Oiso, Yutaka; Arima, Hiroshi

    2015-01-01

    Central diabetes insipidus (CDI), which is characterized by polyuria and polydipsia, is caused by a deficiency of the antidiuretic hormone arginine vasopressin (AVP). While CDI is treated with desmopressin, an analogue of AVP, the intranasal formulation is inconvenient and CDI patients reportedly prefer the oral formulation to the intranasal one. In Japan, intranasal desmopressin had been the only formulation for the treatment of CDI until 2012, when the desmopressin orally disintegrating tablet (ODT) was approved for treatment. In this study we analyzed 26 patients with CDI in whom intranasal desmopressin was switched to desmopressin ODT. The mean daily dose of intranasal desmopressin was 10 ± 8 μg/day, and that of desmopressin ODT was 142 ± 59 μg/day. The mean serum sodium levels were 140 ± 5 mmol/L and 140 ± 3 mmol/L with intranasal desmopressin and desmopressin ODT, respectively, and there were no significant differences between these values. The frequency of hyponatremia (<135 mmol/L) with intranasal desmopressin was 11.7% and that with desmopressin ODT was 7.6%, while the frequency of hyponatremia (<130 mmol/L) with intranasal desmopressin was 4.2% and that with desmopressin ODT was 1.3%. Statistical analyses revealed that incidence of hyponatremia was significantly decreased after the switch to desmopressin ODT. Thus, it is suggested that water balance is better controlled with desmopressin ODT than with intranasal desmopressin in patients with CDI.

  17. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  18. Vanadium Dioxide Nanoparticle-based Thermochromic Smart Coating: High Luminous Transmittance, Excellent Solar Regulation Efficiency, and Near Room Temperature Phase Transition.

    PubMed

    Zhu, Jingting; Zhou, Yijie; Wang, Bingbing; Zheng, Jianyun; Ji, Shidong; Yao, Heliang; Luo, Hongjie; Jin, Ping

    2015-12-23

    An annealing-assisted preparation method of well-crystallized VxW1-xO2(M)@SiO2 core-shell nanoparticles for VO2-based thermochromic smart coatings (VTSC) is presented. The additional annealing process reduces the defect density of the initial hydrothermally prepared VxW1-xO2(M) nanoparticles and enhances their crystallinity so that the thermochromic film based on VxW1-xO2(M)@SiO2 nanoparticles can exhibit outstanding thermochromic performance with balanced solar regulation efficiency (ΔTsol) of 17.3%, luminous transmittance (Tlum) up to 52.2%, and critical phase transition temperature (Tc) around 40.4 °C, which is very promising for practical application. Furthermore, it makes great progress in reducing Tc of VTSC to near room temperature (25.2 °C) and simutaneously maintaining excellent optical properties (ΔTsol = 14.7% and Tlum = 50.6%). Such thermochromic performance is good enough to make VTSC applicable to practical architecture.

  19. Canted spin structure and the first order magnetic transition in CoFe2O4 nanoparticles coated by amorphous silica

    NASA Astrophysics Data System (ADS)

    Lyubutin, I. S.; Starchikov, S. S.; Gervits, N. E.; Korotkov, N. Yu.; Dmitrieva, T. V.; Lin, Chun-Rong; Tseng, Yaw-Teng; Shih, Kun-Yauh; Lee, Jiann-Shing; Wang, Cheng-Chien

    2016-10-01

    The functional polymer (PMA-co-MAA) latex microspheres were used as a core template to prepare magnetic hollow spheres consisting of CoFe2O4/SiO2 composites. The spinel type crystal structure of CoFe2O4 ferrite is formed under annealing, whereas the polymer cores are completely removed after annealing at 450 °C. Magnetic and Mössbauer spectroscopy measurements reveal very interesting magnetic properties of the CoFe2O4/SiO2 hollow spheres strongly dependent on the particle size which can be tuned by the annealing temperature. In the ground state of low temperatures, the CoFe2O4 nanoparticles are in antiferromagnetic state due to the canted magnetic structure. Under heating in the applied field, the magnetic structure gradually transforms from canted to collinear, which increases the magnetization. The Mössbauer data revealed that the small size CoFe2O4/SiO2 particles (2.2-4.3 nm) do not show superparamagnetic behavior but transit from the magnetic to the paramagnetic state by a jump-like magnetic transition of the first order This effect is a specific property of the magnetic nanoparticles isolated by inert material, and can be initiated by internal pressure creating at the particle surface. The suggested method of synthesis can be modified with various bio-ligands on the silane surface, and such materials can find many applications in diagnostics and bio-separation.

  20. Predicting the size- and shape-dependent cohesive energy and order-disorder transition temperature of Co-Pt nanoparticles by embedded-atom-method potential.

    PubMed

    Liu, Chenze; Qi, Weihong; Ouyang, Bin; Wang, Xing; Huang, Baiyun

    2013-02-01

    The cohesive energy (CE) of CoPt nanoparticles (NPs) with different sizes and shapes have been calculated by embedded-atom-method (EAM) potential. It is shown that CE of NPs with order or disorder structures decreases with the decrease of particle size, while the shape effects become obvious only at small size. The CE difference per atom between order and disorder structures decreases with the decrease of particle size, indicating that the possibility of order-disorder transition in small size becomes larger compared with these in large size. Significantly, the CE difference varies in proportion to order-disorder transition temperature (T(c)), which suggests that one can predict order-disorder transition of NPs by calculation the cohesive energy. The present calculated T(c) of CoPt NPs is consistent with recent experiments, simulation and theoretical predictions, and the method can also be applied to study the order-disorder transition of FePt, FePd, and so on.

  1. Oxygen and indocyanine green loaded phase-transition nanoparticle-mediated photo-sonodynamic cytotoxic effects on rheumatoid arthritis fibroblast-like synoviocytes

    PubMed Central

    Tang, Qin; Cui, Jianyu; Tian, Zhonghua; Sun, Jiangchuan; Wang, Zhigang; Chang, Shufang; Zhu, Shenyin

    2017-01-01

    Background Photodynamic therapy and sonodynamic therapy are developing, minimally invasive, and site-specific modalities for cancer therapy. A combined strategy PSDT (photodynamic therapy followed by sonodynamic therapy) has been proposed in this study. Here, we aimed to develop novel biodegradable poly(DL-lactide-co-glycolic acid) phase-transition nanoparticles simultaneously loaded with oxygen and indocyanine green (OI-NPs) and to investigate the cytotoxic effects and the potential mechanisms of OI-NP–mediated PSDT on MH7A synoviocytes. Methods The OI-NPs were prepared using a modified double emulsion method and the physicochemical properties were determined. The cellular uptake of OI-NPs was detected by confocal microscopy and flow cytometry. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay, flow cytometry, and Hoechst 33342/propidium iodide double staining were used to determine the cytotoxic effect of OI-NP–mediated PSDT on MH7A cells. Fluorescence microscope and fluorescence microplate reader were used to detect reactive oxygen species (ROS) generation. Results The OI-NPs were a stable and efficient carrier to deliver oxygen and indocyanine green, and enhanced cellular uptake was observed in MH7A cells with the nanoparticles. OI-NP–mediated PSDT caused more serious cell damage and more evident cell apoptosis, compared with other groups. Furthermore, increased generation of intracellular ROS was detected in MH7A cells treated with PSDT. Interestingly, the OI-NP–mediated PSDT-induced cell viability loss was effectively rescued by pretreatment with the ROS scavenger N-acetylcysteine. Conclusion Multifunctional OI-NPs were successfully developed and characterized for the combined delivery of oxygen and indocyanine green, and OI-NP–mediated PSDT would be a potential cytotoxic treatment for MH7A cells. This study may provide a novel strategy for the treatment of RA and develop a model of theranostic application through phase-transition

  2. Efficacy of intranasal dexmedetomidine versus oral midazolam for paediatric premedication

    PubMed Central

    Kumar, Lakshmi; Kumar, Ajay; Panikkaveetil, Ramkumar; Vasu, Bindu K; Rajan, Sunil; Nair, Suresh G

    2017-01-01

    Background and Aims: Premedication is an integral component of paediatric anaesthesia which, when optimal, allows comfortable separation of the child from the parent for induction and conduct of anaesthesia. Midazolam has been accepted as a safe and effective oral premedicant. Dexmedetomidine is a selective alpha-2 agonist with sedative and analgesic effects, which is effective through the transmucosal route. We compared the efficacy and safety of standard premedication with oral midazolam versus intranasal dexmedetomidine as premedication in children undergoing elective lower abdominal surgery. Methods: This was a prospective randomised double-blinded trial comparing the effects of premedication with 0.5 mg/kg oral midazolam versus 1 μg/kg intranasal dexmedetomidine in children between 2 and 12 years undergoing abdominal surgery. Sedation scores at separation and induction were the primary outcome measures. Behaviour scores and haemodynamic changes were secondary outcomes. Student's t-test and Chi-square were used for analysis of the variables. Results: Sedation scores were superior in Group B (dexmedetomidine) than Group A (midazolam) at separation and induction (P < 0.001). The behaviour scores at separation, induction and wake up scores at extubation were similar between the two groups. The heart rate and blood pressure showed significant differences at 15, 30 and 45 min in Group B but did not require pharmacological intervention for correction. Conclusion: Intranasal dexmedetomidine at a dose of 1 μg/kg produced superior sedation scores at separation and induction but normal behavioural scores in comparison to oral midazolam in paediatric patients. PMID:28250480

  3. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting.

    PubMed

    Kumar, Mukesh; Misra, Ambikanandan; Mishra, A K; Mishra, Pushpa; Pathak, Kamla

    2008-12-01

    The objective of the present study was to optimize olanzapine nanoemulsion (ONE), for nose-to-brain delivery. The nanoemulsions and olanzapine mucoadhesive nanoemulsions (OMNEs) were prepared using water titration method and characterized for technical and electrokinetic properties. Biodistribution of nanoemulsions and olanzapine solution (OS) in the brain and blood of rats following intranasal (intranasal) and intravenous (intravenous) administrations were examined using optimized technetium-labeled ((99m)Tc-labeled) olanzapine formulations. The brain/blood uptake ratios of 0.45, 0.88, 0.80, and 0.04 of OS (intranasal), ONE (intranasal), OMNE (intranasal), ONE (intravenous), respectively, at 0.5 h are indicative of direct nose-to-brain transport (DTP). Higher % drug targeting efficiency (%DTE) and %DTP for mucoadhesive nanoemulsions indicated effective brain targeting of olanzapine among the prepared nanoemulsions. Gamma scintigraphy imaging of the rat brain conclusively demonstrated rapid and larger extent of transport of olanzapine by OMNE (intranasal), when compared with OS (intranasal), ONE (intranasal), and ONE (intravenous), into the rat brain.

  4. The safety and efficacy of intra-nasal ethmoidectomy.

    PubMed

    Watson, D J; Griffiths, M V

    1988-09-01

    Each of the three types of ethmoidectomy: intra-nasal, trans-antral and external, has its supporters and detractors who argue about the efficacy and safety of the procedures. One hundred and five ethmoidectomies for nasal polyps are reviewed retrospectively. Regardless of the approach used, approximately half of these had recurrence of polyps and some patients had several revision operations. There were six complications specific to the surgery. None was serious but most occurred with external ethmoidectomy. The limitations of ethmoidectomy for nasal polyps, the reasons for the good safety record and the best means of training juniors in the procedures are discussed.

  5. [Intranasal endoscopic ethmoidectomy and the analysis of curative effect].

    PubMed

    Wu, J; Lu, S; Fan, J

    1997-01-01

    Forty cases of intranasal endoscopic ethmoidectomy were analyzed. In this series, 28 males and 12 females were included. Hard endoscopes with diameter of 4 mm, visual angle 30 and 70 were used. All patients were followed-up for 3 to 12 months. The surgical results were that twenty percent of patients were completely relieved of symptoms, 10% symptom-free with additional therapy, 40% improved without additional therapy, 20% improved with additional therapy, 10% no improvement and the total effective rate was 90%. No operative complications happened. Some factors affecting operative effects were discussed.

  6. Intranasal and transantral ethmoidectomy: a 20-year experience.

    PubMed

    Friedman, W H; Katsantonis, G P

    1990-04-01

    Ethmoidectomy is an operation that has engendered controversy concerning the best route of surgical access. The purpose of this study was to present the results of the authors' experience in more than 1300 intranasal sphenoethmoidectomies and transantral sphenoethmoidectomies performed over a 20-year period. The authors contend that the most effective ethmoidectomy is the most complete ethmoidectomy and have previously presented a case for ethmoid marsupialization. Polyp recurrence rates of less than 20% and a major complication rate of less than 1% were reported in this study.

  7. AN in vitro evaluation of a carmustine-loaded Nano-co-Plex for potential magnetic-targeted intranasal delivery to the brain.

    PubMed

    Akilo, Olufemi D; Choonara, Yahya E; Strydom, André M; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Pillay, Viness

    2016-03-16

    Targeted delivery of carmustine (BCNU), an efficient brain tumor therapeutic, has been challenged with bioavailability issues due to the Blood Brain Barrier (BBB). The currently effective delivery approach is by implants at the site of the tumor, but this is highly invasive. The intranasal route, which is non-invasive and bypasses the BBB, may be alternative route for delivering BCNU to the brain. In this work, polyvinyl alcohol/polyethyleneimine/fIuorecein isothiocyanate complex (Polyplex) coated iron-oxide nanoparticles (Magnetite) were synthesized employing co-precipitation, epoxidation and EDC/NHS coupling reactions. The Polyplex coated magnetite (Nano-co-Plex) was loaded with BCNU for potential magnetically targeted delivery to the brain following intranasal administration. The Nano-co-Plex was characterized employing Thermogravimetric analysis (TGA), Superconducting Quantum Interference Device (SQUID) magnetometry, Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), X-ray Diffractometry (XRD), Transmission Electron Microscopy (TEM) and Zetasize analysis. Results revealed superparamagnetic hexagonally shaped "core-shell" nanoparticles with cell labeling attributes, of size ranging between 30-50 nm, and a zeta potential value of + 32 ± 2 mV. The Nano-co-Plex synthesized was found to possess high degree of crystallinity with 32% Polyplex coating. The loading and release studies indicated a time-dependent loading with maximum loading capacity of 176.82 μg BCNU/mg of the carrier and maximum release of 75.8% of the loaded BCNU. Cytotoxicity of the BCNU-loaded Nano-co-Plex displayed superiority over the conventional BCNU towards human glioblastoma (HG) cells. Cell studies revealed enhanced uptake and internalization of BCNU-loaded Nano-co-plex in HG cells in the presence of an external magnetic field. These Nano-co-Plexes may be ideal as an intranasal magnetic drug targeting device for BCNU delivery.

  8. Intranasal scopolamine affects the semicircular canals centrally and peripherally.

    PubMed

    Weerts, Aurélie P; Putcha, Lakshmi; Hoag, Stephen W; Hallgren, Emma; Van Ombergen, Angelique; Van de Heyning, Paul H; Wuyts, Floris L

    2015-08-01

    Space motion sickness (SMS), a condition caused by an intravestibular conflict, remains an important obstacle that astronauts encounter during the first days in space. Promethazine is currently the standard treatment of SMS, but scopolamine is used by some astronauts to prevent SMS. However, the oral and transdermal routes of administration of scopolamine are known to have substantial drawbacks. Intranasal administration of scopolamine ensures a fast absorption and rapid onset of therapeutic effect, which might prove to be suitable for use during spaceflights. The aim of this study was to evaluate the effects of intranasally administered scopolamine (0.4 mg) on the semicircular canals (SCCs) and the otoliths. This double-blind, placebo-controlled study was performed on 19 healthy male subjects. The function of the horizontal SCC and the vestibulo-ocular reflex, as well as the saccular function and utricular function, were evaluated. Scopolamine turned out to affect mainly the SCCs centrally and peripherally but also the utricles to a lesser extent. Centrally, the most probable site of action is the medial vestibular nucleus, where the highest density of muscarinic receptors has been demonstrated and afferent fibers from the SCCs and utricles synapse. Furthermore, our results suggest the presence of muscarinic receptors in the peripheral vestibular system on which scopolamine has a suppressive effect. Given the depressant actions on the SCCs, it is suggested that the pharmacodynamic effect of scopolamine may be attributed to the obliteration of intravestibular conflict that arises during (S)MS.

  9. Intranasal oxytocin administration is reflected in human saliva.

    PubMed

    Weisman, Omri; Zagoory-Sharon, Orna; Feldman, Ruth

    2012-09-01

    Following the discovery that intranasal administration of neuropeptides can reach the central nervous system, a growing number of studies applied intranasal oxytocin (OT) paradigms to demonstrate the positive effects of OT on social and emotional processes. The three-step paradigm typically included: OT administration, a 45-min waiting period, and approximately 1-h period of active drug effects when experimental manipulations are applied. Yet, this schedule has not been put to systematic validation. Utilizing a double-blind placebo-control within-subject design, ten individuals were administered OT or placebo and salivary OT was measured ten times, at baseline and nine times over four consecutive hours. OT administration induced substantial increases in salivary OT across the entire period. OT rose dramatically 15 min after administration (from 6.9 pg/ml at baseline to 1265.4 pg/ml), reached plateau at 45-120 min (range=131.6 and 105.3 pg/ml), and did not return to baseline by 4h. Results contribute to discussion on brain-periphery coordination of OT and highlight the need for further research on the temporal dynamics and durations of OT administration effects.

  10. The effects of intranasal oxytocin on contagious yawning.

    PubMed

    Gallup, Andrew C; Church, Allyson M

    2015-10-21

    Contagious yawning is thought to represent a basic form of empathy involved in state matching. Despite recent evidence in support of this connection, the neurochemical basis of contagious yawning remains largely unknown. Here, we investigate whether intranasal oxytocin, a hormone and neuropeptide involved in empathic processing, bonding and social affiliation, influences contagious yawning among human participants in a laboratory setting. Using a double blind procedure, 60 male college students received 30 IU of intranasal oxytocin or placebo and were then recorded during exposure to a contagious yawning video stimulus. Contrary to the empathic modeling hypothesis, oxytocin did not increase contagious yawning but rather appeared to modulate its expression in ways indicative of an enhanced awareness of the social stigma associated with this behavior. In particular, individuals in the oxytocin condition were more likely to conceal their yawns and less likely to display overt cues associated with the behavior. Follow-up research could explore how social context and affiliation with the target stimulus alter this response.

  11. Carbopol-incorporated thermoreversible gel for intranasal drug delivery.

    PubMed

    Balakrishnan, Prabagar; Park, Eun-Kyoung; Song, Chung-Kil; Ko, Hyun-Jeong; Hahn, Tae-Wook; Song, Ki-Won; Cho, Hyun-Jong

    2015-03-04

    The present study describes the preparation and evaluation of a poloxamer 407 (P407)-based thermoreversible gel using Carbopol 934P (C934P) as a mucoadhesive polymer and hydroxypropyl-β-cyclodextrin (HP-β-CD) for enhancing the aqueous solubility and intranasal absorption of fexofenadine hydrochloride (FXD HCl). The prepared gels were characterized by gelation temperature, viscoelasticity, and drug release profile. Thermoreversibility of P407/C934P gel was demonstrated by rheological studies. The incorporation of carbopol into P407 gel also reduced the amounts of drug released from the gel formulations (p < 0.05). In vivo pharmacokinetic results of the prepared gel formulations in rabbits (at 0.5 mg/kg dose) showed that the relative bioavailability of drug from P407/C934P gel was 11.3 and 2.7-fold higher than those of drug solution and P407 gel group, respectively. These findings suggested that developed thermoreversible gels could be used as promising dosage forms to improve intranasal drug absorption.

  12. Bioavailability of intranasal promethazine dosage forms in dogs

    NASA Technical Reports Server (NTRS)

    Ramanathan, R.; Geary, R. S.; Bourne, D. W.; Putcha, L.

    1998-01-01

    Intramuscular promethazine (PMZ) is used aboard the US Space Shuttle to ameliorate symptoms of space motion sickness. Bioavailability after an oral dose of PMZ during space flight is thought to be impaired because of gastrointestinal disturbances associated with weightlessness and space motion sickness. In an attempt to find an alternative dosage form for use in space, we evaluated two intranasal (i.n.) dosage forms of PMZ in dogs for absorption and bioavailability relative to that of an equivalent intramuscular dose. Promethazine (5 mg kg-1) was administered as two intranasal dosage forms and as an intramuscular (i.m.) dose to three dogs in a randomised cross-over design. Serial blood samples were taken and analysed for PMZ concentrations and the absorption and bioavailability of PMZ were calculated for the three dosage forms. PMZ absorption from the carboxymethyl cellulose microsphere i.n. dosage form was more rapid and complete than from the myverol cubic gel formulation or from an i.m. injection. Bioavailability of the microsphere formulation was also greater than that of the gel formulation (AUC 3009 vs 1727 ng h ml-1). The bioavailability of the two i.n. dosage forms (relative to that of the i.m. injection) were 94% (microsphere) and 54% (gel). The i.n. microsphere formulation of PMZ offers great promise as an effective non-invasive alternative for treating space motion sickness due to its rapid absorption and bioavailability equivalent to the i.m. dose.

  13. Ambient scalable synthesis of surfactant-free thermoelectric CuAgSe nanoparticles with reversible metallic-n-p conductivity transition.

    PubMed

    Han, Chao; Sun, Qiao; Cheng, Zhen Xiang; Wang, Jian Li; Li, Zhen; Lu, Gao Qing Max; Dou, Shi Xue

    2014-12-17

    Surfactant-free CuAgSe nanoparticles were successfully synthesized on a large scale within a short reaction time via a simple environmentally friendly aqueous approach under room temperature. The nanopowders obtained were consolidated into pellets for investigation of their thermoelectric properties between 3 and 623 K. The pellets show strong metallic characteristics below 60 K and turn into an n-type semiconductor with increasing temperature, accompanied by changes in the crystal structure (i.e., from the pure tetragonal phase into a mixture of tetragonal and orthorhombic phases), the electrical conductivity, the Seebeck coefficient, and the thermal conductivity, which leads to a figure of merit (ZT) of 0.42 at 323 K. The pellets show further interesting temperature-dependent transition from n-type into p-type in electrical conductivity arising from phase transition (i.e., from the mixture phases into cubic phase), evidenced by the change of the Seebeck coefficient from -28 μV/K into 226 μV/K at 467 K. The ZT value increased with increasing temperature after the phase transition and reached 0.9 at 623 K. The sintered CuAgSe pellets also display excellent stability, and there is no obvious change observed after 5 cycles of consecutive measurements. Our results demonstrate the potential of CuAgSe to simultaneously serve (at different temperatures) as both an n-type and a p-type thermoelectric material.

  14. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.

    PubMed

    Maiti, Chiranjit; Banerjee, Rakesh; Maiti, Saikat; Dhara, Dibakar

    2015-01-01

    The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (< 5.2), and this facilitated a pH-induced reversible vesicle-to-micelle transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers.

  15. Influenza virus vaccine live intranasal--MedImmune vaccines: CAIV-T, influenza vaccine live intranasal.

    PubMed

    2003-01-01

    submitting a licence application in Europe, a $US27.5 million payment for approval of a refrigerator-stable liquid formulation of FluMist and as much as $US50 million for licensing of FluMist internationally. In July 2003 MedImmune announced that it had received approximately $US28 million in milestone payments during Q2 of 2003 for the approval of FluMist. CSL Ltd of Australia will collaborate on the development, sale and distribution of MedImmune Vaccine's vaccine in Australia, New Zealand and certain countries in the South Pacific. MedImmune is to acquire vaccine research programmes in respiratory syncytial virus and cytomegalovirus from MedImmune Vaccines. The company's primary interest is in FluMist. In May 2002, MedImmune licensed exclusive rights to Crucell's proprietary human cell line PER.C6 for use in its influenza vaccine programmes. On 11 March 2002, American Home Products changed its name and the names of its subsidiaries Wyeth-Ayerst and Wyeth-Lederle to Wyeth. Wyeth's vaccines division is called Wyeth Vaccines. On 29 September 2000, Aviron announced that it had been awarded a $US2.7 million Challenge Grant from NIAID for development of vaccines against pandemic strains of influenza based on FluMist intranasal technology. The cold-adapted live influenza vaccine has been widely evaluated in the US and Japan since 1975 in clinical trials involving several thousand people. Aviron completed phase II clinical trials in adults in the US and phase III trials in US children aged 15-71 months. Additional phase III trials in adults and the elderly are ongoing. Aviron also commenced phase III trials to test the safety of its intranasal live vaccine in children with moderate to severe asthma. The vaccine is delivered using the AccuSpray nasal delivery system by Becton Dickinson, which will supply the system for FluMist through the 2001-2002 influenza season under an agreement with Aviron made in August 1998. On 7 March 2000, Aviron announced that Wyeth-Lederle Vaccines

  16. Brain Uptake of Neurotherapeutics after Intranasal versus Intraperitoneal Delivery in Mice.

    PubMed

    Chauhan, Mihir B; Chauhan, Neelima B

    There is a growing global prevalence of neurodegenerative diseases such as Alzheimer's disease and dementia. Current treatment for neurodegenerative diseases is limited due to the blood brain barrier's ability to restrict the entry of therapeutics to the brain. In that context, direct delivery of drugs from nose to brain has gained emerging interest as an important alternative to oral and parenteral routes of administration. Although there are considerable reports showing promising results after intranasal drug delivery in various disease-models and investigatory human clinical trials, there are very few studies showing a detailed pharmacokinetics with regard to the uptake and retention of intranasally delivered material(s) within specific brain regions, which are critical determining factors for dosing conditions and optimal treatment regimen. This investigation compared a time-dependent brain uptake and resident time of various radiolabeled candidate neurotherapeutics after a single bolus intranasal or intraperitoneal administration in mice. Results indicate that the brain uptake of intranasally delivered therapeutic(s) is > 5 times greater than that after intraperitoneal delivery. The peak uptake and resident time of all intranasally delivered test therapeutics for all brain regions is observed to be between 30min-12h, depending upon the distance of brain region from the site of administration, followed by gradual fading of radioactive counts by 24h post intranasal administration. Current study confirms the usefulness of intranasal administration as a non- invasive and efficient means of delivering therapeutics to the brain to treat neurodegenerative diseases including Alzheimer's disease.

  17. Intranasal Delivery of Exendin-4 Confers Neuroprotective Effect Against Cerebral Ischemia in Mice.

    PubMed

    Zhang, Huinan; Meng, Jingru; Zhou, Shimeng; Liu, Yunhan; Qu, Di; Wang, Ling; Li, Xubo; Wang, Ning; Luo, Xiaoxing; Ma, Xue

    2016-03-01

    Exendin-4 is now considered as a promising drug for the treatment of cerebral ischemia. To determine the neuroprotective effects of intranasal exendin-4, C57BL/6J mice were intranasally administered with exendin-4 daily for 7 days before middle cerebral artery occlusion (MCAO) surgery. Intranasally administered exendin-4 produced higher brain concentrations and lower plasma concentrations when compared to identical doses administered interperitoneally. Neurological deficits and volume of infarcted lesions were analyzed 24 h after ischemia. Intranasal administration of exendin-4 exhibited significant neuroprotection in C57BL/6 mice subjected to MCAO by reducing neurological deficit scores and infarct volume. The neuroprotective effects of exendin-4 were blocked by the knockdown of GLP-1R with shRNA. However, exendin-4 has no impact on glucose and insulin levels which indicated that the neuroprotective effect was mediated by the activation of GLP-1R in the brain. Exendin-4 intranasal administration restored the balance between pro- and anti-apoptotic proteins and decreased the expression of Caspase-3. The anti-apoptotic effect was mediated by the cAMP/PKA and PI3K/Akt pathway. These findings provided evidence that exendin-4 intranasal administration exerted a neuroprotective effect mediated by an anti-apoptotic mechanism in MCAO mice and protected neurons against ischemic injury through the GLP-1R pathway in the brain. Intranasal delivery of exendin-4 might be a promising strategy for the treatment of ischemic stroke.

  18. Intranasal Delivery of Proteins and Peptides in the Treatment of Neurodegenerative Diseases.

    PubMed

    Meredith, M Elizabeth; Salameh, Therese S; Banks, William A

    2015-07-01

    The blood-brain barrier (BBB) is a major impediment to the therapeutic delivery of peptides and proteins to the brain. Intranasal delivery often provides a non-invasive means to bypass the BBB. Advantages of using intranasal delivery include minimizing exposure to peripheral organs and tissues, thus reducing systemic side effects. It also allows substances that typically have rapid degradation in the blood time to exert their effect. Intranasal delivery provides the ability to target proteins and peptides to specific regions of the brain when administered with substrates like cyclodextrins. In this review, we examined the use of intranasal delivery of various proteins and peptides that have implications in the treatment of neurodegenerative diseases, focusing especially on albumin, exendin/GLP-1, GALP, insulin, leptin, and PACAP. We have described their rationale for use, distribution in the brain after intranasal injection, how intranasal administration differed from other modes of delivery, and their use in clinical trials, if applicable. Intranasal delivery of drugs, peptides, and other proteins could be very useful in the future for the prevention or treatment of brain related diseases.

  19. Intranasal oxytocin increases social grooming and food sharing in the common vampire bat Desmodus rotundus.

    PubMed

    Carter, Gerald G; Wilkinson, Gerald S

    2015-09-01

    Intranasal oxytocin (OT) delivery has been used to non-invasively manipulate mammalian cooperative behavior. Such manipulations can potentially provide insight into both shared and species-specific mechanisms underlying cooperation. Vampire bats are remarkable for their high rates of allogrooming and the presence of regurgitated food sharing among adults. We administered intranasal OT to highly familiar captive vampire bats of varying relatedness to test for an effect on allogrooming and food sharing. We found that intranasal OT did not have a detectable effect on food-sharing occurrence, but it did increase the size of regurgitated food donations when controlling for dyad and amount of allogrooming. Intranasal OT in females increased the amount of allogrooming per partner and across all partners per trial, but not the number of partners. We also found that the peak effect of OT treatments occurred 30-50min after administration, which is consistent with the reported latency for intranasal OT to affect relevant brain areas in rats and mice. Our results suggest that intranasal OT is a potential tool for influencing dyadic cooperative investments, but measuring prior social relationships may be necessary to interpret the results of hormonal manipulations of cooperative behavior and it may be difficult to alter partner choice in vampire bats using intranasal OT alone.

  20. Intranasal delivery of ciprofloxacin to rats: A topical approach using a thermoreversible in situ gel.

    PubMed

    Sousa, Joana; Alves, Gilberto; Oliveira, Paula; Fortuna, Ana; Falcão, Amílcar

    2017-01-15

    Intranasal administration of antibiotics is an alternative and attractive delivery approach in the treatment of local infections such as chronic rhinosinusitis. This topical route has the advantage of delivering high drug concentrations directly to the site of infection when trying to eradicate the highly resistant bacterial biofilms. The purpose of this study was to assess and compare the pharmacokinetic parameters of ciprofloxacin following intranasal and intravenous administrations to rats in plasma, olfactory bulb and nasal mucosa of two different nasal regions. For intranasal administration a thermoreversible in situ gel was used to increase drug residence time in nasal cavity. Ciprofloxacin concentration time-profile in nasal mucosa of the studied anterior region (at naso- and maxilloturbinates level) was markedly higher after intranasal administration (0.24mg/kg) than that following intravenous administration (10mg/kg), while in nasal mucosa of the more posterior region (at ethmoidal turbinates level) ciprofloxacin concentrations were found to be higher after intranasal administration when the different dose administered by both routes is taken into account. A plateau in ciprofloxacin concentration was observed in nasal mucosa of both studied regions after intranasal administration, suggesting a slow delivery of the drug over a period of time using the nasal gel formulation. In plasma and olfactory bulb, concentration of ciprofloxacin was residual after intranasal administration, which demonstrates this is a safe administration route by preventing systemic and particularly central nervous system adverse effects. Dose-normalized pharmacokinetic parameters of ciprofloxacin exposure to nasal mucosa revealed higher values after intranasal delivery not only in the anterior region but also in the posterior nasal region. In conclusion, topical intranasal administration appears to be advantageous for delivering ciprofloxacin to the biophase, with negligible systemic

  1. Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning.

    PubMed

    Krishnan, Jishnu K S; Arun, Peethambaran; Appu, Abhilash P; Vijayakumar, Nivetha; Figueiredo, Taíza H; Braga, Maria F M; Baskota, Sudikshya; Olsen, Cara H; Farkas, Natalia; Dagata, John; Frey, William H; Moffett, John R; Namboodiri, Aryan M A

    2016-03-01

    Intranasal delivery is an emerging method for bypassing the blood brain barrier (BBB) and targeting therapeutics to the CNS. Oximes are used to counteract the effects of organophosphate poisoning, but they do not readily cross the BBB. Therefore, they cannot effectively counteract the central neuropathologies caused by cholinergic over-activation when administered peripherally. For these reasons we examined intranasal administration of oximes in an animal model of severe organophosphate poisoning to determine their effectiveness in reducing mortality and seizure-induced neuronal degeneration. Using the paraoxon model of organophosphate poisoning, we administered the standard treatment (intramuscular pralidoxime plus atropine sulphate) to all animals and then compared the effectiveness of intranasal application of obidoxime (OBD) to saline in the control groups. Intranasally administered OBD was effective in partially reducing paraoxon-induced acetylcholinesterase inhibition in the brain and substantially reduced seizure severity and duration. Further, intranasal OBD completely prevented mortality, which was 41% in the animals given standard treatment plus intranasal saline. Fluoro-Jade-B staining revealed extensive neuronal degeneration in the surviving saline-treated animals 24h after paraoxon administration, whereas no detectable degenerating neurons were observed in any of the animals given intranasal OBD 30min before or 5min after paraoxon administration. These findings demonstrate that intranasally administered oximes bypass the BBB more effectively than those administered peripherally and provide an effective method for protecting the brain from organophosphates. The addition of intranasally administered oximes to the current treatment regimen for organophosphate poisoning would improve efficacy, reducing both brain damage and mortality.

  2. Intranasal Location and Immunohistochemical Characterization of the Equine Olfactory Epithelium

    PubMed Central

    Kupke, Alexandra; Wenisch, Sabine; Failing, Klaus; Herden, Christiane

    2016-01-01

    The olfactory epithelium (OE) is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g., Borna disease virus, equine herpesvirus 1 (EHV-1), hendra virus, influenza virus, rabies virus, vesicular stomatitis virus can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines, or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g., horses would help to underscore transferability of rodent models. Analysis of the complete noses of five adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein and doublecortin (DCX) expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen and tropomyosin receptor kinase A was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine types a and b were located differently within the nose and

  3. Development and Evaluation of a Novel Intranasal Spray for the Delivery of Amantadine.

    PubMed

    Lungare, Shital; Bowen, James; Badhan, Raj

    2016-03-01

    The aim of this study was to develop and characterize an intranasal delivery system for amantadine hydrochloride (AMT). Optimal formulations consisted of a thermosensitive polymer Pluronic® 127 and either carboxymethyl cellulose or chitosan which demonstrated gel transition at nasal cavity temperatures (34 ± 1°C). Rheologically, the loss tangent (Tan δ) confirmed a 3-stage gelation phenomena at 34 ± 1°C and non-Newtonian behavior. Storage of optimized formulation carboxymethyl cellulose and optimal formulation chitosan at 4°C for 8 weeks resulted in repeatable release profiles at 34°C when sampled, with a Fickian mechanism earlier on but moving toward anomalous transport by week 8. Polymers (Pluronic® 127, carboxymethyl cellulose, and chitosan) demonstrated no significant cellular toxicity to human nasal epithelial cells up to 4 mg/mL and up to 1 mM for AMT (IC50: 4.5 ± 0.05 mM). Optimized formulation carboxymethyl cellulose and optimal formulation chitosan demonstrated slower release across an in vitro human nasal airway model (43%-44% vs 79 ± 4.58% for AMT). Using a human nasal cast model, deposition into the olfactory regions (potential nose-to-brain) was demonstrated on nozzle insertion (5 mm), whereas tilting of the head forward (15°) resulted in greater deposition in the bulk of the nasal cavity.

  4. Formulation and characterization of nanoemulsion of olanzapine for intranasal delivery.

    PubMed

    Kumar, Mukesh; Misra, Ambikanandan; Pathak, Kamla

    2009-01-01

    The objective was to formulate an olanzapine nanoemulsion that could potentially deliver the drug directly to the brain following intranasal administration. The nanoemulsions were prepared using the water titration method. The mucoadhesive character was imparted by the addition of 0.5%w/w chitosan and 0.5%w/w polycarbophil and was characterized for drug content, pH, percentage transmittance, globule size, zeta potential, and PDI. The composition (%w/w) of the optimized olanzapine nanoemulsion was capmul MCM, tween 80, and a mixture of 1:1 ratio of polyethylene glycol 400 and ethanol, and aqueous phase in a ratio of 15:35:17.5:32.5. The optimized olanzapine nanoemulsion exhibited a high diffusion coefficient and no nasal cilio-toxicity. The drug release followed the Higuchi model. The optimized nanoemulsions were found to be stable for 3 months.

  5. Effects of intranasal cocaine on sympathetic nerve discharge in humans.

    PubMed Central

    Jacobsen, T N; Grayburn, P A; Snyder, R W; Hansen, J; Chavoshan, B; Landau, C; Lange, R A; Hillis, L D; Victor, R G

    1997-01-01

    Cocaine-induced cardiovascular emergencies are mediated by excessive adrenergic stimulation. Animal studies suggest that cocaine not only blocks norepinephrine reuptake peripherally but also inhibits the baroreceptors, thereby reflexively increasing sympathetic nerve discharge. However, the effect of cocaine on sympathetic nerve discharge in humans is unknown. In 12 healthy volunteers, we recorded blood pressure and sympathetic nerve discharge to the skeletal muscle vasculature using intraneural microelectrodes (peroneal nerve) during intranasal cocaine (2 mg/kg, n = 8) or lidocaine (2%, n = 4), an internal local anesthetic control, or intravenous phenylephrine (0.5-2.0 microg/kg, n = 4), an internal sympathomimetic control. Experiments were repeated while minimizing the cocaine-induced rise in blood pressure with intravenous nitroprusside to negate sinoaortic baroreceptor stimulation. After lidocaine, blood pressure and sympathetic nerve discharge were unchanged. After cocaine, blood pressure increased abruptly and remained elevated for 60 min while sympathetic nerve discharge initially was unchanged and then decreased progressively over 60 min to a nadir that was only 2+/-1% of baseline (P < 0.05); however, plasma venous norepinephrine concentrations (n = 5) were unchanged up to 60 min after cocaine. Sympathetic nerve discharge fell more rapidly but to the same nadir when blood pressure was increased similarly with phenylephrine. When the cocaine-induced increase in blood pressure was minimized (nitroprusside), sympathetic nerve discharge did not decrease but rather increased by 2.9 times over baseline (P < 0.05). Baroreflex gain was comparable before and after cocaine. We conclude that in conscious humans the primary effect of intranasal cocaine is to increase sympathetic nerve discharge to the skeletal muscle bed. Furthermore, sinoaortic baroreflexes play a pivotal role in modulating the cocaine-induced sympathetic excitation. The interplay between these

  6. Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans.

    PubMed

    Kirkpatrick, Matthew G; Francis, Sunday M; Lee, Royce; de Wit, Harriet; Jacob, Suma

    2014-08-01

    MDMA (±3,4-methylenedioxymethamphetamine, 'ecstasy') is reportedly used recreationally because it increases feelings of sociability and interpersonal closeness. Prior work suggests that the pro-social effects of MDMA may be mediated by release of oxytocin. A direct examination of plasma levels of oxytocin after acute doses of oxytocin and MDMA, in the same individuals, would provide further evidence for the idea that MDMA produces its pro-social effects by increasing oxytocin. Fourteen healthy MDMA users participated in a 4-session, double-blind study in which they received oral MDMA (0.75 and 1.5mg/kg), intranasal oxytocin (20IU or 40IU), and placebo. Plasma oxytocin concentrations, as well as cardiovascular and subjective effects were assessed before and at several time points after drug administration. MDMA (1.5mg/kg only) increased plasma oxytocin levels to a mean peak of 83.7pg/ml at approximately 90-120min, compared to 18.6pg/ml after placebo. Intranasal oxytocin (40IU, but not 20IU) increased plasma oxytocin levels to 48.0pg/ml, 30-60min after nasal spray administration. MDMA dose-dependently increased heart rate, blood pressure, feelings of euphoria (e.g., 'High' and 'Like Drug'), and feelings of sociability, whereas oxytocin had no cardiovascular or subjective effects. The subjective and cardiovascular responses to MDMA were not related to plasma oxytocin levels, although the N was small for this analysis. Future studies examining the effects of oxytocin antagonists on responses to MDMA will help to determine the mechanism by which MDMA produces pro-social effects.

  7. Thermoreversible nanoethosomal gel for the intranasal delivery of Eletriptan hydrobromide.

    PubMed

    Shelke, Santosh; Shahi, Sadhana; Jadhav, Kiran; Dhamecha, Dinesh; Tiwari, Roshan; Patil, Hemlata

    2016-06-01

    The objective of the current study was to formulate and characterize thermoreversible gel of Eletriptan Hydrobromide for brain targeting via the intranasal route. Ethosomes were prepared by 3(2) factorial design with two independent variables (concentration of soya lecithin and ethanol) and two response variables [percent entrapment efficiency and vesicle size (nm)] using ethanol injection method. Formulated ethosomes were evaluated for preliminary microscopic examination followed by percent drug entrapment efficiency, vesicle size analysis, zeta potential, polydispersibility index and Transmission electron microscopy (TEM). TEM confirms spherical morphology of ethosomes, whereas Malvern zeta sizer confirms that the vesicle size was in the range of 191 ± 6.55-381.3 ± 61.0 nm. Ethosomes were incorporated in gel using poloxamer 407 and carbopol 934 as thermoreversible and mucoadhesive polymers, respectively. Ethosomal gels were evaluated for their pH, viscosity, mucoadhesive strength, in vitro drug release and ex vivo drug permeation through the sheep nasal mucosa. Mucoadhesive strength and pH was found to be 4400 ± 45 to 5500 ± 78.10 dynes/cm(2) and 6.0 ± 0.3 to 6.2 ± 0.1, respectively. In-vitro drug release from the optimized ethosomal gel formulation (G4) was found to be almost 100 % and ex vivo permeation of 4980 µg/ml with a permeability coefficient of 11.94 ± 0.04 × 10(-5) cm/s after 24 h. Histopathological study of the nasal mucosa confirmed non-toxic nature of ethosomal gels. Formulated EH loaded ethosomal thermoreversible gel could serve as the better alternative for the brain targeting via the intranasal route which in turn could subsequently improve its bioavailability.

  8. Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core-shell nanoparticle in the presence of a time dependent magnetic field

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf; Vatansever, Erol; Polat, Hamza

    2012-10-01

    We have presented dynamic phase transition features and stationary-state behavior of a ferrimagnetic small nanoparticle system with a core-shell structure. By means of detailed Monte Carlo simulations, a complete picture of the phase diagrams and magnetization profiles has been presented and the conditions for the occurrence of a compensation point Tcomp in the system have been investigated. According to Néel nomenclature, the magnetization curves of the particle have been found to obey P-type, N-type and Q-type classification schemes under certain conditions. Much effort has been devoted to investigating the hysteretic response of the particle, and we observed the existence of triple hysteresis loop behavior, which originates from the existence of a weak ferromagnetic core coupling Jc/Jsh, as well as a strong antiferromagnetic interface exchange interaction Jint/Jsh. Most of the calculations have been performed for a particle in the presence of oscillating fields of very high frequencies and high amplitudes in comparison with exchange interactions, which resembles a magnetic system under the influence of ultrafast switching fields. Particular attention has also been paid to the influence of the particle size on the thermal and magnetic properties, as well as magnetic features such as coercivity, remanence and the compensation temperature of the particle. We have found that, in the presence of ultrafast switching fields, the particle may exhibit a dynamic phase transition from paramagnetic to a dynamically ordered phase with increasing ferromagnetic shell thickness.

  9. Melting-solidification transition of Zn nanoparticles embedded in SiO2: Observation by synchrotron x-ray and ultraviolet-visible-near-infrared light

    NASA Astrophysics Data System (ADS)

    Amekura, H.; Tanaka, M.; Katsuya, Y.; Yoshikawa, H.; Ohnuma, M.; Matsushita, Y.; Kobayashi, K.; Kishimoto, N.

    2010-11-01

    Melting-solidification transition of Zn nanoparticles (NPs) with the mean diameter of 11.5 nm, embedded in silica glass, was investigated by glancing incident x-ray diffraction (GIXRD) at high temperatures using synchrotron radiation (SR). With increasing temperature, 101Zn diffraction peak gradually decreases up to ˜360 °C and then steeply decreases. This is due to the melting of Zn NPs, which completes around 420 °C. With decreasing temperature, the solidification of the NPs begins around ˜310 °C. The temperature hysteresis with a width of ˜110 °C was observed. With temperature, the diffraction angle shows a shift without hysteresis, which is ascribed to thermal expansion of Zn NP lattice. Thermal expansion coefficient of Zn NPs was determined as 24.4×10-6 K-1 along the ⟨101⟩ direction. Optical absorption spectroscopy shows a broad ultraviolet (UV) peak which was observed at even higher temperatures than the melting temperature but shifts to the low-energy side with the melting. The energy shift in the UV peak also shows the temperature hysteresis which resembles with the melting-solidification hysteresis recorded by SR-GIXRD. The melting-solidification transition is also detectable by the optical absorption spectroscopy in the UV-visible-near-infrared region.

  10. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    NASA Astrophysics Data System (ADS)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi

    2017-01-01

    The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO2). This system demonstrated a higher catalytic property than Au/CeO2 and Pd/CeO2 under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH3ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO2 or ZrO2) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO2 photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  11. The magnetic transition in ε-Fe{sub 2}O{sub 3} nanoparticles: Magnetic properties and hyperfine interactions from Mössbauer spectroscopy

    SciTech Connect

    Kohout, J. Závěta, K.; Kubániová, D.; Kmječ, T.; Kubíčková, L.; Brázda, P.; Klementová, M.; Šantavá, E.; Lančok, A.

    2015-05-07

    The nanoparticles of ε-Fe{sub 2}O{sub 3} enriched with {sup 57}Fe isotope in amorphous silica matrix were prepared by sol-gel technique starting from a single molecular precursor for both Fe{sub 2}O{sub 3} and silica. From the X-ray powder diffraction pattern ε-Fe{sub 2}O{sub 3} was identified as the major phase and α-Fe{sub 2}O{sub 3} and β-Fe{sub 2}O{sub 3} were observed as minor iron oxide phases. Using the log-normal distribution for fitting the experimental data from the TEM micrographs, the characteristic size of particles d{sub 0} ∼ 25 nm was derived. The rather high coercivity of ∼2.1 T at room temperature was confirmed for our nanoparticle system. From the dependences of magnetization on temperature a two-step magnetic transition spread between 100 K and 153 K was indicated. From the {sup 57}Fe Mössbauer spectra measured in the temperature range of 4.2–300 K, the hyperfine parameters for one tetrahedral and three octahedral sites of ε-Fe{sub 2}O{sub 3} structure were identified. The in-field spectra in the external magnetic fields up to 6 T were taken both above and below the indicated two-step magnetic transition. Their dependence on temperature and external magnetic field suggests that the first step in the temperature range of 153 K–130 K is related to the spin reorientation of the local magnetic moments in the magnetic sublattices and the second step in temperatures 130 K–100 K may be associated with the intermediate spin–high spin state transition of Fe{sup 3+} cation in the tetrahedral sublattice expressed in the change of the hyperfine magnetic field.

  12. Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH

    NASA Astrophysics Data System (ADS)

    Rani, Stuti; Varma, G. D.

    2015-09-01

    In the present work, Fe3O4 nanoparticles have been synthesized via low temperature co-precipitation method at different pH (7.0, 11.0 and 12.4) with the aim to study the variation of pH on the structural, optical and magnetic properties of samples. Further, the sample synthesized at pH ~12.4 has been annealed at 230 °C for 10 h to study the effect of annealing on structural, optical and magnetic properties. X-ray diffraction (XRD) results reveal the formation of pure spinel phase with the space group Fd-3m. Further, XRD, FESEM and TEM results confirm the nanocrystalline nature of the as synthesized samples, and the particle size of the samples decreases as the pH increases and increases after annealing at 230 °C. FTIR analysis indicates that the sample synthesized at pH ~12.4 and the same sample annealed at 230 °C are pure spinel Fe3O4, whereas the samples synthesized at pH ~7.0 and 11.0 have small content of α-Fe2O3. The optical measurements of the as synthesized samples show two band gaps in all synthesized samples. Field dependent magnetization measurements (M-H) reveal superparamagnetic nature of all the synthesized samples at room temperature and ferromagnetic behavior at low temperature (~5 K). Furthermore, M-H plots measured at 5 K show presence of metamagnetic transition in all samples. The metamagnetic transition along with ferromagnetic behavior at low temperature in Fe3O4 nanoparticles are observed first time in the present work to the best of our knowledge. Further the value of magnetization decreases with decreasing particle size at both temperatures. The fitting of the field cooled (FC) temperature dependent magnetization (M-T) measurements data with modified Bloch-spin wave model with additional surface disorder term and mixed magnetic phases indicates surface spin disorder and mixed magnetic phases in the as synthesized samples, which may be the possible reason for the existence of metamagnetic transition in the samples. The correlation between

  13. Anti-obesity effect of intranasal administration of galanin-like peptide (GALP) in obese mice

    PubMed Central

    Kageyama, Haruaki; Shiba, Kanako; Hirako, Satoshi; Wada, Nobuhiro; Yamanaka, Satoru; Nogi, Yukinori; Takenoya, Fumiko; Nonaka, Naoko; Hirano, Tsutomu; Inoue, Shuji; Shioda, Seiji

    2016-01-01

    Galanin-like peptide (GALP) has an anti-obesity effect in rats and mice. It has been reported that the uptake of GALP by the brain is higher after intranasal administration than with intravenous injection. This study therefore aimed to clarify the effect of intranasal administration of GALP on the feeding behavior of lean and obese mice. Autoradiography revealed the presence of 125I-GALP in the olfactory bulb and the brain microcirculation. The body weights of ob/ob mice gradually increased during vehicle treatment, but remained unchanged in response to repeated intranasal administration of GALP, with both ob/ob and diet-induced obese mice displaying significantly decreased food intake, water intake and locomotor activity when treated with GALP. These results suggest that intranasal administration is an effective route whereby GALP can exert its effect as an anti-obesity drug. PMID:27323911

  14. Rationale and feasibility of intranasal delivery of drugs to the eustachian tube orifice.

    PubMed

    Rashid, Mamun

    2012-12-01

    Intranasal medication for eustachian tube dysfunction (ETD) is an established practice in otolaryngology through the effects of steroids, decongestants, antihistamines or a combination of the above in reducing tubal oedema. The author has previously argued that a double-blind, randomised control trial would be helpful in determining effectiveness of treatment, if a standardised head position, chiefly Mygind or Ragan, was adopted to maximise intranasal drop delivery into the eustachian tube orifice. One recent paper suggests that intranasal treatment is not very effective, but ultimately does not state whether a standardised head position was adopted. Although a large body of evidence supports the hypothesis that the nasal passages are the route to middle ear disease, there is as yet no paper that has been published that has specifically addressed this issue, therefore the author must conclude that evidence to support intranasal treatment for ETD is still lacking and further research is desirable.

  15. Clinical trials with Alice strain, live, attenuated, serum inhibitor-resistant intranasal influenza A vaccine.

    PubMed

    Spencer, M J; Cherry, J D; Powell, K R; Sumaya, C V; Garakian, A J

    1975-10-01

    Two clinical trials with Alice strain intranasal influenza vaccine were performed. In study no. 1 (utilizing random selection and double-blind control), 50 subjects received a bivalent inactivated influenza vaccine intramuscularly, 99 subjects received Alice strain vaccine intranasally, and 50 subjects received a placebo intranasally. No symptomatology could be attributed to the intranasal route of immunization. Convalescent-phase geometric mean titers of hemagglutination inhibition antibody were higher after intramuscular vaccination; seroconversion occurred in 16 or 17 recipients of the Alice strain, with initial titers of less than 1:8. Clinical and virologic surveillance for 20 weeks after vaccination revealed no influenza A illnesses in participants of the study. In study no. 2, 75% of the subjects with initial nasal antibody titers of less than 1:3 developed measurable nasal antibody after receiving Alice strain vaccine.

  16. Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts

    NASA Astrophysics Data System (ADS)

    Sridharan, Kishore; Kuriakose, Tintu; Philip, Reji; Park, Tae Joo

    2014-07-01

    A single-step pyrolysis assisted route towards the large scale fabrication of metal oxide nanoparticles (Fe2O3, Co3O4 and NiO) ingrained in graphitic carbon nitride (GCN) is demonstrated. Urea, an abundantly available precursor, plays a dual role during the synthesis: while it acts as a reducing agent, it also gets converted to GCN. The formation of GCN and the in-situ growth and embedment of oxide nanoparticles are discussed on the basis of the experimental results. The wide absorption of the samples in the visible light region makes them suitable for nonlinear transmission and photocatalytic activity studies. Visible light photocatalytic activities of the samples are studied by monitoring the degradation of Rhodamine B dye. Optical limiting properties of the prepared samples are studied through the open aperture z-scan technique using 5 ns laser pulses at a wavelength of 532 nm. The cost-efficient and time saving synthetic approach is complemented by the magnetic behaviour of the samples, which enables their use as recyclable photocatalyst and magnetically controllable optical limiters.

  17. Photocatalytic Color Switching of Transition Metal Hexacyanometalate Nanoparticles for High-Performance Light-Printable Rewritable Paper.

    PubMed

    Wang, Wenshou; Feng, Ji; Ye, Yifan; Lyu, Fenglei; Liu, Yi-Sheng; Guo, Jinghua; Yin, Yadong

    2017-02-08

    Developing efficient photoreversible color switching systems for constructing rewritable paper is of significant practical interest owing to the potential environmental benefits including forest conservation, pollution reduction, and resource sustainability. Here we report that the color change associated with the redox chemistry of nanoparticles of Prussian blue and its analogues could be integrated with the photocatalytic activity of TiO2 nanoparticles to construct a class of new photoreversible color switching systems, which can be conveniently utilized for fabricating ink-free, light printable rewritable paper with various working colors. The current system also addresses the phase separation issue of the previous organic dye-based color switching system so that it can be conveniently applied to the surface of conventional paper to produce an ink-free light printable rewritable paper that has the same feel and appearance as the conventional paper. With its additional advantages such as excellent scalability and outstanding rewriting performance (reversibility >80 times, legible time >5 days, and resolution >5 μm), this novel system can serve as an eco-friendly alternative to regular paper in meeting the increasing global needs for environment protection and resource sustainability.

  18. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route.

    PubMed

    Mittal, Deepti; Md, Shadab; Hasan, Quamrul; Fazil, Mohammad; Ali, Asgar; Baboota, Sanjula; Ali, Javed

    2016-01-01

    The aim of the present study was to prepare and evaluate a rasagiline-loaded chitosan glutamate nanoparticles (RAS-CG-NPs) by ionic gelation of CG with tripolyphosphate anions (TPP). RAS-loaded CG-NPs were characterized for particle size, size distribution, encapsulation efficiency and in vitro drug release. The mean particles size, polydispersity index (PDI) and encapsulation efficiency was found to be 151.1 ± 10.31, 0.380 ± 0.01 and 96.43 ± 4.23, respectively. Biodistribution of RAS formulations in the brain and blood of mice following intranasal (i.n.) and intravenous (i.v.) administration was performed using HPLC analytical method. The drug concentrations in brain following the i.n. of CG-NPs were found to be significantly higher at all the time points compared to both drug (i.n.) and drug CG-NPs (i.v.). The Cmax (999.25 ng/ml) and AUC (2086.60 ng h/ml) of formulation CG-NPs (i.n) were found to be significantly higher than CG-NPs (i.v.) and RAS solution (i.n.). The direct transport percentage (DTP%) values of RAS-loaded CG-NPs (i.n.) as compared to drug solution (i.n.) increased from 66.27 ± 1.8 to 69.27 ± 2.1%. The results showed significant enhancement of bioavailability in brain, after administration of the RAS-loaded CG-NPs which could be a substantial achievement of direct nose to brain targeting in Parkinson's disease therapy.

  19. Electrolyte-gated charge transport in molecularly linked gold nanoparticle films: The transition from a Mott insulator to an exotic metal with strong electron-electron interactions

    NASA Astrophysics Data System (ADS)

    Tie, M.; Dhirani, A.-A.

    2016-09-01

    Strong electron-electron interactions experienced by electrons as they delocalize are widely believed to play a key role in a range of remarkable phenomena such as high Tc superconductivity, colossal magnetoresistance, and others. Strongly correlated electrons are often described by the Hubbard model, which is the simplest description of a correlated system and captures important gross features of phase diagrams of strongly correlated materials. However, open challenges in this field include experimentally mapping correlated electron phenomena beyond those captured by the Hubbard model, and extending the model accordingly. Here we use electrolyte gating to study a metal-insulator transition (MIT) in a new class of strongly correlated material, namely, nanostructured materials, using 1,4-butanedithiol-linked Au nanoparticle films (NPFs) as an example. Electrolyte gating provides a means for tuning the chemical potential of the materials over a wide range, without significantly modifying film morphology. On the insulating side of the transition, we observe Efros-Shklovskii variable range hopping and a soft Coulomb gap, evidencing the importance of Coulomb barriers. On the metallic side of the transition, we observe signatures of strong disorder mediated electron-electron correlations. Gating films near MIT also reveal a zero-bias conductance peak, which we attribute to a resonance at the Fermi level predicted by the Hubbard and Anderson impurity models when electrons delocalize and experience strong Coulomb electron-electron interactions. This study shows that by enabling large changes in carrier density, electrolyte gating of Au NPFs is a powerful means for tuning through the Hubbard MIT in NPFs. By revealing the range of behaviours that strongly correlated electrons can exhibit, this platform can guide the development of an improved understanding of correlated materials.

  20. Comparative pharmacokinetics of single doses of doxylamine succinate following intranasal, oral and intravenous administration in rats.

    PubMed

    Pelser, Andries; Müller, Douw G; du Plessis, Jeanetta; du Preez, Jan L; Goosen, Colleen

    2002-09-01

    The intranasal route of administration provides a potential useful way of administering a range of systemic drugs. In order to assess the feasibility of this approach for the treatment of nausea and vomiting, doxylamine succinate was studied in rats for the pharmacokinetics (AUC, C(max), t(max)) following intranasal, oral and intravenous administrations. Subjects (six male Sprague-Dawley rats per time interval for each route of administration) received 2-mg doses of doxylamine succinate orally and I-mg doses intranasally and intravenously, respectively. The various formulations were formulated in isotonic saline (0.9% w/v) at 25 +/- 1 degrees C. Doxylamine succinate concentrations in plasma were determined with a high-performance liquid chromatographic assay and a liquid-liquid extraction procedure. Intranasal and oral bioavailabilities were determined from AUC values relative to those after intravenous dosing. Intranasal bioavailability was greater than that of oral doxylamine succinate (70.8 vs 24.7%). The intranasal and oral routes of administration differed significantly from the intravenous route of administration. Peak plasma concentration (C(max)) was 887.6 ng/ml (S.D. 74.4), 281.4 ng/ml (S.D. 24.6) and 1296.4 ng/ml (S.D. 388.9) for the intranasal, oral and intravenous routes, respectively. The time to achieve C(max) for the intranasal route (t(max)=0.5 h) was faster than for the oral route (t(max)=1.5 h), but no statistically significant differences between the C(max) values were found using 95% confidence intervals. The results of this study show that doxylamine succinate is rapidly and effectively absorbed from the nasal mucosa.

  1. The analgesic effect of combined treatment with intranasal S-ketamine and intranasal midazolam compared with morphine patient-controlled analgesia in spinal surgery patients: a pilot study

    PubMed Central

    Riediger, Christine; Haschke, Manuel; Bitter, Christoph; Fabbro, Thomas; Schaeren, Stefan; Urwyler, Albert; Ruppen, Wilhelm

    2015-01-01

    Objectives Ketamine is a well-known analgesic and dose-dependent anesthetic used in emergency and disaster medicine. Recently, a new formulation of S-ketamine, as an intranasal spray, was developed and tested in our institution in healthy volunteers. The authors investigated the effect of intranasal S-ketamine spray combined with midazolam intranasal spray in postoperative spinal surgery patients. Materials and methods In this prospective, computer-randomized, double-blinded noninferiority study in spinal surgery patients, the effects of intranasal S-ketamine and midazolam were compared with standard morphine patient-controlled analgesia (PCA). The primary end point was the numeric rating scale pain score 24 hours after surgery. Results Twenty-two patients finished this study, eleven in each group. There were similar numeric rating scale scores in the morphine PCA and the S-ketamine-PCA groups at 1, 2, 4, 24, 48, and 72 hours after surgery during rest as well as in motion. There were no differences in the satisfaction scores at any time between the groups. The number of bolus demands and deliveries was not significantly different. Discussion In our study, we found that an S-ketamine intranasal spray combined with intra-nasal midazolam was similar in effectiveness, satisfaction, number of demands/deliveries of S-ketamine and morphine, and number/severity of adverse events compared with standard intravenous PCA with morphine. S-ketamine can be regarded as an effective alternative for a traditional intravenous morphine PCA in the postoperative setting. PMID:25709497

  2. Effects of intranasal phototherapy on nasal microbial flora in patients with allergic rhinitis.

    PubMed

    Yıldırım, Yavuz Selim; Apuhan, Tayfun; Koçoğlu, Esra

    2013-07-13

    The objective of this study was to investigate the effect of intranasal phototherapy on nasal microbial flora in patients with allergic rhinitis. This prospective, self-comparised, single blind study was performed on patients with a history of at least two years of moderate-to-severe perennial allergic rhinitis that was not controlled by anti-allergic drugs. Thirty-one perennial allergic rhinitis patients were enrolled in this study. Before starting the test population on their intranasal phototherapy, the same trained person took a nasal culture from each subject by applying a sterile cotton swab along each side of the nostril and middle meatus. Each intranasal cavity was irradiated three times a week for two weeks with increasing doses of irradiated. At the end of the intranasal phototherapy, nasal cultures were again obtained from the each nostril. The study found that after intranasal phototherapy, the scores for total nasal symptoms decreased significantly but bacterial proliferation was not significantly different before and after phototherapy. We have shown that intranasal phototherapy does not change the aerobic nasal microbial flora in patients with perennial allergic rhinitis.

  3. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice.

    PubMed

    Guo, Chuanlong; Li, Mengshuang; Qi, Xia; Lin, Guiming; Cui, Fenghua; Li, Fengjie; Wu, Xianggen

    2016-07-11

    Corneal nerves are mainly derived from the ophthalmic branch of the trigeminal ganglion (TG). Corneal neuropathy contributes to epithelial degenerative changes in diabetic keratopathy. Efficient drug delivery to TG may be beneficial for the treatment of diabetic keratopathy. This article described intranasal delivery of nanomicelle curcumin to correct pathophysiological conditions in TG to promote corneal epithelial/nerve wound healing in streptozotocin-induced diabetic mice. A diabetic mice model with corneal epithelium abrasion was established. Ocular topical and/or intranasal nanomicelle curcumin treatments were performed, and treatment efficacy and mechanisms of action were explored. Results showed that intranasal nanomicelle curcumin treatment promoted corneal epithelial wound healing and recovery of corneal sensation. Enhanced accumulation of reactive oxygen species, reduced free radical scavengers, increased mRNA expressions of inflammatory cytokines, and decreased mRNA expressions of neurotrophic factors in the cornea and TG neuron were observed in diabetic mice with corneal epithelium abrasions. Intranasal nanomicelle curcumin treatment effectively recovered these pathophysiological conditions, especially that of the TG neuron, and a strengthened recovery was observed with ocular topical combined with intranasal treatment. These findings indicated that intranasal curcumin treatment effectively helped promote diabetic corneal epithelial/nerve wound healing. This novel treatment might be a promising strengthened therapy for diabetic keratopathy.

  4. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration.

    PubMed

    Lochhead, Jeffrey J; Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G

    2015-03-01

    The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.

  5. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice

    PubMed Central

    Guo, Chuanlong; Li, Mengshuang; Qi, Xia; Lin, Guiming; Cui, Fenghua; Li, Fengjie; Wu, Xianggen

    2016-01-01

    Corneal nerves are mainly derived from the ophthalmic branch of the trigeminal ganglion (TG). Corneal neuropathy contributes to epithelial degenerative changes in diabetic keratopathy. Efficient drug delivery to TG may be beneficial for the treatment of diabetic keratopathy. This article described intranasal delivery of nanomicelle curcumin to correct pathophysiological conditions in TG to promote corneal epithelial/nerve wound healing in streptozotocin-induced diabetic mice. A diabetic mice model with corneal epithelium abrasion was established. Ocular topical and/or intranasal nanomicelle curcumin treatments were performed, and treatment efficacy and mechanisms of action were explored. Results showed that intranasal nanomicelle curcumin treatment promoted corneal epithelial wound healing and recovery of corneal sensation. Enhanced accumulation of reactive oxygen species, reduced free radical scavengers, increased mRNA expressions of inflammatory cytokines, and decreased mRNA expressions of neurotrophic factors in the cornea and TG neuron were observed in diabetic mice with corneal epithelium abrasions. Intranasal nanomicelle curcumin treatment effectively recovered these pathophysiological conditions, especially that of the TG neuron, and a strengthened recovery was observed with ocular topical combined with intranasal treatment. These findings indicated that intranasal curcumin treatment effectively helped promote diabetic corneal epithelial/nerve wound healing. This novel treatment might be a promising strengthened therapy for diabetic keratopathy. PMID:27405815

  6. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride.

    PubMed

    Huang, Xu; Xiao, Xuezhang; Zhang, Wei; Fan, Xiulin; Zhang, Liuting; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2017-02-01

    Magnesium hydride (MgH2) exhibits long-term stability and has recently been developed as a safe alternative to store hydrogen in the solid state, due to its high capacity of 7.6 wt% H2 and low cost compared to other metal hydrides. However, the high activation energy and poor kinetics of MgH2 lead to inadequate hydrogen storage properties, resulting in low energy efficiency. Nano-catalysis is deemed to be the most effective strategy in improving the kinetics performance of hydrogen storage materials. In this work, robust and efficient architectures of carbon-wrapped transition metal (Co/C, Ni/C) nanoparticles (8-16 nm) were prepared and used as catalysts in the MgH2 system via ball milling to improve its de/rehydrogenation kinetics. Between the two kinds of nano-catalysts, the Ni/C nanoparticles exhibit a better catalytic efficiency. MgH2 doped with 6% Ni/C (MgH2-6%Ni/C) exhibits a peak dehydrogenation temperature of 275.7 °C, which is 142.7, 54.2 and 32.5 °C lower than that of commercial MgH2, milled MgH2 and MgH2 doped with 6% Co/C (MgH2-6%Co/C), respectively. MgH2 doped with 6% Ni/C can release about 6.1 wt% H2 at 250 °C. More importantly, the dehydrogenated MgH2-6%Ni/C is even able to uptake 5.0 wt% H2 at 100 °C within 20 s. Moreover, a cycling test of MgH2 doped with 8% Ni/C demonstrates its excellent hydrogen absorption/desorption stability with respect to both capacity (up to 6.5 wt%) and kinetics (within 8 min at 275 °C for dehydrogenation and within 10 s at 200 °C for rehydrogenation). Mechanistic research reveals that the in situ formed Mg2Ni and Mg2NiH4 nanoparticles can be regarded as advanced catalytically active species in the MgH2-Ni/C system. Meanwhile, the carbon attached around the surface of transition metal nanoparticles can successfully inhibit the aggregation of the catalysts and achieve the steadily, prompting de/rehydrogenation during the subsequent cycling process. The intrinsic catalytic effects and the uniform distributions of Mg2Ni

  7. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    PubMed

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-08

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  8. Phase transition of BiVO4 nanoparticles in molten salt and the enhancement of visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Chunguang; Pang, Guangsheng; Sun, Shangmei; Feng, Shouhua

    2010-10-01

    BiVO4 nanoparticles are prepared by molten salt method. Tetragonal BiVO4 completely transforms to monoclinic phase after heating in molten LiNO3 at 270 °C for 18 h. The average particle sizes of monoclinic BiVO4 varied from 30 to 52 nm while the initial ratio of BiVO4 to LiNO3 changes from 1:6 to 1:24. The photocatalytic activity is evaluated by measuring decolorization of N, N, N', N'-tetraethylated rhodamine dye solution under visible-light irradiation. Both of the de-ethylation and chromophore cleavage are responsible for the decolorization of RB. The sample with an average particle size of 52 nm and a moderate surface area of 10 m2/g exhibit the highest visible-light photocatalytic activity. The shift of Raman peak position indicates that the symmetry distortions in the local structure of the monoclinic BiVO4. The variations of the local structure result in the modification of the electronic structure, which is responsible for the high visible-light photocatalytic activity.

  9. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Lee, Stephen L.; André, Pascal

    2016-11-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  10. Delivery of ziconotide to cerebrospinal fluid via intranasal pathway for the treatment of chronic pain.

    PubMed

    Manda, Prashanth; Kushwaha, Avadhesh Singh; Kundu, Santanu; Shivakumar, H N; Jo, Seong Bong; Murthy, S Narasimha

    2016-02-28

    The purpose of the current study was to investigate the plausibility of delivery of ziconotide to the cerebrospinal fluid (CSF) via intranasal administration. Ziconotide was administered either in the form of solution or Kolliphor P 407 gels (KP 407) intranasally in Sprague-Dawley rats. The effect of incorporation of chitosan in the formulation was also investigated. Time course of drug in the CSF was investigated by collecting CSF from cisterna magna. Pharmacokinetics of ziconotide in CSF following intrathecal and intravenous (i.v.) administration of ziconotide was investigated. Upon intrathecal administration the elimination rate constant of ziconotide in CSF was found to be 1.01±0.34h(-1). The Cmax and Tmax of ziconotide in CSF following intravenous administration were found to be 37.78±6.8ng/mL and ~2h respectively. The time required to attain maximum concentration (Tmax) in CSF was less upon intranasal administration (15min) compared to i.v. administration (120min). Presence of chitosan enhanced the overall bioavailability of ziconotide from intranasal solution and gel formulations. The elimination rate constant of ziconotide in CSF following intranasal and intravenous administration of ziconotide solution was found to be 0.54±0.08h(-1) and 0.42±0.10h(-1) respectively. Whereas, intranasal administration of ziconotide in the form of in situ forming gel lowered the elimination rate significantly. These results suggest that intranasal administration could be a potential noninvasive and patient compliant method of delivering ziconotide to CSF to treat chronic pain.

  11. Bioavailability enhancement of verapamil HCl via intranasal chitosan microspheres.

    PubMed

    Abdel Mouez, Mamdouh; Zaki, Noha M; Mansour, Samar; Geneidi, Ahmed S

    2014-01-23

    Chitosan microspheres are potential drug carriers for maximizing nasal residence time, circumventing rapid mucociliary clearance and enhancing nasal absorption. The aim of the present study was to develop and characterize chitosan mucoadhesive microspheres of verapamil hydrochloride (VRP) for intranasal delivery as an alternative to oral VRP which suffers low bioavailability (20%) due to extensive first pass effect. The microspheres were produced using a spray-drying and precipitation techniques and characterized for morphology (scanning electron microscopy), particle size (laser diffraction method), drug entrapment efficiency, thermal behavior (differential scanning calorimetry) and crystallinity (X-ray diffractometric studies) as well as in vitro drug release. Bioavailability of nasal VRP microspheres was studied in rabbits and the results were compared to those obtained after nasal, oral and intravenous administration of VRP solution. Results demonstrated that the microspheres were spherical with size 21-53 μm suitable for nasal deposition. The spray-drying technique was superior over precipitation technique in providing higher VRP entrapment efficiency and smaller burst release followed by a more sustained one over 6h. The bioavailability study demonstrated that the nasal microspheres exhibited a significantly higher bioavailability (58.6%) than nasal solution of VRP (47.8%) and oral VRP solution (13%). In conclusion, the chitosan-based nasal VRP microspheres are promising for enhancing VRP bioavailability by increasing the nasal residence time and avoiding the first-pass metabolism of the drug substance.

  12. Le sumatriptan intranasal pour la migraine chez les enfants

    PubMed Central

    Goldman, Ran D.; Meckler, Garth D.

    2015-01-01

    Résumé Question Je vois de plus en plus d’enfants et d’adolescents qui souffrent de céphalées pouvant se classer dans la catégorie des migraines. J’ai fait des lectures sur le sumatriptan par voie intranasale comme thérapie abortive. Est-ce un traitement efficace? Réponse La migraine aiguë chez les enfants et les adolescents est fréquente et difficile à traiter. Le sumatriptan intranasal est une option sûre et généralement efficace pour les enfants et les adolescents. La dose actuellement recommandée est de 20 mg pour les enfants qui pèsent plus de 40 kg et de 10 mg pour ceux dont le poids se situe entre 20 et 39 kg. Il faudrait faire des études de plus grande envergure pour contrecarrer les limitations des échantillons de petite taille et mieux comprendre la faible concentration plasmique et les effets placebo observés dans les études jusqu’à présent.

  13. Intranasal Dexmedetomidine as a Sedative for Pediatric Procedural Sedation

    PubMed Central

    Birisci, Esma; Anderson, Jordan; Schroeder, Sara; Dalabih, Abdallah

    2017-01-01

    OBJECTIVE This study seeks to evaluate the efficacy and safety of intranasal (IN) dexmedetomidine as a sedative medication for non-invasive procedural sedation. METHODS Subjects 6 months to 18 years of age undergoing non-invasive elective procedures were included. Dexmedetomidine (3 mcg/kg) was administered IN 40 minutes before the scheduled procedure time. The IN dexmedetomidine cohort was matched and compared to a cohort of 690 subjects who underwent sedation for similar procedures without the use of dexmedetomidine to evaluate for observed events/interventions and procedural times. RESULTS One hundred (92%) of the 109 included subjects were successfully sedated with IN dexmedetomidine. There were no significant differences in the rate of observed events/interventions in comparison to the non-dexmedetomidine cohort. However, the IN dexmedetomidine group had a longer postprocedure sleep time when compared to the non-dexmedetomidine cohort (p < 0.001), which had a significant effect on recovery time (p = 0.024). Also, the dexmedetomidine cohort had longer procedure time and total admit time (p < 0.001 and p = 0.037, respectively). CONCLUSIONS IN dexmedetomidine may be used for non-invasive pediatric procedural sedation. Subjects receiving IN dexmedetomidine had a similar rate of observed events/interventions as the subjects receiving non-dexmedetomidine sedation, with the exception of sleeping time. Also, patients sedated with IN dexmedetomidine had longer time to discharge, procedure time, and total admit time in comparison to other forms of sedation. PMID:28337075

  14. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2015-01-01

    An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.

  15. Intranasal administration of oxytocin: behavioral and clinical effects, a review.

    PubMed

    Veening, Jan G; Olivier, Berend

    2013-09-01

    The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. 'Direct-access-pathways' from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral 'prosocial' effects: from social relations and 'trust' to treatment of 'autism'. Only very recently in a microdialysis study in rats and mice, the 'direct-nose-brain-pathways' of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the 'intrinsic' OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects.

  16. Development of risperidone liposomes for brain targeting through intranasal route.

    PubMed

    Narayan, Reema; Singh, Mohan; Ranjan, OmPrakash; Nayak, Yogendra; Garg, Sanjay; Shavi, Gopal V; Nayak, Usha Y

    2016-10-15

    The present paper is aimed at development of functionalized risperidone liposomes for brain targeting through nasal route for effective therapeutic management of schizophrenia. The risperidone liposomes were prepared by thin film hydration method. Various parameters such as lipid ratio and lipid to drug ratio were optimized by using Design-Expert(®) Software to obtain high entrapment with minimum vesicle size. The surface of the optimized liposomes was modified by coating stearylamine and MPEG-DSPE for enhanced penetration to the brain. The formulations were evaluated for vesicle size, zeta potential, and entrapment efficiency. The morphology was studied by Transmission Electron Microscopy (TEM). In vivo efficacy was assessed by performing pharmacokinetic study in Wistar albino rats following intranasal administration of the formulations in comparison to intravenous bolus administration of pure drug. The mean vesicle size of optimized liposomes ranged from 90 to 100nm with low polydispersity index (<0.5). The entrapment efficiency of optimized liposomes was between 50 and 60%, functionalized liposomes showed maximum entrapment. The TEM images showed predominantly spherical vesicles with smooth bilayered surface. All formulations showed prolonged diffusion controlled drug release. The in vivo results showed that liposomal formulations provided enhanced brain exposure. Among the formulations studied, PEGylated liposomes (LP-16) had shown greater uptake of risperidone into the brain than plasma. High brain targeting efficiency index for LP-16 indicating preferential transport of the drug to brain. The study demonstrated successful formulation of surface modified risperidone liposomes for nasal delivery with brain targeting potential.

  17. Stimulus Selection for Intranasal Sensory Isolation: Eugenol Is an Irritant

    PubMed Central

    Wise, Paul M.; Lundström, Johan N.

    2012-01-01

    Both the olfactory and the trigeminal systems are able to respond to intranasal presentations of chemical vapor. Accordingly, when the nose detects a volatile chemical, it is often unclear whether we smell it, feel it, or both. The distinction may often be unimportant in our everyday perception of fragrances or aromas, but it can matter in experiments that purport to isolate olfactory processes or study the interaction between olfaction and chemesthesis. Researchers turn to a small pool of compounds that are believed to be “pure olfactory” stimuli with little or no trigeminal impact. The current report reexamines one such commonly used compound, namely eugenol, a flavor and fragrance ingredient that has anesthetic properties under some conditions. Using a standard method involving many trials during an experimental session (Experiment 1), subjects were unable to reliably lateralize eugenol, consistent with claims that this compound is detected primarily through olfaction. However, with more limited exposure (Experiments 2 and 3), subjects were able to lateralize eugenol. We speculate that anesthetic properties of eugenol could blunt its trigeminal impact in some paradigms. Regardless, the current experiments suggest that eugenol can in fact stimulate the trigeminal nerve but in a complex concentration–dependent manner. Implications and strategies for selection of model odorants are discussed. PMID:22293937

  18. Intranasal Midazolam Sedation in a Pediatric Emergency Dental Clinic.

    PubMed

    Peerbhay, Fathima; Elsheikhomer, Ahmed Mahgoub

    2016-01-01

    The purpose of this study was to compare the effectiveness and recovery times of 0.3 and 0.5 mg/kg intranasal midazolam (INM) administered with a mucosal atomizer device (MAD) in a pediatric emergency dental hospital clinic. One hundred eighteen children aged from 4 to 6 years were randomly administered either 0.3 or 0.5 mg/kg INM via an MAD in a triple-blinded randomized controlled trial. Sedation was achieved to some degree in 100% of the sample. The pulse rate and oxygen saturation were within the normal range in 99% of the patients. A burning sensation was reported in 9% of children. The recovery time of the 0.5 mg/kg group was statistically longer than that of the 0.3 mg/kg group (16.5 vs 18.8 minutes) but the difference was not clinically significant. The findings of this study show that 0.3 or 0.5 mg/kg doses of INM resulted in safe and effective sedation. The 0.5 mg/kg dose was more effective than the 0.3 mg/kg dose in reducing anxiety.

  19. Intranasal Midazolam Sedation in a Pediatric Emergency Dental Clinic

    PubMed Central

    Peerbhay, Fathima; Elsheikhomer, Ahmed Mahgoub

    2016-01-01

    The purpose of this study was to compare the effectiveness and recovery times of 0.3 and 0.5 mg/kg intranasal midazolam (INM) administered with a mucosal atomizer device (MAD) in a pediatric emergency dental hospital clinic. One hundred eighteen children aged from 4 to 6 years were randomly administered either 0.3 or 0.5 mg/kg INM via an MAD in a triple-blinded randomized controlled trial. Sedation was achieved to some degree in 100% of the sample. The pulse rate and oxygen saturation were within the normal range in 99% of the patients. A burning sensation was reported in 9% of children. The recovery time of the 0.5 mg/kg group was statistically longer than that of the 0.3 mg/kg group (16.5 vs 18.8 minutes) but the difference was not clinically significant. The findings of this study show that 0.3 or 0.5 mg/kg doses of INM resulted in safe and effective sedation. The 0.5 mg/kg dose was more effective than the 0.3 mg/kg dose in reducing anxiety. PMID:27585415

  20. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    NASA Astrophysics Data System (ADS)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  1. Irreversible phase transitions due to laser-based T-jump heating of precursor Eu:ZrO{sub 2}/Tb:Y{sub 2}O{sub 3} core/shell nanoparticles

    SciTech Connect

    Gunawidjaja, Ray; Diez-y-Riega, Helena; Eilers, Hergen

    2015-09-15

    Amorphous precursors of Eu-doped-ZrO{sub 2}/Tb-doped-Y{sub 2}O{sub 3} (p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3}) core/shell nanoparticles are rapidly heated to temperatures between 200 °C and 950 °C for periods between 2 s and 60 s using a CO{sub 2} laser. During this heating process the nanoparticles undergo irreversible phase changes. The fluorescence spectra due to Eu{sup 3+} dopants in the core and Tb{sup 3+} dopants in the shell are used to identify distinct phases within the material and to generate time/temperature phase diagrams. Such phase diagrams can potentially help to determine unknown time/temperature histories in thermosensor applications. - Graphical abstract: A CO{sub 2} laser is used for rapid heating of p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3} core/shell nanoparticles. Optical spectra are used to identify distinct phases and to determine its thermal history. - Highlights: • Synthesized oxide precursors of lanthanide doped core/shell nanoparticles. • Heated core/shell nanoparticles via laser-based T-jump technique. • Observed time- and temperature-dependent irreversible phase transition.

  2. Design of Surface Doping for Mitigating Transition Metal Dissolution in LiNi0.5 Mn1.5 O4 Nanoparticles.

    PubMed

    Lim, Jin-Myoung; Oh, Rye-Gyeong; Kim, Duho; Cho, Woosuk; Cho, Kyeongjae; Cho, Maenghyo; Park, Min-Sik

    2016-10-20

    In lithium-ion batteries (LIBs) comprising spinel cathode materials, the dissolution of transition metals (TMs) in the cathodes causes severe cyclic degradation. We investigate the origin and mechanism of surface TM dissolution in high-voltage spinel oxide (LiNi0.5 Mn1.5 O4 ) nanoparticles to find a practical method for its mitigation. Atomic structures of the LiNi0.5 Mn1.5 O4 surfaces are developed, and the electronic structures are investigated by first-principles calculations. The results indicate that titanium is a promising dopant for forming a more stable surface structure by reinforcing metal-oxygen bonds in LiNi0.5 Mn1.5 O4 . Experimentally synthesized LiNi0.5 Mn1.5 O4 with titanium surface doping exhibits improved electrochemical performance by suppressing undesirable TM dissolution during cycles. The theoretical prediction and experimental validation presented here suggest a viable method to suppress TM dissolution in LiNi0.5 Mn1.5 O4 .

  3. Evaluation of brain targeting efficiency of intranasal microemulsion containing olanzapine: pharmacodynamic and pharmacokinetic consideration.

    PubMed

    Patel, Rashmin B; Patel, Mrunali R; Bhatt, Kashyap K; Patel, Bharat G; Gaikwad, Rajiv V

    2016-01-01

    The objective of this study was to develop and evaluate olanzapine (OZP) -loaded microemulsions (OZPME) for intranasal delivery in the treatment of schizophrenia. The OZPME was formulated by the spontaneous microemulsification method and characterized for physicochemical parameters. Pharmacodynamic assessments (apomorphine - induced compulsive behavior and spontaneous locomotor activity) were performed using mice. All formulations were radiolabeled with technetium-99 ((99m)Tc), and biodistribution of drug in the brain was investigated using Swiss albino rats. Brain scintigraphy imaging in rabbits was performed to determine the uptake of the OZP into the brain. OZPME were found clear and stable with average globule size of 23.87 ± 1.07 nm. In pharmacodynamic assessments, significant (p < 0.05) difference in parameters estimated were found between the treated and control groups. (99m)Tc-labeled OZP solution (OZPS)/OZPME/OZP mucoadhesive microemulsion (OZPMME) were found to be stable and suitable for in vivo studies. Brain/blood ratio at all sampling points up to 8 h following intranasal administration of OZPMME compared to intravenous OZPME was found to be five to six times higher signifying larger extent of distribution of the OZP in brain. Drug targeting efficiency and direct drug transport were found to be highest for intranasal OZPMME, compared to intravenous OZPME. Furthermore, rabbit brain scintigraphy also demonstrated higher intranasal uptake of the OZP into the brain. This investigation demonstrates a prompt and larger extent of transport of OZP into the brain through intranasal OZPMME, which may prove beneficial for treatment of schizophrenia.

  4. Blockade of STAT3 in T Cells Inhibits Germinal Center Reactions against Intranasal Allergens.

    PubMed

    Choi, Garam; Chung, Yeonseok

    2016-05-01

    Understanding the developmental mechanisms of humoral immunity against intranasal antigens is essential for the development of therapeutic approaches against air-borne pathogens as well as allergen-induced pulmonary inflammation. Follicular helper T (Tfh) cells expressing CXCR5 are required for humoral immunity by providing IL-21 and ICOS costimulation to activated B cells. However, the regulation of Tfh cell responses against intranasal antigens remains unclear. Here, we found that the generation of Tfh cells and germinal center B cells in the bronchial lymph node against intranasal proteinase antigens was independent of TGF-β. In contrast, administration of STAT3 inhibitor STA-21 suppressed the generation of Tfh cells and germinal center B cells. Compared with wild-type OT-II T cells, STAT3-deficient OT-II T cells transferred into recipients lacking T cells not only showed significantly reduced frequency Tfh cells, but also induced diminished IgG as well as IgE specific for the intranasal antigens. Cotransfer study of wild-type OT-II and STAT3-deficient OT-II T cells revealed that the latter failed to differentiate into Tfh cells. These findings demonstrate that T cell-intrinsic STAT3 is required for the generation of Tfh cells to intranasal antigens and that targeting STAT3 might be an effective approach to ameliorate antibody-mediated pathology in the lung.

  5. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity.

  6. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke

    PubMed Central

    Lioutas, Vasileios-Arsenios; Alfaro-Martinez, Freddy; Bedoya, Francisco; Chung, Chen-Chih; Pimentel, Daniela A.; Novak, Vera

    2016-01-01

    Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood–brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS. PMID:26040423

  7. Position on zinc delivery to olfactory nerves in intranasal insulin phase I-III clinical trials.

    PubMed

    Hamidovic, A

    2015-11-01

    Zinc in pancreatic insulin is essential for processing and action of the peptide, while in commercial preparations zinc promotes hexameric structure and prevents aggregate formation. In 2002, for the first time, insulin was delivered to humans intranasally with resulting cerebrospinal fluid insulin increases, but steady peripheral insulin levels. The novel method of increasing brain insulin levels without changes in the periphery resulted in an expansion of brain insulin research in clinical trials. As pre-clinical research has shown that brain insulin modulates a number functions, including food cravings and eating behavior, learning and memory functions, stress and mood regulation; realization of beneficial effects of insulin in modulating these functions in clinical populations became a possibility with the new direct-to-brain insulin delivery methodology. However, zinc, being integral to insulin structure and function, is neurotoxic, and has resulted in adverse effects to human health. In the last century, intranasal zinc was given preventively during the time of polio outbreak, and in the 21st century intranasal zinc was widely used over the counter to prevent common cold. In both cases, patients experienced partial or complete loss of smell. This paper is the first one to analyze zinc salts and concentrations of those two epidemiological adversities and directly compare formulations distributed to the public with animal toxicity data. The information gained from animal and epidemiological data provides a foundation for the formation of opinion given in this paper regarding safety of intranasal zinc in emerging clinical trials with intranasal insulin.

  8. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides.

    PubMed

    Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-01-10

    Intranasal administration is considered as an alternative route to enable effective drug delivery to the central nervous system (CNS) by bypassing the blood-brain barrier. Several reports have proved that macromolecules can be transferred directly from the nasal cavity to the brain. However, strategies to enhance the delivery of macromolecules from the nasal cavity to CNS are needed because of their low delivery efficiencies via this route in general. We hypothesized that the delivery of biopharmaceuticals to the brain parenchyma can be facilitated by increasing the uptake of drugs by the nasal epithelium including supporting and neuronal cells to maximize the potentiality of the intranasal pathway. To test this hypothesis, the CNS-related model peptide insulin was intranasally coadministered with the cell-penetrating peptide (CPP) penetratin to mice. As a result, insulin coadministered with l- or d-penetratin reached the distal regions of the brain from the nasal cavity, including the cerebral cortex, cerebellum, and brain stem. In particular, d-penetratin could intranasally deliver insulin to the brain with a reduced risk of systemic insulin exposure. Thus, the results obtained in this study suggested that CPPs are potential tools for the brain delivery of peptide- and protein-based pharmaceuticals via intranasal administration.

  9. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines

    NASA Astrophysics Data System (ADS)

    Nochi, Tomonori; Yuki, Yoshikazu; Takahashi, Haruko; Sawada, Shin-Ichi; Mejima, Mio; Kohda, Tomoko; Harada, Norihiro; Kong, Il Gyu; Sato, Ayuko; Kataoka, Nobuhiro; Tokuhara, Daisuke; Kurokawa, Shiho; Takahashi, Yuko; Tsukada, Hideo; Kozaki, Shunji; Akiyoshi, Kazunari; Kiyono, Hiroshi

    2010-07-01

    Nanotechnology is an innovative method of freely controlling nanometre-sized materials. Recent outbreaks of mucosal infectious diseases have increased the demands for development of mucosal vaccines because they induce both systemic and mucosal antigen-specific immune responses. Here we developed an intranasal vaccine-delivery system with a nanometre-sized hydrogel (`nanogel') consisting of a cationic type of cholesteryl-group-bearing pullulan (cCHP). A non-toxic subunit fragment of Clostridium botulinum type-A neurotoxin BoHc/A administered intranasally with cCHP nanogel (cCHP-BoHc/A) continuously adhered to the nasal epithelium and was effectively taken up by mucosal dendritic cells after its release from the cCHP nanogel. Vigorous botulinum-neurotoxin-A-neutralizing serum IgG and secretory IgA antibody responses were induced without co-administration of mucosal adjuvant. Importantly, intranasally administered cCHP-BoHc/A did not accumulate in the olfactory bulbs or brain. Moreover, intranasally immunized tetanus toxoid with cCHP nanogel induced strong tetanus-toxoid-specific systemic and mucosal immune responses. These results indicate that cCHP nanogel can be used as a universal protein-based antigen-delivery vehicle for adjuvant-free intranasal vaccination.

  10. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Tam, V.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r²) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that

  11. Pharmacokinetics of Scopolamine Intranasal Gel Formulation (INSCOP) During Antiorthostatic Bedrest

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Du, B.; Daniels, V.

    2010-01-01

    Space Motion Sickness (SMS) is experienced during early flight days of space missions and on reduced gravity simulation flights which require treatment with medications. Oral administration of scopolamine tablets is still a common practice to prevent SMS symptoms. Bioavailability of medications taken by mouth for SMS is often low and variable. Intranasal (IN) administration of medications has been reported to achieve higher and more reliable bioavailability than from an equivalent oral dose. In this FDA reviewed phase II clinical trial, we evaluated pharmacokinetics of an investigative new drug formulation, INSCOP during ambulatory (AMB) and antiorthostatic bedrest (HBR), a ground-based microgravity analog. Twelve subjects including 6 males and 6 females received 0.2 and 0.4 mg doses of INSCOP on separate days during AMB and ABR in a randomized, double blind cross over experimental design. Blood samples were collected at regular time intervals for 24 h post dose and analyzed for free scopolamine concentrations by an LC-MS-MS method. Pharmacokinetic parameters were calculated using concentration versus time data and compared between AMB and ABR conditions. Results indicated that maximum concentration and relative bioavailability increased marginally during ABR compared to AMB; differences in PK parameters between AMB and ABR were greater with 0.2 mg than with 0.4 mg dose. Gender specific differences in PK parameters was observed both during AMB and ABR with differences higher in females between the two conditions than in males. A significant observation is that while gender differences in PK appear to exist, the differences in primary PK parameters between AMB and ABR after IN administration, unlike oral administration, are minimal and may not be clinically significant for both genders.

  12. Intranasal inhalation of oxytocin improves face processing in developmental prosopagnosia.

    PubMed

    Bate, Sarah; Cook, Sarah J; Duchaine, Bradley; Tree, Jeremy J; Burns, Edwin J; Hodgson, Timothy L

    2014-01-01

    Developmental prosopagnosia (DP) is characterised by a severe lifelong impairment in face recognition. In recent years it has become clear that DP affects a substantial number of people, yet little work has attempted to improve face processing in these individuals. Intriguingly, recent evidence suggests that intranasal inhalation of the hormone oxytocin can improve face processing in unimpaired participants, and we investigated whether similar findings might be noted in DP. Ten adults with DP and 10 matched controls were tested using a randomized placebo-controlled double-blind within-subject experimental design (AB-BA). Each participant took part in two testing sessions separated by a 14-25 day interval. In each session, participants inhaled 24 IU of oxytocin or placebo spray, followed by a 45 min resting period to allow central oxytocin levels to plateau. Participants then completed two face processing tests: one assessing memory for a set of newly encoded faces, and one measuring the ability to match simultaneously presented faces according to identity. Participants completed the Multidimensional Mood Questionnaire (MMQ) at three points in each testing session to assess the possible mood-altering effects of oxytocin and to control for attention and wakefulness. Statistical comparisons revealed an improvement for DP but not control participants on both tests in the oxytocin condition, and analysis of scores on the MMQ indicated that the effect cannot be attributed to changes in mood, attention or wakefulness. This investigation provides the first evidence that oxytocin can improve face processing in DP, and the potential neural underpinnings of the findings are discussed alongside their implications for the treatment of face processing disorders.

  13. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery.

    PubMed

    Sharma, Sumit; Lohan, Shikha; Murthy, R S R

    2014-07-01

    Levodopa is the drug of choice in the treatment of Parkinson's disease but it exhibits low oral bioavailability (30%) and very low brain uptake due to its extensive metabolism by aromatic amino acid decarboxylase in the peripheral circulation. Hence, levodopa is co-administered with carbidopa, a peripheral amino acid decarboxylase inhibitor. In an attempt to improve brain uptake and to avoid degradation of levodopa in peripheral circulation and the use of carbidopa in combination, nose to brain drug delivery of levodopa alone via the olfactory route and the trigeminal nerves has been investigated. Chitosan nanoparticles loaded with levodopa (CNL) were prepared and were incorporated in a thermo-reversible gel prepared using Pluronic PF127 (CNLPgel). The preparation of CNL and CNLPgel was optimized for formulation parameters such as chitosan:TPP ratio, drug load Pluronic concentration to obtain desired particle size of CNL, gelling temperature, gelling time and mucoadhesive strength of CNLPgel. Rheological studies indicated a change in the rheological behavior of plain pluronic gel from Newtonian system at 30 °C to pseudoplastic behavior at 35 °C on incorporation of CNL. In vitro release studies from CNL obeyed Higuchi kinetic model, whereas the drug release from CNLPgel followed the Hixson-Crowell model. In vivo studies indicated a maximum recovery of the drug in brain following intranasal administration of CNL suspension in saline closely followed by the drug dispersed in plain pluronic gel.

  14. Reinforcing, subject-rated, and physiological effects of intranasal methylphenidate in humans: a dose-response analysis.

    PubMed

    Stoops, William W; Glaser, Paul E A; Rush, Craig R

    2003-08-20

    The results of previously published reports suggest that oral methylphenidate has potential for abuse. An increase in insufflation of methylphenidate has been reported recently. To our knowledge, however, there are no published reports that examined the effects of intranasal methylphenidate. The purpose of this experiment was to characterize the reinforcing, subject-rated, and physiological effects of intranasal methylphenidate (0, 10, 20, and 30 mg). Eight volunteers (five males and three females) with recent histories of recreational stimulant use were recruited to participate in this experiment. Drug doses were administered in a double-blind fashion under medical supervision, but for safety purposes they were administered in ascending order. Intranasal methylphenidate increased the crossover point on the Multiple-Choice Questionnaire in a linear fashion, which suggests that intranasal methylphenidate functioned as a reinforcer. Intranasal methylphenidate also produced linear dose-dependent prototypical stimulant-like subjective effects (e.g. increases in ratings of Good Effects and High). Intranasal methylphenidate increased heart rate as a function of dose, but the magnitude of this effect was not clinically significant (i.e. average peak heart rate following administration of the highest dose was less than 82 beats per min). The results of this study suggest that across a range of doses, intranasal methylphenidate produces behavioral effects that are characteristic of abused stimulants. Future studies should test higher doses and directly compare the behavioral effects of intranasal methylphenidate to those of a prototypical abused stimulant (e.g. cocaine).

  15. A Randomized, Controlled Trial of Intranasal Oxytocin as an Adjunct to Behavioral Therapy for Autism Spectrum Disorder

    DTIC Science & Technology

    2013-10-01

    Intranasal Oxytocin as an Adjunct to Behavioral Therapy for Autism Spectrum Disorder PRINCIPAL INVESTIGATOR: John Gabrieli...SUBTITLE A Randomized, Controlled Trial of Intranasal Oxytocin as an Adjunct to Behavioral Therapy for Autism Spectrum Disorder 5a. CONTRACT NUMBER...dysfunctions and (2) oxytocin (OT) administration prior to CBT sessions will each enhance social function in young adults with autism spectrum disorders

  16. Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition.

    PubMed

    Salameh, Therese S; Bullock, Kristin M; Hujoel, Isabel A; Niehoff, Michael L; Wolden-Hanson, Tami; Kim, Junghyun; Morley, John E; Farr, Susan A; Banks, William A

    2015-01-01

    Intranasal insulin has shown efficacy in patients with Alzheimer's disease (AD), but there are no preclinical studies determining whether or how it reaches the brain. Here, we showed that insulin applied at the level of the cribriform plate via the nasal route quickly distributed throughout the brain and reversed learning and memory deficits in an AD mouse model. Intranasal insulin entered the blood stream poorly and had no peripheral metabolic effects. Uptake into the brain from the cribriform plate was saturable, stimulated by PKC inhibition, and responded differently to cellular pathway inhibitors than did insulin transport at the blood-brain barrier. In summary, these results show intranasal delivery to be an effective way to deliver insulin to the brain.

  17. Dendritic Cell Targeted Chitosan Nanoparticles for Nasal DNA Immunization against SARS CoV Nucleocapsid Protein

    PubMed Central

    Raghuwanshi, Dharmendra; Mishra, Vivek; Das, Dipankar; Kaur, Kamaljit; Suresh, Mavanur R.

    2012-01-01

    This work investigates the formulation and in vivo efficacy of dendritic cell (DC) targeted plasmid DNA loaded biotinylated chitosan nanoparticles for nasal immunization against nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) as antigen. The induction of antigen-specific mucosal and systemic immune response at the site of virus entry is a major challenge for vaccine design. Here, we designed a strategy for non-invasive receptor mediated gene delivery to nasal resident DCs. The pDNA loaded biotinylated chitosan nanoparticles were prepared using a complex coacervation process and characterized for size, shape, surface charge, plasmid loading and protection against nuclease digestion. The pDNA loaded biotinylated chitosan nanoparticles were targeted with bifunctional fusion protein (bfFp) vector for achieving DC selective targeting. The bfFp is a recombinant fusion protein consisting of truncated core-streptavidin fused with anti-DEC-205 single chain antibody (scFv). The core-streptavidin arm of fusion protein binds with biotinylated nanoparticles, while anti-DEC-205 scFv imparts targeting specificity to DC DEC-205 receptor. We demonstrate that intranasal administration of bfFp targeted formulations along with anti-CD40 DC maturation stimuli enhanced magnitude of mucosal IgA as well as systemic IgG against N protein. The strategy led to the detection of augmented levels of N protein specific systemic IgG and nasal IgA antibodies. However, following intranasal delivery of naked pDNA no mucosal and systemic immune responses were detected. A parallel comparison of targeted formulations using intramuscular and intranasal route showed that the intramuscular route is superior for induction of systemic IgG responses compared with the intranasal route. Our results suggest that targeted pDNA delivery through non-invasive intranasal route can be a strategy for designing low-dose vaccines. PMID:22356166

  18. Comparison of Nanoemulsion and Aqueous Micelle Systems of Paliperidone for Intranasal Delivery.

    PubMed

    Pidaparthi, Kartika; Suares, Divya

    2016-10-06

    The objective of the study was to develop and compare the efficiency of nanoemulsion and aqueous micelle system of Paliperidone on intranasal administration. Both the formulations were evaluated for physical parameters such as globule size, pH, viscosity, conductivity and in vitro drug release studies. The reduction in spontaneous motor activity of L-dopa and Carbidopa-treated Swiss Albino mice on intranasal administration of nanoemulsion and micellar system of Paliperidone was compared with plain drug suspension. Histopathological evaluation of formulation treated nasal mucosal membrane was performed. Nasal spray device was evaluated for spray pattern and volume per actuation. Globule size of micellar system and nanoemulsion was found to be 16.14 & 38.25 nm, respectively. In vitro release of drug from micellar system was found to be 1.8-fold higher than nanoemulsion. The loading of drug in nanoemulsion was found to be superior (2.5 mg/mL) when compared to micellar system (0.41 mg/mL). The spray pattern of micellar system and nanoemulsion from the device was elliptical and circular, respectively. The locomotor activity of L-dopa and Carbidopa-treated Swiss albino mice was found to be 1096.5±78.49, 551.5±13.43 and 535.5±24.75 counts/min in case of plain drug suspension, micellar system and nanoemulsion, respectively. The intranasal administration of developed formulations showed significant difference (p<0.01) in the locomotor activity when compared to intranasal administration of plain drug. Thus it can be concluded that both the developed formulations have shown improved in vivo activity on intranasal administration and pose great potential for delivery of Paliperidone through intranasal route.

  19. Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan.

    PubMed

    Vyas, Tushar K; Babbar, A K; Sharma, R K; Singh, Shashi; Misra, Ambikanandan

    2006-03-01

    The aim of this investigation was to prepare microemulsions containing sumatriptan (ST) and sumatriptan succinate (SS) to accomplish rapid delivery of drug to the brain in acute attacks of migraine and perform comparative in vivo evaluation in rats. Sumatriptan microemulsions (SME)/sumatriptan succinate microemulsions (SSME) were prepared using titration method and characterized for drug content, globule size and size distribution, and zeta potential. Biodistribution of SME, SSME, sumatriptan solution (SSS), and marketed product (SMP) in the brain and blood of Swiss albino rats following intranasal and intravenous (IV) administrations were examined using optimized technetium-labeled ((99m)Tc-labeled) ST formulations. The pharmacokinetic parameters, drug targeting efficiency (DTE), and direct drug transport (DTP) were derived. Gamma scintigraphy imaging of rat brain following IV and intranasal administrations were performed to ascertain the localization of drug. SME and SSME were transparent and stable with mean globule size 38±20 nm and zeta potential between -35 to -55 mV. Brain/blood uptake ratios at 0.5 hour following IV administration of SME and intranasal administrations of SME, SMME, and SSS were found to be 0.20, 0.50, 0.60, and 0.26, respectively, suggesting effective transport of drug following intranasal administration of microemulsions. Higher DTE and DTP for mucoadhesive microemulsions indicated more effective targeting following intranasal administration and best brain targeting of ST from mucoadhesive microemulsions. Rat brain scintigraphy endorsed higher uptake of ST into the brain. Studies conclusively demonstrated rapid and larger extent of transport of microemulsion of ST compared with microemulsion of SS, SMP, and SSS into the rat brain. Hence, intranasal delivery of ST microemulsion developed in this investigation can play a promising role in the treatment of acute attacks of migraine.

  20. Intranasal Administration of Interleukin-1 Receptor Antagonist in a Transient Focal Cerebral Ischemia Rat Model

    PubMed Central

    Lee, Jae Hoon; Kam, Eun Hee; Kim, Jeong Min; Kim, So Yeon; Kim, Eun Jeong; Cheon, So Yeong; Koo, Bon-Nyeo

    2017-01-01

    The interleukin-1 receptor antagonist (IL-1RA) is a potential stroke treatment candidate. Intranasal delivery is a novel method thereby a therapeutic protein can be penetrated into the brain parenchyma by bypassing the blood-brain barrier. Thus, this study tested whether intranasal IL-1RA can provide neuroprotection and brain penetration in transient cerebral ischemia. In male Sprague-Dawley rats, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 1 h. The rats simultaneously received 50 mg/kg human IL-1RA through the intranasal (IN group) or intraperitoneal route (IP group). The other rats were given 0.5 mL/kg normal saline (EC group). Neurobehavioral function, infarct size, and the concentration of the administered human IL-1RA in the brain tissue were assessed. In addition, the cellular distribution of intranasal IL-1RA in the brain and its effect on proinflammatory cytokines expression were evaluated. Intranasal IL-1RA improved neurological deficit and reduced infarct size until 7 days after MCAO (p<0.05). The concentrations of the human IL-1RA in the brain tissue 24 h after MCAO were significantly greater in the IN group than in the IP group (p<0.05). The human IL-1RA was confirmed to be co-localized with neuron and microglia. Furthermore, the IN group had lower expression of interleukin-1β and tumor necrosis factor-α at 6 h after MCAO than the EC group (p<0.05). These results suggest that intranasal IL-1RA can reach the brain parenchyma more efficiently and provide superior neuroprotection in the transient focal cerebral ischemia. PMID:27530114

  1. Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection.

    PubMed

    Fréchou, Magalie; Zhang, Shaodong; Liere, Philippe; Delespierre, Brigitte; Soyed, Nouha; Pianos, Antoine; Schumacher, Michael; Mattern, Claudia; Guennoun, Rachida

    2015-10-01

    Progesterone is a potential neuroprotective agent for cerebral stroke. One of the STAIR's recommendations is to test different routes of delivery of therapeutic agents. Here, we investigated the neuroprotective efficacy of intranasal delivery of progesterone in oleogel. Male mice were subjected to transient middle cerebral occlusion (MCAO) for 1 h. Mice received intranasal or intraperitoneal administrations of progesterone (8 mg/kg) at 1, 6, and 24 h post-MCAO. Plasma and brain levels of steroids were measured by gas chromatography-mass spectrometry 2 and 24 h after the last administration of progesterone. Behavioral and histopathological analyzes were performed at 48 h post-MCAO. For blood-brain barrier (BBB) permeability analysis, mice received one intranasal administration of progesterone or placebo at reperfusion and Evans Blue and sodium fluorescein extravasations were assessed at 4 h post-MCAO. Two hours after its nasal administration, progesterone reached elevated levels in brain and plasma and was bioconverted to its 5α-reduced metabolites and to 20α-dihydroprogesterone. However, brain levels of progesterone and its metabolites were about half those measured after intraperitoneal injections, whereas levels of 11-deoxycorticosterone and corticosterone were 5-times lower. In contrast, after 24 h, higher levels of progesterone were measured in brain and plasma after intranasal than after intraperitoneal delivery. Intranasal progesterone decreased the mortality rate, improved motor functions, reduced infarct, attenuated neuronal loss, and decreased the early BBB disruption. This study demonstrates a good bioavailability, a prolonged absorption and a good neuroprotective efficacy of intranasal delivery of progesterone, thus potentially offering an efficient, safe, non-stressful and very easy mode of administration in stroke patients.

  2. Clinical inquiries. Intranasal steroids vs antihistamines: which is better for seasonal allergies and conjunctivitis?

    PubMed

    Parle-Pechera, Suzanna; Powers, Laurel; St Anna, Leilani

    2012-07-01

    Intranasal steroids provide better relief for adult sufferers, according to nonstandardized, nonclinically validated scales. Steroids reduce subjective total nasal symptom scores (TNSS)--representing sneezing, itching, congestion, and rhinorrhea--by about 25% more than placebo, whereas oral antihistamines decrease TNSS by 5% to 10% (strength of recommendation [SOR]: B, systematic review of randomized controlled trials [RCTs], most without clinically validated or standardized outcome measures). Intranasal steroids improve subjective eye symptom scores as well as (or better than) oral antihistamines in adults who also have allergic conjunctivitis (SOR: A, systematic review, RCTs).

  3. A prospective, randomized, double blinded comparison of intranasal dexmedetomodine vs intranasal ketamine in combination with intravenous midazolam for procedural sedation in school aged children undergoing MRI

    PubMed Central

    Ibrahim, Mohamed

    2014-01-01

    Background: For optimum magnetic resonance imaging (MRI) image quality and to ensure precise diagnosis, patients have to remain motionless. We studied the effects of intranasal dexmedetomidine and ketamine with intravenous midazolam for pre-procedural and procedural sedation in school aged children. Patients and Methods: Children were randomly allocated to one of two groups: (Group D) received intranasal dexmedetomidine 3 μg kg–1 and (Group K) received intranasal ketamine 7 mg kg–1. Sedation levels 10, 20 and 30 min after drug instillation were evaluated using a Modified Ramsay sedation scale. A 4-point score was used to evaluate patients when they were separated from their parents and their response to intravenous cannulation. Results: The two groups were comparable in terms of the child's anxiety at presentation (P = 0.245). We observed that Group K achieved faster sedation at 10 min point with P < 0.05. A comparable sedation score at 20 and 30 min were noted. The two groups were comparable regarding to the child's acceptance of nasal administration (P = 0.65). The sedation failure rate was insignificantly differ between groups (13.7% vs. 20.6% for Group D and K respectively). Heart rate and systolic blood pressure showed a significant difference between the two groups starting from the point of 20 min. Conclusion: Intranasal dexmedetomidine 3 μg kg–1 or ketamine 7 mg kg–1 can be used safely and effectively to induce a state of moderate conscious sedation and to facilitate parents’ separation and IV cannulation. Addition of midazolam in a dose not sufficient alone to produce the target sedation achieved our goal of deep level of sedation suitable for MRI procedure. PMID:25886223

  4. Impact of Gender on Pharmocokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Lei, Wu.; S-L Chow, Diana

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS), which is commonly experienced by astronauts during space missions. The bioavailability and pharmacokinetics (PK) were evaluated under IND guidelines. Since information is lacking on the effect of gender on the PK of Scopolamine, we examined gender differences in PK parameters of INSCOP at three dose levels of 0.1, 0.2 and 0.4 mg. Methods: Plasma scopolamine concentrations as a function of time data were collected from twelve normal healthy human subjects (6 male/6 female) who participated in a fully randomized double blind crossover study. The PK parameters were derived using WinNonlin. Covariate analysis of PK profiles was performed using NONMEN and statistically compared using a likelihood ratio test on the difference of objective function value (OFV). Statistical significance for covariate analysis was set at P<0.05(?OFV=3.84). Results: No significant difference in PK parameters between male and female subjects was observed with 0.1 and 0.2 mg doses. However, CL and Vd were significantly different between male and female subjects at the 0.4 mg dose. Results from population covariate modeling analysis indicate that a onecompartment PK model with first-order elimination rate offers best fit for describing INSCOP concentration-time profiles. The inclusion of sex as a covariate enhanced the model fitting (?OFV=-4.1) owing to the genderdependent CL and Vd differences after the 0.4 mg dose. Conclusion: Statistical modeling of scopolamine concentration-time data suggests gender-dependent pharmacokinetics of scopolamine at the high dose level of 0.4 mg. Clearance of the parent compound was significantly faster and the volume of distribution was significantly higher in males than in females, As a result, including gender as a covariate to the pharmacokinetic model of scopolamine offers the best fit for PK modeling of the drug at dose

  5. Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice.

    PubMed

    Serralheiro, Ana; Alves, Gilberto; Fortuna, Ana; Falcão, Amílcar

    2015-07-25

    Pharmacoresistance is considered one of the major causes underlying the failure of the anticonvulsant therapy, demanding the development of alternative and more effective therapeutic approaches. Due to the particular anatomical features of the nasal cavity, intranasal administration has been explored as a means of preferential drug delivery to the brain. The purpose of the present study was to assess the pharmacokinetics of lamotrigine administered by the intranasal route to mice, and to investigate whether a direct transport of the drug from nose to brain could be involved. The high bioavailability achieved for intranasally administered lamotrigine (116.5%) underscored the fact that a substantial fraction of the drug has been absorbed to the systemic circulation. Nonetheless, the heterogeneous biodistribution of lamotrigine in different brain regions, with higher concentration levels attained in the olfactory bulb comparatively to the frontal cortex and the remaining portion of the brain, strongly suggest that lamotrigine was directly transferred to the brain via the olfactory neuronal pathway, circumventing the blood-brain barrier. Therefore, it seems that intranasal route can be assumed as a suitable and valuable drug delivery strategy for the chronic treatment of epilepsy, also providing a promising alternative approach for a prospective management of pharmacoresistance.

  6. CSF and blood oxytocin concentration changes following intranasal delivery in macaque.

    PubMed

    Dal Monte, Olga; Noble, Pamela L; Turchi, Janita; Cummins, Alex; Averbeck, Bruno B

    2014-01-01

    Oxytocin (OT) in the central nervous system (CNS) influences social cognition and behavior, making it a candidate for treating clinical disorders such as schizophrenia and autism. Intranasal administration has been proposed as a possible route of delivery to the CNS for molecules like OT. While intranasal administration of OT influences social cognition and behavior, it is not well established whether this is an effective means for delivering OT to CNS targets. We administered OT or its vehicle (saline) to 15 primates (Macaca mulatta), using either intranasal spray or a nebulizer, and measured OT concentration changes in the cerebral spinal fluid (CSF) and in blood. All subjects received both delivery methods and both drug conditions. Baseline samples of blood and CSF were taken immediately before drug administration. Blood was collected every 10 minutes after administration for 40 minutes and CSF was collected once post-delivery, at the 40 minutes time point. We found that intranasal administration of exogenous OT increased concentrations in both CSF and plasma compared to saline. Both delivery methods resulted in similar elevations of OT concentration in CSF, while the changes in plasma OT concentration were greater after nasal spray compared to nebulizer. In conclusion our study provides evidence that both nebulizer and nasal spray OT administration can elevate CSF OT levels.

  7. Acute treatment of myasthenia gravis with intranasal neostigmine: clinical and electromyographic evaluation.

    PubMed Central

    Ricciardi, R; Rossi, B; Nicora, M; Sghirlanzoni, A; Muratorio, A

    1991-01-01

    The effectiveness of intranasal neostigmine (9.3-13.8 mg) was tested in 20 subjects with myasthenia gravis, classified as Osserman grades 2A and 2B. In all cases the drug produced significant clinical and electromyographic improvement. No side effects were reported during the treatment. PMID:1783916

  8. Intranasal delivery of liposomal indole-3-carbinol improves its pulmonary bioavailability.

    PubMed

    Song, Jung Min; Kirtane, Ameya R; Upadhyaya, Pramod; Qian, Xuemin; Balbo, Silvia; Teferi, Fitsum; Panyam, Jayanth; Kassie, Fekadu

    2014-12-30

    Indole-3-carbinol (I3C), a constituent of commonly consumed Brassica vegetables, has been shown to have anticancer effects in a variety of preclinical models of lung cancer. However, it has shown only limited efficacy in clinical trials, likely due to its poor oral bioavailability. Intranasal administration of I3C has the potential to enhance the pulmonary accumulation of the drug, thereby improving its availability at the target site of action. In this study, we developed a liposomal formulation of I3C and evaluated its lung delivery and chemopreventive potential in tobacco smoke carcinogen [4-(methylnitro-samino)-1-(3-pyridyl)-1-butanone (NNK)]-treated mice. Intranasal administration of I3C liposomes led to a ∼100-fold higher lung exposure of I3C than the oral route of administration. Further, intranasal delivery of liposomal I3C led to a significant reduction (37%; p<0.05) in the levels of the DNA adduct formation induced by NNK treatment. Liposomal I3C also significantly increased (by 10-fold) the expression of CYP1A1, a cytochrome P450 enzyme known to increase the detoxification of chemical carcinogens by enhancing their metabolism. Overall, our findings demonstrate that intranasal administration of liposomal I3C has the potential to significantly improve the efficacy of I3C for lung cancer chemoprevention.

  9. Abuse potential of intranasal buprenorphine versus buprenorphine/naloxone in buprenorphine-maintained heroin users.

    PubMed

    Jones, Jermaine D; Sullivan, Maria A; Vosburg, Suzanne K; Manubay, Jeanne M; Mogali, Shanthi; Metz, Verena; Comer, Sandra D

    2015-07-01

    In spite of the clinical utility of buprenorphine, parenteral abuse of this medication has been reported in several laboratory investigations and in the real world. Studies have demonstrated lower abuse liability of the buprenorphine/naloxone combination relative to buprenorphine alone. However, clinical research has not yet examined the utility of the combined formulation to deter intranasal use in a buprenorphine-maintained population. Heroin-using volunteers (n = 12) lived in the hospital for 8-9 weeks and were maintained on each of three sublingual buprenorphine doses (2, 8, 24 mg). Under each maintenance dose, participants completed laboratory sessions during which the reinforcing and subjective effects of intranasal doses of buprenorphine (8, 16 mg), buprenorphine/naloxone (8/2, 8/8, 8/16, 16/4 mg) and controls (placebo, heroin 100 mg, naloxone 4 mg) were assessed. Intranasal buprenorphine alone typically produced increases in positive subjective effects and the 8 mg dose was self-administered above the level of placebo. The addition of naloxone dose dependently reduced positive subjective effects and increased aversive effects. No buprenorphine/naloxone combination dose was self-administered significantly more than placebo. These data suggest that within a buprenorphine-dependent population, intranasal buprenorphine/naloxone has reduced abuse potential in comparison to buprenorphine alone. These data strongly argue in favor of buprenorphine/naloxone rather than buprenorphine alone as the more reasonable option for managing the risk of buprenorphine misuse.

  10. Abuse Potential of Intranasal Buprenorphine versus Buprenorphine/Naloxone in Buprenorphine-Maintained Heroin Users

    PubMed Central

    Jones, Jermaine D.; Sullivan, Maria A.; Vosburg, Suzanne K.; Manubay, Jeanne M.; Mogali, Shanthi; Metz, Verena; Comer, Sandra D.

    2014-01-01

    In spite of the clinical utility of buprenorphine, parenteral abuse of this medication has been reported in several laboratory investigations and in the real world. Studies have demonstrated lower abuse liability of the buprenorphine/naloxone combination relative to buprenorphine alone. However, clinical research has not yet examined the utility of the combined formulation to deter intranasal use in a buprenorphine-maintained population. Heroin-using volunteers (n = 12) lived in the hospital for 8–9 weeks and were maintained on each of three sublingual buprenorphine doses (2, 8, 24 mg). Under each maintenance dose, participants completed laboratory sessions during which the reinforcing and subjective effects of intranasal doses of buprenorphine (8, 16 mg), buprenorphine/naloxone (8/2, 8/8, 8/16, 16/4 mg) and controls (placebo, heroin 100 mg, naloxone 4 mg) were assessed. Intranasal buprenorphine alone typically produced increases in positive subjective effects and the 8 mg dose was self-administered above the level of placebo. The addition of naloxone dose-dependently reduced positive subjective effects and increased aversive effects. No buprenorphine/naloxone combination dose was self-administered significantly more than placebo. These data suggest that within a buprenorphine-dependent population, intranasal buprenorphine/naloxone has reduced abuse potential in comparison to buprenorphine alone. These data strongly argue in favor of buprenorphine/naloxone rather than buprenorphine alone as the more reasonable option for managing the risk of buprenorphine misuse. PMID:25060839

  11. Indirect optical absorption and origin of the emission from β-FeSi2 nanoparticles: Bound exciton (0.809 eV) and band to acceptor impurity (0.795 eV) transitions

    NASA Astrophysics Data System (ADS)

    Lang, R.; Amaral, L.; Meneses, E. A.

    2010-05-01

    We investigated the optical absorption of the fundamental band edge and the origin of the emission from β-FeSi2 nanoparticles synthesized by ion-beam-induced epitaxial crystallization of Fe+ implanted SiO2/Si(100) followed by thermal annealing. From micro-Raman scattering and transmission electron microscopy measurements it was possible to attest the formation of strained β-FeSi2 nanoparticles and its structural quality. The optical absorption near the fundamental gap edge of β-FeSi2 nanoparticles evaluated by spectroscopic ellipsometry showed a step structure characteristic of an indirect fundamental gap material. Photoluminescence spectroscopy measurements at each synthesis stage revealed complex emissions in the 0.7-0.9 eV spectral region, with different intensities and morphologies strongly dependent on thermal treatment temperature. Spectral deconvolution into four transition lines at 0.795, 0.809, 0.851, and 0.873 eV was performed. We concluded that the emission at 0.795 eV may be related to a radiative direct transition from the direct conduction band to an acceptor level and that the emission at 0.809 eV derives from a recombination of an indirect bound exciton to this acceptor level of β-FeSi2. Emissions 0.851 and 0.873 eV were confirmed to be typical dislocation-related photoluminescence centers in Si. From the energy balance we determined the fundamental indirect and direct band gap energies to be 0.856 and 0.867 eV, respectively. An illustrative energy band diagram derived from a proposed model to explain the possible transition processes involved is presented.

  12. Acute and repeated intranasal oxytocin administration exerts anti-aggressive and pro-affiliative effects in male rats.

    PubMed

    Calcagnoli, Federica; Kreutzmann, Judith C; de Boer, Sietse F; Althaus, Monika; Koolhaas, Jaap M

    2015-01-01

    Socio-emotional deficits and impulsive/aggressive outbursts are prevalent symptoms of many neuropsychiatric disorders, and intranasal administration of oxytocin (OXT) is emerging as a putative novel therapeutic approach to curb these problems. Recently, we demonstrated potent anti-aggressive and pro-social effects of intracerebroventricular (icv) OXT administration in male rats. The present study tested whether similar behavioral effects are induced when OXT is delivered intranasally. Heart-rate and blood-pressure responses were telemetrically monitored to investigate whether peripheral physiological effects were provoked after intranasal OXT administration. Intranasal OXT administration in resident animals reduced offensive aggression and increased social exploration toward an unfamiliar male intruder. Using a partner-preference test, intranasal OXT also strengthened the bonding between the male resident and its female partner. No changes in cardiovascular (re)activity were found, indicating an absence of direct peripheral physiological effects after intranasal OXT treatment. In conclusion, although the precise route and mechanisms of nose-to-brain transport/communication remain to be elucidated, our data demonstrated intranasal OXT to be an effective application method for suppressing intermale aggression and enhancing social affiliation.

  13. Assessment of pharmacokinetics and tolerability of intranasal diazepam relative to rectal gel in healthy adults.

    PubMed

    Henney, Herbert R; Sperling, Michael R; Rabinowicz, Adrian L; Bream, Gary; Carrazana, Enrique J

    2014-09-01

    Diazepam rectal gel (RG) is currently the only approved rescue therapy for outpatient management of seizure clusters in the United States. There is an unmet medical need for an alternative rescue therapy for seizure clusters that is effective, and more convenient to administer with a socially acceptable method of delivery. An intranasal diazepam formulation has been developed, and this study evaluates the tolerability and bioavailability of diazepam nasal spray (NS) relative to an equivalent dose of diazepam-RG in healthy adults. Twenty-four healthy adults were enrolled in a phase 1, open-label, 3-period crossover study. Plasma diazepam and metabolite concentrations were measured by serial sampling. Dose proportionality for 5- and 20-mg intranasal doses and the bioavailability of 20mg diazepam-NS relative to 20mg diazepam-RG were assessed by maximum plasma concentration (Cmax) and systemic exposure parameters (AUC0-∞ and AUC0-24). The mean Cmax values for 20mg diazepam-NS and 20mg diazepam-RG were 378 ± 106 and 328 ± 152 ng/mL, achieved at 1.0 and 1.5h, respectively. Subjects administered intranasal and rectal gel formulations experienced nasal and rectal leakage, respectively. Diazepam absorption following intranasal administration was consistent but 3 subjects with diazepam-RG had low plasma drug levels at the earliest assessment of 5 min, due to poor retention, and were excluded from analysis. Excluding them, the treatment ratios (20mg diazepam-NS:20mg diazepam-RG) and 90% confidence intervals for diazepam Cmax and AUC0-24 were 0.98 (0.85-1.14) and 0.89 (0.80-0.98), respectively, suggesting that the bioavailability was comparable between the two formulations. Dose proportionality was observed between the lowest and highest dose-strengths of intranasal formulation. Both intranasal and rectal treatments were well tolerated with mild to moderate adverse events. Results suggest that a single-dose of 20mg diazepam-NS is tolerable and comparable in bioavailability

  14. Direct nose-brain transport of benzoylecgonine following intranasal administration in rats.

    PubMed

    Chow, H H; Anavy, N; Villalobos, A

    2001-11-01

    In our previous research, cocaine applied intranasally in rats diffused or was transported directly from the nasal cavity to the brain. However, the direct nose-brain cocaine transport only contributes to an initial increase in the relative cocaine brain exposure. In this study, we have determined the nose-brain transport of a polar metabolite of cocaine, benzoylecgonine, to help understand factors affecting drug transport via this novel pathway. The nasal cavity of male Sprague-Dawley rats was isolated to prevent drainage of nasally applied dosing solution to non-nasal regions. Benzoylecgonine was then administered, either by intranasal administration or by intravenous (iv) injection. At different times postdose, blood and tissues from different regions of the brain were collected from groups of rats (n = 4 for each collection time) and benzoylecgonine concentrations in these samples were analyzed by high-performance liquid chromatography. Benzoylecgonine concentrations in plasma were at maximal levels immediately after iv dosing and declined as a function of time. Following intranasal administration, benzoylecgonine concentrations in plasma reached maximal levels between 15 and 30 min after dosing and declined as a function of time. To allow comparison of brain benzoylecgonine content after iv and intranasal administration, brain benzoylecgonine contents were normalized by plasma benzoylecgonine concentrations. The ratios of the area under the benzoylecgonine concentration-time curve (AUC) between the olfactory bulb and plasma following intranasal administration were 10-100 times higher than those obtained after iv dosing. The olfactory tract-to-plasma benzoylecgonine AUC ratios after intranasal administration were significantly higher than those after iv dosing up to 120 min following dosing. The brain tissue-to-plasma AUC ratios in cerebellum, brain stem, and cerebral cortex after intranasal administration were significantly higher than the corresponding ratios

  15. The pharmacodynamic and pharmacokinetic profile of intranasal crushed buprenorphine and buprenorphine/naloxone tablets in opioid abusers

    PubMed Central

    Middleton, L.S.; Nuzzo, P.A.; Lofwall, M.R.; Moody, D.E.; Walsh, S.L.

    2011-01-01

    Aims Sublingual buprenorphine and buprenorphine/naloxone are efficacious opioid dependence pharmacotherapies, but there are reports of their diversion and misuse by the intranasal route. The study objectives were to characterize and compare their intranasal pharmacodynamic and pharmacokinetic profiles. Design A randomized, double-blind, placebo-controlled, crossover study. Setting An in-patient research unit at the University of Kentucky. Participants Healthy adults (n=10) abusing, but not physically dependent on, intranasal opioids. Measurements Six sessions (72 hours apart) tested five intranasal doses [0/0, crushed buprenorphine (2, 8 mg), crushed buprenorphine/naloxone (2/0.5, 8/2 mg)] and one intravenous dose (0.8 mg buprenorphine/0.2 mg naloxone for bioavailability assessment). Plasma samples, physiological, subject- and observer-rated measures were collected before and for up to 72 hours after drug administration. Findings Both formulations produced time- and dose-dependent increases on subjective and physiological mu-opioid agonist effects (e.g. ‘liking’, miosis). Subjects reported higher subjective ratings and street values for 8 mg compared to 8/2 mg, but these differences were not statistically significant. No significant formulation differences in peak plasma buprenorphine concentration or time-course were observed. Buprenorphine bioavailability was 38–44% and Tmax was 35–40 minutes after all intranasal doses. Naloxone bioavailability was 24% and 30% following 2/0.5 and 8/2 mg, respectively. Conclusions It is difficult to determine if observed differences in abuse potential between intranasal buprenorphine and buprenorphine/naloxone are clinically relevant at the doses tested. Greater bioavailability and faster onset of pharmacodynamic effects compared to sublingual administration suggests a motivation for intranasal misuse in non-dependent opioid abusers. However, significant naloxone absorption from intranasal buprenorphine

  16. Effects of intranasal and peripheral oxytocin or gastrin-releasing peptide administration on social interaction and corticosterone levels in rats.

    PubMed

    Kent, Pamela; Awadia, Alisha; Zhao, Leah; Ensan, Donna; Silva, Dinuka; Cayer, Christian; James, Jonathan S; Anisman, Hymie; Merali, Zul

    2016-02-01

    The intranasal route of drug administration has gained increased popularity as it is thought to allow large molecules, such as peptide hormones, more direct access to the brain, while limiting systemic exposure. Several studies have investigated the effects of intranasal oxytocin administration in humans as this peptide is associated with prosocial behavior. There are, however, few preclinical studies investigating the effects of intranasal oxytocin administration in rodents. Oxytocin modulates hypothalamic-pituitary-adrenal (HPA) axis functioning and it has been suggested that oxytocin's ability to increase sociability may occur through a reduction in stress reactivity. Another peptide that appears to influence both social behavior and HPA axis activity is gastrin-releasing peptide (GRP), but it is not known if these GRP-induced effects are related. With this in mind, in the present study, we assessed the effects of intranasal and intraperitoneal oxytocin and GRP administration on social interaction and release of corticosterone in rats. Intranasal and intraperitoneal administration of 20, but not 5 μg, of oxytocin significantly increased social interaction, whereas intranasal and peripheral administration of GRP (20 but not 5 μg) significantly decreased levels of social interaction. In addition, while intranasal oxytocin (20 μg) had no effect on blood corticosterone levels, a marked increase in blood corticosterone levels was observed following intraperitoneal oxytocin administration. With GRP, intranasal (20 μg) but not peripheral administration increased corticosterone levels. These findings provide further evidence that intranasal peptide delivery can induce behavioral alterations in rodents which is consistent with findings from human studies. In addition, the peptide-induced changes in social interaction were not linked to fluctuations in corticosterone levels.

  17. Intranasal administration: a potential solution for cross-BBB delivering neurotrophic factors.

    PubMed

    Zhu, Juehua; Jiang, Yongjun; Xu, Gelin; Liu, Xinfeng

    2012-05-01

    Neurotrophic factors (NTFs) are endogenous polypeptides that regulate the growth, survival, differentiation, and functioning of neurons. The neuroprotective effects of NTFs in experimental animals give strong rationale for developing therapies for neurological disorders. However, when NTFs are applied in clinical trials, great expectation leads to equal disappointment. NTFs are large molecular-weighted and hydrophilic proteins, which limits their access to the central nervous system (CNS) after systemic administration, principally due to poor blood-brain barrier (BBB) permeability and unfavorable pharmacokinetic profiles. Although intracerebral infusion may transport NTFs into the CNS, the invasiveness limits its clinical application. Intranasal administration has been under research for decades and presents promising outcomes in preclinical studies for brain delivering of NTFs. After intranasal delivery, NTFs gain direct and quick access into the CNS at concentrations high enough to elicit their biological effects, bypassing the BBB and minimizing systemic exposure. Due to its invasiveness and convenience, intranasal delivery is feasible for NTFs administration. Although direct evidence of nose-to-brain pathway in human is lacking due to ethical problems, the existence of the nose-to-cerebral spinal fluid pathway has been verified in men. Furthermore, there is abundant indirect evidence for the nose-to-brain pathway as determined by the efficacy of intranasally administered neuroproteins, such as insulin, oxytocin, and vasopressin in clinical trials. Based on the solid preclinical research supporting the efficacy of intranasal NTFs, and the successful clinical application of neuroproteins (not NTFs), it is time to evaluate clinical application of NTFs in treating both acute and chronic CNS diseases.

  18. In vivo visualization of olfactory pathophysiology induced by intranasal cadmium instillation in mice

    PubMed Central

    Czarnecki, Lindsey A.; Moberly, Andrew H.; Rubinstein, Tom; Turkel, Daniel J.; Pottackal, Joseph; McGann, John P.

    2013-01-01

    Intranasal exposure to cadmium has been related to olfactory dysfunction in humans and to nasal epithelial damage and altered odorant-guided behavior in rodent models. The pathophysiology underlying these deficits has not been fully elucidated. Here we use optical imaging techniques to visualize odorant-evoked neurotransmitter release from the olfactory nerve into the brain’s olfactory bulbs in vivo in mice. Intranasal cadmium chloride instillations reduced this sensory activity by up to 91% in a dose-dependent manner. In the olfactory bulbs, afferents from the olfactory epithelium could be quantified by their expression of a genetically-encoded fluorescent marker for olfactory marker protein. At the highest dose tested, cadmium exposure reduced the density of these projections by 20%. In a behavioral psychophysical task, mice were trained to sample from an odor port and make a response when they detected an odorant against a background of room air. After intranasal cadmium exposure, mice were unable to detect the target odor. These experiments serve as proof of concept for a new approach to the study of the neural effects of inhaled toxicants. The use of in vivo functional imaging of the neuronal populations exposed to the toxicant permits the direct observation of primary pathophysiology. In this study optical imaging revealed significant reductions in odorant-evoked release from the olfactory nerve at a cadmium chloride dose two orders of magnitude less than that required to induce morphological changes in the nerve in the same animals, demonstrating that it is a more sensitive technique for assessing the consequences of intranasal neurotoxicant exposure. This approach is potentially useful in exploring the effects of any putative neurotoxicant that can be delivered intranasally. PMID:21443902

  19. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application.

    PubMed

    Lankelma, Jacqueline M; Wagemakers, Alex; Birnie, Emma; Haak, Bastiaan W; Trentelman, Jos J A; Weehuizen, Tassili A F; Ersöz, Jasmin; Roelofs, Joris J T H; Hovius, Joppe W; Wiersinga, W Joost; Bins, Adriaan D

    2017-03-21

    Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is no licensed vaccine for prevention of melioidosis. Here, we explore the use of rapid plasmid DNA vaccination against B. pseudomallei flagellin for protection against respiratory challenge. We tested three flagellin DNA vaccines with different subcellular targeting designs. C57BL/6 mice were vaccinated via skin tattoo on day 0, 3 and 6 before intranasal challenge with B. pseudomallei on day 21. Next, the most effective construct was used as single vaccination on day 0 by tattoo or intranasal formulation. Mice were sacrificed 72 hours post-challenge to assess bacterial loads, cytokine responses, inflammation and microscopic lesions. A construct encoding a cellular secretion signal resulted in the most effective protection against melioidosis via tattooing, with a 10-fold reduction in bacterial loads in lungs and distant organs compared to the empty vector. Strikingly, a single intranasal administration of the same vaccine resulted in >1000-fold lower bacterial loads and increased survival. Pro-inflammatory cytokine responses were significantly diminished and strong reductions in markers for distant organ damage were observed. A rapid vaccination scheme using flagellin DNA tattoo provides significant protection against intranasal challenge with B. pseudomallei, markedly improved by a single administration via airway mucosa. Hence intranasal vaccination with flagellin-encoding DNA may be applicable when acute mass vaccination is indicated and warrants further testing.

  20. Intranasal oxycodone self-administration in non-dependent opioid abusers.

    PubMed

    Middleton, Lisa S; Lofwall, Michelle R; Nuzzo, Paul A; Siegel, Anthony J; Walsh, Sharon L

    2012-08-01

    Oxycodone, an opioid with known abuse liability, is misused by the intranasal route. Our objective was to develop a model of intranasal oxycodone self-administration useful for assessing the relative reinforcing effects of opioids and potential pharmacotherapies for opioid use disorders. Healthy, sporadic intranasal opioid abusers (n = 8; 7 M, 1 F) completed this inpatient 2.5-week, randomized, double-blind, placebo-controlled, crossover study. Each intranasal oxycodone dose (0, 14 & 28 mg) was tested in a separate 3-day block of sessions. The first day of each block was a sample session in which the test dose was given. Two randomized progressive ratio sessions were conducted on the next 2 days: (1) subjects could work for the test dose over 7 trials (1/7th of total dose/trial), and (2) subjects could work for either a portion of the dose (1/7th) or money ($3) over 7 trials. Physiological and subjective measures were collected before and after drug administration for all sessions. Subjects never worked to self-administer placebo regardless of whether money was available. In both self-administration sessions, oxycodone self-administration was dose-dependent. Subjects worked less for drug (28 mg oxycodone) when money was available but only modestly so. Oxycodone dose-dependently increased VAS ratings of positive drug effects (e.g., "like") during sample sessions (p < .05). These reports were positively correlated with self-administration behavior (e.g., "like," r = .65). These data suggest that both procedures are sensitive for detecting the reinforcing properties of intranasal oxycodone and may be used to further explore the characteristics of opioid compounds and potential pharmacotherapies for treatment.

  1. Effects of Intranasal Oxytocin on the Interpretation and Expression of Emotions in Anorexia Nervosa.

    PubMed

    Leppanen, J; Cardi, V; Ng, K W; Paloyelis, Y; Stein, D; Tchanturia, K; Treasure, J

    2017-03-01

    Altered social-emotional functioning is considered to play an important role in the development and maintenance of anorexia nervosa (AN). Recently, there has been increasing interest in investigating the role of intranasal oxytocin in social-emotional processing. The present study aimed to investigate the effects of intranasal oxytocin on the interpretation and expression of emotions among people with AN. Thirty women with AN and 29 age-matched healthy women took part in the present study, which used a double-blind, placebo-controlled, cross-over design. The participants received a single dose of 40 IU of intranasal oxytocin in one session and a placebo spray in the other. Fifteen minutes after administration, the participants completed the Reading the Mind in the Eyes Test to assess the interpretation of complex emotions and mental states followed by a video task, which assessed expressions of facial affect when they were viewing humorous and sad film clips. The intranasal oxytocin did not significantly influence the expression or interpretation of emotions in the AN or healthy comparison groups. The AN group expressed significantly less positive emotion, spent more time looking away and reported experiencing a significantly more negative affect in response to the film clips. The finding that intranasal oxytocin had little to no effect on the interpretation or expression of emotions in either group supports the notion that the effects of oxytocin on social-emotional processing are not straightforward and may depend on individual and environmental differences, as well as the emotion being processed. Replication of these findings is necessary to explore the effect of timing on the effects of oxytocin before firm conclusions can be drawn. Nonetheless, these findings add to the steady accumulation of evidence that people with AN have reduced emotional expression and avoidance of emotionally provoking stimuli.

  2. Plasma and cerebrospinal fluid pharmacokinetics of select chemotherapeutic agents following intranasal delivery in a non-human primate model.

    PubMed

    League-Pascual, James C; Lester-McCully, Cynthia M; Shandilya, Shaefali; Ronner, Lukas; Rodgers, Louis; Cruz, Rafael; Peer, Cody J; Figg, William D; Warren, Katherine E

    2017-03-13

    The blood-brain barrier (BBB) limits entry of most chemotherapeutic agents into the CNS, resulting in inadequate exposure within CNS tumor tissue. Intranasal administration is a proposed means of delivery that can bypass the BBB, potentially resulting in more effective chemotherapeutic exposure at the tumor site. The objective of this study was to evaluate the feasibility and pharmacokinetics (plasma and CSF) of intranasal delivery using select chemotherapeutic agents in a non-human primate (NHP) model. Three chemotherapeutic agents with known differences in CNS penetration were selected for intranasal administration in a NHP model to determine proof of principle of CNS delivery, assess tolerability and feasibility, and to evaluate whether certain drug characteristics were associated with increased CNS exposure. Intravenous (IV) temozolomide (TMZ), oral (PO) valproic acid, and PO perifosine were administered to adult male rhesus macaques. The animals received a single dose of each agent systemically and intranasally in separate experiments, with each animal acting as his own control. The dose of the agents administered systemically was the human equivalent of a clinically appropriate dose, while the intranasal dose was the maximum achievable dose based on the volume limitation of 1 mL. Multiple serial paired plasma and CSF samples were collected and quantified using a validated uHPLC/tandem mass spectrometry assay after each drug administration. Pharmacokinetic parameters were estimated using non-compartmental analysis. CSF penetration was calculated from the ratio of areas under the concentration-time curves for CSF and plasma (AUCCSF:plasma). Intranasal administration was feasible and tolerable for all agents with no significant toxicities observed. For TMZ, the degrees of CSF drug penetration after intranasal and IV administration were 36 (32-57) and 22 (20-41)%, respectively. Although maximum TMZ drug concentration in the CSF (Cmax) was lower after intranasal

  3. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    PubMed

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment.

  4. Luminescence kinetics of the radiative transitions in quantum dots CdSe/ZnS in the near field of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bakanov, Aleksei G.; Toropov, Nikita A.; Vartanyan, Tigran A.

    2016-04-01

    In this paper we investigated the optical properties of a composite material consisting of a thin film of polymer doped by CdSe/ZnS quantum dots and silver nanoparticles on a transparent insulating substrate. It is found that in the presence of silver nanoparticles the quantum dots absorption is increased fivefold, the luminescence intensity is increased twelvefold while the luminescence lifetime is reduced.

  5. The effect of intranasal orexin-A (hypocretin-1) on sleep, wakefulness and attention in narcolepsy with cataplexy.

    PubMed

    Weinhold, Sara Lena; Seeck-Hirschner, Mareen; Nowak, Alexander; Hallschmid, Manfred; Göder, Robert; Baier, Paul Christian

    2014-04-01

    Narcolepsy with cataplexy is a sleep dysregulation disorder with alterations of REM sleep, i.e., sleep onset REM periods and REM sleep instability. Deficient orexin-A (hypocretin-1) signaling is assumed to be a major cause of narcolepsy with cataplexy. In this study we investigated fourteen subjects with narcolepsy with cataplexy in a within-subject, random-order crossover, placebo-controlled design. Patients received double-blinded intranasal orexin-A (435 nmol) or sterile water (placebo) in the morning. Administration was preceded by an adaptation night and followed by a modified maintenance of wakefulness test, attention testing and a second full night of polysomnographic recording. We found comparable sleep behavior during the adaptation nights between both conditions. After orexin-A administration patients had less wake-REM sleep transitions and a decreased REM sleep duration. In the subsequent night, patients showed an increased N2 duration. In the test of divided attention, patients had fewer false reactions after orexin-A administration. Our results support orexin-A to be a REM sleep stabilizing factor and provide functional signs for effects of orexin-A on sleep alterations and attention in narcolepsy with cataplexy.

  6. Exacerbation of Influenza Virus Infections in Mice by Intranasal Treatments and Implications for Evaluation of Antiviral Drugs

    PubMed Central

    von Itzstein, Mark; Bhatt, Beenu; Tarbet, E. Bart

    2012-01-01

    Compounds lacking oral activity may be delivered intranasally to treat influenza virus infections in mice. However, intranasal treatments greatly enhance the virulence of such virus infections. This can be partially compensated for by giving reduced virus challenge doses. These can be 100- to 1,000-fold lower than infections without such treatment and still cause equivalent mortality. We found that intranasal liquid treatments facilitate virus production (probably through enhanced virus spread) and that lung pneumonia was delayed by only 2 days relative to a 1,000-fold higher virus challenge dose not accompanied by intranasal treatments. In one study, zanamivir was 90 to 100% effective at 10 mg/kg/day by oral, intraperitoneal, and intramuscular routes against influenza A/California/04/2009 (H1N1) virus in mice. However, the same compound administered intranasally at 20 mg/kg/day for 5 days gave no protection from death although the time to death was significantly delayed. A related compound, Neu5Ac2en (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), was ineffective at 100 mg/kg/day. Intranasal zanamivir and Neu5Ac2en were 70 to 100% protective against influenza A/NWS/33 (H1N1) virus infections at 0.1 to 10 and 30 to 100 mg/kg/day, respectively. Somewhat more difficult to treat was A/Victoria/3/75 virus that required 10 mg/kg/day of zanamivir to achieve full protection. These results illustrate that treatment of influenza virus infections by the intranasal route requires consideration of both virus challenge dose and virus strain in order to avoid compromising the effectiveness of a potentially useful antiviral agent. In addition, the intranasal treatments were shown to facilitate virus replication and promote lung pathology. PMID:23027194

  7. The effect of intranasal oxytocin on perceiving and understanding emotion on the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT).

    PubMed

    Cardoso, Christopher; Ellenbogen, Mark A; Linnen, Anne-Marie

    2014-02-01

    Evidence suggests that intranasal oxytocin enhances the perception of emotion in facial expressions during standard emotion identification tasks. However, it is not clear whether this effect is desirable in people who do not show deficits in emotion perception. That is, a heightened perception of emotion in faces could lead to "oversensitivity" to the emotions of others in nonclinical participants. The goal of this study was to assess the effects of intranasal oxytocin on emotion perception using ecologically valid social and nonsocial visual tasks. Eighty-two participants (42 women) self-administered a 24 IU dose of intranasal oxytocin or a placebo in a double-blind, randomized experiment and then completed the perceiving and understanding emotion components of the Mayer-Salovey-Caruso Emotional Intelligence Test. In this test, emotion identification accuracy is based on agreement with a normative sample. As expected, participants administered intranasal oxytocin rated emotion in facial stimuli as expressing greater emotional intensity than those given a placebo. Consequently, accurate identification of emotion in faces, based on agreement with a normative sample, was impaired in the oxytocin group relative to placebo. No such effect was observed for tests using nonsocial stimuli. The results are consistent with the hypothesis that intranasal oxytocin enhances the salience of social stimuli in the environment, but not nonsocial stimuli. The present findings support a growing literature showing that the effects of intranasal oxytocin on social cognition can be negative under certain circumstances, in this case promoting "oversensitivity" to emotion in faces in healthy people.

  8. Visualization of murine intranasal dosing efficiency using luminescent Francisella tularensis: effect of instillation volume and form of anesthesia.

    PubMed

    Miller, Mark A; Stabenow, Jennifer M; Parvathareddy, Jyothi; Wodowski, Andrew J; Fabrizio, Thomas P; Bina, Xiaowen R; Zalduondo, Lillian; Bina, James E

    2012-01-01

    Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.

  9. Visualization of Murine Intranasal Dosing Efficiency Using Luminescent Francisella tularensis: Effect of Instillation Volume and Form of Anesthesia

    PubMed Central

    Miller, Mark A.; Stabenow, Jennifer M.; Parvathareddy, Jyothi; Wodowski, Andrew J.; Fabrizio, Thomas P.; Bina, Xiaowen R.; Zalduondo, Lillian; Bina, James E.

    2012-01-01

    Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique. PMID:22384012

  10. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice

    PubMed Central

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Martinez, Ana; Faghihi, Mohammad A.; Jope, Richard S.; Beurel, Eleonore

    2017-01-01

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA– or HDAC4 siRNA–induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1–/– mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets. PMID:28352664

  11. Salivary Oxytocin Concentrations in Males following Intranasal Administration of Oxytocin: A Double-Blind, Cross-Over Study

    PubMed Central

    Daughters, Katie; Manstead, Antony S. R.; Hubble, Kelly; Rees, Aled; Thapar, Anita; van Goozen, Stephanie H. M.

    2015-01-01

    The use of intranasal oxytocin (OT) in research has become increasingly important over the past decade. Although researchers have acknowledged a need for further investigation of the physiological effects of intranasal administration, few studies have actually done so. In the present double-blind cross-over study we investigated the longevity of a single 24 IU dose of intranasal OT measured in saliva in 40 healthy adult males. Salivary OT concentrations were significantly higher in the OT condition, compared to placebo. This significant difference lasted until the end of testing, approximately 108 minutes after administration, and peaked at 30 minutes. Results showed significant individual differences in response to intranasal OT administration. To our knowledge this is the largest and first all-male within-subjects design study to demonstrate the impact of intranasal OT on salivary OT concentrations. The results are consistent with previous research in suggesting that salivary OT is a valid matrix for OT measurement. The results also suggest that the post-administration ‘wait-time’ prior to starting experimental tasks could be reduced to 30 minutes, from the 45 minutes typically used, thereby enabling testing during peak OT concentrations. Further research is needed to ascertain whether OT concentrations after intranasal administration follow similar patterns in females, and different age groups. PMID:26669935

  12. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    PubMed

    Sun, Bao-liang; He, Mei-qing; Han, Xiang-yu; Sun, Jing-yi; Yang, Ming-feng; Yuan, Hui; Fan, Cun-dong; Zhang, Shuai; Mao, Lei-lei; Li, Da-wei; Zhang, Zong-yong; Zheng, Cheng-bi; Yang, Xiao-yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  13. Co-operative transitions of responsive-polymer coated gold nanoparticles; precision tuning and direct evidence for co-operative aggregation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6tb01336h Click here for additional data file.

    PubMed Central

    Won, Sangho; Phillips, Daniel J.; Walker, Marc

    2016-01-01

    Responsive polymers and polymer-coated nanoparticles have many potential bio-applications with the crucial parameter being the exact temperature where the transition occurs. Chemical modification of hydrophobic/hydrophilic or ligand binding sites has been widely explored as a tool for controlling this transition, but requires the synthesis of many different components to achieve precise control. This study reports an extensive investigation into the use of blending (i.e. mixing) as a powerful tool to modulate the transition temperature of poly(N-isopropylacrylamide) (PNIPAM) coated gold nanoparticles. By simply mixing two nanoparticles of different compositions, precise control over the transition temperature can be imposed. This was shown to be flexible to all possible mixing parameters (different polymers on different particles, different polymers on same particles and different sized particles with identical/different polymers). Evidence of the co-operative aggregation of differently sized nanoparticles (with different cloud points) is shown using transmission electron microscopy; particles with higher cloud points aggregate with those with lower cloud points with homo-aggregates not seen, demonstrating the co-operative behaviour. These interactions, and the opportunities for transition tuning will have implications in the rational design of responsive biomaterials. PMID:27746916

  14. Acute unilateral visual loss due to a single intranasal methamphetamine abuse.

    PubMed

    Wijaya, J; Salu, P; Leblanc, A; Bervoets, S

    1999-01-01

    An otherwise healthy 35 year old male with insulin-dependent diabetes mellitus (IDDM) presented himself three days after a single intranasal methamphetamine abusus. Directly upon awakening the day after the recreational use of this drug, he discovered an acute and severe visual loss of his right eye. This unilateral loss of vision was permanent and eventually lead to a pale and atrophic optic nerve head. The characteristics of this visual loss, together with the aspect of the optic nerve head was very similar to the classical non-arteritic ischemic optic neuropathy (NAION). We suggest a direct ischemic episode to the short posterior ciliary arteries due to this single intranasal abuse of methamphetamine as the underlying pathogenesis of this acute and permanent visual loss.

  15. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer.

    PubMed

    Katare, Yogesh K; Daya, Ritesh P; Sookram Gray, Christal; Luckham, Roger E; Bhandari, Jayant; Chauhan, Abhay S; Mishra, Ram K

    2015-09-08

    Delivery of therapeutics to the brain is challenging because many organic molecules have inadequate aqueous solubility and limited bioavailability. We investigated the efficiency of a dendrimer-based formulation of a poorly aqueous soluble drug, haloperidol, in targeting the brain via intranasal and intraperitoneal administration. Aqueous solubility of haloperidol was increased by more than 100-fold in the developed formulation. Formulation was assessed via different routes of administration for behavioral (cataleptic and locomotor) responses, and for haloperidol distribution in plasma and brain tissues. Dendrimer-based formulation showed significantly higher distribution of haloperidol in the brain and plasma compared to a control formulation of haloperidol administered via intraperitoneal injection. Additionally, 6.7 times lower doses of the dendrimer-haloperidol formulation administered via the intranasal route produced behavioral responses that were comparable to those induced by haloperidol formulations administered via intraperitoneal injection. This study demonstrates the potential of dendrimer in improving the delivery of water insoluble drugs to brain.

  16. Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response.

    PubMed

    Zaman, Mehfuz; Simerska, Pavla; Toth, Istvan

    2010-04-01

    The nasal route as a site of vaccine delivery for both local and systemic effect is currently of considerable interest. The administration of vaccines to mucosal surfaces such as the nasopharynx associated lymphoid tissues confers many advantages since the nasal mucosa is a primary site through which most inhaled antigens are encountered. However, the success of intranasally delivered mucosal vaccines is limited by lack of effective vaccine formulations or delivery systems suitable for use in humans. This review provides a brief overview of the mucosal immune system at the nasal surface, enhancement techniques for induction of mucosal immune response after intranasal administration of particulate systems and an explanation of the inherent properties of polyacrylate polymer-based particulate systems that may facilitate mucosal immune responses.

  17. Oral chloral hydrate vs. intranasal midazolam for sedation during computerized tomography.

    PubMed

    Fallah, Razieh; Nakhaei, Mohammad Hosein Ataee; Behdad, Shekofah; Moghaddam, Reza Nafisi; Shamszadeh, Ali

    2013-02-01

    We conducted this single blind randomized clinical trial to compare the efficacy and safety of oral chloral hydrate and intranasal midazolam for induction of sedation for computerized tomography scan of brain in children. Participants aged 1-10 years (n=60) were randomized to receive 100 mg/kg chloral hydrate orally with intra nasal normal saline OR intranasal midazolam 0.2 mg/kg with oral normal saline. Adequate sedation (Ramsay sedation score of four) was obtained and CT scan completed successfully in 76.7% of chloral hydrate group and in 40% of midazolam group (P=0.004). No significant difference was seen for side effects frequency between the two drugs (10% in chloral hydrate, 3.3% in midazolam group; P=0.34). We conclude that oral chloral hydrate can be considered as a safe and effective drug for sedation in children undergoing CT scan of brain.

  18. Surgical and Localized Radiation Therapy for an Intranasal Adenocarcinoma in a Rabbit

    PubMed Central

    NAKATA, Makoto; MIWA, Yasutsugu; TSUBOI, Masaya; UCHIDA, Kazuyuki

    2014-01-01

    An 8-year-old spayed female Netherland Dwarf rabbit presented with a two-month history of dyspnea and snoring. A computed tomography (CT) scan of the head revealed mass lesions in the right nasal cavity. Surgical exenteration of the lesions was performed, and the histopathological diagnosis was an intranasal adenocarcinoma. On the basis of this diagnosis, radiotherapy was planned and consisted of eight fractions of 6 Gy administered once a week. After the completion of radiation therapy, the soft tissue density in the right nasal cavity, as detected by CT, significantly decreased. The prognosis has remained good for over 3 years after treatment. This paper is the first to describe the clinical and pathological features of an intranasal tumor in a rabbit. PMID:25649953

  19. Intranasal Insulin Prevents Anesthesia-Induced Spatial Learning and Memory Deficit in Mice

    PubMed Central

    Zhang, Yongli; Dai, Chun-ling; Chen, Yanxing; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2016-01-01

    Elderly individuals are at increased risk of cognitive decline after anesthesia. General anesthesia is believed to be a risk factor for Alzheimer’s disease (AD). At present, there is no treatment that can prevent anesthesia-induced postoperative cognitive dysfunction. Here, we treated mice with daily intranasal administration of insulin (1.75 U/day) for one week before anesthesia induced by intraperitoneal injection of propofol and maintained by inhalation of sevoflurane for 1 hr. We found that the insulin treatment prevented anesthesia-induced deficit in spatial learning and memory, as measured by Morris water maze task during 1–5 days after exposure to anesthesia. The insulin treatment also attenuated anesthesia-induced hyperphosphorylation of tau and promoted the expression of synaptic proteins and insulin signaling in the brain. These findings show a therapeutic potential of intranasal administration of insulin before surgery to reduce the risk of anesthesia-induced cognitive decline and AD. PMID:26879001

  20. Preanesthetic medication in children: A comparison of intranasal dexmedetomidine versus oral midazolam

    PubMed Central

    Ghali, Ashraf M.; Mahfouz, Abdul Kader; Al-Bahrani, Maher

    2011-01-01

    Background: Relieving preoperative anxiety is an important concern for the pediatric anesthesiologist. Midazolam has become the most frequently used premedication in children. However, new drugs such as the α2 -agonists have emerged as alternatives for premedication in pediatric anesthesia. Methods: One hundred and twenty children scheduled for adenotonsillectomy were enrolled in this prospective, double-blind, randomized study. The children were divided into two equal groups to receive either intranasal dexmedetomidine 1 μg/kg (group D), or oral midazolam 0.5 mg/kg (group M) at approximately 60 and 30 mins, respectively, before induction of anesthesia. Preoperative sedative effects, anxiety level changes, and the ease of child-parent separation were assessed. Also, the recovery profile and postoperative analgesic properties were assessed. Results: Children premedicated with intranasal dexmedetomidine achieved significantly lower sedation levels (P=0.042), lower anxiety levels (P=0.036), and easier child-parent separation (P=0.029) than children who received oral midazolam at the time of transferring the patients to the operating room. Postoperatively, the time to achieve an Aldrete score of 10 was similar in both the groups (P=0.067). Also, the number of children who required fentanyl as rescue analgesia medication was significantly less (P=0.027) in the dexmedetomidine group. Conclusion: Intranasal dexmedetomidine appears to be a better choice for preanesthetic medication than oral midazolam in our study. Dexmedetomidine was associated with lower sedation levels, lower anxiety levels, and easier child-parent separation at the time of transferring patients to the operating room than children who received oral midazolam. Moreover, intranasal dexmedetomidine has better analgesic property than oral midazolam with discharge time from postanesthetic care unit similar to oral midazolam. PMID:22144926

  1. Oxytocin plasma concentrations after single intranasal oxytocin administration - a study in healthy men.

    PubMed

    Gossen, A; Hahn, A; Westphal, L; Prinz, S; Schultz, R T; Gründer, G; Spreckelmeyer, K N

    2012-10-01

    The neuropeptide oxytocin has become a subject of great interest in studies investigating human social cognition. Single intranasal administration of the hormone has been reported to have positive behavioral effects, such as increasing trust or facilitating social approach, 45-80 min after administration. However, little is still known about the long-term pharmacokinetics of oxytocin nasal spray application in humans. This study addressed the question how long oxytocin plasma levels remain elevated following nasal spray administration. Another goal was to examine the influence of oxytocin administration on endogenous steroid hormones since such alterations might modulate social behavior via an indirect way. Eight healthy Caucasian men were challenged with a single intranasal application of 26 international units of oxytocin. Changes in oxytocin blood plasma levels, as well as steroid hormone levels of progesterone, testosterone and estradiol were assessed at 5 consecutive time points over a period of 3.5 h (-5, +30, +90, +150, +210 min relative to oxytocin administration). Results gave evidence for a substantial rise of oxytocin plasma levels 30 min after intranasal administration, observed in 7 of 8 participants. Group mean oxytocin plasma level was found to have returned to baseline already 90 min post administration, though in some individuals the plasma levels was still elevated relative to sampling at post 150 min. Steroid hormone analyses yielded a slight augmentation of endogenous testosterone levels 210 min after oxytocin administration. Our data confirms previous findings that oxytocin administered as a nasal spray enters the blood circulation, elevating oxytocin plasma levels for a limited time. Our findings suggest that this time window differs between individuals, but that, for the used dose, it does not extend beyond 150 min post administration. The data further provides preliminary evidence that intranasal oxytocin has an enhancing effect on

  2. Intranasal oxytocin administration is associated with enhanced endogenous pain inhibition and reduced negative mood states

    PubMed Central

    Goodin, Burel R.; Anderson, Austen J. B.; Freeman, Emily L.; Bulls, Hailey W.; Robbins, Meredith T.; Ness, Timothy J.

    2014-01-01

    Objectives This study examined whether the administration of intranasal oxytocin was associated with pain sensitivity, endogenous pain inhibitory capacity, and negative mood states. Methods A total of 30 pain-free, young adults each completed three laboratory sessions on consecutive days. The first session (baseline) assessed ischemic pain sensitivity, endogenous pain inhibition via conditioned pain modulation (CPM), and negative mood using the Profile of Mood States (POMS). CPM was tested on the dominant forearm and ipsilateral masseter muscle using algometry (test stimulus) and the cold pressor task (conditioning stimulus; non-dominant hand). For the second and third sessions, participants initially completed the State-Trait Anxiety Inventory (STAI) and then self-administered a single (40IU/1mL) dose of intranasal oxytocin or placebo in a randomized counter-balanced order. Thirty minutes post-administration, participants again completed the STAI and repeated assessments of ischemic pain sensitivity and CPM followed by the POMS. Results Findings demonstrated that ischemic pain sensitivity did not significantly differ across the three study sessions. CPM at the masseter, but not the forearm, was significantly greater following administration of oxytocin compared to placebo. Negative mood was also significantly lower following administration of oxytocin compared to placebo. Similarly, anxiety significantly decreased following administration of oxytocin but not placebo. Discussion This study incorporated a placebo-controlled, double-blind, within-subjects crossover design with randomized administration of intranasal oxytocin and placebo. The data suggest that the administration of intranasal oxytocin may augment endogenous pain inhibitory capacity and reduce negative mood states including anxiety. PMID:25370147

  3. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration.

    PubMed

    Gartziandia, Oihane; Herran, Enara; Pedraz, Jose Luis; Carro, Eva; Igartua, Manoli; Hernandez, Rosa Maria

    2015-10-01

    The remarkable increase in the prevalence of neurodegenerative diseases has become a serious public health problem. Considering the lack of effective treatments to address these diseases and the difficulties in accessing the brain due to the blood-brain barrier (BBB), to attain a successful strategy to improve drug delivery to the brain, the administration route becomes a point of interest. The intranasal route provides a non-invasive method to bypass the BBB. Moreover, the development of new technologies for the protection and delivery of peptides is an interesting approach to consider. Thus, in this work, a suitable chitosan coated nanostructured lipid carrier (CS-NLC) formulation with the capacity to reach the brain after being intranasally administered was successfully developed and optimized. The optimal formulation displayed a particle size of 114 nm with a positive surface charge of +28 mV. The in vitro assays demonstrated the biocompatibility of the nanocarrier and its cellular uptake by 16HBE14o- cells. Furthermore, no haemagglutination or haemolysis processes were observed when the particles were incubated with erythrocytes, and no toxicity signals appeared in the nasal mucosa of mice after the administration of CS-NLCs. Finally, the biodistribution study of CS-NLC-DiR demonstrated an efficient brain delivery of the particles after intranasal administration. In conclusion, CS-NLC can be considered to be a safe and effective nanocarrier for nose-to-brain drug delivery; however, to obtain a higher concentration of the drug in the brain following intranasal administration, further modifications are warranted in the CS-NLC formulation.

  4. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting.

    PubMed

    Mahajan, Hitendra S; Mahajan, Milind S; Nerkar, Pankaj P; Agrawal, Anshuman

    2014-03-01

    The central nervous system (CNS) is an immunological privileged sanctuary site-providing reservoir for HIV-1 virus. Current anti-HIV drugs, although effective in reducing plasma viral levels, cannot eradicate the virus completely from the body. The low permeability of anti-HIV drugs across the blood-brain barrier (BBB) leads to insufficient delivery. Therefore, developing a novel approaches enhancing the CNS delivery of anti-HIV drugs are required for the treatment of neuro-AIDS. The aim of this study was to develop intranasal nanoemulsion (NE) for enhanced bioavailability and CNS targeting of saquinavir mesylate (SQVM). SQVM is a protease inhibitor which is a poorly soluble drug widely used as antiretroviral drug, with oral bioavailability is about 4%. The spontaneous emulsification method was used to prepare drug-loaded o/w nanoemulsion, which was characterized by droplet size, zeta potential, pH, drug content. Moreover, ex-vivo permeation studies were performed using sheep nasal mucosa. The optimized NE showed a significant increase in drug permeation rate compared to the plain drug suspension (PDS). Cilia toxicity study on sheep nasal mucosa showed no significant adverse effect of SQVM-loaded NE. Results of in vivo biodistribution studies show higher drug concentration in brain after intranasal administration of NE than intravenous delivered PDS. The higher percentage of drug targeting efficiency (% DTE) and nose-to-brain drug direct transport percentage (% DTP) for optimized NE indicated effective CNS targeting of SQVM via intranasal route. Gamma scintigraphy imaging of the rat brain conclusively demonstrated transport of drug in the CNS at larger extent after intranasal administration as NE.

  5. The reinforcing and subjective effects of intravenous and intranasal buprenorphine in heroin users.

    PubMed

    Jones, Jermaine D; Madera, Gabriela; Comer, Sandra D

    2014-07-01

    Abuse of buprenorphine (BUP) by the intravenous (IV) route has been documented in several studies, and reports of intranasal (IN) abuse are increasing. However, no studies have directly compared the effects of BUP when it is administered intranasally and intravenously. The present secondary analysis used data from two separate studies to compare the reinforcing and subjective effects of IV and IN buprenorphine. One study evaluated IV buprenorphine (N=13) and the other evaluated IN buprenorphine (N=12). Participants were maintained on 2 mg sublingual (SL) BUP and tested with each intranasal or intravenous buprenorphine test dose (0 mg, 2 mg, 4 mg, 8 mg, and 16 mg). During morning laboratory sessions, participants received money (US $20) and sample doses of IN or IV BUP, and then completed subjective effects questionnaires. Later that day, they completed a self-administration task to receive 10% portions of the drug and/or money they previously sampled. In general, positive subjective ratings for both IV and IN BUP were significantly greater than placebo, with IV BUP having a greater effect than IN BUP. All active BUP doses (IV and IN) maintained significantly higher progressive ratio breakpoint values than placebo, but breakpoint values for IV BUP were greater than for IN BUP. Buprenorphine is an effective maintenance treatment for opioid dependence, valued for its ability to reduce the positive subjective effects of other opioids. Nevertheless, the present data demonstrate that in participants maintained on a low dose of SL BUP, the medication itself has abuse liability when used intravenously or intranasally.

  6. Chemoprevention of lung tumorigenesis by intranasally administered diindolylmethane in A/J mice

    PubMed Central

    Kassie, Fekadu

    2013-01-01

    The main reasons for the failure of most chemopreventive agents during clinical trials are poor in vivo bioavailability and dose-limiting side effects. One potential approach to surmount these problems in lung cancer chemoprevention trials could be direct delivery of agents into the pulmonary tissue. In this study, we assessed the efficacy of intranasally delivered bio-response diindolylmethane (BRD) against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in mice. Mice treated with NNK (two doses of 50mg/kg at an interval of a week, intraperitoneal) developed 16.3±2.9 lung tumors per mouse. Post-carcinogen administration of BRD, via intranasal instillation, for 24 weeks, twice a week, at a dose of 2mg per mouse (0.6mg pure diindolylmethane per mouse) reduced the lung tumor multiplicity to 4.6±2.2 tumors per mouse (72% reduction). Likewise, large tumors (>1mm) were almost completely abolished and multiplicities of tumors with a size of 0.5–1mm were reduced by 74%. Tumor volume was also reduced by 82%. Further studies using an in vitro model of lung tumorigenesis showed that BRD exhibited pronounced antiproliferative and apoptotic effects in premalignant and malignant bronchial cells but only minimal effects in parental immortalized cells through, at least in part, suppression of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. These results showed the potent lung tumor inhibitory activities of low doses of BRD given via intranasal instillation and, therefore, intranasal delivery of BRD holds a great promise for lung cancer chemoprevention in subjects at high risk to develop lung cancer. PMID:23239747

  7. Intranasal Oxytocin for the Treatment of Pain Associated with Interstitial Cystitis

    DTIC Science & Technology

    2013-09-01

    peripheral oxytocin has analgesic effects in other types of nociception making it a useful agent for chronic pain syndromes other than IC. Because the... Pain Associated with Interstitial Cystitis PRINCIPAL INVESTIGATOR: Meredith T. Robbins, Ph.D...Intranasal Oxytocin for the Treatment of Pain Associated with Interstitial Cystitis 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0452 5c

  8. Intranasal Oxytocin for the Treatment of Pain Associated with Interstitial Cystitis

    DTIC Science & Technology

    2014-09-01

    nociception making it a useful agent for chronic pain syndromes other than IC. Because the causes of IC are unknown, current treatments are aimed...Treatment of Pain Associated with Interstitial Cystitis PRINCIPAL INVESTIGATOR: Meredith T. Robbins, Ph.D. CONTRACTING ORGANIZATION...Annual 3. DATES COVERED 1 Sept 2013 - 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Intranasal Oxytocin for the Treatment of Pain Associated with

  9. Mouse Model of Cat Allergic Rhinitis and Intranasal Liposome-Adjuvanted Refined Fel d 1 Vaccine

    PubMed Central

    Tasaniyananda, Natt; Chaisri, Urai; Tungtrongchitr, Anchalee; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-01-01

    Cats (Felis domesticus) are rich source of airborne allergens that prevailed in the environment and sensitized a number of people to allergy. In this study, a mouse model of allergic rhinitis caused by the cat allergens was developed for the first time and the model was used for testing therapeutic efficacy of a novel intranasal liposome-entrapped vaccines made of native Fel d 1 (major cat allergen) in comparison with the vaccine made of crude cat hair extract (cCE). BALB/c mice were sensitized with cCE mixed with alum intraperitoneally and intranasally. The allergic mice were treated with eight doses of either liposome (L)-entrapped native Fel d 1 (L-nFD1), L-cCE), or placebo on every alternate day. Vaccine efficacy evaluation was performed one day after provoking the treated mice with aerosolic cCE. All allergenized mice developed histological features of allergic rhinitis with rises of serum specific-IgE and Th2 cytokine gene expression. Serum IgE and intranasal mucus production of allergic mice reduced significantly after vaccination in comparison with the placebo mice. The vaccines also caused a shift of the Th2 response (reduction of Th2 cytokine expressions) towards the non-pathogenic responses: Th1 (down-regulation of the Th1 suppressive cytokine gene, IL-35) and Treg (up-regulation of IL-10 and TGF-β). In conclusions, a mouse model of allergic rhinitis to cat allergens was successfully developed. The intranasal, liposome-adjuvanted vaccines, especially the refined single allergen formulation, assuaged the allergic manifestations in the modeled mice. The prototype vaccine is worthwhile testing further for clinical use in the pet allergic patients. PMID:26954254

  10. Intranasal delivery of Natesto® testosterone gel and its effects on doping markers.

    PubMed

    Miller, Geoffrey D; Nair, Vinod; Morrison, M Scott; Summers, Maggie; Willick, Stuart E; Eichner, Daniel

    2016-11-01

    The laboratory profile of intranasal testosterone gel has not been previously reported from an anti-doping perspective. Because intranasal testosterone gel is newly available as a commercial product, we sought to examine the laboratory parameters following administration of this formulation, with particular attention to anti-doping guidelines. Five healthy and active male subjects were administered testosterone intranasal gel three times daily for four weeks, using a pattern of five consecutive days on, two days off. Urine was collected after each five-day round of drug administration and analyzed using a full steroid screen and isotope ratio mass spectrometry (IRMS). Windows of detection for elevated testosterone/epitestosterone (T/E) and other steroid ratios, World Anti-Doping Agency (WADA) athlete biological passport (ABP) findings, and IRMS results were analyzed in this study. In the 0-24 h window post-administration, 70% of samples were flagged with a suspicious steroid profile and 85% were flagged as atypical passport findings according to the WADA ABP steroid module. In the 24-48 h window, 0% of samples displayed suspicious steroid profiles while 40% resulted in atypical passport findings. IRMS testing confirmed the presence of exogenous testosterone in 90% and 40% of samples in the 0-24 h and 24-48 h windows post-administration, respectively. Additionally, IRMS data were analyzed to determine commonalities in the population changes in δ(13) C values of testosterone, androsterone, etiocholanolone, 5αAdiol, and 5βAdiol. Though no discernible metabolic trend of the route of administration was identified, we discovered that intranasal gel testosterone is detectable using conventional anti-doping tests. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Biocompatible nanoparticles and biopolyelectrolytes

    NASA Astrophysics Data System (ADS)

    Zribi, Olena

    The research presented in this manuscript encompasses a merger of two research directions: a study of aqueous nanoparticle colloids and a study of biological polyelectrolytes. The majority of biomedical applications of nanoparticles require stable aqueous colloids of nanoparticles as a starting point. A new one-step method of preparation of aqueous solutions of ultra-fine ferroelectric barium titanate nanoparticles was developed and generalized to the preparation of stable aqueous colloids of semiconductor nanoparticles. This high-energy ball milling technique is low cost, environmentally friendly, and allows for control of nanoparticle size by changing milling time. Aqueous colloids of BaTiO3 nanoparticles are stable over time, maintain ferroelectricity and can be used as second harmonic generating nanoprobes for biomedical imaging. Biopolyelectrolytes exhibit a variety of novel liquid-crystalline phases in aqueous solutions where their electrolytic nature is a driving force behind phase formation. We study medically relevant mixtures of F-actin, DNA and oppositely charged ions (such as multivalent salts and antibiotic drugs) and map out phase diagrams and laws that govern phase transitions. We combine these research directions in studies of the condensation behavior in aqueous solutions of biocompatible nanoparticles and biopolyelectrolytes.

  12. [Targeting the brain through the nose. Effects of intranasally administered insulin].

    PubMed

    Brünner, Y F; Benedict, C; Freiherr, J

    2013-08-01

    The assumption that the human brain is an insulin-independent organ was disproved with the discovery of insulin receptors in the central nervous system in the year 1978. Evidence has been provided for a high density of insulin receptors in brain regions responsible for cognitive memory processes (hippocampus) and for the regulation of appetite (hypothalamus). Accordingly, in animal studies an increased insulin level in the central nervous system leads to an improvement of hippocampal memory function and a decrease of food intake. Similar results were obtained in humans using the method of intranasal administration of insulin. Intranasal insulin reaches the brain and the cerebrospinal fluid via the olfactory epithelium and olfactory nerve fiber bundles leading through the lamina cribrosa to the olfactory bulb. Thus, this method renders the investigation of specific insulin effects in humans possible. The therapeutic potential of an intranasal insulin administration for the treatment of diseases for which an imbalance of the central nervous insulin metabolism is discussed (e.g. Alzheimer's disease, diabetes mellitus and obesity) can only be estimated with the help of further clinical studies.

  13. Midazolam Premedication in Children: A Pilot Study Comparing Intramuscular and Intranasal Administration

    PubMed Central

    Lam, Christy; Udin, Richard D; Malamed, Stanley F; Good, David L; Forrest, Jane L

    2005-01-01

    The purpose of this study was to compare the effectiveness of intramuscular and intranasal midazolam used as a premedication before intravenous conscious sedation. Twenty-three children who were scheduled to receive dental treatment under intravenous sedation participated. The patients ranged in age from 2 to 9 years (mean age, 5.13 years) and were randomly assigned to receive a dose of 0.2 mg/kg of midazolam premedication via either intramuscular or intranasal administration. All patients received 50% nitrous oxide and 50% oxygen inhalation sedation and local anesthetic (0.2 mL of 4% prilocaine hydrochloride) before venipuncture. The sedation level, movement, and crying were evaluated at the following time points: 10 minutes after drug administration and at the times of parental separation, passive papoose board restraint, nitrous oxide nasal hood placement, local anesthetic administration, and initial venipuncture attempt. Mean ratings for the behavioral parameters of sedation level, degree of movement, and degree of crying were consistently higher but not significant in the intramuscular midazolam group at all 6 assessment points. Intramuscular midazolam was found to be statistically more effective in providing a better sedation level and less movement at the time of venipuncture than intranasal administration. Our findings indicate a tendency for intramuscular midazolam to be more effective as a premedication before intravenous sedation. PMID:16048152

  14. Midazolam premedication in children: a pilot study comparing intramuscular and intranasal administration.

    PubMed

    Lam, Christy; Udin, Richard D; Malamed, Stanley F; Good, David L; Forrest, Jane L

    2005-01-01

    The purpose of this study was to compare the effectiveness of intramuscular and intranasal midazolam used as a premedication before intravenous conscious sedation. Twenty-three children who were scheduled to receive dental treatment under intravenous sedation participated. The patients ranged in age from 2 to 9 years (mean age, 5.13 years) and were randomly assigned to receive a dose of 0.2 mg/kg of midazolam premedication via either intramuscular or intranasal administration. All patients received 50% nitrous oxide and 50% oxygen inhalation sedation and local anesthetic (0.2 mL of 4% prilocaine hydrochloride) before venipuncture. The sedation level, movement, and crying were evaluated at the following time points: 10 minutes after drug administration and at the times of parental separation, passive papoose board restraint, nitrous oxide nasal hood placement, local anesthetic administration, and initial venipuncture attempt. Mean ratings for the behavioral parameters of sedation level, degree of movement, and degree of crying were consistently higher but not significant in the intramuscular midazolam group at all 6 assessment points. Intramuscular midazolam was found to be statistically more effective in providing a better sedation level and less movement at the time of venipuncture than intranasal administration. Our findings indicate a tendency for intramuscular midazolam to be more effective as a premedication before intravenous sedation.

  15. Elevated Salivary Levels of Oxytocin Persist More than 7 h after Intranasal Administration.

    PubMed

    van Ijzendoorn, Marinus H; Bhandari, Ritu; van der Veen, Rixt; Grewen, Karen M; Bakermans-Kranenburg, Marian J

    2012-01-01

    We addressed the question how long salivary oxytocin levels remain elevated after intranasal administration, and whether it makes a difference when 16 or 24 IU of oxytocin administration is used. Oxytocin levels were measured in saliva samples collected from 46 female participants right before intranasal administration (at 9:30 a.m.) of 16 IU (n = 18) or 24 IU (n = 10) of oxytocin, or a placebo (n = 18), and each hour after administration, for 7 h in total. Oxytocin levels did not differ among conditions before use of the nasal spray. Salivary oxytocin levels in the placebo group showed high stability across the day. After oxytocin administration oxytocin levels markedly increased, they peaked around 1 h after administration, and were still significantly elevated 7 h after administration. The amount of oxytocin (16 or 24 IU) did not make a difference for oxytocin levels. The increase of oxytocin levels for at least 7 h shows how effective intranasal administration of oxytocin is. Our findings may raise ethical questions about potentially persisting behavioral effects after participants have left the lab setting. More research into the long-term neurological and behavioral effects of sniffs of oxytocin is urgently needed.

  16. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules.

    PubMed

    Fortuna, Ana; Alves, Gilberto; Serralheiro, Ana; Sousa, Joana; Falcão, Amílcar

    2014-09-01

    As a non-invasive route, intranasal administration offers patient comfort and compliance which are hurdled in parenteral drug therapy. In addition, the current recognition that the high permeability and vascularization of nasal mucosa coupled to the avoidance of the first-pass elimination and/or gastrointestinal decomposition ensure higher systemic drug absorption than oral route has contributed to the growing interest for intranasal delivery of drugs that require considerable systemic exposure to exert their therapeutic actions (systemic-acting drugs). Nevertheless, several features may hamper drug absorption through the nasal mucosa, particularly the drug molecular weight and intrinsic permeability, and, therefore, several strategies have been employed to improve it, propelling a constant challenge during nasal drug (formulation) development. This review will firstly provide an anatomical, histological and mechanistic overview of drug systemic absorption after nasal administration and the relevant aspects of the therapeutic interest and limitations of the intranasal systemic delivery. The current studies regarding the nasal application of systemic-acting small drugs (analgesic drugs, cardiovascular drugs and antiviral drugs) and biomacromolecular drugs (peptide/protein drugs and vaccines) will also be outlined, addressing drug pharmacokinetics and pharmacodynamic improvements.

  17. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid.

    PubMed

    Shinde, Rajshree L; Bharkad, Gopal P; Devarajan, Padma V

    2015-10-01

    Intranasal Microemulsions (MEs) for nose to brain delivery of a novel combination of Albendazole sulfoxide (ABZ-SO) and Curcumin (CUR) for Neurocysticercosis (NCC), a brain infection are reported. MEs prepared by simple solution exhibited a globule size <20nm, negative zeta potential and good stability. The docosahexaenoic acid (DHA) ME revealed high and rapid ex vivo permeation of drugs through sheep nasal mucosa. Intranasal DHA ME resulted in high brain concentrations and 10.76 (ABZ-SO) and 3.24 (CUR) fold enhancement in brain area-under-the-curve (AUC) compared to intravenous DHA MEs at the same dose. Direct nose to brain transport (DTP) of >95% was seen for both drugs. High drug targeting efficiency (DTE) to the brain compared to Capmul ME and drug solution (P<0.05) suggested the role of DHA in aiding nose to brain delivery. Histopathology study confirmed no significant changes. High efficacy of ABZ-SO: CUR (100:10ng/mL) DHA ME in vitro on Taenia solium cysts was confirmed by complete ALP inhibition and disintegration of cysts at 96h. Considering that the brain concentration at 24h was 1400±160.1ng/g (ABZ-SO) and 120±35.2ng/g (CUR), the in vitro efficacy seen at a 10 fold lower concentration of the drugs strongly supports the assumption of clinical efficacy. The intranasal DHA ME is a promising delivery system for targeted nose to brain delivery.

  18. Thermo-sensitive gels containing lorazepam microspheres for intranasal brain targeting.

    PubMed

    Jose, S; Ansa, C R; Cinu, T A; Chacko, A J; Aleykutty, N A; Ferreira, S V; Souto, E B

    2013-01-30

    Thermo-sensitive gels containing lorazepam microspheres were developed and characterized for intranasal brain targeting. Pluronics (PF-127 and PF-68) have been selected since they are thermo-reversible polymers with the property of forming a solution at low temperatures (4-5 °C), and a gel at body temperature (37 °C). This property makes them an interesting material to work with, especially in case of controlled release formulations. The present study focuses on the development of an intranasal formulation for lorazepam, as an alternative route of drug delivery to the brain. Direct transport of drugs to the brain circumventing the brain barrier, following intranasal administration, provides a unique feature and better option to target brain. The presence of mucoadhesive microspheres in the gel vehicle via nasal route can achieve a dual purpose of prolonged drug release and enhanced bioavailability. To optimise the microsphere formulation, Box Behnken design was employed by investigating the effect of three factors, polymer concentration (chitosan), emulsifier concentration (Span 80) and cross-linking agent (glutaraldehyde) on the response variable which is the mean particle size. The concentration of 21% PF-127 and 1% PF-68 were found to be promising gel vehicles. The results showed that the release rate followed a prolonged profile dispersion of the microspheres in the viscous media, in comparison to the microspheres alone. Histopathological studies proved that the optimised formulation does not produce any toxic effect on the microscopic structure of nasal mucosa.

  19. Intranasal immunization of recombinant Lactococcus lactis induces protection against H5N1 virus in ferrets.

    PubMed

    Lei, Han; Peng, Xiaojue; Ouyang, Jiexiu; Zhao, Daxian; Jiao, Huifeng; Shu, Handing; Ge, Xinqi

    2015-01-22

    The increasing outbreaks of highly pathogenic avian influenza A (HPAI) H5N1 viruses in birds and human bring out an urgent need to develop a safe and effective vaccine to control and prevent H5N1 infection. Lactococcus lactis (L. lactis) based vaccine platform is a promising approach for mucosal H5N1 vaccine development. Intranasal immunization is the potential to induce mucosal immune response which is associated with protective immunity. To develop a safe and effective mucosal vaccine against HAPI H5N1, we extended our previous study by evaluating the immunogenicity of L. lactis-psA-HA1 in the absence of adjuvant via intranasal route in the ferret model. Ferrets administered intranasally with L. lactis-pgsA-HA1 could elicit robust humoral and mucosal immune responses, as well as significant HI titers. Importantly, ferrets were completely protected from H5N1 virus challenge. These findings suggest that L. lactis-pgsA-HA1 can be considered an alternative mucosal vaccine during A/H5N1 pandemic.

  20. Characterization of a murine model of intranasal infection suitable for testing vaccines against C. abortus.

    PubMed

    Buendía, A J; Nicolás, L; Ortega, N; Gallego, M C; Martinez, C M; Sanchez, J; Caro, M R; Navarro, J A; Salinas, J

    2007-01-15

    Mouse models have been widely used to test candidate vaccines against Chlamydophila abortus infection in mice. Although the induction of a systemic infection by endogenous or intraperitoneal inoculation is a useful tool for understanding the immune mechanism involved in the protection conferred by the vaccination, a different approach is necessary to understand other factors of the infection, such as mucosal immunity or the colonization of target organs. To test whether C. abortus intranasal model of infection in mice is a useful tool for testing vaccines in a first group of experiments mice, were infected intranasally with C. abortus to characterize the model of infection. When this model was used to test vaccines, two inactivated experimental vaccines, one of them adjuvated with QS-21 and another with aluminium hydroxide, and a live attenuated vaccine (strain 1B) were used. Non-vaccinated control mice died within the first 8 days, after displaying substantial loss of weight. Histologically, the mice showed lobar fibrinopurulent bronchointerstitial pneumonia. Prior immunization with QS-21 adjuvated vaccine or 1B vaccine presented mortality and the recipients showed a greater number of T cells in the lesions, especially CD8(+) T cells, than the control mice and mice immunized with vaccine adjuvated with aluminium hydroxide. The results confirm that the C. abortus intranasal model of infection in mice is a useful tool for testing vaccines.

  1. Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route.

    PubMed

    Pathak, Rudree; Prasad Dash, Ranjeet; Misra, Manju; Nivsarkar, Manish

    2014-04-01

    Intranasal drug administration is receiving increased attention as a delivery method for bypassing the blood-brain barrier and rapidly targeting therapeutics to the CNS. However, rapid mucociliary clearance in the nasal cavity is a major hurdle. The purpose of this study was to evaluate the effect of mucoadhesive polymers in enhancing the delivery of nimodipine microemulsion to the brain via the intranasal route. The optimized mucoadhesive microemulsion was characterized, and the in vitro drug release and in vivo nasal absorption of drug from the new formulation were evaluated in rats. The optimized formulation consisted of Capmul MCM as oil, Labrasol as surfactant, and Transcutol P as co-surfactant, with a particle size of 250 nm and zeta potential value of -15 mV. In vitro and ex vivo permeation studies showed an initial burst of drug release at 30 min and sustained release up to 6 h, attributable to the presence of free drug entrapped in the mucoadhesive layer. In vivo pharmacokinetic studies in rats showed that the use of the mucoadhesive microemulsion enhanced brain and plasma concentrations of nimodipine. These results suggest that incorporation of a mucoadhesive agent in a microemulsion intranasal delivery system can increase the retention time of the formulation and enhance brain delivery of drugs.

  2. Optimization of combinational intranasal drug delivery system for the management of migraine by using statistical design.

    PubMed

    Kumar, Animesh; Garg, Tarun; Sarma, Ganti S; Rath, Goutam; Goyal, Amit Kumar

    2015-04-05

    Migraine is a chronic disorder characterized by significant headache and various associated symptoms which worsen with exertion. Zolmitriptan approved for use in the acute treatment of migraine and related vascular headaches but are limited by high pain recurrence due to rapid drug elimination. Combinationalformulationof triptans and a nonsteroidal anti-inflammatory drug may provide a quicker and longer duration of relief from the subsequent pain during the attack. In this study, we formulate a Zolmitriptan (ZT) & ketorolac tromethamine (KT) loaded thermo reversible in-situ mucoadhesive intranasal gel (TMISG) formulation which gels at the nasal mucosal temperature and contains a bioadhesive polymer (Xyloglucan) that lengthens the residence time will enhance the bioavailability of the combinational drugs. This study uses Box-Behnken design for the first time to develop, optimize the TMISG and assess factors affecting the critical quality attributes. Histopathological study of the nasal mucosa suggested that the formulation was safe for nasal administration. The statistical difference in absolute bioavailability between oral and intranasal route suggested that intranasal route had almost 21% increases in bioavailability for ZT and for KT there was 16% increase over oral formulations. Optimized formulation would help mitigate migraine associated symptoms much better over the currently available formulations.

  3. Nasal mucosal inflammation has no effect on the absorption of intranasal triamcinolone acetonide.

    PubMed

    Argenti, D; Colligon, I; Heald, D; Ziemniak, J

    1994-08-01

    The potential for enhanced systemic absorption of intranasal triamcinolone acetonide was explored in patients with inflamed nasal mucosa. Twelve allergic rhinitis patients with documented nasal inflammation, and 12 healthy volunteers, each received a single, therapeutic, 400-micrograms dose of triamcinolone acetonide in each nostril. Blood was obtained at fixed time points after the dose, and plasma concentrations of triamcinolone acetonide were determined by radioimmunoassay. There were no statistically significant differences in any of the derived pharmacokinetic parameters (maximum plasma triamcinolone acetonide concentrations [Cmax], time to maximum plasma triamcinolone concentrations [Tmax], elimination half-life [t1/2], and area under the plasma concentration-time curve [AUC0-12] from 0 to 12 hours) between treatment groups. A once-a-day, chronic regimen (6 weeks) of triamcinolone acetonide was also administered to five patients with allergic rhinitis. Pharmacokinetic parameters were similar to the parameters derived from healthy volunteers after acute administration. There was no evidence of drug accumulation. The results of this study indicate that acute and chronic intranasal administration. The results of this study indicate that acute and chronic intranasal administration of therapeutic doses of triamcinolone acetonide to patients with inflamed nasal mucosa does not result in enhanced systemic drug absorption or accumulation.

  4. Olfactory targeting through intranasal delivery of biopharmaceutical drugs to the brain: current development.

    PubMed

    Wen, Ming Ming

    2011-06-01

    Many therapeutic drugs are difficult to reach the central nervous system (CNS) from the systemic blood circulation because the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) form a very effective barrier which prevents most molecules from passing through. To bypass BBB, drugs can be delivered through olfactory region for nose-to-brain targeting. Peptide and protein drugs have been developed for the treatment of various neurodegenerative diseases. Drug delivery of these therapeutic proteins is facing several challenges because of the instability, high enzymatic metabolism, low gastrointestinal absorption, rapid renal elimination, and potential immunogenicity. New genetically engineered biotechnology products, such as recombinant human nerve growth factor, human VEGF, and interferons, are now possible to be delivered into the brain from the non-invasive intranasal route. For gene therapy, intranasal route is also a promising alternative method to deliver plasmid DNA to the brain. This review provides an overview of strategies to improve the drug delivery to the brain and the latest development of protein, peptide, and gene intranasal delivery for brain targeting.

  5. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging

    PubMed Central

    Maimaiti, Shaniya; Anderson, Katie L.; DeMoll, Chris; Brewer, Lawrence D.; Rauh, Benjamin A.; Gant, John C.; Blalock, Eric M.; Porter, Nada M.

    2016-01-01

    Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer’s disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca2+-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP. PMID:25659889

  6. Optimization of artemether-loaded NLC for intranasal delivery using central composite design.

    PubMed

    Jain, Kunal; Sood, Sumeet; Gowthamarajan, Kuppusamy

    2015-01-01

    The objective of the study was to optimize artemether-loaded nanostructured lipid carriers (ARM-NLC) for intranasal delivery using central composite design. ARM-NLC was prepared by microemulsion method with optimized formulation having particle size of 123.4 nm and zeta potential of -34.4 mV. Differential scanning calorimetry and powder X-ray diffraction studies confirmed that drug existed in amorphous form in NLC formulation. In vitro cytotoxicity assay using SVG p12 cell line and nasal histopathological studies on sheep nasal mucosa indicated the developed formulations were non-toxic and safe for intranasal administration. In vitro release studies revealed that NLC showed sustained release up to 96 h. Ex vivo diffusion studies using sheep nasal mucosa revealed that ARM-NLC had significantly lower flux compared to drug solution (ARM-SOL). Pharmacokinetic and brain uptake studies in Wistar rats showed significantly higher drug concentration in brain in animals treated intranasally (i.n.) with ARM-NLC. Brain to blood ratios for ARM-NLC (i.n.), ARM-SOL (i.n.) and ARM-SOL (i.v.) were 2.619, 1.642 and 0.260, respectively, at 0.5 h indicating direct nose to brain transport of ARM. ARM-NLC showed highest drug targeting efficiency and drug transport percentage of 278.16 and 64.02, respectively, which indicates NLC had better brain targeting efficiency compared to drug solution.

  7. Mexico City air pollution adversely affects olfactory function and intranasal trigeminal sensitivity.

    PubMed

    Guarneros, Marco; Hummel, Thomas; Martínez-Gómez, Margaríta; Hudson, Robyn

    2009-11-01

    Surprisingly little is known about the effects of big-city air pollution on olfactory function and even less about its effects on the intranasal trigeminal system, which elicits sensations like burning, stinging, pungent, or fresh and contributes to the overall chemosensory experience. Using the Sniffin' Sticks olfactory test battery and an established test for intranasal trigeminal perception, we compared the olfactory performance and trigeminal sensitivity of residents of Mexico City, a region with high air pollution, with the performance of a control population from the Mexican state of Tlaxcala, a geographically comparable but less polluted region. We compared the ability of 30 young adults from each location to detect a rose-like odor (2-phenyl ethanol), to discriminate between different odorants, and to identify several other common odorants. The control subjects from Tlaxcala detected 2-phenyl ethanol at significantly lower concentrations than the Mexico City subjects, they could discriminate between odorants significantly better, and they performed significantly better in the test of trigeminal sensitivity. We conclude that Mexico City air pollution impairs olfactory function and intranasal trigeminal sensitivity, even in otherwise healthy young adults.

  8. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction.

    PubMed

    Riha, Shannon C; Johnson, Derek C; Prieto, Amy L

    2011-02-09

    Stoichiometric copper(I) selenide nanoparticles have been synthesized using the hot injection method. The effects of air exposure on the surface composition, crystal structure, and electronic properties were monitored using X-ray photoelectron spectroscopy, X-ray diffraction, and conductivity measurements. The current-voltage response changes from semiconducting to ohmic, and within a week a 3000-fold increase in conductivity is observed under ambient conditions. The enhanced electronic properties can be explained by the oxidation of Cu(+) and Se(2-) on the nanoparticle surface, ultimately leading to a solid-state conversion of the core from monoclinic Cu(2)Se to cubic Cu(1.8)Se. This behavior is a result of the facile solid-state ionic conductivity of cationic Cu within the crystal and the high susceptibility of the nanoparticle surface to oxidation. This regulated transformation is appealing as one could envision using layers of Cu(2)Se nanoparticles as both semiconducting and conducting domains in optoelectronic devices simply by tuning the electronic properties for each layer through controlled oxidation.

  9. Intranasal Protollin(Trademark)/F1-V Vaccine Elicits Respiratory and Serum Antibody Responses and Protects Mice Against Lethal Aerosolized Plague Infection

    DTIC Science & Technology

    2005-10-07

    specific serum antibody responses [30]; ironically in this same study, an intranasal prime-boost reg- imen proved that two doses of F1-V plus LT were...Vaccine 24 (2006) 1625–1632 Intranasal ProtollinTM/F1-V vaccine elicits respiratory and serum antibody responses and protects mice against lethal... Intranasal immunization of mice with F1-V formulated with a Proteosome- ased adjuvant (ProtollinTM), elicited high titers of specific IgA in lungs whereas

  10. Intranasal Protollin(Trademark)/F1-V Vaccine Elicits Respiratory and Serum Antibody Responses and Protects Mice Against Lethal Aerosolized Plague Infection

    DTIC Science & Technology

    2005-09-29

    elicited modest specific serum antibody responses [30]; ironically in this same study, an intranasal prime-boost reg- imen proved that two doses of...Vaccine 24 (2006) 1625–1632 Intranasal ProtollinTM/F1-V vaccine elicits respiratory and serum antibody responses and protects mice against lethal... Intranasal immunization of mice with F1-V formulated with a Proteosome- ased adjuvant (ProtollinTM), elicited high titers of specific IgA in lungs whereas

  11. Intranasal Glucagon for Treatment of Insulin-Induced Hypoglycemia in Adults With Type 1 Diabetes: A Randomized Crossover Noninferiority Study

    PubMed Central

    Rickels, Michael R.; Ruedy, Katrina J.; Piché, Claude A.; Dulude, Hélène; Sherr, Jennifer L.; Tamborlane, William V.; Bethin, Kathleen E.; DiMeglio, Linda A.; Wadwa, R. Paul; Ahmann, Andrew J.; Haller, Michael J.; Nathan, Brandon M.; Marcovina, Santica M.; Rampakakis, Emmanouil; Meng, Linyan; Beck, Roy W.

    2016-01-01

    OBJECTIVE Treatment of severe hypoglycemia with loss of consciousness or seizure outside of the hospital setting is presently limited to intramuscular glucagon requiring reconstitution immediately prior to injection, a process prone to error or omission. A needle-free intranasal glucagon preparation was compared with intramuscular glucagon for treatment of insulin-induced hypoglycemia. RESEARCH DESIGN AND METHODS At eight clinical centers, a randomized crossover noninferiority trial was conducted involving 75 adults with type 1 diabetes (mean age, 33 ± 12 years; median diabetes duration, 18 years) to compare intranasal (3 mg) versus intramuscular (1 mg) glucagon for treatment of hypoglycemia induced by intravenous insulin. Success was defined as an increase in plasma glucose to ≥70 mg/dL or ≥20 mg/dL from the glucose nadir within 30 min after receiving glucagon. RESULTS Mean plasma glucose at time of glucagon administration was 48 ± 8 and 49 ± 8 mg/dL at the intranasal and intramuscular visits, respectively. Success criteria were met at all but one intranasal visit and at all intramuscular visits (98.7% vs. 100%; difference 1.3%, upper end of 1-sided 97.5% CI 4.0%). Mean time to success was 16 min for intranasal and 13 min for intramuscular (P < 0.001). Head/facial discomfort was reported during 25% of intranasal and 9% of intramuscular dosing visits; nausea (with or without vomiting) occurred with 35% and 38% of visits, respectively. CONCLUSIONS Intranasal glucagon was highly effective in treating insulin-induced hypoglycemia in adults with type 1 diabetes. Although the trial was conducted in a controlled setting, the results are applicable to real-world management of severe hypoglycemia, which occurs owing to excessive therapeutic insulin relative to the impaired or absent endogenous glucagon response. PMID:26681725

  12. CXCR6 is a marker for protective antigen-specific cells in the lungs after intranasal immunization against Mycobacterium tuberculosis.

    PubMed

    Lee, Lian Ni; Ronan, Edward O; de Lara, Catherine; Franken, Kees L M C; Ottenhoff, Tom H M; Tchilian, Elma Z; Beverley, Peter C L

    2011-08-01

    Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT6(1-20) peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment.

  13. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies.

    PubMed

    Shelke, Santosh; Shahi, Sadhana; Jalalpure, Sunil; Dhamecha, Dinesh

    2016-12-01

    Zolmitriptan is the drug of choice for migraine, but low oral bioavailability (<50%) and recurrence of migraine lead to frequent dosing and increase in associated side effects. Increase in the residence time of drug at the site of drug absorption along with direct nose to brain targeting of zolmitriptan can be a solution to the existing problems. Hence, in the present investigation, thermoreversible intranasal gel of zolmitriptan-loaded nanoethosomes was formulated by using mucoadhesive polymers to increase the residence of the drug into the nasal cavity. The preparation of ethosomes was optimized by using 3(2) factorial design for percent drug entrapment efficiency, vesicle size, zeta potential, and polydispersity index. Optimized formulation E6 showed the vesicle size (171.67 nm) and entrapment efficiency (66%) when compared with the other formulations. Thermoreversible gels prepared by using poloxamer 407 showed the phase transition temperature at 32-33 °C which was in line with the nasal physiological temperature. The optimized ethosomes were loaded into the thermoreversible mucoadhesive gel optimized by varying concentrations of poloxamer 407, carbopol 934, HPMC K100, and evaluated for gel strength, gelation temperature, mucoadhesive strength, in vitro drug release, and ex vivo drug permeation, where G3 and G6 were found to be optimized formulations. In vitro drug release was studied by different kinetic models suggested that G3 (n = 0.582) and G6 (n = 0.648) showed Korsemeyer-Peppas (KKP) model indicating non-Fickian release profiles. A permeation coefficient of 5.92 and 5.9 µg/cm(2) for G3 and G6, respectively, revealed very little difference in release rate after 24 h between both the formulations. Non-toxic nature of the gels on columnar epithelial cells was confirmed by histopathological evaluation.

  14. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  15. Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model.

    PubMed

    Serova, L I; Laukova, M; Alaluf, L G; Pucillo, L; Sabban, E L

    2014-01-01

    PTSD is a debilitating neuropsychiatric disorder and many patients do not respond sufficiently to current treatments. Neuropeptide Y (NPY) is suggested to provide resilience to the development of PTSD and co-morbid depression. Injections of NPY to the rodent brain are anxiolytic. Recently we showed that intranasal delivery of NPY to rats before or immediately after exposure to single prolonged stress (SPS) animal model of PTSD prevented development of many biochemical and behavioral symptoms of PTSD, indicating its prophylactic potential. Here, we investigated whether intranasal NPY might provide benefits once symptoms have already developed. One week after exposure to SPS stressors, animals were given intranasal NPY or vehicle and tested on elevated plus maze 2h or 2 days later. The NPY treated rats had lower anxiety-like behavior than vehicle treated rats as indicated by more entries into open arms and fewer into closed arms, lower anxiety index, higher risk assessment and unprotected head dips and reduced grooming time. Their anxiety index was similar to that of unstressed controls. On most of these variables there was no effect of time interval and rats displayed similar overall changes 2h or 2 days after the infusion. Moreover, intranasal NPY led to reduced depressive-like behavior, assessed by forced swim test. Thus, intranasal NPY reversed several behavioral impairments triggered by the traumatic stress of SPS and has potential for non-invasive PTSD therapeutic intervention.

  16. Sedation and physiologic response to manual restraint after intranasal administration of midazolam in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Mans, Christoph; Guzman, David Sanchez-Migallon; Lahner, Lesanna L; Paul-Murphy, Joanne; Sladky, Kurt K

    2012-09-01

    Administration of intranasal midazolam (2 mg/kg) was evaluated for sedation and effects on cloacal temperature, respiratory rate, and heart rate in manually restrained Hispaniolan Amazon parrots (Amazona ventralis). Adult parrots (n=9) were administered either midazolam (2 mg/kg) or an equal volume of saline solution intranasally before a 15-minute manual restraint in a complete crossover study. Respiratory rate and sedation scores were recorded before and during capture and during and after 15 minutes of manual restraint. Heart rate and cloacal temperature were recorded during manual restraint. After restraint, the parrots received intranasal flumazenil (0.05 mg/kg) or an equal volume of saline solution, and the recovery time was recorded. In those birds that received midazolam, sedation was observed within 3 minutes of administration, and vocalization, flight, and defense responses were significantly reduced during capture. During manual restraint, the mean rate of cloacal temperature increase was significantly slower and remained significantly lower in birds that received midazolam compared with controls. Mean respiratory rates were significantly lower for up to 12 minutes in parrots that received midazolam compared with those receiving saline solution. Flumazenil antagonized the effects of midazolam within 10 minutes. No overt clinical adverse effects to intranasal midazolam and flumazenil administration were observed. Further studies on the safety of intranasal midazolam and flumazenil in this species are warranted.

  17. A MODEL OF CHRONIC DIABETIC POLYNEUROPATHY: BENEFITS FROM INTRANASAL INSULIN ARE MODIFIED BY SEX AND RAGE DELETION.

    PubMed

    de la Hoz, Cristiane L; Cheng, Chu; Fernyhough, Paul; Zochodne, Douglas W

    2017-02-21

    Human diabetic polyneuropathy (DPN) is a progressive complication of chronic diabetes mellitus. Preliminary evidence has suggested that intranasal insulin, in doses insufficient to alter hyperglycemia, suppresses the development of DPN. In this work we confirm this finding, but demonstrate that its impact is modified by sex and deletion of RAGE, the receptor for advanced glycosylation endproducts. We serially evaluated experimental DPN in male and female wild type mice and male RAGE null (RN) mice, each with nondiabetic controls, during 16 weeks of diabetes, the final 8 weeks including groups given intranasal insulin. Age matched nondiabetic female mice had higher motor and sensory conduction velocities than their male counterparts and had lesser conduction slowing from chronic diabetes. Intranasal insulin improved slowing in both genders. In male RN mice, there was lesser conduction slowing with chronic diabetes and intranasal insulin provided limited benefits. Rotarod testing, and hindpaw grip power offered less consistent impacts . Mechanical sensitivity and thermal sensitivity were respectively but disparately changed and improved with insulin in wild type female and male mice but not RN male mice. These studies confirm that intranasal insulin improves indices of experimental DPN but indicates that females with DPN may differ in their underlying phenotype. RN mice had partial but incomplete protection from underlying DPN and lesser impacts from insulin. We also identify an important role for sex in the development of DPN and report evidence that insulin and AGE-RAGE pathways in its pathogenesis may overlap.

  18. A novel permeation enhancer: N-succinyl chitosan on the intranasal absorption of isosorbide dinitrate in rats.

    PubMed

    Na, Lidong; Wang, Juan; Wang, Linlin; Mao, Shirui

    2013-01-23

    The purpose of this paper is to study the potential of N-succinyl chitosan as a novel permeation enhancer for the intranasal absorption of isosorbide dinitrate (ISDN). A series of N-succinyl chitosan (NSCS) with different degree of succinylation (DS) and molecular weight were synthesized. An in situ nasal perfusion technique in rats was utilized to investigate the effect of NSCS substitution degree, NSCS molecular weight and concentration on the intranasal absorption of ISDN. The absorption enhancing effect of NSCS was compared with that of chitosan. It was found that all the NSCS investigated improved the intranasal absorption of ISDN remarkably. Better promoting effect was observed for 0.1% NSCS 50 (63) compared with 0.5% chitosan 50. In nasal ciliotoxicity test, both NSCS and chitosan investigated showed good safety profiles. Thereafter, in vivo studies of the selected formulations were carried out in rats and the pharmacokinetic parameters were calculated and compared with that of intravenous injection. Both in situ and in vivo studies demonstrated that NSCS is more effective than chitosan in promoting intranasal absorption of ISDN. Taking both absorption enhancing and safety reason into account, we suggest NSCS is a promising intranasal absorption enhancer.

  19. Ancillary therapy of intranasal T-LysYal® for patients with allergic, non-allergic, and mixed rhinitis.

    PubMed

    Gelardi, M; Taliente, S; Fiorella, M L; Quaranta, N; Ciancio, G; Russo, C; Mola, P; Ciofalo, A; Zambetti, G; Caruso Armone, A; Cantone, E; Ciprandi, G

    2016-01-01

    Allergic rhinitis (AR) is caused by an IgE-mediated inflammatory reaction. Non-allergic rhinitis (NAR) is characterized by a non-IgE-mediated pathogenesis. Frequently, patients have the two disorders associated: such as mixed rhinitis (MR). Hyaluronic acid (HA) is a fundamental component of the human connective tissue. HA may exert anti-inflammatory and immune-modulating activities. Recently, an intranasal HA formulation was proposed: a supramolecular system containing lysine hyaluronate, thymine and sodium chloride (T-LysYal®). This randomized study investigated whether intranasal T-LysYal® (rinoLysYal®, Farmigea, Italy) was able to reduce symptom severity, endoscopic features, and nasal cytology in 89 patients (48 males and 41 females, mean age 36.3±7.1 years) with AR, NAR, and MR. Patients were treated with intranasal T-LysYal® or isotonic saline solution as adjunctive therapy to nasal corticosteroid and oral antihistamine for 4 weeks. Patients were visited at baseline, after treatment and after 4-week follow-up. Intranasal T-LysYal® treatment significantly reduced the quote of patients with symptoms, endoscopic features, and inflammatory cells. In conclusion, the present study demonstrates that intranasal T-LysYal® is able, as ancillary therapy, to significantly improve patients with AR, NAR, and MR, and its effect is long lasting.

  20. Intranasal Inoculation of White-Tailed Deer (Odocoileus virginianus) with Lyophilized Chronic Wasting Disease Prion Particulate Complexed to Montmorillonite Clay

    PubMed Central

    Nichols, Tracy A.; Spraker, Terry R.; Rigg, Tara D.; Meyerett-Reid, Crystal; Hoover, Clare; Michel, Brady; Bian, Jifeng; Hoover, Edward; Gidlewski, Thomas; Balachandran, Aru; O'Rourke, Katherine; Telling, Glenn C.; Bowen, Richard

    2013-01-01

    Chronic wasting disease (CWD), the only known prion disease endemic in wildlife, is a persistent problem in both wild and captive North American cervid populations. This disease continues to spread and cases are found in new areas each year. Indirect transmission can occur via the environment and is thought to occur by the oral and/or intranasal route. Oral transmission has been experimentally demonstrated and although intranasal transmission has been postulated, it has not been tested in a natural host until recently. Prions have been shown to adsorb strongly to clay particles and upon oral inoculation the prion/clay combination exhibits increased infectivity in rodent models. Deer and elk undoubtedly and chronically inhale dust particles routinely while living in the landscape while foraging and rutting. We therefore hypothesized that dust represents a viable vehicle for intranasal CWD prion exposure. To test this hypothesis, CWD-positive brain homogenate was mixed with montmorillonite clay (Mte), lyophilized, pulverized and inoculated intranasally into white-tailed deer once a week for 6 weeks. Deer were euthanized at 95, 105, 120 and 175 days post final inoculation and tissues examined for CWD-associated prion proteins by immunohistochemistry. Our results demonstrate that CWD can be efficiently transmitted utilizing Mte particles as a prion carrier and intranasal exposure. PMID:23671598

  1. Intranasal immunization of lambs with serine/threonine phosphatase 2A against gastrointestinal nematodes.

    PubMed

    Mohamed Fawzi, Elshaima; Cruz Bustos, Teresa; Gómez Samblas, Mercedes; González-González, Gloria; Solano, Jenifer; González-Sánchez, María Elena; De Pablos, Luis Miguel; Corral-Caridad, María Jesús; Cuquerella, Montserrat; Osuna, Antonio; Alunda, José María

    2013-09-01

    Seven 3-month-old, female, helminth-free lambs were immunized intranasally with three doses (1 mg total) of a recombinant part of the catalytic region of the serine/threonine phosphatase 2A (PP2Ar) (group 1 [G1]). In addition, four lambs were used as an adjuvant control group (G2), four as unimmunized, infected controls (G3), and four as unimmunized, uninfected controls (G4). Fifteen days after the last immunization, lambs from G1, G2, and G3 were challenged with 10,000 larval stage 3 (L3) organisms in a plurispecific nematode infection composed of ca. 40% Trichostrongylus colubriformis, 40% Haemonchus contortus, and 20% Teladorsagia circumcincta. All the lambs were clinically monitored throughout the experiment. Parasitological (fecal egg output and immunological response), biopathological (packed-cell volume and leukocyte and eosinophil counts), and zootechnical (live-weight gain) analyses were conducted. On day 105 of the experiment, all the animals were slaughtered and the adult worm population in their abomasa examined. Intranasal administration of PP2Ar with bacterial walls as an adjuvant elicited a strong immune response in the immunized lambs, as evidenced by their humoral immune response. Immunized animals and animals receiving the adjuvant shed significantly (P < 0.001) fewer numbers of parasites' eggs in their feces. The immunization significantly reduced the helminth burden in the abomasa by the end of the experiment (>68%), protection being provided against both Haemonchus and Teladorsagia. Live-weight gain in the immunized lambs was similar to that in the uninfected controls versus the infected or adjuvanted animal groups. Our results suggest that heterologous immunization of ruminants by intranasal administration may be efficacious in the struggle to control gastrointestinal helminths in these livestock.

  2. Intranasal Immunization of Lambs with Serine/Threonine Phosphatase 2A against Gastrointestinal Nematodes

    PubMed Central

    Mohamed Fawzi, Elshaima; Cruz Bustos, Teresa; Gómez Samblas, Mercedes; González-González, Gloria; Solano, Jenifer; González-Sánchez, María Elena; De Pablos, Luis Miguel; Corral-Caridad, María Jesús; Cuquerella, Montserrat; Osuna, Antonio

    2013-01-01

    Seven 3-month-old, female, helminth-free lambs were immunized intranasally with three doses (1 mg total) of a recombinant part of the catalytic region of the serine/threonine phosphatase 2A (PP2Ar) (group 1 [G1]). In addition, four lambs were used as an adjuvant control group (G2), four as unimmunized, infected controls (G3), and four as unimmunized, uninfected controls (G4). Fifteen days after the last immunization, lambs from G1, G2, and G3 were challenged with 10,000 larval stage 3 (L3) organisms in a plurispecific nematode infection composed of ca. 40% Trichostrongylus colubriformis, 40% Haemonchus contortus, and 20% Teladorsagia circumcincta. All the lambs were clinically monitored throughout the experiment. Parasitological (fecal egg output and immunological response), biopathological (packed-cell volume and leukocyte and eosinophil counts), and zootechnical (live-weight gain) analyses were conducted. On day 105 of the experiment, all the animals were slaughtered and the adult worm population in their abomasa examined. Intranasal administration of PP2Ar with bacterial walls as an adjuvant elicited a strong immune response in the immunized lambs, as evidenced by their humoral immune response. Immunized animals and animals receiving the adjuvant shed significantly (P < 0.001) fewer numbers of parasites' eggs in their feces. The immunization significantly reduced the helminth burden in the abomasa by the end of the experiment (>68%), protection being provided against both Haemonchus and Teladorsagia. Live-weight gain in the immunized lambs was similar to that in the uninfected controls versus the infected or adjuvanted animal groups. Our results suggest that heterologous immunization of ruminants by intranasal administration may be efficacious in the struggle to control gastrointestinal helminths in these livestock. PMID:23761655

  3. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats

    SciTech Connect

    Blecharz-Klin, Kamilla; Piechal, Agnieszka; Joniec-Maciejak, Ilona; Pyrzanowska, Justyna; Widy-Tyszkiewicz, Ewa

    2012-11-15

    The effect of intranasal manganese chloride (MnCl{sub 2}·4H{sub 2}O) exposure on spatial learning, memory and motor activity was estimated in Morris water maze task in adult rats. Three-month-old male Wistar rats received for 2 weeks MnCl{sub 2}·4H{sub 2}O at two doses the following: 0.2 mg/kg b.w. (Mn0.2) or 0.8 mg/kg b.w. (Mn0.8) per day. Control (Con) and manganese-exposed groups were observed for behavioral performance and learning in water maze. ANOVA for repeated measurements did not show any significant differences in acquisition in the water maze between the groups. However, the results of the probe trial on day 5, exhibited spatial memory deficits following manganese treatment. After completion of the behavioral experiment, the regional brain concentrations of neurotransmitters and their metabolites were determined via HPLC in selected brain regions, i.e. prefrontal cortex, hippocampus and striatum. ANOVA demonstrated significant differences in the content of monoamines and metabolites between the treatment groups compared to the controls. Negative correlations between platform crossings on the previous platform position in Southeast (SE) quadrant during the probe trial and neurotransmitter turnover suggest that impairment of spatial memory and cognitive performance after manganese (Mn) treatment is associated with modulation of the serotonergic, noradrenergic and dopaminergic neurotransmission in the brain. These findings show that intranasally applied Mn can impair spatial memory with significant changes in the tissue level and metabolism of monoamines in several brain regions. -- Highlights: ► Intranasal exposure to manganese in rats impairs spatial memory in the water maze. ► Regional changes in levels of neurotransmitters in the brain have been identified. ► Cognitive disorder correlates with modulation of 5-HT, NA and DA neurotransmission.

  4. Plasma and CSF oxytocin levels after intranasal and intravenous oxytocin in awake macaques.

    PubMed

    Freeman, Sara M; Samineni, Sridhar; Allen, Philip C; Stockinger, Diane; Bales, Karen L; Hwa, Granger G C; Roberts, Jeffrey A

    2016-04-01

    Oxytocin (OT) is a neuropeptide that mediates a variety of complex social behaviors in animals and humans. Intranasal OT has been used as an experimental therapeutic for human conditions characterized by deficits in social functioning, especially autism spectrum disorder and schizophrenia. However, it is currently under intense debate whether intranasal delivery of OT reaches the central nervous system. In this study, four female rhesus macaques were implanted with chronic intrathecal catheters and used to investigate the pharmacokinetic profile of OT in the central nervous system and the peripheral vasculature following intravenous (IV) and intranasal (IN) administration of OT. In a randomized, crossover design, OT was given to four awake monkeys at three different doses based on body weight (0.1 IU/kg; 1 IU/kg; 5 IU/kg). A time course of concurrent cerebrospinal fluid (CSF) and plasma samples were taken following administration. We found a dose-dependent effect of IV OT treatment on plasma OT levels, which peaked at 5 min post-dose and gradually returned to baseline by 120 min. In contrast, a change in CSF OT was only observed at the highest IV dose (5 IU/kg) at 15 min post-dose and gradually returned to baseline by 120 min. After IN administration, there was no significant change in plasma OT at any of the three doses. However, at the highest dose level, we found a significant increase in CSF OT at 15-30 min post- dose. The results of this study in light of recent, similar publications highlight the importance of methodological consistency across studies. This study also establishes a non-human primate model that can provide a stable platform for carrying out serial sampling from the central nervous system and peripheral vasculature concurrently.

  5. Intranasal oxytocin reduces social perception in women: Neural activation and individual variation.

    PubMed

    Hecht, Erin E; Robins, Diana L; Gautam, Pritam; King, Tricia Z

    2017-02-15

    Most intranasal oxytocin research to date has been carried out in men, but recent studies indicate that females' responses can differ substantially from males'. This randomized, double-blind, placebo-controlled study involved an all-female sample of 28 women not using hormonal contraception. Participants viewed animations of geometric shapes depicting either random movement or social interactions such as playing, chasing, or fighting. Probe questions asked whether any shapes were "friends" or "not friends." Social videos were preceded by cues to attend to either social relationships or physical size changes. All subjects received intranasal placebo spray at scan 1. While the experimenter was not blinded to nasal spray contents at Scan 1, the participants were. Scan 2 followed a randomized, double-blind design. At scan 2, half received a second placebo dose while the other half received 24 IU of intranasal oxytocin. We measured neural responses to these animations at baseline, as well as the change in neural activity induced by oxytocin. Oxytocin reduced activation in early visual cortex and dorsal-stream motion processing regions for the social > size contrast, indicating reduced activity related to social attention. Oxytocin also reduced endorsements that shapes were "friends" or "not friends," and this significantly correlated with reduction in neural activation. Furthermore, participants who perceived fewer social relationships at baseline were more likely to show oxytocin-induced increases in a broad network of regions involved in social perception and social cognition, suggesting that lower social processing at baseline may predict more positive neural responses to oxytocin.

  6. Intranasal oxytocin administration in relationship to social behaviour in domestic pigs.

    PubMed

    Camerlink, Irene; Reimert, Inonge; Bolhuis, J Elizabeth

    2016-09-01

    Intranasal administration of oxytocin has been shown to alter positive and negative social behaviour. Positive social behaviour in pigs (Sus scrofa) may be expressed through gentle social nosing, and greater insight in the specific expression hereof might contribute to the current search for positive indicators of animal welfare. We investigated whether oxytocin alters social nosing and whether this is specific to nose-body or nose-nose contact. Sixty-four focal female pigs of 13weeks of age (out of 16 groups) were given oxytocin (24IU dose) and saline (placebo) intranasally once on two consecutive days. The frequency of nose-to-nose contact and nose-to-body contact was recorded upon pigs' return in the home pen after being for 10min located in a separate area near pen mates undergoing a positive or negative event or not. The effect of intranasal oxytocin depended on the social context in which pigs were studied. Control pigs, which were not exposed to positively or negatively aroused pen mates, gave and received less nose-nose contact after oxytocin administration than after saline administration. Pigs exposed to positively aroused pen mates also tended to give less nose contact when given oxytocin compared to saline, whereas pigs exposed to negatively aroused pen mates and administered oxytocin tended to receive more nose contact. Nose-body contact was lowest in groups of negative social context, suggesting an effect of emotional state on social nosing. In contrast to nose-nose contact, nose-body contact was unaffected by oxytocin treatment. The relationship between social nosing and oxytocin merits further research.

  7. Comparison of Oral Montelukast and Intranasal Fluticasone in Patients with Asthma and Allergic Rhinitis

    PubMed Central

    Jindal, Apar; Sagadevan, Suresh; Narasimhan, Meenakshi; Shanmuganathan, Aruna; Vallabhaneni, Viswambhar; Rajalingam, Ragulan

    2016-01-01

    Introduction Even though the links between upper and lower airway had been of interest to clinicians since long back, it has not attracted the attention of the researchers till recent past. But the evidence is still far from conclusive, due to limited number of randomized controlled trials available on subjects with concomitant allergic rhinitis and asthma. This gap in the knowledge is even more conspicuous in Indian population. Aim The current study is conducted with an objective of comparing the efficacy and tolerability of intranasal Fluticasone and oral Montelukast in treatment of allergic rhinitis and bronchial asthma. Materials and Methods The study was a prospective randomized, single blinded, comparative, parallel group study, with two intervention groups conducted in a tertiary teaching hospital in Chennai, Southern India. One hundred and twenty patients diagnosed with concomitant diagnosis of allergic rhinitis and bronchial asthma was randomly allocated to either Fluticasone propionate aqueous nasal spray or oral Montelukast group. Results Out of total 120 subjects recruited, 108 subjects were included in the final analysis. The mean reduction in asthma and rhinitis symptom scores and improvement in PEFR was higher for Group A, compared to Group B during all the follow-up periods. No statistically significant difference was observed in proportion of subjects reporting exacerbations in the current study. Both the treatments were well tolerated. Conclusion Addition of intranasal Fluticasone propionate to Salmeterol plus Fluticasone is beneficial in improving asthma control, allergic rhinitis control and lung functions as compared to oral Montelukast. Thereby the use of intranasal Fluticasone Propionate in comparison to oral Montelukast in control of Allergic Rhinitis is justified as per the significant improvement in outcome measures. PMID:27656477

  8. Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in Mice.

    PubMed

    Chen, Dongdong; Lee, Jinhwan; Gu, Xiaohuan; Wei, Ling; Yu, Shan Ping

    2015-01-01

    Apelin is a peptide originally isolated from bovine stomach tissue extracts and identified as an endogenous ligand of the APJ receptor; recent work showed that apelin ameliorates the ischemic injury in the heart and the brain. Being an analogue to the angiotensin II receptor, the apelin/APJ signaling may mediate angiogenesis process. We explored the noninvasive intranasal brain delivery method and investigated therapeutic effects of apelin-13 in a focal ischemic stroke model of mice. Intranasal administration of apelin-13 (4 mg/kg) was given 30 min after the onset of stroke and repeated once daily. Three days after stroke, mice received apelin-13 had significantly reduced infarct volume and less neuronal death in the penumbra. Western blot analyses showed upregulated levels of apelin, apelin receptor APLNR, and Bcl-2 and decreased caspase-3 activation in the apelin-13-treated brain. The proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1β, and chemokine monocyte chemoattractant protein-1 mRNA increased in the ischemic brain, which were significantly attenuated by apelin-13. Apelin-13 remarkably reduced microglia recruitment and activation in the penumbra according to morphological features of Iba-1-positive cells 3 days after ischemia. Apelin-13 significantly increased the expression of angiogenic factor vascular endothelial growth factor and matrix metalloproteinase-9 14 days after stroke. Angiogenesis illustrated by collagen IV + /5-bromo-2'-deoxyuridin + colabeled cells was significantly increased by the apelin-13 treatment 21 days after stroke. Finally, apelin-13 promoted the local cerebral blood flow restoration and long-term functional recovery. This study demonstrates a noninvasive intranasal delivery of apelin-13 after stroke, suggesting that the reduced inflammatory activities, decreased cell death, and increased angiogenesis contribute to the therapeutic benefits of apelin-13.

  9. Comparison of preanesthetic sedation in pediatric patients with oral and intranasal midazolam

    PubMed Central

    Deshmukh, Purvashree Vijay; Kulkarni, Sadhana Sudhir; Parchandekar, Mukund Kachru; Sikchi, Sneha Purshottam

    2016-01-01

    Background and Aims: Preoperative anxiety in children leading to postoperative negative changes and long-term behavioral problems needs better preanesthetic sedation. Across the world, midazolam is the most commonly used premedicant in pediatric patients. The fact that no single route has achieved universal acceptance for its administration suggests that each route has its own merits and demerits. This study compares oral midazolam syrup and intranasal midazolam spray as painless and needleless systems of drug administration for preanesthetic sedation in children. Material and Methods: With randomization, Group O (30 children): Received oral midazolam syrup 0.5 mg/kg and Group IN (30 children): Received intranasal midazolam spray 0.2 mg/kg. Every child was observed for acceptance of drug, response to drug administration, sedation scale, separation score, acceptance to mask, recovery score and side effects of drug. Data were analyzed using Student's t-test, standard error of the difference between two means and Chi-square test. Results: In Group O and IN, 15/30 children (50%) and 7/30 children (23%) accepted drug easily (P < 0.05); 4/22 children (18%) in Group O and 11/20 children (55%) in Group IN cried after drug administration (P < 0.05). In both the groups, sedation at 20 min after premedication (Group O [80%] 24/30 vs. Group IN [77%] 23/30), parental separation and acceptance to mask were comparable (P > 0.05); 12/30 children (40%) in Group IN showed transient nasal irritation. Conclusion: Oral midazolam and intranasal midazolam spray produce similar anxiolysis and sedation, but acceptance of drug and response to drug administration is better with oral route. PMID:27625485

  10. Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in Mice

    PubMed Central

    Chen, Dongdong; Lee, Jinhwan; Gu, Xiaohuan; Wei, Ling

    2015-01-01

    Apelin is a peptide originally isolated from bovine stomach tissue extracts and identified as an endogenous ligand of the APJ receptor; recent work showed that apelin ameliorates the ischemic injury in the heart and the brain. Being an analogue to the angiotensin II receptor, the apelin/APJ signaling may mediate angiogenesis process. We explored the noninvasive intranasal brain delivery method and investigated therapeutic effects of apelin-13 in a focal ischemic stroke model of mice. Intranasal administration of apelin-13 (4 mg/kg) was given 30 min after the onset of stroke and repeated once daily. Three days after stroke, mice received apelin-13 had significantly reduced infarct volume and less neuronal death in the penumbra. Western blot analyses showed upregulated levels of apelin, apelin receptor APLNR, and Bcl-2 and decreased caspase-3 activation in the apelin-13-treated brain. The proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1β, and chemokine monocyte chemoattractant protein-1 mRNA increased in the ischemic brain, which were significantly attenuated by apelin-13. Apelin-13 remarkably reduced microglia recruitment and activation in the penumbra according to morphological features of Iba-1-positive cells 3 days after ischemia. Apelin-13 significantly increased the expression of angiogenic factor vascular endothelial growth factor and matrix metalloproteinase-9 14 days after stroke. Angiogenesis illustrated by collagen IV + /5-bromo-2′-deoxyuridin + colabeled cells was significantly increased by the apelin-13 treatment 21 days after stroke. Finally, apelin-13 promoted the local cerebral blood flow restoration and long-term functional recovery. This study demonstrates a noninvasive intranasal delivery of apelin-13 after stroke, suggesting that the reduced inflammatory activities, decreased cell death, and increased angiogenesis contribute to the therapeutic benefits of apelin-13. PMID:26391329

  11. Differential effects of intranasal oxytocin on sexual experiences and partner interactions in couples.

    PubMed

    Behnia, Behnoush; Heinrichs, Markus; Bergmann, Wiebke; Jung, Stefanie; Germann, Janine; Schedlowski, Manfred; Hartmann, Uwe; Kruger, Tillmann H C

    2014-03-01

    Knowledge about the effects of the neuropeptide oxytocin (OXT) on human sexual behaviors and partner interactions remains limited. Based on our previous studies, we hypothesize that OXT should be able to positively influence parameters of sexual function and couple interactions. Employing a naturalistic setting involving 29 healthy heterosexual couples (n=58 participants), we analyzed the acute effects of intranasally administered OXT (24IU) on sexual drive, arousal, orgasm and refractory aspects of sexual behavior together with partner interactions. Data were assessed by psychometric instruments (Acute Sexual Experiences Scale, Arizona Sexual Experience Scale) as well as biomarkers, such as cortisol, α-amylase and heart rate. Intranasal OXT administration did not alter "classical" parameters of sexual function, such as sexual drive, arousal or penile erection and lubrication. However, analysis of variance and a hierarchical linear model (HLM) revealed specific effects related to the orgasmic/post-orgasmic interval as well as parameters of partner interactions. According to HLM analysis, OXT increased the intensity of orgasm, contentment after sexual intercourse and the effect of study participation. According to ANOVA analysis, these effects were more pronounced in men. Men additionally indicated higher levels of sexual satiety after sexual intercourse with OXT administration. Women felt more relaxed and subgroups indicated better abilities to share sexual desires or to empathize with their partners. The effect sizes were small to moderate. Biomarkers indicated moderate psychophysiological activation but were not affected by OXT, gender or method of contraception. Using a naturalistic setting, intranasal OXT administration in couples exerted differential effects on parameters of sexual function and partner interactions. These results warrant further investigations, including subjects with sexual and relationship problems.

  12. Intranasal Vaccination Promotes Detrimental Th17-Mediated Immunity against Influenza Infection

    PubMed Central

    Maroof, Asher; Yorgensen, Yvonne M.; Li, Yufeng; Evans, Jay T.

    2014-01-01

    Influenza disease is a global health issue that causes significant morbidity and mortality through seasonal epidemics. Currently, inactivated influenza virus vaccines given intramuscularly or live attenuated influenza virus vaccines administered intranasally are the only approved options for vaccination against influenza virus in humans. We evaluated the efficacy of a synthetic toll-like receptor 4 agonist CRX-601 as an adjuvant for enhancing vaccine-induced protection against influenza infection. Intranasal administration of CRX-601 adjuvant combined with detergent split-influenza antigen (A/Uruguay/716/2007 (H3N2)) generated strong local and systemic immunity against co-administered influenza antigens while exhibiting high efficacy against two heterotypic influenza challenges. Intranasal vaccination with CRX-601 adjuvanted vaccines promoted antigen-specific IgG and IgA antibody responses and the generation of polyfunctional antigen-specific Th17 cells (CD4+IL-17A+TNFα+). Following challenge with influenza virus, vaccinated mice transiently exhibited increased weight loss and morbidity during early stages of disease but eventually controlled infection. This disease exacerbation following influenza infection in vaccinated mice was dependent on both the route of vaccination and the addition of the adjuvant. Neutralization of IL-17A confirmed a detrimental role for this cytokine during influenza infection. The expansion of vaccine-primed Th17 cells during influenza infection was also accompanied by an augmented lung neutrophilic response, which was partially responsible for mediating the increased morbidity. This discovery is of significance in the field of vaccinology, as it highlights the importance of both route of vaccination and adjuvant selection in vaccine development PMID:24465206

  13. Optimal time for intranasal splint removal after septoplasty: a prospective clinical study.

    PubMed

    Ozdogan, Fatih; Ozel, Halil Erdem; Esen, Erkan; Yuce, Turgut; Eyisarac, Saban; Genc, Selahattin; Selcuk, Adin

    2016-10-01

    To investigate the effect of intranasal splint removal time on patient comfort and possible complications after septoplasty. One hundred and nine patients who had septoplasty operations were included in this study. The patients were divided into three groups. In the 1st group (n = 36), splints were removed on the 3rd day after septoplasty; in the 2nd group (n = 36), splints were removed on the 5th day; and in the 3rd group (n = 37), splints were removed on the 7th day. Pain and nasal fullness were evaluated with visual analog scale. Synechia, perforation, hematoma, infection and hemorrhage were recorded after the removal of the splints (postoperative 1, 8 and 24 weeks). For the 1st, 2nd, and 3rd groups, respectively, pain score was 1.96, 2.67, and 2.67; and nasal fullness score was 6.23, 6.04, and 5.48. Nasal synechia was detected in two patients in the 1st group and in one patient in the 2nd group. Early hemorrhage was detected in two patients in the 1st group and one patient in the 3rd group. Infection, septal perforation and hematoma were detected in three patients in the 1st group. There was no difference in hemorrhage, hematoma, synechia and perforation rates between the three groups. There are various opinions in the literature about the ideal removal time of intranasal tampons after septoplasty, but there is no consensus on this topic. Our study shows that removal time of intranasal splints has no effect on patient comfort or possible complications.

  14. Brief Report: Oxytocin Enhances Paternal Sensitivity to a Child with Autism--A Double-Blind Within-Subject Experiment with Intranasally Administered Oxytocin

    ERIC Educational Resources Information Center

    Naber, Fabienne B. A.; Poslawsky, Irina E.; van Ijzendoorn, Marinus H.; van Engeland, Herman; Bakermans-Kranenburg, Marian J.

    2013-01-01

    Oxytocin seems associated with parenting style, and experimental work showed positive effects of intranasally administered oxytocin on parenting style of fathers. Here, the first double-blind, placebo-controlled, within-subject experiment with intranasal oxytocin administration to fathers of children with autism spectrum disorder (ASD) is…

  15. Safety of inhaled and intranasal corticosteroids: lessons for the new millennium.

    PubMed

    Lipworth, B J; Jackson, C M

    2000-07-01

    Although inhaled and intranasal corticosteroids are first-line therapy for asthma and allergic rhinitis, there has recently been an increasing awareness of their propensity to produce systemic adverse effects. The availability of more potent and lipophilic corticosteroids and new chlorofluorocarbon (CFC)-free formulations has focused attention on these safety issues. The main determinant of systemic bioavailability of these drugs is direct absorption from the lung or nose, where there is no first-pass inactivation. Consequently, the systemic bioavailability of inhaled corticosteroids is greatly influenced by the efficiency of the inhaler device. Thus, when comparing different inhaled corticosteroids it is imperative to consider the unique drug/device interaction. The pharmacokinetic profile is important in determining the systemic bioactivity of inhaled and intranasal corticosteroids. For highly lipophilic drugs, such as fluticasone propionate or mometasone furoate, there is preferential partitioning into the systemic tissue compartment, and consequently a large volume of distribution at steady state. In contrast, drugs with lower lipophilicity, such as triamcinolone acetonide or budesonide, have a smaller volume of distribution. The systemic tissue compartment may act as a slow release reservoir, resulting in a long elimination half-life for the lipophilic drugs. For intranasal corticosteroids, a high degree of lipophilicity diminishes water solubility in mucosa and therefore increases the amount of drug swept away by mucociliary clearance before it can gain access to tissue receptor sites. This may reduce the anti-inflammatory efficacy in the nose, but might also reduce the propensity for direct systemic absorption from the nasal cavity. The hydrofluoroalkane (HFA) formulations of beclomethasone dipropionate are solutions and exhibit a much higher respirable fine particle dose than do the CFC formulations. Dose-response studies with one of the HFA formulations

  16. Megadose intranasal methylphenidate (ritalin) abuse in adult attention deficit hyperactivity disorder.

    PubMed

    Coetzee, Martha; Kaminer, Yifrah; Morales, Arthuro

    2002-09-01

    Attention deficit hyperactivity disorder (ADHD) is commonly co-occurring with other psychiatric disorders including substance use disorders. Stimulants have proven to be the pharmacological treatment of choice of ADHD along the life span. Contrary to media hype which compared the addictive potential of methylphenidate (MPD) to cocaine, only a handful of case studies on the abuse of prescription MPD by ADHD patients have been published. This case study centers on the treatment management and aftercare implications of an adult ADHD patient who abused 700 mg of prescribed MPD intranasally during a 3-day binge.

  17. Validation of a Best-Fit Pharmacokinetic Model for Scopolamine Disposition after Intranasal Administration

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S-L.; Tam, V.; Putcha, L.

    2015-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Motion Sickness. Bioavailability and pharmacokinetics (PK) were determined per Investigative New Drug (IND) evaluation guidance by the Food and Drug Administration. Earlier, we reported the development of a PK model that can predict the relationship between plasma, saliva and urinary scopolamine (SCOP) concentrations using data collected from an IND clinical trial with INSCOP. This data analysis project is designed to validate the reported best fit PK model for SCOP by comparing observed and model predicted SCOP concentration-time profiles after administration of INSCOP.

  18. No relevant modulation of TRPV1-mediated trigeminal pain by intranasal carbon dioxide in healthy humans

    PubMed Central

    2013-01-01

    Background Nasal insufflation of CO2 has been shown to exert antinociceptive respectively antihyperalgesic effects in animal pain models using topical capsaicin with activation of TRPV1-receptor positive nociceptive neurons. Clinical benefit from CO2 inhalation in patients with craniofacial pain caused by a putative activation of TRPV1 receptor positive trigeminal neurons has also been reported. These effects are probably mediated via an activation of TRPV1 receptor - positive neurons in the nasal mucosa with subsequent central inhibitory effects (such as conditioned pain modulation). In this study, we aimed to examine the effects of intranasal CO2 on a human model of craniofacial pain elicited by nasal application of capsaicin. Methods In a first experiment, 48 healthy volunteers without previous craniofacial pain received intranasal capsaicin to provoke trigeminal pain elicited by activation of TRVP1 positive nociceptive neurons. Then, CO2 or air was insufflated alternatingly into the nasal cavity at a flow rate of 1 l/min for 60 sec each. In the subsequent experiment, all participants were randomized into 2 groups of 24 each and received either continuous nasal insufflation of CO2 or placebo for 18:40 min after nociceptive stimulation with intranasal capsaicin. In both experiments, pain was rated on a numerical rating scale every 60 sec. Results Contrary to previous animal studies, the effects of CO2 on experimental trigeminal pain were only marginal. In the first experiment, CO2 reduced pain ratings only minimally by 5.3% compared to air if given alternatingly with significant results for the main factor GROUP (F1,47 = 4.438; p = 0.041) and the interaction term TIME*GROUP (F2.6,121.2 = 3.3; p = 0.029) in the repeated-measures ANOVA. However, these effects were abrogated after continuous insufflation of CO2 or placebo with no significant changes for the main factors or the interaction term. Conclusions Although mild modulatory effects of low

  19. Locus coeruleus response to single-prolonged stress and early intervention with intranasal neuropeptide Y.

    PubMed

    Sabban, Esther L; Laukova, Marcela; Alaluf, Lishay G; Olsson, Emelie; Serova, Lidia I

    2015-12-01

    Dysregulation of the central noradrenergic system is a core feature of post-traumatic stress disorder (PTSD). Here, we examined molecular changes in locus coeruleus (LC) triggered by single-prolonged stress (SPS) PTSD model at a time when behavioral symptoms are manifested, and the effect of early intervention with intranasal neuropeptide Y (NPY). Immediately following SPS stressors, male SD rats were administered intranasal NPY (SPS/NPY) or vehicle (SPS/V). Seven days later, TH protein, but not mRNA, was elevated in LC only of the SPS/V group. Although 90% of TH positive cells expressed GR, its levels were unaltered. Compared to unstressed controls, LC of SPS/V, but not SPS/NPY, expressed less Y2 receptor mRNA with more CRHR1 mRNA in subset of animals, and elevated corticotropin-releasing hormone (CRH) in central nucleus of amygdala. Following testing for anxiety on elevated plus maze (EPM), there were significantly increased TH, DBH and NPY mRNAs in LC of SPS-treated, but not previously unstressed animals. Their levels highly correlated with each other but not with behavioral features on EPM. Thus, SPS triggers long-term noradrenergic activation and higher sensitivity to mild stressors, perhaps mediated by the up-regulation influence of amygdalar CRH input and down-regulation of Y2R presynaptic inhibition in LC. Results also demonstrate the therapeutic potential of early intervention with intranasal NPY for traumatic stress-elicited noradrenergic impairments. Single-prolonged stress (SPS)-triggered long-term changes in the locus coeruleus/norepinephrine (LC/NE) system with increased tyrosine hydroxylase (TH) protein and CRH receptor 1(CRHR1) mRNA and lower neuropeptide Y receptor 2 (Y2R) mRNA levels as well as elevated corticotropin-releasing hormone (CRH) in the central nucleus of amygdala (CeA) that were prevented by early intervention with intranasal neuropeptide Y (NPY). SPS treatment led to increased sensitivity of LC to mild stress of elevated plus maze

  20. Effect of intranasal treatment with capsaicin on the recurrence of polyps after polypectomy and ethmoidectomy.

    PubMed

    Zheng, C; Wang, Z; Lacroix, J S

    2000-01-01

    The aim of this study was to evaluate the influence of five intranasal applications of capsaicin, performed after endoscopic polypectomy associated with partial middle turbinectomy and anterior ethmoidectomy, on the recurrence of nasal polyps and the intensity of nasal obstruction and rhinorrhea. Fifty-one patients (19 females, 32 males, mean age 43 years) suffering from nasal polyposis for more than 1 year were included in this double blind, randomized, placebo-controlled study. During post-surgical controls, local anaesthesia and vasoconstriction of the middle meatus area were performed in all patients with a cotton pellet soaked with lidocain and adrenaline. In 29 patients, the same type of cotton pellet soaked with capsaicin (3 x 10(-6) mol. dissolved in 70% ethanol) was left into the middle meatus of both nostrils for 20 min. As a control group, 22 patients, matched for age and sex, were treated with the capsaicin vehicle alone (70% ethanol). All patients studied received the intranasal treatment once a week for 5 weeks. Subjective evaluations of nasal airway resistance (NAR) and rhinorrhea were recorded by means of a visual analogue scale. Clinical staging of the nasal polyposis (graded from stage 0 = absence of polyp to stage 3 = polyps occupying the entire nasal cavity) was evaluated by the same ENT specialist (ZW) using a 0 degrees endoscope. All parameters were recorded for each patient 1 week before surgery, then once a month for 9 months. Patients treated by endoscopic surgery followed by intranasal capsaicin application, reported a marked reduction in their NAR compared with the pretreatment evaluation (p<0.001). In contrast, patients treated with the vehicle alone did not have any significant improvement of their subjective NAR. Subjective rhinorrhea was not modified by either treatment. Patients treated with capsaicin showed a significant smaller staging of their nasal polyposis compared with the control group (p<0.001). These observations suggest

  1. Size-dependent magnetic transitions in CoFe0.1Cr1.9O4 nanoparticles studied by magnetic and neutron-polarization analysis

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Galivarapu, J. K.; Banerjee, A.; Nemkovski, K. S.; Su, Y.; Rath, Chandana

    2016-04-01

    Multiferroic, CoCr2O4 bulk material undergoes successive magnetic transitions such as a paramagnetic to collinear and non-collinear ferrimagnetic state at the Curie temperature (T C) and spiral ordering temperature (T S) respectively and finally to a lock-in-transition temperature (T l). In this paper, the rich sequence of magnetic transitions in CoCr2O4 after mixing the octahedral site with 10% of iron are investigated by varying the size of the particle from 10 to 50 nm. With the increasing size, while the T C increases from 110 to 119 K which is higher than the T C (95 K) of pure CoCr2O4, the T S remains unaffected. In addition, a compensation of magnetization at 34 K and a lock-in transition at 10 K are also monitored in 50 nm particles. Further, we have examined the magnetic-ordering temperatures through neutron scattering using a polarized neutron beam along three orthogonal directions after separating the magnetic scattering from nuclear-coherent and spin-incoherent contributions. While a sharp long-range ferrimagnetic ordering down to 110 K and a short-range spiral ordering down to 50 K are obtained in 50 nm particles, in 10 nm particles, the para to ferrimagnetic transition is found to be continuous and spiral ordering is diffused in nature. Frequency-dependent ac susceptibility (χ) data fitted with different phenomenological models such as the Neel-Arrhenius, Vogel-Fulcher and power law, while ruling out the canonical spin-glass, cluster-glass and interacting superparamagnetism, reveal that both particles show spin-glass behavior with a higher relaxation time in 10 nm particles than in 50 nm. The smaller spin flip time in 50 nm particles confirms that spin dynamics does not slow down on approaching the glass transition temperature (T g).

  2. Direct nose-to-brain transfer of a growth hormone releasing neuropeptide, hexarelin after intranasal administration to rabbits.

    PubMed

    Yu, Hui; Kim, Kwonho

    2009-08-13

    The purpose of this study was to investigate the olfactory transfer of a growth hormone releasing neuropeptide, hexarelin to the brain tissues by comparing brain uptake levels after intranasal administration with those after intravenous administration. The hexarelin nasal formulation was prepared using an aqueous cosolvent vehicle consisting of ethanol, propylene glycol, and n-tridecyl-beta-D-maltoside as a permeation enhancer. Hexarelin was administered intravenously or intranasally to male rabbits at a dose of 1 mg/kg. Drug concentrations in the plasma, cerebrospinal fluid and six different regions of the brain, i.e., olfactory bulb (OB), olfactory tract (OT), anterior (CB1), middle (CB2), posterior (CB3) cerebrum, and cerebellum (CL) were analyzed by LC/MS method after solid phase extraction. The brain and cerebrospinal fluid levels achieved following intranasal administration were approximately 1.6 times greater than those attained after intravenous administration despite the intranasal plasma levels being significantly lower than the intravenous plasma levels. Intranasal administration resulted in significantly different spatial distribution patterns in various regions of brain with the rank order of C(OB)>C(OT)>C(CB1, CB2, CB3)>C(CL) at 10, 20, and 40 min post-dosing, whereas intravenous administration yielded nearly similar distribution patterns in the brain. The intranasal administration into one nostril (left or right) exhibited markedly greater hexarelin concentrations in olfactory bulb and olfactory tract on the treated-side of brain tissues than those on the non-treated-side of the brain hemisphere. It was demonstrated that the hydrophilic neuropeptide hexarelin was transferred via olfactory pathway to the brain hemispheres and the drug transfer via this route significantly contributed to high brain concentrations after nasal administration to rabbits.

  3. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats.

    PubMed

    Lv, Qiushi; Fan, Xinying; Xu, Gelin; Liu, Qian; Tian, Lili; Cai, Xiaoyi; Sun, Wenshan; Wang, Xiaomeng; Cai, Qiankun; Bao, Yuanfei; Zhou, Lulu; Zhang, Yao; Ge, Liang; Guo, Ruibing; Liu, Xinfeng

    2013-02-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. Nerve growth factor (NGF) appears to be a viable strategy to treat brain edema and TBI. Unfortunately, due to its poor blood-brain barrier (BBB) permeability, the clinical application of NGF has been greatly limited. We previously demonstrated that intranasal NGF could bypass the BBB and distribute throughout the brain. Here we further studied whether intranasal NGF could attenuate TBI-induced brain edema and its putative mechanisms. TBI was produced by a modified weight-drop model. We found that intranasal administration of NGF (5μg/d) attenuated the brain edema, as assayed by hemisphere water content, at 12h, 24h and 72h after TBI induction. This attenuation was associated with a prominent decrease of the content of aquaporin-4, which plays a pivotal role in the formation of brain edema. By the use of RT-PCR and ELISA, we showed that intranasal NGF markedly inhibited the transcription and expression of pro-inflammatory cytokines including IL-1β and TNF-α. An electrophoretic mobility shift assay (EMSA) displayed a significant activation of nuclear factor-κB following TBI, which was, however, much lowered in the NGF-treated rats. Furthermore, upon intranasal NGF supplementation, mitochondria-mediated apoptosis following TBI was minimized, as indicated by upregulation of Bcl-2 and downregulation of caspase-3. Collectively, our findings suggested that intranasal NGF may be a promising strategy to treat brain edema and TBI.

  4. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model.

    PubMed

    Eskandari, Sharareh; Varshosaz, Jaleh; Minaiyan, Mohsen; Tabbakhian, Majid

    2011-01-01

    The treatment of brain disorders is one of the greatest challenges in drug delivery because of a variety of main barriers in effective drug transport and maintaining therapeutic concentrations in the brain for a prolonged period. The objective of this study was delivery of valproic acid (VPA) to the brain by intranasal route. For this purpose, nanostructured lipid carriers (NLCs) were prepared by solvent diffusion method followed by ultrasonication and characterized for size, zeta potential, drug-loading percentage, and release. Six groups of rats each containing six animals received drug-loaded NLCs intraperitoneally (IP) or intranasally. Brain responses were then examined by using maximal electroshock (MES). The hind limb tonic extension:flexion inhibition ratio was measured at 15-, 30-, 60-, 90-, and 120-minute intervals. The drug concentration was also measured in plasma and brain at the most protective point using gas chromatography method. The particle size of NLCs was 154 ± 16 nm with drug-loading percentage of 47% ± 0.8% and drug release of 75% ± 1.9% after 21 days. In vivo results showed that there was a significant difference between protective effects of NLCs of VPA and control group 15, 30, 60, and 90 minutes after treatment via intranasal route (P < 0.05). Similar protective effect was observed in rats treated with NLCs of VPA in intranasal route and positive control in IP route (P > 0.05). Results of drug determination in brain and plasma showed that brain:plasma concentration ratio was much higher after intranasal administration of NLCs of VPA than the positive control group (IP route). In conclusion, intranasal administration of NLCs of VPA provided a better protection against MES seizure.

  5. Methodology and effects of repeated intranasal delivery of DNSP-11 in a rat model of Parkinson’s disease

    PubMed Central

    Stenslik, Mallory J.; Potts, Lisa F.; Sonne, James W.H.; Cass, Wayne A.; Turchan-Cholewo, Jadwiga; Pomerleau, Francois; Huettl, Peter; Ai, Yi; Gash, Don M.; Gerhardt, Greg A.; Bradley, Luke H.

    2015-01-01

    Background To circumvent the challenges associated with delivering large compounds directly to the brain for the treatment of Parkinson’s disease (PD), non-invasive procedures utilizing smaller molecules with protective and/or restorative actions on dopaminergic neurons are needed. New Method We developed a methodology for evaluating the effects of a synthetic neuroactive peptide, DNSP-11, on the nigrostriatal system using repeated intranasal delivery in both normal and a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of PD. Results Normal rats repeatedly administered varying doses of DNSP-11 intranasally for 3 weeks exhibited a significant increase in dopamine (DA) turnover in both the striatum and substantia nigra (SN) at 300 μg, suggestive of a stimulative effect of the dopaminergic system. Additionally, a protective effect was observed following repeated intranasal administration in 6-OHDA lesioned rats, as suggested by: a significant decrease in d-amphetamine-induced rotation at 2 weeks; a decrease in DA turnover in the lesioned striatum; and an increased sparing of tyrosine hydroxylase (TH) positive neurons in a specific sub-region of the lesioned substantia nigra pars compacta. Finally, tracer studies showed 125I-DNSP-11 distributed diffusely throughout the brain, including the striatum and SN, as quickly as 30 minutes after a single intranasal dose. Comparison with Existing Methods The results of bilateral intranasal administration of DNSP-11 are compared to our unilateral single infusion studies to the brain in rats. Conclusions These studies support that DNSP-11 can be delivered intranasally and maintain its neuroactive properties in both normal rats and in a unilateral 6-OHDA rat model of PD. PMID:25999268

  6. Surface-induced phase behavior of polymer/nanoparticle blends with attractions.

    PubMed

    Frischknecht, Amalie L; Padmanabhan, Venkat; Mackay, Michael E

    2012-04-28

    In an athermal blend of nanoparticles and homopolymer near a hard wall, there is a first order phase transition in which the nanoparticles segregate to the wall and form a densely packed monolayer above a certain nanoparticle density. Previous investigations of this phase transition employed a fluids density functional theory (DFT) at constant packing fraction. Here we report further DFT calculations to probe the robustness of this phase transition. We find that the phase transition also occurs in athermal systems at constant pressure, the more natural experimental condition than constant packing fraction. Adding nanoparticle-polymer attractions increases the nanoparticle transition density, while sufficiently strong attractions suppress the first-order transition entirely. In this case the systems display a continuous transition to a bulk layered state. Adding attractions between the polymers and the wall has a similar effect of delaying and then suppressing the first-order nanoparticle segregation transition, but does not lead to any continuous phase transitions.

  7. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Aβ level and microglia activation in the brains of 3xTg-AD mice.

    PubMed

    Chen, Yanxing; Zhao, Yang; Dai, Chun-Ling; Liang, Zhihou; Run, Xiaoqin; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2014-11-01

    Decreased brain insulin signaling has been found recently in Alzheimer's disease (AD). Intranasal administration of insulin, which delivers the drug directly into the brain, improves memory and cognition in both animal studies and small clinical trials. However, the underlying mechanisms are unknown. Here, we treated 9-month-old 3xTg-AD mice, a commonly used mouse model of AD, with daily intranasal administration of insulin for seven days and then studied brain abnormalities of the mice biochemically and immunohistochemically. We found that intranasal insulin restored insulin signaling, increased the levels of synaptic proteins, and reduced Aβ40 level and microglia activation in the brains of 3xTg-AD mice. However, this treatment did not affect the levels of glucose transporters and O-GlcNAcylation or tau phosphorylation. Our findings provide a mechanistic insight into the beneficial effects of intranasal insulin treatment and support continuous clinical trials of intranasal insulin for the treatment of AD.

  8. Amyloid transition of ubiquitin on silver nanoparticles produced by pulsed laser ablation in liquid as a function of stabilizer and single-point mutations.

    PubMed

    Mangini, Vincenzo; Dell'Aglio, Marcella; De Stradis, Angelo; De Giacomo, Alessandro; De Pascale, Olga; Natile, Giovanni; Arnesano, Fabio

    2014-08-18

    The interaction of nanoparticles with proteins has emerged as a key issue in addressing the problem of nanotoxicity. We investigated the interaction of silver nanoparticles (AgNPs), produced by laser ablation with human ubiquitin (Ub), a protein essential for degradative processes in cells. The surface plasmon resonance peak of AgNPs indicates that Ub is rapidly adsorbed on the AgNP surface yielding a protein corona; the Ub-coated AgNPs then evolve into clusters held together by an amyloid form of the protein, as revealed by binding of thioflavin T fluorescent dye. Transthyretin, an inhibitor of amyloid-type aggregation, impedes aggregate formation and disrupts preformed AgNP clusters. In the presence of sodium citrate, a common stabilizer that confers an overall negative charge to the NPs, Ub is still adsorbed on the AgNP surface, but no clustering is observed. Ub mutants bearing a single mutation at one edge β strand (i.e. Glu16Val) or in loop (Glu18Val) behave in a radically different manner.

  9. Use of intranasal corticosteroids in the management of congestion and sleep disturbance in pediatric patients with allergic rhinitis.

    PubMed

    Lanier, Bob Q

    2008-06-01

    Allergic rhinitis affects a large number of children and exerts a considerable socioeconomic impact. It is underdiagnosed and inadequately treated, which predisposes children to potentially serious comorbidities. Allergic rhinitis symptoms may create nighttime breathing problems and sleep disturbances and have a negative effect on a child's ability to learn in the classroom. Although antihistamines have shown efficacy in relieving many symptoms, they have little effect on nasal congestion. This article summarizes the advantages of intranasal corticosteroids, including their effectiveness against congestion and excellent safety profile. Intranasal corticosteroids with minimal systemic bioavailability provide topical drug delivery that minimizes the potential for systemic side-effects.

  10. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin

    2016-08-01

    Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient

  11. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.

    PubMed

    Singh, Jasvinder; Pandit, Sreenivas; Bramwell, Vincent W; Alpar, H Oya

    2006-02-01

    Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.

  12. Gene Silencing of SOCS3 by siRNA Intranasal Delivery Inhibits Asthma Phenotype in Mice

    PubMed Central

    Mazzeo, Carla; Gámez, Cristina; Rodriguez Marco, Ainara; de Zulueta, Ana; Sanz, Veronica; Bilbao, Izaskun; Ruiz-Cabello, Jesús; Zubeldia, Jose M.; del Pozo, Victoria

    2014-01-01

    Suppresors of cytokine signaling (SOCS) proteins regulate cytokine responses and control immune balance. Several studies have confirmed that SOCS3 is increased in asthmatic patients, and SOCS3 expression is correlated with disease severity. The objective of this study was to evaluate if delivering of SOCS3 short interfering RNA (siRNA) intranasally in lungs could be a good therapeutic approach in an asthma chronic mouse model. Our results showed that intranasal treatment with SOCS3-siRNA led to an improvement in the eosinophil count and the normalization of hyperresponsiveness to methacholine. Concomitantly, this treatment resulted in an improvement in mucus secretion, a reduction in lung collagen, which are prominent features of airway remodeling. The mechanism implies JAK/STAT and RhoA/Rho-kinase signaling pathway, because we found a decreasing in STAT3 phosphorylation status and down regulation of RhoA/Rho-kinase protein expression. These results might lead to a new therapy for the treatment of chronic asthma. PMID:24637581

  13. A novel vaccinological evaluation of intranasal vaccine and adjuvant safety for preclinical tests.

    PubMed

    Sasaki, Eita; Kuramitsu, Madoka; Momose, Haruka; Kobiyama, Kouji; Aoshi, Taiki; Yamada, Hiroshi; Ishii, Ken J; Mizukami, Takuo; Hamaguchi, Isao

    2017-02-01

    Vaccines are administered to healthy humans, including infants, so the safety and efficacy must be very high. Therefore, evaluating vaccine safety in preclinical and clinical studies, according to World Health Organization guidelines, is crucial for vaccine development and clinical use. A change in the route of administration is considered to alter a vaccine's immunogenicity. Several adjuvants have also been developed and approved for use in vaccines. However, the addition of adjuvants to vaccines may cause unwanted immune responses, including facial nerve paralysis and narcolepsy. Therefore, a more accurate and comprehensive strategy must be used to develope next-generation vaccines for ensuring vaccine safety. Previously, we have developed a system with which to evaluate vaccine safety in rats using a systematic vaccinological approach and 20 marker genes. In this study, we developed a safety evaluation system for nasally administered influenza vaccines and adjuvanted influenza vaccines using these marker genes. Expression of these genes increased dose-dependent manner when mice were intranasally administered the toxicity reference vaccine. When the adjuvant CpG K3 or a CpG-K3-combined influenza vaccine was administered intranasally, marker gene expression increased in a CpG-K3-dose-dependent way. A histopathological analysis indicated that marker gene expression correlated with vaccine- or adjuvant-induced phenotypic changes in the lung and nasal mucosa. We believe that the marker genes expression analyses will be useful in preclinical testing, adjuvant development, and selecting the appropriate dose of adjuvant in nasal administration vaccines.

  14. Intranasal Immunization of Mice to Avoid Interference of Maternal Antibody against H5N1 Infection

    PubMed Central

    Zhang, Fenghua; Peng, Bo; Chang, Haiyan; Zhang, Ran; Lu, Fangguo; Wang, Fuyan; Fang, Fang

    2016-01-01

    Maternally-derived antibodies (MDAs) can protect offspring against influenza virus infection but may also inhibit active immune responses. To overcome MDA- mediated inhibition, active immunization of offspring with an inactivated H5N1 whole-virion vaccine under the influence of MDAs was explored in mice. Female mice were vaccinated twice via the intraperitoneal (IP) or intranasal (IN) route with the vaccine prior to mating. One week after birth, the offspring were immunized twice via the IP or IN route with the same vaccine and then challenged with a lethal dose of a highly homologous virus strain. The results showed that, no matter which immunization route (IP or IN) was used for mothers, the presence of MDAs severely interfered with the active immune response of the offspring when the offspring were immunized via the IP route. Only via the IN immunization route did the offspring overcome the MDA interference. These results suggest that intranasal immunization could be a suitable inoculation route for offspring to overcome MDA interference in the defense against highly pathogenic H5N1 virus infection. This study may provide references for human and animal vaccination to overcome MDA-induced inhibition. PMID:27280297

  15. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema.

    PubMed

    Hegab, Ahmed E; Kubo, Hiroshi; Yamaya, Mutsuo; Asada, Masanori; He, Mei; Fujino, Naoya; Mizuno, Shinya; Nakamura, Toshikazu

    2008-08-01

    Hepatocyte growth factor (HGF) has multiple biological effects on stem cells, epithelial proliferation, and wound healing. In this study, we investigated a possible therapeutic benefit of intranasal HGF on elastase-induced emphysema, and assessed the role of stem/progenitor cells in this process. HGF was given twice a week for 1-4 weeks after the establishment of emphysema in mice. HGF inhalation significantly ameliorated the enlargement of airspaces and alveolar wall destruction. Also, elevated static lung compliance returned to control levels within 2 weeks of HGF treatment. The expressions of stem-cell markers, c-kit, stem-cell antigen 1 (Sca-1), and CD34 were also significantly influenced by HGF. Most of the c-kit(+) cells were bone marrow derived, while most Sca-1(+) were lung endogenous cells. CD34(+) cells were from both sources, and a portion of the endogenous CD34(+) cells was also Sca-1(+). Further, HGF increased the expression levels of proliferating cell nuclear antigen (PCNA) and cytokeratin-19. Also, their immunohistochemical staining patterns were colocalized, indicative of epithelial multiplication. The results of the study show that intranasal treatment with HGF reverses both the physiological and morphometric changes of lung emphysema, possibly through stem-cell mobilization and alveolar regeneration, providing a nonsurgical treatment and suggesting the possibility of achieving a similar effect in humans.

  16. Intranasal oxytocin dampens cue-elicited cigarette craving in daily smokers: a pilot study.

    PubMed

    Miller, Melissa A; Bershad, Anya; King, Andrea C; Lee, Royce; de Wit, Harriet

    2016-12-01

    Despite moderate success with pharmacological and behavioral treatments, smoking relapse rates remain high, and many smokers report that smoking cues lead to relapse. Therefore, treatments that target cue reactivity are needed. One candidate for reducing craving is the neuropeptide oxytocin (OT). Here, we investigated the effects of intranasal OT on two types of craving for cigarettes: craving following overnight abstinence and craving elicited by smoking-related cues. In this within-subject, placebo-controlled pilot study, smokers (N=17) abstained from smoking for 12 h before attending two sessions randomized to intranasal OT or placebo (i.e. saline nasal spray). On each session, participants received two doses of OT (20 IU) or placebo at 1-h intervals, and rated craving before and after each dose. Spontaneous cigarette craving was assessed after the first spray, and cue-elicited craving was assessed following the second spray. OT did not reduce levels of spontaneous craving after the first spray, but significantly dampened cue-induced smoking craving. These results provide preliminary evidence that OT can reduce cue-induced smoking craving in smokers. These findings provide an important link between preclinical and clinical studies aimed at examining the effectiveness of OT as a novel treatment for drug craving.

  17. Interstitial pneumonia and subclinical infection after intranasal inoculation of murine cytomegalovirus.

    PubMed Central

    Jordan, M C

    1978-01-01

    Although cytomegalovirus (CMV) infections are common throughout the world, little is known about the means of person-to-person transmission. To determine whether infection could be established by a respiratory route, studies were conducted in a murine CMV (MCMV) model by using intranasal inoculation. The infectious dose which resulted in pulmonary and systemic infection of half the mice was 100 plaque-forming units of MCMV. Here, infection was subclinical, but virus replicated in the lungs and subsequently disseminated via the blood to other organs within 7 days. The serum immunofluorescence antibody titer peaked by day 21. None of these mice died, although focal peribronchial interstitial pneumonitis was found in infected animals. In mice given greater than or equal to 10(4) plaque-forming units of MCMV intranasally, severe diffuse interstitial pneumonitis resulted uniformly, closely resembling that seen in immunocompromised patients and in newborn infants, and 20% of the animals died. Normal pulmonary architecture was obliterated by sheets of histiocytes, many containing MCMV intranuclear inclusions, and by accumulation of proteinaceous fluid in the interstitial and alveolar spaces. Of relevance to human disease, these experiments show that MCMV as a sole pathogen can cause severe interstitial pneumonitis in normal mice and that subclinical systemic infection results from respiratory inoculation of small amounts of virus. Images PMID:213384

  18. Evidence for an intranasal immune response to human respiratory syncytial virus infection in cynomolgus macaques.

    PubMed

    Grandin, Clément; Lucas-Hourani, Marianne; Clavel, Marine; Taborik, Fabrice; Vabret, Astrid; Tangy, Frédéric; Contamin, Hugues; Vidalain, Pierre-Olivier

    2015-04-01

    There is no large-scale therapy available against human respiratory syncytial virus (hRSV), a major pathogen responsible for acute respiratory diseases. Macaques represent an interesting animal model to evaluate potential treatments because of their genetic, anatomical and immunological proximity with humans. However, the parameters that influence hRSV growth and control in this model are still poorly understood. We have documented in the following study the influence of age as well as repeated infections on the virological, clinical and immunological parameters of this animal model. Following intranasal inoculation, hRSV replicated in the upper respiratory tract for less than 15 days with no clinical signs regardless of age. Interestingly, we observed the induction of a local immune response at the nasal mucosa as assessed by expression profiles of inflammatory and IFN-stimulated genes. Animals also developed specific antibodies and were immune to reinfection. Thus, we showed that even in infant macaques, intranasal hRSV infection induced both local and systemic immune responses to efficiently control the virus.

  19. Pharmacokinetics of Intranasal Scopolamine Gel Formation During Antiorthostatic Bedrest - A Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Lakshmi, Putcha; Singh, R. P.; Crady, V. A.; Derendorf, H.

    2011-01-01

    Space Motion sickness (SMS) is an age old problem for astronauts on both short and long duration space flights. Scopolamine (SCOP) is the most frequently used drug for the treatment of motion sickness (MS) which is currently available in transdermal patch and tablet dosage forms. These formulations of SCOP are ineffective for the treatment of SMS. Intranasal dosage forms are noninvasive with rapid absorption and enhanced bioavailability thus allowing precise and reduced dosing options in addition to offering rescue and treatment options. As such, an intranasal gel dosage formulation of scopolamine (INSCOP) was developed and Pharmacokinetics (PK) and bioavailability were determined under IND guidelines. The present clinical trial compares PK and bioavailability of INSCOP in 12 normal, healthy subjects (6 male/ 6 female) during ambulation (AMB) and antiorthostatic bedrest (ABR) used as a ground-based microgravity analog. Subjects received 0.2 and 0.4 mg doses of INSCOP during AMB and ABR in a four-way crossover design. Results indicated no difference between AMB and ABR in PK parameters after 0.2 mg dose. Clearance (Cls) decreased with a concomitant increase in maximum concentration and area under concentration versus time curve (AUC) during ABR after the 0.4 mg dose. This difference in AUC and Cls at the higher but not the lower dose during ABR may suggest that ABR may affect metabolism and/or clearance at higher doses of INSCOP. These results indicate that dosing adjustment may be required for treatment of SMS with INSCOP in space.

  20. Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency.

    PubMed

    Boche, Mithila; Pokharkar, Varsha

    2016-05-20

    To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144 ± 0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.

  1. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment.

    PubMed

    Sood, Sumeet; Jain, Kunal; Gowthamarajan, K

    2014-01-01

    The objective of the study was to optimize curcumin nanoemulsion for intranasal delivery using design of experiment. Box-Behnken design was constructed using oil, surfactant and co-surfactant concentration as independent variables and their affect on response y1 (globule size) and y2 (zeta potential) were studied. The ANOVA test identified the significant factors that affected the responses. For globule size, percentage of oil, surfactant and co-surfactant were identified as significant model terms whereas for zeta potential, oil and co-surfactant were found to be significant. Critical factors affecting the responses were identified using perturbation and contour plots. The derived polynomial equation and contour graph aid in predicting the values of selected independent variables for preparation of optimum nanoemulsion with desired properties. Further, 2(4) factorial design was used to study influence of chitosan on particle size and zeta potential. The formulations were subjected to in vitro cytotoxicity using SK-N-SH cell line and nasal ciliotoxicity studies. The developed formulations did not show any toxicity and were safe for intranasal delivery for brain targeting. In vitro diffusion studies revealed that nanoemulsions had a significantly higher release compared to drug solution. Ex vivo diffusion studies were carried out using sheep nasal mucosa fixed onto Franz diffusion cells. Mucoadhesive nanoemulsion showed higher flux and permeation across sheep nasal mucosa.

  2. Study of sodium hyaluronate-based intranasal formulations containing micro- or nanosized meloxicam particles.

    PubMed

    Bartos, Csilla; Ambrus, Rita; Sipos, Péter; Budai-Szűcs, Mária; Csányi, Erzsébet; Gáspár, Róbert; Márki, Árpád; Seres, Adrienn B; Sztojkov-Ivanov, Anita; Horváth, Tamás; Szabó-Révész, Piroska

    2015-08-01

    This article reports on the micro- and nanonization of meloxicam (MEL) with the aim of developing pre-dispersions as intermediates for the design of intranasal formulations. As a new approach, combined wet milling technology was developed in order to reduce the particle size of the MEL. Different milling times resulted in micro- or nanosized MEL in the pre-dispersions with polyvinyl alcohol as stabilizer agent, which were directly used for preparing intranasal liquid formulations with the addition of sodium hyaluronate as mucoadhesive agent. Reduction of the MEL particle size into the nano range led to increased saturation solubility and dissolution velocities, and increased adhesiveness to surfaces as compared with microsized MEL particles. A linear correlation was demonstrated between the specific surface area of MEL and the AUC. The in vitro and in vivo studies indicated that the longer residence time and the uniform distribution of nano MEL spray throughout an artificial membrane and the nasal mucosa resulted in better diffusion and a higher AUC. Nanosized MEL may be suggested for the development of an innovative dosage form with a different dose of the drug, as a possible administration route for pain management.

  3. Effects of single dose intranasal oxytocin on social cognition in schizophrenia.

    PubMed

    Davis, Michael C; Lee, Junghee; Horan, William P; Clarke, Angelika D; McGee, Mark R; Green, Michael F; Marder, Stephen R

    2013-07-01

    Deficits in social cognition are common in schizophrenia and predict poor community functioning. Given the current limitations of psychosocial treatments and the lack of pharmacological treatments for social cognitive deficits, the development of novel therapeutic agents could greatly enhance functional recovery in schizophrenia. This study evaluated whether a single dose of intranasal oxytocin acutely improves social cognitive functioning in schizophrenia. Twenty-three male veterans with schizophrenia completed baseline assessments of social cognition that were divided into lower-level (facial affect perception, social perception, detection of lies) and higher-level (detection of sarcasm and deception, empathy) processes. One week later, patients received the same battery after being randomized to a single dose of 40 IU intranasal oxytocin or placebo. Though the groups did not differ significantly on the social cognition composite score, oxytocin improved performance for the higher-level social cognitive tasks (Cohen's d=1.0, p=0.045). Subjects were unable to accurately guess which treatment they had received. The improvements found in higher-level social cognition encourage further studies into the therapeutic potential of oxytocin in schizophrenia.

  4. Intranasal Delivery of Recombinant NT4-NAP/AAV Exerts Potential Antidepressant Effect.

    PubMed

    Ma, Xian-Cang; Chu, Zheng; Zhang, Xiao-Ling; Jiang, Wen-Hui; Jia, Min; Dang, Yong-Hui; Gao, Cheng-Ge

    2016-06-01

    The present study was designed to construct a recombinant adeno-associated virus (rAAV) which can express NAP in the brain and examine whether this virus can produce antidepressant effects on C57 BL/6 mice that had been subjected to open field test and forced swimming test, via nose-to-brain pathway. When the recombinant plasmid pGEM-T Easy/NT4-NAP was digested by EcoRI, 297 bp fragments can be obtained and NT4-NAP sequence was consistent with the designed sequence confirmed by DNA sequencing. When the recombinant plasmid pSSCMV/NT4-NAP was digested by EcoRI, 297 bp fragments is visible. Immunohistochemical staining of fibroblasts revealed that expression of NAP was detected in NT4-NAP/AAV group. Intranasal delivery of NT4-NAP/AAV significantly reduced immobility time when the FST was performed after 1 day from the last administration. The effects observed in the FST could not be attributed to non-specific increases in activity since intranasal delivery of NT4-NAP/AAV did not alter the behavior of the mice during the open field test. The results indicated that a recombinant AAV vector which could express NAP in cells was successfully constructed and NAP may be a potential target for therapeutic action of antidepressant treatment.

  5. Antidepressant effect of recombinant NT4-NAP/AAV on social isolated mice through intranasal route.

    PubMed

    Liu, Fei; Liu, You-Ping; Lei, Gang; Liu, Peng; Chu, Zheng; Gao, Cheng-Ge; Dang, Yong-Hui

    2017-02-07

    The purpose of the present study was to observe the depression-like behavior induced by social isolation; detect the antidepressant effect of a recombinant adeno-associated virus (AAV) expressing NAP on social isolation mice by intranasal delivery. After construction of NT4-NAP/AAV, expression of NAP was confirmed in vitro. 3-week-old C57/BL mice were bred individually in cages as social isolation-rearing. Six weeks later, the first subset of mice underwent behavioral tests and western blot; the second was for enzyme-linked immunosorbent assay. NT4-NAP/AAV was delivered quaque die by nasal administration for consecutive 10 days before behavioral test. Several depression-like behaviors were observed in social isolation mice, including decreased relative sucrose preference, longer immobility time in forced swimming test, lower plasma corticosterone and decreased brain-derived neurotrophic factor in hippocampus. Thus, social isolation procedure appears to be an animal model of depression with good face and construct validity. What's more, the antidepressant effect in social isolation-rearing mice was observed after intranasal administration of NT4-NAP/AAV, suggesting that this might be a promising therapeutic strategy for depressive disorder.

  6. High-dose-rate brachytherapy for intranasal tumours in dogs: results of a pilot study.

    PubMed

    Klueter, S; Krastel, D; Ludewig, E; Reischauer, A; Heinicke, F; Pohlmann, S; Wolf, U; Grevel, V; Hildebrandt, G

    2006-12-01

    This prospective study describes the feasibility and toxicity of (192)Iridium high-dose-rate (HDR) brachytherapy as an alternative strategy for the treatment of canine intranasal tumours. Fifteen dogs with malignant intranasal tumours were treated twice weekly using a hypofractionated protocol with eight fractions, 5 Gy per fraction, resulting in a total dose of 40 Gy. Acute and chronic adverse side-effects appeared to be rare. Only 7% of the acute side-effects and 5% of the chronic were classified as severe (grade 3). Eight dogs showed clinical complete remission, and five dogs had partial remission, with a resolution of tumour-related symptoms. Magnetic resonance imaging showed a reduced tumour mass in 12 cases. Median survival time was 17 months (range 4-48 months), with four dogs (three without disease) still alive. Median time to recurrence of these dogs was 14 months. In nine dogs, progression or recurrence of the tumour was the cause of death. This study suggests that HDR brachytherapy is feasible and well tolerated.

  7. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives

    PubMed Central

    Xu, Yingying; Yuen, Pak-Wai; Lam, Jenny Ka-Wing

    2014-01-01

    Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents. PMID:25014738

  8. Repeated intranasal exposure to microcystin-LR affects lungs but not nasal epithelium in mice.

    PubMed

    Oliveira, Vinícius R; Mancin, Viviane G L; Pinto, Eliete F; Soares, Raquel M; Azevedo, Sandra M F O; Macchione, Mariangela; Carvalho, Alysson R; Zin, Walter A

    2015-09-15

    Microcystin-LR (MC-LR) is a harmful cyanotoxin able to induce adverse outcomes in the respiratory system. We aimed to examine the lungs and nasal epithelium of mice following a sub-chronic exposure to MC-LR. Swiss mice were intranasally instilled with 10 μL of distilled water (CTRL, n = 10) or 6.7 ng/kg of MC-LR diluted in 10 μL of distilled water (TOX, n = 8) during 30 consecutive days. Respiratory mechanics was measured in vivo and histology measurements (morphology and inflammation) were assessed in lungs and nasal epithelium samples 24 h after the last intranasal instillation. Despite the lack of changes in the nasal epithelium, TOX mice displayed an increased amount of PMN cells in the lungs (× 10(-3)/μm(2)), higher lung static elastance (cmH2O/mL), resistive and viscoelastic/inhomogeneous pressures (cmH2O) (7.87 ± 3.78, 33.96 ± 2.64, 1.03 ± 0.12, 1.01 ± 0.08, respectively) than CTRL (5.37 ± 4.02, 26.65 ± 1.24, 0.78 ± 0.06, 0.72 ± 0.05, respectively). Overall, our findings suggest that the nasal epithelium appears more resistant than lungs in this model of MC-LR intoxication.

  9. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats.

    PubMed

    O'Konek, Jessica J; Makidon, Paul E; Landers, Jeffrey J; Cao, Zhengyi; Malinczak, Carrie-Anne; Pannu, Jessie; Sun, Jennifer; Bitko, Vira; Ciotti, Susan; Hamouda, Tarek; Wojcinski, Zbigniew W; Lukacs, Nicholas W; Fattom, Ali; Baker, James R

    2015-01-01

    Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection. This protection was achieved without the induction of airway hyper-reactivity or a Th2-skewed immune response. The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of RSV disease. Thus, we extended these rodent studies to the more permissive cotton rat model. Intranasal immunization of the nanoemulsion-adjuvanted RSV vaccines induced high antibody titers and a robust Th1-skewed cellular response. Importantly, vaccination provided sterilizing cross-protective immunity against a heterologous RSV challenge and did not induce marked or severe histological effects or eosinophilia in the lung after viral challenge. Overall, these data demonstrate that nanoemulsion-formulated whole RSV vaccines are both safe and effective for immunization in multiple animal models.

  10. Platinum nanoparticles decorated robust binary transition metal nitride-carbon nanotubes hybrid as an efficient electrocatalyst for the methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhan, Guohe; Fu, Zhenggao; Sun, Dalei; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2016-09-01

    Titanium cobalt nitride (TiCoN)-CNTs hybrid support is prepared by a facile and efficient method, including a one-pot solvothermal process followed by a nitriding process, and this hybrid support is further decorated with Pt nanoparticles to catalyze the oxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Notably, Pt/CNTs@TiCoN catalyst exhibits a much higher mass activity and durability than that of the conventional Pt/C (JM) for methanol oxidation. The experimental data indicates that the CNTs@TiCoN hybrid support combines the merits of the CNTs's high conductivity and the superb corrosion resistance of external TiCoN coating.

  11. Responsive foams for nanoparticle delivery.

    PubMed

    Tang, Christina; Xiao, Edward; Sinko, Patrick J; Szekely, Zoltan; Prud'homme, Robert K

    2015-09-01

    We have developed responsive foam systems for nanoparticle delivery. The foams are easy to make, stable at room temperature, and can be engineered to break in response to temperature or moisture. Temperature-responsive foams are based on the phase transition of long chain alcohols and could be produced using medical grade nitrous oxide as a propellant. These temperature-sensitive foams could be used for polyacrylic acid (PAA)-based nanoparticle delivery. We also discuss moisture-responsive foams made with soap pump dispensers. Polyethylene glycol (PEG)-based nanoparticles or PMMA latex nanoparticles were loaded into Tween 20 foams and the particle size was not affected by the foam formulation or foam break. Using biocompatible detergents, we anticipate this will be a versatile and simple approach to producing foams for nanoparticle delivery with many potential pharmaceutical and personal care applications.

  12. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans

    PubMed Central

    Feng, Chunliang; Lori, Adriana; Waldman, Irwin D.; Binder, Elisabeth B.; Haroon, Ebrahim; Rilling, James K.

    2015-01-01

    Intranasal oxytocin (OT) can modulate social-emotional functioning and related brain activity in humans. Consequently, OT has been discussed as a potential treatment for psychiatric disorders involving social behavioral deficits. However, OT effects are often heterogeneous across individuals. Here we explore individual differences in OT effects on the neural response to social cooperation as a function of the rs53576 polymorphism of the oxytocin receptor gene (OXTR). Previously, we conducted a double-blind, placebo-controlled study in which healthy men and women were randomized to treatment with intranasal OT or placebo. Afterwards, they were imaged with fMRI while playing an iterated Prisoner’s Dilemma Game with same-sex partners. Within the left ventral caudate nucleus, intranasal OT treatment increased activation to reciprocated cooperation in men, but tended to decrease activation in women. Here, we show that these sex differences in OT effects are specific to individuals with the rs53576 GG genotype, and are not found for other genotypes (rs53576 AA/AG). Thus, OT may increase the reward or salience of positive social interactions for male GG homozygotes, while decreasing those processes for female GG homozygotes. These results suggest that rs53576 genotype is an important variable to consider in future investigations of the clinical efficacy of intranasal OT treatment. PMID:26178189

  13. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans.

    PubMed

    Feng, C; Lori, A; Waldman, I D; Binder, E B; Haroon, E; Rilling, J K

    2015-09-01

    Intranasal oxytocin (OT) can modulate social-emotional functioning and related brain activity in humans. Consequently, OT has been discussed as a potential treatment for psychiatric disorders involving social behavioral deficits. However, OT effects are often heterogeneous across individuals. Here we explore individual differences in OT effects on the neural response to social cooperation as a function of the rs53576 polymorphism of the oxytocin receptor gene (OXTR). Previously, we conducted a double-blind, placebo-controlled study in which healthy men and women were randomized to treatment with intranasal OT or placebo. Afterwards, they were imaged with functional magnetic resonance imaging while playing an iterated Prisoner's Dilemma Game with same-sex partners. Within the left ventral caudate nucleus, intranasal OT treatment increased activation to reciprocated cooperation in men, but tended to decrease activation in women. Here, we show that these sex differences in OT effects are specific to individuals with the rs53576 GG genotype, and are not found for other genotypes (rs53576 AA/AG). Thus, OT may increase the reward or salience of positive social interactions for male GG homozygotes, while decreasing those processes for female GG homozygotes. These results suggest that rs53576 genotype is an important variable to consider in future investigations of the clinical efficacy of intranasal OT treatment.

  14. Intranasal BMP9 Ameliorates Alzheimer Disease-Like Pathology and Cognitive Deficits in APP/PS1 Transgenic Mice

    PubMed Central

    Wang, Zigao; Xiong, Lu; Wan, Wenbin; Duan, Lijie; Bai, Xiaojing; Zu, Hengbing

    2017-01-01

    Alzheimer’s disease (AD) is the most common type of dementia and has no effective therapies. Previous studies showed that bone morphogenetic protein 9 (BMP9), an important factor in the differentiation and phenotype maintenance of cholinergic neurons, ameliorated the cholinergic defects resulting from amyloid deposition. These findings suggest that BMP9 has potential as a therapeutic agent for AD. However, the effects of BMP9 on cognitive function in AD and its underlying mechanisms remain elusive. In the present study, BMP9 was delivered intranasally to 7-month-old APP/PS1 mice for 4 weeks. Our data showed that intranasal BMP9 administration significantly improved the spatial and associative learning and memory of APP/PS1 mice. We also found that intranasal BMP9 administration significantly reduced the amyloid β (Aβ) plaques overall, inhibited tau hyperphosphorylation, and suppressed neuroinflammation in the transgenic mouse brain. Furthermore, intranasal BMP9 administration significantly promoted the expression of low-density lipoprotein receptor-related protein 1 (LRP1), an important membrane receptor involved in the clearance of amyloid β via the blood-brain barrier (BBB), and elevated the phosphorylation levels of glycogen synthase kinase-3β (Ser9), which is considered the main kinase involved in tau hyperphosphorylation. Our results suggest that BMP9 may be a promising candidate for treating AD by targeting multiple key pathways in the disease pathogenesis. PMID:28228716

  15. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin.

    PubMed

    Wang, Shuang; Chen, Ping; Zhang, Lin; Yang, Chunfen; Zhai, Guangxi

    2012-12-01

    The purpose of our study was to develop a microemulsion-based in situ ion-sensitive gelling system for intranasal administration of curcumin. A new microemulsion composition for curcumin was optimized with the simple lattice design. And the microemulsion-based in situ ion-sensitive gelling system consisted of Capryol 90 as oil phase, Solutol HS15 as surfactant, Transcutol HP as cosurfactant and 0.3% DGG solution as water phase. The physicochemical properties such as morphology, droplet size distribution, zeta value and the in vitro release were investigated. In addition, the histological section studies on the reaction between the obtained formulation and nasal mucosa showed that the microemulsion-based in situ ion-sensitive gelling system could not produce obvious damage to nasal mucosa. The pharmacokinetics results showed that the absolute bioavailability of curcumin in the microemulsion-based in situ ion-sensitive gelling system was 55.82% by intranasal administration. And the brain targeting index (BTI) was 6.50, and in the tissue distribution experiment, the value of (AUC(brain)/AUC(blood)) following intranasal administration was higher than that following intravenous administration, suggesting that the obvious brain targeting property by nasal delivery be attributed to a direct nose-to-brain drug transport. It can be concluded that the microemulsion-based in situ gelling as an effective and safe vehicle could greatly enhance the in vivo absorption and facilitate the delivery of curcumin to brain by intranasal administration.

  16. Intranasal Insulin Prevents Cognitive Decline, Cerebral Atrophy and White Matter Changes in Murine Type I Diabetic Encephalopathy

    ERIC Educational Resources Information Center

    Francis, George J.; Martinez, Jose A.; Liu, Wei Q.; Xu, Kevin; Ayer, Amit; Fine, Jared; Tuor, Ursula I.; Glazner, Gordon; Hanson, Leah R.; Frey, William H., II; Toth, Cory

    2008-01-01

    Insulin deficiency in type I diabetes may lead to cognitive impairment, cerebral atrophy and white matter abnormalities. We studied the impact of a novel delivery system using intranasal insulin (I-I) in a mouse model of type I diabetes (streptozotocin-induced) for direct targeting of pathological and cognitive deficits while avoiding potential…

  17. Evaluation of submicron emulsion as vehicles for rapid-onset intranasal delivery and improvement in brain targeting of zolmitriptan.

    PubMed

    Yu, Chaoqun; Gu, Pengfei; Zhang, Wenjun; Cai, Cuifang; He, Haibing; Tang, Xing

    2011-11-01

    This study was to evaluate submicron emulsion as a drug carrier for intranasal delivery of zolmitriptan (ZT). Since the drug distribution in submicron emulsion might influence the nasal absorption, two different formulations separately incorporating the drug in oily phase (ZTSE-1) and aqueous phase (ZTSE-2) were assessed. To find the better formulation for rapid-onset intranasal delivery and improvement in brain targeting of ZT, the in vivo nasal absorption of these two formulations was evaluated. The blood and cerebrospinalfluid (CSF) pharmacokinetics of ZTSE-1, ZTSE-2 and ZT solution (ZTS) were evaluated after intranasal administered to anesthetized Wistar rats. The results demonstrated that ZT from ZTSE-1 and ZTSE-2 had better brain targeting efficiency than the ZTS. In plasma and CSF, the ZTSE-2 reached peak concentration much faster than ZTSE-1 and ZTS. The ZTSE-2 also presented significantly higher initial ZT levels in CSF compared with the ZTSE-1 and ZTS. The results indicated that incorporation of ZT in the aqueous phase of submicron emulsion was effective for rapid intranasal delivery of drug to blood and brain, which would offer patients the benefits of rapid relief from migraine.

  18. Intranasal administration of testosterone increased immobile-sniffing, exploratory behavior, motor behavior and grooming behavior in rats.

    PubMed

    Zhang, Guoliang; Shi, Geming; Tan, Huibing; Kang, Yunxiao; Cui, Huixian

    2011-04-01

    Currently, testosterone (T) replacement therapy is typically provided by oral medication, injectable T esters, surgically implanted T pellets, transdermal patches and gels. However, most of these methods of administration are still not ideal for targeting the central nervous system. Recently, therapeutic intranasal T administration (InT) has been considered as another option for delivering T to the brain. In the present study, the effects of 21-day InT treatment were assessed on open field behavior in gonadectomized (GDX) rats and intact rats. Subcutaneous injections of T at same dose were also tested in GDX rats. A total of 12 behavioral events were examined in GDX groups with or without T and in intact groups with or without InT. Significant decreases in open field activity were observed in rats after GDX without InT compared to sham-operated rats. The open field activity scores for most tests significantly increased with InT treatment in GDX rats and in intact rats compared with the corresponding GDX rats and intact rats. Intranasal administration of T improved the reduced behaviors resulted from T deficiency better than subcutaneous injection of T, demonstrating that T can be delivered to the brain by intranasal administration. Our results suggest that intranasal T delivery is an effective option for targeting the central nervous system.

  19. Intranasal basic fibroblast growth factor attenuates endoplasmic reticulum stress and brain injury in neonatal hypoxic-ischaemic injury

    PubMed Central

    Lin, Zhenlang; Hu, Yingying; Wang, Zhouguang; Pan, Shulin; Zhang, Hao; Ye, Libing; Zhang, Hongyu; Fang, Mingchu; Jiang, Huai; Ye, Junming; Xiao, Jian; Liu, Li

    2017-01-01

    Brain injury secondary to birth asphyxia is the major cause of death and long-term disability in newborns. Intranasal drug administration enables agents to bypass the blood-brain barrier (BBB) and enter the brain directly. In this study, we determined whether intranasal basic fibroblast growth factor (bFGF) could exert neuroprotective effects in neonatal rats after hypoxic-ischaemic (HI) brain injury and assessed whether attenuation of endoplasmic reticulum (ER) stress was associated with these neuroprotective effects. Rats were subjected to HI brain injury via unilateral carotid artery ligation followed by 2.5 h of hypoxia and then treated with intranasal bFGF or vehicle immediately after HI injury. We found that the unfolded protein response (UPR) was strongly activated after HI injury and that bFGF significantly reduced the levels of the ER stress signalling proteins GRP78 and PDI. bFGF also decreased brain infarction volumes and conferred long-term neuroprotective effects against brain atrophy and neuron loss after HI brain injury. Taken together, our results suggest that intranasal bFGF provides neuroprotection function partly by inhibiting HI injury-induced ER stress. bFGF may have potential as a therapy for human neonates after birth asphyxia. PMID:28337259

  20. Intranasal administration of the dopaminergic agonists L-DOPA, amphetamine, and cocaine increases dopamine activity in the neostriatum: a microdialysis study in the rat.

    PubMed

    De Souza Silva, M A; Mattern, C; Häcker, R; Nogueira, P J; Huston, J P; Schwarting, R K

    1997-01-01

    The effectiveness of intranasal drug administration to stimulate central neuronal systems is well known from drug addiction and has also been considered as an alternative pharmacokinetic approach to treat brain disorders such as Parkinson's disease. In the present study, the possible neurochemical effects of intranasal administration of the psychostimulants cocaine and amphetamine and of the antiparkinsonian drug L-DOPA were analyzed. By using in vivo microdialysis in the urethane-anesthetized rat, it was found that unilateral intranasal administration of either of the psychostimulants led to huge and rapid increases of extracellular dopamine levels in the neostriatum followed by decreases of its metabolites dihydroxyphenylacetic acid and homovanillic acid. Furthermore, intranasal administration of L-DOPA, but not of the saline vehicle, also led to increased extracellular levels of neostriatal dopamine and to increases of its metabolites. Because the effect of intranasal L-DOPA on neostriatal dopamine was observed only ipsilaterally but not contralaterally to the side of intranasal drug administration, it can be hypothesized that L-DOPA was not effective via passage through the circulation but may have acted through a neuronal or an extraneuronal route. These data provide neurochemical evidence that the intranasal route may not only be efficient in drug abuse, but may also be useful to target the brain therapeutically, as in the case of neurodegenerative brain disorders.

  1. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease.

    PubMed

    Hanson, Leah R; Frey, William H

    2008-12-10

    Intranasal delivery provides a practical, non-invasive method of bypassing the blood-brain barrier (BBB) to deliver therapeutic agents to the brain and spinal cord. This technology allows drugs that do not cross the BBB to be delivered to the central nervous system within minutes. It also directly delivers drugs that do cross the BBB to the brain, eliminating the need for systemic administration and its potential side effects. This is possible because of the unique connections that the olfactory and trigeminal nerves provide between the brain and external environment. Intranasal delivery does not necessarily require any modification to therapeutic agents. A wide variety of therapeutics, including both small molecules and macromolecules, can be targeted to the olfactory system and connected memory areas affected by Alzheimer's disease. Using the intranasal delivery system, researchers have reversed neurodegeneration and rescued memory in a transgenic mouse model of Alzheimer's disease. Intranasal insulin-like growth factor-I, deferoxamine, and erythropoietin have been shown to protect the brain against stroke in animal models. Intranasal delivery has been used to target the neuroprotective peptide NAP to the brain to treat neurodegeneration. Intranasal fibroblast growth factor-2 and epidermal growth factor have been shown to stimulate neurogenesis in adult animals. Intranasal insulin improves memory, attention, and functioning in patients with Alzheimer's disease or mild cognitive impairment, and even improves memory and mood in normal adult humans. This new method of delivery can revolutionize the treatment of Alzheimer's disease, stroke, and other brain disorders.

  2. Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions.

    PubMed

    Elgetti Brodersen, Kasper; Koren, Klaus; Lichtenberg, Mads; Kühl, Michael

    2016-07-01

    Seagrasses can modulate the geochemical conditions in their immediate rhizosphere through the release of chemical compounds from their below-ground tissue. This is a vital chemical defence mechanism, whereby the plants detoxify the surrounding sediment. Using novel nanoparticle-based optical O2 and pH sensors incorporated in reduced and transparent artificial sediment, we investigated the spatio-temporal dynamics of pH and O2 within the entire rhizosphere of Zostera marina L. during experimental manipulations of light and temperature. We combined such measurements with O2 microsensor measurements of the photosynthetic productivity and respiration of seagrass leaves. We found pronounced pH and O2 microheterogeneity within the immediate rhizosphere of Z. marina, with higher below-ground tissue oxidation capability and rhizoplane pH levels during both light exposure of the leaf canopy and elevated temperature, where the temperature-mediated stimuli of biogeochemical processes seemed to predominate. Low rhizosphere pH microenvironments appeared to correlate with plant-derived oxic microzones stimulating local sulphide oxidation and thus driving local proton generation, although the rhizoplane pH levels generally where much higher than the bulk sediment pH. Our data show that Z. marina can actively alter its rhizosphere pH microenvironment alleviating the local H2 S toxicity and enhancing nutrient availability in the adjacent sediment via geochemical speciation shift.

  3. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats.

    PubMed

    Jiang, Y; Wei, N; Lu, T; Zhu, J; Xu, G; Liu, X

    2011-01-13

    Inflammation plays a vital role in the pathogenesis of ischemic stroke. Brain-derived neurotrophic factor (BDNF) may protect brain tissues from ischemic injury. In this study, we investigated whether intranasal BDNF exerted neuroprotection against ischemic insult by modulating the local inflammation in rats with ischemic stroke. Rats were subjected to temporary occlusion of the right middle cerebral artery (120 min) and intranasal BDNF or vehicle was adminstrated 2 h after reperfusion. Infarct volume and neuron injury were measured using triphenyltetrazolium chloride, Nissl staining and TUNEL assay, respectively. Microglia were detected by immunohistofluorescence. Tumor necrosis factor-α, interleukin10 and mRNAs were evaluated by enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. DNA-binding activity of nuclear factor-kappa B was measured by electrophoretic mobility shift assay. BDNF level in brain tissues was markedly raised following intranasal administration. There were more Nissl positive and less TUNEL positive neurons in BDNF group than in control group while intranasal BDNF did not reduce the infarct volume significantly (n=6, 0.27±0.04 vs. 0.24±0.05, P>0.05). BDNF increased the number of activated microglia (OX-42 positive) and phagocytotic microglia (ED1 positive). BDNF suppressed tumor necrosis factor-α and mRNA expression while increasing the interleukin10 and mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B (n=6, 49.78±1.23 vs. 52.89±1.64, P<0.05). Our data suggest intranasal BDNF might protect the brain against ischemic insult by modulating local inflammation via regulation of the levels of cellular, cytokine and transcription factor in the experimental stroke.

  4. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection

    PubMed Central

    Marriott, Anthony C.; Dennis, Mike; Kane, Jennifer A.; Gooch, Karen E.; Hatch, Graham; Sharpe, Sally; Prevosto, Claudia; Leeming, Gail; Zekeng, Elsa-Gayle; Staples, Karl J.; Hall, Graham; Ryan, Kathryn A.; Bate, Simon; Moyo, Nathifa; Whittaker, Catherine J.; Hallis, Bassam; Silman, Nigel J.; Lalvani, Ajit; Wilkinson, Tom M.; Hiscox, Julian A.; Stewart, James P.; Carroll, Miles W.

    2016-01-01

    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections. PMID

  5. The neuronal correlates of intranasal trigeminal function – An ALE meta-analysis of human functional brain imaging data

    PubMed Central

    Albrecht, Jessica; Kopietz, Rainer; Frasnelli, Johannes; Wiesmann, Martin; Hummel, Thomas; Lundström, Johan N.

    2009-01-01

    Almost every odor we encounter in daily life has the capacity to produce a trigeminal sensation. Surprisingly, few functional imaging studies exploring human neuronal correlates of intranasal trigeminal function exist, and results are to some degree inconsistent. We utilized activation likelihood estimation (ALE), a quantitative voxel-based meta-analysis tool, to analyze functional imaging data (fMRI/PET) following intranasal trigeminal stimulation with carbon dioxide (CO2), a stimulus known to exclusively activate the trigeminal system. Meta-analysis tools are able to identify activations common across studies, thereby enabling activation mapping with higher certainty. Activation foci of nine studies utilizing trigeminal stimulation were included in the meta-analysis. We found significant ALE scores, thus indicating consistent activation across studies, in the brainstem, ventrolateral posterior thalamic nucleus, anterior cingulate cortex, insula, precentral gyrus, as well as in primary and secondary somatosensory cortices – a network known for the processing of intranasal nociceptive stimuli. Significant ALE values were also observed in the piriform cortex, insula, and the orbitofrontal cortex, areas known to process chemosensory stimuli, and in association cortices. Additionally, the trigeminal ALE statistics were directly compared with ALE statistics originating from olfactory stimulation, demonstrating considerable overlap in activation. In conclusion, the results of this meta-analysis map the human neuronal correlates of intranasal trigeminal stimulation with high statistical certainty and demonstrate that the cortical areas recruited during the processing of intranasal CO2 stimuli include those outside traditional trigeminal areas. Moreover, through illustrations of the considerable overlap between brain areas that process trigeminal and olfactory information; these results demonstrate the interconnectivity of flavor processing. PMID:19913573

  6. Intranasal Coadministration of the Cry1Ac Protoxin with Amoebal Lysates Increases Protection against Naegleria fowleri Meningoencephalitis

    PubMed Central

    Rojas-Hernández, Saúl; Rodríguez-Monroy, Marco A.; López-Revilla, Rubén; Reséndiz-Albor, Aldo A.; Moreno-Fierros, Leticia

    2004-01-01

    Cry1Ac protoxin has potent mucosal and systemic adjuvant effects on antibody responses to proteins or polysaccharides. In this work, we examined whether Cry1Ac increased protective immunity against fatal Naegleria fowleri infection in mice, which resembles human primary amoebic meningoencephalitis. Higher immunoglobulin G (IgG) than IgA anti-N. fowleri responses were elicited in the serum and tracheopulmonary fluids of mice immunized by the intranasal or intraperitoneal route with N. fowleri lysates either alone or with Cry1Ac or cholera toxin. Superior protection against a lethal challenge with 5 × 104 live N. fowleri trophozoites was achieved for immunization by the intranasal route. Intranasal immunization of N. fowleri lysates coadministered with Cry1Ac increased survival to 100%; interestingly, immunization with Cry1Ac alone conferred similar protection to that achieved with amoebal lysates alone (60%). When mice intranasally immunized with Cry1Ac plus lysates were challenged with amoebae, both IgG and IgA mucosal responses were rapidly increased, but only the increased IgG response persisted until day 60 in surviving mice. The brief rise in the level of specific mucosal IgA does not exclude the role that this isotype may play in the early defense against this parasite, since higher IgA responses were detected in nasal fluids of mice intranasally immunized with lysates plus either Cry1Ac or cholera toxin, which, indeed, were the treatments that provided the major protection levels. In contrast, serum antibody responses do not seem to be related to the protection level achieved. Both acquired and innate immune systems seem to play a role in host defense against N. fowleri infection, but further studies are required to elucidate the mechanisms involved in protective effects conferred by Cry1Ac, which may be a valuable tool to improve mucosal vaccines. PMID:15271892

  7. Pharmacokinetic Properties and Human Use Characteristics of an FDA-Approved Intranasal Naloxone Product for the Treatment of Opioid Overdose.

    PubMed

    Krieter, Philip; Chiang, Nora; Gyaw, Shwe; Skolnick, Phil; Crystal, Roger; Keegan, Fintan; Aker, Julie; Beck, Melissa; Harris, Jennifer

    2016-10-01

    Parenteral naloxone has been approved to treat opiate overdose for over 4 decades. Intranasal naloxone, administered "off label" using improvised devices, has been widely used by both first responders and the lay public to treat overdose. However, these improvised devices require training for effective use, and the recommended volumes (2 to 4 mL) exceed those considered optimum for intranasal administration. The present study compared the pharmacokinetic properties of intranasal naloxone (2 to 8 mg) delivered in low volumes (0.1 to 0.2 mL) using an Aptar Unit-Dose device to an approved (0.4 mg) intramuscular dose. A parallel study assessed the ease of use of this device in a simulated overdose situation. All doses of intranasal naloxone resulted in plasma concentrations and areas under the curve greater than those observed following the intramuscular dose; the time to reach maximum plasma concentrations was not different following intranasal and intramuscular administration. Plasma concentrations of naloxone were dose proportional between 2 and 8 mg and independent of whether drug was administered to 1 or both nostrils. In a study using individuals representative of the general population, >90% were able to perform both critical tasks (inserting nozzle into a nostril and pressing plunger) needed to deliver a simulated dose of naloxone without prior training. Based on both pharmacokinetic and human use studies, a 4-mg dose delivered in a single device (0.1 mL) was selected as the final product. This product can be used by first responders and the lay public, providing an important and potentially life-saving intervention for victims of an opioid overdose.

  8. Influenza A Virus Challenge Models in Cynomolgus Macaques Using the Authentic Inhaled Aerosol and Intra-Nasal Routes of Infection.

    PubMed

    Marriott, Anthony C; Dennis, Mike; Kane, Jennifer A; Gooch, Karen E; Hatch, Graham; Sharpe, Sally; Prevosto, Claudia; Leeming, Gail; Zekeng, Elsa-Gayle; Staples, Karl J; Hall, Graham; Ryan, Kathryn A; Bate, Simon; Moyo, Nathifa; Whittaker, Catherine J; Hallis, Bassam; Silman, Nigel J; Lalvani, Ajit; Wilkinson, Tom M; Hiscox, Julian A; Stewart, James P; Carroll, Miles W

    2016-01-01

    Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. Evidence of virus replication and sero-conversion were detected in all four challenge groups, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes was detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models will be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections.

  9. Comparison of Oral and Intranasal Midazolam/Ketamine Sedation in 3-6-year-old Uncooperative Dental Patients.

    PubMed

    Fallahinejad Ghajari, Masoud; Ansari, Ghassem; Soleymani, Ali Asghar; Shayeghi, Shahnaz; Fotuhi Ardakani, Faezeh

    2015-01-01

    Background and aims. There are several known sedative drugs, with midazolam and ketamine being the most commonly used drugs in children. The aim of this study was to compare the effect of intranasal and oral midazolam plus ketamine in children with high levels of dental anxiety. Materials and methods. A crossover double-blind clinical trial was conducted on 23 uncooperative children aged 3-6 (negative or definitely negative by Frankel scale), who required at least two similar dental treatment visits. Cases were randomly given ketamine (10 mg/kg) and midazolam (0.5 mg/kg) through oral or intranasal routes in each visit. The sedative efficacy of the agents was assessed by an overall success rate judged by two independent pediatric dentists based on Houpt's scale for sedation. Data analysis was carried out using Wilcoxon test and paired t-test. Results. Intranasal administration was more effective in reduction of crying and movement during dental procedures compared to oral sedation (P<0.05). Overall behavior control was scored higher in nasal compared to oral routes at the time of LA injection and after 15 minutes (P<0.05). The difference was found to be statistically significant at the start and during treatment. However, the difference was no longer significant after 30 minutes, with the vital signs remaining within physiological limits. Recovery time was longer in the intranasal group (P<0.001) with a more sleepy face (P=0.004). Conclusion. . Intranasal midazolam/ketamine combination was more satisfactory and effective than the oral route when sedating uncooperative children.

  10. Comparison of Oral and Intranasal Midazolam/Ketamine Sedation in 3-6-year-old Uncooperative Dental Patients

    PubMed Central

    Fallahinejad Ghajari, Masoud; Ansari, Ghassem; Soleymani, Ali Asghar; Shayeghi, Shahnaz; Fotuhi Ardakani, Faezeh

    2015-01-01

    Background and aims. There are several known sedative drugs, with midazolam and ketamine being the most commonly used drugs in children. The aim of this study was to compare the effect of intranasal and oral midazolam plus ketamine in children with high levels of dental anxiety. Materials and methods.A crossover double-blind clinical trial was conducted on 23 uncooperative children aged 3-6 (negative or definitely negative by Frankel scale), who required at least two similar dental treatment visits. Cases were randomly given ketamine (10 mg/kg) and midazolam (0.5 mg/kg) through oral or intranasal routes in each visit. The sedative efficacy of the agents was assessed by an overall success rate judged by two independent pediatric dentists based on Houpt’s scale for sedation. Data analysis was carried out using Wilcoxon test and paired t-test. Results. Intranasal administration was more effective in reduction of crying and movement during dental procedures compared to oral sedation (P<0.05). Overall behavior control was scored higher in nasal compared to oral routes at the time of LA injection and after 15 minutes (P<0.05). The difference was found to be statistically significant at the start and during treatment. However, the difference was no longer significant after 30 minutes, with the vital signs remaining within physiological limits. Recovery time was longer in the intranasal group (P<0.001) with a more sleepy face (P=0.004). Conclusion.. Intranasal midazolam/ketamine combination was more satisfactory and effective than the oral route when sedating uncooperative children. PMID:26236429

  11. Intranasal haloperidol-loaded miniemulsions for brain targeting: Evaluation of locomotor suppression and in-vivo biodistribution.

    PubMed

    El-Setouhy, Doaa Ahmed; Ibrahim, A B; Amin, Maha M; Khowessah, Omneya M; Elzanfaly, Eman S

    2016-09-20

    Haloperidol is a commonly prescribed antipsychotic drug currently administered as oral and injectable preparations. This study aimed to prepare haloperidol intranasal miniemulsion helpful for psychiatric emergencies and exhibiting lower systemic exposure and side effects associated with non-target site delivery. Haloperidol miniemulsions were successfully prepared by spontaneous emulsification adopting 2(3) factorial design. The effect of three independent variables at two levels each namely; oil type (Capmul®-Capryol™90), lipophilic emulsifier type (Span 20-Span 80) and HLB value (12-14) on globule size, PDI and percent locomotor activity inhibition in mice was evaluated. The optimized formula (F4, Capmul®, Tween 80/Span 20, HLB 14) showed globule size of 209.5±0.98nm, PDI of 0.402±0.03 and locomotor inhibition of 83.89±9.15% with desirability of 0.907. Biodistribution study following intranasal and intravenous administration of the radiolabeled (99m)Tc mucoadhesive F4 revealed that intranasal administration achieved 1.72-fold higher and 6 times faster peak brain levels compared with intravenous administration. Drug targeting efficiency percent and brain/blood exposure ratios remained above 100% and 1 respectively after intranasal instillation compared to a maximum brain/blood exposure ratio of 0.8 post intravenous route. Results suggested the CNS delivery of major fraction of haloperidol via direct transnasal to brain pathway that can be a promising alternative to oral and parenteral routes in chronic and acute situations. Haloperidol concentration of 275.6ng/g brain 8h post intranasal instillation, higher than therapeutic concentration range of haloperidol (0.8 to 5.15ng/ml), suggests possible sustained delivery of the drug through nasal route.

  12. Intranasal coadministration of the Cry1Ac protoxin with amoebal lysates increases protection against Naegleria fowleri meningoencephalitis.

    PubMed

    Rojas-Hernández, Saúl; Rodríguez-Monroy, Marco A; López-Revilla, Rubén; Reséndiz-Albor, Aldo A; Moreno-Fierros, Leticia

    2004-08-01

    Cry1Ac protoxin has potent mucosal and systemic adjuvant effects on antibody responses to proteins or polysaccharides. In this work, we examined whether Cry1Ac increased protective immunity against fatal Naegleria fowleri infection in mice, which resembles human primary amoebic meningoencephalitis. Higher immunoglobulin G (IgG) than IgA anti-N. fowleri responses were elicited in the serum and tracheopulmonary fluids of mice immunized by the intranasal or intraperitoneal route with N. fowleri lysates either alone or with Cry1Ac or cholera toxin. Superior protection against a lethal challenge with 5 x 10(4) live N. fowleri trophozoites was achieved for immunization by the intranasal route. Intranasal immunization of N. fowleri lysates coadministered with Cry1Ac increased survival to 100%; interestingly, immunization with Cry1Ac alone conferred similar protection to that achieved with amoebal lysates alone (60%). When mice intranasally immunized with Cry1Ac plus lysates were challenged with amoebae, both IgG and IgA mucosal responses were rapidly increased, but only the increased IgG response persisted until day 60 in surviving mice. The brief rise in the level of specific mucosal IgA does not exclude the role that this isotype may play in the early defense against this parasite, since higher IgA responses were detected in nasal fluids of mice intranasally immunized with lysates plus either Cry1Ac or cholera toxin, which, indeed, were the treatments that provided the major protection levels. In contrast, serum antibody responses do not seem to be related to the protection level achieved. Both acquired and innate immune systems seem to play a role in host defense against N. fowleri infection, but further studies are required to elucidate the mechanisms involved in protective effects conferred by Cry1Ac, which may be a valuable tool to improve mucosal vaccines.

  13. Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice

    PubMed Central

    2013-01-01

    Background Nanomaterials with particle sizes <100 nm have been already applied in various applications such as cosmetics, medicines, and foods. Therefore, ensuring the safety of nanomaterials is becoming increasingly important. Here we examined the localization and biological responses of intranasally administered amorphous nanosilica particles in mice, focusing on the coagulation system. Methods We used nanosilica particles with diameters of 30, 70, or 100 nm (nSP30, nSP70, or nSP100 respectively), and conventional microscale silica particles with diameters of 300 or 1000 nm (mSP300 or mSP1000, respectively). BALB/c mice were intranasally exposed to nSP30, nSP70, nSP100, mSP300, or mSP1000 at concentrations of 500 μg/mouse for 7 days. After 24 hours of last administration, we performed the in vivo transmission electron microscopy analysis, hematological examination and coagulation tests. Results In vivo transmission electron microscopy analysis showed that nanosilica particles with a diameter <100 nm were absorbed through the nasal cavity and were distributed into liver and brain. Hematological examination and coagulation tests showed that platelet counts decreased and that the activated partial thromboplastin time was prolonged in nSP30 or nSP70-treated groups of mice, indicating that nanosilica particles might have activated a coagulation cascade. In addition, in in vitro activation tests of human plasma, nanosilica particles had greater potential than did conventional microscale silica particles to activate coagulation factor XII. In nanosilica-particle-treated groups, the levels of soluble CD40 ligand, and von Willebrand factor which are involved in stimulating platelets tended to slightly increase with decreasing particle size. Conclusions These results suggest that intranasally administered nanosilica particles with diameters of 30 and 70 nm could induce abnormal activation of the coagulation system through the activation of an intrinsic coagulation cascade

  14. Formulation and characterization of nanoemulsion intranasal adjuvants: effects of surfactant composition on mucoadhesion and immunogenicity.

    PubMed

    Wong, Pamela T; Wang, Su He; Ciotti, Susan; Makidon, Paul E; Smith, Douglas M; Fan, Yongyi; Schuler, Charles F; Baker, James R

    2014-02-03

    The development of effective intranasal vaccines is of great interest due to their potential to induce both mucosal and systemic immunity. Here we produced oil-in-water nanoemulsion (NE) formulations containing various cationic and nonionic surfactants for use as adjuvants for the intranasal delivery of vaccine antigens. NE induced immunogenicity and antigen delivery are believed to be facilitated through initial contact interactions between the NE droplet and mucosal surfaces which promote prolonged residence of the vaccine at the site of application, and thus cellular uptake. However, the details of this mechanism have yet to be fully characterized experimentally. We have studied the physicochemical properties of the NE droplet surfactant components and demonstrate that properties such as charge and polar headgroup geometry influence the association of the adjuvant with the mucus protein, mucin. Association of NE droplets with mucin in vitro was characterized by various biophysical and imaging methods including dynamic light scattering (DLS), zeta potential (ZP), and surface plasmon resonance (SPR) measurements as well as transmission electron microscopy (TEM). Emulsion surfactant compositions were varied in a systematic manner to evaluate the effects of hydrophobicity and polar group charge/size on the NE-mucin interaction. Several cationic NE formulations were found to facilitate cellular uptake of the model antigen, ovalbumin (OVA), in a nasal epithelial cell line. Furthermore, fluorescent images of tissue sections from mice intranasally immunized with the same NEs containing green fluorescent protein (GFP) antigen demonstrated that these NEs also enhanced mucosal layer penetration and cellular uptake of antigen in vivo. NE-mucin interactions observed through biophysical measurements corresponded with the ability of the NE to enhance cellular uptake. Formulations that enhanced antigen uptake in vitro and in vivo also led to the induction of a more consistent

  15. Intranasal Inactivated Influenza Vaccines: a Reasonable Approach to Improve the Efficacy of Influenza Vaccine?

    PubMed

    Tamura, Shin-Ichi; Ainai, Akira; Suzuki, Tadaki; Kurata, Takeshi; Hasegawa, Hideki

    2016-01-01

    Influenza is a contagious, acute respiratory disease caused by the influenza virus. The mucosal lining in the host respiratory tract is not only the site of virus infection, but also the site of defense; it is at this site that the host immune response targets the virus and protects against reinfection. One of the most effective methods to prevent influenza is to induce specific antibody (Ab) responses in the respiratory tract by vaccination. Two types of influenza vaccines, intranasal live attenuated influenza virus (LAIV) vaccines and parenteral (injectable) inactivated vaccines, are currently used worldwide. These vaccines are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration. Live attenuated vaccines induce both secretory IgA (S-IgA) and serum IgG antibodies (Abs), whereas parenteral vaccines induce only serum IgG Abs. However, intranasal administration of inactivated vaccines together with an appropriate adjuvant induces both S-IgA and IgG Abs. Several preclinical studies on adjuvant-combined, nasal-inactivated vaccines revealed that nasal S-IgA Abs, a major immune component in the upper respiratory tract, reacted with homologous virus hemagglutinin (HA) and were highly cross-reactive with viral HA variants, resulting in protection and cross-protection against infection by both homologous and variant viruses, respectively. Serum-derived IgG Abs, which are present mainly in the lower respiratory tract, are less cross-reactive and cross-protective. In addition, our own clinical trials have shown that nasal-inactivated whole virus vaccines, including a built-in adjuvant (single-stranded RNA), induced serum hemagglutination inhibition (HI) Ab titers that fulfilled the EMA criteria for vaccine efficacy. The nasal-inactivated whole virus vaccines also induced high levels of nasal HI and neutralizing Ab titers, although we have not yet evaluated the nasal HI titers due to the lack of official criteria to establish efficacy based

  16. Effects of intranasal oxytocin on pupil dilation indicate increased salience of socioaffective stimuli.

    PubMed

    Prehn, Kristin; Kazzer, Philipp; Lischke, Alexander; Heinrichs, Markus; Herpertz, Sabine C; Domes, Gregor

    2013-06-01

    To investigate the mechanisms by which oxytocin improves socioaffective processing, we measured behavioral and pupillometric data during a dynamic facial emotion recognition task. In a double-blind between-subjects design, 47 men received either 24 IU intranasal oxytocin (OXT) or a placebo (PLC). Participants in the OXT group recognized all facial expressions at lower intensity levels than did participants in the PLC group. Improved performance was accompanied by increased task-related pupil dilation, indicating an increased recruitment of attentional resources. We also found increased pupil dilation during the processing of female compared with male faces. This gender-specific stimulus effect diminished in the OXT group, in which pupil size specifically increased for male faces. Results suggest that improved emotion recognition after OXT treatment might be due to an intensified processing of stimuli that usually do not recruit much attention.

  17. [The efficacy of a new medication -- intranasal glucocorticoid mometasone furoate (Nasonex) -- in seasonal allergic rhinitis].

    PubMed

    Chyrek-Borowska, S; Rogalewska, A M; Lenczewska, D; Buko, Z; Południewska, B

    1998-01-01

    The aim of this open study was to evaluate the efficacy and safety of new topical corticosteroid Nasonex (mometasone furoate) in allergic, seasonal rhinitis. The investigations were carried out on 30 patients with proven grass pollen allergy. Nasonex was administered intranasally during the pollen season, in a single dose 200 micrograms. During the 3 subsequent visits nasal and nonnasal symptom (total and individual) scores and patient reaction to the treatment were evaluated. Rhinomanometry and number of eosinophils in nasal smear were calculated before and after the treatment. Complete or marked relief of symptoms was observed in 24 patients, moderate improvement in 4 patients and no positive reaction in 2 cases. Nasonex markedly inhibited eosinophil influx to the nasal mucosa. No adverse reaction was observed during 2-week Nasonex treatment. We conclude that Nasonex aerosol is a very effective and well tolerated drug in the treatment of seasonal allergic rhinitis.

  18. [Kinetics of Semax penetration into the brain and blood of rats after its intranasal administration].

    PubMed

    Shevchenko, K V; Nagaev, I Iu; Alfeeva, L Iu; Andreeva, L A; Kamenskiĭ, A A; Levitskaia, N G; Shevchenko, V P; Grivennikov, I A; Miasoedov, N F

    2006-01-01

    The radioactive peptide analogue Semax corresponding to the ACTH(4-10) sequence (Met-Glu-His-Phe-Pro-Gly-Pro) with a molar radioactivity of 56 Ci/mmol labeled with tritium at the C-terminal Pro was prepared. The labeled peptide was used for studying the kinetics of Semax penetration into rat brain and blood after its intranasal administration (50 microg/kg, 20 microl of solution) to nonbred white rats of body mass 200-250 g. It was demonstrated that 0.093% of the total introduced radioactivity per gram can be found in the rat brain 2 min after the administration, 80% of this radioactivity belonged to Semax, and the rest, to its metabolites. The peptide undergoes rapid enzymatic degradation, with the tripeptide Pro-Gly-Pro prevailing in biological samples relative to the total content of Semax and its metabolites.

  19. The relationship between temporal discounting and the prisoner's dilemma game in intranasal abusers of prescription opioids.

    PubMed

    Yi, Richard; Buchhalter, August R; Gatchalian, Kirstin M; Bickel, Warren K

    2007-02-23

    Previous research on college students has found that cooperation in iterated prisoner's dilemma game is correlated with preference for delayed rewards in studies of temporal discounting. The present study attempted to replicate this finding in a drug-dependent population. Thirty-one individuals who intranasally abuse prescription opioids participated in temporal discounting and iterated prisoner's dilemma game procedures during intake for a treatment study. Rate of temporal discounting was determined for each participant at two hypothetical reward magnitudes, as well as proportion of cooperation in a 60-trial iterated prisoner's dilemma game versus a tit-for-tat strategy. Cooperation in the prisoner's dilemma game and temporal discounting rates were significantly correlated in the predicted direction: individuals who preferred delayed rewards in the temporal discounting task were more likely to cooperate in the prisoner's dilemma game.

  20. No laughing matter: intranasal oxytocin administration changes functional brain connectivity during exposure to infant laughter.

    PubMed

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2012-04-01

    Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent-infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter.

  1. Antiglomerular basement membrane antibody-mediated glomerulonephritis after intranasal cocaine use.

    PubMed

    Peces, R; Navascués, R A; Baltar, J; Seco, M; Alvarez, J

    1999-01-01

    We report a case of rapidly progressive glomerulonephritis due to antiglomerular basement membrane (anti-GBM) antibodies that progressed to end-stage renal disease in a 35-year-old man who used intranasal cocaine on an occasional basis. In contrast to many prior reports of acute renal failure occurring with cocaine-associated rhabdomyolysis, this patient did not have any evidence of acute muscle damage and myoglobin release. Circulating anti-GBM antibodies and renal biopsy with linear IgG and C3 deposits confirmed the diagnosis of anti-GBM disease. The possibility of anti-GBM must be considered in the differential diagnosis of acute renal failure in cocaine addicts. This unusual combination raises complex questions regarding the pathogenesis of this type of renal injury.

  2. Cortisol, but not intranasal insulin, affects the central processing of visual food cues.

    PubMed

    Ferreira de Sá, Diana S; Schulz, André; Streit, Fabian E; Turner, Jonathan D; Oitzl, Melly S; Blumenthal, Terry D; Schächinger, Hartmut

    2014-12-01

    Stress glucocorticoids and insulin are important endocrine regulators of energy homeostasis, but little is known about their central interaction on the reward-related processing of food cues. According to a balanced group design, healthy food deprived men received either 40IU intranasal insulin (n=13), 30mg oral cortisol (n=12), both (n=15), or placebo (n=14). Acoustic startle responsiveness was assessed during presentation of food and non-food pictures. Cortisol enhanced startle responsiveness during visual presentation of "high glycemic" food pictures, but not during presentation of neutral and pleasant non-food pictures. Insulin had no effect. Based on the "frustrative nonreward" model these results suggest that the reward value of high glycemic food items is specifically increased by cortisol.

  3. Intranasal oxytocin and salivary cortisol concentrations during social rejection in university students.

    PubMed

    Linnen, Anne-Marie; Ellenbogen, Mark A; Cardoso, Christopher; Joober, Ridha

    2012-07-01

    Oxytocin facilitates pro-social behaviour and is proposed as a regulatory factor controlling stress reactivity. Previous research on oxytocin and stress has focused on achievement-related stressors among male participants. The aims of the study were to (1) examine the influence of oxytocin on the affective and cortisol response to the Yale Interpersonal Stressor (YIPS), a live social rejection paradigm, and (2) to replicate the finding that women exhibit a greater cortisol response to interpersonal stress than men (Stroud et al. 2002). Sex differences in stress responses: Social rejection versus achievement stress. Biol Psychiat 53:318-327. Ninety-six undergraduate students underwent the YIPS, where participants were excluded from two separate conversations by two same-sex confederates. Salivary cortisol concentrations and mood were repeatedly measured throughout the study. Participants were administered, in a double-blind design, a single dose of intranasal oxytocin (24 IU) or placebo prior to beginning the YIPS. The YIPS elicited a significant negative mood response that was more pronounced in females than in males. However, no significant cortisol response to the stressor and no sex difference in cortisol reactivity were observed. A significant effect of drug condition on cortisol levels was observed. Participants who were administered oxytocin exhibited a decrease in cortisol levels, relative to placebo, during the YIPS, F (4, 184)=4.50, p<0.05. The study failed to replicate the sex difference in the cortisol response to interpersonal stress reported by Stroud et al. (2002). Intranasal oxytocin, however, appeared to reduce cortisol concentrations during an interpersonal challenge.

  4. Formulation and evaluation of in situ gelling systems for intranasal administration of gastrodin.

    PubMed

    Cai, Zheng; Song, Xiangrong; Sun, Feng; Yang, Zhaoxiang; Hou, Shixiang; Liu, Zhongqiu

    2011-12-01

    Gastrodin is the major bioactive constituent of the traditional Chinese drug "Tianma." It is used in the treatment of some nervous system diseases and can be transported to the brain via intranasal administration. In the current paper, the development of a novel ion-activated in situ gelling system for the nasal delivery of gastrodin is discussed. An in situ perfusion model was used to determine the absorption-rate constant of gastrodin through rat nasal mucosa. The optimal formulation was determined by measuring the critical cation concentration, anti-dilution capacity, gel expansion coefficient, water-holding capacity, and adhesive capacity. The best formulation consisted of 10% gastrodin, 0.5% deacetylated gellan gum as the gelatinizer, and 0.03% ethylparaben as the preservative. The rheological properties of gastrodin nasal in situ gels were also investigated. The viscosity and elasticity sharply increased at temperatures below 25°C. When physiological concentrations of cations were added into the preparation, the mixture gelled into a semi-solid. The results of an accelerated stability test show that gastrodin nasal in situ gels can be stable for more than 2 years. Mucociliary toxicity was evaluated using the in situ toad palate model and the rat nasal mucociliary method; both models demonstrated no measurable ciliotoxicity. Pharmacodynamic studies suggest that similar acesodyne and sedative effects were induced following intranasal administration of 50 mg/kg gastrodin nasal in situ gels or oral administration of 100 mg/kg gastrodin solution. The in situ gel preparation is a safe and effective nasal delivery system for gastrodin.

  5. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery.

    PubMed

    Chen, Hong; Chen, Cherry C; Acosta, Camilo; Wu, Shih-Ying; Sun, Tao; Konofagou, Elisa E

    2014-01-01

    Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (i.n.) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+i.n.) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After i.n. administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (i.v.) drug injection is employed, FUS was also applied after i.v. injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+i.n. enhanced drug delivery within the targeted region compared with that achieved by i.n. only. Despite the fact that the i.n. route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+i.n. was not significantly different from that of FUS+i.v.. As a new drug delivery platform, the FUS+i.n. technique is potentially useful for treating CNS diseases.

  6. Evaluation of subcutaneous versus mucosal (intranasal) allergen-specific rush immunotherapy in experimental feline asthma.

    PubMed

    Lee-Fowler, Tekla M; Cohn, Leah A; DeClue, Amy E; Spinka, Christine M; Reinero, Carol R

    2009-05-15

    Rush immunotherapy (RIT) is effective for the treatment of experimental feline allergic asthma. In humans, the safety profile of immunotherapy is improved by delivering allergen by a mucosal route. We hypothesized that mucosal (intranasal) RIT would have similar efficacy to subcutaneous RIT with improved safety. Twelve cats sensitized and challenged with Bermuda grass allergen (BGA) were randomized to receive subcutaneous (SC) or intranasal (IN) RIT. Increasing doses of BGA (20-200 microg) were administered over 24h followed by 200 microg BGA weekly as maintenance. Adverse reactions were recorded. Clinical respiratory scores after BGA aerosol challenge, bronchoalveolar lavage fluid (BALF) % eosinophils, and cytokine concentrations were measured before RIT (day 1) and at months 1, 3 and 6 (M1, M3, M6). More adverse events were recorded with SC RIT (n=12) compared with IN RIT (n=6). Respiratory scores were lower by M6 compared with D1 in both the groups. The % BALF eosinophils declined significantly after RIT for both groups (mean+/-SEM, SC RIT D1 62+/-12, M6 9+/-4; IN RIT D1 54+/-9, M6 14+/-6). The BALF IL-4:IFN-gamma ratio significantly decreased over time in the IN RIT group (mean+/-SEM, D1 2.4+/-0.2, M6 1.0+/-0.2). While both protocols decreased eosinophilic airway inflammation, the SC RIT protocol did not cause life-threatening adverse events and demonstrated more consistent resolution of clinical signs after allergen challenge. Either protocol could be considered for the treatment of feline allergic asthma.

  7. Pharmacokinetics of Intranasal Scopolamine Gel Formulation During Antiorthostatic Bed Rest, a Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra P.; Daniels, Vernie R.; Crady, Camille J.; Derendorf, H.; Putcha, L.

    2011-01-01

    Statement of Purpose, Innovation or Hypothesis: Space Motion sickness (SMS) is a long-standing problem for astronauts on both short and long duration space flights. Scopolamine (SCOP) is frequently used for the treatment of motion sickness (MS), and is available as transdermal patch and tablet dosage forms. These formulations of SCOP are ineffective for the treatment of SMS. Intranasal dosage forms are noninvasive with rapid absorption and enhanced bioavailability, thus allowing precise and reduced dosing in addition to offering rescue and treatment options. An intranasal gel dosage formulation of scopolamine (INSCOP) was developed and pharmacokinetics (PK) and bioavailability were determined in clinical trials with human subjects under IND guidelines.Description of Methods and Materials: The present clinical trial compares PK and bioavailability of INSCOP in 12 normal, healthy subjects (6 male/ 6 female) during ambulation (AMB) and antiorthostaticbed rest (ABR) used as a ground-based microgravity analog. Subjects received 0.2 mg and 0.4 mg doses of INSCOP during AMB and ABR in a 4-way crossover design.Data and Results: Results indicated no difference between AMB and ABR in PK parameters after 0.2 mg dose, Clearance (Cls) decreased with a concomitant increase in maximum concentration and area under concentration-versus-time curve (AUC) during ABR after the 0.4 mg dose.Interpretation, Conclusion or Significance: The difference in AUC and Cls at the higher (0.4 mg) but not the lower dose (0.2 mg) during ABR suggests that ABR may affect metabolism and/or clearance of INSCOP at higher doses . These results indicate that dosing adjustment may be required for treatment of SMS with INSCOP in space.

  8. Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model.

    PubMed

    Lawlor, Matthew S; Hsu, James; Rick, Paul D; Miller, Virginia L

    2005-11-01

    Klebsiella pneumoniae is a Gram-negative enterobacterium that has historically been, and currently remains, a significant cause of human disease. It is a frequent cause of urinary tract infections and pneumonia, and subsequent systemic infections can have mortality rates as high as 60%. Despite its clinical significance, few virulence factors of K. pneumoniae have been identified or characterized. In this study we present a mouse model of acute K. pneumoniae respiratory infection using an intranasal inoculation method, and examine the progression of both pulmonary and systemic disease. Wild-type infection recapitulates many aspects of clinical disease, including significant bacterial growth in both the trachea and lungs, an inflammatory immune response characterized by dramatic neutrophil influx, and a steady progression to systemic disease with ensuing mortality. These observations are contrasted with an infection by an isogenic capsule-deficient strain that shows an inability to cause disease in either pulmonary or systemic tissues. The consistency and clinical accuracy of the intranasal mouse model proved to be a useful tool as we conducted a genetic screen to identify novel virulence factors of K. pneumoniae. A total of 4800 independent insertional mutants were evaluated using a signature-tagged mutagenesis protocol. A total of 106 independent mutants failed to be recovered from either the lungs or spleens of infected mice. Small scale independent infections proved to be helpful as a secondary screening method, as opposed to the more traditional competitive index assay. Those mutants showing verified attenuation contained insertions in loci with a variety of putative functions, including a large number of hypothetical open reading frames. Subsequent experiments support the premise that the central mechanism of K. pneumoniae pathogenesis is the production of a polysaccharide-rich cell surface that provides protection from the inflammatory response.

  9. A New Brain Drug Delivery Strategy: Focused Ultrasound-Enhanced Intranasal Drug Delivery

    PubMed Central

    Chen, Hong; Chen, Cherry C.; Acosta, Camilo; Wu, Shih-Ying; Sun, Tao; Konofagou, Elisa E.

    2014-01-01

    Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (IN) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+IN) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After IN administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (IV) drug injection is employed, FUS was also applied after IV injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+IN enhanced drug delivery within the targeted region compared with that achieved by IN only. Despite the fact that the IN route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+IN was not significantly different from that of FUS+IV. As a new drug delivery platform, the FUS+IN technique is potentially useful for treating CNS diseases. PMID:25279463

  10. Intranasal Infection with Chlamydia abortus Induces Dose-Dependent Latency and Abortion in Sheep

    PubMed Central

    Longbottom, David; Livingstone, Morag; Maley, Stephen; van der Zon, Arjan; Rocchi, Mara; Wilson, Kim; Wheelhouse, Nicholas; Dagleish, Mark; Aitchison, Kevin; Wattegedera, Sean; Nath, Mintu; Entrican, Gary; Buxton, David

    2013-01-01

    Background Latency is a key feature of the animal pathogen Chlamydia abortus, where infection remains inapparent in the non-pregnant animal and only becomes evident during a subsequent pregnancy. Often the first sign that an animal is infected is abortion occurring late in gestation. Despite this, little is understood of the underlying mechanisms that control latency or the recrudescence of infection that occurs during subsequent pregnancy. The aim of this study was to develop an experimental model of latency by mimicking the natural route of infection through the intranasal inoculation of non-pregnant sheep with C. abortus. Methodology/Principal Findings Three groups of sheep (groups 1, 2 and 3) were experimentally infected with different doses of C. abortus (5×103, 5×105 and 5×107 inclusion forming units (IFU), respectively) prior to mating and monitored over 2 breeding cycles for clinical, microbiological, pathological, immunological and serological outcomes. Two further groups received either negative control inoculum (group 4a,b) or were inoculated subcutaneously on day 70 of gestation with 2×106 IFU C. abortus (group 5). Animals in groups 1, 2 and 5 experienced an abortion rate of 50–67%, while only one animal aborted in group 3 and none in group 4a,b. Pathological, microbiological, immunological and serological analyses support the view that the maternal protective immune response is influenced by initial exposure to the bacterium. Conclusions/Significance The results show that intranasal administration of non-pregnant sheep with a low/medium dose of C. abortus results in a latent infection that leads in a subsequent pregnancy to infection of the placenta and abortion. In contrast a high dose stimulates protective immunity, resulting in a much lower abortion rate. This model will be useful in understanding the mechanisms of infection underlying latency and onset of disease, as well as in the development of novel therapeutics and vaccines for

  11. Chitosan-Based Intranasal Vaccine against Escherichia coli O157:H7

    PubMed Central

    Doavi, Tahere; Mousavi, Seyed Latif; Kamali, Mehdi; Amani, Jafar; Fasihi Ramandi, Mahdi

    2016-01-01

    Background: Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an infectious zoonotic pathogen causing human infections. These infections, in some cases, can lead to hemolytic uremic syndrome and its life-threatening complications and even death worldwide. The first intimate bacterial adhesion, intimin (I), with its own receptor translocated intimin receptor (Tir) and E. coli secreted protein A, acting as Tir conduit, are highly immunogenic proteins for vaccine development against E. coli O157:H7. Methods: A chimeric trivalent recombinant protein was previously found to be a suitable strategy for developing vaccines against E. coli O157:H7. In this study, the recombinant EIT (rEIT) was used to design a protective EHEC nasal nanovaccine. Chitosan and its water-soluble derivative, trimethylated chitosan (TMC), as muco-adhesive biopolymers, are good candidates for preparation of nanovaccines.  Using the electrospraying technique, as a novel method, we could obtain particles of rEIT loaded with chitosan and TMC on a nanometer scale. Mice were immunized with intranasal administration or intrapretoneal injection of rEIT. Results: The rEIT-specific immune responses (IgG and IgA) were measured by indirect ELISA. Only nasal administration of chitosan electrospray and TMC formulation produced significant secretion IgA. Intranasal administration of nanovaccine reduced the duration of bacterial fecal shedding on mice challenged with E. coli O157:H7. Conclusion: Since development of mucosal vaccines for the prevention of infectious diseases requires efficient antigen delivery; therefore, this research could be a new strategy for developing vaccine against E. coli O157:H7. PMID:26724233

  12. Phase Transition of DNA Coated Nanogold Networks

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa; Sun, Young; Harris, Nolan; Wickremasinghe, Nissanka

    2004-03-01

    Melting and hybridization of DNA-coated gold nanoparticle networks are investigated with optical absorption spectroscopy and tansmission electron microscopy. Single-stranded DNA-coated nanogold are linked with complementary, single-stranded linker DNA to form particle networks. Network formation results in a solution color change, which can be used for DNA detection. Compared to free DNA, networked DNA-nanoparticle systems result in a sharp melting transition. Melting curves calculated from percolation theory agree with our experimental results(1). (1) C.-H. Kiang, ``Phase Transition of DNA-Linked Gold Nanoparticles,'' Physica A, 321 (2003) 164--169.

  13. Study protocol of a randomised controlled trial of intranasal ketamine compared with intranasal fentanyl for analgesia in children with suspected, isolated extremity fractures in the paediatric emergency department

    PubMed Central

    Reynolds, Stacy L; Studnek, Jonathan R; Bryant, Kathleen; VanderHave, Kelly; Grossman, Eric; Moore, Charity G; Young, James; Hogg, Melanie; Runyon, Michael S

    2016-01-01

    Introduction Fentanyl is the most widely studied intranasal (IN) analgesic in children. IN subdissociative (INSD) ketamine may offer a safe and efficacious alternative to IN fentanyl and may decrease overall opioid use during the emergency department (ED) stay. This study examines the feasibility of a larger, multicentre clinical trial comparing the safety and efficacy of INSD ketamine to IN fentanyl and the potential role for INSD ketamine in reducing total opioid medication usage. Methods and analysis This double-blind, randomised controlled, pilot trial will compare INSD ketamine (1 mg/kg) to IN fentanyl (1.5 μg/kg) for analgesia in 80 children aged 4–17 years with acute pain from a suspected, single extremity fracture. The primary safety outcome for this pilot trial will be the frequency of cumulative side effects and adverse events at 60 min after drug administration. The primary efficacy outcome will be exploratory and will be the mean reduction of pain scale scores at 20 min. The study is not powered to examine efficacy. Secondary outcome measures will include the total dose of opioid pain medication in morphine equivalents/kg/hour (excluding study drug) required during the ED stay, number and reason for screen failures, time to consent, and the number and type of protocol deviations. Patients may receive up to 2 doses of study drug. Ethics and dissemination This study was approved by the US Food and Drug Administration, the local institutional review board and the study data safety monitoring board. This study data will be submitted for publication regardless of results and will be used to establish feasibility for a multicentre, non-inferiority trial. Trial registration number NCT02521415. PMID:27609854

  14. Increased brain radioactivity by intranasal 32P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels

    PubMed Central

    Perez, Ana Paula; Mundiña-Weilenmann, Cecilia; Romero, Eder Lilia; Morilla, Maria Jose

    2012-01-01

    Background Molecules taken up by olfactory and trigeminal nerve neurons directly access the brain by the nose-to-brain pathway. In situ-forming mucoadhesive gels would increase the residence time of intranasal material, favoring the nose-to-brain delivery. In this first approach, brain radioactivity after intranasal administration of 32P-small interference RNA (siRNA) complexed with poly(amidoamine) G7 dendrimers (siRNA dendriplexes) within in situ-forming mucoadhesive gels, was determined. Materials 32P-siRNA dendriplexes were incorporated into in situ-forming mucoadhesive gels prepared by blending thermosensitive poloxamer (23% w/w) with mucoadhesive chitosan (1% w/w, PxChi) or carbopol (0.25% w/w, PxBCP). Rheological properties, radiolabel release profile, and local toxicity in rat nasal mucosa were determined. The best-suited formulation was intranasally administered to rats, and blood absorption and brain distribution of radioactivity were measured. Results The gelation temperature of both formulations was 23°C. The PxChi liquid showed non-Newtonian pseudoplastic behavior of high consistency and difficult manipulation, and the gel retained 100% of radiolabel after 150 minutes. The PxCBP liquid showed a Newtonian behavior of low viscosity and easy manipulation, while in the gel phase showed apparent viscosity similar to that of the mucus but higher than that of aqueous solution. The gel released 35% of radiolabel and the released material showed silencing activity in vitro. Three intranasal doses of dendriplexes in PxCBP gel did not damage the rat nasal mucosa. A combination of 32P-siRNA complexation with dendrimers, incorporation of the dendriplexes into PxCBP gel, and administration of two intranasal doses was necessary to achieve higher brain radioactivity than that achieved by intravenous dendriplexes or intranasal naked siRNA. Conclusion The increased radioactivity within the olfactory bulb suggested that the combination above mentioned favored the

  15. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  16. Near-field enhancement of infrared intensities for f-f transitions in Er3+ ions close to the surface of silicon nanoparticles.

    PubMed

    Borowska, Lesya; Fritzsche, Stephan; Kik, Pieter G; Masunov, Artëm E

    2011-03-01

    Erbium doped waveguide amplifiers can be used in optical integrated circuits to compensate for signal losses. Such amplifiers use stimulated emission from the first excited state ((4) I (13/2)) to the ground state ((4) I (15/2)) of Er(3+) at 1.53 µm, the standard wavelength for optical communication. Since the intra-f transitions are parity forbidden for free Er(3+) ions, the absorption and the emission cross sections are quite small for such doped amplifiers. To enhance the absorption, Si nanoclusters can be embedded in silica matrix. Here we investigate the effect of the Si nanocluster on the Er(3+) emission using ab initio theory for the first time. We combine multi-reference configuration interaction with one-electron spin-orbit Hamiltonian and relativistic effective core potentials. Our calculations show that the presence of a polarizable Be atom at 5Ǻ from the Er(3+) ion in a crystalline environment can lead to an enhancement in the emission by a factor of three. The implications of this effect in designing more efficient optical gain materials are discussed.

  17. Abuse potential, pharmacokinetics, pharmacodynamics, and safety of intranasally administered crushed oxycodone HCl abuse-deterrent controlled-release tablets in recreational opioid users.

    PubMed

    Harris, Stephen C; Perrino, Peter J; Smith, Ira; Shram, Megan J; Colucci, Salvatore V; Bartlett, Cynthia; Sellers, Edward M

    2014-04-01

    The objective of this study was to evaluate abuse potential, pharmacokinetics, pharmacodynamics, and safety of intranasally administered, crushed reformulated OxyContin® (oxycodone HCl controlled-release) tablets (ORF), relative to crushed original OxyContin® (OC), oxycodone powder (Oxy API), and OC placebo. This randomized, double-blind, positive- and placebo-controlled crossover study enrolled healthy, adult, nonphysically dependent recreational opioid users with recent history of intranasal drug abuse (N = 27). Active treatments contained oxycodone (30 mg). Pharmacokinetics, pharmacodynamics (e.g., Overall Drug Liking [ODL], Take Drug Again [TDA], and High Visual Analog Scales [VAS]; Subjective Drug Value [SDV]; pupillometry; intranasal irritation), and safety (e.g., adverse events, vital signs, laboratory tests) were assessed to 24 hours postdose. Crushed ORF administration yielded reduced oxycodone Cmax and increased Tmax versus crushed OC and Oxy API. Peak effects for pharmacodynamic measures were delayed with ORF (1-2 hours) versus OC and Oxy API (0.5-1 hour). ODL, TDA, High VAS, and SDV Emax values were significantly lower (P ≤ .05) and some intranasal irritation ratings were greater for ORF versus OC and Oxy API. No significant or unexpected safety findings were observed. Compared with OC and Oxy API, intranasally administered ORF was associated with lower and delayed peak plasma concentrations, decreased drug-liking, and decreased intranasal tolerability. This suggests that ORF has a decreased potential for intranasal oxycodone abuse. There were no significant or unexpected safety findings. As is true for all abuse potential studies, epidemiological or other appropriate post-marketing studies are required to assess the impact of the reduction in intranasal oxycodone abuse potential observed in the present study on real-world patterns of ORF misuse, abuse, and diversion.

  18. Intranasal immunization with a formalin-inactivated human influenza A virus whole-virion vaccine alone and intranasal immunization with a split-virion vaccine with mucosal adjuvants show similar levels of cross-protection.

    PubMed

    Okamoto, Shigefumi; Matsuoka, Sumiko; Takenaka, Nobuyuki; Haredy, Ahmad M; Tanimoto, Takeshi; Gomi, Yasuyuki; Ishikawa, Toyokazu; Akagi, Takami; Akashi, Mitsuru; Okuno, Yoshinobu; Mori, Yasuko; Yamanishi, Koichi

    2012-07-01

    The antigenicity of seasonal human influenza virus changes continuously; thus, a cross-protective influenza vaccine design needs to be established. Intranasal immunization with an influenza split-virion (SV) vaccine and a mucosal adjuvant induces cross-protection; however, no mucosal adjuvant has been assessed clinically. Formalin-inactivated intact human and avian viruses alone (without adjuvant) induce cross-protection against the highly pathogenic H5N1 avian influenza virus. However, it is unknown whether seasonal human influenza formalin-inactivated whole-virion (WV) vaccine alone induces cross-protection against strains within a subtype or in a different subtype of human influenza virus. Furthermore, there are few reports comparing the cross-protective efficacy of the WV vaccine and SV vaccine-mucosal adjuvant mixtures. Here, we found that the intranasal human influenza WV vaccine alone induced both the innate immune response and acquired immune response, resulting in cross-protection against drift variants within a subtype of human influenza virus. The cross-protective efficacy conferred by the WV vaccine in intranasally immunized mice was almost the same as that conferred by a mixture of SV vaccine and adjuvants. The level of cross-protective efficacy was correlated with the cross-reactive neutralizing antibody titer in the nasal wash and bronchoalveolar fluids. However, neither the SV vaccine with adjuvant nor the WV vaccine induced cross-reactive virus-specific cytotoxic T-lymphocyte activity. These results suggest that the intranasal human WV vaccine injection alone is effective against variants within a virus subtype, mainly through a humoral immune response, and that the cross-protection elicited by the WV vaccine and the SV vaccine plus mucosal adjuvants is similar.

  19. Co-administration of attenuated Mycoplasma hyopneumoniae 168 strain with bacterial DNA enhances the local and systemic immune response after intranasal vaccination in pigs.

    PubMed

    Li, Yunfeng; Li, Pengcheng; Wang, Xueping; Yu, Qinghua; Yang, Qian

    2012-03-09

    Mycoplasma hyopneumoniae, the primary pathogen of enzootic pneumonia, occurs worldwide and causes major economic losses to the pig industry. M. hyopneumoniae infects pigs at mucosal surfaces of respiratory tract. The aim of the present study was to investigate if the protection rate against M. hyopneumoniae infection following intranasal immunization with attenuated M. hyopneumoniae 168 strain is improved by administration of bacterial DNA containing CpG motifs. Thirty pigs were immunized intranasally or intramuscularly and the levels of local respiratory tract and systemic immune responses were detected. The results showed that the number of intraepithelial lymphocytes in the tracheal fork, the levels of cytokine IL-6, and M. hyopneumoniae specific SIgA in local nasal cavity increased respectively after intranasal vaccination with the attenuated M. hyopneumoniae 168 strain alone. However, the levels of IL-10 and IFN-γ in local nasal cavity, the number of intraepithelial lymphocytes in trachea, CD4(+) and CD8(+) T lymphocytes in the lung and hilar lymph nodes, the specific IgG antibody level in serum on 35 day post immunization were all increased significantly after intranasal vaccination of the attenuated M. hyopneumoniae 168 strain adjuvanted with bacterial DNA. We concluded that intranasal administration of attenuated M. hyopneumoniae 168 strain adjuvanted with bacterial DNA may be effective in evoking the local cellular and humoral immune response in the respiratory tract and the systemic immune response. Intranasal vaccination will be effective in prevention of the transmission and prevalence of MPS.

  20. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer’s rat model

    PubMed Central

    Guo, Zhangyu; Chen, Yanxing; Mao, Yan-Fang; Zheng, Tingting; Jiang, Yasi; Yan, Yaping; Yin, Xinzhen; Zhang, Baorong

    2017-01-01

    Recent evidence reveals that aberrant brain insulin signaling plays an important role in the pathology of Alzheimer’s disease (AD). Intranasal insulin administration has been reported to improve memory and attention in healthy participants and in AD patients. However, the underlying molecular mechanisms are poorly understood. Here, we treated intracerebroventricular streptozotocin-injected (ICV-STZ) rats, a commonly used animal model of sporadic AD, with daily intranasal delivery of insulin (2 U/day) for 6 consecutive weeks and then studied their cognitive function with the Morris water maze test and biochemical changes via Western blotting. We observed cognitive deficits, tau hyperphosphorylation, and neuroinflammation in the brains of ICV-STZ rats. Intranasal insulin treatment for 6 weeks significantly improved cognitive function, attenuated the level of tau hyperphosphorylation, ameliorated microglial activation, and enhanced neurogenesis in ICV-STZ rats. Additionally, our results indicate that intranasal delivery of insulin probably attenuates tau hyperphosphorylation through the down-regulation of ERK1/2 and CaMKII in the brains of ICV-STZ rats. Our findings demonstrate a beneficial effect of intranasal insulin and provide the mechanistic basis for treating AD patients with intranasal insulin. PMID:28382978

  1. Intranasal administration of oxytocin modulates behavioral and amygdala responses to infant crying in females with insecure attachment representations.

    PubMed

    Riem, Madelon M E; Bakermans-Kranenburg, Marian J; van IJzendoorn, Marinus H

    2016-01-01

    The current study examined the effects of oxytocin administration on the response to infant crying in individuals with secure or insecure attachment representations as assessed with the Adult Attachment Interview. We measured feelings of irritation and the use of excessive force as indicated by grip strength using a handgrip dynamometer during exposure to infant crying in 42 women without children who were administered intranasal oxytocin or a placebo. In addition, amygdala responses to infant crying and control sounds were measured with functional magnetic resonance imaging (fMRI). The effects of oxytocin on reactivity to crying were moderated by attachment security. Oxytocin decreased the use of excessive handgrip force and amygdala reactivity in response to crying in individuals with insecure attachment representations. Our findings indicate that insecure individuals, who show emotional, behavioral, and neural hyperreactivity to crying, benefit the most from intranasal oxytocin.

  2. Coma and seizures due to severe hyponatremia and water intoxication in an adult with intranasal desmopressin therapy for nocturnal enuresis.

    PubMed

    Odeh, M; Oliven, A

    2001-05-01

    Desmopressin, a synthetic analogue of the antidiuretic hormone, is an effective medication for primary nocturnal enuresis for both children and adults. Its safety is well established. Although it has a favorable side effect profile, because of its pharmacological effect, intranasal desmopressin can rarely induce water intoxication with profound hyponatremia if given without adequate restriction of water intake. The authors describe an adult patient with water intoxication and severe hyponatremia accompanied by loss of consciousness and seizures after 2-day intranasal administration of desmopressin. The present and the previously reported cases emphasize the need for greater awareness of the development of this serious and potentiallyfatal complication. In addition, to adjust the drug to the lowest required dosage, adequate restriction of water intake is recommended, and serum levels of sodium should be measured periodically to allow for early detection of water intoxication and hyponatremia.

  3. Electrical sintering of nanoparticle structures.

    PubMed

    Allen, Mark L; Aronniemi, Mikko; Mattila, Tomi; Alastalo, Ari; Ojanperä, Kimmo; Suhonen, Mika; Seppä, Heikki

    2008-04-30

    A method for sintering nanoparticles by applying voltage is presented. This electrical sintering method is demonstrated using silver nanoparticle structures ink-jet-printed onto temperature-sensitive photopaper. The conductivity of the printed nanoparticle layer increases by more than five orders of magnitude during the sintering process, with the final conductivity reaching 3.7 × 10(7) S m(-1) at best. Due to a strong positive feedback induced by the voltage boundary condition, the process is very rapid-the major transition occurs within 2 µs. The best obtained conductivity is two orders of magnitude better than for the equivalent structures oven-sintered at the maximum tolerable temperature of the substrate. Additional key advantages of the method include the feasibility for patterning, systematic control of the final conductivity and in situ process monitoring. The method offers a generic tool for electrical functionalization of nanoparticle structures.

  4. Intranasal Dexmedetomidine as a Sedative Premedication for Patients Undergoing Suspension Laryngoscopy: A Randomized Double-Blind Study

    PubMed Central

    Lu, Chengxiang; Zhang, Li-Ming; Zhang, Yuehong; Ying, Yanlu; Li, Ling; Xu, Lixin; Ruan, Xiangcai

    2016-01-01

    Background Intranasal dexmedetomidine, a well-tolerated and convenient treatment option, has been shown to induce a favorable perioperative anxiolysis in children. We investigate intranasal dexmedetomidine as a sedative premedication for anesthesia recovery in an adult population. Methods A prospective randomized controlled trial; 81 adult patients scheduled for elective suspension laryngoscopy received intranasal dexmedetomidine (1 μg∙kg–1) or a placebo 45–60 min before anesthetic induction. Extubation time was used as the primary outcome measure. Secondary variables included the levels of sedation (Observer’s Assessment of Alertness/Sedation scale, OAA/S) and anxiety (4-point anxiety score), anesthetic and analgesic requirements, hemodynamic fluctuations, and anesthesia recovery as well as side effects. Results The levels of sedation and anxiety differed significantly between the two groups at anesthesia pre-induction (p < 0.001 and = 0.001, respectively). Repeated-measure general linear model determined no significant interaction effect between group and time on the targeted concentration of propofol (F = 1.635, p = 0.200), but a significant main effect of group existed (F = 6.880, p = 0.010). A moderate but significant decrease in the heart rate was recorded in the dexmedetomidine group at pre-induction. Episodes of tachycardia and hypertension after tracheal intubation and extubation were more frequent in the placebo group. Conclusions Intranasal dexmedetomidine as a sedative premedication induced a favorable perioperative anxiolysis without prolongation in anesthesia recovery; the hemodynamic effect was modest. Trial Registration ClinicalTrials.gov NCT 02108171 PMID:27196121