DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Jianghua; He Xiangtao; Boettcher, Markus
We present the results of our optical monitoring of the BL Lac object S5 0716+714 over seven nights in 2006 December. The monitoring was carried out simultaneously at three optical wavelengths with a novel photometric system. The object did not show large-amplitude internight variations during this period. Intranight variations were observed on four nights and probably on one more. Strong bluer-when-brighter chromatism was detected on both intranight and internight timescales. The intranight variation amplitude decreases in the wavelength sequence of B', R', and V'. Cross-correlation analyses revealed that the variability at the B' and V' bands leads that at themore » R' band by about 30 minutes on one night.« less
Multi-epoch intranight optical monitoring of eight radio-quiet BL Lac candidates
NASA Astrophysics Data System (ADS)
Kumar, P.; Gopal-Krishna; Stalin, C. S.; Chand, H.; Srianand, R.; Petitjean, P.
2017-10-01
For a new sample of eight weak-line quasars (WLQs) we report a sensitive search in 20 intranight monitoring sessions, for blazar-like optical flux variations on hour-like and longer time-scale (day/month/year-like). The sample consists exclusively of the WLQs that are not radio-loud and either have been classified as 'radio-weak probable BL Lac candidates' and/or are known to have exhibited at least one episode of large, blazar-like optical variability. Whereas only a hint of intranight variability is seen for two of these WLQs, J104833.5+620305.0 (z = 0.219) and J133219.6+622715.9 (z = 3.15), statistically significant internight variability at a few per cent level is detected for three of the sources, including the radio-intermediate WLQ J133219.6+622715.9 (z = 3.15) and the well-known bona fide radio-quiet WLQs J121221.5+534128.0 (z = 3.10) and WLQ J153259.9-003944.1 (z = 4.62). In the rest frame, this variability is intraday and in the far-ultraviolet band. On the time-scale of a decade, we find for three of the WLQs large brightness changes, amounting to 1.655 ± 0.009, 0.163 ± 0.010 and 0.144 ± 0.018 mag, for J104833.5+620305.0, J123743.1+630144.9 and J232428.4+144324.4, respectively. Whereas the latter two are confirmed radio-quiet WLQs, the extragalactic nature of J104833.5+620305.0 remains to be well established, thanks to the absence of any feature(s) in its available optical spectra. This study forms a part of our ongoing campaign of intranight optical monitoring of radio-quiet WLQs, in order to improve the understanding of this enigmatic class of active galactic nuclei and to look among them for a possible tiny, elusive population of radio-quiet BL Lacs.
RAPID OPTICAL VARIABILITY IN BLAZAR S5 0716+71 DURING 2010 MARCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, S.; Baliyan, K. S.; Ganesh, S.
We report rapid optical variability for the blazar S5 0716+71 during 2010 March 8-10 and 19-20 in the CCD observations made from Mt. Abu Infrared Observatory. The light curves are constructed for a duration longer than 3 hr each night, with very high temporal resolution ({approx}45 s in the R band). During 2010 March 8, the source smoothly decayed by about 0.15 mag in 2.88 hr, apart from a fast flicker lasting about 30 minutes. S5 0716+71 brightened during March 9 and 10, showing high activity, while it was relatively faint (>14 mag in the R band) albeit variable duringmore » March 19-20. During March 9 and 10, rapid flickers in the intensity modulated the long-term intra-night ({approx}3 hr) variations. The present observations suggest that the blazar S5 0716+71 showed night-to-night and intra-night variability at various timescales with a 100% duty cycle for variation along with microvariability at significant levels. On a night-to-night basis, the source exhibits mild bluer-when-brighter nature. The interaction of shocks with local inhomogeneities in the jet appears to cause intra-night variations, while microvariations could be due to small-scale perturbations intrinsic to the jet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Arti; Stawarz, Łukasz; Ostrowski, Michał
We present the results of our power spectral analysis for the BL Lac object PKS 0735+178, utilizing the Fermi -LAT survey at high-energy γ -rays, several ground-based optical telescopes, and single-dish radio telescopes operating at GHz frequencies. The novelty of our approach is that, by combining long-term and densely sampled intra-night light curves in the optical regime, we were able to construct for the first time the optical power spectrum of the blazar for a time domain extending from 23 years down to minutes. Our analysis reveals that: (1) the optical variability is consistent with a pure red noise, formore » which the power spectral density can be well approximated by a single power law throughout the entire time domain probed; (2) the slope of power spectral density at high-energy γ -rays (∼1) is significantly flatter than that found at radio and optical frequencies (∼2) within the corresponding time variability range; (3) for the derived power spectra, we did not detect any low-frequency flattening, nor do we see any evidence for cutoffs at the highest frequencies down to the noise floor levels due to measurement uncertainties. We interpret our findings in terms of a model where the blazar variability is generated by the underlying single stochastic process (at radio and optical frequencies), or a linear superposition of such processes (in the γ -ray regime). Along with the detailed PSD analysis, we also present the results of our extended (1998–2015) intra-night optical monitoring program and newly acquired optical photo-polarimetric data for the source.« less
THE OPTICAL MICROVARIABILITY AND SPECTRAL CHANGES OF THE BL LACERTAE OBJECT S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poon, H.; Fu, J. N.; Fan, J. H.
We monitored the BL Lac object S5 0716+714 in the optical band during 2008 October and December and 2009 February with a best temporal resolution of about 5 minutes in the BVRI bands. Four fast flares were observed with amplitudes ranging from 0.3 to 0.75 mag. The source remained active during the whole monitoring campaign, showing microvariability in all days except for one. The overall variability amplitudes are {delta}B {approx} 0fm89, {delta}V {approx} 0fm80, {delta}R {approx} 0fm73, and {delta}I{approx} 0fm51. Typical timescales of microvariability range from 2 to 8 hr. The overall V - R color index ranges from 0.37more » to 0.59. Strong bluer-when-brighter chromatism was found on internight timescales. However, a different spectral behavior was found on intranight timescales. A possible time lag of {approx}11 minutes between B and I bands was found on one night. The shock-in-jet model and geometric effects can be applied to explain the source's intranight behavior.« less
Optical Variability Properties of High Luminosity AGN Classes
NASA Astrophysics Data System (ADS)
Stalin, C. S.; Gopal Krishna; Sagar, Ram; Wiita, Paul J.
2004-03-01
We present the results of a comparative study of the intranight optical variability (INOV) characteristics of radio-loud and radioquiet quasars, which involves a systematic intra-night optical monitoring of seven sets of high luminosity AGNs covering the redshift range z ' 0:2 to z ' 2:2. The sample, matched in the optical luminosity - redshift .MB?z/ plane, consists of seven radio-quiet quasars (RQQs), eight radio lobedominated quasars (LDQs), five radio core-dominated quasars (CDQs) and six BL Lac objects (BLs). Systematic CCD observations, aided by a careful data analysis procedure, have allowed us to detect INOV with amplitudes as low as about 1%. Present observations cover a total of 113 nights (720 hours) with only a single quasar monitored as continuously as possible on a given night. Considering the cases of only unambiguous detections of INOV we have estimated duty cycles (DCs) of 17%, 12%, 20% and 61% for RQQs, LDQs, CDQs, and BLs, respectively. The much lower amplitude and DC of INOV shown by RQQs compared to BLs may be understood in terms of their having optical synchrotron jets which are modestly misdirected from us. From our fairly extensive dataset, no general trend of a correlation between the INOVamplitude and the apparent optical brightness of the quasar is noticed. This suggests that the physical mechanisms of INOV and long term optical variability (LTOV) do not have a one-to-one relationship and different factors are involved. Also, the absence of a clear negative correlation between the INOV and LTOV characteristics of blazars of our sample points toward an inconspicuous contribution of accretion disk fluctuations to the observed INOV. The INOVduty cycle of theAGNs observed in this program suggests that INOV is associated predominantly with the highly polarized optical emission components. We also report new VLA imaging of two RQQs .1029C329&1252C020/ in our sample which has yielded a 5 GHz detection in one of them .1252 C 020I S5 GHz ' 1 mJy/.
Multi-wavelength Observations of the Flaring Gamma-ray Blazar 3C 66A in 2008 October
NASA Astrophysics Data System (ADS)
Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Costamante, L.; Cutini, S.; Davis, D. S.; Dermer, C. D.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nestoras, I.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reyes, L. C.; Ripken, J.; Ritz, S.; Romani, R. W.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Scargle, J. D.; Sgrò, C.; Shaw, M. S.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.; Acciari, V. A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Böttcher, M.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Christiansen, J. L.; Ciupik, L.; Cui, W.; de la Calle Perez, I.; Dickherber, R.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Moriarty, P.; Mukherjee, R.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Senturk, G. Demet; Smith, A. W.; Steele, D.; Swordy, S. P.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Wood, M.; Villata, M.; Raiteri, C. M.; Gurwell, M. A.; Larionov, V. M.; Kurtanidze, O. M.; Aller, M. F.; Lähteenmäki, A.; Chen, W. P.; Berduygin, A.; Agudo, I.; Aller, H. D.; Arkharov, A. A.; Bach, U.; Bachev, R.; Beltrame, P.; Benítez, E.; Buemi, C. S.; Dashti, J.; Calcidese, P.; Capezzali, D.; Carosati, D.; Da Rio, D.; Di Paola, A.; Diltz, C.; Dolci, M.; Dultzin, D.; Forné, E.; Gómez, J. L.; Hagen-Thorn, V. A.; Halkola, A.; Heidt, J.; Hiriart, D.; Hovatta, T.; Hsiao, H.-Y.; Jorstad, S. G.; Kimeridze, G. N.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Leto, P.; Ligustri, R.; Lindfors, E.; Lopez, J. M.; Marscher, A. P.; Mommert, M.; Mujica, R.; Nikolashvili, M. G.; Nilsson, K.; Palma, N.; Pasanen, M.; Roca-Sogorb, M.; Ros, J. A.; Roustazadeh, P.; Sadun, A. C.; Saino, J.; Sigua, L. A.; Sillanää, A.; Sorcia, M.; Takalo, L. O.; Tornikoski, M.; Trigilio, C.; Turchetti, R.; Umana, G.; Belloni, T.; Blake, C. H.; Bloom, J. S.; Angelakis, E.; Fumagalli, M.; Hauser, M.; Prochaska, J. X.; Riquelme, D.; Sievers, A.; Starr, D. L.; Tagliaferri, G.; Ungerechts, H.; Wagner, S.; Zensus, J. A.; Fermi LAT Collaboration; VERITAS Collaboration; GASP-WEBT Consortium
2011-01-01
The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths.
Multi-wavelength observations of the flaring gamma-ray blazar 3C 66A in 2008 October
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-12-14
We report that Tthe BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with anmore » external radiation field can accommodate the intra-night variability observed at optical wavelengths.« less
Optical monitoring of Active Galactic Nuclei from ARIES
NASA Astrophysics Data System (ADS)
Gopal-Krishna; Wiita, Paul Joseph
2018-04-01
This overview provides a historical perspective highlighting the pioneering role which the fairly modest observational facilities of ARIES have played since the 1990s in systematically characterizing the optical variability on hour-like time scale (intra-night optical variability, or INOV) of several major types of high-luminosity Active Galactic Nuclei (AGN). Such information was previously available only for blazars. Similar studies have since been initiated in at least a dozen countries, giving a boost to AGN variability research. Our work has, in particular, provided strong indication that mild INOV occurs in radio-quiet QSOs (amplitude up to 3 – 5 % and duty cycle 10%) and, moreover, has demonstrated that similarly mild INOV is exhibited even by the vast majority of radio-loud quasars which possess powerful relativistic jets (even including many that are beamed towards us). The solitary outliers are blazars, the tiny strongly polarized subset of powerful AGN, which frequently exhibit a pronounced INOV. Among the blazars, BL Lac objects often show a bluer-when-brighter chromatic behavior, while the flat spectrum radio quasars seem not to. Quantifying any differences of INOV among the major subclasses of non-blazar type AGNs will require dedicated monitoring programs using 2 - 3 metre class telescopes.
NASA Astrophysics Data System (ADS)
Zeng, Wei; Zhao, Qing-Jiang; Dai, Ben-Zhong; Jiang, Ze-Jun; Geng, Xiong-Fei; Yang, Shen-Bang; Liu, Zhen; Wang, Dong-Dong; Feng, Zhang-Jing; Zhang, Li
2018-02-01
We present long-term optical multi-band photometric monitoring of blazar 3C 273, from 2006 May 19 to 2015 March 31 with high temporal resolution in the BVRI bands. The source is in a steady state and showed very small variability, with the values of the fractional variability amplitude of {F}{var}=0.457+/- 0.014 % , 0.391+/- 0.012 % , 0.264+/- 0.043 % and 0.460+/- 0.014 % in B, V, R and I, respectively. The intra-night point-to-point fractional variability (F pp ) in each band is below 1.0%, and the F pp variation amplitude increase from the B-band to the I-band. We find a variability with the timescale of 5.8 ± 2.9 minutes in the I-band on 2009 March 11. This fast variability requires the comoving magnetic field strength in the jet above 18 G with a Doppler factor {δ }D∼ 10. Using the discrete correlation function (DCF), the B- and I-band light curves are examined for correlation on whole campaign. Low significance (∼99.73 percent confidence) correlations with the I-band lags the B-band variations are observed. The spectral behaviors in the different variability episodes are studied. “Bluer-when-brighter” spectral behavior is presented for the whole campaign, while there is an opposite tendency when {{{F}}}V> 30.2 {mJy}. The weak of the correlation between B- and I-band and the spectrum analysis indicate that the optical radiation consists of two variable components.
Polarization and photometric observations of the gamma-ray blazar PG 1553+113
NASA Astrophysics Data System (ADS)
Andruchow, I.; Combi, J. A.; Muñoz-Arjonilla, A. J.; Romero, G. E.; Cellone, S. A.; Martí, J.
2011-07-01
We present the results of an observational photo-polarimetry campaign of the blazar PG 1553+113 at optical wavelengths. The blazar was recently detected at very high energies (>100 GeV) by the HESS and MAGIC γ-ray Cherenkov telescopes. Our high-temporal resolution data show significant variations in the linear polarization percentage and position angle at inter-night time-scales, while at shorter (intra-night) time-scales both parameters varied less significantly, if at all. Changes in the polarization angle seem to be common in γ-ray emitting blazars. Simultaneous differential photometry (through the B and R bands) shows no significant variability in the total optical flux. We provide B and R magnitudes, along with a finding chart, for a set of field stars suitable for differential photometry. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paliya, Vaidehi S.; Ajello, M.; Kaur, A.
We report the first results obtained from our campaign to characterize the intra-night-optical variability (INOV) properties of Fermi detected blazars, using the observations from the recently commissioned 1.3 m J. C. Bhattacharya telescope (JCBT). During the first run, we were able to observe 17 blazars in the Bessel R filter for ∼137 hr. Using C- and scaled F -statistics, we quantify the extent of INOV and derive the duty cycle (DC), which is the fraction of time during which a source exhibits a substantial flux variability. We find a high DC of 40% for BL Lac objects and the flatmore » spectrum radio quasars are relatively less variable (DC ∼ 15%). However, when estimated for blazars sub-classes, a high DC of ∼59% is found in low synchrotron peaked (LSP) blazars, whereas, intermediate and high synchrotron peaked objects have a low DC of ∼11% and 13%, respectively. We find evidence of the association of the high amplitude INOV with the γ -ray flaring state. We also notice a high polarization during the elevated INOV states (for the sources that have polarimetric data available), thus supporting the jet based origin of the observed variability. We plan to enlarge the sample and utilize the time availability from the small telescopes, such as 1.3 m JCBT, to strengthen/verify the results obtained in this work and those existing in the literature.« less
Johnson, J.B.; Edwards, J.W.; Ford, W.M.
2011-01-01
Nocturnal activity patterns of northern myotis (Myotis septentrionalis) at diurnal roost trees remain largely uninvestigated. For example, the influence of reproductive status, weather, and roost tree and surrounding habitat characteristics on timing of emergence, intra-night activity, and entrance at their roost trees is poorly known. We examined nocturnal activity patterns of northern myotis maternity colonies during pregnancy and lactation at diurnal roost trees situated in areas that were and were not subjected to recent prescribed fires at the Fernow Experimental Forest, West Virginia from 2007 to 2009. According to exit counts and acoustic data, northern myotis colony sizes were similar between reproductive periods and roost tree settings. However, intra-night activity patterns differed slightly between reproductive periods and roost trees in burned and non-burned areas. Weather variables poorly explained variation in activity patterns during pregnancy, but precipitation and temperature were negatively associated with activity patterns during lactation. ?? Museum and Institute of Zoology PAS.
A recurrent neural network for classification of unevenly sampled variable stars
NASA Astrophysics Data System (ADS)
Naul, Brett; Bloom, Joshua S.; Pérez, Fernando; van der Walt, Stéfan
2018-02-01
Astronomical surveys of celestial sources produce streams of noisy time series measuring flux versus time (`light curves'). Unlike in many other physical domains, however, large (and source-specific) temporal gaps in data arise naturally due to intranight cadence choices as well as diurnal and seasonal constraints1-5. With nightly observations of millions of variable stars and transients from upcoming surveys4,6, efficient and accurate discovery and classification techniques on noisy, irregularly sampled data must be employed with minimal human-in-the-loop involvement. Machine learning for inference tasks on such data traditionally requires the laborious hand-coding of domain-specific numerical summaries of raw data (`features')7. Here, we present a novel unsupervised autoencoding recurrent neural network8 that makes explicit use of sampling times and known heteroskedastic noise properties. When trained on optical variable star catalogues, this network produces supervised classification models that rival other best-in-class approaches. We find that autoencoded features learned in one time-domain survey perform nearly as well when applied to another survey. These networks can continue to learn from new unlabelled observations and may be used in other unsupervised tasks, such as forecasting and anomaly detection.
The outburst of the blazar S4 0954+658 in 2011 March-April
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozova, D. A.; Larionov, V. M.; Troitsky, I. S.
2014-09-01
We present the results of optical (R-band) photometric and polarimetric monitoring and Very Long Baseline Array imaging of the blazar S4 0954+658, along with Fermi γ-ray data during a multi-waveband outburst in 2011 March-April. After a faint state with a brightness level R ∼ 17.6 mag registered in the first half of 2011 January, the optical brightness of the source started to rise and reached ∼14.8 mag during the middle of March, showing flare-like behavior. The most spectacular case of intranight variability was observed during the night of 2011 March 9, when the blazar brightened by ∼0.7 mag within 7more » hr. During the rise of the flux, the position angle of the optical polarization rotated smoothly over more than 300°. At the same time, within 1σ uncertainty, a new superluminal knot appeared with an apparent speed of 19.0 ± 0.3c. We have very strong evidence that this knot is associated with the multi-waveband outburst in 2011 March-April. We also analyze the multi-frequency behavior of S4 0954+658 during a number of minor outbursts from 2008 August to 2012 April. We find some evidence of connections between at least two additional superluminal ejecta and near-simultaneous optical flares.« less
The 2012 flare of PG 1553+113 seen with H.E.S.S. and Fermi-LAT
Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; ...
2015-03-24
Very high energy (VHE, E > 100 GeV) γ-ray flaring activity of the high-frequency peaked BL Lac object PG 1553+113 has been detected by the H.E.S.S. telescopes. Also, the flux of the source increased by a factor of 3 during the nights of 2012 April 26 and 27 with respect to the archival measurements with a hint of intra-night variability. No counterpart of this event has been detected in the Fermi-Large Area Telescope data. This pattern is consistent with VHE γ-ray flaring being caused by the injection of ultrarelativistic particles, emitting γ-rays at the highest energies. The dataset offers amore » unique opportunity to constrain the redshift of this source at z = 0.49 ± 0.04 using a novel method based on Bayesian statistics. In addition, the indication of intra-night variability is used to introduce a novel method to probe for a possible Lorentz invariance violation (LIV), and to set limits on the energy scale at which Quantum Gravity (QG) effects causing LIV may arise. For the subluminal case, the derived limits are E QG,1 > 4.10 × 10 17 GeV and E QG,2 > 2.10 × 10 10 GeV for linear and quadratic LIV effects, respectively.« less
The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342
NASA Astrophysics Data System (ADS)
Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.
2014-07-01
We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.
Flux and Polarization Variability of OJ 287 during the Early 2016 Outburst
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, C. S.; Muneer, S.; Neha, S.; Paliya, Vaidehi S.
2017-02-01
The gamma-ray blazar OJ 287 was in a high activity state during 2015 December-2016 February. Coinciding with this high brightness state, we observed this source for photometry on 40 nights in R-band and for polarimetry on nine epochs in UBV RI bands. During the period of our observations, the source brightness varied from 13.20 ± 0.04 mag to 14.98 ± 0.04 mag and the degree of polarization (P) fluctuated between 6.0% ± 0.3% and 28.3% ± 0.8% in R-band. Focusing on intranight optical variability (INOV), we find a duty cycle of about 71% using χ2-statistics, similar to that known for blazars. From INOV data, the shortest variability timescale is estimated to be 142 ± 38 minutes, yielding a lower limit of the observed Doppler factor δ0 = 1.17, the magnetic field strength B ≤ 3.8 G, and the size of the emitting region Rs < 2.28 × 1014 cm. On internight timescales, a significant anticorrelation between R-band flux and P is found. The observed P at U-band is generally larger than that observed at longer-wavelength bands, suggesting a wavelength-dependent polarization. Using V-band photometric and polarimetric data from Steward Observatory obtained during our monitoring period, we find a varied correlation between P and V-band brightness. While an anticorrelation is sometimes seen between P and V-band magnitude, no correlation is seen at other times, thereby suggesting the presence of more than one short-lived shock component in the jet of OJ 287.
NASA Astrophysics Data System (ADS)
Raiteri, C. M.; Ghisellini, G.; Villata, M.; de Francesco, G.; Lanteri, L.; Chiaberge, M.; Peila, A.; Antico, G.
1998-02-01
New data from the optical monitoring of gamma -ray loud blazars at the Torino Astronomical Observatory are presented. Observations have been taken in the Johnson's B, V, and Cousins' R bands with the 1.05m REOSC telescope equipped with a 1242x1152 pixel CCD camera. Many of the 22 monitored sources presented here show noticeable magnitude variations. Periods corresponding to pointings of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite are indicated on the light curves. The comparison of our data with those taken by CGRO in the gamma -ray band will contribute to better understand the mechanism of the gamma -ray emission. We finally show intranight light curves of 3C 66A and OJ 287, where microvariability was detected. Tables 2--21 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
CATALOG AND STATISTICAL STUDY OF X-RAY SELECTED BL LACERTAE OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapanadze, Bidzina Z., E-mail: bidzina_kapandaze@iliauni.edu.ge
2013-02-01
This paper presents a catalog of 312 X-ray selected BL Lacerate objects (XBLs), optically identified through the end of 2011. It contains the names from different surveys, equatorial coordinates, redshifts, multifrequency flux values, and luminosities for each source. In addition, the different characteristics of XBLs are statistically investigated (redshift, radio/optical/X-ray luminosities, central black hole (BH) mass, synchrotron peak frequency, broadband spectral indices, optical flux variability). Their values are collected through an extensive bibliographic and database search or calculated by us. The redshifts range from 0.031 to 0.702 with a maximum of the distribution at z = 0.223. The 1.4 GHzmore » luminosities of XBLs log {nu}L{sub {nu}} {approx} 39-42 erg s{sup -1} while optical V and X-ray 0.1-2.4 keV bands show log {nu}L{sub {nu}} {approx} 43-46 erg s{sup -1}. The XBL hosts are elliptical galaxies with effective radii r{sub eff} = 3.2625.40 kpc and ellipticities, in = 0.040.52. Their R-band absolute magnitudes M{sub R} range from -21.11 mag to -24.86 mag with a mean value of -22.83 mag. The V - R indices of the hosts span from 0.61 to 1.52 and reveal a fourth-degree polynomial relationship with z that enables us to evaluate the redshifts of five sources whose V - R indices were determined from the observations but whose irredshifts values are either not found or not confirmed. The XBL nuclei show a wider range of 7.31 mag for M{sub R} with the highest luminosity corresponding to M{sub R} = -27.24 mag. The masses of central BHs are found in the interval log M{sub BH} = 7.39-9.30 solar masses (with distribution maximum at log M{sub BH}/M{sub Sun} = 8.30). The synchrotron peak frequencies are spread over the range log {nu}{sub peak} = 14.56-19.18 Hz with a peak of the distribution at log {nu}{sub peak} = 16.60 Hz. The broadband radio-to-optical ({alpha}{sub ro}), optical-to-X-ray ({alpha}{sub ox}), and radio-to-X-ray ({alpha}{sub rx}) spectral indices are distributed in the intervals (0.17,0.59), (0.56,1.48), and (0.41,0.75), respectively. In the optical energy range, the overall flux variability increases, on average, towards shorter wavelengths: ({Delta}m) = 1.22, 1.50, and 1.82 mag through the R, V, B bands of Johnson-Cousins system, respectively. XBLs seem be optically less variable at the intranight timescales compared to the radio-selected BL Lacs (RBLs).« less
Photometric monitoring of three BL Lacertae objects in 1993-1998
NASA Astrophysics Data System (ADS)
Bai, J. M.; Xie, G. Z.; Li, K. H.; Zhang, X.; Liu, W. W.
1999-05-01
The results of optical photometric (BVRI) monitoring of three BL Lac objects over a time interval of about four years are presented. The sources are three classical radio-selected BL Lac objects, BL Lac, OJ 287 and PKS 0735+178. During our observation OJ 287 was in the stage of a large periodic outburst which consisted of at least two peaks. Almost all the observations obtained over consecutive nights detected intranight variations. In 1995 and 1996 BL Lac kept in faint states, with fewer and smaller rapid flares and fluctuations. On the contrary, in late 1997 BL Lac was at the stage of a large outburst, accompanied with much more large amplitude rapid flares and fluctuations. PKS 0735+178 was almost at its faint end from 1994 to early 1998. Over this time interval, the intraday variations and microvariations in PKS 0735+178 were rare and the amplitude was very small, except a rapid darkening of ~ 0.4 mag on 24 January 1995. Previous work by \\cite[Webb et al. (1988);]{web88} \\cite[Wagner et al. (1996);]{wag96} \\cite[Pian et al. (1997)]{pia97} also showed the same behaviour of variability as BL Lac and PKS 0735+178 in BL Lac, S5 0716+714, PKS 2155-304, respectively. We propose that the motion of orientation of the relativistic jet in a BL Lac object be responsible for these variability behaviours. Table~1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
Joshua B. Johnson; John W. Edwards; W. Mark Ford
2011-01-01
Nocturnal activity patterns of northern myotis (Myotis septentrionalis) at diurnal roost trees remain largely uninvestigated. For example, the influence of reproductive status, weather, and roost tree and surrounding habitat characteristics on timing of emergence, intra-night activity, and entrance at their roost trees is poorly known. We examined...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, Ryosuke; Fukazawa, Yasushi; Tanaka, Yasuyuki T.
2013-05-10
CTA 102, classified as a flat spectrum radio quasar at z = 1.037, produced an exceptionally bright optical flare in 2012 September. Following the Fermi Large Area Telescope detection of enhanced {gamma}-ray activity, we closely monitored this source in the optical and near-infrared bands for the 10 subsequent nights using 12 telescopes in Japan and South Africa. On MJD 56197 (2012 September 27, four to five days after the peak of bright {gamma}-ray flare), polarized flux showed a transient increase, while total flux and polarization angle (PA) remained almost constant during the ''orphan polarized-flux flare.'' We also detected an intra-nightmore » and prominent flare on MJD 56202. The total and polarized fluxes showed quite similar temporal variations, but the PA again remained constant during the flare. Interestingly, the PAs during the two flares were significantly different from the jet direction. The emergence of a new emission component with a high polarization degree (PD) up to 40% would be responsible for the observed two flares, and such a high PD indicates the presence of a highly ordered magnetic field at the emission site. We argue that the well-ordered magnetic field and even the observed directions of the PA, which is grossly perpendicular to the jet, are reasonably accounted for by transverse shock(s) propagating down the jet.« less
NASA Astrophysics Data System (ADS)
Sosa, M. S.; von Essen, C.; Andruchow, I.; Cellone, S. A.
2017-11-01
Blazars, a type of Active Galactic Nuclei, present a particular orientation of their jets close to the line of sight. Their radiation is thus relativistically beamed, giving rise to extreme behaviors, specially strong variability on very short timescales (I.e., microvariability). Here we present simultaneous photometric and polarimetric observations of two relatively nearby blazars, 1ES 1959+650 and HB89 2201+044, that were obtained using the Calar Alto Faint Object Spectrograph mounted at the 2.2 m telescope in Calar Alto, Spain. An outstanding characteristic of these two blazars is the presence of well resolved host galaxies. This particular feature allows us to produce a study of their intrinsic polarization, a measurement of the polarization state of the galactic nucleus unaffected by the host galaxy. To carry out this work, we computed photometric fluxes from which we calculated the degree and orientation of the blazars polarization. Then, we analyzed the depolarizing effect introduced by the host galaxy with the main goal to recover the intrinsic polarization of the galactic nucleus, carefully taking into consideration the spurious polarimetric variability introduced by changes in seeing along the observing nights. We find that the two blazars do not present intra-night photo-polarimetric variability, although we do detect a significant inter-night variability. Comparing polarimetric values before and after accounting for the host galaxies, we observe a significant difference in the polarization degree of about 1% in the case of 1ES 1959+650, and 0.3% in the case of HB89 2201+044, thus evidencing the non-negligible impact introduced by the host galaxies. We note that this host galaxy effect depends on the waveband, and varies with changing seeing conditions, so it should be particularly considered when studying frequency-dependent polarization in blazars. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
The DOHA algorithm: a new recipe for cotrending large-scale transiting exoplanet survey light curves
NASA Astrophysics Data System (ADS)
Mislis, D.; Pyrzas, S.; Alsubai, K. A.; Tsvetanov, Z. I.; Vilchez, N. P. E.
2017-03-01
We present
Probing the Solar System with LSST
NASA Astrophysics Data System (ADS)
Harris, A.; Ivezic, Z.; Juric, M.; Lupton, R.; Connolly, A.; Kubica, J.; Moore, A.; Bowell, E.; Bernstein, G.; Cook, K.; Stubbs, C.
2005-12-01
LSST will catalog small Potentially Hazardous Asteroids (PHAs), survey the main belt asteroid (MBA) population to extraordinarily small size, discover comets far from the sun where their nuclear properties can be discerned without coma, and survey the Centaur and Trans-Neptunian Object (TNO) populations. The present planned observing strategy is to ``visit'' each field (9.6 deg2) with two back-to-back exposures of ˜ 15 sec, reaching to at least V magnitude 24.5. An intra-night revisit time of the order half an hour will distinguish stationary transients from even very distant ( ˜ 70 AU) solar system bodies. In order to link observations and determine orbits, each sky area will be visited several times during a month, spaced by about a week. This cadence will result in orbital parameters for several million MBAs and about 20,000 TNOs, with light curves and colorimetry for the brighter 10% or so of each population. Compared to the current data available, this would represent factor of 10 to 100 increase in the numbers of orbits, colors, and variability of the two classes of objects. The LSST MBA and TNO samples will enable detailed studies of the dynamical and chemical history of the solar system. The increase in data volume associated with LSST asteroid science will present many computational challenges to how we might extract tracks and orbits of asteroids from the underlying clutter. Tree-based algorithms for multihypothesis testing of asteroid tracks can help solve these challenges by providing the necessary 1000-fold speed-ups over current approaches while recovering 95% of the underlying moving objects.
High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope
NASA Astrophysics Data System (ADS)
Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.
2012-08-01
Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source extending the light curve derived by H.E.S.S. after the outburst. Finally, we find night-by-night variability with a maximal amplitude of a factor three to four and an intranight variability in one of the nights (MJD 53 945) with a similar amplitude.
Things that go bump in the light - On the optical specification of contact severity
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Phatak, Anil V.
1993-01-01
Psychologists are intrigued with the idea that optical variables can specify not only the time until an object impacts an observer but also the severity of the impact. However, the mapping between the optical variables and the kinematic variables has been misstated, erroneously implying that there exist critical values of the optical variables used for locomotion and control. In this commentary, the mathematical relationship between the optical and kinematic variables is reexamined and the erroneous assumptions that have led to the proposal of critical values are shown. Also examined are the empirical data on deceleration to approach to assess whether the proposed optical variables are likely candidates for control strategies. Finally, problems associated with numerical approximations to dynamic systems, particularly when analytic solutions exist, are discussed.
Su, Hui; Kondratko, Piotr; Chuang, Shun L
2006-05-29
We investigate variable optical delay of a microwave modulated optical beam in semiconductor optical amplifier/absorber waveguides with population oscillation (PO) and nearly degenerate four-wave-mixing (NDFWM) effects. An optical delay variable between 0 and 160 ps with a 1.0 GHz bandwidth is achieved in an InGaAsP/InP semiconductor optical amplifier (SOA) and shown to be electrically and optically controllable. An analytical model of optical delay is developed and found to agree well with the experimental data. Based on this model, we obtain design criteria to optimize the delay-bandwidth product of the optical delay in semiconductor optical amplifiers and absorbers.
Wang, Mingwu; Lu, Ake Tzu-Hui; Varma, Rohit; Schuman, Joel S; Greenfield, David S; Huang, David
2014-03-01
To improve the diagnosis of glaucoma by combining time-domain optical coherence tomography (TD-OCT) measurements of the optic disc, circumpapillary retinal nerve fiber layer (RNFL), and macular retinal thickness. Ninety-six age-matched normal and 96 perimetric glaucoma participants were included in this observational, cross-sectional study. Or-logic, support vector machine, relevance vector machine, and linear discrimination function were used to analyze the performances of combined TD-OCT diagnostic variables. The area under the receiver-operating curve (AROC) was used to evaluate the diagnostic accuracy and to compare the diagnostic performance of single and combined anatomic variables. The best RNFL thickness variables were the inferior (AROC=0.900), overall (AROC=0.892), and superior quadrants (AROC=0.850). The best optic disc variables were horizontal integrated rim width (AROC=0.909), vertical integrated rim area (AROC=0.908), and cup/disc vertical ratio (AROC=0.890). All macular retinal thickness variables had AROCs of 0.829 or less. Combining the top 3 RNFL and optic disc variables in optimizing glaucoma diagnosis, support vector machine had the highest AROC, 0.954, followed by or-logic (AROC=0.946), linear discrimination function (AROC=0.946), and relevance vector machine (AROC=0.943). All combination diagnostic variables had significantly larger AROCs than any single diagnostic variable. There are no significant differences among the combination diagnostic indices. With TD-OCT, RNFL and optic disc variables had better diagnostic accuracy than macular retinal variables. Combining top RNFL and optic disc variables significantly improved diagnostic performance. Clinically, or-logic classification was the most practical analytical tool with sufficient accuracy to diagnose early glaucoma.
NASA Astrophysics Data System (ADS)
Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott
2012-11-01
We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.
First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source
NASA Technical Reports Server (NTRS)
Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak
2016-01-01
Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.
Multi-band optical variability studies of Blazars
NASA Astrophysics Data System (ADS)
Agarwal, Aditi
2018-04-01
To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of a dozen blazars. CCD magnitudes in B, V, R and I pass-bands were determined for > 10,000f new optical observations from 300 nights made during 2011 – 2016, with an average length of 4 h each, using seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse timescales. Blazar variability studies helped us in understanding their nature and extreme conditions within the emission region. To explain possible physical causes of the observed spectral variability, we also investigated spectral energy distributions using B, V, R, I, J and K pass-band data.
NASA Astrophysics Data System (ADS)
Goodman, J. W.
This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.
NASA Astrophysics Data System (ADS)
Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.
2017-06-01
Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. Conclusions: The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe, on average, a larger soft X-ray spectral component not observed in non-accreting stars.
Regression Analysis of Optical Coherence Tomography Disc Variables for Glaucoma Diagnosis.
Richter, Grace M; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Chopra, Vikas; Greenfield, David S; Varma, Rohit; Schuman, Joel S; Huang, David
2016-08-01
To report diagnostic accuracy of optical coherence tomography (OCT) disc variables using both time-domain (TD) and Fourier-domain (FD) OCT, and to improve the use of OCT disc variable measurements for glaucoma diagnosis through regression analyses that adjust for optic disc size and axial length-based magnification error. Observational, cross-sectional. In total, 180 normal eyes of 112 participants and 180 eyes of 138 participants with perimetric glaucoma from the Advanced Imaging for Glaucoma Study. Diagnostic variables evaluated from TD-OCT and FD-OCT were: disc area, rim area, rim volume, optic nerve head volume, vertical cup-to-disc ratio (CDR), and horizontal CDR. These were compared with overall retinal nerve fiber layer thickness and ganglion cell complex. Regression analyses were performed that corrected for optic disc size and axial length. Area-under-receiver-operating curves (AUROC) were used to assess diagnostic accuracy before and after the adjustments. An index based on multiple logistic regression that combined optic disc variables with axial length was also explored with the aim of improving diagnostic accuracy of disc variables. Comparison of diagnostic accuracy of disc variables, as measured by AUROC. The unadjusted disc variables with the highest diagnostic accuracies were: rim volume for TD-OCT (AUROC=0.864) and vertical CDR (AUROC=0.874) for FD-OCT. Magnification correction significantly worsened diagnostic accuracy for rim variables, and while optic disc size adjustments partially restored diagnostic accuracy, the adjusted AUROCs were still lower. Axial length adjustments to disc variables in the form of multiple logistic regression indices led to a slight but insignificant improvement in diagnostic accuracy. Our various regression approaches were not able to significantly improve disc-based OCT glaucoma diagnosis. However, disc rim area and vertical CDR had very high diagnostic accuracy, and these disc variables can serve to complement additional OCT measurements for diagnosis of glaucoma.
NASA Astrophysics Data System (ADS)
Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang
2017-09-01
A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.
The effect of virtual reality on gait variability.
Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas
2010-07-01
Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.
Analysis of blocking probability for OFDM-based variable bandwidth optical network
NASA Astrophysics Data System (ADS)
Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi
2011-12-01
Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.
Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage
NASA Astrophysics Data System (ADS)
Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto
2017-05-01
Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.
Searching for faint AGN in the CDFS: an X-ray (Chandra) vs optical variability (HST) comparison.
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Pouliasis, E.; Bonanos, A.; Sokolovsky, K.; Yang, M.; Hatzidimitriou, D.; Bellas, I.; Gavras, P.; Spetsieri, Z.
2017-10-01
X-ray surveys are believed to be the most efficient way to detect AGN. Recently though, optical variability studies are claimed to probe even fainter AGN. We are presenting results from an HST study aimed to identify Active Galactic Nuclei (AGN) through optical variability selection in the CDFS.. This work is part of the 'Hubble Catalogue of Variables'project of ESA that aims to identify variable sources in the Hubble Source Catalogue.' In particular, we used Hubble Space Telescope (HST) z-band images taken over 5 epochs and performed aperture photometry to derive the lightcurves of the sources. Two statistical methods (standard deviation & interquartile range) resulting in a final sample of 175 variable AGN candidates, having removed the artifacts by visual inspection and known stars and supernovae. The fact that the majority of the sources are extended and variable indicates AGN activity. We compare the efficiency of the method by comparing with the 7Ms Chandra detections. Our work shows that the optical variability probes AGN at comparable redshifts but at deeper optical magnitudes. Our candidate AGN (non detected in X-rays) have luminosities of L_x<6×10^{40} erg/sec at z˜0.7 suggesting that these are associated with low luminosity Seyferts and LINERS.
NASA Astrophysics Data System (ADS)
Kokubo, Mitsuru
2015-05-01
The physical mechanisms of the quasar ultraviolet (UV)-optical variability are not well understood despite the long history of observations. Recently, Dexter & Agol presented a model of quasar UV-optical variability, which assumes large local temperature fluctuations in the quasar accretion discs. This inhomogeneous accretion disc model is claimed to describe not only the single-band variability amplitude, but also microlensing size constraints and the quasar composite spectral shape. In this work, we examine the validity of the inhomogeneous accretion disc model in the light of quasar UV-optical spectral variability by using five-band multi-epoch light curves for nearly 9 000 quasars in the Sloan Digital Sky Survey (SDSS) Stripe 82 region. By comparing the values of the intrinsic scatter σint of the two-band magnitude-magnitude plots for the SDSS quasar light curves and for the simulated light curves, we show that Dexter & Agol's inhomogeneous accretion disc model cannot explain the tight inter-band correlation often observed in the SDSS quasar light curves. This result leads us to conclude that the local temperature fluctuations in the accretion discs are not the main driver of the several years' UV-optical variability of quasars, and consequently, that the assumption that the quasar accretion discs have large localized temperature fluctuations is not preferred from the viewpoint of the UV-optical spectral variability.
Photonic variable delay devices based on optical birefringence
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2005-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
NASA Astrophysics Data System (ADS)
Aoki, K.
2016-12-01
Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.
Subwavelength grating enabled on-chip ultra-compact optical true time delay line
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.
2016-01-01
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024
Subwavelength grating enabled on-chip ultra-compact optical true time delay line.
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R
2016-07-26
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.
NASA Astrophysics Data System (ADS)
Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh
2018-06-01
Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.
NASA Astrophysics Data System (ADS)
Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh
2018-02-01
Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.
Periodic optical variability of radio-detected ultracool dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, L. K.; Golden, A.; Singh, Navtej
2013-12-20
A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring,more » delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.« less
Smoke optical depths - Magnitude, variability, and wavelength dependence
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.
1988-01-01
An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.
Sánchez Pérez, A; Honrubia López, F M; Larrosa Poves, J M; Polo Llorens, V; Melcon Sánchez-Frieras, B
2001-09-01
To develop a lens planimetry technique for the optic disc using AutoCAD. To determine variability magnitude of the optic disc morphological measurements. We employed AutoCAD R.14.0 Autodesk: image acquisition, contour delimitation by multiple lines fitting or ellipse adjustment, image sectorialization and measurements quantification (optic disc and excavation, vertical diameters, optic disc area, excavation area, neuroretinal sector area and Beta atrophy area). Intraimage or operator and interimage o total reproducibility was studied by coefficient of variability (CV) (n=10) in normal and myopic optic discs. This technique allows to obtain optic disc measurement in 5 to 10 minutes time. Total or interimage variability of measurements introduced by one observer presents CV range from 1.18-4.42. Operator or intraimage measurement presents CV range from 0.30-4.21. Optic disc contour delimitation by ellipse adjustment achieved better reproducibility results than multiple lines adjustment in all measurements. Computer assisted AutoCAD planimetry is an interactive method to analyse the optic disc, feasible to incorporate to clinical practice. Reproducibility results are comparable to other analyzers in quantification optic disc morphology. Ellipse adjustment improves results in optic disc contours delimitation.
The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey
NASA Astrophysics Data System (ADS)
Morokuma, Tomoki; Doi, Mamoru; Yasuda, Naoki; Akiyama, Masayuki; Sekiguchi, Kazuhiro; Furusawa, Hisanori; Ueda, Yoshihiro; Totani, Tomonori; Oda, Takeshi; Nagao, Tohru; Kashikawa, Nobunari; Murayama, Takashi; Ouchi, Masami; Watson, Mike G.; Richmond, Michael W.; Lidman, Christopher; Perlmutter, Saul; Spadafora, Anthony L.; Aldering, Greg; Wang, Lifan; Hook, Isobel M.; Knop, Rob A.
2008-03-01
We present our survey for optically faint variable objects using multiepoch (8-10 epochs over 2-4 years) i'-band imaging data obtained with Subaru Suprime-Cam over 0.918 deg2 in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically variable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10 m class telescopes or the Hubble Space Telescope. The detection limit for variable components is i'vari ~ 25.5 mag. These variable objects were classified into variable stars, supernovae (SNe), and active galactic nuclei (AGNs), based on the optical morphologies, magnitudes, colors, and optical-mid-infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for 36% +/- 2% (51% +/- 3% for a bright sample with i' < 24.4 mag) of X-ray sources in the field. Number densities of variable objects as functions of time intervals Δ t and variable component magnitudes i'vari are obtained. Number densities of variable stars, SNe, and AGNs are 120, 489, and 579 objects deg-2, respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright (V ~ 22 mag) blue variable stars of the halo population and faint (V ~ 23.5 mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of ~10-2 kpc-3 at a distance of >150 kpc from the Galactic center. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations (program GN-2002B-Q-30) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).
Complex optical/UV and X-ray variability of the Seyfert 1 galaxy 1H 0419-577
NASA Astrophysics Data System (ADS)
Pal, Main; Dewangan, Gulab C.; Kembhavi, Ajit K.; Misra, Ranjeev; Naik, Sachindra
2018-01-01
We present detailed broad-band UV/optical to X-ray spectral variability of the Seyfert 1 galaxy 1H 0419-577 using six XMM-Newton observations performed during 2002-2003. These observations covered a large amplitude variability event in which the soft X-ray (0.3-2 keV) count rate increased by a factor of ∼4 in six months. The X-ray spectra during the variability are well described by a model consisting of a primary power law, blurred and distant reflection. The 2-10 keV power-law flux varied by a factor of ∼7 while the 0.3-2 keV soft X-ray excess flux derived from the blurred reflection component varied only by a factor of ∼2. The variability event was also observed in the optical and UV bands but the variability amplitudes were only at the 6-10 per cent level. The variations in the optical and UV bands appear to follow the variations in the X-ray band. During the rising phase, the optical bands appear to lag behind the UV band but during the declining phase, the optical bands appear to lead the UV band. Such behaviour is not expected in the reprocessing models where the optical/UV emission is the result of reprocessing of X-ray emission in the accretion disc. The delayed contribution of the broad emission lines in the UV band or the changes in the accretion disc/corona geometry combined with X-ray reprocessing may give rise to the observed behaviour of the variations.
NASA Astrophysics Data System (ADS)
Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.
1997-12-01
The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.
NASA Astrophysics Data System (ADS)
Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.
1998-01-01
The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.
Mikš, Antonín; Novák, Pavel
2018-05-10
In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.
Compact programmable photonic variable delay devices
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
1999-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm.sup.2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
NASA Astrophysics Data System (ADS)
Xu, Si-Yao; Li, Zhuo
2014-04-01
Complete high-resolution light curves of GRB 080319B observed by Swift present an opportunity for detailed temporal analysis of prompt optical emission. With a two-component distribution of initial Lorentz factors, we simulate the dynamical process of shells being ejected from the central engine in the framework of the internal shock model. The emitted radiations are decomposed into different frequency ranges for a temporal correlation analysis between the light curves in different energy bands. The resulting prompt optical and gamma-ray emissions show similar temporal profiles, with both showing a superposition of a component with slow variability and a component with fast variability, except that the gamma-ray light curve is much more variable than its optical counterpart. The variability in the simulated light curves and the strong correlation with a time lag between the optical and gamma-ray emissions are in good agreement with observations of GRB 080319B. Our simulations suggest that the variations seen in the light curves stem from the temporal structure of the shells injected from the central engine of gamma-ray bursts. Future observations with high temporal resolution of prompt optical emission from GRBs, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide a useful tool for investigating the central engine activity.
NASA Astrophysics Data System (ADS)
Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.
2001-05-01
Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.
On-chip optical phase locking of single growth monolithically integrated Slotted Fabry Perot lasers.
Morrissey, P E; Cotter, W; Goulding, D; Kelleher, B; Osborne, S; Yang, H; O'Callaghan, J; Roycroft, B; Corbett, B; Peters, F H
2013-07-15
This work investigates the optical phase locking performance of Slotted Fabry Perot (SFP) lasers and develops an integrated variable phase locked system on chip for the first time to our knowledge using these lasers. Stable phase locking is demonstrated between two SFP lasers coupled on chip via a variable gain waveguide section. The two lasers are biased differently, one just above the threshold current of the device with the other at three times this value. The coupling between the lasers can be controlled using the variable gain section which can act as a variable optical attenuator or amplifier depending on bias. Using this, the width of the stable phase locking region on chip is shown to be variable.
Searching for X-ray variability/periodicity in HD 4004.
NASA Astrophysics Data System (ADS)
Wessolowski, U.; Niedzielski, A.
1996-02-01
The authors present preliminary results of a combined X-ray and optical search for variability/periodicity in HD 4004 (WR 1, WN5-s), an apparently single Wolf-Rayet star known to show radial velocity variations (Lamontagne 1983) and some variability both in photometry (Moffat and Shara 1986) and in optical line profiles (Niedzielski 1995). The two ROSAT PSPC pointed observations of HD 4004 (total effective exposure time of 35 ks) do not provide significant evidence for variability in X-rays. Line profile variations present in newly obtained optical spectra are similar to those of EZ CMa (WR 6, WN5-s+c?), the banner WR+compact companion candidate.
NASA Astrophysics Data System (ADS)
Edmonds, Peter D.; Gilliland, Ronald L.; Heinke, Craig O.; Grindlay, Jonathan E.
2003-10-01
We report in this study of 47 Tucanae the largest number of optical identifications of X-ray sources yet obtained in a single globular cluster. Using deep Chandra ACIS-I imaging and extensive Hubble Space Telescope studies with Wide Field Planetary Camera 2 (WFPC2; including a 120 orbit program giving superb V and I images), we have detected optical counterparts to at least 22 cataclysmic variables (CVs) and 29 chromospherically active binaries (BY Dra and RS CVn systems) in 47 Tuc. These identifications are all based on tight astrometric matches between X-ray sources and objects with unusual (non-main-sequence [non-MS]) optical colors and/or optical variability. Several other CVs and active binaries have likely been found, but these have marginal significance because of larger offsets between the X-ray and optical positions, or colors and variability that are not statistically convincing. These less secure optical identifications are not subsequently discussed in detail. In the U versus U-V color-magnitude diagram (CMD), where the U band corresponds to either F336W or F300W, the CVs all show evidence for blue colors compared with the MS, but most of them fall close to the main sequence in the V versus V-I CMD, showing that the secondary stars dominate the optical light. The X-ray-detected active binaries have magnitude offsets above the MS (in both the U versus U-V or V versus V-I CMDs) that are indistinguishable from those of the much larger sample of optical variables (eclipsing and contact binaries and BY Dra variables) detected in the recent WFPC2 studies of Albrow et al. We also present the results of a new, deeper search for optical companions to millisecond pulsars (MSPs). One possible optical companion to an MSP (47 Tuc T) was found, adding to the two optical companions already known. Finally, we study several blue stars with periodic variability from Albrow et al. that show little or no evidence for X-ray emission. The optical colors of these objects differ from those of 47 Tuc (and field) CVs. An accompanying paper will present time series results for these optical identifications and will discuss X-ray-to-optical flux ratios, spatial distributions, and an overall interpretation of the results. Based on observations with the NASA/ESA Hubble Space Telescope obtained at STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Tunable graded rod laser assembly
NASA Technical Reports Server (NTRS)
AuYeung, John C. (Inventor)
1985-01-01
A tunable laser assembly including a pair of radially graded indexed optical segments aligned to focus the laser to form an external resonant cavity with an optical axis, the respective optical segments are retativity moveable along the optical axis and provide a variable et aion gap sufficient to permit variable tuning of the laser wavelength without altering the effective length of the resonant cavity. The gap also include a saturable absorbing material providing a passive mode-locking of the laser.
NASA Astrophysics Data System (ADS)
Harding, L. K.; Hallinan, G.; Boyle, R. P.; Butler, R. F.; Sheehan, B.; Golden, A.
2011-12-01
A number of ultracool dwarfs have been unexpectedly detected as radio sources in the last decade, four of which have been found to be producing periodic pulses. More recently, two of these pulsing dwarfs have also been found to be periodically variable in broadband optical photometry. The detected periods match the periods of the radio pulses which have previously been associated with the rotation period of the dwarf. For one of these objects, it has also been established that the optical and radio periodic variability are possibly linked, being a consequence of magnetically-driven auroral processes. In order to investigate the ubiquity of the periodic optical variability in radio detected sources, the GUFI instrument (Galway Ultra Fast Imager) was commissioned on the 1.8m Vatican Advanced Technology Telescope, on Mt. Graham, Arizona, and has been obtaining data for the past eighteen months. More than two hundred hours of multi-epoch photometric monitoring observations of radio detected ultracool dwarfs have been completed. We present initial results confirming optical periodic variability for four of this sample, three of which have been newly confirmed using GUFI.
NASA Astrophysics Data System (ADS)
Boyle, Richard P.; Harding, L. K.; Hallinan, G.; Butler, R. F.; Golden, A.
2011-05-01
In the past ten years or so, radio observations of ultracool dwarfs have yielded the detection of both quiescent and time-variable radio emission in the late-M and L dwarf regime. Four of these dwarfs have been found to produce periodic pulses, determined to be associated with the dwarf's rotation. More recently, two of these radio pulsing dwarfs have been shown to be periodically variable in broadband optical photometry, where the detected periods match the periods of the radio pulses. For one of these dwarfs in particular, it has been established that the mechanism which is driving the optical and radio periodic variability are possibly linked, being a consequence of a magnetically-driven auroral process. We therefore undertook a campaign to investigate the ubiquity of optical periodicity for known radio detected ultracool dwarfs, via multi-color photometric monitoring. To facilitate this research, the GUFI instrument (Galway Ultra Fast Imager) was commissioned on the 1.8m VATT observatory, on Mt. Graham, Arizona. We present the recently published results from this observation campaign, where we have confirmed periodic variability for five of these dwarfs, three of which have been detected for the first time by GUFI. These data provide an insight into the cause of this optical emission, its connection to the radio processes, and most importantly determine whether optical periodic signals are present only in radio pulsing dwarfs.
Modeling of an Adjustable Beam Solid State Light Project
NASA Technical Reports Server (NTRS)
Clark, Toni
2015-01-01
This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.
Feedback controlled optics with wavefront compensation
NASA Technical Reports Server (NTRS)
Breckenridge, William G. (Inventor); Redding, David C. (Inventor)
1993-01-01
The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.
Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, C. S.
2017-06-01
We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.
Electrowetting Variable Optics for Visible and Infrared Applications
NASA Astrophysics Data System (ADS)
Watson, Alexander Maxwell
Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material and electrowetting liquids to enable low voltage variable optics and demonstrate applications in microscopy and microendoscopy.
Optical fundamentals of an adaptive substance-on-surface chemical recognizer
NASA Astrophysics Data System (ADS)
Fauconier, Richard; Ndoye, Mandoye; Montlouis, Webert
2017-10-01
The objective is to identify the chemical composition of (isotropic and homogeneous) thin liquid and gel films on various surfaces by their infrared reflectance spectra. A bistatic optical sensing concept is proposed here in which a multi-wavelength laser source and a detector are physically displaced from each other. With the aid of the concept apparatus proposed, key optical variables can be measured in real time. The variables in question (substance thickness, refractive index, etc.) are those whose un-observability causes many types of monostatic sensor (in use today) to give ambiguous identifications. Knowledge of the aforementioned key optical variables would allow an adaptive signal-processing algorithm to make unambiguous identifications of the unknown chemicals by their infrared spectra, despite their variable presentations. The proposed bistatic sensor system consists of an optical transmitter and an optical receiver. The whole system can be mounted on a stable platform. Both the optical transmitter subsystem and the optical receiver subsystem contain auxiliary sensors to determine their relative spatial positions and orientations. For each subsystem, these auxiliary sensors include an orientation sensor, and rotational sensors for absolute angular position. A profilometer-and-machine-vision subsystem is also included. An important aspect of determining the necessary optical variables is an aperture that limits the interrogatory beams to a coherent pair, rejecting those resulting from successive multiple reflections. A set of equations is developed to characterize the propagation of a coherent pair of frequency-modulated thin beams through the system. It is also shown that frequency modulation can produce easily measurable beat frequencies for determination of sample thicknesses on the order of microns to millimeters. Also shown is how the apparatus's polarization features allow it to measure the refractive index of any isotropic, homogeneous dielectric surface on which the unknown substance can sit. Concave, convex and flat supporting surfaces and menisci are discussed.
NASA Astrophysics Data System (ADS)
Boutsia, K.; Leibundgut, B.; Trevese, D.; Vagnetti, F.
2009-04-01
Context: Supermassive black holes with masses of 10^5-109 M⊙ are believed to inhabit most, if not all, nuclear regions of galaxies, and both observational evidence and theoretical models suggest a scenario where galaxy and black hole evolution are tightly related. Luminous AGNs are usually selected by their non-stellar colours or their X-ray emission. Colour selection cannot be used to select low-luminosity AGNs, since their emission is dominated by the host galaxy. Objects with low X-ray to optical ratio escape even the deepest X-ray surveys performed so far. In a previous study we presented a sample of candidates selected through optical variability in the Chandra Deep Field South, where repeated optical observations were performed in the framework of the STRESS supernova survey. Aims: The analysis is devoted to breaking down the sample in AGNs, starburst galaxies, and low-ionisation narrow-emission line objects, to providing new information about the possible dependence of the emission mechanisms on nuclear luminosity and black-hole mass, and eventually studying the evolution in cosmic time of the different populations. Methods: We obtained new optical spectroscopy for a sample of variability selected candidates with the ESO NTT telescope. We analysed the new spectra, together with those existing in the literature and studied the distribution of the objects in U-B and B-V colours, optical and X-ray luminosity, and variability amplitude. Results: A large fraction (17/27) of the observed candidates are broad-line luminous AGNs, confirming the efficiency of variability in detecting quasars. We detect: i) extended objects which would have escaped the colour selection and ii) objects of very low X-ray to optical ratio, in a few cases without any X-ray detection at all. Several objects resulted to be narrow-emission line galaxies where variability indicates nuclear activity, while no emission lines were detected in others. Some of these galaxies have variability and X-ray to optical ratio close to active galactic nuclei, while others have much lower variability and X-ray to optical ratio. This result can be explained by the dilution of the nuclear light due to the host galaxy. Conclusions: Our results demonstrate the effectiveness of supernova search programmes to detect large samples of low-luminosity AGNs. A sizable fraction of the AGN in our variability sample had escaped X-ray detection (5/47) and/or colour selection (9/48). Spectroscopic follow-up to fainter flux limits is strongly encouraged. Based on observations collected at the European Southern Observatory, Chile, 080.B-0187(A).
Spatial and temporal variability in response to hybrid electro-optical stimulation
NASA Astrophysics Data System (ADS)
Duke, Austin R.; Lu, Hui; Jenkins, Michael W.; Chiel, Hillel J.; Jansen, E. Duco
2012-06-01
Hybrid electro-optical neural stimulation is a novel paradigm combining the advantages of optical and electrical stimulation techniques while reducing their respective limitations. However, in order to fulfill its promise, this technique requires reduced variability and improved reproducibility. Here we used a comparative physiological approach to aid the further development of this technique by identifying the spatial and temporal factors characteristic of hybrid stimulation that may contribute to experimental variability and/or a lack of reproducibility. Using transient pulses of infrared light delivered simultaneously with a bipolar electrical stimulus in either the marine mollusk Aplysia californica buccal nerve or the rat sciatic nerve, we determined the existence of a finite region of excitability with size altered by the strength of the optical stimulus and recruitment dictated by the polarity of the electrical stimulus. Hybrid stimulation radiant exposures yielding 50% probability of firing (RE50) were shown to be negatively correlated with the underlying changes in electrical stimulation threshold over time. In Aplysia, but not in the rat sciatic nerve, increasing optical radiant exposures (J cm-2) beyond the RE50 ultimately resulted in inhibition of evoked potentials. Accounting for the sources of variability identified in this study increased the reproducibility of stimulation from 35% to 93% in Aplysia and 23% to 76% in the rat with reduced variability.
Wick, David V.
2005-12-20
An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.
Optical design of laser zoom projective lens with variable total track
NASA Astrophysics Data System (ADS)
He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua
2017-02-01
In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.
NASA Astrophysics Data System (ADS)
Leh, Barbara; Siebert, Rainer; Hamzeh, Hussein; Menard, Laurent; Duval, Marie-Alix; Charon, Yves; Abi Haidar, Darine
2012-10-01
Growing interest in optical instruments for biomedical applications has increased the use of optically calibrated phantoms. Often associated with tissue modeling, phantoms allow the characterization of optical devices for clinical purposes. Fluorescent gel phantoms have been developed, mimicking optical properties of healthy and tumorous brain tissues. Specific geometries of dedicated molds offer multiple-layer phantoms with variable thicknesses and monolayer phantoms with cylindrical inclusions at various depths and diameters. Organic chromophores are added to allow fluorescence spectroscopy. These phantoms are designed to be used with 405 nm as the excitation wavelength. This wavelength is then adapted to excite large endogenous molecules. The benefits of these phantoms in understanding fluorescence tissue analysis are then demonstrated. In particular, detectability aspects as a function of geometrical and optical parameters are presented and discussed.
On-chip continuous-variable quantum entanglement
NASA Astrophysics Data System (ADS)
Masada, Genta; Furusawa, Akira
2016-09-01
Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.
Development and application of variable-magnification x-ray Bragg optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Keiichi, E-mail: keiichi.hirano@kek.jp; Takahashi, Yumiko; Sugiyama, Hiroshi
2016-07-27
A novel x-ray Bragg optics was developed for variable-magnification of an x-ray beam, and was combined with a module of the PILATUS pixel detector. A feasibility test of this optical system was carried out at the vertical-wiggler beamline BL-14B of the Photon Factory. By tuning the magnification factor, we could successfully control the spatial resolution of the optical system between 28 μm and 280 μm. X-ray absorption-contrast images of a leaf were observed at various magnification factors.
Ladder-structured photonic variable delay device
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
1998-01-01
An ladder-structured variable delay device for providing variable true time delay to multiple optical beams simultaneously. The device comprises multiple basic units stacked on top of each other resembling a ladder. Each basic unit comprises a polarization sensitive corner reflector formed by two polarization beamsplitters and a polarization rotator array placed parallel to the hypotenuse of the corner reflector. Controlling an array element of the polarization rotator array causes an optical beam passing through the array element to either go up to a basic unit above it or reflect back towards output. The beams going higher on the ladder experience longer optical path delay. Finally, the ladder-structured variable device can be cascaded with another multi-channel delay device to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
Tomperi, Jani; Leiviskä, Kauko
2018-06-01
Traditionally the modelling in an activated sludge process has been based on solely the process measurements, but as the interest to optically monitor wastewater samples to characterize the floc morphology has increased, in the recent years the results of image analyses have been more frequently utilized to predict the characteristics of wastewater. This study shows that the traditional process measurements or the automated optical monitoring variables by themselves are not capable of developing the best predictive models for the treated wastewater quality in a full-scale wastewater treatment plant, but utilizing these variables together the optimal models, which show the level and changes in the treated wastewater quality, are achieved. By this early warning, process operation can be optimized to avoid environmental damages and economic losses. The study also shows that specific optical monitoring variables are important in modelling a certain quality parameter, regardless of the other input variables available.
On X-Ray Variability in Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Turner, T. J.; George, I. M.; Nandra, K.; Turcan, D.
1999-01-01
This paper presents a quantification of the X-ray variability amplitude for 79 ASCA observations of 36 Seyfert 1 galaxies. We find that consideration of sources with the narrowest permitted lines in the optical band introduces scatter into the established correlation between X-ray variability and nuclear luminosity. Consideration of the X-ray spectral index and variability properties together shows distinct groupings in parameter space for broad and narrow-line Seyfert 1 galaxies, confirming previous studies. A strong correlation is found between hard X-ray variability and FWHM Hbeta. A range of nuclear mass and accretion rate across the Seyfert population can explain the differences observed in X-ray and optical properties. An attractive alternative model, which does not depend on any systematic difference in central mass, is that the circumnuclear gas of NLSy1s is different to BLSy1s in temperature, optical depth, density or geometry.
Schoellhamer, D.H.; Wright, S.A.; Bogen, J.; Fergus, T.; Walling, D.
2003-01-01
Optical sensors have been used to measure turbidity and suspended-sediment concentration by many marine and estuarine studies, and optical sensors can provide automated, continuous time series of suspended-sediment concentration and discharge in rivers. Three potential problems with using optical sensors are biological fouling, particle-size variability, and particle-reflectivity variability. Despite varying particle size, output from an optical backscatterance sensor in the Sacramento River at Freeport, California, USA, was calibrated successfully to discharge-weighted, cross-sectionally averaged suspended-sediment concentration, which was measured with the equal discharge-, or width-increment, methods and an isokinetic sampler. A correction for sensor drift was applied to the 3-year time series. However, the calibration of an optical backscatterance sensor used in the Colorado River at Cisco, Utah, USA, was affected by particle-size variability. The adjusted time series at Freeport was used to calculate hourly suspended-sediment discharge that compared well with daily values from a sediment station at Freeport. The appropriateness of using optical sensors in rivers should be evaluated on a site-specific basis and measurement objectives, potential particle size effects, and potential fouling should be considered.
The impact of large-scale, long-term optical surveys on pulsating star research
NASA Astrophysics Data System (ADS)
Soszyński, Igor
2017-09-01
The era of large-scale photometric variability surveys began a quarter of a century ago, when three microlensing projects - EROS, MACHO, and OGLE - started their operation. These surveys initiated a revolution in the field of variable stars and in the next years they inspired many new observational projects. Large-scale optical surveys multiplied the number of variable stars known in the Universe. The huge, homogeneous and complete catalogs of pulsating stars, such as Cepheids, RR Lyrae stars, or long-period variables, offer an unprecedented opportunity to calibrate and test the accuracy of various distance indicators, to trace the three-dimensional structure of the Milky Way and other galaxies, to discover exotic types of intrinsically variable stars, or to study previously unknown features and behaviors of pulsators. We present historical and recent findings on various types of pulsating stars obtained from the optical large-scale surveys, with particular emphasis on the OGLE project which currently offers the largest photometric database among surveys for stellar variability.
Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts
NASA Astrophysics Data System (ADS)
Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura
2016-07-01
Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (<0.1 AU) and that of photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.
NASA Astrophysics Data System (ADS)
Jinxia, Feng; Zhenju, Wan; Yuanji, Li; Kuanshou, Zhang
2018-01-01
Continuous variable quantum entanglement at a telecommunication wavelength of 1550 nm is experimentally generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO4 crystal. The triply resonant of the nondegenerate optical parametric amplifier is adjusted by tuning the crystal temperature and tilting the orientation of the crystal in the optical cavity. Einstein-Podolsky-Rosen-entangled beams with quantum correlations of 8.3 dB for both the amplitude and phase quadratures are experimentally generated. This system can be used for continuous variable fibre-based quantum communication.
Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com
We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude thanmore » radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.« less
NASA Astrophysics Data System (ADS)
Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.
2006-08-01
Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.
Choi, Eunseo; Na, Jihoon; Ryu, Seon; Mudhana, Gopinath; Lee, Byeong
2005-02-21
We have implemented an all-fiber optical delay line using two linearly chirped fiber Bragg gratings cascaded in reverse order and all-fiber optics components. The features of the proposed all-fiber based technique for variable delay line are discussed theoretically and demonstrated experimentally. The non-invasive cross-sectional images of biomedical samples as well as a transparent glass plate obtained with implemented all-fiber delay line having the axial resolution of 100 mum and the dynamic range of 50dB are presented to validates the imaging performance and demonstrate the feasibility of the delay line for optical coherence tomography.
Method for using polarization gating to measure a scattering sample
Baba, Justin S.
2015-08-04
Described herein are systems, devices, and methods facilitating optical characterization of scattering samples. A polarized optical beam can be directed to pass through a sample to be tested. The optical beam exiting the sample can then be analyzed to determine its degree of polarization, from which other properties of the sample can be determined. In some cases, an apparatus can include a source of an optical beam, an input polarizer, a sample, an output polarizer, and a photodetector. In some cases, a signal from a photodetector can be processed through attenuation, variable offset, and variable gain.
USDA-ARS?s Scientific Manuscript database
Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, P.; Dhillon, V. S.; Durant, M.
2010-07-15
In a fast multi-wavelength timing study of black hole X-ray binaries (BHBs), we have discovered correlated optical and X-ray variability in the low/hard state of two sources: GX 339-4 and SWIFT J1753.5-0127. After XTE J1118+480, these are the only BHBs currently known to show rapid (sub-second) aperiodic optical flickering. Our simultaneous VLT/Ultracam and RXTE data reveal intriguing patterns with characteristic peaks, dips and lags down to very short timescales. Simple linear reprocessing models can be ruled out as the origin of the rapid, aperiodic optical power in both sources. A magnetic energy release model with fast interactions between the disk,more » jet and corona can explain the complex correlation patterns. We also show that in both the optical and X-ray light curves, the absolute source variability r.m.s. amplitude linearly increases with flux, and that the flares have a log-normal distribution. The implication is that variability at both wavelengths is not due to local fluctuations alone, but rather arises as a result of coupling of perturbations over a wide range of radii and timescales. These 'optical and X-ray rms-flux relations' thus provide new constraints to connect the outer and inner parts of the accretion flow, and the jet.« less
Optimization of an Offset Receiver Optics for Radio Telescopes
NASA Astrophysics Data System (ADS)
Yeap, Kim Ho; Tham, Choy Yoong
2018-01-01
The latest generation of Cassegrain radio astronomy antennas is designed for multiple frequency bands with receivers for individual bands offset from the antenna axis. The offset feed arrangement typically has two focusing elements in the form of ellipsoidal mirrors in the optical path between the feed horn and the antenna focus. This arrangement aligns the beam from the offset feed horn to illuminate the subreflector. The additional focusing elements increase the number of design variables, namely the distances between the horn aperture and the first mirror and that between the two mirrors, and their focal lengths. There are a huge number of possible combinations of these four variables in which the optics system can take on. The design aim is to seek the combination that will give the optimum antenna efficiency, not only at the centre frequency of the particular band but also across its bandwidth. To pick the optimum combination of the variables, it requires working through, by computational mean, a continuum range of variable values at different frequencies which will fit the optics system within the allocated physical space. Physical optics (PO) is a common technique used in optics design. However, due to the repeated iteration of the huge number of computation involved, the use of PO is not feasible. We present a procedure based on using multimode Gaussian optics to pick the optimum design and using PO for final verification of the system performance. The best antenna efficiency is achieved when the beam illuminating the subreflector is truncated with the optimum edge taper. The optimization procedure uses the beam's edge taper at the subreflector as the iteration target. The band 6 receiver optics design for the Atacama Large Millimetre Array (ALMA) antenna is used to illustrate the optimization procedure.
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Chai, Han-Peng
2018-02-01
Investigation in this paper is given to the reduced Maxwell-Bloch equations with variable coefficients, describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. We apply the Hirota method and symbolic computation to study such equations. With the help of the dependent variable transformations, we present the variable-coefficient-dependent bilinear forms. Then, we construct the one-, two- and N-soliton solutions in analytic forms for them. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, 11471050, the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02
NASA Technical Reports Server (NTRS)
Drechsel, H. (Editor); Rahe, J. (Editor); Kondo, Y. (Editor)
1987-01-01
Papers are presented on the formation and evolution of low-mass close binaries with compact components, the periods of cataclysmic variables, multiwavelength observations of dwarf novae during outbursts, and radio emission from cataclysmic variables. Also considered are long-term optical photometry of the dwarf nova VW Hyi, periodic modulations in the optical light curves of EX Hydrae, and Echelle-Mepsicron time-resolved spectroscopy of the dwarf nova SS Cygni. Other topics include UV and X-ray observations of cataclysmic variables, new EXOSAT observations of TV Columbae, accretion disk evolution, and the boundary layer in cataclysmic variables.
A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.
Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J
2005-05-12
The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.
Scales of variability of bio-optical properties as observed from near-surface drifters
NASA Technical Reports Server (NTRS)
Abbott, Mark R.; Brink, Kenneth H.; Booth, C. R.; Blasco, Dolors; Swenson, Mark S.; Davis, Curtiss O.; Codispoti, L. A.
1995-01-01
A drifter equipped with bio-optical sensors and an automated water sampler was deployed in the California Current as part of the coastal transition zone program to study the biological, chemical, and physical dynamics of the meandering filaments. During deployments in 1987 and 1988, measurements were made of fluorescence, downwelling irradiance, upwelling radiance, and beam attenuation using several bio-optical sensors. Samples were collected by an automated sampler for later analysis of nutrients and phytoplankton species compositon. Large-scale spatial and temporal changes in the bio-optical and biological properties of the region were driven by changes in phytoplankton species composition which, in turn, were associated with the meandering circulation. Variance spectra of the bio-optical paramenters revealed fluctuations on both diel and semidiurnal scales, perhaps associated with solar variations and internal tides, respectively. Offshore, inertial-scale fluctuations were apparent in the variance spectra of temperature, fluorescence, and beam attenuation. Although calibration samples can help remove some of these variations, these results suggest that the use of bio-optical data from unattended platforms such as moorings and drifters must be analyzed carefully. Characterization of the scaled of phytoplankton variability must account for the scales of variability in the algorithms used to convert bio-optical measurments into biological quantities.
A liquid lens switching-based motionless variable fiber-optic delay line
NASA Astrophysics Data System (ADS)
Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz
2018-05-01
We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.
Optical Variability of Two High-Luminosity Radio-Quiet Quasars, PDS 456 and PHL 1811
NASA Astrophysics Data System (ADS)
Gaskell, C. M.; Benker, A. J.; Campbell, J. S.; Crowley, K. A.; George, T. A.; Hedrick, C. H.; Hiller, M. E.; Klimek, E. S.; Leonard, J. P.; Peterson, B. W.; Sanders, K. M.
2003-12-01
PDS 456 and PHL 1811 are two of the highest luminosity low-redshift quasars. Both have optical luminosities comparable to 3C 273, but they have low radio luminosities. PDS 456 is a broad line object but PHL 1811 could be classified as a high-luminosity Narrow-Line Seyfert 1 (NLS1) object. We present the results of optical (V-band) continuum monitoring of PDS 456 and PHL 1811. We compare the variability properties of these two very different AGNs compared with the radio-loud AGN 3C 273, and we discuss the implications for the origin of the optical continuum variability in AGNs. This research has been supported in part by the Howard Hughes Foundation, Nebraska EPSCoR, the University of Nebraska Layman Fund, the University of Nebraska Undergraduate Creative Activities and Research Experiences, Pepsi-Cola, and the National Science Foundation through grant AST 03-07912.
Remote creation of hybrid entanglement between particle-like and wave-like optical qubits
NASA Astrophysics Data System (ADS)
Morin, Olivier; Huang, Kun; Liu, Jianli; Le Jeannic, Hanna; Fabre, Claude; Laurat, Julien
2014-07-01
The wave-particle duality of light has led to two different encodings for optical quantum information processing. Several approaches have emerged based either on particle-like discrete-variable states (that is, finite-dimensional quantum systems) or on wave-like continuous-variable states (that is, infinite-dimensional systems). Here, we demonstrate the generation of entanglement between optical qubits of these different types, located at distant places and connected by a lossy channel. Such hybrid entanglement, which is a key resource for a variety of recently proposed schemes, including quantum cryptography and computing, enables information to be converted from one Hilbert space to the other via teleportation and therefore the connection of remote quantum processors based upon different encodings. Beyond its fundamental significance for the exploration of entanglement and its possible instantiations, our optical circuit holds promise for implementations of heterogeneous network, where discrete- and continuous-variable operations and techniques can be efficiently combined.
Teleportation of Two-Mode Quantum State of Continuous Variables
NASA Astrophysics Data System (ADS)
Song, Tong-Qiang
2004-03-01
Using two Einstein-Podolsky-Rosen pair eigenstates |η> as quantum channels, we study the teleportation of two-mode quantum state of continuous variables. The project supported by Natural Science Foundation of Zhejiang Province of China and Open Foundation of Laboratory of High-Intensity Optics, Shanghai Institute of Optics and Fine Mechanics
Simple and practical approach for computing the ray Hessian matrix in geometrical optics.
Lin, Psang Dain
2018-02-01
A method is proposed for simplifying the computation of the ray Hessian matrix in geometrical optics by replacing the angular variables in the system variable vector with their equivalent cosine and sine functions. The variable vector of a boundary surface is similarly defined in such a way as to exclude any angular variables. It is shown that the proposed formulations reduce the computation time of the Hessian matrix by around 10 times compared to the previous method reported by the current group in Advanced Geometrical Optics (2016). Notably, the method proposed in this study involves only polynomial differentiation, i.e., trigonometric function calls are not required. As a consequence, the computation complexity is significantly reduced. Five illustrative examples are given. The first three examples show that the proposed method is applicable to the determination of the Hessian matrix for any pose matrix, irrespective of the order in which the rotation and translation motions are specified. The last two examples demonstrate the use of the proposed Hessian matrix in determining the axial and lateral chromatic aberrations of a typical optical system.
Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.
Yang, Y; Liu, A Q; Chin, L K; Zhang, X M; Tsai, D P; Lin, C L; Lu, C; Wang, G P; Zheludev, N I
2012-01-31
Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.
Wavelength tunable and broadband variable fiber-optic attenuators using liquid crystals
NASA Astrophysics Data System (ADS)
Khan, Sajjad A.; Riza, Nabeel A.
2005-05-01
Fiber-Optic Variable Optical Attenuators (VOAs) are demonstrated using Liquid Crystals (LC) for broadband as well as wavelength tunable applications. Attenuation is achieved by using a beam spoiling approach implemented via electrically reconfigurable non-pixelated no moving parts Nematic LC deflectors. The VOAs feature in-line architecture and polarization insensitive design without the use of bulky polarization splitting and combining optics. The proof-of-concept VOAs in the 1550 nm band demonstrate >30 dB attenuation ranges, low polarization dependent losses and low power consumption. Applications for these VOAs include agile wavelength tunable secure data communications networks and RF sensor systems.
Development of variable-magnification X-ray Bragg optics.
Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi
2015-07-01
A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.
Multiwavelength variability properties of Fermi blazar S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, N. H.; Bai, J. M.; Liu, H. T.
S5 0716+714 is a typical BL Lacertae object. In this paper we present the analysis and results of long-term simultaneous observations in the radio, near-infrared, optical, X-ray, and γ-ray bands, together with our own photometric observations for this source. The light curves show that the variability amplitudes in γ-ray and optical bands are larger than those in the hard X-ray and radio bands and that the spectral energy distribution (SED) peaks move to shorter wavelengths when the source becomes brighter, which is similar to other blazars, i.e., more variable at wavelengths shorter than the SED peak frequencies. Analysis shows thatmore » the characteristic variability timescales in the 14.5 GHz, the optical, the X-ray, and the γ-ray bands are comparable to each other. The variations of the hard X-ray and 14.5 GHz emissions are correlated with zero lag, and so are the V band and γ-ray variations, which are consistent with the leptonic models. Coincidences of γ-ray and optical flares with a dramatic change of the optical polarization are detected. Hadronic models do not have the same natural explanation for these observations as the leptonic models. A strong optical flare correlating a γ-ray flare whose peak flux is lower than the average flux is detected. The leptonic model can explain this variability phenomenon through simultaneous SED modeling. Different leptonic models are distinguished by average SED modeling. The synchrotron plus synchrotron self-Compton (SSC) model is ruled out because of the extreme input parameters. Scattering of external seed photons, such as the hot-dust or broad-line region emission, and the SSC process are probably both needed to explain the γ-ray emission of S5 0716+714.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Xuebing; Wang Ran; Bian Fuyan
2011-09-15
The identification of quasars in the redshift range 2.2 < z < 3 is known to be very inefficient because the optical colors of such quasars are indistinguishable from those of stars. Recent studies have proposed using optical variability or near-infrared (near-IR) colors to improve the identification of the missing quasars in this redshift range. Here we present a case study combining both methods. We select a sample of 70 quasar candidates from variables in Sloan Digital Sky Survey (SDSS) Stripe 82, which are non-ultraviolet excess sources and have UKIDSS near-IR public data. They are clearly separated into two partsmore » on the Y - K/g - z color-color diagram, and 59 of them meet or lie close to a newly proposed Y - K/g - z selection criterion for z < 4 quasars. Of these 59 sources, 44 were previously identified as quasars in SDSS DR7, and 35 of them are quasars at 2.2 < z < 3. We present spectroscopic observations of 14 of 15 remaining quasar candidates using the Bok 2.3 m telescope and the MMT 6.5 m telescope, and successfully identify all of them as new quasars at z = 2.36-2.88. We also apply this method to a sample of 643 variable quasar candidates with SDSS-UKIDSS nine-band photometric data selected from 1875 new quasar candidates in SDSS Stripe 82 given by Butler and Bloom based on the time-series selections, and find that 188 of them are probably new quasars with photometric redshifts at 2.2 < z < 3. Our results indicate that the combination of optical variability and optical/near-IR colors is probably the most efficient way to find 2.2 < z < 3 quasars and is very helpful for constructing a complete quasar sample. We discuss its implications for ongoing and upcoming large optical and near-IR sky surveys.« less
Kobashi, Hidenaga; Kamiya, Kazutaka; Yanome, Kyohei; Igarashi, Akihito; Shimizu, Kimiya
2013-01-01
To assess the longitudinal changes in optical quality including intraocular scattering in normal eyes and eyes with short tear breakup time (TBUT). We prospectively examined twenty eyes of 20 healthy subjects, and age-matched twenty eyes of 20 short TBUT subjects. The modulation transfer function (MTF) cutoff frequency, the Strehl ratio, and the objective scattering index (OSI) were quantitatively assessed using an Optical Quality Analysis System. We investigated the changes in these variables measured consecutively at the initial examination, 5, and 10 seconds without blinking. We also compared these variables in eyes with short TBUT with those in normal eyes. No significant differences in the MTF cutoff frequency, Strehl ratio, or OSI were detected over a 10-second period in normal eyes. These variables also became significantly degraded even over a 5-second period in eyes with short TBUT (p<0.01). We found significant differences in these variables at 5 and 10 seconds (p<0.05), but none immediately after the blink between normal and short TBUT eyes. Optical quality including intraocular scattering deteriorated significantly with time in eyes with short TBUT, whereas we found significant differences over a 10-second period in normal eyes. Eyes with short TBUT showed greater deterioration in optical quality after the blink than normal eyes. The longitudinal assessment of optical quality may be effective in distinguishing eyes with short TBUT from normal eyes.
Studies of an x ray selected sample of cataclysmic variables. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Silber, Andrew D.
1986-01-01
Just prior to the thesis research, an all-sky survey in hard x rays with the HEAO-1 satellite and further observations in the optical resulted in a catalog of about 700 x-ray sources with known optical counterparts. This sample includes 43 cataclysmic variables, which are binaries consisting of a detached white-dwarf and a Roche lobe filling companion star. This thesis consists of studies of the x-ray selected sample of catalcysmic variables.
NASA Technical Reports Server (NTRS)
Frank, A. M.
1974-01-01
Investigations are conducted into the optical properties of the glass and Kapton substrate materials, and three variables were chosen: deposition rate, sputter gas pressure, and film contamination time. Substrate tests have shown that fabrication of an dielectric broadband reflector would require an extremely complex and expensive filter design.
NASA Astrophysics Data System (ADS)
Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira
2016-09-01
In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.
NASA Astrophysics Data System (ADS)
Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar
2018-06-01
Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.
A detailed X-ray investigation of ζ Puppis. IV. Further characterization of the variability
NASA Astrophysics Data System (ADS)
Nazé, Yaël; Ramiaramanantsoa, Tahina; Stevens, Ian R.; Howarth, Ian D.; Moffat, Anthony F. J.
2018-01-01
Context. One of the optically brightest and closest massive stars, ζ Pup, is also a bright X-ray source. Previously, its X-ray emission was found to be variable with light curves harbouring "trends" with a typical timescale longer than the exposure length, i.e. >1 d. The origin of these changes was proposed to be linked to large-scale structures in the wind of ζ Pup, but further characterization of the variability at high energies was needed to investigate this scenario. Aims: Since the previous papers of this series, a number of new X-ray observations have become available. Furthermore, a cyclic behaviour with a 1.78 d period was identified in long optical photometric runs, which is thought to be associated with the launching mechanism of large-scale wind structures. Methods: We analysed these new X-ray data, revisited the old data, and compared the X-ray light curves with the optical data, notably those taken simultaneously. Results: The behaviour of ζ Pup in X-rays cannot be explained in terms of a perfect clock because the amplitude and shape of its variations change with time. For example, ζ Pup was much more strongly variable between 2007 and 2011 than before and after this interval. Comparing the X-ray spectra of the star at maximum and minimum brightness yields no compelling difference beyond the overall flux change: the temperatures, absorptions, and line shapes seem to remain constant, well within errors. The only common feature between X-ray datasets is that the variation amplitudes appear maximum in the medium (0.6-1.2 keV) energy band. Finally, no clear and coherent correlation can be found between simultaneous X-ray and optical data. Only a subgroup of observations may be combined coherently with the optical period of 1.78 d, although the simultaneous optical behaviour is unknown. Conclusions: The currently available data do not reveal any obvious, permanent, and direct correlation between X-ray and optical variations. The origin of the X-ray variability therefore still needs to be ascertained, highlighting the need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.
Radio to gamma-ray variability study of blazar S5 0716+714
Rani, B.; Krichbaum, T. P.; Fuhrmann, L.; ...
2013-03-13
In this paper, we present the results of a series of radio, optical, X-ray, and γ-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multifrequency observations were obtained using several ground- and space-based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend on a time scale of ~350 days. Episodes of fast variability recur on time scales of ~60-70 days. The intense and simultaneous activity at optical and γ-ray frequencies favors the synchrotron self-Compton mechanism for the production of the high-energy emission. Twomore » major low-peaking radio flares were observed during this high optical/γ-ray activity period. The radio flares are characterized by a rising and a decaying stage and agrees with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield robust and self-consistent lower limits of δ ≥ 20 and equipartition magnetic field B eq ≥ 0.36 G. Causality arguments constrain the size of emission region θ ≤ 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and γ-rays. Theoptical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Finally, here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.« less
Role of optical computers in aeronautical control applications
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1981-01-01
The role that optical computers play in aircraft control is determined. The optical computer has the potential high speed capability required, especially for matrix/matrix operations. The optical computer also has the potential for handling nonlinear simulations in real time. They are also more compatible with fiber optic signal transmission. Optics also permit the use of passive sensors to measure process variables. No electrical energy need be supplied to the sensor. Complex interfacing between optical sensors and the optical computer is avoided if the optical sensor outputs can be directly processed by the optical computer.
Identification of Active Galactic Nuclei through HST optical variability in the GOODS South field
NASA Astrophysics Data System (ADS)
Pouliasis, Ektoras; Georgantopoulos; Bonanos, A.; HCV Team
2016-08-01
This work aims to identify AGN in the GOODS South deep field through optical variability. This method can easily identify low-luminosity AGN. In particular, we use images in the z-band obtained from the Hubble Space Telescope with the ACS/WFC camera over 5 epochs separated by ~45 days. Aperture photometry has been performed using SExtractor to extract the lightcurves. Several variability indices, such as the median absolute deviation, excess variance, and sigma were applied to automatically identify the variable sources. After removing artifacts, stars and supernovae from the variable selected sample and keeping only those sources with known photometric or spectroscopic redshift, the optical variability was compared to variability in other wavelengths (X-rays, mid-IR, radio). This multi-wavelength study provides important constraints on the structure and the properties of the AGN and their relation to their hosts. This work is a part of the validation of the Hubble Catalog of Variables (HCV) project, which has been launched at the National Observatory of Athens by ESA, and aims to identify all sources (pointlike and extended) showing variability, based on the Hubble Source Catalog (HSC, Whitmore et al. 2015). The HSC version 1 was released in February 2015 and includes 80 million sources imaged with the WFPC2, ACS/WFC, WFC3/UVIS and WFC3/IR cameras.
Modeling and properties of an ion-exchanged optical variable attenuator
NASA Astrophysics Data System (ADS)
Orignac, Xavier; Ingenhoff, Jan; Fabricius, Norbert
1999-03-01
The optical signal power needs to be regulated at some locations in transmission lines. That can be done with the help of optical variable attenuators (OVA), devices which allows for the control of their insertion loss. This work describes the design and properties of some OVAs fabricated by the ion-exchange technique. The OVA functionality relies on a Mach-Zehnder structure, where the output optical intensity is tuned via the change in optical path along one of the two interferometer arms. Here, the optical path is varied through thermo-optic effect (change of refractive index with temperature). Modelling is first addressed: a mostly qualitative theoretical investigation is used to clarify how the fabrication parameters (burial depth and Mach-Zehnder arm separation distance) can be related to the OVAs properties (attenuation dynamic, switching power, settling time, PDL). Properties of fabricated OVAs are presented in a second part. They are compared with other existing products. The relationship between fabrication parameters and properties is also re-examined in light of these results.
Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick
2014-03-10
Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haixia; Zhang, Jing
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less
Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator
2006-01-01
AFRL-SN-RS-TR-2006-15 Final Technical Report January 2006 STOICHIOMETRIC LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO...LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO) MODULATOR 6. AUTHOR(S) Dr Stuart Kingsley, Dr Sri Sriram 5. FUNDING NUMBERS C...SUBJECT TERMS electro - optic modulator, linearization, directional coupler, variable coupling, optical waveguide, Mach-Zehnder, photonic link, lithium
NASA Astrophysics Data System (ADS)
Alfonso-Garzón, J.; Fabregat, J.; Reig, P.; Kajava, J. J. E.; Sánchez-Fernández, C.; Townsend, L. J.; Mas-Hesse, J. M.; Crawford, S. M.; Kretschmar, P.; Coe, M. J.
2017-11-01
Context. Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. Aims: We investigate the correlation between the optical emission and X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. Methods: We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 yr. We used optical spectra from the SAAO, SMARTS, and SALT telescopes and optical photometry from the Optical Monitoring Camera (OMC) onboard INTEGRAL and from the All Sky Automated Survey (ASAS). We also used X-ray observations from INTEGRAL/JEM-X, and IBIS to generate the light curves and combined them with Swift/XRT to extract the X-ray spectra. In addition, we compiled archival observations and measurements from the literature to complement these data. Results: Comparing the evolution of the optical continuum emission with the Hα line variability, we identified three different patterns of optical variability: first, global increases and decreases of the optical brightness, observed from 1982 to 1994 and from 2009 to 2017, which can be explained by the dissipation and replenishment of the circumstellar disc; second, superorbital variations with a period of Psuperorb ≈ 590 days, observed in 2002-2009, which seems to be related to the circumstellar disc; and third, optical outbursts, observed in 1998-1999 and 2002-2005, which we interpret as mass ejections from the Be star. We discovered the presence of a retrograde one-armed density wave, which appeared in 2016 and is still present in the circumstellar disc. Conclusions: We carried out the most complete long-term optical study of the Be/X-ray binary H 1145-619 in correlation with its X-ray activity. For the first time, we found the presence of a retrograde density perturbation in the circumstellar disc of a Be/X-ray binary.
Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation
2009-09-01
Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and
SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka
Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search formore » a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).« less
Transparent ITO electrode in the polymer network liquid crystal variable optical attenuator
NASA Astrophysics Data System (ADS)
Zhang, Xindong; Dong, Wei; Liu, Caixia; Chen, Yinghua; Ruan, Shengping; Zhang, Shuang; Guo, Wenbin; Yang, Dong; Han, Lin; Chen, Weiyou
2004-05-01
Indium tin oxide (ITO) films as transparent conductors have caused a great deal of interest due to their prominent electro-optical behavior. This paper describes a study of the properties of ITO thin films that are used for a new type variable optical attenuator using polymer network liquid crystal (PNLC). The mechanism of PNLC optical attenuator operation is that the light from the input fiber is scattered when no voltage is applied, and the light passes through the attenuator when sufficient voltage is applied. So the ITO thin films can provide transparent electrodes for PNLC. They were deposited under various preparation conditions using the radio-frequency (rf) magnetron sputtering technique. Here discuss the results of the structural, electrical and optical properties of the ITO films. The paper presents some experimental results obtained in laboratory.
Chow, Robert; Loomis, Gary E.; Thomas, Ian M.
1999-01-01
Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.
Measuring In-Plane Displacements with Variable Sensitivity Using Diffractive Optic Interferometry
NASA Technical Reports Server (NTRS)
Shepherd, Robert L.; Gilbert, John A.; Cole, Helen J.; Ashley, Paul R.
1998-01-01
This paper introduces a method called diffractive optic interferometry (DOI) which allows in-plane displacement components to be measured with variable sensitivity. DOI relies on binary optical elements fabricated as phase-type Dammann gratings which produce multiple diffraction orders of nearly equal intensity. Sensitivity is varied by combining the different wavefronts produced by a conjugate pair of these binary optical elements; a transmission element is used to produce several illumination beams while a reflective element, replicated on the surface of a specimen, provides the reference for the undeformed state. The steps taken to design and fabricate these binary optical elements are described. The specimen grating is characterized, and tested on a disk subjected to diametrical compression. Overall, the results are excellent, with experimental data agreeing to within a few percent of the theoretical predictions.
All optical controlled photonic integrated circuits using azo dye functionized sol-gel material
NASA Astrophysics Data System (ADS)
Ke, Xianjun
The main focus of this dissertation is development and characterization of all-optical controllable azo dye functionized sol gel material, demonstrating a PIC fabrication technique on glass substrate using such material, and exploration and feasibility demonstration of three PIC functional devices namely optical variable attenuator, optical switches, and optical tunable filters using the material. The realization of all the devices in this dissertation are based on one material: dye functionalized sol-gel material. A photochromic sol-gel material functionalized with azo dye was synthesized and characterized. It possesses a photochromic characteristic under the control of green laser beam illumination. The material characteristics suggest the possibility of a new promising material platform candidate for the fabrication of alloptical controlled photonic integrated circuits. As the first potential application of the dye functionalized sol-gel material, an alloptical variable attenuator was designed and demonstrated. The optical variable attenuation is achieved in Mach-Zehnder interferometric configuration through all-optical modulation of sol-gel waveguide phase shifters. A 2 x 2 optical switch based on multimode interference (MMI) waveguide structure is proposed in the dissertation. The schematic configuration of the optical switch consists of a cascade of two identical MMIs with two all-optical controlled phase shifters realized by using the photochromic sol-gel material. The cross or bar switch state of the optical switch is determined by the phase difference between the two sol-gel waveguide phase shifters. An all-optical tunable filter is designed and its feasibility demonstrated by using the sol-gel photochromic material. Except for the phase change demonstrated on sol-gel waveguide phase shifters, dynamic gratings were observed on sol-gel film when exposed to two interference beams. This reveals the possibility of realizing Bragg grating-based tunable filters. The schematic configuration of proposed tunable filters consists of a single straight waveguide embedded with a sol-gel waveguide. The wavelength tuning of the tunable filters is accomplished by varying the grating period.
A possible close supermassive black-hole binary in a quasar with optical periodicity.
Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric
2015-02-05
Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.
WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinze, Aren N.; Metchev, Stanimir; Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca
2015-03-10
We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability thatmore » may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.« less
An analysis of haze effects on LANDSAT multispectral scanner data
NASA Technical Reports Server (NTRS)
Johnson, W. R.; Sestak, M. L. (Principal Investigator)
1981-01-01
Early season changes in optical depth change brightness, primarily along the soil line; and during crop development, changes in optical depth change both greenness and brightness. Thus, the existence of haze in the imagery could cause an unsuspecting analyst to interpret the spectral appearance as indicating an episodal event when, in fact, haze was present. The techniques for converting LANDSAT-3 data to simulate LANDSAT-2 data are in error. The yellowness and none such computations are affected primarily. Yellowness appears well correlated to optical depth. Experimental evidence with variable background and variable optical depth is needed, however. The variance of picture elements within a spring wheat field is related to its equivalent in optical depth changes caused by haze. This establishes the sensitivity of channel 1 (greenness) pixels to changes in haze levels. The between field picture element means and variances were determined for the spring wheat fields. This shows the variability of channel data on two specific dates, emphasizing that crop development can be influenced by many factors. The atmospheric correction program ATCOR reduces segment data from LANDSAT acquisitions to a common haze level and improves the results of analysis.
A variable partially polarizing beam splitter.
Flórez, Jefferson; Carlson, Nathan J; Nacke, Codey H; Giner, Lambert; Lundeen, Jeff S
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
A variable partially polarizing beam splitter
NASA Astrophysics Data System (ADS)
Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirandola, Stefano; Mancini, Stefano; Vitali, David
2003-12-01
We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous-variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.
Optical Polarization and Spectral Variability in the M87 Jet
NASA Technical Reports Server (NTRS)
Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz;
2011-01-01
During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST -1 shows a highly significant correlation between flux and polarization, with P increasing from approx 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-l's optical-UV spectrum is very hard (alpha(sub uv-0) approx. 0.5, F(sub v) varies as (v(exp -alpha)), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2alpha upper limits of 0.5 delta parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ((alpha(sub uv-0) approx. 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.
NASA Astrophysics Data System (ADS)
Phillips, Stephen Robert; Costa, Maycira
2017-12-01
The use of standard ocean colour reflectance based algorithms to derive surface chlorophyll may have limited applicability for optically dynamic coastal waters due to the pre-defined coefficients based on global datasets. Reflectance based algorithms adjusted to regional optical water characteristics are a promising alternative. A class-based definition of optically diverse coastal waters was investigated as a first step towards the development of temporal and spatial constrained reflectance based algorithms for optically variable coastal waters. A large set of bio-optical data were collected as part of five research cruises and bi-weekly trips aboard a ship of opportunity in the west coast of Canada, to assess the spatial and temporal variability of above-water reflectance in this contrasted coastal environment. To accomplish this, in situ biophysical and optical measurements were collected in conjunction with above-water hyperspectral remote sensing reflectance (Rrs) at 145 stations. The concentrations of measured biophysical data varied considerably; chlorophyll a (Chla) (mean = 1.64, range: 0.10-7.20 μg l-1), total suspended matter (TSM) (3.09, 0.82-20.69 mg l-1), and absorption by chromophoric dissolved organic matter (CDOM) (acdom(443 nm)) (0.525, 0.007-3.072 m-1), thus representing the spatio-temporal variability of the Salish Sea. Optically, a similar large range was also found; particulate scattering (bp(650 nm)) (1.316, 0.250-7.450 m-1), particulate backscattering (bbp(650 nm)) (0.022, 0.005-0.097 m-1), total beam attenuation coefficient (ct(650)) (1.675, 0.371-9.537 m-1) and particulate absorption coefficient (ap(650 nm)) (0.345, 0.048-2.020 m-1). An empirical orthogonal function (EOF) analysis revealed that Rrs variability was highly correlated to bp (r = 0.90), bbp (r = 0.82) and concentration of TSM (r = 0.80), which highlighted the dominant role of water turbidity in this region. Hierarchical clustering analysis was applied to the normalized Rrs spectra to define optical water classes. Class 1 was defined by the highest Rrs values, particularly above 570 nm, indicating more turbid waters; Class 2 was dominated by high Chla and TSM concentrations, which is shown by high Rrs at 570 nm as well as fluorescence and absorption peaks; Class 3 shows strong fluorescence signatures accompanied by low TSM influence; and Class 4 is most representative of clear waters with a less defined absorption peak around 440 nm. By understanding the bio-optical factors which control the variability of the Rrs spectra this study aims to develop a sub-regional characterization of this coastal region aiming to improve bio-optical algorithms in this complex coastal area.
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo; Mondal, Soumen; Das, Ramkrishna; Banerjee, D. P. K.; Ashok, N. M.; Hambsch, Franz-Josef; Dutta, Somnath
2018-05-01
We describe the time-dependent properties of a new spectroscopically confirmed Mira variable, which was discovered in 2013 as MASTER-Net Optical Transient J212444.87+321738.3 toward the Cygnus constellation. We have performed long-term optical/near-infrared (NIR) photometric and spectroscopic observations to characterize the object. From the optical/NIR light curves, we estimate a variability period of 465 ± 30 days. The wavelength-dependent amplitudes of the observed light curves range from ΔI ∼ 4 mag to ΔK ∼ 1.5 mag. The (J ‑ K) color index varies from 1.78 to 2.62 mag over phases. Interestingly, a phase lag of ∼60 days between optical and NIR light curves is also seen, as in other Miras. Our optical/NIR spectra show molecular features of TiO, VO, CO, and strong water bands that are a typical signature of oxygen-rich Mira. We rule out S- or C-type as ZrO bands at 1.03 and 1.06 μm and C2 band at 1.77 μm are absent. We estimate the effective temperature of the object from the Spectral Energy Distribution, and distance and luminosity from standard Period–Luminosity relations. The optical/NIR spectra display time-dependent atomic and molecular features (e.g., TiO, Na I, Ca I, H2O, CO), as commonly observed in Miras. Such spectroscopic observations are useful for studying pulsation variability in Miras.
Study of Linearization of Optical Polymer Modulators
2004-02-01
To improve the Spur Free Dynamic Range of analog electro - optic modulators in the 10 GHz regime, techniques for improving the linearity of these...devices must be developed. This report discusses an investigation into electro - optic directional couplers that use variable coupling in polymer-based
NASA Astrophysics Data System (ADS)
Yagi, Shogo; Fujiura, Kazuo
We have grown KTN crystals with optical quality, and developed high-speed beam deflectors and variable focal length lenses based on KTN's large electro-optic effect. Furthermore, by using the KTN beam deflectors, we have developed a swept light source for OCT operable at 200 kHz.
Three-parameter optical studies in Scottish coastal waters
NASA Astrophysics Data System (ADS)
McKee, David; Cunningham, Alex; Jones, Ken
1997-02-01
A new submersible optical instrument has been constructed which allows chlorophyll fluorescence, attenuation and wide- angle scattering measurements to be made simultaneously at he same point in a body of water. The instrument sues a single xenon flashlamp as the light source, and incorporates its own power supply and microprocessor based data logging system. It has ben cross-calibrated against commercial single-parameter instruments using a range of non-algal particles and phytoplankton cultures. The equipment has been deployed at sea in the Firth of Clyde and Loch Linnhe, where is has been used to study seasonal variability in optical water column structure. Results will be presented to illustrate how ambiguity in the interpretation of measurements of a single optical parameter can be alleviated by measuring several parameters simultaneously. Comparative studies of differences in winter and spring relationships between optical variable shave also ben carried out.
Chow, R.; Loomis, G.E.; Thomas, I.M.
1999-03-16
Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.
Optic variables used to judge future ball arrival position in expert and novice soccer players.
Craig, Cathy M; Goulon, Cédric; Berton, Eric; Rao, Guillaume; Fernandez, Laure; Bootsma, Reinoud J
2009-04-01
Although many studies have looked at the perceptual-cognitive strategies used to make anticipatory judgments in sport, few have examined the informational invariants that our visual system may be attuned to. Using immersive interactive virtual reality to simulate the aerodynamics of the trajectory of a ball with and without sidespin, the present study examined the ability of expert and novice soccer players to make judgments about the ball's future arrival position. An analysis of their judgment responses showed how participants were strongly influenced by the ball's trajectory. The changes in trajectory caused by sidespin led to erroneous predictions about the ball's future arrival position. An analysis of potential informational variables that could explain these results points to the use of a first-order compound variable combining optical expansion and optical displacement.
NASA Astrophysics Data System (ADS)
Rigon, Laura
2016-03-01
Stars form from the collapse of molecular clouds and evolve in an environment rich in gas and dust before becoming Main Sequence stars. During this phase, characterised by the presence of a protoplanetary disc, stars manifest changes in the structure and luminosity. This thesis performs a multi-wavelength analysis, from optical to mm range, on a sample of young stars (YSOs), mainly Classical T Tauri (CTTS). The purpose is to study optical and infrared variability and its relation with the protoplanetary disc. Longer wavelength, in the mm range, are used instead to investigate the evolution of the disc, in terms of dust growth. In optical, an F-test on a sample of 39 CTTS reveals that 67% of the stars are variable. The variability, quantified through pooled sigma, is visible both in magnitude amplitudes and changes over time. Time series analysis applied on the more variable stars finds the presence of quasi periodicity, with periods longer than two weeks, interpreted either as eclipsing material in the disc happening on a non-regular basis, or as a consequence of star-disc interaction via magnetic field lines. The variability of YSOs is confirmed also in infrared, even if with lower amplitude. No strong correlations are found between optical and infrared variability, which implies a different cause or a time shift in the two events. By using a toy model to explore their origin, I find that infrared variations are likely to stem from emissions in the inner disc. The evolution of discs in terms of dust growth is confirmed in most discs by the analysis of the slope of the spectral energy distribution (SED), after correcting for wind emission and optical depth effects. However, the comparison with a radiative transfer model highlights that a number of disc parameters, in particular disc masses and temperature, dust size distribution and composition, can also affect the slope of the SED.
Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing
NASA Astrophysics Data System (ADS)
Edelson, R.; Gelbord, J.; Cackett, E.; Connolly, S.; Done, C.; Fausnaugh, M.; Gardner, E.; Gehrels, N.; Goad, M.; Horne, K.; McHardy, I.; Peterson, B. M.; Vaughan, S.; Vestergaard, M.; Breeveld, A.; Barth, A. J.; Bentz, M.; Bottorff, M.; Brandt, W. N.; Crawford, S. M.; Dalla Bontà, E.; Emmanoulopoulos, D.; Evans, P.; Figuera Jaimes, R.; Filippenko, A. V.; Ferland, G.; Grupe, D.; Joner, M.; Kennea, J.; Korista, K. T.; Krimm, H. A.; Kriss, G.; Leonard, D. C.; Mathur, S.; Netzer, H.; Nousek, J.; Page, K.; Romero-Colmenero, E.; Siegel, M.; Starkey, D. A.; Treu, T.; Vogler, H. A.; Winkler, H.; Zheng, W.
2017-05-01
Swift monitoring of NGC 4151 with an ˜6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3-50 keV) and six in the ultraviolet (UV)/optical (1900-5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ˜3-4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to lead the optical by ˜0.5-1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner & Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.
Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
Xu, Wei-Jian; He, Chun-Ting; Ji, Cheng-Min; Chen, Shao-Li; Huang, Rui-Kang; Lin, Rui-Biao; Xue, Wei; Luo, Jun-Hua; Zhang, Wei-Xiong; Chen, Xiao-Ming
2016-07-01
The changeable molecular dynamics of flexible polar cations in the variable confined space between inorganic chains brings about a new type of two-step nonlinear optical (NLO) switch with genuine "off-on-off" second harmonic generation (SHG) conversion between one NLO-active state and two NLO-inactive states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-time optical laboratory solution of parabolic differential equations
NASA Technical Reports Server (NTRS)
Casasent, David; Jackson, James
1988-01-01
An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.
Electrowetting-Based Variable-Focus Lens for Miniature Systems
NASA Astrophysics Data System (ADS)
Hendriks, B. H. W.; Kuiper, S.; van As, M. A. J.; et al.
The meniscus between two immiscible liquids of different refractive indices can be used as a lens. A change in curvature of this meniscus by electrostatic control of the solid/liquid interfacial tension leads to a change in focal distance. It is demonstrated that two liquids in a tube form a self-centred variable-focus lens. The optical properties of this lens were investigated experimentally. We designed and constructed a miniature camera module based on this variable lens suitable for mobile applications. Furthermore, the liquid lens was applied in a Blu-ray Disc optical recording system to enable dual layer disc reading/writing.
Optical Spectra of Four Objects Identified with Variable Radio Sources
NASA Astrophysics Data System (ADS)
Chavushyan, V.; Mujica, R.; Gorshkov, A. G.; Konnikova, V. K.; Mingaliev, M. G.
2000-06-01
We obtained optical spectra of four objects identified with variable radio sources. Three objects (0029+0554, 0400+0550, 2245+0500) were found to be quasars with redshifts of 1.314, 0.761, and 1.091. One object (2349+0534) has a continuum spectrum characteristic of BL Lac objects. We analyze spectra of the radio sources in the range 0.97-21.7 GHz for the epoch 1997 and in the range 3.9-11.1 GHz for the epoch 1990, as well as the pattern of variability of their flux densities on time scales of 1.5 and 7 years.
Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.
2012-01-01
Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.
Double degree master program: Optical Design
NASA Astrophysics Data System (ADS)
Bakholdin, Alexey; Kujawinska, Malgorzata; Livshits, Irina; Styk, Adam; Voznesenskaya, Anna; Ezhova, Kseniia; Ermolayeva, Elena; Ivanova, Tatiana; Romanova, Galina; Tolstoba, Nadezhda
2015-10-01
Modern tendencies of higher education require development of master programs providing achievement of learning outcomes corresponding to quickly variable job market needs. ITMO University represented by Applied and Computer Optics Department and Optical Design and Testing Laboratory jointly with Warsaw University of Technology represented by the Institute of Micromechanics and Photonics at The Faculty of Mechatronics have developed a novel international master double-degree program "Optical Design" accumulating the expertise of both universities including experienced teaching staff, educational technologies, and experimental resources. The program presents studies targeting research and professional activities in high-tech fields connected with optical and optoelectronics devices, optical engineering, numerical methods and computer technologies. This master program deals with the design of optical systems of various types, assemblies and layouts using computer modeling means; investigation of light distribution phenomena; image modeling and formation; development of optical methods for image analysis and optical metrology including optical testing, materials characterization, NDT and industrial control and monitoring. The goal of this program is training a graduate capable to solve a wide range of research and engineering tasks in optical design and metrology leading to modern manufacturing and innovation. Variability of the program structure provides its flexibility and adoption according to current job market demands and personal learning paths for each student. In addition considerable proportion of internship and research expands practical skills. Some special features of the "Optical Design" program which implements the best practices of both Universities, the challenges and lessons learnt during its realization are presented in the paper.
The nature of the cataclysmic variable PT Per
NASA Astrophysics Data System (ADS)
Watson, M. G.; Bruce, A.; MacLeod, C.; Osborne, J. P.; Schwope, A. D.
2016-08-01
We present a study of the cataclysmic variable star PT Per based on archival XMM-Newton X-ray data and new optical spectroscopy from the William Herschel Telescope (WHT) with Intermediate dispersion Spectrograph and Imaging System (ISIS). The X-ray data show deep minima which recur at a period of 82 min and a hard, unabsorbed X-ray spectrum. The optical spectra of PT Per show a relatively featureless blue continuum. From an analysis of the X-ray and optical data we conclude that PT Per is likely to be a magnetic cataclysmic variable of the polar class in which the minima correspond to those phase intervals when the accretion column rotates out of the field of view of the observer. We suggest that the optical spectrum, obtained around 4 yr after the X-ray coverage, is dominated by the white dwarf in the system, implying that PT Per was in a low accretion state at the time of the observations. An analysis of the likely system parameters for PT Per suggests a distance of ≈90 pc and a very low mass secondary, consistent with the idea that PT Per is a `period-bounce' binary. Matching the observed absorption features in the optical spectrum with the expected Zeeman components constrains the white dwarf polar field to be Bp ≈ 25-27 MG.
Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System
2015-03-26
through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing
Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vetrov, V. N., E-mail: vasvetrov@mail.ru; Ignatenkov, B. A.
2013-05-15
The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.
A multichannel fiber optic photometer present performance and future developments
NASA Technical Reports Server (NTRS)
Barwig, H.; Schoembs, R.; Huber, G.
1988-01-01
A three channel photometer for simultaneous multicolor observations was designed with the aim of making possible highly efficient photometry of fast variable objects like cataclysmic variables. Experiences with this instrument over a period of three years are presented. Aspects of the special techniques applied are discussed with respect to high precision photometry. In particular, the use of fiber optics is critically analyzed. Finally, the development of a new photometer concept is discussed.
The eclipsing AM Herculis variable H1907 + 690
NASA Technical Reports Server (NTRS)
Remillard, R. A.; Silber, A.; Stroozas, B. A.; Tapia, S.
1991-01-01
The discovery is reported of an eclipsing cataclysmic variable that exhibits up to 10 percent circular polarization at optical wavelengths, securing its classification as an AM Herculis type binary. The object, H1907 + 609, was located with the guidance of X-ray positions from the HEAO 1 survey. Optical CCD photometry exhibits deep eclipses, from which is derived a precise orbital period of 1.743750 hr. The eclipse duration suggests an inclination angle about 80 deg for a main-sequence secondary star. The optical flux has been persistently faint during observations spanning 1987-1990, while the X-ray measurements suggest long-term X-ray variability. The polarization and photometric light curves can be interpreted with a geometric model in which most of the accretion is directed toward a single magnetic pole, with an accretion spot displaced about 17 deg in longitude from the projection of the secondary star on the white dwarf surface.
Variability of cirrus clouds in a convective outflow during the Hibiscus campaign
NASA Astrophysics Data System (ADS)
Fierli, F.; di Donfrancesco, G.; Cairo, F.; Marécal, V.; Zampieri, M.; Orlandi, E.; Durry, G.
2008-08-01
Light-weight microlidar and water vapour measurements were taken on-board a stratospheric balloon during the HIBISCUS 2004 campaign, held in Bauru, Brazil (49° W, 22° S). Cirrus clouds were observed throughout the flight between 12 and 15 km height with a high mesoscale variability in optical and microphysical properties. It was found that the cirrus clouds were composed of different layers characterized by marked differences in height, thickness and optical properties. Simultaneous water vapour observations show that the different layers are characterized by different values of the saturation with respect to ice. A mesoscale simulation and a trajectory analysis clearly revealed that the clouds had formed in the outflow of a large and persistent convective region and that the observed variability of the optical properties and of the cloud structure is likely linked to the different residence times of the convectively-processed air in the upper troposphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipunov, Vladimir M.; Kornilov, V.; Vlasenko, D.
On 2015 June 15, the Swift space observatory discovered that the Galactic black hole candidate V404 Cyg was undergoing another active X-ray phase, after 25 years of inactivity. The 12 telescopes of the MASTER Global Robotic Net located at six sites across four continents were the first ground-based observatories to start optical monitoring of the microquasar after its gamma-ray wake up at 18{sup h} 34{sup m} 09{sup s} U.T. on 2015 June 15. In this paper, we report, for the first time, the discovery of variable optical linear polarization, changing by 4%–6% over a timescale of ∼1 hr, on twomore » different epochs. We can conclude that the additional variable polarization arises from the relativistic jet generated by the black hole in V404 Cyg. The polarization variability correlates with optical brightness changes, increasing when the flux decreases.« less
Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.
Lai, W J; Shum, P; Binh, L
2004-11-15
We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.
Searching for intermediate-mass black holes via optical variability
NASA Astrophysics Data System (ADS)
Adler-Levine, Ryan; Moran, Edward C.; Kay, Laura
2018-01-01
A handful of nearby dwarf galaxies with intermediate-mass black holes (IMBHs) in their nuclei display significant optical variability on short timescales. To investigate whether dwarf galaxy AGNs as a class exhibit similar variability, we have monitored a sample of low-mass galaxies that possess spectroscopically confirmed type 1 AGNs. However, because of the variations in seeing, focus, and guiding errors that occur in images taken at different epochs, analyses based on aperture photometry are ineffective. We have thus developed a new method for matching point-spread functions in images that permits use of image subtraction photometry techniques. Applying this method to our photometric data, we have confirmed that several galaxies with IMBHs are indeed variable, which suggests that variability can be used to search for IMBHs in low-mass galaxies whose emission-line properties are ambiguous.
Results of X-ray and optical monitoring of SCO X-1
NASA Technical Reports Server (NTRS)
Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.
1974-01-01
Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskin, G.; Karpov, S.; Bondar, S.
We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r {approx} 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison withmore » the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine-supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.« less
Relaxation method of compensation in an optical correlator
NASA Technical Reports Server (NTRS)
Juday, Richard D.; Daiuto, Brian J.
1987-01-01
An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.
Design of a variable-focal-length optical system
NASA Technical Reports Server (NTRS)
Ricks, D.; Shannon, R. R.
1984-01-01
Requirements to place an entire optical system with a variable focal length ranging from 20 to 200 cm within a overall length somewhat less than 100 cm placed severe restrictions on the design of a zoom lens suitable for use on a comet explorer. The requirements of a wavelength range of 0.4 to 1.0 microns produced even greater limitations on the possibilities for a design that included a catadioptric (using mirrors and glass) front and followed by a zooming refractive portion. Capabilities available commercial zoom lenses as well as patents of optical systems are reviewed. Preliminary designs of the refractive optics zoom lens and the catadioptric system are presented and evaluated. Of the two, the latter probably has the best chance of success, so long as the shortest focal lengths are not really needed.
Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelson, R.; Gelbord, J.; Cackett, E.
Swift monitoring of NGC 4151 with an ∼6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3–50 keV) and six in the ultraviolet (UV)/optical (1900–5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ∼3–4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to leadmore » the optical by ∼0.5–1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner and Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.« less
T.F. Eck; B.N. Holben; J.S. Reid; A. Sinyuk; E.J. Hyer; N.T. O' Neill; G.E. Shaw; J.R. Vande Castle; F.S. Chapin; O. Dubovik; A. Smirnov; E. Vermote; J.S. Schafer; D. Giles; I. Slutsker; M. Sorokine; W.W. Newcomb
2009-01-01
Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter), Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels while 2004 and 2005 had August monthly means similar in magnitude to peak months at major...
Phytoplankton production in the Sargasso Sea as determined using optical mooring data
NASA Technical Reports Server (NTRS)
Waters, K. J.; Smith, R. C.; Marra, J.
1994-01-01
Optical measurements from an untended mooring provide high-frequency observations of in-water optical properties and permit the estimation of important biological parameters continuously as a function of time. A 9-month time series, composed of three separate deployments, of optical data from the BIOWATT 1987 deep-sea mooring located in the oligotrophic waters of the Sargasso Sea at 34 deg N, 70 deg W are presented. These data have been tested using several bio-optical models for the purpose of providing a continuous estimate of phytoplankton productivity. The data are discussed in the context of contemporaneous shipboard observations and for future ocean color satellite observations. We present a continuous estimation of phytoplankton productivity for the 9-month time series. Results from the first 70-day deployment are emphasized to demonstrate the utility of optical observations as proxy measures of biological parameters, to present preliminary analysis, and to compare our bio-optical observations with concurrent physical observations. The bio-optical features show variation in response to physical forcings including diel variations of incident solar irradiance, episodic changes corresponding to wind forcing, variability caused by advective mesoscale eddy events in the vicinity of the mooring, and seasonal variability corresponding to changes in solar radiation, shoaling of the mixed layer depth, and succession of phytoplankton populations.
NASA Technical Reports Server (NTRS)
Zhou, Andy F.; Erwin, J. Kevin; Mansuripur, M.
1992-01-01
A new and comprehensive dielectric tensor characterization instrument is presented for characterization of magneto-optical recording media and non-magnetic thin films. Random and systematic errors of the system are studied. A series of TbFe, TbFeCo, and Co/Pt samples with different composition and thicknesses are characterized for their optical and magneto-optical properties. The optical properties of several non-magnetic films are also measured.
Study of optical microvariability in the blazar 1ES1011+496
NASA Astrophysics Data System (ADS)
Sosa, M. S.; von Essen, C.; Cellone, S. A.; Andruchow, I.; Schmitt, J. H. M. M.
We carried out a study of photometric variability of the blazar 1ES1011+496 using the 1.20 m Oskar Lühning telescope located at Ham- burger Sternwarte Institute, Germany. This object has been detected at hight energies ( 200 GeV), so it is of interest to characterize its behavior in the optical range. We obtained the light curves in B, V and R bands through dif- ferential photometry, with a time resolution of 15 minutes over 8 nights. We did not detect inter-night variability, but we detected a marginally sig- nificant variability in temporal scales of a few days.
2013-09-30
Vision Floc Camera (MVFC), a Sequoia Scientific LISST 100x Type B, an RBR CTD, and two pressure-actuated Niskin bottles. The Niskin bottles were...Eco bb2fl, that measures 3 backscattering at 532 and 650 nm and CDOM fluorescence, a WetLabs WetStar CDOM fluorometer, a Sequoia Scientific flow
Integrated Microfluidic Variable Optical Attenuator
2005-11-28
Quantum Electron. 5, pp. 1289–1297 (1999). 5. G. Z. Xiao, Z. Zhang, and C. P. Grover, “A variable optical attenuator based on a straight polymer –silica...1998). 18. Y. Huang, G.T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three- dimensional multilayer polymer ...quality without damaging polymer materials under high temperatures, resulting in a core index of 1.561 and cladding index of 1.546. The refractive
Development and characterisation of FPGA modems using forward error correction for FSOC
NASA Astrophysics Data System (ADS)
Mudge, Kerry A.; Grant, Kenneth J.; Clare, Bradley A.; Biggs, Colin L.; Cowley, William G.; Manning, Sean; Lechner, Gottfried
2016-05-01
In this paper we report on the performance of a free-space optical communications (FSOC) modem implemented in FPGA, with data rate variable up to 60 Mbps. To combat the effects of atmospheric scintillation, a 7/8 rate low density parity check (LDPC) forward error correction is implemented along with custom bit and frame synchronisation and a variable length interleaver. We report on the systematic performance evaluation of an optical communications link employing the FPGA modems using a laboratory test-bed to simulate the effects of atmospheric turbulence. Log-normal fading is imposed onto the transmitted free-space beam using a custom LabVIEW program and an acoustic-optic modulator. The scintillation index, transmitted optical power and the scintillation bandwidth can all be independently varied allowing testing over a wide range of optical channel conditions. In particular, bit-error-ratio (BER) performance for different interleaver lengths is investigated as a function of the scintillation bandwidth. The laboratory results are compared to field measurements over 1.5km.
NASA Astrophysics Data System (ADS)
Ram, Kirpa; Singh, Sunita; Sarin, M. M.; Srivastava, A. K.; Tripathi, S. N.
2016-06-01
In this study, we report on three important optical parameters, viz. absorption and scattering coefficients (babs, bscat) and single scattering abledo (SSA) based on one-year chemical-composition data collected from an urban site (Kanpur) in the Indo-Gangetic-Plain (IGP) of northern India. In addition, absorption Ängstrom exponent (AAE) was also estimated in order to understand the wavelength dependence of absorption and to decipher emission sources of carbonaceous aerosols, in particular of black carbon. The absorption and scattering coefficients ranged between 8.3 to 95.2 Mm- 1 (1 Mm- 1 = 10- 6 m- 1) and 58 to 564 Mm- 1, respectively during the study period (for n = 66; from January 2007 to March 2008) and exhibit large seasonal variability with higher values occurring in winter and lower in the summer. Single scattering albedo varied from 0.65 to 0.92 whereas AAE ranged from 0.79 to 1.40 during pre-monsoon and winter seasons, respectively. The strong seasonal variability in aerosol optical properties is attributed to varying contribution from different emission sources of carbonaceous aerosols in the IGP. A case study of haze and dust events further provide information on extreme variability in aerosol optical parameters, particularly SSA, a crucial parameter in atmospheric radiative forcing estimates.
NASA Technical Reports Server (NTRS)
Courvoisier, T. J.-L.; Blecha, A.; Bouchet, P.; Bratschi, P.; Carini, M. T.; Donahue, M.; Edelson, R.; Feigelson, E. D.; Filippenko, A. V.; Glass, I. S.
1995-01-01
We present ground-based observations of the BL Lac object PKS 2155-304 during 1991 November. These data were obtained as part of a large international campaign of observations spanning the electro-magnetic spectrum from the radio waves to the X-rays. The data presented here include radio and UBVRI fluxes, as well as optical polarimetry. The U to I data show the same behavior in all bands and that only upper limits to any lag can be deduced from the cross-correlation of the light curves. The spectral slope in the U-I domain remained constant on all epochs but 2. There is no correlation between changes in the spectral slope and large variations in the total or polarized flux. The radio flux variations did not follow the same pattern of variability as the optical and infrared fluxes. The polarized flux varied by a larger factor than the total flux. The variations of the polarized flux are poorly correlated with those of the total flux in the optical (and hence UV domain; see the accompanying paper by Edelson et al.) nor with those of the soft X-rays. We conclude that the variability of PKS 2155-304 in the optical and near-infrared spectral domains are easier to understand in the context of variable geometry or bulk Lorentz factor than of variable electron acceleration and cooling rates.
Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability
NASA Astrophysics Data System (ADS)
Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.
2016-04-01
We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).
NASA Astrophysics Data System (ADS)
Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong
2017-12-01
In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.
NASA Astrophysics Data System (ADS)
Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang
2017-04-01
Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.
Optoacoustic Monitoring of Physiologic Variables
Esenaliev, Rinat O.
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964
Optoacoustic Monitoring of Physiologic Variables.
Esenaliev, Rinat O
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.
NASA Astrophysics Data System (ADS)
Mizubayashi, Keiko; Kuwahara, Victor S.; Segaran, Thirukanthan C.; Zaleha, Kassim; Effendy, A. W. M.; Kushairi, M. R. M.; Toda, Tatsuki
2013-07-01
The East coast of Peninsular Malaysia is strongly influenced by the North-East (NE) monsoon, and may significantly influence the optical environment of coral-reef ecosystems. However, our knowledge of temporal variability, including episodic events, of environmental factors in Asian tropical regions is still limited. The objectives of this study were to (1) observe temporal variability in ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) attenuation and (2) determine the bio-optical factors regulating the optical environment in shallow coral-reef waters. Downwelling UVR and PAR irradiance and in situ bio-optical factors were measured monthly near Bidong Island on the East coast of Peninsular Malaysia from June 2010 to June 2011. The NE monsoon was recognized between November 2010 and January 2011. The highest diffuse attenuation coefficient at 305 nm was 2.05 ± 0.03 m-1 in a coral-reef area on December 2010. The most significant bio-optical factor at 305, 380, 440 nm during the NE monsoon season was CDOM (89 ± 8% at 305 nm, 84 ± 9% at 380 nm and 49 ± 17% at 440 nm). All UVR attenuation coefficients showed significant correlations with the CDOM absorption coefficients (aCDOM). CDOM with relatively low S275-295 during the NE monsoon season (0.0177 ± 0.0020 nm-1) suggests terrestrial sources, which is also supported by the correlation between salinity and aCDOM(305). A significant correlation between S275-295 and the carbon specific absorbance coefficient (a*(305)) suggest the potential to measure DOC optically in these waters. The high CDOM during the NE monsoon season may have an important role to reduce harmful UVR exposure reaching benthic communities.
Polarization imaging apparatus
NASA Technical Reports Server (NTRS)
Zou, Yingyin Kevin (Inventor); Chen, Qiushui (Inventor); Zhao, Hongzhi (Inventor)
2010-01-01
A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set 11, a linear polarizer 14 with its optical axis 18, a first variable phase retarder 12 with its optical axis 16 aligned 22.5.degree. to axis 18, a second variable phase retarder 13 with its optical axis 17 aligned 45.degree. to axis 18, a imaging sensor 15 for sensing the intensity images of the sample, a controller 101 and a computer 102. Two variable phase retarders 12 and 13 were controlled independently by a computer 102 through a controller unit 101 which generates a sequential of voltages to control the phase retardations of VPRs 12 and 13. A set of four intensity images, I.sub.0, I.sub.1, I.sub.2 and I.sub.3 of the sample were captured by imaging sensor 15 when the phase retardations of VPRs 12 and 13 were set at (0,0), (.pi.,0), (.pi.,.pi.) and (.pi./2,.pi.), respectively Then four Stokes components of a Stokes image, S.sub.0, S.sub.1, S.sub.2 and S.sub.3 were calculated using the four intensity images.
Saunders, Jeffrey A.
2014-01-01
Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194
Optical, near, infrared and ultraviolet monitoring of the Seyfert 1 galaxy Markarian 335
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Sun, W.-H.; Turner, T. J.; Hintzen, P. M.
1990-01-01
Preliminary results of a multifrequency monitoring campaign for the bright, Seyfert 1 galactic nuclei Mkn335 are presented. Nearly uniform sampling at 3 day intervals is achieved quasi simultaneously at each wavelength band. Wavelength dependent variability is seen at the 20 to 30 percent level. Interpretation of variability in terms of geometrically thin, optically thick accretion disk models is discussed. The inferred blackhole masses and accretion rates are discussed. Possible correlation between continuum and emission line variations is discussed.
X-ray and optical observations of 2 new cataclysmic variables
NASA Technical Reports Server (NTRS)
Singh, K. P.; Szkody, P.; Barrett, P.; Schlegel, E.; White, N. E.; Silber, A.; Fierce, E.; Hoard, D.; Hakala, P. J.; Piirola, V.;
1996-01-01
The light curves and spectra of two ultra soft X-ray sources are presented. The sources, WGAJ 1047.1+6335 and WGAJ 1802.1+1804 were discovered during a search using the Rosat position sensitive proportional counter (PSPC). The X-ray spectra of both objects show an unusually strong black body component with respect to the harder bremsstrahlung component. Based on the optical observations and on the analysis of the X-ray data, the two objects are identified with new AM Her type cataclysmic variables.
Stitching of near-nulled subaperture measurements
NASA Technical Reports Server (NTRS)
Devries, Gary (Inventor); Brophy, Christopher (Inventor); Forbes, Greg (Inventor); Murphy, Paul (Inventor)
2012-01-01
A metrology system for measuring aspheric test objects by subaperture stitching. A wavefront-measuring gauge having a limited capture range of wavefront shapes collects partially overlapping subaperture measurements over the test object. A variable optical aberrator reshapes the measurement wavefront with between a limited number of the measurements to maintain the measurement wavefront within the capture range of the wavefront-measuring gauge. Various error compensators are incorporated into a stitching operation to manage residual errors associated with the use of the variable optical aberrator.
Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.
2007-01-01
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( < 1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Ku, W. H.-M.; Helfand, D. J.; Lucy, L. B.
1980-01-01
The X-ray properties of 111 catalogued quasars have been examined with the imaging proportional counter on board the Einstein Observatory. Thirty-five of the objects, of redshift between 0.064 and 3.53, were detected as X-ray sources. The 0.5-4.5-keV X-ray properties of these quasars are correlated with their optical and radio continuum properties and with their redshifts and variability characteristics. The X-ray luminosity of quasars tends to be highest for those objects which are bright in the optical and radio regimes and which exhibit optically violent variability. These observations suggest that quasars should be divided into two classes on the basis of radio luminosities, spectra, evolution and underlying morphology and that quasars can make up a significant portion of the diffuse soft X-ray background only if the slope of the optical quasar log N-log S relation is steeper than 2 to m sub b of about 21.5.
NASA Astrophysics Data System (ADS)
Berryhill, A. B.; Coffey, D. M.; McGhee, R. W.; Burkhardt, E. E.
2008-03-01
Cryomagnetics' new "C-Mag Optical" Magneto-Optic Property Measurement System is a versatile materials and device characterization system that allows the researcher to simultaneously control the applied magnetic field and temperature of a sample while studying its electrical and optic properties. The system integrates a totally liquid cryogen-free 6T superconducting split-pair magnet with a variable temperature sample space, both cooled using a single 4.2K pulse tube refrigerator. To avoid warming the magnet when operating a sample at elevated temperatures, a novel heat switch was developed. The heat switch allows the sample temperature to be varied from 10K to 300K while maintaining the magnet at 4.2K or below. In this paper, the design and performance of the overall magnet system and the heat switch will be presented. New concepts for the next generation system will also be discussed.
Expanding understanding of optical variability in Lake Superior with a 4-year dataset
NASA Astrophysics Data System (ADS)
Mouw, Colleen B.; Ciochetto, Audrey B.; Grunert, Brice; Yu, Angela
2017-07-01
Lake Superior is one of the largest freshwater lakes on our planet, but few optical observations have been made to allow for the development and validation of visible spectral satellite remote sensing products. The dataset described here focuses on coincidently observing inherent and apparent optical properties along with biogeochemical parameters. Specifically, we observe remote sensing reflectance, absorption, scattering, backscattering, attenuation, chlorophyll concentration, and suspended particulate matter over the ice-free months of 2013-2016. The dataset substantially increases the optical knowledge of the lake. In addition to visible spectral satellite algorithm development, the dataset is valuable for characterizing the variable light field, particle, phytoplankton, and colored dissolved organic matter distributions, and helpful in food web and carbon cycle investigations. The compiled data can be freely accessed at https://seabass.gsfc.nasa.gov/archive/URI/Mouw/LakeSuperior/.
LONG-TERM OPTICAL POLARIZATION VARIABILITY OF THE TeV BLAZAR 1ES 1959+650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorcia, Marco; Benitez, Erika; Cabrera, Jose I.
A detailed analysis of the optical polarimetric variability of the TeV blazar 1ES 1959+650 from 2007 October 18 to 2011 May 5 is presented. The source showed maximum and minimum brightness states in the R band of 14.08 {+-} 0.03 mag and 15.20 {+-} 0.03 mag, respectively, with a maximum variation of 1.12 mag, and a maximum polarization degree of P = (12.2 {+-} 0.7)%, with a maximum variation of 10.7%. From 2009 August to November, a correlation between the optical R-band flux and the degree of linear polarization was found with a correlation coefficient r {sub pol} = 0.984more » {+-} 0.025. The source presented a preferential position angle of optical polarization of {approx}153 Degree-Sign , with variations of 10 Degree-Sign -50 Degree-Sign , which is in agreement with the projected position angle of the parsec-scale jet found at 43 GHz. From the Stokes parameters we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 4%. Assuming a stationary shock for the variable component, we estimated some parameters associated with the physics of the relativistic jet: the magnetic field, B {approx} 0.06 G, the Doppler factor, {delta}{sub 0} {approx} 23, the viewing angle, {Phi} {approx} 2. Degree-Sign 4, and the size of the emission region r{sub b} {approx} 5.6 Multiplication-Sign 10{sup 17} cm. Our study is consistent with the spine-sheath model of explaining the polarimetric variability displayed by this source during our monitoring.« less
Intensive HST, RXTE, and ASCA Monitoring of NGC 3516: Evidence against Thermal Reprocessing
NASA Technical Reports Server (NTRS)
Edelson, Rick; Koratkar, Anuradha; Nandra, Kirpal; Goad, Michael; Peterson, Bradley M.; Collier, Stefan; Krolik, Julian; Malkan, Matthew; Maoz, Dan; OBrien, Paul
2000-01-01
During 1998 April 1316, the bright, strongly variable Seyfert 1 galaxy NGC 3516 was monitored almost continuously with HST for 10.3 hr at ultraviolet wavelengths and 2.8 days at optical wavelengths, and simultaneous RXTE and ASCA monitoring covered the same period. The X-ray fluxes were strongly variable with the soft (0.5-2 keV) X-rays showing stronger variations (approx. 65% peak to peak) than the hard (2-10 keV) X-rays (approx. 50% peak to peak). The optical continuum showed much smaller but still highly significant variations: a slow approx. 2.5% rise followed by a faster approx. 3.5% decline. The short ultraviolet observation did not show significant variability. The soft and hard X-ray light curves were strongly correlated, with no evidence for a significant interband lag. Likewise, the optical continuum bands (3590 and 5510 A) were also strongly correlated, with no measurable lag, to 3(sigma) limits of approx. less than 0.15 day. However, the optical and X-ray light curves showed very different behavior, and no significant correlation or simple relationship could be found. These results appear difficult to reconcile with previous reports of correlations between X-ray and optical variations and of measurable lags within the optical band for some other Seyfert 1 galaxies. These results also present serious problems for "reprocessing" models in which the X-ray source heats a stratified accretion disk, which then reemits in the optical/ultraviolet : the synchronous variations within the optical would suggest that the emitting region is approx. less than 0.3 It-day across, while the lack of correlation between X-ray and optical variations would indicate, in the context of this model, that any reprocessing region must be approx. greater than 1 It-day in size. It may be possible to resolve this conflict by invoking anisotropic emission or special geometry, but the most natural explanation appears to be that the bulk of the optical luminosity is generated by some mechanism other than reprocessing.
NASA Astrophysics Data System (ADS)
Reza, Syed Azer
This dissertation proposes the use of the emerging Micro-Electro-Mechanical Systems (MEMS) and agile lensing optical device technologies to design novel and powerful signal conditioning and sensing modules for advanced applications in optical communications, physical parameter sensing and RF/optical signal processing. For example, these new module designs have experimentally demonstrated exceptional features such as stable loss broadband operations and high > 60 dB optical dynamic range signal filtering capabilities. The first part of the dissertation describes the design and demonstration of digital MEMS-based signal processing modules for communication systems and sensor networks using the TI DLP (Digital Light Processing) technology. Examples of such modules include optical power splitters, narrowband and broadband variable fiber optical attenuators, spectral shapers and filters. Compared to prior works, these all-digital designs have advantages of repeatability, accuracy, and reliability that are essential for advanced communications and sensor applications. The next part of the dissertation proposes, analyzes and demonstrates the use of analog opto-fluidic agile lensing technology for sensor networks and test and measurement systems. Novel optical module designs for distance sensing, liquid level sensing, three-dimensional object shape sensing and variable photonic delay lines are presented and experimentally demonstrated. Compared to prior art module designs, the proposed analog-mode modules have exceptional performances, particularly for extreme environments (e.g., caustic liquids) where the free-space agile beam-based sensor provide remote non-contact access for physical sensing operations. The dissertation also presents novel modules involving hybrid analog-digital photonic designs that make use of the different optical device technologies to deliver the best features of both analog and digital optical device operations and controls. Digital controls are achieved through the use of the digital MEMS technology and analog controls are realized by employing opto-fluidic agile lensing technology and acousto-optic technology. For example, variable fiber-optic attenuators and spectral filters are proposed using the hybrid design. Compared to prior art module designs, these hybrid designs provide a higher module dynamic range and increased resolution that are critical in various advanced system applications. In summary, the dissertation shows the added power of hybrid optical designs using both the digital and analog photonic signal processing versus just all-digital or all-analog module designs.
Two-Decade Monitoring of MWC349 in Optical and Radio: New Results
NASA Astrophysics Data System (ADS)
Thomashow, Eydon; Jorgenson, Regina A.; Strelnitski, Vladimir; Walker, Gary; Maria Mitchell Observatory (MMO) Research Experiences for Undergraduate (REU) Interns, 2017
2018-01-01
Maria Mitchell Observatory (MMO) has completed the two-decade long monitoring of MWC 349 in the optical and radio domains. This poster presentation will be primarily devoted to the new results obtained by optical photometry with broad and narrow band filters and observations of the variability in the masing H30 radio line during the observational season of 2017. The H30 emission arises in the circumstellar disk of the MWC 349A component of the visual double star (with 2.4 arcsec separation between the A and B components). Variable optical emission is also believed to be due to star A. By combining our optical observations with earlier MMO observations, we not only confirmed the previously known quasi-period of ~230 days, but confirmed a second period of ~700 days. One of the most interesting results of radio monitoring is the long-term variability of the systemic radial velocity of star A, as determined through averaging the radial velocities of the two masing peaks arising in the circumstellar disk. This may be the first case where a possible hidden close companion of a star (a lower mass star or a massive protoplanet) is detected by monitoring the radial velocity of the star via the spectral line radiation from its disk. E.T. completed this project as a 2017 MMO NSF REU intern and would like to thank the other interns for their help in conducting the optical observations. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.
NASA Astrophysics Data System (ADS)
Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Kovach, Charles; Anastasiou, Christopher J.; Zhao, Jun; Carder, Kendall L.
2013-01-01
Inherent and apparent optical properties (IOPs and AOPs) of Tampa Bay (Florida, USA) were measured during fourteen cruises between February 1998 and October 2010 to understand how these properties relate to one another and what controls light absorption and diffuse attenuation in this moderately sized (˜1000 km2), shallow estuary (average depth ˜4 m). The IOPs and AOPs included: 1) absorption coefficients of three optically significant constituents: phytoplankton pigments, detrital particles, and colored dissolved organic matter (CDOM); 2) particulate backscattering coefficients; 3) chlorophyll-a concentrations; 4) above-water remote sensing reflectance; 5) downwelling diffuse attenuation coefficients (Kd) at eight wavelengths and photosynthetically active radiation (PAR). Results showed substantial variability in all IOPs and AOPs in both space and time, with most IOPs spanning more than two orders of magnitude and showing strong co-variations. Of all four bay segments, Old Tampa Bay showed unique optical characteristics. During the wet season, the magnitude of blue-green-light absorption was dominated by CDOM, while during the dry season all three constituents contributed significantly. However, the variability in Kd (PAR, 490 nm, 555 nm) was driven mainly by the variability of detrital particles and phytoplankton as opposed to CDOM. This observation explained, at least to first order, why a nutrient reduction management strategy used by the Tampa Bay Estuary Program since the 1990s led to improved water clarity in most of Tampa Bay. The findings of this study provided the optical basis to fine tune existing or develop new algorithms to estimate the various optical water quality parameters from space.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
1994-10-01
In photopic vision, two physical variables (luminance and wavelength) are transformed into three psychological variables (brightness, hue, and saturation). Following on from 3D grating optical explanations of aperture effects (Stiles-Crawford effects SCE I and II), all three variables can be explained via a single 3D chip effect. The 3D grating optical calculations are carried out using the classical von Laue equation and demonstrated using the example of two experimentally confirmed observations in human vision: saturation effects for monochromatic test lights between 485 and 510 nm in the SCE II and the fact that many test lights reverse their hue shift in the SCE II when changing from moderate to high luminances compared with that on changing from low to medium luminances. At the same time, information is obtained on the transition from the trichromatic color system in the retina to the opponent color system.
Characterization facility for magneto-optic media and systems
NASA Technical Reports Server (NTRS)
Mansuripur, M.; Fu, H.; Gadetsky, S.; Sugaya, S.; Wu, T. H.; Zambuto, J.; Gerber, R.; Goodman, T.; Erwin, J. K.
1993-01-01
Objectives of this research are: (1) to measure the hysteresis loop, Kerr rotation angle, anisotropy energy profile, Hall voltage, and magnetoresistance of thin-film magneto-optic media using our loop-tracer; (2) measure the wavelength-dependence of the Kerr rotation angle, Theta(sub k), and ellipticity, epsilon(sub k), for thin-film media using our magneto-optic Kerr spectrometer (MOKS); (3) measure the dielectric tensor of thin-film and multilayer samples using our variable-angle magneto-optic ellipsometer (VAMOE); (4) measure the hysteresis loop, coercivity, remanent magnetization, saturation magnetization, and anisotropy energy constant for thin film magnetic media using vibrating sample magnetometry; (5) observe small magnetic domains and investigate their interaction with defects using magnetic force microscopy; (6) perform static read/write/erase experiments on thin-film magneto-optic media using our static test station; (7) integrate the existing models of magnetization, magneto-optic effects, coercivity, and anisotropy in an interactive and user-friendly environment, and analyze the characterization data obtained in the various experiments, using this modeling package; (8) measure focusing- and tracking-error signals on a static testbed, determine the 'feedthrough' for various focusing schemes, investigate the effects of polarization and birefringence, and compare the results with diffraction-based calculations; and (9) measure the birefringence of optical disk substrates using two variable angle ellipsometers.
Bio-Optics of the Chesapeake Bay from Measurements and Radiative Transfer Calculations
NASA Technical Reports Server (NTRS)
Tzortziou, Maria; Herman, Jay R.; Gallegos, Charles L.; Neale, Patrick J.; Subramaniam, Ajit; Harding, Lawrence W., Jr.; Ahmad, Ziauddin
2005-01-01
We combined detailed bio-optical measurements and radiative transfer (RT) modeling to perform an optical closure experiment for optically complex and biologically productive Chesapeake Bay waters. We used this experiment to evaluate certain assumptions commonly used when modeling bio-optical processes, and to investigate the relative importance of several optical characteristics needed to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater RT simulations. We found that the ratio of backscattering to total scattering in the mid-mesohaline Chesapeake Bay varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the RT model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between RT calculations and measured radiometric quantities. In situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near infrared wavelengths is zero.
Polarization Imaging Apparatus with Auto-Calibration
NASA Technical Reports Server (NTRS)
Zou, Yingyin Kevin (Inventor); Zhao, Hongzhi (Inventor); Chen, Qiushui (Inventor)
2013-01-01
A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5 deg, a second variable phase retarder with its optical axis aligned 45 deg, a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I(sub 0), I(sub 1), I(sub 2) and I(sub 3) of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (pi,0), (pi,pi) and (pi/2,pi), respectively. Then four Stokes components of a Stokes image, S(sub 0), S(sub 1), S(sub 2) and S(sub 3) were calculated using the four intensity images.
Polarization imaging apparatus with auto-calibration
Zou, Yingyin Kevin; Zhao, Hongzhi; Chen, Qiushui
2013-08-20
A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5.degree., a second variable phase retarder with its optical axis aligned 45.degree., a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I.sub.0, I.sub.1, I.sub.2 and I.sub.3 of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (.pi.,0), (.pi.,.pi.) and (.pi./2,.pi.), respectively. Then four Stokes components of a Stokes image, S.sub.0, S.sub.1, S.sub.2 and S.sub.3 were calculated using the four intensity images.
Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning
Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon
2016-01-01
Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442
Lighthouse in the dust: infrared echoes of periodic emission from massive black hole binaries★
NASA Astrophysics Data System (ADS)
D'Orazio, Daniel J.; Haiman, Zoltán
2017-09-01
The optical and UV emission from sub-parsec massive black hole binaries (MBHBs) in active galactic nuclei (AGNs) is believed to vary periodically, on time-scales comparable to the binary's orbital time. If driven by accretion rate fluctuations, the variability could be isotropic. If dominated by relativistic Doppler modulation, the variability should instead be anisotropic, resembling a rotating forward-beamed lighthouse. We consider the infrared (IR) reverberation of either type of periodic emission by pc-scale circumbinary dust tori. We predict the phase and amplitude of IR variability as a function of the ratio of dust light crossing time to the source variability period, and of the torus inclination and opening angle. We enumerate several differences between the isotropic and anisotropic cases. Interestingly, for a nearly face-on binary with an inclined dust torus, the Doppler boost can produce IR variability without any observable optical/UV variability. Such orphan-IR variability would have been missed in optical searches for periodic AGNs. We apply our models to time-domain WISE IR data from the MBHB candidate PG 1302-102 and find consistency with dust reverberation by both isotropically emitting and Doppler-boosted sources in the shorter wavelength W1-W2 (2.8 → 5.3 μm) bands. We constrain the dust torus to be thin (aspect ratio ˜ 0.1), with an inner radius at 1-5 pc. More generally, our dust-echo models will aid in identifying new MBHB candidates, determining their nature and constraining the physical properties of MBHBs and their dust tori.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluzny, J.; Rozanska, A.; Rozyczka, M.
2012-05-01
We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this systemmore » is a neutron star (probably a millisecond pulsar).« less
Liquid-crystal variable retarders for aerospace polarimetry applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heredero, R. L.; Uribe-Patarroyo, N.; Belenguer, T.
2007-02-10
We present the optical effects of different tests that simulate the aerospace environment on the liquid-crystal variable retarders (LCVRs) used in the Imaging Magnetograph eXperiment postfocal instrument of the SUNRISE payload within the NASA Long Duration Balloon program. Analysis of the influence of vacuum,temperature, vibration, and gamma and ultraviolet radiation is performed by measuring the effects of these tests on the optical retardance, the response time, the wavefront distortion,and the transmittance, including some in situ measurements. Outgassing measurements of the different parts of the LCVRs are also shown. From the results obtained it can be concluded that these optical devicesmore » are suitable and seem to be excellent candidates for aerospace platforms.« less
Tsunashima, Satoshi; Nakajima, Fumito; Nasu, Yusuke; Kasahara, Ryoichi; Nakanishi, Yasuhiko; Saida, Takashi; Yamada, Takashi; Sano, Kimikazu; Hashimoto, Toshikazu; Fukuyama, Hiroyuki; Nosaka, Hideaki; Murata, Koichi
2012-11-19
We demonstrate a compact and variable-optical-attenuator (VOA) integrated coherent receiver with a silica-based planar lightwave circuit (PLC). To realize the compact receiver, we integrate a VOA in a single PLC chip with polarization beam splitters and optical 90-degree hybrids, and employ a stable optoelectronic coupling system consisting of micro lens arrays and photodiode (PD) subcarriers with high-speed right-angled signal lines. We integrate a VOA and a coherent receiver in a 27x40x6 mm package, and successfully demodulate a 128-Gbit/s polarization division multiplexed (PDM) quadrature phase shift keying (QPSK) signal with a VOA-assisted wide dynamic range of more than 30 dB.
A search for optical variability of type 2 quasars in SDSS stripe 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Aaron J.; Carson, Daniel J.; Voevodkin, Alexey
Hundreds of Type 2 quasars have been identified in Sloan Digital Sky Survey (SDSS) data, and there is substantial evidence that they are generally galaxies with highly obscured central engines, in accord with unified models for active galactic nuclei (AGNs). A straightforward expectation of unified models is that highly obscured Type 2 AGNs should show little or no optical variability on timescales of days to years. As a test of this prediction, we have carried out a search for variability in Type 2 quasars in SDSS Stripe 82 using difference-imaging photometry. Starting with the Type 2 AGN catalogs of Zakamskamore » et al. and Reyes et al., we find evidence of significant g-band variability in 17 out of 173 objects for which light curves could be measured from the Stripe 82 data. To determine the nature of this variability, we obtained new Keck spectropolarimetry observations for seven of these variable AGNs. The Keck data show that these objects have low continuum polarizations (p ≲ 1% in most cases) and all seven have broad Hα and/or Mg II emission lines in their total (unpolarized) spectra, indicating that they should actually be classified as Type 1 AGNs. We conclude that the primary reason variability is found in the SDSS-selected Type 2 AGN samples is that these samples contain a small fraction of Type 1 AGNs as contaminants, and it is not necessary to invoke more exotic possible explanations such as a population of 'naked' or unobscured Type 2 quasars. Aside from misclassified Type 1 objects, the Type 2 quasars do not generally show detectable optical variability over the duration of the Stripe 82 survey.« less
Very fast optical flaring from a possible new Galactic magnetar.
Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G
2008-09-25
Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.
Climatology and Characteristics of Aerosol Optical Properties in the Arctic
NASA Astrophysics Data System (ADS)
Schmeisser, Lauren; Ogren, John; Backman, John; Asmi, Eija; Andrews, Elisabeth; Jefferson, Anne; Bergin, Michael; Tunved, Peter; Sharma, Sangeeta; Starkweather, Sandra
2016-04-01
Within the Arctic, climate forcers like atmospheric aerosols are important contributors to the observed warming and environmental changes in the region. Quantifying the forcing by aerosols in the Arctic is especially difficult, given short aerosol lifetimes, annual variability in illumination and surface albedo, stratified atmospheric conditions, complex feedbacks, and long-range aerosol transport. However, in-situ surface measurements of Arctic aerosol optical properties can be used to constrain variability of light scattering and absorption, identify potential particle sources, and help evaluate the resulting forcing. Data from six WMO Global Atmosphere Watch stations are presented: Alert, Canada (ALT); Barrow, Alaska (BRW); Pallas, Finland (PAL); Summit, Greenland (SUM); Tiksi, Russia (TIK); and Zeppelin Mountain, Norway (ZEP). These sites contribute to the International Arctic System for Observing the Atmosphere (IASOA), which facilitates Arctic-wide data collection and analysis. Climatologies of aerosol optical properties from each station show differences in magnitude and variability of observed parameters. For example, most stations (ALT, BRW, SUM, TIK, ZEP) experience maximum scattering in winter/spring, while PAL exhibits maximum scattering in the summer. The observed range in scattering across these sites is large (almost an order of magnitude) - SUM has the lowest annual median scattering at 0.82 Mm-1 while BRW has the highest at 6.9 Mm-1. A closer look at systematic variability between optical properties at each station, as well as site back trajectories, suggest differences in aerosol processes, sources and transport. The development of consistent climatologies and additional analyses like the ones presented here can help provide a better understanding of trans-Arctic aerosol variability, which can be an asset for improving aerosol models in this unique and remote region.
NASA Astrophysics Data System (ADS)
Flores-Bustamante, Mario C.; Rosete-Aguilar, Martha; Calixto, Sergio
2016-03-01
A lens containing a liquid medium and having at least one elastic membrane as one of its components is known as an elastic membrane lens (EML). The elastic membrane may have a constant or variable thickness. The optical properties of the EML change by modifying the profile of its elastic membrane(s). The EML formed of elastic constant thickness membrane(s) have been studied extensively. However, EML information using elastic membrane of variable thickness is limited. In this work, we present simulation results of the mechanical and optical behavior of two EML with variable thickness membranes (convex-plane membranes). The profile of its surfaces were modified by liquid medium volume increases. The model of the convex-plane membranes, as well as the simulation of its mechanical behavior, were performed using Solidworks® software; and surface's points of the deformed elastic lens were obtained. Experimental stress-strain data, obtained from a silicone rubber simple tensile test, according to ASTM D638 norm, were used in the simulation. Algebraic expressions, (Schwarzschild formula, up to four deformation coefficients, in a cylindrical coordinate system (r, z)), of the meridional profiles of the first and second surfaces of the deformed convex-plane membranes, were obtained using the results from Solidworks® and a program in the software Mathematica®. The optical performance of the EML was obtained by simulation using the software OSLO® and the algebraic expressions obtained in Mathematica®.
QKD Via a Quantum Wavelength Router Using Spatial Soliton
NASA Astrophysics Data System (ADS)
Kouhnavard, M.; Amiri, I. S.; Afroozeh, A.; Jalil, M. A.; Ali, J.; Yupapin, P. P.
2011-05-01
A system for continuous variable quantum key distribution via a wavelength router is proposed. The Kerr type of light in the nonlinear microring resonator (NMRR) induces the chaotic behavior. In this proposed system chaotic signals are generated by an optical soliton or Gaussian pulse within a NMRR system. The parameters, such as input power, MRRs radii and coupling coefficients can change and plays important role in determining the results in which the continuous signals are generated spreading over the spectrum. Large bandwidth signals of optical soliton are generated by the input pulse propagating within the MRRs, which is allowed to form the continuous wavelength or frequency with large tunable channel capacity. The continuous variable QKD is formed by using the localized spatial soliton pulses via a quantum router and networks. The selected optical spatial pulse can be used to perform the secure communication network. Here the entangled photon generated by chaotic signals has been analyzed. The continuous entangled photon is generated by using the polarization control unit incorporating into the MRRs, required to provide the continuous variable QKD. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography can be used in the mobile telephone hand set and networks. In this study frequency band of 500 MHz and 2.0 GHz and wavelengths of 775 nm, 2,325 nm and 1.55 μm can be obtained for QKD use with input optical soliton and Gaussian beam respectively.
NASA Astrophysics Data System (ADS)
Kuwahara, Victor S.; Nozaki, Sena; Nakano, Junji; Toda, Tatsuki; Kikuchi, Tomohiko; Taguchi, Satoru
2015-07-01
The 18-year time-series shows in situ ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) diffuse attenuation coefficient Kd(λ) have recurrent seasonal variability of high/low attenuation during summer/winter months, respectively, dependent on variability in water column stratification and concentrations of bio-optical properties. The mid-latitude coastal survey station displayed significant seasonality of the mixed layer depth (MLD) between 12 and 82 m which modified the distribution of chlorophyll a (4.6-24.9 mg m-2) and absorption of colored dissolved organic matter [aCDOM(320 nm) 0.043-1.34 m-1]. The median Kd(320 nm) displayed significant seasonality at 0.19-0.74 m-1 (C.V. = 44.1%) and seasonal variability within the euphotic layer [Z10%(320 nm) = 7-20%]. High attenuation of UVR with relatively moderate attenuation of PAR was consistently observed during the summer months when increased concentrations of terrestrially derived CDOM coupled with a shallow MLD were present. The winter season showed the opposite of low UVR and PAR attenuation due to a relatively deeper MLD coupled with low concentrations of bio-optical properties. Although the long term Kd(λ) did not vary significantly during the time-series, analysis of the interannual variability suggests there are positive and negative phases following the Pacific Decadal Oscillation (PDO) vis-a-vis variability in bio-optical properties (p < 0.001).
NASA Technical Reports Server (NTRS)
Shafter, A. W.; Szkody, P.; Thorstensen, J. R.
1986-01-01
Time-resolved X-ray and optical photometric and optical spectroscopic observations of the ultrashort period cataclysmic variable SW UMa are reported. The spectroscopic observations reveal the presence of an s-wave component which is almost in phase with the extreme line wings and presumably the white dwarf. This very unusual phasing in conjunction with the available optical and X-ray data seems to indicate that a region of enhanced emission exists on the opposite side of the disk from the expected location of the hot spot. The photometric observations reveal the presence of a hump in the light curve occurring at an orbital phase which is consistent with the phase at which the region of enhanced line emission is most favorably seen. Changes in the hump amplitude are seen from night to night, and a 15.9 min periodicity is evident in the light curve. The optical and X-ray periodicities suggest that SW UMa is a member of the DQ Her class of cataclysmic variables.
NASA Astrophysics Data System (ADS)
Tatchyn, Roman
1992-01-01
Insertion devices that are tuned by electrical period variation, in contrast to the conventional method of mechanically varying the field strength, offer a number of advantages for the successful development of the next generation of higher-brightness storage rings and associated experimental techniques [R. Tatchyn, Nucl. Instrum. Methods A 275, 430 (1989); J. Appl. Phys. 65, 4107 (1989); R. Tatchyn and T. Cremer, IEEE Trans. Mag. 26, 3102 (1990)]. for example, due to the inherently low total output power levels of variable-period devices, their use can do more to relax power loading constraints on beamline optics at existing and future facilities than many of the alternative approaches explored in recent years, such as, e.g., gallium-cooled optics, multilayer premonochromator structures, or adaptive/deformable optics. With regard to machine optics, variable-period structures can be operated without varying the tune of the host machine lattice, enabling the design and flexible operation of ultralarge, yet reliable and versatile multiuser facilities. In the area of synchrotron radiation (SR) science, variable-period fields can be naturally configure in a literally infinite number of ways, permitting, e.g., fully flexible polarizing field profiles, dynamical field profiles, and multicolor field configurations, all of which serve to expand the possible modes and means of SR experimentation. In this paper we report on recent results obtained at SSRL in the development of variable-period insertion devices that indicate the possibility of extending this technology into short-period (<10 cm), high-field (≳0.05 T) regimes, i.e., into parameter ranges presently occupied by conventional variable-gap, permanent magnet structures. General theoretical arguments, specific designs and their projected performance, as well as an outline of current activities related to the implementation of polarizing and nonpolarizing prototypes on Beam Line V at SSRL, are summarized.
NASA Technical Reports Server (NTRS)
Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan
2013-01-01
Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with 500 m resolution, and small, but significant, differences were found between peak and nadir river flow periods in terms of optimal resolution and resolvable proportion of variability.
NASA Technical Reports Server (NTRS)
Liu, Tsuen-Hsi (Inventor); Psaltis, Demetri (Inventor); Mok, Fai H. (Inventor); Zhou, Gan (Inventor)
2005-01-01
An optical memory for storing and/or reading data on an optical disk. The optical disk incorporates a material in which holographic gratings can be created, and subsequently detected, at plural locations within the disk by an electro-optical head. Creation and detection of holographic gratings with variable diffraction efficiency is possible with the electro-optical head. Multiple holographic gratings can also be created at each one of the plural locations via a beam of light which has a different wavelength or point of focus. These data elements can be read by the electro-optical head using a beam of light sequentially varied in wavelength or point of focus to correspond to the multiple holographic gratings to be recorded.
Tunable resonator-based devices for producing variable delays and narrow spectral linewidths
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)
2006-01-01
Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.
NASA Technical Reports Server (NTRS)
Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei
2010-01-01
Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths. Observed patterns in water optical and biogeochemical variables were very consistent among different marsh systems and throughout the year, despite continued tidal exchange, implying rapid transformation of marsh DOM in the estuary through both photochemical and microbial processes. These findings illustrate the importance of tidal marsh ecosystems as sources, sinks and/or transformers of biologically important nutrients, carbon and colored dissolved organic compounds, and their influence on short-term biological, optical and biogeochemical variability in coastal waters.
NASA Astrophysics Data System (ADS)
Ciprini, S.; Takalo, L. O.; Tosti, G.; Raiteri, C. M.; Fiorucci, M.; Villata, M.; Nucciarelli, G.; Lanteri, L.; Nilsson, K.; Ros, J. A.
2007-05-01
Aims:New data and results on the optical behavior of the prominent blazar PKS 0735+178 (also known as OI 158, S3 0735+17, DA 237, 1ES 0735+178, 3EG J0737+1721) are presented, through the most continuous BVRI data available in the period 1994-2004 (about 500 nights of observations). In addition, the whole historical light curve, and a new photometric calibration of comparison stars in the field of this source are reported. Methods: Several methods for time series analysis of sparse data sets are developed, adapted, and applied to the reconstructed historical light curve and to each observing season of our unpublished optical database on PKS 0735+178. Optical spectral indexes are calculated from the multi-band observations and studied on long-term (years) durations as well. For the first time in this source, variability modes, characteristic timescales, and the signal power spectrum are explored and identified over 3 decades in time with sufficient statistics. The novel investigation of mid-term optical scales (days, weeks), could be also applied and compared to blazar gamma-ray light curves that will be provided, on the same timescales, by the forthcoming GLAST observatory. Results: In the last 10 years the optical emission of PKS 0735+178 exhibited a rather achromatic behavior and a variability mode resembling the shot-noise. The source was at an intermediate or low brightness level, showing a mild flaring activity and a superimposition/succession of rapid and slower flares, without extraordinary and isolated outbursts, but, at any rate, characterized by one major active phase in 2001. Several mid-term scales of variability were found, the more common falling into duration intervals of about 27-28 days, 50-56 days and 76-79 days. Rapid variability in the historical light curve appears to be modulated by a general, slower, and rather oscillating temporal trend, where typical amplitudes of about 4.5, 8.5, and 11-13 years can be identified. This spectral and temporal analysis, accompanying our data publication, suggests the occurrence of distinctive signatures at mid-term durations that can likely be of transitory nature. On the other hand the possible pseudo-cyclical or multi-component modulations at long times could be more stable, recurrent and correlated to the bimodal radio flux behavior and the twisted radio structure observed over several years in this blazar.
CFRP variable curvature mirror used for realizing non-moving-element optical zoom imaging
NASA Astrophysics Data System (ADS)
Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan
2014-12-01
In recent years, how to eliminate moving elements while realizing optical zoom imaging has been paid much attention. Compared with the conventional optical zooming techniques, removing moving elements would bring in many benefits such as reduction in weight, volume and power cost and so on. The key to implement non-moving-element optical zooming lies in the design of variable curvature mirror (VCM). In order to obtain big enough optical magnification, the VCM should be capable of generating a large variation of saggitus. Hence, the mirror material should not be brittle, in other words the corresponding ultimate strength should be high enough to ensure that mirror surface would not be broken during large curvature variation. Besides that, the material should have a not too big Young's modulus because in this case less force is required to generate a deformation. Among all available materials, for instance SiC, Zerodur and et.al, CFRP (carbon fiber reinforced polymer) satisfies all these requirements and many related research have proven this. In this paper, a CFRP VCM is designed, fabricated and tested. With a diameter of 100mm, a thickness of 2mm and an initial curvature radius of 1740mm, this component could change its curvature radius from 1705mm to 1760mm, which correspond to a saggitus variation of nearly 23μm. The work reported further proves the suitability of CFRP in constructing variable curvature mirror which could generate a large variation of saggitus.
Non-Contact Optical Ultrasound Concept for Biomedical Imaging
2016-11-03
Non -Contact Optical Ultrasound Concept for Biomedical Imaging Robert Haupt1, Charles Wynn1, Jonathan Fincke2, Shawn Zhang2, Brian Anthony2...results. Lastly, we present imaging capabilities using a non -contact laser ultrasound proof-of-concept system. Two and three dimensional time... non -contact, standoff optical ultrasound has the potential to provide a fixed reference measurement capability that minimizes operator variability as
Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter
NASA Astrophysics Data System (ADS)
Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji
This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.
Transceivers and receivers for quantum key distribution and methods pertaining thereto
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.
Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.
Compact silicon photonic resonance-assisted variable optical attenuator
Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; ...
2016-11-17
Here, a two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. Finally, we derive and discuss a simple thermal-resistance model in explanation of these effects.
Compact silicon photonic resonance-sssisted variable optical attenuator.
Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan
2016-11-28
A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.
Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T
2016-07-08
A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.
DISCOVERY OF FAST, LARGE-AMPLITUDE OPTICAL VARIABILITY OF V648 Car (=SS73-17)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.
We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekharmore » limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of {approx}520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.« less
Pérez Bartolomé, Francisco; Martínez de la Casa, Jose María; Camacho Bosca, Irene; Sáenz-Francés, Federico; Aguilar Munoa, Soledad; Martín Juan, Alberto; Garcia-Feijoo, Julian
2018-01-01
To examine interrelations between corneal biomechanics, ocular biometric variables and optic disc size (ODS), lamina cribosa depth (LCD) or thickness (LCT) in a healthy population. In a cross-sectional case-control study, the following measurements were made in 81 eyes of 81 participants: axial length, anterior chamber depth, lens thickness, and central corneal thickness using the optical biometer Lenstar LS900; and corneal hysteresis (CH), corneal resistance factor (CRF), Goldman-correlated intraocular pressure (IOPg), and corneal-compensated IOP (IOPcc) using the Ocular Response Analyzer. Serial horizontal enhanced depth imaging optical coherence tomography (EDI OCT) B-scans of the optic nerve head were obtained in each participant. Mean ODS, mean LCD, and mean LCT were measured in 11 equally spaced horizontal B-scans, excluding the LC insertion area under Bruch's membrane and scleral rim. LCD was measured in 74 of 81 eyes (91.36%); LCT in 60/81 (75.3%); ODS in 81/81 (100%). CRF was poorly, but significantly, correlated with LCT (Pearson's R = 0.264; P = 0.045). IOPcc, IOPg, CH, and ocular biometrics variables were poorly (non-significantly) correlated with LCD, LCT, and ODS. CRF was poorly but directly correlated with LCT. No association was detected between CH or ocular biometric variables and ODS, LCD, or LCT.
Power smart in-door optical wireless link design
NASA Astrophysics Data System (ADS)
Marraccini, P. J.; Riza, N. A.
2011-12-01
Presented for the first time, to the best of the authors´ knowledge, is the design of a power smart in-door optical wireless link that provides lossless beam propagation between Transmitter (T) and Receiver (R) for changing link distances. Each T/R unit uses a combination of fixed and variable focal length optics to smartly adjust the laser beam propagation parameters of minimum beam waist size and its location to produce the optimal zero propagation loss coupling condition at the R for that link distance. An Electronically Controlled Variable Focus Lens (ECVFL) is used to form the wide field-of-view search beam and change the beam size at R to form a low loss beam. The T/R unit can also deploy camera optics and thermal energy harvesting electronics to improve link operational smartness and efficiency. To demonstrate the principles of the beam conditioned low loss indoor link, a visible 633 nm laser link using an electro-wetting technology liquid ECVFL is demonstrated for a variable 1 to 4 m link range. Measurements indicate a 53% improvement over an unconditioned laser link at 4 m. Applications for this power efficient wireless link includes mobile computer platform communications and agile server rack interconnections in data centres.
NASA Astrophysics Data System (ADS)
Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.; Schiminovich, D.; Wyder, T. K.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Price, P. A.; Tonry, J. L.
2013-03-01
We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in ~40 deg2 of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of ~3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5σ level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to |Δm| = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV < 23 mag and |Δm| > 0.2 mag of ~8.0, 7.7, and 1.8 deg-2 for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of ~15 and 52 deg-2 yr-1 for M dwarfs and extragalactic transients, respectively.
How to decompose arbitrary continuous-variable quantum operations.
Sefi, Seckin; van Loock, Peter
2011-10-21
We present a general, systematic, and efficient method for decomposing any given exponential operator of bosonic mode operators, describing an arbitrary multimode Hamiltonian evolution, into a set of universal unitary gates. Although our approach is mainly oriented towards continuous-variable quantum computation, it may be used more generally whenever quantum states are to be transformed deterministically, e.g., in quantum control, discrete-variable quantum computation, or Hamiltonian simulation. We illustrate our scheme by presenting decompositions for various nonlinear Hamiltonians including quartic Kerr interactions. Finally, we conclude with two potential experiments utilizing offline-prepared optical cubic states and homodyne detections, in which quantum information is processed optically or in an atomic memory using quadratic light-atom interactions. © 2011 American Physical Society
Milewski, John O.; Sklar, Edward
1998-01-01
A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.
Milewski, J.O.; Sklar, E.
1998-06-02
A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.
The optical counterpart of GX 339-4, a possible black hole X-ray source
NASA Technical Reports Server (NTRS)
Grindlay, J. E.
1979-01-01
Optical studies of the galactic X-ray source GX 339-4 (4U 1658-48), which led to its recent identification as reported by Doxsey et al. (1979), are presented. Reddening and distance estimates are given, as well as evidence for optical variability on differing time scales. The emission-line spectra and UBV photometry suggest that GX 339-4 may be at about 8 kpc and have a main-sequence B star binary companion. Both the optical spectrum and optical/X-ray luminosity ratio for GX 339-4 may be similar to Cir X-1.
Feng, Jinxia; Wan, Zhenju; Li, Yuanji; Zhang, Kuanshou
2017-09-01
The distribution of continuous variable (CV) Einstein-Podolsky-Rosen (EPR)-entangled beams at a telecommunication wavelength of 1550 nm over single-mode fibers is investigated. EPR-entangled beams with quantum entanglement of 8.3 dB are generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO 4 crystal. When one beam of the generated EPR-entangled beams is distributed over 20 km of single-mode fiber, 1.02 dB quantum entanglement can still be measured. The degradation of CV quantum entanglement in a noisy fiber channel is theoretically analyzed considering the effect of depolarized guided acoustic wave Brillouin scattering in optical fibers. The theoretical prediction is in good agreement with the experimental results.
Variable optical attenuator and dynamic mode group equalizer for few mode fibers.
Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M
2014-12-15
Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.
Longterm AGN variability in the BASS sample
NASA Astrophysics Data System (ADS)
Sartori, Lia; Schawinski, Kevin; Koss, Michael; Treister, Ezequiel
2018-01-01
The study of AGN variability on different timescales can provide important information about black hole accretion physics, as well as the black hole – host galaxy interaction and coevolution. Galaxies with extended AGN photoionised clouds, e.g. IC 2497 and “Hanny’s Voorwerp”, are a great laboratory to study AGN variability over 100 kyr timescales, especially in the case where the AGN is currently dropping in luminosity. Based on a large sample of optically elusive AGN in the BASS sample we suggest that AGN may ‘flicker’ on and off 100-1000 times on ~10^5 yr timescales, and that optically elusive AGN may provide information about the switching on phase. In this talk I will show how longslit and IFU observations of BASS sources, combined with high quality hard X-ray observations and black hole demographic information, can help constraining the AGN lifecycle, and ultimately what is the physics driving AGN variability.
Pulsating stars in ω Centauri. Near-IR properties and period-luminosity relations
NASA Astrophysics Data System (ADS)
Navarrete, Camila; Catelan, Márcio; Contreras Ramos, Rodrigo; Alonso-García, Javier; Gran, Felipe; Dékány, István; Minniti, Dante
2017-09-01
ω Centauri (NGC 5139) contains many variable stars of different types, including the pulsating type II Cepheids, RR Lyrae and SX Phoenicis stars. We carried out a deep, wide-field, near-infrared (IR) variability survey of ω Cen, using the VISTA telescope. We assembled an unprecedented homogeneous and complete J and KS near-IR catalog of variable stars in the field of ω Cen. In this paper we compare optical and near-IR light curves of RR Lyrae stars, emphasizing the main differences. Moreover, we discuss the ability of near-IR observations to detect SX Phoenicis stars given the fact that the amplitudes are much smaller in these bands compared to the optical. Finally, we consider the case in which all the pulsating stars in the three different variability types follow a single period-luminosity relation in the near-IR bands.
Variability of manual ciliary muscle segmentation in optical coherence tomography images.
Chang, Yu-Cherng; Liu, Keke; Cabot, Florence; Yoo, Sonia H; Ruggeri, Marco; Ho, Arthur; Parel, Jean-Marie; Manns, Fabrice
2018-02-01
Optical coherence tomography (OCT) offers new options for imaging the ciliary muscle allowing direct in vivo visualization. However, variation in image quality along the length of the muscle prevents accurate delineation and quantification of the muscle. Quantitative analyses of the muscle are accompanied by variability in segmentation between examiners and between sessions for the same examiner. In processes such as accommodation where changes in muscle thickness may be tens of microns- the equivalent of a small number of image pixels, differences in segmentation can influence the magnitude and potentially the direction of thickness change. A detailed analysis of variability in ciliary muscle thickness measurements was performed to serve as a benchmark for the extent of this variability in studies on the ciliary muscle. Variation between sessions and examiners were found to be insignificant but the magnitude of variation should be considered when interpreting ciliary muscle results.
Smith, Adam D.; Paton, Peter W. C.; McWilliams, Scott R.
2014-01-01
Atmospheric conditions fundamentally influence the timing, intensity, energetics, and geography of avian migration. While radar is typically used to infer the influence of weather on the magnitude and spatiotemporal patterns of nocturnal bird migration, monitoring the flight calls produced by many bird species during nocturnal migration represents an alternative methodology and provides information regarding the species composition of nocturnal migration. We used nocturnal flight call (NFC) recordings of at least 22 migratory songbirds (14 warbler and 8 sparrow species) during fall migration from eight sites along the mainland and island coasts of Rhode Island to evaluate five hypotheses regarding NFC detections. Patterns of warbler and sparrow NFC detections largely supported our expectations in that (1) NFC detections associated positively and strongly with wind conditions that influence the intensity of coastal bird migration and negatively with regional precipitation; (2) NFCs increased during conditions with reduced visibility (e.g., high cloud cover); (3) NFCs decreased with higher wind speeds, presumably due mostly to increased ambient noise; and (4) coastal mainland sites recorded five to nine times more NFCs, on average, than coastal nearshore or offshore island sites. However, we found little evidence that (5) nightly or intra-night patterns of NFCs reflected the well-documented latitudinal patterns of migrant abundance on an offshore island. Despite some potential complications in inferring migration intensity and species composition from NFC data, the acoustic monitoring of NFCs provides a viable and complementary methodology for exploring the spatiotemporal patterns of songbird migration as well as evaluating the atmospheric conditions that shape these patterns. PMID:24643060
NASA Astrophysics Data System (ADS)
Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.
2017-05-01
Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.
Damage Effects Identified By Scatter Evaluation Of Supersmooth Surfaces
NASA Astrophysics Data System (ADS)
Stowell, W. K.; Orazio, Fred D.
1983-12-01
The surface quality of optics used in an extremely sensitive laser instrument, such as a Ring Laser Gyro (RLG), is critical. This has led to the development of a Variable Angle Scatterometer at the Air Force Wright Aeronautical Laboratories at Wright-Patterson Air Force Base, which can detect low level light scatter from the high quality optics used in RLG's, without first overcoating with metals. With this instrument we have been able to identify damage effects that occur during the typical processing and handling of optics which cause wide variation in subsequent measurements depending on when, in the process, one takes data. These measurements indicate that techniques such as a Total Integrated Scatter (TIS) may be inadequate for standards on extremely low scatter optics because of the lack of sensitivity of the method on such surfaces. The general term for optical surfaces better than the lowest level of the scratch-dig standards has become "supersmooth", and is seen in technical literature as well as in advertising. A performance number, such as Bidirectional Radiation Distribution Function (BRDF), which can be measured from the uncoated optical surface by equipment such as the Variable Angle Scatterometer (VAS) is proposed as a method of generating better optical surface specifications. Data show that surfaces of average BRDF values near 10 parts per billion per steriadian (0.010 PPM/Sr) for 0-(301 = 0.5, are now possible and measurable.
Damage Effects Identified By Scatter Evaluation Of Supersmooth Surfaces
NASA Astrophysics Data System (ADS)
Stowell, W. K.
1984-10-01
The surface quality of optics used in an extremely sensitive laser instrument, such as a Ring Laser Gyro (RLG), is critical. This has led to the development of a Variable Angle Scatterometer at the Air Force Wright Aeronautical Laboratories at Wright-Patterson Air Force Base, which can detect low level light scatter from the high quality optics used in RLG's, without first overcoating with metals. With this instrument we have been able to identify damage effects that occur during the typical processing and handling of optics which cause wide variation in subsequent measurements depending on when, in the process, one takes data. These measurements indicate that techniques such as a Total Integrated Scatter (TIS) may be inadequate for standards on extremely low scatter optics because of the lack of sensitivity of the method on such surfaces. The general term for optical surfaces better than the lowest level of the scratch-dig standards has become "supersmooth", and is seen in technical literature as well as in advertising. A performance number, such as Bidirectional Radiation Distribution Function (BRDF), which can be measured from the uncoated optical surface by equipment such as the Variable Angle Scatterometer (VAS) is proposed as a method of generating better optical surface specifications. Data show that surfaces of average BRDF values near 10 parts per billion per steriadian (0.010 PPM/Sr) for 0-(301 = 0.5, are now possible and measurable.
Khodadoust, Saeid; Kouri, Narges Cham; Talebiyanpoor, Mohammad Sharif; Deris, Jamile; Pebdani, Arezou Amiri
2015-12-01
In this work a simple, inexpensive, and sensitive optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of Giemsa indicator for pH measurement. In this method, the influence variables on the membrane performance including pH concentration of indicator, response time, ionic strength, and reversibility were investigated. At optimum values of all variables the response of optical pH sensor is linear in the pH range of 3.0-12.0. This optical sensor was produced through simultaneous binding of the Giemsa on the activated triacetylcellulose membrane which responded to the pH changes in a broader linear range within less than 2.0 min and suitable reproducibility (RSD<5%). Stability results showed that this sensor was stable after 6 months of storage in the water/ethanol (50:50, v/v) solution without any measurable divergence in response properties (less than 5% RSD). Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of the relative optical air mass on ultraviolet erythemal irradiance
NASA Astrophysics Data System (ADS)
Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.
2009-12-01
The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.
NASA Astrophysics Data System (ADS)
Zhang, Jiefang; Yang, Qin; Dai, Chaoqing
2005-04-01
Optical quasi-soliton solutions for higher-order nonlinear Schrödinger equation (HNLS) with variable coefficients are considered. Based on the extended tanh-function method, we successfully obtained bright and dark quasi-soliton solutions under certain parametric conditions. We conclude that the parameter k(z) is unnecessary to be zero compared with [R. Yang et al., Opt. Commun. 242 (2004) 285]. Furthermore, we choose appropriate optical fiber parameters D2(z) and D3(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton. For D3(z) = α(z) = f(z) = 0, that is to say, under the absence of the higher order terms, we give same results as early reported in [R.Y. Hao, L. Li, Z.H. Li, W.R. Xue, G.S. Zhou, Opt. Commun. 236 (2004) 79]. As discussed examples, we also analyze three optical systems with real physical significance and obtain results which can be recovered in earlier papers.
The optical light curve of the low-mass X-ray binary GX 9 + 9
NASA Technical Reports Server (NTRS)
Schaefer, Bradley E.
1990-01-01
The detection of a small modulation in the light curve of the GX 9 + 9 optical counterpart at the same period as determined from the X-ray data is reported. The optical variability is roughly sinusoidal in shape with a period of 4.198 + or - 0.0094 hours and an average peak-to-peak amplitude in the B of 0.19 mag with comparable amplitudes in the V and R bandpasses, and has superposed flickering with a typical amplitude of six percent. The mass of the companion star is deduced to be 0.4 solar mass, which corresponds to an early M-type star. The bulk of the optical light arises in the accretion disk, while the variability arises from orbital modulation of the light reprocessed off the companion star and a bright spot. It is suggested that the X-ray modulation might be due to the asymmetries of X-rays reflected off the bright spot.
NASA Astrophysics Data System (ADS)
Guo, Ying; Li, Renjie; Liao, Qin; Zhou, Jian; Huang, Duan
2018-02-01
Discrete modulation is proven to be beneficial to improving the performance of continuous-variable quantum key distribution (CVQKD) in long-distance transmission. In this paper, we suggest a construct to improve the maximal generated secret key rate of discretely modulated eight-state CVQKD using an optical amplifier (OA) with a slight cost of transmission distance. In the proposed scheme, an optical amplifier is exploited to compensate imperfection of Bob's apparatus, so that the generated secret key rate of eight-state protocol is enhanced. Specifically, we investigate two types of optical amplifiers, phase-insensitive amplifier (PIA) and phase-sensitive amplifier (PSA), and thereby obtain approximately equivalent improved performance for eight-state CVQKD system when applying these two different amplifiers. Numeric simulation shows that the proposed scheme can well improve the generated secret key rate of eight-state CVQKD in both asymptotic limit and finite-size regime. We also show that the proposed scheme can achieve the relatively high-rate transmission at long-distance communication system.
Multiwavelength variability analysis of the FSRQ 3C 279
NASA Astrophysics Data System (ADS)
Patiño-Álvarez, V.; Chavushyan, V.; León-Tavares, J.; Carramiñana, A.; Carrasco, L.; Fernandes, S.; Schlegel, E. M.; López-Rodríguez, E.
2015-03-01
We present a multifrequency analysis of the variability in the flat-spectrum radio quasar 3C 279 from 2008 to 2014. Our multiwavelength dataset includes gamma-ray data from Fermi/LAT (Abdo et al. 2009), observations in 1mm from SMA (Gurwell et al. 2007), Near Infrared from OAGH (Carramiñana & Carrasco 2009) and SMARTS (Bonning et al. 2012); optical V band from the Steward Observatory (Smith et al. 2009) and SMARTS; optical spectra from OAGH (Patiño-Álvarez et al. 2013) and the Steward Observatory; and polarization spectra from the Steward Observatory. The light curves are shown in Fig. 1. Six out of seven optical activity periods identified within our dataset show clear counterparts in mm, NIR and gamma-rays, however, the late 2011 - early 2012 optical flare does not have a counterpart in the GeV regime. In this contribution, we discuss the flaring evolution of 3C 279 and speculate about the production of the anomalous activity period.
Simultaneous UV and optical study of O star winds and UV and optical covariability of O star winds
NASA Technical Reports Server (NTRS)
Nichols, Joy S.
1995-01-01
Simultaneous ultraviolet and optical observations of 10 bright O stars were organized in several observing campaigns lasting 3-6 days each. The observing campaigns included 12 observatories in the Northern hemisphere obtaining high resolution spectroscopy, photometry, and polarimetry, as well as 24-hour coverage with the IUE (International Ultraviolet Explorer) observatory. Over 600 high dispersion SWP spectra were acquired with IUE at both NASA and VILSPA for the completion of this work. The massive amount of data from these observing campaigns, both from IUE and the ground-based instruments, has been reduced and analyzed. The accompanying paper describes the data acquisition, analysis, and conclusions of the study performed. The most important results of this study are the strong confirmation of the ubiquitous variability of winds of O stars, and the critical correlation between rotation of the star and the wind variability as seen in the ultraviolet and optical spectral lines.
Fiber-optic beam control systems using microelectromechanical systems
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun
This dissertation, for the first time, proposes, studies, and experimentally demonstrated novel fiber-optic beam control systems based on the use of microelectromechanical system (MEMS) technology in which the miniaturized versions of mechanical systems can be obtained. Beam control modules include optical add/drop filters, optical switches, variable photonic delay lines (VPDLs), and variable optical attenuators (VOAs). The optical add/drop filter functions as a multiwavelength optical switch that offers the ability to drop and add a certain number of desired wavelengths at an intermediate location where access to all the propagating optical channels is not required between transmission terminals. The VOA can also be used in networks where stocking and tracking of fixed attenuators is difficult. Other specific applications of the VOA are optical gain equalization and polarization dependent loss and gain compensation required in high data-rate wavelength division multiplexed (WDM) lightwave systems. A VPDL can be used to adjust timing amongst multiwavelength optical signals in order to reduce timing jitter and burst traffic in photonic packet switching and parallel signal processing systems. In this dissertation, a small tilt micromirror device is proposed for the implementation of all fiber-optic beam control modules. In particular, the macro-pixel approach where several micromirrors are used to manipulate the desired optical beam is introduced to realize high speed and fault tolerant beam control modules. To eliminate the need of careful optical alignment, an all fiber-connectorized multiwavelength optical switch structure is presented and experimentally demonstrated by using a fiber-loop mirror concept with polarization control. In addition, liquid crystal (LC) devices are studied and are used to implement a compact retro- reflective 2 x 2 fiber-optic switch. Compared to MEMS- based mirror technology, the LC technology is more sensitive to temperature, thereby inappropriate to deploy in a harsh environment. With the benefit provided by WDM systems, wavelength sensitive fiber-optic beam controllers are proposed, offering wavelength sensitive time delay and amplitude controls that can be applied in several applications ranging from optical communications to high speed parallel signal processing. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Kokubo, Mitsuru
2017-05-01
We examine the optical photometric and polarimetric variability of the luminous type 1 non-blazar quasar 3C 323.1 (PG 1545+210). Two optical spectropolarimetric measurements taken during the periods 1996-1998 and 2003 combined with a V-band imaging-polarimetric measurement taken in 2002 reveal that (1) as noted in the literature, the polarization of 3C 323.1 is confined only to the continuum emission, I.e. the emission from the broad-line region is unpolarized; (2) the polarized flux spectra show evidence of a time-variable broad absorption feature in the wavelength range of the Balmer continuum and other recombination lines; (3) weak variability in the polarization position angle (PA) of ˜4°over a time-scale of 4-6 yr is observed and (4) the V-band total flux and the polarized flux show highly correlated variability over a time-scale of 1 yr. Taking the above-mentioned photometric and polarimetric variability properties and the results from previous studies into consideration, we propose a geometrical model for the polarization source in 3C 323.1, in which an equatorial absorbing region and an axi-asymmetric equatorial electron-scattering region are assumed to be located between the accretion disc and the broad-line region. The scattering/absorbing regions can perhaps be attributed to the accretion disc wind or flared disc surface, but further polarimetric monitoring observations for 3C 323.1 and other quasars with continuum-confined polarization are needed to probe the true physical origins of these regions.
Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).
Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko
2010-10-11
We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.
Single mode variable-sensitivity fiber optic sensors
NASA Technical Reports Server (NTRS)
Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.
1992-01-01
We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.
Optical defocus: differential effects on size and contrast letter recognition thresholds.
Rabin, J
1994-02-01
To determine if optical defocus produces a greater reduction in visual acuity or small-letter contrast sensitivity. Letter charts were used to measure visual acuity and small-letter contrast sensitivity (20/25 Snellen equivalent) as a function of optical defocus. Letter size (acuity) and contrast (contrast sensitivity) were varied in equal logarithmic steps to make the task the same for the two types of measurement. Both visual acuity and contrast sensitivity declined with optical defocus, but the effect was far greater in the contrast domain. However, measurement variability also was greater for contrast sensitivity. After correction for this variability, measurement in the contrast domain still proved to be a more sensitive (1.75x) index of optical defocus. Small-letter contrast sensitivity is a powerful technique for detecting subtle amounts of optical defocus. This adjunctive approach may be useful when there are small changes in resolution that are not detected by standard measures of visual acuity. Potential applications include evaluating the course of vision in refractive surgery, classification of cataracts, detection of corneal or macular edema, and detection of visual loss in the aging eye. Evaluation of candidates for occupations requiring unique visual abilities also may be enhanced by measuring resolution in the contrast domain.
Scale Closure in Upper Ocean Optical Properties: From Single Particles to Ocean Color
NASA Technical Reports Server (NTRS)
Green, Rebecca E.
2002-01-01
Predictions of chlorophyll concentration from satellite ocean color are an indicator of primary productivity, with implications for foodwebs, fisheries, and the global carbon cycle. Models describing the relationship between optical properties and chlorophyll do not account for much of the optical variability observed in natural waters, because of the presence of seawater constituents that do not covary with phytoplankton pigments. in order to understand variability in these models, the optical contributions of seawater constituents were investigated. A combination of Mie theory and flow cytometry was used to determine the diameter, complex refractive index, and optical cross-sections of individual particles. In New England continental shelf waters, eukaryotic phytoplankton were the main particle contributors to absorption and scaftering. Minerals were the main contributor to backscattering (bb) in the spring, whereas in the summer both minerals and detritus contributed to bb. Synechococcus and heterotrophic bacteria were relatively unimportant optically. Seasonal differences in the spectral shape of remote sensing reflectance, Rrs, were contributed to approximately equally by eukaryotic phytoplankton absorption, dissolved absorption, and non-phytoplankton bb. Differences between measurements of bb and Prs and modeled values based on chlorophyll concentration were caused by higher dissolved absorption and non-phytoplankton bb than were assumed by the model.
Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1991-01-01
A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard (Inventor)
1990-01-01
A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
Confirming LBV Candidates Through Variability: A Photometric and Spectroscopic Monitoring Study
NASA Astrophysics Data System (ADS)
Stringfellow, Guy; Gvaramadze, Vasilii
2013-02-01
Luminous Blue Variable (LBV) stars represent an extremely rare class of luminous massive stars with high mass loss rates. The paucity ( 12) of confirmed Galactic LBV precludes determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. We've been conducting an optical/near-IR spectral survey of a large subset of central stars residing within newly discovered it Spitzer nebulae and have identified over two dozen new candidate LBVs (cLBVs) based on spectral similarity alone; confirming them as bona fide LBVs requires demonstrating 1-3 mag photometric and spectroscopic variability. This marks a significant advancement in the study of massive stars, far outweighing the return from many studies searching for LBVs and WRs the past several decades. Monitoring from semesters 2011B-2012A already has confirmed one new cLBV as a bona fide LBV. We propose to continue optical-IR photometric monitoring of these cLBVS with the 1.3m. Chiron, replacing the RC spectrograph on the 1.5m, now allows high-resolution optical spectroscopic monitoring of bright cLBVs, 11 of which are proposed herein. Spectra are important for understanding the physics driving photometric variability, properties of the wind, and allow analysis of line profiles.
Optical Variability and Classification of High Redshift (3.5 < z < 5.5) Quasars on SDSS Stripe 82
NASA Astrophysics Data System (ADS)
AlSayyad, Yusra; McGreer, Ian D.; Fan, Xiaohui; Connolly, Andrew J.; Ivezic, Zeljko; Becker, Andrew C.
2015-01-01
Recent studies have shown promise in combining optical colors with variability to efficiently select and estimate the redshifts of low- to mid-redshift quasars in upcoming ground-based time-domain surveys. We extend these studies to fainter and less abundant high-redshift quasars using light curves from 235 sq. deg. and 10 years of Stripe 82 imaging reprocessed with the prototype LSST data management stack. Sources are detected on the i-band co-adds (5σ: i ~ 24) but measured on the single-epoch (ugriz) images, generating complete and unbiased lightcurves for sources fainter than the single-epoch detection threshold. Using these forced photometry lightcurves, we explore optical variability characteristics of high redshift quasars and validate classification methods with particular attention to the low signal limit. In this low SNR limit, we quantify the degradation of the uncertainties and biases on variability parameters using simulated light curves. Completeness/efficiency and redshift accuracy are verified with new spectroscopic observations on the MMT and APO 3.5m. These preliminary results are part of a survey to measure the z~4 luminosity function for quasars (i < 23) on Stripe 82 and to validate purely photometric classification techniques for high redshift quasars in LSST.
NASA Technical Reports Server (NTRS)
Otto, Christian; Ploutz-Snyder, R.
2015-01-01
The detection of the first VIIP case occurred in 2005, and adequate eye outcome measures were available for 31 (67.4%) of the 46 long duration US crewmembers who had flown on the ISS since its first crewed mission in 2000. Therefore, this analysis is limited to a subgroup (22 males and 9 females). A "cardiovascular profile" for each astronaut was compiled by examining twelve individual parameters; eleven of these were preflight variables: systolic blood pressure, pulse pressure, body mass index, percentage body fat, LDL, HDL, triglycerides, use of anti-lipid medication, fasting serum glucose, and maximal oxygen uptake in ml/kg. Each of these variables was averaged across three preflight annual physical exams. Astronaut age prior to the long duration mission, and inflight salt intake was also included in the analysis. The group of cardiovascular variables for each crew member was compared with seven VIIP eye outcome variables collected during the immediate post-flight period: anterior-posterior axial length of the globe measured by ultrasound and optical biometry; optic nerve sheath diameter, optic nerve diameter, and optic nerve to sheath ratio- each measured by ultrasound and magnetic resonance imaging (MRI), intraocular pressure (IOP), change in manifest refraction, mean retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT), and RNFL of the inferior and superior retinal quadrants. Since most of the VIIP eye outcome measures were added sequentially beginning in 2005, as knowledge of the syndrome improved, data were unavailable for 22.0% of the outcome measurements. To address the missing data, we employed multivariate multiple imputation techniques with predictive mean matching methods to accumulate 200 separate imputed datasets for analysis. We were able to impute data for the 22.0% of missing VIIP eye outcomes. We then applied Rubin's rules for collapsing the statistical results across our 200 multiply imputed data sets to assess the canonical correlation between the eye outcomes and the twelve astronaut cardiovascular variables available for all 31 subjects. Results: A highly significant canonical correlation was observed among the canonical solutions (p<.00001), with an average best canonical correlation of.97. The results suggest a strong association between astronauts' measures of cardiovascular health and the seven eye outcomes of the VIIP syndrome used in this analysis. Furthermore, the "joint test" revealed a significant difference in cardiovascular profile between male and female astronauts (Prob > F = 0.00001). Overall, female astronauts demonstrated a significantly healthier cardiovascular status. Individually, the female astronauts had significantly healthier profiles on seven of twelve cardiovascular variables than the men (p values ranging from <0.0001 to <0.05). Male astronauts did not demonstrate significantly healthier values on any of the twelve cardiovascular variables measured
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nicholas J.
2018-04-01
The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.
Multifrequency observations of KAZ 102 during the ROSAT all-sky survey
NASA Technical Reports Server (NTRS)
Treves, A.; Fink, H. H.; Malkan, M.; Wilkes, B. J.; Baganoff, F.; Heidt, J.; Pian, E.; Sadun, A.; Schaeidt, S.; Bonnell, J. T.
1995-01-01
The bright quasar Kaz 102, which lies in the vicinity of the North Ecliptic Pole, was monitored during the ROSAT All Sky Survey for 121.5 days from 1990 July 30 to 1991 January 25. In the course of the survey, optical photometry with various filters was peformed at several epochs, together with UV (IUE) and optical spectrophotometry. The spectral energy distribution in the 3 x 10(exp 14) -3 x 10(exp 17) Hz range is obtained simultaneously among the various frequencies to less than or = 1 day. No clear case of variability can be made in the X-rays, while in the optical and UV variability of 10%-20% is apparent. An analysis of IUE and Einstein archives indicates a doubling timescale of years for the UV and soft X-ray flux. The X-ray photon index, which in 1979 was rather flat (Gamma = 0.8(+0.6 -0.4), in 1990/1991 was found to be Gamma = 2.22 +/- 0.13, a typical value for radio-quiet quasars in this energy range. The overall energy distribution and the variability are discussed.
Continuous-variable quantum computation with spatial degrees of freedom of photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasca, D. S.; Gomes, R. M.; Toscano, F.
2011-05-15
We discuss the use of the transverse spatial degrees of freedom of photons propagating in the paraxial approximation for continuous-variable information processing. Given the wide variety of linear optical devices available, a diverse range of operations can be performed on the spatial degrees of freedom of single photons. Here we show how to implement a set of continuous quantum logic gates which allow for universal quantum computation. In contrast with the usual quadratures of the electromagnetic field, the entire set of single-photon gates for spatial degrees of freedom does not require optical nonlinearity and, in principle, can be performed withmore » a single device: the spatial light modulator. Nevertheless, nonlinear optical processes, such as four-wave mixing, are needed in the implementation of two-photon gates. The efficiency of these gates is at present very low; however, small-scale investigations of continuous-variable quantum computation are within the reach of current technology. In this regard, we show how novel cluster states for one-way quantum computing can be produced using spontaneous parametric down-conversion.« less
Photonic content-addressable memory system that uses a parallel-readout optical disk
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Ashok V.; Marchand, Philippe J.; Yayla, Gökçe; Esener, Sadik C.
1995-11-01
We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 \\times 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.
Mixing formula for tissue-mimicking silicone phantoms in the near infrared
NASA Astrophysics Data System (ADS)
Böcklin, C.; Baumann, D.; Stuker, F.; Fröhlich, Jürg
2015-03-01
The knowledge of accurate optical parameters of materials is paramount in biomedical optics applications and numerical simulations of such systems. Phantom materials with variable but predefined parameters are needed to optimise these systems. An optimised integrating sphere measurement setup and reconstruction algorithm are presented in this work to determine the optical properties of silicone rubber based phantoms whose absorption and scattering properties are altered with TiO2 and carbon black particles. A mixing formula for all constituents is derived and allows to create phantoms with predefined optical properties.
NASA Astrophysics Data System (ADS)
Vargas, Mirella
Tungsten Oxide (WO3) films and low-dimensional structures have proven to be promising candidates in the fields of photonics and electronics. WO3 is a well-established n-type semiconductor characterized by unique electrochromic behavior, an ideal optical band gap that permits transparency over a wide spectral range, and high chemical integrity. The plethora of diverse properties endow WO3 to be highly effective in applications related to electrochromism, gas sensing, and deriving economical energy. Compared to the bulk films, a materials system involving WO3 and a related species (elements or metal oxides) offer the opportunity to tailor the electrochromic response, and an overall enhancement of the physio-chemical and optical properties. In the present case, WO3 and TiO2 composite films have been fabricated by reactive magnetron sputtering employing W/Ti alloy targets, and individual W and Ti targets for co-sputtering. Composite WO3-TiO2 films were fabricated with variable chemical composition and the effect of variable bulk chemistry on film structure, surface/interface chemistry and chemical valence state of the W and Ti cations was investigated in detail. The process-property relationships between composition and physical properties for the films deposited by using W/Ti alloy targets of variable Ti content are associated with decreases in the deposition rate of the WO3-TiO2 films due to the lower sputter yield of the strongly bonded TiO2 formed on the target surface. Additionally, for the co-sputtered films using variable tungsten power, the optical properties demonstrate unique optical modulation. The changes associated with the physical color of the films demonstrate the potential to tailor the optical behavior for the design and fabrication of multilayer photovoltaic and catalytic devices. The process-structure-property correlation derived in this work will provide a road-map to optimize and produce W-Ti-O thin films with desired properties for a given technological application.
NASA Astrophysics Data System (ADS)
Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio
2014-04-01
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, R. M.; Ravi, V., E-mail: ryan.shannon@csiro.au, E-mail: vikram@caltech.edu
2017-03-10
The localization of fast radio bursts (FRBs) has been hindered by the poor angular resolution of the detection observations and inconclusive identification of transient or variable counterparts. Recently a γ -ray pulse of 380 s duration has been associated with FRB 131104. We report on radio-continuum imaging observations of the original localization region of the FRB, beginning three days after the event and comprising 25 epochs over 2.5 years. We argue that the probability of an association between the FRB and the γ -ray transient has been overestimated. We provide upper limits on radio afterglow emission that would be predictedmore » if the γ -ray transient was associated with an energetic γ -ray burst. We further report the discovery of an unusual variable radio source spatially and temporally coincident with FRB 131104, but not spatially coincident with the γ -ray event. The radio variable flares by a factor of 3 above its long-term average within 10 day of the FRB at 7.5 GHz, with a factor-of-2 increase at 5.5 GHz. Since the flare, the variable has persisted with only modest modulation and never approached the flux density observed in the days after the FRB. We identify an optical counterpart to the variable. Optical and infrared photometry, and deep optical spectroscopy, suggest that the object is a narrow-line radio active galactic nucleus.« less
LMC stellar X-ray sources observed with ROSAT. 1: X-ray data and search for optical counterparts
NASA Technical Reports Server (NTRS)
Schmidtke, P. C.; Cowley, A. P.; Frattare, L. M.; Mcgrath, T. K.
1994-01-01
Observations of Einstein Large Magellanic Cloud (LMC) X-ray point sources have been made with ROSAT's High-Resolution Imager to obtain accurate positions from which to search for optical counterparts. This paper is the first in a series reporting results of the ROSAT observations and subsequent optical observations. It includes the X-ray positions and fluxes, information about variability, optical finding charts for each source, a list of identified counterparts, and information about candidates which have been observed spectroscopically in each of the fields. Sixteen point sources were measured at a greater than 3 sigma level, while 15 other sources were either extended or less significant detections. About 50% of the sources are serendipitous detections (not found in previous surveys). More than half of the X-ray sources are variable. Sixteen of the sources have been optically identified or confirmed: six with foreground cool stars, four with Seyfert galaxies, two with signal-to-noise ratio (SNR) in the LMC, and four with peculiar hot LMC stars. Presumably the latter are all binaries, although only one (CAL 83) has been previously studied in detail.
Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480.
Kanbach, G; Straubmeier, C; Spruit, H C; Belloni, T
2001-11-08
Black holes become visible when they accrete gas, a common source of which is a close stellar companion. The standard theory for this process (invoking a 'thin accretion disk') does not explain some spectacular phenomena associated with these systems, such as their X-ray variability and relativistic outflows, indicating some lack of understanding of the actual physical conditions. Simultaneous observations at multiple wavelengths can provide strong constraints on these conditions. Here we report simultaneous high-time-resolution X-ray and optical observations of the transient source XTE J1118+480, which show a strong but puzzling correlation between the emissions. The optical emission rises suddenly following an increase in the X-ray output, but with a dip 2-5 seconds in advance of the X-rays. This result is not easy to understand within the simplest model of the optical emission, where the light comes from reprocessed X-rays. It is probably more consistent with an earlier suggestion that the optical light is cyclosynchrotron emission that originates in a region about 20,000 km from the black hole. We propose that the time dependence is evidence for a relatively slow (<0.1c), magnetically controlled outflow.
A Preliminary Survey of Short Time-Scale Optical Variables with ROTSE
NASA Astrophysics Data System (ADS)
McKay, T.; Akerlof, C.; Balsano, R.; Bloch, J.; Casperson, D.; Gisler, G.; Kehoe, R.; Lee, B.; Marshall, S.; Rykoff, E.; Smith, D. A.; Szymanski, J.; Wren, J.; ROTSE Collaboration
2000-12-01
We have performed a preliminary optical survey of short timescale variability with the ROTSE-I telephoto array. The data sample is divided into two parts. The first is a survey of 256 square degrees ( 120k sources) imaged every 80 s for a cumulative 20 hrs to a sensitivity of approximately magnitude 15.5. The second is a similarly sensitive survey of 512 square degrees ( 250k sources) imaged every 80 s (with 7 minute gaps) for a total of approximately 60 hrs. A further 0.4 mag. increase in sensitivity is obtained by co-adding these frames in pairs. We have identified a variety of new variable stars in this sample, including many Delta Scuti stars and contact binaries. Preliminary characterization of these sources will be presented.
Analysis of the Sagnac interference imaging spectrometer with a variable optical path difference
NASA Astrophysics Data System (ADS)
Ai, Jingjing; Gao, Peng; Hu, Xiaochen; Zhang, Chunmin; Wang, Xia
2018-03-01
The Sagnac interference imaging spectrometer with a variable optical path difference (OPD) is proposed in this paper, which employs two wedge prisms coupled with a modified Sagnac interferometer, and produces a variable OPD through the moving wedge prism. Compared with the conventional imaging spectrometer, the Sagnac interference imaging spectrometer shows its advantages of miniaturization and insensitive to the non-uniform variation of the moving speed and the environment vibration. The exact expression of the OPD as a function of different parameters is derived, and the influences of the moving displacement, wedge angle and acute angles on the OPD are analyzed and discussed within the scope of engineering design. This study provides an important theoretical and practical guidance for the engineering of the Sagnac interference imaging spectrometer.
NASA Astrophysics Data System (ADS)
Kheireddine, M.; Jones, B. H.
2016-02-01
Until recently, satellite-derived ocean color observations have been the only means of evaluating optical variability of the Red Sea. The optical properties of the Red Sea have been empirically related to the chlorophyll concentration, [Chl], historically used as an index of the trophic state and of the abundance of the biological materials. The natural variability around the mean statistical relationships is here examined by comparing the optical properties as a function of [Chl] in different area of the Red Sea: the North Red Sea (NRS), the North Central Red Sea (NCRS) and the South Central Red Sea (SCRS) waters. The systematic deviations, with respect to the average laws provided for the global ocean, mainly result from the differing contents in non-algal particles, phytoplankton communities and dissolved colored substance for a given [Chl] level. These optical anomalies relate to the specific biological and environmental conditions occurring in the Red Sea ecosystem, showing the peculiar character of the Red Sea. Specifically, absorption's values of colored dissolved organic matter are lower than the values predicted from the global relationships, the surface specific phytoplankton absorption coefficients are lower than the values predicted from the global relationships due to a high proportion of relatively large sized phytoplankton. Conversely, bbp values are much higher than the mean standard values for a given [Chl] concentration. This presumably results from the influence of highly refractive submicrometer particles of Saharan or Arabian origin in the surface layer of the water column.
Variable angle spectroscopic ellipsometric characterization of HfO2 thin film
NASA Astrophysics Data System (ADS)
Kumar, M.; Kumari, N.; Karar, V.; Sharma, A. L.
2018-02-01
Hafnium Oxide film was deposited on BK7 glass substrate using reactive oxygenated E-Beam deposition technique. The film was deposited using in-situ quartz crystal thickness monitoring to control the film thickness and rate of evaporation. The thin film was grown with a rate of deposition of 0.3 nm/s. The coated substrate was optically characterized using spectrophotometer to determine its transmission spectra. The optical constants as well as film thickness of the hafnia film were extracted by variable angle spectroscopic ellipsometry with Cauchy fitting at incidence angles of 65˚, 70˚ and 75˚.
Self-referenced continuous-variable quantum key distribution
Soh, Daniel B. S.; Sarovar, Mohan; Camacho, Ryan
2017-01-24
Various technologies for continuous-variable quantum key distribution without transmitting a transmitter's local oscillator are described herein. A receiver on an optical transmission channel uses an oscillator signal generated by a light source at the receiver's location to perform interferometric detection on received signals. An optical reference pulse is sent by the transmitter on the transmission channel and the receiver computes a phase offset of the transmission based on quadrature measurements of the reference pulse. The receiver can then compensate for the phase offset between the transmitter's reference and the receiver's reference when measuring quadratures of received data pulses.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Shao, Wen; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2018-06-01
Silver thin films with linear variable thickness were deposited at room temperature. The corresponding tunability of optical properties and Raman scattering intensity were realized by thermal annealing process. With the thickness increasing, the topography of as-annealed silver thin films was observed to develop from discontinued nanospheres into continuous structure with a redshift of the surface plasmon resonance wavelength in visible region. Both the various nanosphere sizes and states of aggregation of as-annealed silver thin films contributed to significantly increasing the sensitivity of surface enhanced Raman scattering (SERS).
Optical materials and films applied in industrial lasers
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liu, Shengyong
1999-09-01
Optical materials and films are often used in industrial lasers. Most of industrial lasers work at visible spectrum and near-infrared spectrum. Only CO2 laser works at far- infrared region (10.6 micrometers ). The optical materials and films are categorized in this article, and the properties of the materials and films are related. From visible to infrared spectrum, many optical materials can be used: K9 glass, fused silica, germanium, gallium arsenide, zinc selenide, silicon, copper, and so on. Optical films for lasers include reflection coating, antireflection coating, edge filter, VRM (variable reflectance mirror) coating and polarizer. The characteristic and application of them will be introduced.
Quantum repeaters using continuous-variable teleportation
NASA Astrophysics Data System (ADS)
Dias, Josephine; Ralph, T. C.
2017-02-01
Quantum optical states are fragile and can become corrupted when passed through a lossy communication channel. Unlike for classical signals, optical amplifiers cannot be used to recover quantum signals. Quantum repeaters have been proposed as a way of reducing errors and hence increasing the range of quantum communications. Current protocols target specific discrete encodings, for example quantum bits encoded on the polarization of single photons. We introduce a more general approach that can reduce the effect of loss on any quantum optical encoding, including those based on continuous variables such as the field amplitudes. We show that in principle the protocol incurs a resource cost that scales polynomially with distance. We analyze the simplest implementation and find that while its range is limited it can still achieve useful improvements in the distance over which quantum entanglement of field amplitudes can be distributed.
Characterizing the Influence of the General Circulation on Marine Boundary Layer Clouds
NASA Technical Reports Server (NTRS)
Rozendaal, Margaret A.; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
The seasonal and intraseasonal variability of boundary layer cloud in the subtropical eastern oceans are studied using combined data from the International Satellite Cloud Climatology Project (ISCCP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. Spectral analysis reveals that most of the time variability of cloud properties occurs on seasonal to annual time scales. The variance decreases one to two orders of magnitude for each decade of time scale decrease, indicating that daily to monthly time scales have smaller, but non-negligible variability. The length of these dominant time scales suggests that the majority of the variability is influenced by the general circulation and its interaction with boundary layer turbulence, rather than a product of boundary layer turbulence alone. Previous datasets have lacked the necessary resolution in either time or in space to properly characterize variability on synoptic scales; this is remedied by using global satellite-retrieved cloud properties. We characterize the intraseasonal subtropical cloud variability in both hemispheres and in different seasons. In addition to cloud fraction, we examine variability of cloud optical thickness - cloud top pressure frequency distributions. Despite the large concentration of research on the variability of Northern Hemisphere (NH) regions during summer, it is noted that the largest amplitude intraseasonal variability in the NH regions occurs during local winter. The effect of intraseasonal variability on the calculation and interpretation of seasonal results is investigated. Decreases in seasonally averaged cloud cover, optical thickness and cloud top pressure from the May-through-September season to the November-through-March season are most apparent in the NH regions. Further analysis indicates that these changes are due to an increase in frequency, but a decrease in the persistence of synoptic events. In addition, changes in cloud top pressure and optical thickness characteristics from the summer to winter seasons indicate that the NH subtropics undergo a change in dynamic regime with season. This change appears in the cloud fields as a shift from the more commonly seen lower-altitude, thicker optical thickness clouds to higher-altitude, thinner clouds. The latter cloud-type is associated with the lower sea level pressure, upward vertical velocity phase of the synoptic wave. Intraseasonal changes in cloud properties in the Southern Hemisphere and NH summer are much smaller in amplitude. Although they also appear to be linked to changes in the large-scale dynamics, similarly to NH winter variations, the relationships are more ambiguous due to the small amplitudes and longer time scales. We attempt to interpret some of these relationships using the results of the Betts and Ridgway (1989) box model. However, these results cannot consistently explain the patterns when results from all regions are considered, implying that this model may not adequately explain all the processes involved in the variability.
A combination of in-situ PM2.5, sunphotometers, upward pointing lidar and satellite aerosol optical depth (AOD) instruments have been employed to better understand variability in the correlation between AOD and PM2.5 at the surface. Previous studies have shown good correlation be...
Optical waveguide device with an adiabatically-varying width
Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.
2016-01-01
A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070
NASA Astrophysics Data System (ADS)
Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.
2016-07-01
A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.
Dissecting the long-term emission behaviour of the BL Lac object Mrk 421
NASA Astrophysics Data System (ADS)
Carnerero, M. I.; Raiteri, C. M.; Villata, M.; Acosta-Pulido, J. A.; Larionov, V. M.; Smith, P. S.; D'Ammando, F.; Agudo, I.; Arévalo, M. J.; Bachev, R.; Barnes, J.; Boeva, S.; Bozhilov, V.; Carosati, D.; Casadio, C.; Chen, W. P.; Damljanovic, G.; Eswaraiah, E.; Forné, E.; Gantchev, G.; Gómez, J. L.; González-Morales, P. A.; Griñón-Marín, A. B.; Grishina, T. S.; Holden, M.; Ibryamov, S.; Joner, M. D.; Jordan, B.; Jorstad, S. G.; Joshi, M.; Kopatskaya, E. N.; Koptelova, E.; Kurtanidze, O. M.; Kurtanidze, S. O.; Larionova, E. G.; Larionova, L. V.; Latev, G.; Lázaro, C.; Ligustri, R.; Lin, H. C.; Marscher, A. P.; Martínez-Lombilla, C.; McBreen, B.; Mihov, B.; Molina, S. N.; Moody, J. W.; Morozova, D. A.; Nikolashvili, M. G.; Nilsson, K.; Ovcharov, E.; Pace, C.; Panwar, N.; Pastor Yabar, A.; Pearson, R. L.; Pinna, F.; Protasio, C.; Rizzi, N.; Redondo-Lorenzo, F. J.; Rodríguez-Coira, G.; Ros, J. A.; Sadun, A. C.; Savchenko, S. S.; Semkov, E.; Slavcheva-Mihova, L.; Smith, N.; Strigachev, A.; Troitskaya, Yu. V.; Troitsky, I. S.; Vasilyev, A. A.; Vince, O.
2017-12-01
We report on long-term multiwavelength monitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007-2015, characterized by several extreme flares. The ratio between the optical, X-ray and γ-ray fluxes is very variable. The γ-ray flux variations show a fair correlation with the optical ones starting from 2012. We analyse spectropolarimetric data and find wavelength-dependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA. We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∼50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.
Scattering from a cylindrical reflector: modified theory of physical optics solution.
Yalçin, Ugur
2007-02-01
The problem of scattering from a perfectly conducting cylindrical reflector is examined with the method of the modified theory of physical optics. In this technique the physical optics currents are modified by using a variable unit vector on the scatterer's surface. These current components are obtained for the reflector, which is fed by an offset electric line source. The scattering integral is expressed by using these currents and evaluated asymptotically with the stationary phase method. The results are compared numerically by using physical optics theory, geometrical optics diffraction theory, and the exact solution of the Helmholtz equation. It is found that the modified theory of physical optics scattering field equations agrees with the geometrical optics diffraction theory and the exact solution of the Helmholtz equation.
Shao, Zhenfeng; Zhang, Linjing
2016-01-01
Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378
NASA Astrophysics Data System (ADS)
Cabral, Alexandre; Rebordão, José M.
2011-05-01
In optical security (protection against forgery and counterfeit of products and documents) the problem is not exact reproduction but the production of something sufficiently similar to the original. Currently, Diffractive Optically Variable Image Devices (DOVID), that create dynamic chromatic effects which may be easily recognized but are difficult to reproduce, are often used to protect important products and documents. Well known examples of DOVID for security are 3D or 2D/3D holograms in identity documents and credit cards. Others are composed of shapes with different types of microstructures yielding by diffraction to chromatic dynamic effects. A maskless interferometric lithography technique to generate DOVIDs for optical security is presented and compared to traditional techniques. The approach can be considered as a self-masking focused holography on planes tilted with respect to the reference optical axes of the system, and is based on the Scheimpflug and Hinge rules. No physical masks are needed to ensure optimum exposure of the photosensitive film. The system built to demonstrate the technique relies on the digital mirrors device MOEMS technology from Texas Instruments' Digital Light Processing. The technique is linear on the number of specified colors and does not depend either on the area of the device or the number of pixels, factors that drive the complexity of dot-matrix based systems. The results confirmed the technique innovation and capabilities in the creation of diffractive optical elements for security against counterfeiting and forgery.
Optical Monitoring of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.
2018-06-01
Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.
Understanding extreme quasar optical variability with CRTS - I. Major AGN flares
NASA Astrophysics Data System (ADS)
Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Stern, Daniel; Mahabal, Ashish A.; Glikman, Eilat; Larson, Steve; Christensen, Eric
2017-10-01
There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Δm = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.
Kepler and K2 Light Curves of Active Galaxies: Optical Time Domain Windows into the Central Engine
NASA Astrophysics Data System (ADS)
Smith, Krista Lynne; Mushotzky, Richard; Boyd, Patricia T.; Howell, Steve B.; Gehrels, Neil; Gelino, Dawn M.
2017-01-01
We have used the Kepler spacecraft, the most precise photometer ever built, to measure aperiodic variability in active galactic nuclei. Kepler's high cadence and even sampling make it an exquisite instrument for astrophysics far beyond exoplanets, especially in the study of active galactic nuclei, which have long been known for their strong optical variability. Because of the very small size of accretion disks, this variability provides the only direct probe of their interior physics. In order to find AGN for study with the Kepler and K2 missions, we have conducted an X-ray survey of the Kepler and K2 fields of view with the Swift XRT, locating hundreds of new AGN that sample a wide parameter space in black hole mass and accretion rate. This survey also yielded an abundant sample of X-ray bright variable stellar targets. We then built a custom pipeline to handle Kepler light curves of extended objects (the AGN host galaxies) with stochastic variability. This was necessary, since the default Kepler pipeline was not optimized for such objects. Power spectral density (PSD) analysis of the AGN light curves exhibit characteristic timescales on the order of 2.5 days to 80 days, consistent with the physical timescales believed to be important in the disk. Optical spectral follow-up of the full sample enables comparison with physical parameters such as black hole mass, Eddington ratio and bolometric luminosity. The black hole mass relationship with characteristic timescale is consistent with an extrapolation of the relationship seen in stellar mass black holes, implying accretion similarities across many orders of magnitude. One object hosts a strong candidate for an optical quasi-periodic oscillation (QPO), the characteristic frequency of which correctly predicts the measured single-epoch black hole mass. The sample also contains bimodal flux distributions, which may indicate accretion states. Many of the high-frequency power spectral density (PSD) slopes are generally consistent with damped random walk models, but these fail to describe the full range of variability observed. The light curves continue to provide a fertile testing bed for the various predictions of accretion disk simulations.
Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima
2016-05-06
This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less
NASA Astrophysics Data System (ADS)
Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.
2018-03-01
We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.
2014-01-01
Purpose. Optical coherence tomography (OCT) has been used to investigate papilledema in single-site, mostly retrospective studies. We investigated whether spectral-domain OCT (SD-OCT), which provides thickness and volume measurements of the optic nerve head and retina, could reliably demonstrate structural changes due to papilledema in a prospective multisite clinical trial setting. Methods. At entry, 126 subjects in the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) with mild visual field loss had optic disc and macular scans, using the Cirrus SD-OCT. Images were analyzed by using the proprietary commercial and custom 3D-segmentation algorithms to calculate retinal nerve fiber layer (RNFL), total retinal thickness (TRT), optic nerve head volume (ONHV), and retinal ganglion cell layer (GCL) thickness. We evaluated variability, with interocular comparison and correlation between results for both methods. Results. The average RNFL thickness > 95% of normal controls in 90% of eyes and the RNFL, TRT, ONH height, and ONHV showed strong (r > 0.8) correlations for interocular comparisons. Variability for repeated testing of OCT parameters was low for both methods and intraclass correlations > 0.9 except for the proprietary GCL thickness. The proprietary algorithm–derived RNFL, TRT, and GCL thickness measurements had failure rates of 10%, 16%, and 20% for all eyes respectively, which were uncommon with 3D-segmentation–derived measurements. Only 7% of eyes had GCL thinning that was less than fifth percentile of normal age-matched control eyes by both methods. Conclusions. Spectral-domain OCT provides reliable continuous variables and quantified assessment of structural alterations due to papilledema. (ClinicalTrials.gov number, NCT01003639.) PMID:25370510
Optical variability properties of the largest AGN sample observed with Kepler/K2
NASA Astrophysics Data System (ADS)
Aranzana, E.; Koerding, E.; Uttley, P.; Scaringi, S.; Steven, B.
2017-10-01
We present the first short time-scale ( hours to days) optical variability study of a large sample of Active Galactic Nuclei (AGN) observed with the Kepler/K2 mission. The sample contains 275 AGN observed over four campaigns with ˜30-minute cadence selected from the Million Quasar Catalogue with R magnitude < 19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of the AGN in our sample. The average power-law slope is 2.5±0.5, steeper than the PSDs observed in X-rays, and the rest-frame amplitude variability in the frequency range of 6×10^{-6}-10^{-4} Hz varies from 1-10 % with an average of 2.6 %. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift, but no such correlation with luminosity. We attribute these effects to the known 'bluer when brighter variability of quasars combined with the fixed bandpass of Kepler. This study enables us to distinguish between Seyferts and Blazar and confirm AGN candidates.
Full spectrum optical safeguard
Ackerman, Mark R.
2008-12-02
An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.
NASA Technical Reports Server (NTRS)
Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.;
2013-01-01
We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in approximately 40 deg(exp 2) of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of approximately 3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5 sigma level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to absolute value(?m) = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV less than 23 mag and absolute value(?m) greater than 0.2 mag of approximately 8.0, 7.7, and 1.8 deg(exp -2) for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of approximately 15 and 52 deg(exp -2 yr-1 for M dwarfs and extragalactic transients, respectively.
New insights into the near-IR spectroscopy of the young variable PV Cep
NASA Astrophysics Data System (ADS)
Lorenzetti, D.; Giannini, T.; Antoniucci, S.; Kopatskaya, E. N.; Larionov, V.; Arkharov, A. A.; Di Paola, A.; Nisini, B.
2015-08-01
During our EXor monitoring programme dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182), we have been observing the variable source PV Cep (ATel #1256; #1607).
Selective Use of Optical Variables to Control Forward Speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.; Hart, Sandra G. (Technical Monitor)
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies reported here show that subjects found it very difficult to arbitrarily direct attention to one or the other of these variables; but that the ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. The selectivity also resulted in different velocity adaptation levels for events in which flow rate and edge rate specified forward speed. Finally, the role of visual context in directing attention was further buttressed by the finding that the incorrect perception of changes in ground texture density tended to be coupled with incorrect perceptions of changes in forward speed.
USDA-ARS?s Scientific Manuscript database
Several bio-optical algorithms were developed to estimate the chlorophyll-a (Chl-a) and phycocyanin (PC) concentrations in inland waters. This study aimed at identifying the influence of the algorithm parameters and wavelength bands on output variables and searching optimal parameter values. The opt...
Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry
NASA Technical Reports Server (NTRS)
Hong, Yie-Ming
1973-01-01
Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.
A proposal for an open source graphical environment for simulating x-ray optics
NASA Astrophysics Data System (ADS)
Sanchez del Rio, Manuel; Rebuffi, Luca; Demsar, Janez; Canestrari, Niccolo; Chubar, Oleg
2014-09-01
A new graphic environment to drive X-ray optics simulation packages such as SHADOW and SRW is proposed. The aim is to simulate a virtual experiment, including the description of the electron beam and simulate the emitted radiation, the optics, the scattering by the sample and radiation detection. Python is chosen as common interaction language. The ingredients of the new application, a glossary of variables for optical component, the selection of visualization tools, and the integration of all these components in a high level workflow environment built on Orange are presented.
Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.
Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat
2010-12-20
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
Controllable optical rogue waves via nonlinearity management.
Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi
2018-03-19
Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.
Optical single photons on-demand teleported from microwave cavities
NASA Astrophysics Data System (ADS)
Barzanjeh, Sh; Vitali, D.; Tombesi, P.
2013-03-01
We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.
The Alvarez and Lohmann refractive lenses revisited.
Barbero, Sergio
2009-05-25
Alvarez and Lohmann lenses are variable focus optical devices based on lateral shifts of two lenses with cubic-type surfaces. I analyzed the optical performance of these types of lenses computing the first order optical properties (applying wavefront refraction and propagation) without the restriction of the thin lens approximation, and the spot diagram using a ray tracing algorithm. I proposed an analytic and numerical method to select the most optimum coefficients and the specific configuration of these lenses. The results show that Lohmann composite lens is slightly superior to Alvarez one because the overall thickness and optical aberrations are smaller.
Latency causes and reduction in optical metro networks
NASA Astrophysics Data System (ADS)
Bobrovs, Vjaceslavs; Spolitis, Sandis; Ivanovs, Girts
2013-12-01
The dramatic growth of transmitted information in fiber optical networks is leading to a concern about the network latency for high-speed reliable services like financial transactions, telemedicine, virtual and augmented reality, surveillance, and other applications. In order to ensure effective latency engineering, the delay variability needs to be accurately monitored and measured, in order to control it. This paper in brief describes causes of latency in fiber optical metro networks. Several available latency reduction techniques and solutions are also discussed, namely concerning usage of different chromatic dispersion compensation methods, low-latency amplifiers, optical fibers as well as other network elements.
Multiband optical variability of the blazar OJ 287 during its outbursts in 2015-2016
NASA Astrophysics Data System (ADS)
Gupta, Alok C.; Agarwal, Aditi; Mishra, Alka; Gaur, H.; Wiita, P. J.; Gu, M. F.; Kurtanidze, O. M.; Damljanovic, G.; Uemura, M.; Semkov, E.; Strigachev, A.; Bachev, R.; Vince, O.; Zhang, Z.; Villarroel, B.; Kushwaha, P.; Pandey, A.; Abe, T.; Chanishvili, R.; Chigladze, R. A.; Fan, J. H.; Hirochi, J.; Itoh, R.; Kanda, Y.; Kawabata, M.; Kimeridze, G. N.; Kurtanidze, S. O.; Latev, G.; Dimitrova, R. V. Muñoz; Nakaoka, T.; Nikolashvili, M. G.; Shiki, K.; Sigua, L. A.; Spassov, B.
2017-03-01
We present recent optical photometric observations of the blazar OJ 287 taken during 2015 September-2016 May. Our intense observations of the blazar started in 2015 November and continued until 2016 May and included detection of the large optical outburst in 2015 December that was predicted using the binary black hole model for OJ 287. For our observing campaign, we used a total of nine ground-based optical telescopes of which one is in Japan, one is in India, three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the USA. These observations were carried out in 102 nights with a total of ∼1000 image frames in BVRI bands, though the majority were in the R band. We detected a second comparably strong flare in 2016 March. In addition, we investigated multiband flux variations, colour variations, and spectral changes in the blazar on diverse time-scales as they are useful in understanding the emission mechanisms. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux, colour, and spectral variability.
NASA Astrophysics Data System (ADS)
Wu, Xiao Dong; Chen, Feng; Wu, Xiang Hua; Guo, Ying
2017-02-01
Continuous-variable quantum key distribution (CVQKD) can provide detection efficiency, as compared to discrete-variable quantum key distribution (DVQKD). In this paper, we demonstrate a controllable CVQKD with the entangled source in the middle, contrast to the traditional point-to-point CVQKD where the entanglement source is usually created by one honest party and the Gaussian noise added on the reference partner of the reconciliation is uncontrollable. In order to harmonize the additive noise that originates in the middle to resist the effect of malicious eavesdropper, we propose a controllable CVQKD protocol by performing a tunable linear optics cloning machine (LOCM) at one participant's side, say Alice. Simulation results show that we can achieve the optimal secret key rates by selecting the parameters of the tuned LOCM in the derived regions.
Disentanglement in bipartite continuous-variable systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa, F. A. S.; Coelho, A. S.; Nussenzveig, P.
2011-11-15
Entanglement in bipartite continuous-variable systems is investigated in the presence of partial losses such as those introduced by a realistic quantum communication channel, e.g., by propagation in an optical fiber. We find that entanglement can vanish completely for partial losses, in a situation reminiscent of so-called entanglement sudden death. Even states with extreme squeezing may become separable after propagation in lossy channels. Having in mind the potential applications of such entangled light beams to optical communications, we investigate the conditions under which entanglement can survive for all partial losses. Different loss scenarios are examined, and we derive criteria to testmore » the robustness of entangled states. These criteria are necessary and sufficient for Gaussian states. Our study provides a framework to investigate the robustness of continuous-variable entanglement in more complex multipartite systems.« less
Spectroscopy and Photometry of EUVE J1429-38.0:An Eclipsing Magnetic Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Craig, Nahide; Roberts, Bryce; McGee, Paddy; Sirk, Martin
1997-06-01
EUVE J1429-38.0 was originally discovered as a variable source by the Extreme Ultraviolet Explorer (EUVE) satellite. We present new optical observations which unambiguously confirm this star to be an eclipsing magnetic system with an orbital period of 4() h 46() m. The photometric data are strongly modulated by ellipsoidal variations during low states which allow a system inclination of near 80 degrees to be determined. Our time-resolved optical spectra, which cover only about one-third of the orbital cycle, indicate the clear presence of a gas stream. During high states, EUVE J1429-38.0 shows ~ 1 mag deep eclipses and the apparent formation of a partial accretion disk. EUVE J1429-38.0 presents the observer with properties of both the AM Herculis and the DQ Herculis types of magnetic cataclysmic variable.
Knotted optical vortices in exact solutions to Maxwell's equations
NASA Astrophysics Data System (ADS)
de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk
2017-05-01
We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.
Optical Sensing of the Fatigue Damage State of CFRP under Realistic Aeronautical Load Sequences
Zuluaga-Ramírez, Pablo; Arconada, Álvaro; Frövel, Malte; Belenguer, Tomás; Salazar, Félix
2015-01-01
We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others. PMID:25760056
NASA Astrophysics Data System (ADS)
Yang, Qin; Zhang, Jie-Fang
Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with variable coefficients are considered. Based on the extended tanh-function method, we not only successfully obtained bright and dark quasi-soliton solutions, but also obtained the kink quasi-soliton solutions under certain parametric conditions. We conclude that the quasi-solitons induced by the combined effects of the group velocity dispersion (GVD) distribution, the nonlinearity distribution, higher-order nonlinearity distribution, and the amplification or absorption coefficient are quite different from those of the solitons induced only by the combined effects of the GVD, the nonlinearity distribution, and the amplification or absorption coefficient without considering the higher-order nonlinearity distribution (i.e. α(z)=0). Furthermore, we choose appropriate optical fiber parameters D(z) and R(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton.
Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder
NASA Technical Reports Server (NTRS)
Baer, James
2012-01-01
A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.
NASA Astrophysics Data System (ADS)
Vijayalekshmi, S.; Mani Rajan, M. S.; Mahalingam, A.; Uthayakumar, A.
2015-09-01
We investigate the controllable behavior of nonautonomous soliton in external potentials with variable dispersion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous fiber system. We derive the Lax pair with a variable spectral parameter and the exact multi-soliton solution is generated via Darboux transformation. Based on these solutions, several novel optical solitons are constructed by selecting appropriate functions and the main evolution features of these waves are shown by some interesting figures with computer simulation. As few examples, breathers in periodic potential, soliton compression in an exponentially dispersion decreasing fiber and interaction of boomerang solitons are discussed. The presented results have applications in the study of nonautonomous soliton birefringence-managed switching architecture. These results are potentially useful in the management of nonautonomous soliton with external potentials in the optical soliton communications and long-haul telecommunication networks.
Optical photometric variability of 2S 0114+65
NASA Technical Reports Server (NTRS)
Taylor, M.; Finley, J. P.; Kurt, C.; Koenigsberger, G.
1995-01-01
In this paper we present Johnson V photometry of the Be/x-ray binary star system 2S 0114+65. Although this star exhibits periodic variations in x-rays, optical studies have failed to reveal fluctuations greater than 5 millimag. The data presented in this paper provide the first evidence for periodic optical variability in 2S 0114+65. On each of four nights in October 1993, we find low amplitude variations with a period of 2.77 +/- 0.48 h and with a semiamplitude of 4 millimag. This period is in good agreement with results of a comprehensive study of the x-ray data. We explore the possibility that this period represents the pulsational period of the B-star primary and the possibility that it is the rotational period of the neutron star. If the latter is the correct interpretation, we calculate a spin-up time scale of 5 x 10(exp 5) yr.
Jung, Minwan; Han Lee, Ju
2013-04-20
An actively Q-switched thulium-holmium-codoped fiber laser incorporating an Si-based variable optical attenuator (VOA) is experimentally demonstrated. It has been shown that an Si-based VOA with a response time of hundreds of nanoseconds can be used as a cost-effective 2 μm Q switch due to its extremely wide operating bandwidth from 1.5 to 2 μm, and low electrical power consumption. In our study, the laser's slope efficiency was measured to be ~17% at an operating wavelength of 1.89 μm. The repetition rate tuning range was from 20 to 80 kHz, which was limited by the optical damage threshold and the response time. The minimum temporal pulsewidth was measured to be ~184 ns at a modulation frequency of 20 kHz, and the corresponding maximum peak power was ~10 W.
Intelligent Optical Systems Using Adaptive Optics
NASA Technical Reports Server (NTRS)
Clark, Natalie
2012-01-01
Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.
Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai
2016-05-24
A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.
Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai
2016-01-01
A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324
Zebeib, Ameen M; Naini, Farhad B
2014-12-01
The purpose of this study was to assess the reliability of the Frankfort horizontal (FH), sella-nasion horizontal, and optic planes in terms of their variabilities in relation to a true horizontal line in orthognathic surgery patients. Thirty-six consecutive presurgical orthognathic patients (13 male, 23 female; age range, 16-35 years; 30 white, 6 African Caribbean) had lateral cephalometric radiographs taken in natural head position, with a plumb line orientating the true vertical line, and the true horizontal line perpendicular to the true vertical. The inclinations of the anatomic reference planes were compared with the true horizontal. The FH plane was found to be on average closest to the true horizontal, with a mean of -1.6° (SD, 3.4°), whereas the sella-nasion horizontal and the optic plane had means of 2.1° (SD, 5.1°) and 3.2° (SD, 4.7°), respectively. The FH showed the least variability of the 3 anatomic planes. The ranges of variability were high for all anatomic planes: -8° to 8° for the FH, -8° to 15° for the sella-nasion horizontal, and -6° to 13° for the optic plane. No significant differences were found in relation to patients' sex, skeletal patterns, or ethnic backgrounds. The clinically significant variability in the inclinations of anatomic reference planes in relation to the true horizontal plane makes their use unreliable in orthognathic patients. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit
2017-01-01
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.
2014-04-01
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variabilitymore » census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.« less
Effect of electron-beam deposition process variables on the film characteristics of the CrOx films
NASA Astrophysics Data System (ADS)
Chiu, Po-kai; Liao, Yi-Ting; Tsai, Hung-Yin; Chiang, Donyau
2018-02-01
The film characteristics and optical properties of the chromium oxide films on the glass substrates prepared by electron-beam deposition with different process variables were investigated. The process variables included are the various oxygen flow rates, the different applied substrate temperatures, and the preparation process in Ar or O2 surrounding environment with and without ion-assisted deposition. The optical constants of the deposited films are determined from the reflectance and transmittance measurements obtained using a spectrophotometer with wavelengths ranging from 350 nm to 2000 nm. The microstructures of the films were examined by the XRD, SEM, and XPS. The electrical conductivity was measured by a four-point probe instrument. The resulting microstructures of all the prepared films are amorphous and the features of the films are dense, uniform and no pillar structure is observed. The refractive index of deposited films decrease with oxygen flow rate increase within studied wavelengths and the extinction coefficients have the same trend in wavelengths of UV/Vis ranges. Increasing substrate temperature to 200 oC results in increase of both refractive index and extinction coefficient, but substrate temperatures below 150 oC show negligible effect on optical constants. The optical and electrical properties in the prepared CrOx films are illustrated by the analyzed XPS results, which decompose the enveloped curve of chromium electron energy status into the constituents of metal Cr, oxides CrO2 and Cr2O3. The relative occupied area contributed from metal Cr and area contributed from the other oxides can express the concentration ratio of free electron to covalent bonds in deposited films and the ratio is applied to explain the film characteristics, including the optical constants and sheet resistance.
Method for correcting imperfections on a surface
Sweatt, William C.; Weed, John W.
1999-09-07
A process for producing near perfect optical surfaces. A previously polished optical surface is measured to determine its deviations from the desired perfect surface. A multi-aperture mask is designed based on this measurement and fabricated such that deposition through the mask will correct the deviations in the surface to an acceptable level. Various mask geometries can be used: variable individual aperture sizes using a fixed grid for the apertures or fixed aperture sizes using a variable aperture spacing. The imperfections are filled in using a vacuum deposition process with a very thin thickness of material such as silicon monoxide to produce an amorphous surface that bonds well to a glass substrate.
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua
2018-06-01
The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.
A role for ocean biota in tropical intraseasonal atmospheric variability
NASA Astrophysics Data System (ADS)
Gildor, Hezi; Sobel, Adam H.; Cane, Mark A.; Sambrotto, Raymond N.
2003-05-01
We propose that temporal variations within the marine plankton system can induce intraseasonal variations in sea surface temperature (SST) through the effect on solar penetration due to chlorophyll and other optically active organic components. Sensitivity studies with a simple model suggest that these small oscillations in SST may stimulate radiative-convective oscillations in the atmosphere which amplify them and thus induce or modulate significant variability in the coupled system. Long term bio-optical measurements in the Western Pacific, where satellite time series are degraded by clouds, would provide a test of our theory and would improve our understanding of the heat balance in this climatically important region.
Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui
2016-11-15
Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.
Nonimaging compound parabolic concentrator-type reflectors with variable extreme direction.
Gordon, J M; Rabl, A
1992-12-01
The properties of nonimaging compound parabolic concentrator (CPC)-type devices are examined in which the extreme direction is not constant but rather is a variable that can change along the reflector. One can then retain the maximal concentration or radiative efficiency of the CPC while the flux map on the absorber or target is modified, depending on whether the device is used for optical concentration or for lighting. Two general classes of reflector are derived, and all the nonimaging devices developed to date are shown to be special cases of the general solution. These two classes are the nonimaging analog of converging and diverging devices of imaging optics.
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans
1999-12-01
Projection reduction exposure with variable axis immersion lenses (PREVAIL) represents the high throughput e-beam projection approach to next generation lithography (NGL), which IBM is pursuing in cooperation with Nikon Corporation as an alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam, so that the beam effectively remains on axis. The resist images obtained with the proof-of-concept (POC) system demonstrate that PREVAIL effectively eliminates off-axis aberrations affecting both the resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield, and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulombinteraction.
Yoshioka, S; Matsuhana, B; Tanaka, S; Inouye, Y; Oshima, N; Kinoshita, S
2011-01-06
The structural colour of the neon tetra is distinguishable from those of, e.g., butterfly wings and bird feathers, because it can change in response to the light intensity of the surrounding environment. This fact clearly indicates the variability of the colour-producing microstructures. It has been known that an iridophore of the neon tetra contains a few stacks of periodically arranged light-reflecting platelets, which can cause multilayer optical interference phenomena. As a mechanism of the colour variability, the Venetian blind model has been proposed, in which the light-reflecting platelets are assumed to be tilted during colour change, resulting in a variation in the spacing between the platelets. In order to quantitatively evaluate the validity of this model, we have performed a detailed optical study of a single stack of platelets inside an iridophore. In particular, we have prepared a new optical system that can simultaneously measure both the spectrum and direction of the reflected light, which are expected to be closely related to each other in the Venetian blind model. The experimental results and detailed analysis are found to quantitatively verify the model.
The optical counterpart to the Be/X-ray binary SAX J2239.3+6116
NASA Astrophysics Data System (ADS)
Reig, P.; Blay, P.; Blinov, D.
2017-02-01
Context. Be/X-ray binaries represent the main group of high-mass X-ray binaries. The determination of the astrophysical parameters of the counterparts of these high-energy sources is important for the study of X-ray binary populations in our Galaxy. X-ray observations suggest that SAX J2239.3+6116 is a Be/X-ray binary. However, little is known about the astrophysical parameters of its massive companion. Aims: The main goal of this work is to perform a detailed study of the optical variability of the Be/X-ray binary SAX J2239.3+6116. Methods: We obtained multi-colour BVRI photometry and polarimetry and 4000-7000 Å spectroscopy. The 4000-5000 Å spectra allowed us to determine the spectral type and projected rotational velocity of the optical companion; the 6000-7000 Å spectra, together with the photometric magnitudes, were used to derive the colour excess E(B-V), estimate the distance, and to study the variability of the Hα line. Results: The optical counterpart to SAX J2239.3+6116 is a V = 14.8 B0Ve star located at a distance of 4.9 kpc. The interstellar reddening in the direction of the source is E(B-V) = 1.70 ± 0.03 mag. The monitoring of the Hα line reveals a slow long-term decline of its equivalent width since 2001. The line profile is characterized by a stable double-peak profile with no indication of large-scale distortions. We measured intrinsic optical polarization for the first time. Although somewhat higher than predicted by the models, the optical polarization is consistent with electron scattering in the circumstellar disk. Conclusions: We attribute the long-term decrease in the intensity of the Hα line to the dissipation of the circumstellar disk of the Be star. The longer variability timescales observed in SAX J2239.3+6116 compared to other Be/X-ray binaries may be explained by the wide orbit of the system.
Monte Carlo method for photon heating using temperature-dependent optical properties.
Slade, Adam Broadbent; Aguilar, Guillermo
2015-02-01
The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, Alexander; France, Kevin; Walter, Frederick M.; Schneider, P. Christian; Brown, Timothy M.; Andrews, Sean M.; Wilner, David J.
2018-06-01
The young (7 Myr) 1.5 solar mass T Tauri star T Chamaeleontis shows dramatic variability. The optical extinction varies by at least 3 magnitudes on few hour time-scales with no obvious periodicity. The obscuration is produced by material at the inner edge of the circumstellar disk and therefore characterizing the absorbing material can reveal important clues regarding the transport of gas and dust within such disks. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. For this reason we have conducted a major multi-spectral-region observing campaign to study the UV/X-ray/optical variability of T Cha. During 2018 February/March we monitored the optical photometric and spectral variability using LCOGT (Chile/South Africa/Australia) and the SMARTS telescopes in Chile. These optical data provide a broad context within which to interpret our shorter UV and X-ray observations. We observed T Cha during 3 coordinated observations (each 5 HST orbits + 25 ksec XMM; on 2018 Feb 22, Feb 26, Mar 2) using the HST COS/STIS spectrographs to measure the FUV/NUV spectra and XMM-Newton to measure the corresponding X-ray energy distribution. The observed spectral changes are well correlated and demonstrate the influence of the same absorbing material in all the spectral regions observed. By examining which spectral features change and by how much we can determine the location of different emitting regions relative to the absorbers along the line-of-sight to the star. In this poster we provide an overview of the variability seen in the different spectral regions and quantify the dust and gas content of T Cha's inner disk edge.(This work is supported by grant HST-GO-15128 and time awarded by HST, XMM-Newton, LCOGT, and SMARTS. We acknowledge the assistance provided by Dr. Todd Henry in conducting this observing campaign.)
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Ichikawa, Tadashi; Matsubara, Hiroyuki; Mao, Xueon; Maeda, Mitsutoshi; Nagashima, Chie; Kagami, Manabu
2012-06-01
We have developed a LIDAR system with a sensor head which, although it includes a scanning mechanism, is less than 20 cc in size. The system is not only small, but is also highly sensitive. Our LIDAR system is based on time-of-flight measurements, and incorporates an optical fiber. The main feature of our system is the utilization of optical amplifiers for both the transmitter and the receiver, and the optical amplifiers enable us to exceed the detection limit set by thermal noise. In conventional LIDAR systems the detection limit is determined by the thermal noise, because the avalanche photo-diodes (APD) and trans-impedance amplifiers (TIA) that they use detect the received signals directly. In the case of our LIDAR system, the received signal is amplified by an optical fiber amplifier before reaching the photo diode and the TIA. Therefore, our LIDAR system boosts the signal level before the weak incoming signal is depleted by thermal noise. There are conditions under which the noise figure for the combination of an optical fiber amplifier and a photo diode is superior to the noise figure for an avalanche photo diode. We optimized the gains of the optical fiber amplifier and the TIA in our LIDAR system such that it would be capable of detecting a single photon. As a result, the detection limit of our system is determined by shot noise. We have previously demonstrated optical pre-amplified LIDAR with a perfect co-axial optical system[1]. For this we used a variable optical attenuator to remove internal reflection from the transmission and receiving lenses. However, the optical attenuator had an insertion loss of 6dB which reduced the sensitivity of the LIDAR. We re-designed the optical system such that it was semi-co-axial and removed the variable optical attenuator. As a result, we succeeded in scanning up to a range of 80 m. This small and highly sensitive measurement technology shows great potential for use in LIDAR.
NASA Astrophysics Data System (ADS)
Seyfried, M. S.; Link, T. E.
2013-12-01
Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal trends in Ts variability controlled by snow cover and solar radiation as modified by topography. During periods of spatially continuous snow cover Ts was practically homogeneous throughout. In the absence of snow cover, Ts is highly variable, with most of the variability attributable to different topographic units defined by slope and aspect. During transition periods when snow melts out, Ts is highly variable within the watershed and within topographic units. The importance of accounting for these relatively small scale effects is underscored by the fact that the overall range of Ts in study area 600 m long is similar to that of the much large RCEW with 900 m elevation gradient.
Bio-optical properties of coastal waters in the Eastern English Channel
NASA Astrophysics Data System (ADS)
Vantrepotte, Vincent; Brunet, Christophe; Mériaux, Xavier; Lécuyer, Eric; Vellucci, Vincenzo; Santer, Richard
2007-03-01
Strong tidal currents, shallow water and numerous freshwater inputs characterize the coastal waters of the eastern English Channel. These case 2 waters were investigated through an intensive sampling effort in 2000 aiming to study the distribution and variability of the Chromophoric Dissolved Organic Matter (CDOM), Non-Algal Particles (NAP) and phytoplankton absorption at the mesoscale. Four cruises were carried out in February, March, May and July and more than 80 stations each cruise were sampled for hydrographical, chemical and bio-optical analyses. Results showed two distinct situations, the winter period characterized by the strong dominance of CDOM absorption over the particulate matter, and the spring-summer period when phytoplankton and CDOM represented the same contribution. Meteorology was the main factor driving the bio-optical properties of the water column in winter whereas in spring-summer the biological activity seemed to be the more active driving force. The algal community composition in term of dominant cell size and, therefore pigment packaging, is the main factor driving the phytoplankton specific absorption in the water column. Photoprotective pigments did not significantly influence algal absorption, due to turbid and highly mixed water masses. This feature also explained the bio-optical homogeneity found along the water column. On the mesoscale, distinct bio-optical provinces were defined in relation with the observed bio-hydrographical variability.
Accretion shock geometries in the magnetic variables
NASA Technical Reports Server (NTRS)
Stockman, H. S.
1988-01-01
The first self consistent shock models for the AM Herculis-type systems successfully identified the dominant physical processes and their signatures. These homogenous shock models predict unpolarized, Rayleigh-Jeans optical spectra with sharp cutoffs and rising polarizations as the shocks become optically thin in the ultraviolet. However, the observed energy distributions are generally flat with intermediate polarizations over a broad optical band. These and other observational evidence support a non-homogenous accretion profile which may extend over a considerable fraction of the stellar surface. Both the fundamental assumptions underlying the canonical 1-D shock model and the extension of this model to inhomogenous accretion shocks were identified, for both radial and linear structures. The observational evidence was also examined for tall shocks and little evidence was found for relative shock heights in excess of h/R(1) greater than or equal to 0.1. For several systems, upper limits to the shock height can be obtained from either x ray or optical data. These lie in the region h/R(1) is approximately 0.01 and are in general agreement with the current physical picture for these systems. The quasi-periodic optical variations observed in several magnetic variables may eventually prove to be a major aid in further understanding their accretion shock geometries.
Transfer of non-Gaussian quantum states of mechanical oscillator to light
NASA Astrophysics Data System (ADS)
Filip, Radim; Rakhubovsky, Andrey A.
2015-11-01
Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.
Variable-focus liquid lens for portable applications
NASA Astrophysics Data System (ADS)
Kuiper, Stein; Hendriks, Benno H.; Huijbregts, Laura J.; Hirschberg, A. Mico; Renders, Christel A.; van As, Marco A.
2004-10-01
The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. We demonstrate that two liquids in a tube form a self-centered tunable lens of high optical quality. Several properties were studied, such as optical performance, electrical characteristics and dynamic behavior. We designed and constructed a miniature camera module based on this tunable lens and show that it is very well suited for use in portable applications.
Optical polarimetry and photometry of X-ray selected BL Lacertae objects
NASA Technical Reports Server (NTRS)
Jannuzi, Buell T.; Smith, Paul S.; Elston, Richard
1993-01-01
We present the data from 3 years of monitoring the optical polarization and apparent brightness of 37 X-ray-selected BL Lacertae objects. The monitored objects include a complete sample drawn from the Einstein Extended Medium Sensitivity Survey. We confirm the BL Lac identifications for 15 of these 22 objects. We include descriptions of the objects and samples in our monitoring program and of the existing complete samples of BL Lac objects, highly polarized quasars, optically violent variable quasars, and blazars.
VizieR Online Data Catalog: V1180 Cas outburst optical and NIR spectra (Antoniucci+, 2014)
NASA Astrophysics Data System (ADS)
Antoniucci, S.; Arkharov, A. A.; di Paola, A.; Giannini, T.; Harutyunyan, A.; Kopatskaya, E. N.; Larionov, V. M.; Li Causi, G.; Lorenzetti, D.; Morozova, D.; Nisini, B.; Vitali, F.
2014-04-01
The files contain the three segments of the optical and near-IR spectrum of the eruptive variable V1180 Cas, which is depicted in Fig.2 of the Letter. The optical spectrum (0.5-0.9um) was taken with TNG/DOLORES; the IJ grism spectrum and the HK grism spectrum were taken with TNG/NICS. The columns provide wavelength in microns and flux in erg/s/cm2/micron. (2 data files).
Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya
2016-01-01
We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285
OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grise, F.; Kaaret, P.; Pakull, M. W.
2011-06-10
Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligiblemore » optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.« less
Bio-optical properties of Porsnagerfjorden (Norway) waters based on data collected in 2014 and 2015
NASA Astrophysics Data System (ADS)
Białogrodzka, Jagoda; Stramska, Małgorzata; Burska, Dorota; Ficek, Dariusz; Stoń-Egiert, Joanna; Winogradow, Aleksandra
2016-04-01
Oceanographic data collected in the Arctic are valuable in view of the role of this region in the studies on global climate change and the fact that historically the number of in situ measurements is relatively low. Porsangerfjorden, Norway, is an example of oceanic basin with case 2 water according to the optical classification. Optical data from coastal seas are difficult in interpretation because the concentrations of optically important components can be high, variable, and not covarying with each other. Porsanger Fjord can be divided into three basins: inner, middle and outer, where physical and bio-optical properties of water masses differ. We collected optical data and water samples for phytoplankton pigments, dissolved organic matter, particulate (POC) and dissolved (DOC) organic carbon, and particulate inorganic carbon (PIC) during our two summer expeditions in 2014 and 2015. In this presentation we focus on data collected with WETLabs' ac-9 and ac-s spectrophotometers and ECO-Triplet and ECO-Triplet-w fluorometers. Concurrently with in situ optical measurements water samples were collected in situ and soon afterwards they were filtered in the laboratory at the station, stored and transported for further processing in Poland. Our analysis includes 146 of in situ measurements and discrete water samples: 62 of POC, 52 of PIC, 33 of DOC, 68 of dissolved organic matter and 89 of phytoplankton pigments. During our analysis we compare chlorophyll (Chl_a), dissolved organic matter (CDOM) and carbon concentrations with in situ collected inherent optical properties of sea water to find empirical proxies allowing to estimate various water component concentrations from optical data. Application of these proxies to available bio-optical data allowed us to derive spatial distribution of these water constituents and their variability. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX).
Influence of the Surface and Cloud Nonuniformities in the Solar Energy Fluxes in the Arctic
NASA Technical Reports Server (NTRS)
Rozwadowska, A.; Cahalan, R. F.; Einaudi, Franco (Technical Monitor)
2000-01-01
Solar energy fluxes reaching the surface and absorbed by it are basic components of the energy balance of the Arctic. They depend mainly on the solar zenith angle, a state of the atmosphere, especially the cloudiness, and the surface albedo. However, they can also be modified by variabilities in the surface albedo and cloud optical thickness. The surface of the Arctic can be highly nonuniform. The surface of the Arctic Ocean, which covers the huge part of the Arctic can be view as a mosaic of sea water, sea ice, snow and, in the melting period, melting ponds. In our paper, results are presented of Monte Carlo simulations of the expected influence of nonuniform cloud structure and nonuniform surface albedo on radiative fluxes at the Arctic surface. In particular, the plane parallel biases in the surface absorptance and atmospheric transmittance are studied. The bias is defined as the difference between the real absorptance or transmittance (i.e. nonuniform conditions) averaged over a given area, and the uniform or plane parallel case with the same mean cloud optical thickness and the same mean surface albedo. The dependence of the biases is analysed with respect to the following: domain averaged values of the cloud optical thickness and surface albedo, scales of their spatial variabilities, correlation between cloud optical thickness and cloud albedo variabilities, cloud height, and the solar zenith angle. Ranges of means and standard deviations of the input parameters typical of Arctic conditions are obtained from the SHEBA experiment.
Spectroscopic classification of X-ray sources in the Galactic Bulge Survey
NASA Astrophysics Data System (ADS)
Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.
2017-10-01
We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.
A high-accuracy optical linear algebra processor for finite element applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
Coronal Axis Measurement of the Optic Nerve Sheath Diameter Using a Linear Transducer.
Amini, Richard; Stolz, Lori A; Patanwala, Asad E; Adhikari, Srikar
2015-09-01
The true optic nerve sheath diameter cutoff value for detecting elevated intracranial pressure is variable. The variability may stem from the technique used to acquire sonographic measurements of the optic nerve sheath diameter as well as sonographic artifacts inherent to the technique. The purpose of this study was to compare the traditional visual axis technique to an infraorbital coronal axis technique for assessing the optic nerve sheath diameter using a high-frequency linear array transducer. We conducted a cross-sectional study at an academic medical center. Timed optic nerve sheath diameter measurements were obtained on both eyes of healthy adult volunteers with a 10-5-MHz broadband linear array transducer using both traditional visual axis and coronal axis techniques. Optic nerve sheath diameter measurements were obtained by 2 sonologists who graded the difficulty of each technique and were blinded to each other's measurements for each participant. A total of 42 volunteers were enrolled, yielding 84 optic nerve sheath diameter measurements. There were no significant differences in the measurements between the techniques on either eye (P = .23 [right]; P = .99 [left]). Additionally, there was no difference in the degree of difficulty obtaining the measurements between the techniques (P = .16). There was a statistically significant difference in the time required to obtain the measurements between the traditional and coronal techniques (P < .05). Infraorbital coronal axis measurements are similar to measurements obtained in the traditional visual axis. The infraorbital coronal axis technique is slightly faster to perform and is not technically challenging. © 2015 by the American Institute of Ultrasound in Medicine.
Measuring Variable Refractive Indices Using Digital Photos
ERIC Educational Resources Information Center
Lombardi, S.; Monroy, G.; Testa, I.; Sassi, E.
2010-01-01
A new procedure for performing quantitative measurements in teaching optics is presented. Application of the procedure to accurately measure the rate of change of the variable refractive index of a water-denatured alcohol mixture is described. The procedure can also be usefully exploited for measuring the constant refractive index of distilled…
PHYSICAL AND OPTICAL PROPERTIES OF STEAM-EXPLODED LASER-PRINTED PAPER
Laser-printed paper was pulped by the steam-explosion process. A full-factorial experimental design was applied to determine the effects of key operating variables on the properties of steam-exploded pulp. The variables were addition level for pulping chemicals (NaOH and/or Na2SO...
NASA Technical Reports Server (NTRS)
Smith, Jeffrey, S.; Aronstein, David L.; Dean, Bruce H.; Lyon, Richard G.
2012-01-01
The performance of an optical system (for example, a telescope) is limited by the misalignments and manufacturing imperfections of the optical elements in the system. The impact of these misalignments and imperfections can be quantified by the phase variations imparted on light traveling through the system. Phase retrieval is a methodology for determining these variations. Phase retrieval uses images taken with the optical system and using a light source of known shape and characteristics. Unlike interferometric methods, which require an optical reference for comparison, and unlike Shack-Hartmann wavefront sensors that require special optical hardware at the optical system's exit pupil, phase retrieval is an in situ, image-based method for determining the phase variations of light at the system s exit pupil. Phase retrieval can be used both as an optical metrology tool (during fabrication of optical surfaces and assembly of optical systems) and as a sensor used in active, closed-loop control of an optical system, to optimize performance. One class of phase-retrieval algorithms is the iterative transform algorithm (ITA). ITAs estimate the phase variations by iteratively enforcing known constraints in the exit pupil and at the detector, determined from modeled or measured data. The Variable Sampling Mapping (VSM) technique is a new method for enforcing these constraints in ITAs. VSM is an open framework for addressing a wide range of issues that have previously been considered detrimental to high-accuracy phase retrieval, including undersampled images, broadband illumination, images taken at or near best focus, chromatic aberrations, jitter or vibration of the optical system or detector, and dead or noisy detector pixels. The VSM is a model-to-data mapping procedure. In VSM, fully sampled electric fields at multiple wavelengths are modeled inside the phase-retrieval algorithm, and then these fields are mapped to intensities on the light detector, using the properties of the detector and optical system, for comparison with measured data. Ultimately, this model-to-data mapping procedure enables a more robust and accurate way of incorporating the exit-pupil and image detector constraints, which are fundamental to the general class of ITA phase retrieval algorithms.
Near-infrared Variability of Obscured and Unobscured X-Ray-selected AGNs in the COSMOS Field
NASA Astrophysics Data System (ADS)
Sánchez, P.; Lira, P.; Cartier, R.; Pérez, V.; Miranda, N.; Yovaniniz, C.; Arévalo, P.; Milvang-Jensen, B.; Fynbo, J.; Dunlop, J.; Coppi, P.; Marchesi, S.
2017-11-01
We present our statistical study of near-infrared (NIR) variability of X-ray-selected active galactic nuclei (AGNs) in the COSMOS field, using UltraVISTA data. This is the largest sample of AGN light curves in YJHKs bands, making it possible to have a global description of the nature of AGNs for a large range of redshifts and for different levels of obscuration. To characterize the variability properties of the sources, we computed the structure function. Our results show that there is an anticorrelation between the structure function A parameter (variability amplitude) and the wavelength of emission and a weak anticorrelation between A and the bolometric luminosity. We find that broad-line (BL) AGNs have a considerably larger fraction of variable sources than narrow-line (NL) AGNs and that they have different distributions of the A parameter. We find evidence that suggests that most of the low-luminosity variable NL sources correspond to BL AGNs, where the host galaxy could be damping the variability signal. For high-luminosity variable NL sources, we propose that they can be examples of “true type II” AGNs or BL AGNs with limited spectral coverage, which results in missing the BL emission. We also find that the fraction of variable sources classified as unobscured in the X-ray is smaller than the fraction of variable sources unobscured in the optical range. We present evidence that this is related to the differences in the origin of the obscuration in the optical and X-ray regimes.
Reid, Colleen E; Jerrett, Michael; Petersen, Maya L; Pfister, Gabriele G; Morefield, Philip E; Tager, Ira B; Raffuse, Sean M; Balmes, John R
2015-03-17
Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event.
Interferometry in the era of time-domain astronomy
NASA Astrophysics Data System (ADS)
Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean
2018-04-01
The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.
Optical Time-Domain and Radio Imaging Analyses of the Dynamic Hearts of AGN
NASA Astrophysics Data System (ADS)
Smith, Krista Lynne
Active galactic nuclei (AGN) are among the most extreme objects in the universe: galaxies with a central supermassive black hole feeding on gas from a hot accretion disk. Despite their potential as powerful tools to study topics ranging from relativity to cosmology, they remain quite mysterious. In the first portion of this thesis, we explore how an AGN may influence the formation of stars in its host galaxy. Using high-resolution 22 GHz radio imaging of an X-ray selected sample of radio-quiet AGN, we find that the far-infrared radio correlation for normal star forming galaxies remains valid within a few hundred parsecs of the central engine. Because the core flux is often spatially isolated from star formation, we can also determine that the radio emission in radio-quiet AGN is consistent with both coronal and disk-jet coupling models. Finally, we find that AGN with jet-like radio morphologies have suppressed star formation, possibly indicating ongoing feedback. The second portion of this thesis uses optical AGN light curves to study the physics of accretion. The Kepler spacecraft produces groundbreaking light curves, but its fixed field of view only contained a handful of known AGN. We conduct an X-ray survey of this field, yielding 93 unique X-ray sources identified by optical follow-up spectroscopy as a mixture of AGN and stars. For the AGN, we spectroscopically measure black hole masses and accretion rates. We then analyze a sample of 22 Kepler AGN light curves. We develop a customized pipeline for AGN science with Kepler, a necessary step since the initial data was optimized for the unique goal of exoplanet detection. The light curves display an astonishing variety of behaviors in a new regime of optical variability inaccessible with previous facilities. We find power spectral slopes inconsistent with the damped random walk model, characteristic variability timescales, correlations of variability properties with physical parameters, and bimodal flux distributions possibly consistent with passing obscuring material. We also conclude that this regime of optical variability is not produced by simple X-ray reprocessing. Finally, we explain how this work supports future robust accretion studies with upcoming large timing surveys.
The selective use of functional optical variables in the control of forward speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.
Absorption models for low-frequency variability in compact radio sources
NASA Technical Reports Server (NTRS)
Marscher, A. P.
1979-01-01
The consequences of the most plausible version of the absorption model for low-frequency variability in compact extragalactic radio sources are considered. The general restrictions placed on such a model are determined, and observational tests are suggested that can be used either to support the model or to discriminate among its various versions. It is shown that low-frequency variability in compact radio sources can be successfully explained by a class of models in which the flux is modulated by changes in free-free optical depth within an intervening ionized medium. Two versions of such a model are distinguished, one involving large changes in optical depth and the other, small changes. It is noted that while absorption effects are capable of causing rapid flux and structural variations at centimetric wavelengths, the models predict detailed behavior that is in direct conflict with observational data.
High-energy Variability of PSR J1311-3430
An, Hongjun; Romani, Roger W.; Johnson, Tyrel; ...
2017-11-21
Here, we have studied the variability of the black-widow-type binary millisecond pulsar PSR J1311–3430 from optical to gamma-ray energies. We confirm evidence for orbital modulation in the weak off-pulse ≳200 MeV emission, with a peak atmore » $${\\phi }_{B}\\approx 0.8$$, following pulsar inferior conjunction. The peak has a relatively hard spectrum, extending above ~1 GeV. XMM-Newton and Swift UV observations also show that this source's strong X-ray flaring activity is associated with optical/UV flares. With a duty cycle of ~7%–19%, this flaring is quite prominent with an apparent power-law intensity distribution. Flares are present at all orbital phases, with a slight preference for $${\\phi }_{B}=0.5\\mbox{--}0.7$$. We explore possible connections of these variabilities with the intrabinary shock and magnetic activity on the low-mass secondary.« less
Aerosol climatology using a tunable spectral variability cloud screening of AERONET data
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan
2005-01-01
Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.
Coordinated Multiwavelength Observations of PKS 0528+134 in Quiescence
NASA Astrophysics Data System (ADS)
Boettcher, Markus; Palma, N.
2011-01-01
We report results of an intensive multiwavelength campaign on the prominent high-redshift (z = 2.06) gamma-ray bright blazar PKS 0528+134 in September - October 2009. The campaign was centered on four 30 ksec pointings with XMM-Newton, supplemented with ground-based optical (MDM, Perkins) and radio (UMRAO, Medicina, Metsaehovi, Noto, SMA) observations as well as long-term X-ray monitoring with RXTE and gamma-ray monitoring by Fermi. We find significant variability on 1 day time scales in the optical regime, accompanied by a weak redder-when-brighter trend. X-ray variability is found on longer ( 1 week) time scales, while the Fermi light curve shows no evidence for variability, neither in flux nor spectral index. We constructed four simultaneous spectral energy distributions, which can all be fit satisfactorily with a one-zone leptonic jet model. This work was supported by NASA through XMM-Newton Guest Observer Grant NNX09AV45G.
Optic nerve head drusen and idiopathic intracranial hypertension in a 14-year-old girl.
Granger, Robert H; Bonnelame, Thomas; Daubenton, John; Dreyer, Michael; McCartney, Paul
2009-01-01
A 14-year-old girl had a 3-month history of headache and blurred vision. Funduscopy showed bilateral optic disc edema. Findings on brain imaging were normal, and a diagnosis of idiopathic intracranial hypertension was confirmed after lumbar puncture showed an elevated opening pressure of 32 cm H(2)O. Optic nerve head drusen were noted on computed tomography scan and confirmed with B-scan ultrasound. After 2 years, resolution of symptoms coincided with variable compliance to treatment with acetazolamide and concomitant papilledema. In general, optic disc edema poses a clinical conundrum due to the more common occurrence of optic nerve head drusen, potentially resulting in delayed diagnosis and treatment of idiopathic intracranial hypertension. Copyright 2009, SLACK Incorporated.
Three-Dimensional Displacement Measurement Using Diffractive Optic Interferometry
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Cole, Helen J.; Shepherd, Robert L.; Ashley Paul R.
1999-01-01
This paper introduces a powerful new optical method which utilizes diffractive optic interferometry (DOI) to measure both in-plane and out-of-plane displacement with variable sensitivity using the same optical system. Sensitivity is varied by utilizing various combinations of the different wavefronts produced by a conjugate pair of binary Optical elements; a transmission grating is used to produce several illumination beams while a reflective grating replicated on the surface of a specimen, provides the reference for the undeformed state. A derivation of the equations which govern the method is included along with a discussion Of the experimental tests conducted to verify the theory. Overall, the results are excellent, with experimental data agreeing to within a few percent of the theoretical predictions.
Calibration of the optical torque wrench.
Pedaci, Francesco; Huang, Zhuangxiong; van Oene, Maarten; Dekker, Nynke H
2012-02-13
The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN nm) is especially important in the study of biophysical systems at the molecular and cellular level. Quantitative torque measurements rely on an accurate calibration of the instrument. Here we describe and implement a set of calibration approaches for the optical torque wrench, including methods that have direct analogs in linear optical tweezers as well as introducing others that are specifically developed for the angular variables. We compare the different methods, analyze their differences, and make recommendations regarding their implementations.
Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845.
Dennett-Thorpe, J; de Bruyn, A G
2002-01-03
The liberation of gravitational energy as matter falls onto a supermassive black hole at the centre of a galaxy is believed to explain the high luminosity of quasars. The variability of this emission from quasars and other types of active galactic nuclei can provide information on the size of the emitting regions and the physical process of fuelling the black hole. Some active galactic nuclei are variable at optical (and shorter) wavelengths, and display radio outbursts over years and decades. These active galactic nuclei often also show faster intraday variability at radio wavelengths. The origin of this rapid variability has been extensively debated, but a correlation between optical and radio variations in some sources suggests that both are intrinsic. This would, however, require radiation brightness temperatures that seem physically implausible, leading to the suggestion that the rapid variations are caused by scattering of the emission by the interstellar medium inside our Galaxy. Here we show that the rapid variations in the extreme case of quasar J1819+3845 (ref. 10) indeed arise from interstellar scintillation. The transverse velocity of the scattering material reveals the presence of plasma with a surprisingly high velocity close to the Solar System.
NASA Technical Reports Server (NTRS)
Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.
2002-01-01
We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were observed in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction profiles are well correlated with corresponding variations in the average relative humidity profiles. The water vapor mixing ratio profiles and integrated water vapor amounts generally show less diurnal variability. The Raman lidar profiles are also used to evaluate the aerosol optical thickness and aerosol extinction profiles simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the vertical variability in average aerosol extinction profiles simulated by GOCART is less than the variability in the corresponding Raman lidar profiles.
The optical counterpart of IGR J00291+5934 in quiescence
NASA Astrophysics Data System (ADS)
D'Avanzo, P.; Campana, S.; Covino, S.; Israel, G. L.; Stella, L.; Andreuzzi, G.
2007-09-01
Aims:The recent (December 2004) discovery of the sixth accretion-powered millisecond X-ray pulsar IGR J00291+5934 provides a very good chance to deepen our knowledge of such systems. Although these systems are well studied at high energies, poor informations are available for their optical/NIR counterparts during quiescence. Up to now, only for SAX J1808.4-3658, the first discovered system of this type, we have a secure multiband detection of its optical counterpart in quiescence. Among the seven known system IGR J00291+5934 is the one that resembles SAX J1808.4-3658 more closely. Methods: With the Italian 3.6 m TNG telescope, we have performed deep optical and NIR photometry of the field of IGR J00291+5934 during quiescence in order to look for the presence of a variable counterpart. Results: We present here the first multiband (VRIJH) detection of the optical and NIR counterpart of IGR J00291+5934 in quiescence as well as a deep upper limit in the K-band. We obtain an optical light curve that shows variability consistent with a sinusoidal modulation at the known 2.46 h orbital period and present evidence for a strongly irradiated companion. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
Long term measurements of optical properties and their hygroscopic enhancement
NASA Astrophysics Data System (ADS)
Hervo, M.; Sellegri, K.; Pichon, J. M.; Roger, J. C.; Laj, P.
2014-11-01
Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement (fσsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.
Variability-selected active galactic nuclei in the VST-SUDARE/VOICE survey of the COSMOS field
NASA Astrophysics Data System (ADS)
De Cicco, D.; Paolillo, M.; Covone, G.; Falocco, S.; Longo, G.; Grado, A.; Limatola, L.; Botticella, M. T.; Pignata, G.; Cappellaro, E.; Vaccari, M.; Trevese, D.; Vagnetti, F.; Salvato, M.; Radovich, M.; Brandt, W. N.; Capaccioli, M.; Napolitano, N. R.; Schipani, P.
2015-02-01
Context. Active galaxies are characterized by variability at every wavelength, with timescales from hours to years depending on the observing window. Optical variability has proven to be an effective way of detecting AGNs in imaging surveys, lasting from weeks to years. Aims: In the present work we test the use of optical variability as a tool to identify active galactic nuclei in the VST multiepoch survey of the COSMOS field, originally tailored to detect supernova events. Methods: We make use of the multiwavelength data provided by other COSMOS surveys to discuss the reliability of the method and the nature of our AGN candidates. Results: The selection on the basis of optical variability returns a sample of 83 AGN candidates; based on a number of diagnostics, we conclude that 67 of them are confirmed AGNs (81% purity), 12 are classified as supernovae, while the nature of the remaining 4 is unknown. For the subsample of AGNs with some spectroscopic classification, we find that Type 1 are prevalent (89%) compared to Type 2 AGNs (11%). Overall, our approach is able to retrieve on average 15% of all AGNs in the field identified by means of spectroscopic or X-ray classification, with a strong dependence on the source apparent magnitude (completeness ranging from 26% to 5%). In particular, the completeness for Type 1 AGNs is 25%, while it drops to 6% for Type 2 AGNs. The rest of the X-ray selected AGN population presents on average a larger rms variability than the bulk of non-variable sources, indicating that variability detection for at least some of these objects is prevented only by the photometric accuracy of the data. The low completeness is in part due to the short observing span: we show that increasing the temporal baseline results in larger samples as expected for sources with a red-noise power spectrum. Our results allow us to assess the usefulness of this AGN selection technique in view of future wide-field surveys. Observations were provided by the ESO programs 088.D-0370 and 088.D-4013 (PI G. Pignata).Table 3 is available in electronic form at http://www.aanda.org
Hong, Samin; Kim, Chan Yun; Lee, Won Seok; Seong, Gong Je
2010-01-01
To assess the reproducibility of the new spectral domain Cirrus high-definition optical coherence tomography (HD-OCT; Carl Zeiss Meditec, Dublin, CA, USA) for analysis of peripapillary retinal nerve fiber layer (RNFL) thickness in healthy eyes. Thirty healthy Korean volunteers were enrolled. Three optic disc cube 200 x 200 Cirrus HD-OCT scans were taken on the same day in discontinuous sessions by the same operator without using the repeat scan function. The reproducibility of the calculated RNFL thickness and probability code were determined by the intraclass correlation coefficient (ICC), coefficient of variation (CV), test-retest variability, and Fleiss' generalized kappa (kappa). Thirty-six eyes were analyzed. For average RNFL thickness, the ICC was 0.970, CV was 2.38%, and test-retest variability was 4.5 microm. For all quadrants except the nasal, ICCs were 0.972 or higher and CVs were 4.26% or less. Overall test-retest variability ranged from 5.8 to 8.1 microm. The kappa value of probability codes for average RNFL thickness was 0.690. The kappa values of quadrants and clock-hour sectors were lower in the nasal areas than in other areas. The reproducibility of Cirrus HD-OCT to analyze peripapillary RNFL thickness in healthy eyes was excellent compared with the previous reports for time domain Stratus OCT. For the calculated RNFL thickness and probability code, variability was relatively higher in the nasal area, and more careful analyses are needed.
NASA Astrophysics Data System (ADS)
Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran
2017-02-01
Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.
Optical hybrid quantum teleportation and its applications
NASA Astrophysics Data System (ADS)
Takeda, Shuntaro; Okada, Masanori; Furusawa, Akira
2017-08-01
Quantum teleportation, a transfer protocol of quantum states, is the essence of many sophisticated quantum information protocols. There have been two complementary approaches to optical quantum teleportation: discrete variables (DVs) and continuous variables (CVs). However, both approaches have pros and cons. Here we take a "hybrid" approach to overcome the current limitations: CV quantum teleportation of DVs. This approach enabled the first realization of deterministic quantum teleportation of photonic qubits without post-selection. We also applied the hybrid scheme to several experiments, including entanglement swapping between DVs and CVs, conditional CV teleportation of single photons, and CV teleportation of qutrits. We are now aiming at universal, scalable, and fault-tolerant quantum computing based on these hybrid technologies.
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Udalski, A.; Schechter, P. L.; Szewczyk, O.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Zebrun, K.
2003-09-01
We present results of the long term monitoring of the gravitationally lensed quasar HE1104--1805. The photometric data were collected between August 1997 and January 2002 as a subproject of the OGLE survey. We determine the time delay in the light curves of images A and B of HE1104--1805 to be equal to 157+/-21 days with the variability in the image B light curve leading variability of the image A. The result is in excellent agreement with the earlier determination by Ofek and Maoz. OGLE photometry of HE1104--1805 is available to the astronomical community from the OGLE Internet archive.
Long and short term variability of seven blazars in six near-infrared/optical bands
NASA Astrophysics Data System (ADS)
Sandrinelli, A.; Covino, S.; Treves, A.
2014-02-01
Context. We present the light curves of six BL Lac objects, PKS 0537-441, PKS 0735+17, OJ 287, PKS 2005-489, PKS 2155-304, and W Comae, and of the flat spectrum radio quasar PKS 1510-089, as a part of a photometric monitoring program in the near-infrared/optical bands started in 2004. All sources are Fermi blazars. Aims: Our purpose is to investigate flux and spectral variability on short and long time scales. Systematic monitoring, independent of the activity of the source, guarantees large sample size statistics, and allows an unbiased view of different activity states on weekly or daily time scales for the whole timeframe and on nightly time scales for some epochs. Methods: Data were obtained with the REM telescope located at the ESO premises of La Silla (Chile). Light curves were gathered in the optical/near-infrared VRIJHK bands from April 2005 to June 2012. Results: Variability ≳3 mag is observed in PKS 0537-441, PKS 1510-089 and PKS 2155-304, the largest ranges spanned in the near-infrared. The color intensity plots show rather different morphologies. The spectral energy distributions in general are well fitted by a power law, with some deviations that are more apparent in low states. Some variability episodes during a night interval are well documented for PKS 0537-441 and PKS 2155-304. For the latter source the variability time scale implies a large relativistic beaming factor. Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A79
Multi-gigabit optical interconnects for next-generation on-board digital equipment
NASA Astrophysics Data System (ADS)
Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques
2017-11-01
Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.
Multi-gigabit optical interconnects for next-generation on-board digital equipment
NASA Astrophysics Data System (ADS)
Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques
2004-06-01
Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.
Thermo-optic devices on polymer platform
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Keil, Norbert
2016-03-01
Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Nathan; Miller, Adam; Li Weidong
2010-04-15
We present progenitor-star detections, light curves, and optical spectra of supernova (SN) 2009ip and the 2009 optical transient in UGC 2773 (U2773-OT), which were not genuine SNe. Precursor variability in the decade before outburst indicates that both of the progenitor stars were luminous blue variables (LBVs). Their pre-outburst light curves resemble the S Doradus phases that preceded giant eruptions of the prototypical LBVs {eta} Carinae and SN 1954J (V12 in NGC 2403), with intermediate progenitor luminosities. Hubble Space Telescope detections a decade before discovery indicate that the SN 2009ip and U2773-OT progenitors were supergiants with likely initial masses of 50-80more » M {sub sun} and {approx}>20 M {sub sun}, respectively. Both outbursts had spectra befitting known LBVs, although in different physical states. SN 2009ip exhibited a hot LBV spectrum with characteristic speeds of 550 km s{sup -1}, plus evidence for faster material up to 5000 km s{sup -1}, resembling the slow Homunculus and fast blast wave of {eta} Carinae. In contrast, U2773-OT shows a forest of narrow absorption and emission lines comparable to that of S Dor in its cool state, plus [Ca II] emission and an infrared excess indicative of dust, similar to SN 2008S and the 2008 optical transient in NGC 300 (N300-OT). The [Ca II] emission is probably tied to a dusty pre-outburst environment, and is not a distinguishing property of the outburst mechanism. The LBV nature of SN 2009ip and U2773-OT may provide a critical link between historical LBV eruptions, while U2773-OT may provide a link between LBVs and the unusual dust-obscured transients SN 2008S and N300-OT. Future searches will uncover more examples of precursor LBV variability of this kind, providing key clues that may help unravel the instability driving LBV eruptions in massive stars.« less
Chlorophyll a concentrations, colored dissolved organic matter (CDOM) absorption coefficients, and selected apparent optical properties (AOPs) of waters along the Western Passage of Narragansett Bay and adjoining Rhode Island Sound were determined from May -August 1999. Water sam...
Della Mea, Giovanni; Bacchetti, Sonia; Zeppieri, Marco; Brusini, Paolo; Cutuli, Daniela; Gigli, Gian Luigi
2007-01-01
To evaluate the ability of GDx with variable corneal compensator (VCC) compared to visual-evoked potentials (VEPs) and standard automated perimetry (SAP) in the detection of early optic nerve damage in patients with multiple sclerosis (MS). 46 eyes of 23 MS patients were included. Ten of them had a history of acute retrobulbar optic neuritis. A control group of 20 normal subjects was also included. All subjects underwent a complete ophthalmological examination and testing with SAP, GDx VCC and VEPs. 19 eyes (41.3%) were abnormal with GDx VCC compared to 38 eyes (82.6%) with SAP and 31 (64.4%) with VEPs. In the optic neuritis group, 9 eyes (69.2%) had optic nerve pallor; SAP was abnormal in 8 of these eyes (61.5%) while VEPs and GDx VCC were abnormal in 6 eyes (46.1%). 2/20 eyes (10.0%) in the control group gave a false-positive abnormal result with SAP. GDx VCC and VEP were normal for all the eyes in the control group. GDx VCC is less able to detect early defects in MS patients compared to the currently used standard techniques of SAP and VEPs. Copyright (c) 2007 S. Karger AG, Basel.
Probing the Circumstellar Disks of Be Stars with Contemporaneous Optical and IR Spectroscopy
NASA Astrophysics Data System (ADS)
Bjorkman, Karen S.; Hesselbach, E. N.; Wisniewski, J. P.; Bjorkman, J. E.
2006-12-01
Asymmetric double-peaked hydrogen emission line profiles in classical Be stars have been interpreted as evidence of one-armed density waves in the circumstellar disks. Contemporaneous optical and IR spectroscopy can aid in mapping the density structure of these one-armed waves as a function of radius. Furthermore, variability has been detected in these stars over both short (days to weeks) and longer (months) time-scales. We present preliminary results from contemporaneous Ritter Observatory (Hα) and IRTF SpeX (0.8-5.4 μm) spectroscopy of 16 classical Be stars observed in September 2005 and January 2006. The data illustrate a range of line profiles common in Be stars and show significant variability. These observations are the first of a larger project to utilize combined optical and IR data to investigate the physical details of these circumstellar disks. This research has been supported in part by a NASA GSRP fellowship to JPW, a NASA LTSA grant to KSB, and an NSF grant to JEB. We thank the NASA IRTF for observing time allocations and support. We thank the Ritter observing team, and especially Nancy Morrison, for crucial assistance with the supporting optical observations.
2012-11-20
10′. We do not apply cosmological redshift corrections here for blazar selection. Similar to the conclusions drawn from Figure 4, there is clear...effects. For example, the observed blazar characteristic damping timescale τblz,obs (after correcting for cosmological redshift) should be shortened in
Brightening of FSRQ 3C 454.3 with an intense optical micro-variability.
NASA Astrophysics Data System (ADS)
Kaur, Navpreet; Baliyan, KS; Mukesh, CM; Ganesh, S.; Janaka, A.
2016-11-01
On the behalf of blazar monitoring group at Mt Abu InfraRed Observatory operated by the Physical Research Laboratory, India, we report detection of micro-variability in FSRQ 3C 454.3 on November 03, 2016 during which it decays by 0.1 mag in R band.
Quantum error correction of continuous-variable states against Gaussian noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph, T. C.
2011-08-15
We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.
White dwarf variability with gPhoton: pulsators
NASA Astrophysics Data System (ADS)
Tucker, Michael A.; Fleming, Scott W.; Pelisoli, Ingrid; Romero, Alejandra; Bell, Keaton J.; Kepler, S. O.; Caton, Daniel B.; Debes, John; Montgomery, Michael H.; Thompson, Susan E.; Koester, Detlev; Million, Chase; Shiao, Bernie
2018-04-01
We present results from a search for short time-scale white dwarf variability using gPhoton, a time-tagged data base of GALEX photon events and associated software package. We conducted a survey of 320 white dwarf stars in the McCook-Sion catalogue, inspecting each for photometric variability with particular emphasis on variability over time-scales less than ˜30 min. From that survey, we present the discovery of a new pulsating white dwarf: WD 2246-069. A Ca II K line is found in archival ESO spectra and an IR excess is seen in WISE W1 and W2 bands. Its independent modes are identified in follow-up optical photometry and used to model its interior structure. Additionally, we detect UV pulsations in four previously known pulsating ZZ Ceti-type (DAVs). Included in this group is the simultaneous fitting of the pulsations of WD 1401-147 in optical, near-ultraviolet and far-ultraviolet bands using nearly concurrent Whole Earth Telescope and GALEX data, providing observational insight into the wavelength dependence of white dwarf pulsation amplitudes.
NASA Technical Reports Server (NTRS)
Kimes, Daniel S.; Nelson, Ross F.
1998-01-01
A number of satellite sensor systems will collect large data sets of the Earth's surface during NASA's Earth Observing System (EOS) era. Efforts are being made to develop efficient algorithms that can incorporate a wide variety of spectral data and ancillary data in order to extract vegetation variables required for global and regional studies of ecosystem processes, biosphere-atmosphere interactions, and carbon dynamics. These variables are, for the most part, continuous (e.g. biomass, leaf area index, fraction of vegetation cover, vegetation height, vegetation age, spectral albedo, absorbed photosynthetic active radiation, photosynthetic efficiency, etc.) and estimates may be made using remotely sensed data (e.g. nadir and directional optical wavelengths, multifrequency radar backscatter) and any other readily available ancillary data (e.g., topography, sun angle, ground data, etc.). Using these types of data, neural networks can: 1) provide accurate initial models for extracting vegetation variables when an adequate amount of data is available; 2) provide a performance standard for evaluating existing physically-based models; 3) invert multivariate, physically based models; 4) in a variable selection process, identify those independent variables which best infer the vegetation variable(s) of interest; and 5) incorporate new data sources that would be difficult or impossible to use with conventional techniques. In addition, neural networks employ a more powerful and adaptive nonlinear equation form as compared to traditional linear, index transformations, and simple nonlinear analyses. These neural networks attributes are discussed in the context of the authors' investigations of extracting vegetation variables of ecological interest.
Fiber optic security seal including plural Bragg gratings
Forman, Peter R.
1994-01-01
An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings.
Chakraborty, Sushmita; Nandy, Sudipta; Barthakur, Abhijit
2015-02-01
We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing.
Characterization of Surface Reflectance Variation Effects on Remote Sensing
NASA Technical Reports Server (NTRS)
Pearce, W. A.
1984-01-01
The use of Monte Carlo radiative transfer codes to simulate the effects on remote sensing in visible and infrared wavelengths of variables which affect classification is examined. These variables include detector viewing angle, atmospheric aerosol size distribution, aerosol vertical and horizontal distribution (e.g., finite clouds), the form of the bidirectional ground reflectance function, and horizontal variability of reflectance type and reflectivity (albedo). These simulations are used to characterize the sensitivity of observables (intensity and polarization) to variations in the underlying physical parameters both to improve algorithms for the removal of atmospheric effects and to identify techniques which can improve classification accuracy. It was necessary to revise and validate the simulation codes (CTRANS, ARTRAN, and the Mie scattering code) to improve efficiency and accommodate a new operational environment, and to build the basic software tools for acquisition and off-line manipulation of simulation results. Initial calculations compare cases in which increasing amounts of aerosol are shifted into the stratosphere, maintaining a constant optical depth. In the case of moderate aerosol optical depth, the effect on the spread function is to scale it linearly as would be expected from a single scattering model. Varying the viewing angle appears to provide the same qualitative effect as modifying the vertical optical depth (for Lambertian ground reflectance).
RXTE, VLBA, Optical, and Radio Monitoring of the Quasars 3C 279, PKS 1510--089, and 3C 273
NASA Technical Reports Server (NTRS)
Marscher, A. P.; Jorstad, S. G.; Aller, M. F.; McHardy, I. M.; Balonek, T. J.
2001-01-01
We are continuing our combined RXTE X-ray, VLBA imaging (at 43 GHz), optical (several observatories), and radio (University of Michigan Radio Astronomy Observatory) monitoring of the quasars 3C 279 and PKS 1510-089, and have started similar monitoring of 3C 273. X-ray flares in 3C 279 and PKS 1510-089 are associated with ejections of superluminal components. In addition, there is a close connection between the optical and X-ray variability of 3C 279. There is a strong correlation between the 14.5 GHz and X-ray variability of PKS 1510-089 in 1997 and 1998 (with the radio leading the X-ray) that becomes weaker in subsequent years. X-ray fluctuations occur on a variety of timescales in 3C 273, with a major prolonged outburst in mid-2001. The lead author will discuss the correlations in terms of inverse Compton models for the X-ray emission coupled with synchrotron models for the lower-frequency radiation. Synchrotron self-Compton models can explain the "reverse" time lag in PKS 1510-089 is well as the variable correlation between the X-ray variations and those at lower frequencies in this object and in 3C 279.
BOKS 45906: a CV with an orbital period of 56.6 min in the Kepler field?
NASA Astrophysics Data System (ADS)
Ramsay, Gavin; Howell, Steve B.; Wood, Matt A.; Smale, Alan; Barclay, Thomas; Seebode, Sally A.; Gelino, Dawn; Still, Martin; Cannizzo, John K.
2014-02-01
BOKS 45906 was found to be a blue source in the Burrell-Optical-Kepler Survey which showed a 3 mag outburst lasting ˜5 d. We present the Kepler light curve of this source which covers nearly 3 years. We find that it is in a faint optical state for approximately half the time and shows a series of outbursts separated by distinct dips in flux. Using data with 1 min sampling, we find clear evidence that in its low state BOKS 45906 shows a flux variability on a period of 56.5574 ± 0.0014 min and a semi-amplitude of ˜3 per cent. Since we can phase all the 1 min cadence data on a common ephemeris using this period, it is probable that 56.56 min is the binary orbital period. Optical spectra of BOKS 45906 show the presence of Balmer lines in emission indicating it is not an AM CVn (pure Helium) binary. Swift data show that it is a weak X-ray source and is weakly detected in the bluest of the UVOT filters. We conclude that BOKS 45906 is a cataclysmic variable with a period shorter than the `period-bounce' systems and therefore BOKS 45906 could be the first helium-rich cataclysmic variable detected in the Kepler field.
NASA Astrophysics Data System (ADS)
Tanaka, Masaomi; Morokuma, Tomoki; Itoh, Ryosuke; Akitaya, Hiroshi; Tominaga, Nozomu; Saito, Yoshihiko; Stawarz, Łukasz; Tanaka, Yasuyuki T.; Gandhi, Poshak; Ali, Gamal; Aoki, Tsutomu; Contreras, Carlos; Doi, Mamoru; Essam, Ahmad; Hamed, Gamal; Hsiao, Eric Y.; Iwata, Ikuru; Kawabata, Koji S.; Kawai, Nobuyuki; Kikuchi, Yuki; Kobayashi, Naoto; Kuroda, Daisuke; Maehara, Hiroyuki; Matsumoto, Emiko; Mazzali, Paolo A.; Minezaki, Takeo; Mito, Hiroyuki; Miyata, Takashi; Miyazaki, Satoshi; Mori, Kensho; Moritani, Yuki; Morokuma-Matsui, Kana; Morrell, Nidia; Nagao, Tohru; Nakada, Yoshikazu; Nakata, Fumiaki; Noma, Chinami; Ohsuga, Ken; Okada, Norio; Phillips, Mark M.; Pian, Elena; Richmond, Michael W.; Sahu, Devendra; Sako, Shigeyuki; Sarugaku, Yuki; Shibata, Takumi; Soyano, Takao; Stritzinger, Maximilian D.; Tachibana, Yutaro; Taddia, Francesco; Takaki, Katsutoshi; Takey, Ali; Tarusawa, Ken'ichi; Ui, Takahiro; Ukita, Nobuharu; Urata, Yuji; Walker, Emma S.; Yoshii, Taketoshi
2014-10-01
We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of ~107 M ⊙ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~= 4 × 102-3 × 103, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and γ-ray-loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxies.
Integration and application of optical chemical sensors in microbioreactors.
Gruber, Pia; Marques, Marco P C; Szita, Nicolas; Mayr, Torsten
2017-08-08
The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.
Gliem, Martin; Holz, Frank G; Stöhr, Heidi; Weber, Bernhard H F; Charbel Issa, Peter
2014-12-01
To describe the phenotypic variability in a consanguineous family with genetically confirmed X-linked retinoschisis. Five patients, including one homozygous female, were characterized by clinical examination, optical coherence tomography, fundus autofluorescence, mapping of macular pigment optical density, electroretinography, and DNA testing. The 36-year-old male index patient showed a ring of enhanced autofluorescence and outer retinal atrophy on optical coherence tomography. Electroretinography testing revealed a reduced a/b ratio. His mother presented with a central atrophic retina with markedly reduced autofluorescence signal and a surrounding ring of enhanced autofluorescence. The 40-year-old brother of the index patient and his 2 sons showed characteristic signs for X-linked retinoschisis, including retinal schisis and a reduced a/b ratio. Genetic testing revealed a c.293C>A mutation in the RS1 gene in all affected family members while the mother of the index patient was homozygous for this mutation. X-linked retinoschisis can present with a wide phenotypic variability. Here, detailed family history and genetic testing established the diagnosis of X-linked retinoschisis despite striking differences in phenotypic presentation in affected subjects, homozygosity of one affected female, and seemingly dominant inheritance in three subsequent generations because of multiple consanguinity.
Coastal Atmosphere and Sea Time Series (CoASTS)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Berthon, Jean-Francoise; Zibordi, Giuseppe; Doyle, John P.; Grossi, Stefania; vanderLinde, Dirk; Targa, Cristina; McClain, Charles R. (Technical Monitor)
2002-01-01
In this document, the first three years of a time series of bio-optical marine and atmospheric measurements are presented and analyzed. These measurements were performed from an oceanographic tower in the northern Adriatic Sea within the framework of the Coastal Atmosphere and Sea Time Series (CoASTS) project, an ocean color calibration and validation activity. The data set collected includes spectral measurements of the in-water apparent (diffuse attenuation coefficient, reflectance, Q-factor, etc.) and inherent (absorption and scattering coefficients) optical properties, as well as the concentrations of the main optical components (pigment and suspended matter concentrations). Clear seasonal patterns are exhibited by the marine quantities on which an appreciable short-term variability (on the order of a half day to one day) is superimposed. This short-term variability is well correlated with the changes in salinity at the surface resulting from the southward transport of freshwater coming from the northern rivers. Concentrations of chlorophyll alpha and total suspended matter span more than two orders of magnitude. The bio-optical characteristics of the measurement site pertain to both Case-I (about 64%) and Case-II (about 36%) waters, based on a relationship between the beam attenuation coefficient at 660nm and the chlorophyll alpha concentration. Empirical algorithms relating in-water remote sensing reflectance ratios and optical components or properties of interest (chlorophyll alpha, total suspended matter, and the diffuse attenuation coefficient) are presented.
NASA Astrophysics Data System (ADS)
Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan
2017-02-01
Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.
NASA Astrophysics Data System (ADS)
Zubelzu, Sergio; Rodriguez-Sinobas, Leonor; Sobrino, Fernando
2017-04-01
The development of methodologies for the characterization of soil water content through the use of distribute temperature sensing and fiber optic cable has allowed for modelling with high temporal and spatial accuracy water movement in soils. One of the advantage of using fiber optic as a sensor, compared with the traditional point water probes, is the possibility to measure the variable continuously along the cable every 0.125 m (up to a cable length of 1500) and every second. Traditionally, applications based on fiber optic as a soil water sensor apply the active heated fiber optic technique AHFO to follow the evolution soil water content during and after irrigation events or for hydrologic characterization. However, this paper accomplishes an original experience by using AHFO as a sensor to characterize the soil hydraulic conductivity curve in subsaturated conditions. The non lineal nature between the hidraulic conductivity curve and soil water, showing high slope in the range close to saturation ) favors the AHFO a most suitable sensor due to its ability to measure the variable at small time and length intervals. Thus, it is possible to obtain accurate and a large number of data to be used to estimate the hydraulic conductivity curve from de water flow general equation by numerical methods. Results are promising and showed the feasibility of this technique to estimate the hydraulic conductivity curve for subsaturated soils .
Image projection optical system for measuring pattern electroretinograms
NASA Astrophysics Data System (ADS)
Starkey, Douglas E.; Taboada, John; Peters, Daniel
1994-06-01
The use of the pattern-electroretinogram (PERG) as a noninvasive diagnostic tool for the early detection of glaucoma has been supported by a number of recent studies. We have developed a unique device which uses a laser interferometer to generate a sinusoidal fringe pattern that is presented to the eye in Maxwellian view for the purpose of producing a PERG response. The projection system stimulates a large visual field and is designed to bypass the optics of the eye in order to measure the true retinal response to a temporally alternating fringe pattern. The contrast, spatial frequency, total power output, orientation, alternating temporal frequency, and field location of the fringe pattern presented to the eye can all be varied by the device. It is critical for these parameters to be variable so that optimal settings may be determined for the normal state and any deviation from it, i.e. early or preclinical glaucoma. Several interferometer designs and optical projection systems were studied in order to design a compact system which provided the desired variable pattern stimulus to the eye. This paper will present a description of the clinical research instrument and its performance with the primary emphasis on the optical system design as it relates to the fringe pattern generation and other optical parameters. Examples of its use in the study of glaucoma diagnosis will also be presented.
Energy-efficient routing, modulation and spectrum allocation in elastic optical networks
NASA Astrophysics Data System (ADS)
Tan, Yanxia; Gu, Rentao; Ji, Yuefeng
2017-07-01
With tremendous growth in bandwidth demand, energy consumption problem in elastic optical networks (EONs) becomes a hot topic with wide concern. The sliceable bandwidth-variable transponder in EON, which can transmit/receive multiple optical flows, was recently proposed to improve a transponder's flexibility and save energy. In this paper, energy-efficient routing, modulation and spectrum allocation (EE-RMSA) in EONs with sliceable bandwidth-variable transponder is studied. To decrease the energy consumption, we develop a Mixed Integer Linear Programming (MILP) model with corresponding EE-RMSA algorithm for EONs. The MILP model jointly considers the modulation format and optical grooming in the process of routing and spectrum allocation with the objective of minimizing the energy consumption. With the help of genetic operators, the EE-RMSA algorithm iteratively optimizes the feasible routing path, modulation format and spectrum resources solutions by explore the whole search space. In order to save energy, the optical-layer grooming strategy is designed to transmit the lightpath requests. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the blocking probability (BP) performance compare with the existing First-Fit-KSP algorithm, Iterative Flipping algorithm and EAMGSP algorithm especially in large network topology. Our results also demonstrate that the proposed EE-RMSA algorithm achieves almost the same performance as MILP on an 8-node network.
Periodic optical variability and debris accretion in white dwarfs: a test for a causal connection*
NASA Astrophysics Data System (ADS)
Hallakoun, Na'ama; Maoz, Dan; Agol, Eric; Brown, Warren R.; Dufour, Patrick; Farihi, Jay; Gänsicke, Boris T.; Kilic, Mukremin; Kosakowski, Alekzander; Loeb, Abraham; Mazeh, Tsevi; Mullally, Fergal
2018-05-01
Recent Kepler photometry has revealed that about half of white dwarfs (WDs) have periodic, low-level (˜10-4 - 10-3), optical variations. Hubble Space Telescope (HST) ultraviolet spectroscopy has shown that up to about one half of WDs are actively accreting rocky planetary debris, as evidenced by the presence of photospheric metal absorption lines. We have obtained HST ultraviolet spectra of seven WDs that have been monitored for periodic variations, to test the hypothesis that these two phenomena are causally connected, i.e. that the optical periodic modulation is caused by WD rotation coupled with an inhomogeneous surface distribution of accreted metals. We detect photospheric metals in four out of the seven WDs. However, we find no significant correspondence between the existence of optical periodic variability and the detection of photospheric ultraviolet absorption lines. Thus, the null hypothesis stands, that the two phenomena are not directly related. Some other source of WD surface inhomogeneity, perhaps related to magnetic field strength, combined with the WD rotation, or alternatively effects due to close binary companions, may be behind the observed optical modulation. We report the marginal detection of molecular hydrogen in WD J1949+4734, only the fourth known WD with detected H2 lines. We also re-classify J1926+4219 as a carbon-rich He-sdO subdwarf.
NASA Astrophysics Data System (ADS)
Kushwaha, Pankaj; Gupta, Alok C.; Wiita, Paul J.; Pal, Main; Gaur, Haritma; de Gouveia Dal Pino, E. M.; Kurtanidze, O. M.; Semkov, E.; Damljanovic, G.; Hu, S. M.; Uemura, M.; Vince, O.; Darriba, A.; Gu, M. F.; Bachev, R.; Chen, Xu; Itoh, R.; Kawabata, M.; Kurtanidze, S. O.; Nakaoka, T.; Nikolashvili, M. G.; Sigua, L. A.; Strigachev, A.; Zhang, Z.
2018-06-01
We present a multi-wavelength spectral and temporal investigation of OJ 287 emission during its strong optical-to-X-ray activity between July 2016 - July 2017. The daily γ-ray fluxes from Fermi-LAT are consistent with no variability. The strong optical-to-X-ray variability is accompanied by a change in power-law spectral index of the X-ray spectrum from <2 to >2, with variations often associated with changes in optical polarization properties. Cross-correlations between optical-to-X-ray emission during four continuous segments show simultaneous optical-ultraviolet (UV) variations while the X-ray and UV/optical are simultaneous only during the middle two segments. In the first segment, the results suggest X-rays lag the optical/UV, while in the last segment X-rays lead by ˜ 5-6 days. The last segment also shows a systematic trend with variations appearing first at higher energies followed by lower energy ones. The LAT spectrum before the VHE activity is similar to preceding quiescent state spectrum while it hardens during VHE activity period and is consistent with the extrapolated VHE spectrum during the latter. Overall, the broadband spectral energy distributions (SEDs) during high activity periods are a combination of a typical OJ 287 SED and an HBL SED, and can be explained in a two-zone leptonic model, with the second zone located at parsec scales, beyond the broad line region, being responsible for the HBL-like spectrum. The change of polarization properties from systematic to chaotic and back to systematic, before, during and after the VHE activity, suggest dynamic roles for magnetic fields and turbulence.
Optical And Near-infrared Variability Among Distant Galactic Nuclei Of The CANDELS EGS Field
NASA Astrophysics Data System (ADS)
Grogin, Norman A.; Dahlen, T.; Donley, J.; Koekemoer, A. M.; Salvato, M.; CANDELS Collaboration
2014-01-01
The CANDELS HST Multi-cycle Treasury Program completed its observations of the EGS field in May 2013. The coverage comprises WFC3/IR exposures in J-band and H-band across a contiguous 200 square arcminutes, and coordinated parallel ACS/WFC exposures in V-band and I-band across a contiguous 270 square arcminutes that largely overlaps the WFC3/IR coverage. These observations were split between two epochs with 52-day spacing for the primary purpose of high-redshift supernovae (SNe) detection and follow-up. However, this combination of sensitivity, high resolution, and time spacing is also well-suited to detect optical and near-infrared variability ("ONIV") among moderate- to high-redshift galaxy nuclei (H<25AB mag; I<26AB mag). These data are sensitive to rest-frame variability time-scales of up to several weeks, and in combination with the original EGS ACS imaging from 2004, to time-scales of up to several years in the V- and I-bands. The overwhelming majority of these variable galaxy nuclei will be AGN; the small fraction arising from SNe have already been meticulously culled by the CANDELS high-redshift SNe search effort. These ONIV galaxy nuclei potentially represent a significant addition to the census of distant lower-luminosity AGN subject to multi-wavelength scrutiny with CANDELS. We present the preliminary results of our EGS variability analysis, including a comparison of the HST ONIVs with the known AGN candidates in the field from deep Spitzer and Chandra imaging, and from extensive ground-based optical spectroscopy as well as HST IR-grism spectroscopy. We also assess the redshift distribution of the ONIVs from both spectroscopy and from robust SED-fitting incorporating ancillary deep ground-based imaging along with the CANDELS VIJH photometry. We compare these results with our prior variability analysis of the similarly-observed CANDELS UDS field from 2011 and CANDELS COSMOS field from 2012.
Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability
NASA Astrophysics Data System (ADS)
Hamdan, Lubna
Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.
Variable path length spectrophotometric probe
O'Rourke, Patrick E.; McCarty, Jerry E.; Haggard, Ricky A.
1992-01-01
A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.
Automated optical inspection and image analysis of superconducting radio-frequency cavities
NASA Astrophysics Data System (ADS)
Wenskat, M.
2017-05-01
The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97 % and the positive predictive value (PPV) 99 % within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ = -0.93 with a significance of 6 σ between an obtained surface variable and the maximal accelerating field was found.
Optimization of Dish Solar Collectors with and without Secondary Concentrators
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1982-01-01
Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.
NASA Astrophysics Data System (ADS)
Butkovskaya, V. V.
2014-06-01
For 60 years Vega has been accepted as a standard star in the near infrared, optical, and ultraviolet ranges. However, a 21-year spectral and spectrophotometric variability of Vega has been revealed. Vega also demonstrates short-term unexplained variability. Recent spectropolarimetric studies have revealed a weak magnetic field on Vega. We analyze the results of 15-year observations performed at the Crimean Astrophysical Observatory and we hypothesize that the magnetic field variation is caused by stellar rotation. In the present work we summarize the results of investigations on the variability of Vega.
NASA Astrophysics Data System (ADS)
Estapa, Meg; Durkin, Colleen; Buesseler, Ken; Johnson, Rod; Feen, Melanie
2017-02-01
Our mechanistic understanding of the processes controlling the ocean's biological pump is limited, in part, by our lack of observational data at appropriate timescales. The "optical sediment trap" (OST) technique utilizes a transmissometer on a quasi-Lagrangian platform to collect sedimenting particles. This method could help fill the observational gap by providing autonomous measurements of particulate carbon (PC) flux in the upper mesopelagic ocean at high spatiotemporal resolution. Here, we used a combination of field measurements and laboratory experiments to test hydrodynamic and zooplankton-swimmer effects on the OST method, and we quantitatively calibrated this method against PC flux measured directly in same-platform, neutrally buoyant sediment traps (NBSTs) during 5 monthly cruises at the Bermuda Atlantic Time-series Study (BATS) site. We found a well-correlated, positive relationship (R2=0.66, n=15) between the OST proxy, and the PC flux measured directly using NBSTs. Laboratory tests showed that scattering of light from multiple particles between the source and detector was unlikely to affect OST proxy results. We found that the carbon-specific attenuance of sinking particles was larger than literature values for smaller, suspended particles in the ocean, and consistent with variable carbon: size relationships reported in the literature for sinking particles. We also found evidence for variability in PC flux at high spatiotemporal resolution. Our results are consistent with the literature on particle carbon content and optical properties in the ocean, and support more widespread use of the OST proxy, with proper site-specific and platform-specific calibration, to better understand variability in the ocean biological pump.
Atmospheric Science Data Center
2015-11-25
... Microwave Radiometer Optical Counter Platinum Resistance Pyranometer Pyrgeometer Variable Capacitance ... Parameters: Aerosol Particle Properties Air Temperature Cloud Liquid Water Deiced Temperature Dew Point Doppler ...
PREVAIL: latest electron optics results
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans C.; Golladay, Steven D.; Gordon, Michael S.; Kendall, Rodney A.; Lieberman, Jon E.; Rockrohr, James D.; Stickel, Werner; Yamaguchi, Takeshi; Okamoto, Kazuya; Umemoto, Takaaki; Shimizu, Hiroyasu; Kojima, Shinichi; Hamashima, Muneki
2002-07-01
The PREVAIL electron optics subsystem developed by IBM has been installed at Nikon's facility in Kumagaya, Japan, for integration into the Nikon commercial EPL stepper. The cornerstone of the electron optics design is the Curvilinear Variable Axis Lens (CVAL) technique originally demonstrated with a proof of concept system. This paper presents the latest experimental results obtained with the electron optical subsystem at Nikon's facility. The results include micrographs illustrating proper CVAL operation through the spatial resolution achieved over the entire optical field of view. They also include data on the most critical issue of the EPL exposure approach: subfield stitching. The methodology of distortion correction will be described and both micrographs and metrology data of stitched subfields will be presented. This paper represents a progress report of the IBM/Nikon alliance activity on EPL.
Experimental generation of tripartite polarization entangled states of bright optical beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liang; Liu, Yanhong; Deng, Ruijie
The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less
A multi-wavelength search for photometric variability in L dwarfs
NASA Astrophysics Data System (ADS)
Gelino, Christopher Ryan
Previous studies investigating L-dwarf variability have been conducted in the optical I filter. These studies have shown that some, but not all L dwarfs are variable in this filter. In this dissertation I increase the number of L dwarfs observed for variations in the I filter from 10 to 25, with another three from the original ten reexamined here. I find that at least 7 and possibly as many as 12 are variable. One of these variable objects has a puzzling saw-tooth pattern in part of its light curve and another displays a feature that could indicate the creation and dissipation of a large storm. There is no evidence for significant differences between the variable and non- variable objects in their colors, Hα emission, or Li I absorption. I argue that the lack of a correlation between Hα and variability, coupled with low magnetic Reynolds number and ionization fraction in the upper atmosphere, suggests a non-magnetic origin for the variations and favors non-uniform condensate coverage. Furthermore, the absence of significant periodicity in these objects could indicate that these clouds evolve rapidly on timescales of hours to days. In addition to the optical survey, I also present the first multi-wavelength near-infrared search for photometric variations in L dwarfs. I was unable to detect any definite variability in these eleven targets. The upper limits for the amplitude of possible variations suggest that L dwarfs display smaller variations in K than in J and H . The small number of objects on which this conclusion is based and the lack of variability detections underscores the importance of more work in this wavelength regime.
NASA Astrophysics Data System (ADS)
Jiang, Shan; Liu, Shuihua
2004-04-01
Current optical communication systems are more and more relying on the advanced opto-electronic components. A series of revolutionary optical and optoelectronics components technology accounts for the fast progress and field deployment of high-capacity telecommunication and data-transmission systems. Since 1990s, the optical communication industry in China entered a high-speed development period and its wide deployment had already established the solid base for China information infrastructure. In this presentation, the main progress of optoelectronics components and technology in China are reviewed, which includes semiconductor laser diode/photo receiver, fiber optical amplifier, DWDM multiplexer/de-multiplexer, dispersion compensation components and all optical network node components, such as optical switch, OADM, tunable optical filters and variable optical attenuators, etc. Integration discrete components into monolithic/hybrid platform component is an inevitable choice for the consideration of performance, mass production and cost reduction. The current status and the future trends of OEIC and PIC components technology in China will also be discuss mainly on the monolithic integration DFB LD + EA modulator, and planar light-wave circuit (PLC) technology, etc.
Optical switch based on electrowetting liquid lens
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Chao; Peng, Hua-Rong; Wang, Qiong-Hua
2012-05-01
In this paper, we propose an optical switch based on an electrowetting liquid lens. The device consists of an electrowetting liquid lens and a non-transparent cap with a pin hole. When the lens is actuated to be positive, the incident light can be converged on the pin hole and pass through the hole with less attenuation. When the lens is deformed to be negative, the incident light is diverged and most of light is blocked by the cap. Our results show that the system can provide high contrast ratio (˜800:1) and reasonable response time (˜88 ms). The proposed optical switch has potential application in light shutters, variable optical attenuators, and adaptive irises.
Combustion pinhole-camera system
Witte, A.B.
1982-05-19
A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.
Combustion pinhole camera system
Witte, A.B.
1984-02-21
A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor. 2 figs.
Combustion pinhole camera system
Witte, Arvel B.
1984-02-21
A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.
Fiber optic, Fabry-Perot high temperature sensor
NASA Technical Reports Server (NTRS)
James, K.; Quick, B.
1984-01-01
A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.
Silicon photonic dynamic optical channel leveler with external feedback loop.
Doylend, J K; Jessop, P E; Knights, A P
2010-06-21
We demonstrate a dynamic optical channel leveler composed of a variable optical attenuator (VOA) integrated monolithically with a defect-mediated photodiode in a silicon photonic waveguide device. An external feedback loop mimics an analog circuit such that the photodiode directly controls the VOA to provide blind channel leveling within +/-1 dB across a 7-10 dB dynamic range for wavelengths from 1530 nm to 1570 nm. The device consumes approximately 50 mW electrical power and occupies a 6 mm x 0.1 mm footprint per channel. Dynamic leveling is accomplished without tapping optical power from the output path to the photodiode and thus the loss penalty is minimized.
Origin of the bright prompt optical emission in the naked eye burst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hascoeet, R.; Daigne, F.; Mochkovitch, R.
The huge optical brightness of GRB 080319B (the 'Naked Eye Burst') makes this event really challenging for models of the prompt GRB emission. In the framework of the internal shock model, we investigate a scenario where the dominant radiative process is synchrotron emission and the high optical flux is due to the dynamical properties of the relativistic outflow : if the initial Lorentz factor distribution in the jet is highly variable, many internal shocks will form within the outflow at various radii. The most violent shocks will produce the main gamma-ray component while the less violent ones will contribute atmore » lower energy, including the optical range.« less
Surface profiling interferometer
Takacs, Peter Z.; Qian, Shi-Nan
1989-01-01
The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.
NASA Astrophysics Data System (ADS)
Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.
2014-11-01
The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.
Free-space wavelength-multiplexed optical scanner demonstration.
Yaqoob, Zahid; Riza, Nabeel A
2002-09-10
Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.
NASA Astrophysics Data System (ADS)
Golub, M. A.; Sisakyan, I. N.; Soĭfer, V. A.; Uvarov, G. V.
1989-04-01
Theoretical and experimental investigations are reported of new mode optical components (elements) which are analogs of sinusoidal phase diffraction gratings with a variable modulation depth. Expressions are derived for nonlinear predistortion and depth of modulation, which are essential for effective operation of amplitude and phase mode optical components in devices used for analysis and formation of the transverse mode composition of coherent radiation. An estimate is obtained of the energy efficiency of phase and amplitude mode optical components, and a comparison is made with the results of an experimental investigation of a set of phase optical components matched to Gauss-Laguerre modes. It is shown that the improvement in the energy efficiency of phase mode components, compared with amplitude components, is the same as the improvement achieved using a phase diifraction grating, compared with amplitude grating with the same depth of modulation.
Broadly tunable thin-film intereference coatings: active thin films for telecom applications
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias
2003-06-01
Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.
Size and distance are perceived independently in an optical tunnel: Evidence for direct perception.
Kim, Seokhun; Carello, Claudia; Turvey, Michael T
2016-08-01
The historical but questionable size-distance invariance hypothesis (SDIH) features computation over geometric, oculomotor, and binocular cues and the coupling of percepts-perceived size, S', is mediated by perceived distance, D'. A contemporary non-mediational hypothesis holds that S' and D' are specific to distinct optical variables. We report two experiments with an optical tunnel, an arrangement of alternating black and white concentric rings, that allows systematic manipulation of the optic array at a point of observation while controlling a variety of size and depth cues. Participants viewed targets of different sizes at different distances monocularly, reporting S' and D' via magnitude production. In Experiment 1, the target was either placed in a continuous tunnel (extending 164cm) or in a tunnel that truncated at the target's location. Experiment 2 included a third tunnel, one that was truncated with a flat depiction of the posterior surface structure that would have been visible in the continuous tunnel. In both experiments, S' decreased with D but D' was unaffected by S. Partial correlation analyses showed that the relationship between S' and D' was not significant when the contributions of other variables were removed. Importantly, S' and D' were affected differently by manipulations of the optical tunnel's continuity while computationally obvious visual cues were controlled. These outcomes suggest that D' is not a mediator of S'. Rather S' and D' are independently determined with correlated but different optical bases, results that support the direct model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Connecting Variability and Metals in White Dwarfs
NASA Astrophysics Data System (ADS)
Kilic, Mukremin
2016-10-01
The Kepler and K2 missions have revealed that about half of the observed white dwarfs with sufficient signal-to-noise ratio light curves have low-level photometric variations at hour to day timescales. Potential explanations for the observed variability include the relativistic beaming effect, ellipsodial variations, eclipses, and reflection off of giant planets in close orbits. However, these are all rare events. Roughly 10% of white dwarfs are magnetic, and magnetic fields can explain part of this puzzle. However, the high incidence (50%) of variability is currently unexplained. HST COS spectroscopy of nearby white dwarfs show that about half of them have metals on their surface. Hence, we propose that the observed variability is due to the rotation of the star coupled with an inhomogeneous surface distribution of accreted metals. We have recently discovered an ideal system to test this hypothesis. J1529 is an apparently non-magnetic white dwarf that shows 5.9% photometric dips in the optical every 38 min. We propose to obtain COS TIME-TAG spectroscopy of J1529 over 4 orbits to search for surface abundance differences throughout the orbit and look for the flux redistribution effect in the optical. These observations will confirm or rule out the idea that inhomogeneous metal accretion on white dwarfs can explain the high incidence of variability. We predict that the LSST will identify 100,000 variable white dwarfs. Hence, understanding the source of variability in white dwarfs has implications for the current and future transient surveys.
High Resolution Time Series Observations of Bio-Optical and Physical Variability in the Arabian Sea
1998-09-30
1995-October 20, 1995). Multi-variable moored systems ( MVMS ) were deployed by our group at 35 and 80m. The MVMS utilizes a VMCM to measure currents...similar to that of the UCSB MVMSs. WORK COMPLETED Our MVMS interdisciplinary systems with sampling intervals of a few minutes were placed on a mooring
Radio emission of cataclysmic variable stars
NASA Technical Reports Server (NTRS)
Fuerst, E.; Benz, A.; Hirth, W.; Geffert, M.; Kiplinger, A.
1986-01-01
Eight cataclysmic variable stars were observed at 6 cm wavelength using the Very Large Array (VLA). The objects were: CN-Ori, SS-Aur, YZ-Cnc, SU-Uma, Z-Cam, V603-Aql, EM-Cyg, and RZ-Sge. Most of these objects were in optical high stage, but none were detected beyond flux limits between 0.1 and 0.3 mJy.
Quantum information processing with a travelling wave of light
NASA Astrophysics Data System (ADS)
Serikawa, Takahiro; Shiozawa, Yu; Ogawa, Hisashi; Takanashi, Naoto; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira
2018-02-01
We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.
Ship and satellite bio-optical research in the California Bight
NASA Technical Reports Server (NTRS)
Smith, R. C.; Baker, K. S.
1982-01-01
Mesoscale biological patterns and processes in productive coastal waters were studied. The physical and biological processes leading to chlorophyll variability were investigated. The ecological and evolutionary significance of this variability, and its relation to the prediction of fish recruitment and marine mammal distributions was studied. Seasonal primary productivity (using chlorophyll as an indication of phytoplankton biomass) for the entire Southern California Bight region was assessed. Complementary and contemporaneous ship and satellite (Nimbus 7-CZCS) bio-optical data from the Southern California Bight and surrounding waters were obtained and analyzed. These data were also utilized for the development of multi-platform sampling strategies and the optimization of algorithms for the estimation of phytoplankton biomass and primary production from satellite imagery.
A SPECTROPOLARIMETRIC TEST OF THE STRUCTURE OF THE INTRINSIC ABSORBERS IN THE QUASAR HS 1603+3820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael
We report the results of a spectropolarimetric observation of the C VI 'mini-broad' absorption line (mini-BAL) in the quasar HS 1603+3820 (z {sub em} = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of {delta}p{approx} 0.1%, at a resolving power of R {approx} 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causesmore » of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p {approx} 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth.« less
NASA Astrophysics Data System (ADS)
Suberlak, Krzysztof; Ivezić, Željko; MacLeod, Chelsea L.; Graham, Matthew; Sesar, Branimir
2017-12-01
We present an improved photometric error analysis for the 7 100 CRTS (Catalina Real-Time Transient Survey) optical light curves for quasars from the SDSS (Sloan Digital Sky Survey) Stripe 82 catalogue. The SDSS imaging survey has provided a time-resolved photometric data set, which greatly improved our understanding of the quasar optical continuum variability: Data for monthly and longer time-scales are consistent with a damped random walk (DRW). Recently, newer data obtained by CRTS provided puzzling evidence for enhanced variability, compared to SDSS results, on monthly time-scales. Quantitatively, SDSS results predict about 0.06 mag root-mean-square (rms) variability for monthly time-scales, while CRTS data show about a factor of 2 larger rms, for spectroscopically confirmed SDSS quasars. Our analysis has successfully resolved this discrepancy as due to slightly underestimated photometric uncertainties from the CRTS image processing pipelines. As a result, the correction for observational noise is too small and the implied quasar variability is too large. The CRTS photometric error correction factors, derived from detailed analysis of non-variable SDSS standard stars that were re-observed by CRTS, are about 20-30 per cent, and result in reconciling quasar variability behaviour implied by the CRTS data with earlier SDSS results. An additional analysis based on independent light curve data for the same objects obtained by the Palomar Transient Factory provides further support for this conclusion. In summary, the quasar variability constraints on weekly and monthly time-scales from SDSS, CRTS and PTF surveys are mutually compatible, as well as consistent with DRW model.
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea
Ylöstalo, Pasi; Kallio, Kari Y.; Spilling, Kristian; Kutser, Tiit
2017-01-01
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0–3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data. PMID:28384157
VizieR Online Data Catalog: Variability-selected AGN in Chandra DFS (Trevese+, 2008)
NASA Astrophysics Data System (ADS)
Trevese, D.; Boutsia, K.; Vagnetti, F.; Cappellaro, E.; Puccetti, S.
2008-11-01
Variability is a property shared by virtually all active galactic nuclei (AGNs), and was adopted as a criterion for their selection using data from multi epoch surveys. Low Luminosity AGNs (LLAGNs) are contaminated by the light of their host galaxies, and cannot therefore be detected by the usual colour techniques. For this reason, their evolution in cosmic time is poorly known. Consistency with the evolution derived from X-ray detected samples has not been clearly established so far, also because the low luminosity population consists of a mixture of different object types. LLAGNs can be detected by the nuclear optical variability of extended objects. Several variability surveys have been, or are being, conducted for the detection of supernovae (SNe). We propose to re-analyse these SNe data using a variability criterion optimised for AGN detection, to select a new AGN sample and study its properties. We analysed images acquired with the wide field imager at the 2.2m ESO/MPI telescope, in the framework of the STRESS supernova survey. We selected the AXAF field centred on the Chandra Deep Field South where, besides the deep X-ray survey, various optical data exist, originating in the EIS and COMBO-17 photometric surveys and the spectroscopic database of GOODS. (1 data file).
Application and System Design of Elastomer Based Optofluidic Lenses
NASA Astrophysics Data System (ADS)
Savidis, Nickolaos
Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic cylindrical lens coupled with a previously discussed defocus singlet lens. We then couple this optofluidic phoropter with relay optics and Shack-Hartmann wavefront sensing technology to produce an auto-phoropter device. The auto-phoropter system combines a refractometer designed Shack-Hartmann wavefront sensor with the compact refractive fluidic lens phoropter. This combination allows for the identification and control of ophthalmic cylinder, cylinder axis, as well as refractive error. The closed loop system of the fluidic phoropter with refractometer enables for the creation of our see-through auto-phoropter system. The design and testing of several generations of transmissive see-through auto-phoropter devices are presented in this section.
Nakahara, Tatsushi; Takahashi, Ryo
2013-05-06
We propose a novel, self-stabilizing optical clock pulse-train generator for processing preamble-free, asynchronous optical packets with variable lengths. The generator is based on an optical loop that includes a semiconductor optical amplifier (SOA) and a high-extinction spin-polarized saturable absorber (SA), with the loop being self-stabilized by balancing out the gain and absorption provided by the SOA and SA, respectively. The optical pulse train is generated by tapping out a small portion of a circulating seed pulse. The convergence of the generated pulse energy is enabled by the loop round-trip gain function that has a negative slope due to gain saturation in the SOA. The amplified spontaneous emission (ASE) of the SOA is effectively suppressed by the SA, and a backward optical pulse launched into the SOA enables overcoming the carrier-recovery speed mismatch between the SOA and SA. Without external control for the loop gain, a stable optical pulse train consisting of more than 50 pulses with low jitter is generated from a single 10-ps seed optical pulse even with a variation of 10 dB in the seed pulse intensity.
On the relation of optical obscuration and X-ray absorption in Seyfert galaxies
NASA Astrophysics Data System (ADS)
Burtscher, L.; Davies, R. I.; Graciá-Carpio, J.; Koss, M. J.; Lin, M.-Y.; Lutz, D.; Nandra, P.; Netzer, H.; Orban de Xivry, G.; Ricci, C.; Rosario, D. J.; Veilleux, S.; Contursi, A.; Genzel, R.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Tacconi, L. J.
2016-02-01
The optical classification of a Seyfert galaxy and whether it is considered X-ray absorbed are often used interchangeably. There are many borderline cases, however, and also numerous examples where the optical and X-ray classifications appear to be in disagreement. In this article we revisit the relation between optical obscuration and X-ray absorption in active galactic nuclei (AGNs). We make use of our "dust colour" method to derive the optical obscuration AV, and consistently estimated X-ray absorbing columns using 0.3-150 keV spectral energy distributions. We also take into account the variable nature of the neutral gas column NH and derive the Seyfert subclasses of all our objects in a consistent way. We show in a sample of 25 local, hard-X-ray detected Seyfert galaxies (log LX/ (erg / s) ≈ 41.5-43.5) that there can actually be a good agreement between optical and X-ray classification. If Seyfert types 1.8 and 1.9 are considered unobscured, the threshold between X-ray unabsorbed and absorbed should be chosen at a column NH = 1022.3 cm-2 to be consistent with the optical classification. We find that NH is related to AV and that the NH/AV ratio is approximately Galactic or higher in all sources, as indicated previously. However, in several objects we also see that deviations from the Galactic ratio are only due to a variable X-ray column, showing that (1) deviations from the Galactic NH/AV can be simply explained by dust-free neutral gas within the broad-line region in some sources; that (2) the dust properties in AGNs can be similar to Galactic dust and that (3) the dust colour method is a robust way to estimate the optical extinction towards the sublimation radius in all but the most obscured AGNs.
Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma
Jia, Yali; Wei, Eric; Wang, Xiaogang; Zhang, Xinbo; Morrison, John C.; Parikh, Mansi; Lombardi, Lori H.; Gattey, Devin M.; Armour, Rebecca L.; Edmunds, Beth; Kraus, Martin F.; Fujimoto, James G.; Huang, David
2014-01-01
Purpose To compare optic disc perfusion between normal and glaucoma subjects using optical coherence tomography (OCT) angiography and detect optic disc perfusion changes in glaucoma. Design Observational, cross-sectional study. Participants Twenty-four normal subjects and 11 glaucoma patients were included. Methods One eye of each subject was scanned by a high-speed 1050 nm wavelength swept-source OCT instrument. The split-spectrum amplitude-decorrelation angiography algorithm (SSADA) was used to compute three-dimensional optic disc angiography. A disc flow index was computed from four registered scans. Confocal scanning laser ophthalmoscopy (cSLO) was used to measure disc rim area, and stereo photography was used to evaluate cup/disc ratios. Wide field OCT scans over the discs were used to measure retinal nerve fiber layer (NFL) thickness. Main Outcome Measurements Variability was assessed by coefficient of variation (CV). Diagnostic accuracy was assessed by sensitivity and specificity. Comparisons between glaucoma and normal groups were analyzed by Wilcoxon rank-sum test. Correlations between disc flow index, structural assessments, and visual field (VF) parameters were assessed by linear regression. Results In normal discs, a dense microvascular network was visible on OCT angiography. This network was visibly attenuated in glaucoma subjects. The intra-visit repeatability, inter-visit reproducibility, and normal population variability of the optic disc flow index were 1.2%, 4.2%, and 5.0% CV respectively. The disc flow index was reduced by 25% in the glaucoma group (p = 0.003). Sensitivity and specificity were both 100% using an optimized cutoff. The flow index was highly correlated with VF pattern standard deviation (R2 = 0.752, p = 0.001). These correlations were significant even after accounting for age, cup/disc area ratio, NFL, and rim area. Conclusions OCT angiography, generated by the new SSADA algorithm, repeatably measures optic disc perfusion. OCT angiography could be useful in the evaluation of glaucoma and glaucoma progression. PMID:24629312
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey
2015-09-01
We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.
An AO-assisted Variability Study of Four Globular Clusters
NASA Astrophysics Data System (ADS)
Salinas, R.; Contreras Ramos, R.; Strader, J.; Hakala, P.; Catelan, M.; Peacock, M. B.; Simunovic, M.
2016-09-01
The image-subtraction technique applied to study variable stars in globular clusters represented a leap in the number of new detections, with the drawback that many of these new light curves could not be transformed to magnitudes due to severe crowding. In this paper, we present observations of four Galactic globular clusters, M 2 (NGC 7089), M 10 (NGC 6254), M 80 (NGC 6093), and NGC 1261, taken with the ground-layer adaptive optics module at the SOAR Telescope, SAM. We show that the higher image quality provided by SAM allows for the calibration of the light curves of the great majority of the variables near the cores of these clusters as well as the detection of new variables, even in clusters where image-subtraction searches were already conducted. We report the discovery of 15 new variables in M 2 (12 RR Lyrae stars and 3 SX Phe stars), 12 new variables in M 10 (11 SX Phe and 1 long-period variable), and 1 new W UMa-type variable in NGC 1261. No new detections are found in M 80, but previous uncertain detections are confirmed and the corresponding light curves are calibrated into magnitudes. Additionally, based on the number of detected variables and new Hubble Space Telescope/UVIS photometry, we revisit a previous suggestion that M 80 may be the globular cluster with the richest population of blue stragglers in our Galaxy. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Tests and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy.
Fuentes-Fernández, Jorge; Cuevas, Salvador; Álvarez-Nuñez, Luis C; Watson, Alan
2013-10-20
Curvature wavefront sensors (WFSs), which obtain the wavefront aberrations from two defocused intensity images at each side of the pupil plane, have shown to be highly efficient for astronomical applications. We propose here an alternative defocusing mechanism for curvature sensors, based on an electrowetting-based variable focus liquid lens. Typically, the sampling rates of a WFS for active optics are of the order of 0.01 Hz, and the focus modulation can be done by simply moving the detector back and forth. On the other hand, adaptive optics may require speeds of up to several hundred hertz, and the modulation is then done by using a fast vibrating membrane mirror. We believe variable focus liquid lenses may be able to perform this focus modulation, reducing the overall size of the system and without the need of extra moving parts. We have done a full characterization of the Varioptic Arctic 416 liquid lens, and we have evaluated its potential performance in different curvature configurations.
NASA Technical Reports Server (NTRS)
Bozyan, Elizabeth P.; Hemenway, Paul D.; Argue, A. Noel
1990-01-01
Observations of a set of 89 extragalactic objects (EGOs) will be made with the Hubble Space Telescope Fine Guidance Sensors and Planetary Camera in order to link the HIPPARCOS Instrumental System to an extragalactic coordinate system. Most of the sources chosen for observation contain compact radio sources and stellarlike nuclei; 65 percent are optical variables beyond a 0.2 mag limit. To ensure proper exposure times, accurate mean magnitudes are necessary. In many cases, the average magnitudes listed in the literature were not adequate. The literature was searched for all relevant photometric information for the EGOs, and photometric parameters were derived, including mean magnitude, maximum range, and timescale of variability. This paper presents the results of that search and the parameters derived. The results will allow exposure times to be estimated such that an observed magnitude different from the tabular magnitude by 0.5 mag in either direction will not degrade the astrometric centering ability on a Planetary Camera CCD frame.
First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439
Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...
2014-12-09
We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E> 100 GeV) gamma-ray emitter. We investigate whether this object is aVHE emitter, characterize its gamma-ray spectrum, and study the broadband emission within the one-zone synchrotron self-Compton (SSC) scenario, which is commonly used to describe the emission in blazars. Moreover, we also intend to determine the redshift of this object, which is a crucial parameter for its scientific interpretation. Here, the source was observedmore » with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 h of good quality stereoscopic data. Besides MAGIC, the campaign involved, observations with Fermi-LAT, Swift-XRT/UVOT, the optical telescopes KVA, Goddard Robotic Telescope, Galaxy View observatory, Crimean Astrophysical observatory, St. Petersburg observatory, and the Owens Valley Radio Observatory. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. We characterize the radio to VHE spectral energy distribution and quantify the multiband variability and correlations over short (few days) and long (many months) timescales. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. As a result, the source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3σ (E > 70 GeV) during a 1.3 h long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. Besides the variability on few-day timescales, the long-term monitoring of MAGIC J2001+439 shows that, the gamma-ray, optical, and radio emissions gradually decreased on few-month timescales from 2010 through 2011, indicating that at least some of the radio, optical and gamma-ray emission is produced in a single region by the same population of particles. We also determine for the first time the redshift of this BL Lac object through the measurement of its host galaxy during low blazar activity. Using the observational evidence that the luminosities of BL Lac host galaxies are confined to a relatively narrow range, we obtain z = 0.18 ± 0.04. In addition, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide an independent redshift estimation, z = 0.17 ± 0.10. Finally, using the former (more accurate) redshift value, we adequately describe the broadband emission with a one-zone SSC model for different activity states and interpret the few-day timescale variability as produced by changes in the high-energy component of the electron energy distribution.« less
Aerosol Composition and Variability in Baltimore Measured during DISCOVER-AQ
NASA Astrophysics Data System (ADS)
Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Thornhill, K. L.; Winstead, E. L.; Diskin, G. S.; Chatfield, R. B.; Natraj, V.; Anderson, B. E.
2012-12-01
In order to relate satellite-based measurements of aerosols to ground-level air quality, the correlation between aerosol optical properties (wavelength-dependent scattering and absorption measured by satellites) and mass measurements of aerosol loading (i.e. PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type (such as composition, size, hygroscopicity, and mass scattering and absorption efficiencies) and to the surrounding atmosphere (such as temperature, relative humidity and altitude). The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the Baltimore-Washington D.C. region was performed during fourteen flights during July 2011. Identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Measured aerosol mass was composed primarily of ammonium sulfate (campaign average of 36%) and water-soluble organics (58%). A distinct difference in composition was related to aerosol loading with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 60%). This composition shift causes a change in the water-uptake potential (hygroscopicity) of the aerosols with higher relative organic composition decreasing water-uptake. On average, sulfate mass increased during the day due to increased photochemistry, while organics decreased. Analysis of the linkage between aerosol loading and optical properties was also performed. The absorption by black carbon was dependent on the amount of organic coating with an increase in mass absorption efficiency from 7.5 m2/g for bare soot to 16 m2/g at an organic mass fraction of 70%. The organic fraction was also found to correlate with the absorption Angstrom exponent which is a solely optical measurement. This relationship allows for a possible understanding of aerosol composition based on solely-optical methods (such as satellite-based sensors). Comparison of aerosol composition to scattering indicated significant scattering from non-hydrophilic particles. The origin seemed to be hydrophobic organic material, and the scattering effects were roughly the same magnitude as the water-soluble organics. Such aerosols are not simulated in many air pollution models, and require more field study. 246 profiles were performed at six locations throughout the region. Variability in aerosol scattering (as a proxy for aerosol optical depth) amongst the six sites is dependent on variability in aerosol loading, composition, and relative humidity (the amount of water available for water uptake onto the aerosols). Aerosol loading was found to be the predominant source accounting for 68% on average of the measured variability in scattering with minor contributions from relative humidity (24%) and aerosol composition (8%).
Ayub, Suleman; Barz, Falk; Paul, Oliver; Ruther, Patrick
2016-08-01
We report on the concept, development, and geometrical, optical as well as electrical characterization of the first three-dimensional (3D) optrode. This new device allows to optically interact with neuronal cells and simultaneously record their response with a high spatial resolution. Our design is based on a single-shank optical stimulation component and a multi-shank recording probe stacked together in a delicate assembly process. The electrical connection of both components is ensured by using flexible polyimide (PI) ribbon cables. The highly accurate relative positioning and precise alignment of the optical and electrical components in 3D with an optical output power at 460 nm well above 5 mW/mm2 and an all-electrical interface makes this device a promising tool for optogenetic experiments in neuroscientific research.
NASA Astrophysics Data System (ADS)
Battu, Anil K.; Manandhar, S.; Shutthanandan, V.; Ramana, C. V.
2017-09-01
An approach is presented to design refractory-metal incorporated Ga2O3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga2O3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga2O3), higher Mo-content results in amorphization. Chemically-induced band gap variability (Eg ∼ 1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality and performance of Ga-Mo-O films is possible by tuning the Mo-content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battu, Anil K.; Manandhar, S.; Shutthanandan, V.
An approach is presented to design refractory-metal incorporated Ga2O3-based materials with controlled structural and optical properties. The molybdenum (Mo)-content in Ga2O3 was varied from 0 to 11 at% in the sputter-deposited Ga-Mo-O films. Molybdenum was found to significantly affect the structure and optical properties. While low Mo-content (≤4 at%) results in the formation of single-phase (β-Ga2O3), higher Mo-content results in amorphization. Chemically-induced band gap variability (Eg~1 eV) coupled with structure-modification indicates the electronic-structure changes in Ga-Mo-O. The linear relationship between chemical-composition and optical properties suggests that tailoring the optical-quality and performance of Ga-Mo-O films is possible by tuning the Mo-content.
Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks
NASA Astrophysics Data System (ADS)
Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie
2015-12-01
Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.
Simulation studies on the effect of positioning tolerances on optical coupling efficiency
NASA Astrophysics Data System (ADS)
Pamidighantam, Ramana V.; Yeo, Yongkee; Sudharsanam, Krishnamachari; Lee, Sik Pong; Iyer, Mahadevan K.
2002-08-01
The development of Optoelectronic components for communications is converging towards access networks where device cost makes a significant impact on the market acceptance. Thus, the device design engineer needs to input assembly, fabrication and process constraints into the design at an early stage. The present study is part of a Project on Packaging of Optical Components that IME, Singapore has initiated as part of an ongoing Electronics Packaging Research Consortium with industry partnership. In the present study, the coupling of optical radiation from a laser diode to optical fiber is simulated for a fiber optic transmitter component development project. Different optical configurations based on direct coupling, spherical ball lenses, integral lensed fibers and thermally expanded fibers are created within the commercially available transmitter package space. The effect of optical element variables on the placement tolerance is analyzed and will be reported. The effect of alignment tolerances on the optical coupling is analyzed. Simulation results are presented recommending realizable alignment and placement tolerances to develop a low cost short range link distance transmitter.
Influence of optical activity on rogue waves propagating in chiral optical fibers.
Temgoua, D D Estelle; Kofane, T C
2016-06-01
We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.
Crisis route to chaos in semiconductor lasers subjected to external optical feedback
NASA Astrophysics Data System (ADS)
Wishon, Michael J.; Locquet, Alexandre; Chang, C. Y.; Choi, D.; Citrin, D. S.
2018-03-01
Semiconductor lasers subjected to optical feedback have been intensively used as archetypical testbeds for high-speed (sub-ns) and high-dimensional nonlinear dynamics. By simultaneously extracting all the dynamical variables, we demonstrate that for larger current, the commonly named "quasiperiodic" route is in fact based on mixed external-cavity solutions that lock the oscillation frequency of the intensity, voltage, and separation in optical frequency through a mechanism involving successive rejections along the unstable manifold of an antimode. We show that chaos emerges from a crisis resulting from the inability to maintain locking as the unstable manifold becomes inaccessible.
Rapid Optical Follow-up Observations of SGR Events with ROTSE-I
NASA Astrophysics Data System (ADS)
Akerlof, C.; Balsano, R.; Barthelmy, S.; Bloch, J.; Butterworth, P.; Casperson, D.; Cline, T.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.; Marshall, S.; McKay, T.; Pawl, A.; Priedhorsky, W.; Seldomridge, N.; Szymanski, J.; Wren, J.
2000-10-01
In order to observe nearly simultaneous emission from gamma-ray bursts (GRBs), the Robotic Optical Transient Search Experiment (ROTSE) receives triggers via the GRB Coordinates Network (GCN). Since beginning operations in 1998 March, ROTSE has also taken useful data for 10 SGR events: eight from SGR 1900+14 and two from SGR 1806-20. We have searched for new or variable sources in the error regions of these SGRs, and no optical counterparts were observed. Limits are in the range mROTSE~12.5-15.5 during the period 20 s to 1 hr after the observed SGR events.
NASA Technical Reports Server (NTRS)
Twohy, Cynthia; Heymsfield, Andrew; Gerber, Hermann
2005-01-01
Our multi-investigator effort was targeted at the following areas of interest to CRYSTAL-FACE: (1) the water budgets of anvils, (2) parameterizations of the particle size distributions and related microphysical and optical properties (3) characterizations of the primary ice particle habits, (4) the relationship of the optical properties to the microphysics and particle habits, and (5) investigation of the ice-nuclei types and mechanisms in anvil cirrus. Dr. Twohy's effort focused on (l), (2), and (5), with the measurement and analysis of ice water content and cirrus residual nuclei using the counterflow virtual impactor (CVI).
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
Forward error correction (FEC) is as one of the key technologies enabling the next-generation high-speed fiber optical communications. In this paper, we propose a rate-adaptive scheme using a class of generalized low-density parity-check (GLDPC) codes with a Hamming code as local code. We show that with the proposed unified GLDPC decoder architecture, a variable net coding gains (NCGs) can be achieved with no error floor at BER down to 10-15, making it a viable solution in the next-generation high-speed fiber optical communications.
Fiber optic medical pressure-sensing system employing intelligent self-calibration
NASA Astrophysics Data System (ADS)
He, Gang
1996-01-01
In this article, we describe a fiber-optic catheter-type pressure-sensing system that has been successfully introduced for medical diagnostic applications. We present overall sensors and optoelectronics designs, and highlight product development efforts that lead to a reliable and accurate disposable pressure-sensing system. In particular, the incorporation of an intelligent on-site self-calibration approach allows limited sensor reuses for reducing end-user costs and for system adaptation to wide sensor variabilities associated with low-cost manufacturing processes. We demonstrate that fiber-optic sensors can be cost-effectively produced to satisfy needs of certain medical market segments.
Fiber optic security seal including plural Bragg gratings
Forman, P.R.
1994-09-27
An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings. 2 figs.
SEVEN-YEAR MULTI-COLOR OPTICAL MONITORING OF BL LACERTAE OBJECT S5 0716+714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai Yan; Wu Jianghua; Zhu Zonghong
We have monitored the BL Lacertae object S5 0716+714 in five intermediate optical wavebands from 2004 September to 2011 April. Here, we present data that include 8661 measurements representing one of the largest databases obtained for an object in the optical domain. A simple analysis of the data indicates that the object was active most of the time, and intraday variability was frequently observed. In total, the object varied by 2.614 mag in the i band. Strong bluer-when-brighter chromatism was observed on long, intermediate, and short timescales.
Raman spectroscopy for the control of the atmospheric bioindicators
NASA Astrophysics Data System (ADS)
Timchenko, E. V.; Timchenko, P. E.; Shamina, L. A.; Zherdeva, L. A.
2015-09-01
Experimental studies of optical parameters of different atmospheric bioindicators (arboreous and terricolous types of plants) have been performed with Raman spectroscopy. The change in the optical parameters has been explored for the objects under direct light exposure, as well as for the objects placed in the shade. The age peculiarities of the bioindicators have also been taken into consideration. It was established that the statistical variability of optical parameters for arboreous bioindicators was from 9% to 15% and for plants from 4% to 8.7%. On the basis of these results dandelion (Taraxacum) was chosen as a bioindicator of atmospheric emissions.
Remote Sensing Reflectance and Inherent Optical Properties in the Mid-mesohaline Chesapeake Bay
NASA Technical Reports Server (NTRS)
Tzortziou, Maria; Subramaniam, Ajit; Herman, Jay R.; Gallegos, Charles L.; Neal, Patrick J.; Harding, Lawrence W., Jr.
2006-01-01
We used an extensive set of bio-optical data and radiative transfer (RT) model simulations of radiation fields to investigate relationships between inherent optical properties and remotely sensed quantities in the optically complex, mid-mesohaline Chesapeake Bay waters. Field observations showed that the chlorophyll algorithms used by the MODIS (MODerate resolution Imaging Spectroradiometer) ocean color sensor (i.e. Chlor_a, chlor_MODIS, chlor_a_3 products) do not perform accurately in these Case 2 waters. This is because, when applied to waters with high concentrations of chlorophyll, all MODIS algorithms are based on empirical relationships between chlorophyll concentration and blue-green wavelength remote sensing reflectance (Rrs) ratios that do not account for the typically strong blue-wavelength absorption by non-covarying, dissolved and non-algal particulate components. Stronger correlation was observed between chlorophyll concentration and Rrs ratios in the red (i.e. Rrs(677)/Rrs(554)) where dissolved and non-algal particulate absorption become exponentially smaller. Regionally-specific algorithms that are based on the phytoplankton optical properties in the red wavelength region provide a better basis for satellite monitoring of phytoplankton blooms in these Case 2 waters. Good optical closure was obtained between independently measured Rrs spectra and the optical properties of backscattering, b(sub b), and absorption, a, over the wide range of in-water conditions observed in the Chesapeake Bay. Observed variability in the quantity f/Q (proportionality factor in the relationship between Rrs and the water inherent optical properties ratio b(sub b)/(a+b(sub b)) was consistent with RT model calculations for the specific measurement geometry and water bio-optical characteristics. Data and model results showed that f/Q values in these Case 2 coastal waters are not considerably different from those estimated in previous studies for Case 1 waters. Variation in surface backscattering significantly affected Rrs magnitude across the visible spectrum and was most strongly correlated (R(sup 2)=0.88) with observed variability in Rrs at 670 nm. Surface values of particulate backscattering were strongly correlated with non-algal particulate absorption, a(sub nap), in the blue wavelengths (R(sup 2)=0.83). These results, along with the measured values of backscattering fraction magnitude and non-algal particulate absorption spectral slope, suggest that suspended non-algal particles with high inorganic content are the major water constituents regulating b(sub b) variability in the mid-mesohaline Chesapeake Bay. Remote retrieval of surface b(sub b) and (a(sub nap), from Rrs(670) can be used in regionally-specific satellite algorithms to separate contribution by non-algal particles and dissolved organic matter to total light absorption in the blue, and monitor non-algal suspended particle concentration and distribution in these Case 2 waters.
1ES 1113+432: Luminous, soft X-ray outburst from a nearby cataclysmic variable (AR Ursae Majoris)
NASA Technical Reports Server (NTRS)
Remillard, R. A.; Schachter, J. F.; Silber, A. D.; Slane, P.
1994-01-01
A remarkable X-ray transient from the Einstein Slew Survey, 1 ES 1113+432, is identified with a nearby, short-period cataclysmic variable. Wenzel (1993) has confirmed that the optical counterpart is the variable star, AR UMa (cataloged as 'semiregular'), erroneously reported 5.7 min southeast of the true position. One of the Einstein slew observations recorded a flux of 43 IPC counts/s, which is an order of magnitude above the flux observed from the brightest cataclysmic variables in other X-ray surveys. The outburst spectrum is extremely 'soft,' with an implied blackbody temperature of approximately 22 eV. The optical counterpart (V = 16.5) exhibits a strong UV component, TiO bands from an M star, and broadened Balmer emission lines. Optical states as bright as V approx. 13 were found on photographs from the Harvard Plate Library, confirming outburst behavior in the optical counterpart. The historical photographic record suggests that 1ES 1113+432 remains in a low-accretion state most of the time. Both of the soft X-ray spectrum and the transitions between high and low-accretion states are suggestive of the AM Her (magnetic) subclass. Photometric observations in the I band show 0.18 mag modulations at a period of 0.966 hr. These are interpreted as ellipsiodal variations in the secondary star for a binary period of 1.932 hr, which is near the lower boundary of the 'period gap' in the histogram, of orbital periods of accreting white dwarfs. Thus 1ES 1113+432 provides the rare opportunity to study a secondary star in a cataclysmic binary that has evolved through the period gap. The optical spectral features from the secondary imply a spectral type of approximately M6 and a distance of approximately 88 pc. The peak luminosity in the soft X-ray component (unabsorbed) is then estimated to be 3 X 10(exp 33) ergs/s, assuming emission from a blackbody slab with a temperature of 22 eV. While this luminosity is higher than previous measures of the soft X-ray component, it does not exceed the amount of radiation that could be emitted from the accretion-heated surface of a white dwarf.
Investigation of Beam Emittance and Beam Transport Line Optics on Polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, Andrew; Syphers, Michael
2017-10-06
Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.
2008-01-01
A second objective is to characterize variability in the volume scattering function and particle size distribution for various optical water types...volume scattering function (VSF) and the particle size distribution (PSD) • Analysis of in situ optical measurements and particle size distributions ...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY
Diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. 3 cases of 'DIDMOAD' syndrome.
Richardson, J E; Hamilton, W
1977-01-01
Three children with diabetes insipidus, diabetes mellitus, optic atrophy, and high-tone deafness were shown to lack vasopressin, indicative of degeneration of the cells of the hypothalamic supraoptic nuclei. The syndrome being due to a single gene defect, inherited as an autosomal recessive, is therefore likely to be the result of an inborn error of metabolism with variable periods of latency in those affected. PMID:931428
Remote Sensing of the Optical and Physical Densities of Smoke, Dust, and Water Clouds.
1982-12-01
systems to measure variability of aerosol concentration distributions along horizontal optical paths . Analysis of backscatter... extinction measurements using a single- laser lidar system operating at 1.06- and 0.53-pm wavelengths. For larger mean particle sizes the extinction ratio...clear air paths and The transmissometers were mounted across a 10-m complete blockage of the source energy. Transmisso- long aerosol tunnel that
Engine Throat/Nozzle Optics for Plume Spectroscopy
1991-02-01
independent of the external plume characteristics so operation can be achieved on diffuser test stands and with the engine exhausting to a variable... combustion chamber operates at 205 atmospheres during 109% power conditions with a mixture ratio of 6:1. The engine is overexpanded at sea level and...LeRC/500-219. 16. Abstract The throat and combustion chamber of an operating rocket engine provide a preferred signal source for optical spectroscopy
Salinas, Santo V; Chew, Boon N; Liew, Soo C
2009-03-10
The role of aerosols in climate and climate change is one of the factors that is least understood at the present. Aerosols' direct interaction with solar radiation is a well understood mechanism that affects Earth's net radiative forcing. However, quantifying its magnitude is more problematic because of the temporal and spatial variability of aerosol particles. To enhance our understanding of the radiative effects of aerosols on the global climate, Singapore has joined the AERONET (Aerosol Robotic Network) worldwide network by contributing ground-based direct Sun measurements performed by means of a multiwavelength Sun-photometer instrument. Data are collected on an hourly basis, then are uploaded to be fully screened and quality assured by AERONET. We use a one year data record (level 1.5/2.0) of measured columnar atmospheric optical depth, spanning from November 2006 to October 2007, to study the monthly and seasonal variability of the aerosol optical depth and the Angström exponent. We performed independent retrievals of these parameters (aerosol optical depth and Angström exponent) by using the photometer's six available bands covering the near-UV to near-IR (380-1080 nm). As a validation, our independent retrievals were compared with AERONET 1.5/2.0 level direct Sun product.
Compact touchless fingerprint reader based on digital variable-focus liquid lens
NASA Astrophysics Data System (ADS)
Tsai, C. W.; Wang, P. J.; Yeh, J. A.
2014-09-01
Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.
WISEP J060738.65+242953.4: A NEARBY POLE-ON L8 BROWN DWARF WITH RADIO EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gizis, John E.; Paudel, Rishi; Williams, Peter K. G.
2016-11-01
We present a simultaneous, multi-wavelength campaign targeting the nearby (7.2 pc) L8/L9 (optical/near-infrared) dwarf WISEP J060738.65+242953.4 in the mid-infrared, radio, and optical. Spitzer Space Telescope observations show no variability at the 0.2% level over 10 hr each in the 3.6 and 4.5 μ m bands. Kepler K2 monitoring over 36 days in Campaign 0 rules out stable periodic signals in the optical with amplitudes greater than 1.5% and periods between 1.5 hr and 2 days. Non-simultaneous Gemini optical spectroscopy detects lithium, constraining this L dwarf to be less than ∼2 Gyr old, but no Balmer emission is observed. The lowmore » measured projected rotation velocity ( v sin i < 6 km s{sup −1}) and lack of variability are very unusual compared to other brown dwarfs, and we argue that this substellar object is likely viewed pole-on. We detect quiescent (non-bursting) radio emission with the Very Large Array. Among radio-detected L and T dwarfs, it has the lowest observed L{sub ν} and the lowest v sin i . We discuss the implications of a pole-on detection for various proposed radio emission scenarios.« less
Design and fabrication of a variable optical attenuator based on polymer-dispersed liquid crystal
NASA Astrophysics Data System (ADS)
She, Jun; Xu, Su; Tao, Tao; Wang, Qian
2005-02-01
In order to obtain a low polarization dependent loss (PDL) and a large attenuation range simultaneously, an optimal design and fabrication of a polymer-dispersed liquid crystal (PDLC) based variable optical attenuator (VOA) is presented. First, an optimal diameter of the liquid crystal droplets is determined by the anomalous diffraction approach (ADA). This optimal diameter gives maximal scattering and thus a large attenuation range is achieved with a relatively thin liquid crystal cell. Secondly, the fabrication of PDLC cell is carried out. The influence of the ultraviolet (UV) curing condition on the morphology of the LC droplets is investigated. For a given liquid crystal concentration, the optimal UV curing power is obtained after a series of statistically designed experiments. Finally, an optical configuration of the PDLC based VOA is presented. Measurements of the attenuation and the PDL are carried out with this configuration. The measured results show that the device has a typical attenuation range of 25dB. The corresponding PDL is nearly 1dB and the insertion loss is 1.8dB. The threshold voltage is 8Vrms and the saturation voltage is 40Vrms. From these measured results, one can see that the fabricated VOA based on PDLC is much more practical for optical communications as compared to the existing ones.
NASA Astrophysics Data System (ADS)
Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.
2017-09-01
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.
Paraxial ray solution for liquid-filled variable focus lenses
NASA Astrophysics Data System (ADS)
Wang, Lihui; Oku, Hiromasa; Ishikawa, Masatoshi
2017-12-01
We propose a general solution for determining the cardinal points and effective focal length of a liquid-filled variable focus lens to aid in understanding the dynamic behavior of the lens when the focal length is changed. A prototype of a variable focus lens was fabricated and used to validate the solution. A simplified solution was also presented that can be used to quickly and conveniently calculate the performance of the lens. We expect that the proposed solutions will improve the design of optical systems that contain variable focus lenses, such as machine vision systems with zoom and focus functions.
Construction of Database for Pulsating Variable Stars
NASA Astrophysics Data System (ADS)
Chen, B. Q.; Yang, M.; Jiang, B. W.
2011-07-01
A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.
The Radio-optical Spectra of BL Lacs and Possible Relatives
NASA Astrophysics Data System (ADS)
Dennett-Thorpe, J.
I consider the suggestion that, in a complete sample of flat-spectrum radio sources with available optical spectra (Marcha et al 1996), the strong emission line objects, or those with passive elliptical spectra are close relatives of the BL Lacs. New observations at four frequencies from 8 to 43GHz are presented, together with evidence for radio variability. Combined with other radio and optical data from the literature, we are able to construct the non-thermal SEDs and use these to address the questions: are the optically passive objects potentially `unrecognised' BL Lacs (either intrinsically weak and/or hidden by starlight)? What is the relationship between the surprising number of strong emission-line objects and the BL Lacs?
Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert
2013-04-01
An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.
Progress towards a rapidly rotating ultracold Fermi gas
NASA Astrophysics Data System (ADS)
Hu, Ming-Guang; van de Graaff, Michael; Cornell, Eric; Jin, Deborah
2015-05-01
We are designing an experiment with the goal of creating a rapidly rotating ultracold Fermi gas, which is promising system in which to study quantum Hall physics. We propose to use selective evaporation of a gas that has been initialized with a modest rotation rate to increase the angular momentum per particle in order to reach rapid rotation. We have performed simulations of this evaporation process for a model optical trap potential. Achieving rapid rotation will require a very smooth, very harmonic, and dynamically variable optical trap. We plan to use a setup consisting of two acousto-optical modulators to ``paint'' an optical dipole trapping potential that can be made smooth, radially symmetric, and harmonic. This project is supported by NSF, NIST, NASA.
Multiple channel optical data acquisition system
Fasching, G.E.; Goff, D.R.
1985-02-22
A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Mueller, James L.; Austin, Roswell W.
1995-01-01
This report presents protocols for measuring optical properties, and other environmental variables, to validate the radiometric performance of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and to develop and validate bio-optical algorithms for use with SeaWiFS data. The protocols are intended to establish foundations for a measurement strategy to verify the challenging SeaWiFS uncertainty goals of 5 percent in water-leaving radiances and 35 percent in chlorophyll alpha concentration. The protocols first specify the variables which must be measured, and briefly review the rationale for measuring each variable. Subsequent chapters cover detailed protocols for instrument performance specifications, characterizing and calibrating instruments, methods of making measurements in the field, and methods of data analysis. These protocols were developed at a workshop sponsored by the SeaWiFS Project Office (SPO) and held at the Naval Postgraduate School in Monterey, California (9-12 April 1991). This report began as the proceedings of the workshop, as interpreted and expanded by the authors and reviewed by workshop participants and other members of the bio-optical research community. The protocols are an evolving prescription to allow the research community to approach the unprecedented measurement uncertainties implied by the SeaWiFS goals; research and development are needed to improve the state-of-the-art in specific areas. These protocols should be periodically revised to reflect technical advances during the SeaWiFS Project cycle. The present edition (Revision 1) incorporates new protocols in several areas, including expanded protocol descriptions for Case-2 waters and other improvements, as contributed by several members of the SeaWiFS Science Team.
Far-ultraviolet Spectroscopy of the Nova-like Variable KQ Monocerotis: A New SW Sextantis Star?
NASA Astrophysics Data System (ADS)
Wolfe, Aaron; Sion, Edward M.; Bond, Howard E.
2013-06-01
New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of ~0.6 M ⊙, with an accretion rate of order 10-9 M ⊙ yr-1 and disk inclinations between 60° and 75°, yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.
NASA Astrophysics Data System (ADS)
Lin, N. H.; Wang, S. H.; Welton, E. J.; Holben, B. N.; Tsay, S. C.; Giles, D. M.; Stewart, S. A.; Janjai, S.; Anh, N. X.; Hsiao, T. C.; Chen, W. N.; Lin, T. H.; Buntoung, S.; Chantara, S.; Wiriya, W.
2015-12-01
In this study, the aerosol optical properties and vertical distributions in major biomass-burning emission area of northern Indochina were investigated using ground-based remote sensing (i.e., four Sun-sky radiometers and one lidar) during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment conducted during spring 2014. Despite the high spatial variability of the aerosol optical depth (AOD; which at 500 nm ranged from 0.75 to 1.37 depending on the site), the temporal variation of the daily AOD demonstrated a consistent pattern among the observed sites, suggesting the presence of widespread smoke haze over the region. Smoke particles were characterized as small (Ångström exponent at 440-870 nm of 1.72 and fine mode fraction of 0.96), strongly absorbing (single-scattering albedo at 440 nm of 0.88), mixture of black and brown carbon particles (absorption Ångström exponent at 440-870 nm of 1.5) suspended within the planetary boundary layer (PBL). Smoke plumes driven by the PBL dynamics in the mountainous region reached as high as 5 km above sea level; these plumes subsequently spread out by westerly winds over northern Vietnam, southern China, and the neighboring South China Sea. Moreover, the analysis of diurnal variability of aerosol loading and optical properties as well as vertical profile in relation to PBL development, fire intensity, and aerosol mixing showed that various sites exhibited different variability based on meteorological conditions, fuel type, site elevation, and proximity to biomass-burning sources. These local factors influence the aerosol characteristics in the region and distinguish northern Indochina smoke from other biomass-burning regions in the world.
NASA Technical Reports Server (NTRS)
DSa, E. J.; Miller, R. L.; DelCastillo, C.
2003-01-01
The Mississippi River Bight is a highly dynamic region influenced by the seasonally variable outflow from the Mississippi River. In an effort to characterize the distribution of particulate and dissolved organic matter in the region, we conducted a two-year field program in the spring and fall (high and low flow river discharge) of 2000 and 2002. We collected a comprehensive set of bio-optical measurements consisting of vertical profiles (absorption, scattering, chlorophyll fluorescence and radiometry) and discrete measurements (pigment concentrations, particulate and CDOM absorption) that enabled us to obtain better insight into the seasonal and spatial variability of some important biogeochemical parameters. Our field measurements generally showed higher phytoplankton clorophyll concentrations in the plume waters (associated with lower surface salinities) and confirmed the high biological activity abserved in other studies. The seasonal flow of river discharge and advective currents due to wind forcing exerted a strong influence on the biological and optical properties of the region. An examination of absorption at 440 nm by the algal and non-algal fraction of the particulate pool and of CDOM revealed that at nearshore stations, contributions by the non-algal particles were high (about 40%) and decresed with increasing salinities. While CDOM absorption exhibited conservative mixing, its relative contribution to the total absorption was variable. Surface waters at most stations had lower salinities that generalliy increased with dept. Particulate matter and CDOM also decreased with depth as evidenced by absorption and scattering measurements. Good correlations in surface waters between concentrations of particulate and dissolved matter, the inherent optical properties of absorption and ackscattering and remote sensing reflectance values has allowed the development of robust empirical algorithms for phytoplankton chlorophyll and CDOM absorption.
Gonçalves-Araujo, Rafael; Wiegmann, Sonja; Torrecilla, Elena; Bardaji, Raul; Röttgers, Rüdiger; Bracher, Astrid; Piera, Jaume
2017-01-01
The detection and prediction of changes in coastal ecosystems require a better understanding of the complex physical, chemical and biological interactions, which involves that observations should be performed continuously. For this reason, there is an increasing demand for small, simple and cost-effective in situ sensors to analyze complex coastal waters at a broad range of scales. In this context, this study seeks to explore the potential of beam attenuation spectra, c(λ), measured in situ with an advanced-technology optical transmissometer, for assessing temporal and spatial patterns in the complex estuarine waters of Alfacs Bay (NW Mediterranean) as a test site. In particular, the information contained in the spectral beam attenuation coefficient was assessed and linked with different biogeochemical variables. The attenuation at λ = 710 nm was used as a proxy for particle concentration, TSM, whereas a novel parameter was adopted as an optical indicator for chlorophyll a (Chl-a) concentration, based on the local maximum of c(λ) observed at the long-wavelength side of the red band Chl-a absorption peak. In addition, since coloured dissolved organic matter (CDOM) has an important influence on the beam attenuation spectral shape and complementary measurements of particle size distribution were available, the beam attenuation spectral slope was used to analyze the CDOM content. Results were successfully compared with optical and biogeochemical variables from laboratory analysis of collocated water samples, and statistically significant correlations were found between the attenuation proxies and the biogeochemical variables TSM, Chl-a and CDOM. This outcome depicted the potential of high-frequency beam attenuation measurements as a simple, continuous and cost-effective approach for rapid detection of changes and patterns in biogeochemical properties in complex coastal environments. PMID:28107539
NASA Astrophysics Data System (ADS)
Liu, Meiling; Liu, Xiangnan; Li, Jin; Ding, Chao; Jiang, Jiale
2014-12-01
Satellites routinely provide frequent, large-scale, near-surface views of many oceanographic variables pertinent to plankton ecology. However, the nutrient fertility of water can be challenging to detect accurately using remote sensing technology. This research has explored an approach to estimate the nutrient fertility in coastal waters through the fusion of synthetic aperture radar (SAR) images and optical images using the random forest (RF) algorithm. The estimation of total inorganic nitrogen (TIN) in the Hong Kong Sea, China, was used as a case study. In March of 2009 and May and August of 2010, a sequence of multi-temporal in situ data and CCD images from China's HJ-1 satellite and RADARSAT-2 images were acquired. Four sensitive parameters were selected as input variables to evaluate TIN: single-band reflectance, a normalized difference spectral index (NDSI) and HV and VH polarizations. The RF algorithm was used to merge the different input variables from the SAR and optical imagery to generate a new dataset (i.e., the TIN outputs). The results showed the temporal-spatial distribution of TIN. The TIN values decreased from coastal waters to the open water areas, and TIN values in the northeast area were higher than those found in the southwest region of the study area. The maximum TIN values occurred in May. Additionally, the estimation accuracy for estimating TIN was significantly improved when the SAR and optical data were used in combination rather than a single data type alone. This study suggests that this method of estimating nutrient fertility in coastal waters by effectively fusing data from multiple sensors is very promising.
Ocular dimensions in relation to auxological data in a sample of Swedish children aged 4-15 years.
Raffa, Lina H; Hellström, Ann; Aring, Eva; Andersson, Susann; Grönlund, Marita Andersson
2014-11-01
The purpose was to characterize normal growth patterns of ocular and optical components and to relate them to auxological data in a sample of Swedish children aged 4-15 years. A prospective cross-sectional study was carried out in 143 Swedish children with a mean age of 9.8 years. Variables including gestational age (GA), weight, length and head circumference (HCF) at birth and at the time of assessment were registered. Visual acuity (VA), cycloplegic refraction and biometric measures were obtained. Palpebral fissure length and inner canthal distance were measured. Optic disc morphology as seen on fundus photographs was analysed. Children born more mature, with male predilection, were found to have deeper anterior and vitreous chamber depths, longer axial lengths and thinner crystalline lens thickness. No correlations were found between ocular biometric measurements and VA or refraction after adjustment for confounding variables. Inner canthal distance was significantly correlated with birth length (p = 0.03), height, weight, BMI and HCF (p = 0.0008, p = 0.0007, p = 0.037, and p = 0.04, respectively) at time of assessment. Total axial length was found to be significantly correlated with GA (p = 0.0226) and length at assessment in girls (p = 0.0084). Right optic disc and rim areas decreased with increasing age (p = 0.0078 and p = 0.0107, respectively); however, optic disc parameters were not dependent on any other variable. These normative values may serve as a basis for the ocular findings and their relationship to auxological data in Caucasian children aged 4-15 years, as well as for future comparison in patients with paediatric ocular pathologies. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Variable-rate optical communication through the turbulent atmosphere. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Levitt, B. K.
1971-01-01
It was demonstrated that the data transmitter can extract real time, channel state information by processing the field received when a pilot tone is sent from the data receiver to the data transmitter. Based on these channel measurements, optimal variable rate techniques were derived and significant improvements in system perforamnce were obtained, particularly at low bit error rates.
Wright Laboratory Research and Development Facilities Handbook
1992-08-01
properties o. superconductors SPECIAL/UNIQUE CAPABILITIES: Two superconducting coils: 3-inch bore, 10 Tesla coil. 20 kilojoule repetitively pulsed coil 7 inch...bore, cryogenically cooled 14 Tesla coil INSTRUMENTATION: Computer Controlled Variable Temperature (2-400K) and Field (0-5 Tesla ) Squid Susceptometer...Variable Temperature (10-80K) and Field (0-10 Tesla ) Transport Current Measurement Apparatus RF Source Sputtering Rig, Optical Microscope, Furnaces
The ASAS-SN Catalog of Variable Stars I: The Serendipitous Survey
NASA Astrophysics Data System (ADS)
Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.
2018-04-01
The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2 - 3 days down to V≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100 - 500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalog of 66,533 bright, new variable stars discovered during our search for supernovae, including 27,753 periodic variables and 38,780 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars database (https://asas-sn.osu.edu/variables). The database will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.
Mignon, C.; Tobin, D. J.; Zeitouny, M.; Uzunbajakava, N. E.
2018-01-01
Finding a path towards a more accurate prediction of light propagation in human skin remains an aspiration of biomedical scientists working on cutaneous applications both for diagnostic and therapeutic reasons. The objective of this study was to investigate variability of the optical properties of human skin compartments reported in literature, to explore the underlying rational of this variability and to propose a dataset of values, to better represent an in vivo case and recommend a solution towards a more accurate prediction of light propagation through cutaneous compartments. To achieve this, we undertook a novel, logical yet simple approach. We first reviewed scientific articles published between 1981 and 2013 that reported on skin optical properties, to reveal the spread in the reported quantitative values. We found variations of up to 100-fold. Then we extracted the most trust-worthy datasets guided by a rule that the spectral properties should reflect the specific biochemical composition of each of the skin layers. This resulted in the narrowing of the spread in the calculated photon densities to 6-fold. We conclude with a recommendation to use the identified most robust datasets when estimating light propagation in human skin using Monte Carlo simulations. Alternatively, otherwise follow our proposed strategy to screen any new datasets to determine their biological relevance. PMID:29552418
Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates
NASA Astrophysics Data System (ADS)
Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.
2018-06-01
Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20 per cent (˜37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs.
Modeling the optical radiation of the precataclysmic variable SDSS J212531-010745
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Borisov, N. V.; Nurtdinova, D. N.; Solovyeva, Yu. N.; Sakhibullin, N. A.; Spiridonova, O. I.
2015-03-01
Optical observations are analyzed to derive a set of basic parameters for the precataclysmic variable star SDSS J212531-010745, whose primary is a PG1159-type star. Spectroscopic and multiband photometric observations of the star were performed in 2008-2011 with the 6-m telescope and the Zeiss-1000 telescope of the Special Astrophysical Observatory. The shape of the binary's orbital light curves is nearly sinusoidal, with the amplitude increasing with wavelength from Δ m = 0.40 m in the B band to Δ m = 0.73 m in the R band. The spectra contain absorption lines of HeII and neutral atoms, along with HI, HeI, CII, MgII, FeII emission lines, whose intensity increases synchronously with the brightness of the system. The optical radiation from SDSS J212531-010745 has a composite nature, corresponding to a model for a pre-cataclysmic variable with strong reflection effects. Cross-correlation techniques are used to measure the radial velocities and derive the component masses. Numerical modeling of the binary's light curves, radial velocities, and spectra is performed, and a complete set of parameters determined. Considerable abundance anomalies (to 1 dex) were detected for the secondary. The primary's characteristics correspond to the evolutionary predictions for DAO dwarfs with masses M ≈ 0.5 M ⊙, and the secondary's characteristics to low-mass, main-sequence stars with the solar metallicity.
BOKS 45906: a CV with an Orbital Period of 56.6 Min in the Kepler Field?
NASA Technical Reports Server (NTRS)
Ramsay, Gavin; Howell, Steve B.; Wood, Matt A.; Smale, Alan; Barclay, Thomas; Seebode, Sally A.; Gelino, Dawn; Still, Martin; Cannizzo, John K.
2013-01-01
BOKS 45906 was found to be a blue source in the Burrell-Optical-Kepler Survey which showed a 3 magnitude outburst lasting approximately 5 days. We present the Kepler light curve of this source which covers nearly 3 years. We find that it is in a faint optical state for approximately half the time and shows a series of outbursts separated by distinct dips in flux. Using data with 1 minute sampling, we find clear evidence that in its low state BOKS 45906 shows a flux variability on a period of 56.5574 plus or minus 0.0014 minutes and a semi-amplitude of approximately 3 percent. Since we can phase all the 1 minute cadence data on a common ephemeris using this period, it is probable that 56.56 minutes is the binary orbital period. Optical spectra of BOKS 45906 show the presence of Balmer lines in emission indicating it is not an AM CVn (pure Helium) binary. Swift data show that it is a weak X-ray source and is weakly detected in the bluest of the UVOT filters. We conclude that BOKS 45906 is a cataclysmic variable with a period shorter than the 'period-bounce' systems and therefore BOKS 45906 could be the first helium-rich cataclysmic variable detected in the Kepler field.
The X-ray variability history of Markarian 3
NASA Astrophysics Data System (ADS)
Guainazzi, M.; La Parola, V.; Miniutti, G.; Segreto, A.; Longinotti, A. L.
2012-11-01
Context. The unified scenario for active galactic nuclei (AGN) postulates that our orientation with respect to a parsec-scale azimuthally-symmetric gas and dust system causes the difference in their phenomenology in the optical/UV and X-ray bands. Only recently have high-resolution radio (VLBI) and IR interferometric observations provided direct constraints on the size and structure of this obscuring system (known historically as the "torus"). On the other hand, variability in optically-thick X-ray absorption and reprocessing in heavily obscured AGN often probe smaller scales, down to the broad line region and beyond. Aims: We aim at constraining the geometry of the reprocessing matter in the nearby prototypical Seyfert 2 Galaxy Markarian 3 by studying the time evolution of the spectral components associated to the primary AGN emission and to its Compton-scattering. Methods: We analyzed archival spectroscopic observations of Markarian 3 taken over the last ≃ 12 years with the XMM-Newton, Suzaku and Swift observatories, as well as data taken during a monitoring campaign activated by us in 2012. Results: The timescale of the Compton-reflection component variability (originally discovered by ASCA in the mid-'90s) is ≲ 64 days. This upper limit improves by more than a factor of 15 on previous estimates of the Compton-reflection variability timescale for this source. When the light curve of the Compton-reflection continuum in the 4-5 keV band is correlated with the 15-150 keV Swift/BAT curve, a delay ≳1200 days is found. The cross-correlation results depend on the model used to fit the spectra, although the detection of the Compton-reflection component variability is independent of the range of models employed to fit the data. Reanalysis of an archival Chandra image of Markarian 3 indicates that the Compton-reflection and the Fe Kα emitting regions are extended to the north up to ≃300 pc. The combination of these findings suggests that the optically-thick reprocessor in Markarian 3 is clumpy. Conclusions: There is mounting experimental evidence that the structure of the optically-thick gas and dust in the nuclear environment of nearby heavily obscured AGN is extended and complex. We discuss possible modifications to the standard unification scenarios encompassing this complexity. Markarian 3, which exhibits X-ray absorption and reprocessing on widely different spatial scales, is an ideal laboratory to test these models.
Iommarini, Luisa; Giordano, Luca; Maresca, Alessandra; Pisano, Annalinda; Valentino, Maria Lucia; Caporali, Leonardo; Liguori, Rocco; Deceglie, Stefania; Roberti, Marina; Fanelli, Francesca; Fracasso, Flavio; Ross-Cisneros, Fred N.; D’Adamo, Pio; Hudson, Gavin; Pyle, Angela; Yu-Wai-Man, Patrick; Chinnery, Patrick F.; Zeviani, Massimo; Salomao, Solange R.; Berezovsky, Adriana; Belfort, Rubens; Ventura, Dora Fix; Moraes, Milton; Moraes Filho, Milton; Barboni, Piero; Sadun, Federico; De Negri, Annamaria; Sadun, Alfredo A.; Tancredi, Andrea; Mancini, Massimiliano; d’Amati, Giulia; Loguercio Polosa, Paola; Cantatore, Palmiro
2014-01-01
Leber’s hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber’s hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber’s hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies. PMID:24369379
Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures
NASA Astrophysics Data System (ADS)
Hennige, S. J.; Suggett, D. J.; Warner, M. E.; McDougall, K. E.; Smith, D. J.
2009-03-01
Light is often the most abundant resource within the nutrient-poor waters surrounding coral reefs. Consequently, zooxanthellae ( Symbiodinium spp.) must continually photoacclimate to optimise productivity and ensure coral success. In situ coral photobiology is becoming dominated by routine assessments using state-of-the-art non-invasive bio-optical or chlorophyll a fluorescence (bio-physical) techniques. Multiple genetic types of Symbiodinium are now known to exist; however, little focus has been given as to how these types differ in terms of characteristics that are observable using these techniques. Therefore, this investigation aimed to revisit and expand upon a pivotal study by Iglesias-Prieto and Trench (1994) by comparing the photoacclimation characteristics of different Symbiodinium types based on their bio-physical (chlorophyll a fluorescence, reaction centre counts) and bio-optical (optical absorption, pigment concentrations) ‘signatures’. Signatures described here are unique to Symbiodinium type and describe phenotypic responses to set conditions, and hence are not suitable to describe taxonomic structure of in hospite Symbiodinium communities. In this study, eight Symbiodinium types from clades and sub-clades (A-B, F) were grown under two PFDs (Photon Flux Density) and examined. The photoacclimation response by Symbiodinium was highly variable between algal types for all bio-physical and for many bio-optical measurements; however, a general preference to modifying reaction centre content over effective antennae-absorption was observed. Certain bio-optically derived patterns, such as light absorption, were independent of algal type and, when considered per photosystem, were matched by reaction centre stoichiometry. Only by better understanding genotypic and phenotypic variability between Symbiodinium types can future studies account for the relative taxonomic and physiological contribution by Symbiodinium to coral acclimation.
Radio variability in complete samples of extragalactic radio sources at 1.4 GHz
NASA Astrophysics Data System (ADS)
Rys, S.; Machalski, J.
1990-09-01
Complete samples of extragalactic radio sources obtained in 1970-1975 and the sky survey of Condon and Broderick (1983) were used to select sources variable at 1.4 GHz, and to investigate the characteristics of variability in the whole population of sources at this frequency. The radio structures, radio spectral types, and optical identifications of the selected variables are discussed. Only compact flat-spectrum sources vary at 1.4 GHz, and all but four are identified with QSOs, BL Lacs, or other (unconfirmed spectroscopically) stellar objects. No correlation of degree of variability at 1.4 GHz with Galactic latitude or variability at 408 MHz has been found, suggesting that most of the 1.4-GHz variability is intrinsic and not caused by refractive scintillations. Numerical models of the variability have been computed.
Short time-scale optical variability properties of the largest AGN sample observed with Kepler/K2
NASA Astrophysics Data System (ADS)
Aranzana, E.; Körding, E.; Uttley, P.; Scaringi, S.; Bloemen, S.
2018-05-01
We present the first short time-scale (˜hours to days) optical variability study of a large sample of active galactic nuclei (AGNs) observed with the Kepler/K2 mission. The sample contains 252 AGN observed over four campaigns with ˜30 min cadence selected from the Million Quasar Catalogue with R magnitude <19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of our sample. A variety of power-law slopes were found indicating that there is not a universal slope for all AGNs. We find that the rest-frame amplitude variability in the frequency range of 6 × 10-6-10-4 Hz varies from 1to10 per cent with an average of 1.7 per cent. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift. We attribute this effect to the known `bluer when brighter' variability of quasars combined with the fixed bandpass of Kepler data. This study also enables us to distinguish between Seyferts and blazars and confirm AGN candidates. For our study, we have compared results obtained from light curves extracted using different aperture sizes and with and without detrending. We find that limited detrending of the optimal photometric precision light curve is the best approach, although some systematic effects still remain present.
AGN Variability: Probing Black Hole Accretion
NASA Astrophysics Data System (ADS)
Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.
2017-01-01
We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.
CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauffer, John; Rebull, Luisa; Carey, Sean
2016-03-15
We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strengthmore » of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.« less
Metrology for Fuel Cell Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stocker, Michael; Stanfield, Eric
2015-02-04
The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. Themore » objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.« less
A sudden brightness decrease of the young pre-MS object GM Cep
NASA Astrophysics Data System (ADS)
Munari, U.; Castellani, F.; Giannini, T.; Antoniucci, S.; Lorenzetti, D.
2017-11-01
In the framework of our EXor monitoring programme dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182; Lorenzetti et al. 2009 ApJ 693, 1056), we observed a new fading of the optical brightness of the Young Stellar Object (YSO) GM Cep (d=870 pc). This is a well studied variable (Semkov & Peneva 2012 APSS,338,95; Ibryamov et al. 2015 PASA,32,11; Xiao, Kroll, & Henden 2010 AJ, 139, 1527; Sicilia-Aguilar et al. 2008 ApJ,673,382-3) whose light-curve is dominated by recurrent brightness dims, interpreted as non-periodical eclipse events due to orbiting dust structures that move along the line of sight (UXor-type variability - Grinin 1988).
Parameter Space of the Columbia River Estuarine Turbidity Maxima
NASA Astrophysics Data System (ADS)
McNeil, C. L.; Shcherbina, A.; Lopez, J.; Karna, T.; Baptista, A. M.; Crump, B. C.; Sanford, T. B.
2016-12-01
We present observations of estuarine turbidity maxima (ETM) in the North Channel of the Columbia River estuary (OR and WA, USA) covering different river discharge and flood tide conditions. Measurements were made using optical backscattering sensors on two REMUS-100 autonomous underwater vehicles (AUVs) during spring 2012, summer 2013, and fall 2012. Although significant short term variability in AUV measured optical backscatter was observed, some clustering of the data occurs around the estuarine regimes defined by a mixing parameter and a freshwater Froude number (Geyer & MacCready [2014]). Similar clustering is observed in long term time series of turbidity from the SATURN observatory. We will use available measurements and numerical model simulations of suspended sediment to further explore the variability of suspended sediment dynamics within a frame work of estuarine parameter space.
Wavefront sensor-driven variable-geometry pupil for ground-based aperture synthesis imaging
NASA Astrophysics Data System (ADS)
Tyler, David W.
2000-07-01
I describe a variable-geometry pupil (VGP) to increase image resolution for ground-based near-IR and optical imaging. In this scheme, a curvature-type wavefront sensor provides an estimate of the wavefront curvature to the controller of a high-resolution spatial light modulator (SLM) or micro- electromechanical (MEM) mirror, positioned at an image of the telescope pupil. This optical element, the VGP, passes or reflects the incident beam only where the wavefront phase is sufficiently smooth, viz., where the curvature is sufficiently low. Using a computer simulation, I show the VGP can sharpen and smooth the long-exposure PSF and increase the OTF SNR for tilt-only and low-order AO systems, allowing higher resolution and more stable deconvolution with dimmer AO guidestars.
Arya, S K; Danewalia, S S; Arora, Manju; Singh, K
2016-12-01
In the present study, the effect of variable vanadium oxidation states on the structural, optical, and dielectric properties of vanadium oxide containing lithium borate glasses has been investigated. Electron paramagnetic resonance studies indicate that vanadium in these glasses is mostly in the V 4+ state, having a tetragonal symmetry. As the glass composition of V 2 O 5 increases, tetragonality also increases at the cost of octahedral symmetry. The photoluminescence (PL) spectra of these glasses are dominated by zinc oxide transition, whereas the peaks pertaining to the vanadyl group are not visible in the PL spectra. The optical absorption spectra show a single wide absorption band, which is attributed to V 4+ ions in these glasses. The ac conductivity of the glasses increases with an increase in vanadium content. The highest electrical conductivity observed is ∼10 -5 S cm -1 at 250 °C for the glass with 2.5 mol % V 2 O 5 . Electrical conductivity is dominated by electron conduction, as indicated by the activation energy calculation.