Science.gov

Sample records for intranuclear p27kip1 protein

  1. The homeodomain protein Cux1 interacts with Grg4 to repress p27 kip1 expression during kidney development.

    PubMed

    Sharma, Madhulika; Brantley, Jennifer G; Vassmer, Dianne; Chaturvedi, Gaurav; Baas, Jennifer; Vanden Heuvel, Gregory B

    2009-06-15

    The homeodomain protein Cux1 is highly expressed in the nephrogenic zone of the developing kidney where it functions to regulate cell proliferation. Here we show that Cux1 directly interacts with the co-repressor Grg4 (Groucho 4), a known effector of Notch signaling. Promoter reporter based luciferase assays revealed enhanced repression of p27(kip1) promoter activity by Cux1 in the presence of Grg4. Chromatin immunoprecipitation (ChIP) assays demonstrated the direct interaction of Cux1 with p27(kip1) in newborn kidney tissue in vivo. ChIP assays also identified interactions of Cux1, Grg4, HDAC1, and HDAC3 with p27(kip1) at two separate sites in the p27(kip1) promoter. DNAse1 footprinting experiments revealed that Cux1 binds to the p27(kip1) promoter on the sequence containing two Sp1 sites and a CCAAT box approximately 500 bp from the transcriptional start site, and to an AT rich sequence approximately 1.5 kb from the transcriptional start site. Taken together, these results identify Grg4 as an interacting partner for Cux1 and suggest a mechanism of p27(kip1) repression by Cux1 during kidney development.

  2. The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1

    PubMed Central

    Lai, Tai-Yu; Yang, Yu-San; Hong, Wei-Fu; Chiang, Chi-Wu

    2016-01-01

    The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Altogether, this study provides a new mechanism by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role. PMID:26684356

  3. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    DOE PAGES

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; ...

    2015-10-28

    In disordered proteins we see that they are highly prevalent in biological systems. They control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Moreover, two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups ofmore » small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule: disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of- principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A).« less

  4. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    PubMed Central

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-01-01

    Disordered proteins are highly prevalent in biological systems, they control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule:disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of-principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A). PMID:26507530

  5. Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein.

    PubMed

    Erickson, L A; Jin, L; Wollan, P; Thompson, G B; van Heerden, J A; Lloyd, R V

    1999-03-01

    The histologic spectrum of proliferative parathyroid lesions (hyperplasia, adenoma, and carcinoma) often overlap, and differentiation between these lesions may at times be difficult. p27kip1 (p27) is a cyclin-dependent kinase inhibitor that helps regulate the transition from the G1 to the S phase of the cell cycle. Significantly higher levels of p27 expression have been detected in some normal tissues than in their neoplastic counterparts. The authors analyzed a series of parathyroid lesions to determine if expression of this cell cycle protein may be useful in distinguishing between parathyroid hyperplasia, adenomas, and carcinomas. Formalin-fixed paraffin-embedded tissues from randomly selected patients (22 histologically normal parathyroid glands, 33 cases of hyperplasia, 43 adenomas, and 17 carcinomas) were analyzed for expression of p27 by immunostaining. All cases were also immunostained for Ki67 with antibody MIB-1. The distribution of immunoreactivity was analyzed by quantifying the percentage of positive nuclei that was expressed as the labeling index (LI). In situ hybridization (ISH) for p27 mRNA was done using a cRNA probe with 30 of these cases. Normal parathyroid glands had the highest p27 LI (89.6 +/- 1.4), followed by hyperplasia (69.6 +/- 7.5), adenomas (56.8 +/- 3.4), and carcinomas (13.9 +/- 2.6). ISH showed no differences in p27 mRNA, indicating that the expression of the p27 gene was controlled at a posttranslational level in parathyroid tissues. Ki67 expression was significantly higher in carcinomas (LI = 8.4 +/- 1.9) than in adenomas (LI = 2.7 +/- 0.2) and hyperplasia (LI = 3.3 +/- 0.4). These results suggest that both p27 and Ki67 may be helpful in the diagnosis of histologically difficult parathyroid lesions.

  6. Lymph node metastasis in lower lip squamous cell carcinoma in relation to tumour size, histologic variables and p27Kip1 protein expression.

    PubMed

    Rodolico, Vito; Barresi, Elisa; Di Lorenzo, Roberto; Leonardi, Vincenza; Napoli, Pietro; Rappa, Francesca; Di Bernardo, Cristofaro

    2004-01-01

    We studied a consecutive series of 95 patients undergoing radical surgical resection of lower lip squamous cell carcinoma (LLSCC) to assess the correlation between lymph node status and several prognostic variables, such as sex and age, tumour size, histologic grading, maximal microscopic tumour thickness, perineural infiltration and p27Kip1 protein status, to see which of these might be predictive of the development of lymph node metastases. Statistical analysis demonstrated a significant association between node status and tumour size, histological grading, maximal thickness, perineural invasion and p27Kip1 protein expression; additionally to node metastasis, low p27Kip1 protein expression was significant correlated with high microscopic thickness. These results indicate that lower lip squamous cell carcinomas of >2 cm, with G3-G4 histological grading, maximal thickness of >6 mm, perineural invasion and low p27Kip1 protein expression (LI<19.7%) are at high risk for the development of lymph node metastases.

  7. Damage-specific DNA binding protein 1 (DDB1) is involved in ubiquitin-mediated proteolysis of p27Kip1 in response to UV irradiation.

    PubMed

    Iovine, Barbara; Iannella, Maria Luigia; Bevilacqua, Maria Assunta

    2011-05-01

    Damage-specific DNA binding protein 1 (DDB1) is a conserved protein component of the damaged DNA binding protein complex (DDB) that recognizes UV-induced DNA lesions and initiates the nucleotide excision repair process. DDB1 is also part of an E3 ubiquitin-ligase complex that targets a variety of substrates for proteolysis including the cyclin-dependent kinase inhibitor p27(Kip1). The mechanism regulating the trafficking of DDB1 and its relationship with UV irradiation is not known, although cell cycle progression is implicated in the molecular machinery driving DDB1 into the nucleus. We evaluated the involvement of DDB1 in ubiquitination of the cdk inhibitor p27(Kip1) in response to UV irradiation. First, we observed that low and high doses of UV irradiation exert different effects on p27(Kip1) protein levels. Indeed, low but not high UV doses induced p27(Kip1) protein proteolysis in several human cell lines and UV-dependent degradation is dominant over other genotoxic agents such as cisplatin. We also demonstrate that p27(Kip1) reduction is not due to transcriptional regulation and that the proteasome inhibitor MG132 affects p27(Kip1) degradation. We observed that at low UV doses the decrease in p27(Kip1) nuclear protein related with DDB1 translocation into the nucleus; conversely, high doses of UV-induced p27(Kip1) accumulation and unchanged level of DDB1. The knockdown of DDB1 or Skp2 prevents UV-induced degradation of p27(Kip1) suggesting that DDB1 is essential to regulation of p27(kip1) turnover after a mild DNA damage. Our findings support the concept that DDB1 contributes to the activation of DNA repair mechanisms and could be a key factor in regulating the cell cycle in response to UV-induced DNA damage. Although the temporal order with which DDB1 contributes to ubiquitination of p27(Kip1) or initiates the nucleotide excision repair process remains to be established, our results represent a major step towards clarifying these issues.

  8. Rat Protein Tyrosine Phosphatase η Suppresses the Neoplastic Phenotype of Retrovirally Transformed Thyroid Cells through the Stabilization of p27Kip1

    PubMed Central

    Trapasso, Francesco; Iuliano, Rodolfo; Boccia, Angelo; Stella, Antonella; Visconti, Roberta; Bruni, Paola; Baldassarre, Gustavo; Santoro, Massimo; Viglietto, Giuseppe; Fusco, Alfredo

    2000-01-01

    The r-PTPη gene encodes a rat receptor-type protein tyrosine phosphatase whose expression is negatively regulated by neoplastic cell transformation. Here we first demonstrate a dramatic reduction in DEP-1/HPTPη (the human homolog of r-PTPη) expression in a panel of human thyroid carcinomas. Subsequently, we show that the reexpression of the r-PTPη gene in highly malignant rat thyroid cells transformed by retroviruses carrying the v-mos and v-ras-Ki oncogenes suppresses their malignant phenotype. Cell cycle analysis demonstrated that r-PTPη caused G1 growth arrest and increased the cyclin-dependent kinase inhibitor p27Kip1 protein level by reducing the proteasome-dependent degradation rate. We propose that the r-PTPη tumor suppressor activity is mediated by p27Kip1 protein stabilization, because suppression of p27Kip1 protein synthesis using p27-specific antisense oligonucleotides blocked the growth-inhibitory effect induced by r-PTPη. Furthermore, we provide evidence that in v-mos- or v-ras-Ki-transformed thyroid cells, the p27Kip1 protein level was regulated by the mitogen-activated protein (MAP) kinase pathway and that r-PTPη regulated p27Kip1 stability by preventing v-mos- or v-ras-Ki-induced MAP kinase activation. PMID:11094075

  9. Parathyroid hormone-related protein induces hypertrophy in podocytes via TGF-beta(1) and p27(Kip1): implications for diabetic nephropathy.

    PubMed

    Romero, Montserrat; Ortega, Arantxa; Izquierdo, Adriana; López-Luna, Pilar; Bosch, Ricardo J

    2010-08-01

    Hypertrophy of podocytes is characteristic in diabetic nephropathy (DN). Previously, we observed the upregulation of parathyroid hormone-related protein (PTHrP) and its receptor PTH1R, in experimental DN, associated with renal hypertrophy. Herein, we test the hypothesis that PTHrP participates in the mechanism of high glucose (HG)-induced podocyte hypertrophy. On mouse podocytes, hypertrophy was assessed by protein content/cell and [H(3)]leucine incorporation. Podocytes were stimulated with HG (25 mM), PTHrP(1-36) (100 nM), angiotensin II (AngII) (100 nM) or TGF-beta(1) (5 ng/mL) in the presence or absence of PTHrP-neutralizing antibodies (alpha-PTHrP), the PTH1R antagonist JB4250 (10 microM), PTHrP silencer RNA (siRNA) or TGF-beta(1) siRNA. Protein expression was analysed by western blot and immunohistochemistry. HG-induced hypertrophy was abolished in the presence of either alpha-PTHrP or PTHrP siRNA. This effect was associated with an inhibition of the upregulation of TGF-beta(1) and p27(Kip1). JB4250 also inhibited HG-induced p27(Kip1) upregulation. Interestingly, whilst HG and AngII were unable to stimulate the expression of p27(Kip1) on PTHrP siRNA-transfected podocytes, TGF-beta(1) was still able to upregulate p27(Kip1) in these cells. Moreover, HG and PTHrP-induced hypertrophy as well as p27(Kip1) upregulation were abolished on TGF-beta(1) siRNA-transfected podocytes. Furthermore, the glomeruli of transgenic PTHrP-overexpressing mice showed a constitutive overexpression of TGF-beta(1) and p27(Kip1) to a degree similar to that of diabetic animals. PTHrP seems to participate in the hypertrophic signalling triggered by HG. In this condition, AngII induces the upregulation of PTHrP, which might induce the expression of TGF-beta(1) and p27(Kip1). These findings provide new insights into the protective effects of AngII antagonists in DN, opening new paths for intervention.

  10. Regulation of p27Kip1 phosphorylation and G1 cell cycle progression by protein phosphatase PPM1G

    PubMed Central

    Sun, Chuang; Wang, Gaohang; Wrighton, Katharine H; Lin, Han; Songyang, Zhou; Feng, Xin-Hua; Lin, Xia

    2016-01-01

    The cell cycle, an essential process leading to the cell division, is stringently controlled by the key cell cycle regulators, cyclin-CDK complexes, whose activity is further regulated by a variety of mechanisms. p27Kip1 is a cyclin-CDK inhibitor that arrests the cell cycle at the G1 phase by blocking the activation of cyclin E-CDK2 complex, preventing the improper entry to the cell cycle. Dysfunction of p27 has been frequently observed in many types of human cancers, resulting from p27 protein degradation and cytoplasmic mislocalization, which are highly regulated by the phosphorylation status of p27. Although the kinases that phosphorylate p27 have been extensively studied, phosphatases that dephosphorylate p27 remain to be elucidated. By using genomic phosphatase screening, we identified a PPM family phosphatase, PPM1G, which could reduce p27 phosphorylation at T198. We further confirmed that PPM1G is a novel p27 phosphatase by demonstrating that PPM1G can interact with and dephosphorylate p27 in cells and in vitro. Functionally, ectopic expression of PPM1G enhanced p27 protein stability and delayed cell cycle progression from G1 to S phase. In accordance, knockdown of PPM1G accelerated p27 degradation during G1 phase and rendered cells resistant to the cell cycle arrest induced by serum deprivation. Mechanistically, PPM1G inhibited the interaction of p27 to 14-3-3θ, a chaperone protein that facilitates p27 nuclear export. Knockdown of PPM1G promoted the cytoplasmic localization of p27. Taken together, our studies identified PPM1G as a novel regulator of p27 that dephosphorylates p27 at T198 site and, together with p27 kinases, PPM1G controls cell cycle progression by maintaining the proper level of p27 protein. PMID:27822412

  11. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    SciTech Connect

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan; Seok, Heon; Lee, Dong Gun; Hwang, Jae Sam; Kim, Ho

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  12. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis.

    PubMed

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan; Seok, Heon; Lee, Dong Gun; Hwang, Jae Sam; Kim, Ho

    2013-07-19

    We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer's disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  13. Multiparameter immunohistochemical analysis of the cell cycle proteins cyclin D1, Ki-67, p21WAF1, p27KIP1, and p53 in mantle cell lymphoma.

    PubMed

    Izban, K F; Alkan, S; Singleton, T P; Hsi, E D

    2000-10-01

    Mantle cell lymphoma (MCL) is characterized by overexpression of cyclin D1, a G1 cyclin that participates in the control of cell cycle progression at the G1 to S phase transition. In addition to cyclin D1, other cell cycle regulatory molecules may be involved in the proliferation and progression of MCL. Mutation of p53, deletion of p16(INK4a), and loss of p21(WAF1) expression have been reported in some cases of blastoid MCL. We sought to examine levels of expression of these proteins in typical and blastoid MCL and to determine whether differences were present between these subtypes of lymphomas. A retrospective series of typical and blastoid MCLs was evaluated for expression of the cell cycle-related proteins cyclin D1, p21(WAF1), p27(KIP1), Ki-67, and p53, as well as mitotic index. Paraffin-embedded archival tissues from 24 MCL specimens (17 typical, 7 blastoid) were immunostained with antibodies to p21(WAF1), p27(KIP1), p53, Ki-67, and cyclin D1. The percentage of positive cells for each specimen was estimated by counting 1500 cells under oil immersion microscopy. Levels of antigen expression were compared for the typical and blastoid MCLs. The mitotic index was estimated using twenty 100x oil immersion fields (OIFs) for each specimen. Cyclin D1 expression was seen in 22/24 specimens (92%). Blastoid MCLs were characterized by a significantly higher mean mitotic index (>20 mitoses/20 OIFs) and Ki-67 index (>45%) when compared with typical MCLs (P <.001 and P <.008, respectively; Fisher's exact test). High expression of p27(KIP1) (>25% staining) was seen more frequently in typical MCLs than in the blastoid variants (P =.03; Fisher's exact test). No significant differences were found between typical and blastoid MCLs for the expression of p21(WAF1) or p53. A significantly higher mitotic index and Ki-67 index were found in blastoid MCLs as compared with typical MCLs. Low p27(KIP1) expression was associated with the blastoid MCL variant. These findings confirm the

  14. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-dependent kinase 2 complex.

    PubMed

    Verkhivker, Gennady M

    2005-02-15

    The relationship between folding mechanism coupled to binding and structure prediction of the tertiary complexes is studied for the p27(Kip) (1) protein which has an intrinsically disordered unbound form and undergoes a functional folding transition during complex formation with the phosphorylated cyclin A-cyclin-dependent kinase 2 (Cdk2) binary complex. Hierarchy of p27(Kip1) structural loss determined in our earlier studies from temperature-induced Monte Carlo simulations and subsequent characterization of the transition state ensemble (TSE) for the folding reaction have shown that simultaneous ordering of the p27(Kip1) native intermolecular interface for the beta-hairpin and beta-strand secondary structure elements is critical for nucleating a rapid kinetic transition to the native tertiary complex. In the present study, we investigate the effect of forming specific intermolecular interactions on structure prediction of the p27(Kip1) tertiary complex. By constraining different secondary structure elements of p27(Kip1) in their native bound conformations and conducting multiple simulated annealing simulations, we analyze differences in the success rate of predicting the native structure of p27(Kip1) in the tertiary complex. In accordance with the nucleation-condensation mechanism, we have found that further stabilization of the native intermolecular interface for the beta-hairpin and beta-strand elements of p27(Kip1), that become ordered in the TSE, but are hardly populated in the unbound state, results in a consistent acquisition of the native bound structure. Conversely, the excessive stablization of the local secondary structure elements, which are rarely detected in the TSE, has a detrimental effect on convergence to the native bound structure. (c) 2004 Wiley-Liss, Inc.

  15. The p27Kip1 tumor suppressor gene: Still a suspect or proven guilty?

    PubMed

    Polyak, Kornelia

    2006-11-01

    The p27Kip1 cyclin-dependent kinase inhibitor is considered to be a tumor suppressor even though somatic mutations in p27Kip1 are only rarely detected in human tumors. On the other hand, overwhelming evidence indicates that its hemizygous or posttranscriptional loss plays an important role in tumorigenesis. Based on these data, p27Kip1 was classified as a haploinsufficient tumor suppressor whose protein level has to be fine-tuned for optimal function. However, a recent study links germline mutations in p27Kip1 to multiple endocrine neoplasia syndrome in rats and humans, thus establishing p27Kip1 as a bona fide tumor suppressor gene.

  16. Cellular mechanism through which parathyroid hormone-related protein induces proliferation in arterial smooth muscle cells: definition of an arterial smooth muscle PTHrP/p27kip1 pathway.

    PubMed

    Fiaschi-Taesch, Nathalie; Sicari, Brian M; Ubriani, Kiran; Bigatel, Todd; Takane, Karen K; Cozar-Castellano, Irene; Bisello, Alessandro; Law, Brian; Stewart, Andrew F

    2006-10-27

    Parathyroid hormone-related protein (PTHrP) is present in vascular smooth muscle (VSM), is markedly upregulated in response to arterial injury, is essential for normal VSM proliferation, and also markedly accentuates neointima formation following rat carotid angioplasty. PTHrP contains a nuclear localization signal (NLS) through which it enters the nucleus and leads to marked increases in retinoblastoma protein (pRb) phosphorylation and cell cycle progression. Our goal was to define key cell cycle molecules upstream of pRb that mediate cell cycle acceleration induced by PTHrP. The cyclin D/cdk-4,-6 system and its upstream regulators, the inhibitory kinases (INKs), are not appreciably influenced by PTHrP. In striking contrast, cyclin E/cdk-2 kinase activity is markedly increased by PTHrP, and this is a result of a specific, marked, PTHrP-induced proteasomal degradation of p27(kip1). Adenoviral restoration of p27(kip1) fully reverses PTHrP-induced cell cycle progression, indicating that PTHrP mediates its cell cycle acceleration in VSM via p27(kip1). In confirmation, adenoviral delivery of PTHrP to murine primary vascular smooth muscle cells (VSMCs) significantly decreases p27(kip1) expression and accelerates cell cycle progression. p27(kip1) is well known to be a central cell cycle regulatory molecule involved in both normal and pathological VSM proliferation and is a target of widely used drug-eluting stents. The current observations define a novel "PTHrP/p27(kip1) pathway" in the arterial wall and suggest that this pathway is important in normal arterial biology and a potential target for therapeutic manipulation of the arterial response to injury.

  17. Abnormal expression of p27kip1 protein in levator ani muscle of aging women with pelvic floor disorders – a relationship to the cellular differentiation and degeneration

    PubMed Central

    Bukovsky, Antonin; Copas, Pleas; Caudle, Michael R; Cekanova, Maria; Dassanayake, Tamara; Asbury, Bridgett; Van Meter, Stuart E; Elder, Robert F; Brown, Jeffrey B; Cross, Stephanie B

    2001-01-01

    Background Pelvic floor disorders affect almost 50% of aging women. An important role in the pelvic floor support belongs to the levator ani muscle. The p27/kip1 (p27) protein, multifunctional cyclin-dependent kinase inhibitor, shows changing expression in differentiating skeletal muscle cells during development, and relatively high levels of p27 RNA were detected in the normal human skeletal muscles. Methods Biopsy samples of levator ani muscle were obtained from 22 symptomatic patients with stress urinary incontinence, pelvic organ prolapse, and overlaps (age range 38–74), and nine asymptomatic women (age 31–49). Cryostat sections were investigated for p27 protein expression and type I (slow twitch) and type II (fast twitch) fibers. Results All fibers exhibited strong plasma membrane (and nuclear) p27 protein expression. cytoplasmic p27 expression was virtually absent in asymptomatic women. In perimenopausal symptomatic patients (ages 38–55), muscle fibers showed hypertrophy and moderate cytoplasmic p27 staining accompanied by diminution of type II fibers. Older symptomatic patients (ages 57–74) showed cytoplasmic p27 overexpression accompanied by shrinking, cytoplasmic vacuolization and fragmentation of muscle cells. The plasma membrane and cytoplasmic p27 expression was not unique to the muscle cells. Under certain circumstances, it was also detected in other cell types (epithelium of ectocervix and luteal cells). Conclusions This is the first report on the unusual (plasma membrane and cytoplasmic) expression of p27 protein in normal and abnormal human striated muscle cells in vivo. Our data indicate that pelvic floor disorders are in perimenopausal patients associated with an appearance of moderate cytoplasmic p27 expression, accompanying hypertrophy and transition of type II into type I fibers. The patients in advanced postmenopause show shrinking and fragmentation of muscle fibers associated with strong cytoplasmic p27 expression. PMID:11696252

  18. Apigenin induces apoptosis via downregulation of S-phase kinase-associated protein 2-mediated induction of p27Kip1 in primary effusion lymphoma cells.

    PubMed

    Hussain, A R; Khan, A S; Ahmed, S O; Ahmed, M; Platanias, L C; Al-Kuraya, K S; Uddin, S

    2010-04-01

    The mechanisms that regulate mitogenic and antiapoptotic signals in primary effusion lymphoma (PEL) are not well known. In efforts to identify novel approaches to block the proliferation of PEL cells, we assessed the effect of apigenin (4',5,7-trihydroxyflavone), a flavonoid on a panel of PEL cell lines. We studied the effect of apigenin on four PEL cell lines. Apoptosis was measured by annexin V/PI dual staining and DNA laddering. Protein expression was measured by immunoblotting. Apigenin induced apoptosis in PEL cell lines in a dose dependent manner. Such effects of apigenin appeared to result from suppression of constitutively active kinase AKT resulting in down-regulation of SKP2, hypo-phosphorylation of Rb and accumulation of p27Kip1. Apigenin treatment of PEL cells caused dephosphorylation of p-Bad protein leading to down regulation of the anti-apoptotic protein, Bcl-2 and an increase in Bax/Bcl2 ratio. Apigenin treatment also triggered Bax conformational change and subsequently translocation from cytosole to mitochondria causing loss of mitochondrial membrane potential with subsequent release of cytochrome c. Released cytochrome c onto the cytosole activated caspase-9 and caspase-3, followed by polyadenosin-5'-diphosphate-ribose polymerase (PARP) cleavage. Finally, treatment of PEL cells with apigenin down-regulated the expression of inhibitor of apoptosis protein (IAPs). Altogether, these data suggest a novel function for apigenin, acting as a suppressor of AKT/PKB pathway in PEL cells, and raise the possibility that this agent may have a future therapeutic role in PEL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

  19. [Effects of Rapamycin and Rapamycin-loaded Poly(lactic-co-glycolic)Acid Nanoparticles on Apoptosis and Expression of bcl-2 and p27(kip1) Proteins of Human Umbilical Arterial Vascular Smooth Muscle Cell].

    PubMed

    Miao, Li-fu; Cui, Yong-liang; Yin, Yan-ping; Chen, Lian-feng; Zhang, Hua; Liu, Pei-mao; Zhu, Wen-ling; Song, Cun-Xian; Yang, Jing

    2015-12-01

    To investgate the effects of rapamycin(RPM)and RPM-loaded poly(lactic-co-glycolic)acid(PLGA)nanoparticles(NPs)on the apoptosis of human umbilical arterial vascular smooth muscle cells(HUASMCs)in vitro and expression of bcl-2 and p27(kip1) protein. HUASMCs were cultured in vitro and divided to RPM and RPM-PLGA-NPs groups treated at 3 different concentration by 12 and 24 hours,with M231-smooth muscle growth supplements medium and null-PLGA-NPs treated groups as controlled. The apoptosis of HUASMCs was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling staining and flow cytometry. The expressions of bcl-2 and p27(kip1) were detected by streptacidin/peroxidase immunohistochemical method. The effect on cellular proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidecolorimetry. The proliferation of HUASMCs was inhibited by RPM and RPM-PLGA-NPs in a dose-dependent manner. DNA electrophoresis showed DNA ladder in RPM and RPM-PLGA-NPs groups and classical scalar strips in control groups. The apoptotic indexes of RPM 100 ng/ml group and RPM-PLGA-NPs 500 ng/ml group detected by flow cytometry were(45.45<2.36)% and(35.04<5.64)%,respectively,which were significantly higher than that of M231-smooth muscle growth supplements control group [(2.60<0.95)%,all P<0.01]. The apoptotic indexes of groups incubated with RPM and RPM-PLGA-NPs for 24 hours were significantly higher than those of groups which incubated for 12 hours(P<0.05,P<0.01). The positive expression indexes(PEI)of p27(kip1) and bcl-2 protein were higher in RPM and RPM-PLGA-NPs groups than that of control groups. The Spearman's rank correlation coefficient test showed that there was no significant correlation between the PEI of p27(kip1) and the apoptotic indexes in the RPM group and RPM-PLGA-NPs group(P>0.05). Rapamycin-loaded PLGA nanoparticles and rapamycin have similar effects in inhibiting proliferation and inducing apoptosis

  20. JAB1 expression is associated with inverse expression of p27(kip1) in hepatocellular carcinoma.

    PubMed

    Qin, Jun; Wang, Zhiwei; Wang, You; Ma, Lilin; Ni, Qichao; Ke, Jing

    2010-01-01

    Recent studies have shown that overexpression of c-jun activation domain binding protein 1 (JAB1) and reduced expression of p27(kip1) are associated with advanced tumor stage and poor prognosis in several human cancers. Here, We investigated the functional role and correlation of JAB1 and p27(kip1) in hepatocellular carcinoma (HCC). Immunohistochemical study for JAB1, p27(kip1) was performed on 76 cases of HCC and adjacent nontumorous tissues. 6 Fresh specimens of HCC and the adjacent liver tissue were collected for Western blot analysis. The influence of As2O3 on HCC SMMC-7721 cells, was detected by flow cytometry and Hochest staining. The expression and subcellular localization of p27(kip1) and JAB1 were investigated by Western blot and immunofluorescence. The expression of JAB1 was higher but p27(kip1) was lower in HCC than that in adjacent liver tissue. As2O3 treatment inhibited the growth of SMMC-7721 cells. In As2O3-treated cells, p27(kip1) expression was increased while JAB1 was decreased. The location of p27(kip1) and JAB1 were transferred from cytoplasm to nucleus. In HCC, JAB1 was inversely correlated with p27(kip1). As2O3 attenuated the expression of JAB1, disturbed the location and expression of p27(kip1), which may participate in regulating the growth of human hepatoma cells.

  1. High-Throughput Screening Reveals Alsterpaullone, 2-Cyanoethyl as a Potent p27Kip1 Transcriptional Inhibitor

    PubMed Central

    Walters, Brandon J.; Lin, Wenwei; Diao, Shiyong; Brimble, Mark; Iconaru, Luigi I.; Dearman, Jennifer; Goktug, Asli; Chen, Taosheng; Zuo, Jian

    2014-01-01

    p27Kip1 is a cell cycle inhibitor that prevents cyclin dependent kinase (CDK)/cyclin complexes from phosphorylating their targets. p27Kip1 is a known tumor suppressor, as the germline loss of p27Kip1 results in sporadic pituitary formation in aged rodents, and its presence in human cancers is indicative of a poor prognosis. In addition to its role in cancer, loss of p27Kip1 results in regenerative phenotypes in some tissues and maintenance of stem cell pluripotency, suggesting that p27Kip1 inhibitors could be beneficial for tissue regeneration. Because p27Kip1 is an intrinsically disordered protein, identifying direct inhibitors of the p27Kip1 protein is difficult. Therefore, we pursued a high-throughput screening strategy to identify novel p27Kip1 transcriptional inhibitors. We utilized a luciferase reporter plasmid driven by the p27Kip1 promoter to transiently transfect HeLa cells and used cyclohexamide as a positive control for non-specific inhibition. We screened a “bioactive” library consisting of 8,904 (4,359 unique) compounds, of which 830 are Food and Drug Administration (FDA) approved. From this screen, we successfully identified 111 primary hits with inhibitory effect against the promoter of p27Kip1. These hits were further refined using a battery of secondary screens. Here we report four novel p27Kip1 transcriptional inhibitors, and further demonstrate that our most potent hit compound (IC50 = 200 nM) Alsterpaullone 2-cyanoethyl, inhibits p27Kip1 transcription by preventing FoxO3a from binding to the p27Kip1 promoter. This screen represents one of the first attempts to identify inhibitors of p27Kip1 and may prove useful for future tissue regeneration studies. PMID:24646893

  2. p27(Kip1) negatively regulates the activation of murine primordial oocytes.

    PubMed

    Hirashima, Yumiko; Moniruzzaman, Mohammad; Miyano, Takashi

    2011-04-01

    In mice, small oocytes (primordial oocytes) are enclosed within flattened granulosa cells to form primordial follicles around birth. A small number of primordial oocytes enter the growth phase, whereas others are quiescent. The mechanism regulating this selection of primordial oocytes is not well understood. The objective of the present study was to understand the role of p27(Kip1), which regulates cell cycle progression in somatic cells, in the growth initiation of primordial oocytes in neonatal mice. We studied the localization of p27(Kip1) in 0-, 3-, 5-, 7- and 21-day-old mouse ovaries by immunohistochemistry. Ovaries from 3-day-old mice were treated with p27(Kip1) siRNAs (small interfering RNAs), and knockdown of p27(Kip1) was determined by immunohistochemistry and Western blotting. Ovaries treated with siRNAs were organ-cultured for 6 days, and oocyte growth was estimated histologically. Expression of p27(Kip1) was undetectable in the primordial oocytes of newborn mice. In the 3-day-old ovaries (n=3), p27(Kip1) was demonstrated in the nucleus of 36 ± 6% primordial oocytes. The percentage of p27(Kip1)-positive primordial oocytes increased to 72 ± 8 (n=3), 85 ± 7 (n=3) and 93 ± 5 (n=3) in the 5-, 7- and 21-day-old mouse ovaries, respectively. After knockdown of the p27(Kip1) protein by siRNAs, a higher proportion of oocytes entered the growth phase in cultured ovaries than those in the control. These results suggest that p27(Kip1) negatively regulates primordial oocyte growth and that knockdown of p27(Kip1) leads primordial oocytes to enter the growth phase in vitro.

  3. Inositol hexaphosphate (IP6) blocks proliferation of human breast cancer cells through a PKCdelta-dependent increase in p27Kip1 and decrease in retinoblastoma protein (pRb) phosphorylation.

    PubMed

    Vucenik, Ivana; Ramakrishna, Gayatri; Tantivejkul, Kwanchanit; Anderson, Lucy M; Ramljak, Danica

    2005-05-01

    Inositol hexaphosphate (IP6) is a naturally occurring polyphosphorylated carbohydrate with demonstrated anti-proliferative and anti-cancer activity in mammary cells. We hypothesized that IP6 modulates cell cycle proteins by action on cytoplasmic signaling molecules. The effects of both pharmacological (2 mM) and physiological (100 microM) doses of IP6 on major PKC isoforms (PKCalpha, delta, epsilon, beta and zeta), PI3-K/Akt and ras/Erk1/2 were evaluated. Treatment of MCF-7 human breast cancer cells with 2 mM IP6 for 24 h caused a 3.1-fold increase in the expression of anti-proliferative PKCdelta. Similar results were observed with 100 microM IP6 at only 30-60 min post-treatment. IP6 also caused an increase in PKCdelta activity, shown by its translocation from cytosol to membrane. No changes in expression of PKC alpha, delta, epsilon, beta and zeta were detected. Additionally, IP6 caused a decrease of Erk1/2 and Akt activity. Among cell cycle control proteins, IP6 resulted in increased p27Kip1 protein levels and marked reduction of pRb phosphorylation. Specificity of the IP6 effects on p27Kip1 and pRb in MCF-7 cells (hormone-dependent) were additionally confirmed in highly invasive hormone-independent MDA-MB 231 breast cancer cells. Use of specific pharmaclogical inhibitors of PKC delta, MEK/Erk, and PI3K/Akt pathways indicated that the IP6-mediated effects on PKC delta were responsible for up-regulation of p27Kip, and pRb hypo-phosphorylation. In addition, IP6-induced apoptosis detected in MCF-7 cells appeared also to be PKC delta-dependent. Our data suggest potential usefulness of IP6 as a novel therapeutic modulator of PKC delta and p27Kip1, an important prognostic factor in human breast cancers.

  4. Nardostachys chinensis induces granulocytic differentiation with the suppression of cell growth through p27(Kip1) protein-related G0/G1 phase arrest in human promyelocytic leukemic cells.

    PubMed

    Ju, Sung-Min; Lee, Jun; Kang, Jun-Gue; Jeong, Sun-Oh; Park, Jang-Ho; Pae, Hyun-Ock; Lee, Guem-San; Kim, Won-Sin; Lyu, Yeoung-Su; Jeon, Byung-Hun

    2015-07-01

    Nardostachys chinensis Batalin (Valerianaceae) has been used in Korean traditional medicine to elicit stomachic and sedative effects. However, the anti-leukemic activities of N. chinensis have not been well examined. To investigate the effect of N. chinensis on differentiation and proliferation in the human promyelocytic leukemic HL-60 cells. The dried roots and stems of N. chiensis are extracted using hot water and then freeze-dried. The yield of extract was 12.82% (w/w). The HL-60 cells were treated with 25-200 μg/ml of N. chinensis for 72 h or 100 μg/ml of N. chinensis for 24-72 h. Nardostachys chinensis significantly inhibited cell viability dose dependently with an IC50 of 100 μg/ml in HL-60 cells. Nardostachys chinensis induced differentiation of the cells as measured by reduction activity of NBT and expression of CD11b but not of CD14 as analyzed by flow cytometry, which indicates a differentiation toward the granulocytic lineage. Nardostachys chinensis also induced growth inhibition through G0/G1 phase arrest in the cell cycle of HL-60 cells. Among the G0/G1 phase in the cell cycle-related protein, the expression of cyclin-dependent kinase (CDK) inhibitor p27(Kip1) was increased in N. chinensis-treated HL-60 cells, whereas the expression levels of CDK2, CDK4, CDK6, cyclin D1, cyclin D3, cyclin E, and cyclin A were decreased. Interestingly, N. chinensis markedly enhanced the binding of p27(Kip1) with CDK2 and CDK6. This study demonstrated that N. chinensis is capable of inducing cellular differentiation and growth inhibition through p27(Kip1) protein-related G0/G1 phase arrest in HL-60 cells.

  5. Genetic characterization of p27kip1 and stathmin in controlling cell proliferation in vivo

    PubMed Central

    Berton, Stefania; Pellizzari, Ilenia; Fabris, Linda; D'Andrea, Sara; Segatto, Ilenia; Canzonieri, Vincenzo; Marconi, Daniela; Schiappacassi, Monica; Benevol, Sara; Gattei, Valter; Colombatti, Alfonso; Belletti, Barbara; Baldassarre, Gustavo

    2014-01-01

    The CDK inhibitor p27kip1 is a critical regulator of cell cycle progression, but the mechanisms by which p27kip1 controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27kip1 binding partner. To get more insights into the in vivo significance of this interaction, we generated p27kip1 and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27kip1 null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27kip1 null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27kip1 to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression. PMID:25486569

  6. Genetic characterization of p27(kip1) and stathmin in controlling cell proliferation in vivo.

    PubMed

    Berton, Stefania; Pellizzari, Ilenia; Fabris, Linda; D'Andrea, Sara; Segatto, Ilenia; Canzonieri, Vincenzo; Marconi, Daniela; Schiappacassi, Monica; Benevol, Sara; Gattei, Valter; Colombatti, Alfonso; Belletti, Barbara; Baldassarre, Gustavo

    2014-01-01

    The CDK inhibitor p27(kip1) is a critical regulator of cell cycle progression, but the mechanisms by which p27(kip1) controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27(kip1) binding partner. To get more insights into the in vivo significance of this interaction, we generated p27(kip1) and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27(kip1) null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27(kip1) null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27(kip1) to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.

  7. Fad24, a Positive Regulator of Adipogenesis, Is Required for S Phase Re-entry of C2C12 Myoblasts Arrested in G0 Phase and Involved in p27(Kip1) Expression at the Protein Level.

    PubMed

    Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2016-05-01

    Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level.

  8. p27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability

    PubMed Central

    Fabris, Linda; Berton, Stefania; Pellizzari, Ilenia; Segatto, Ilenia; D’Andrea, Sara; Armenia, Joshua; Bomben, Riccardo; Schiappacassi, Monica; Gattei, Valter; Philips, Mark R.; Vecchione, Andrea; Belletti, Barbara; Baldassarre, Gustavo

    2015-01-01

    The cyclin-dependent kinase (CDK) inhibitor p27kip1 is a critical regulator of the G1/S-phase transition of the cell cycle and also regulates microtubule (MT) stability. This latter function is exerted by modulating the activity of stathmin, an MT-destabilizing protein, and by direct binding to MTs. We recently demonstrated that increased proliferation in p27kip1-null mice is reverted by concomitant deletion of stathmin in p27kip1/stathmin double-KO mice, suggesting that a CDK-independent function of p27kip1 contributes to the control of cell proliferation. Whether the regulation of MT stability by p27kip1 impinges on signaling pathway activation and contributes to the decision to enter the cell cycle is largely unknown. Here, we report that faster cell cycle entry of p27kip1-null cells was impaired by the concomitant deletion of stathmin. Using gene expression profiling coupled with bioinformatic analyses, we show that p27kip1 and stathmin conjunctly control activation of the MAPK pathway. From a molecular point of view, we observed that p27kip1, by controlling MT stability, impinges on H-Ras trafficking and ubiquitination levels, eventually restraining its full activation. Our study identifies a regulatory axis controlling the G1/S-phase transition, relying on the regulation of MT stability by p27kip1 and finely controlling the spatiotemporal activation of the Ras-MAPK signaling pathway. PMID:26512117

  9. p27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability.

    PubMed

    Fabris, Linda; Berton, Stefania; Pellizzari, Ilenia; Segatto, Ilenia; D'Andrea, Sara; Armenia, Joshua; Bomben, Riccardo; Schiappacassi, Monica; Gattei, Valter; Philips, Mark R; Vecchione, Andrea; Belletti, Barbara; Baldassarre, Gustavo

    2015-11-10

    The cyclin-dependent kinase (CDK) inhibitor p27(kip1) is a critical regulator of the G1/S-phase transition of the cell cycle and also regulates microtubule (MT) stability. This latter function is exerted by modulating the activity of stathmin, an MT-destabilizing protein, and by direct binding to MTs. We recently demonstrated that increased proliferation in p27(kip1)-null mice is reverted by concomitant deletion of stathmin in p27(kip1)/stathmin double-KO mice, suggesting that a CDK-independent function of p27(kip1) contributes to the control of cell proliferation. Whether the regulation of MT stability by p27(kip1) impinges on signaling pathway activation and contributes to the decision to enter the cell cycle is largely unknown. Here, we report that faster cell cycle entry of p27(kip1)-null cells was impaired by the concomitant deletion of stathmin. Using gene expression profiling coupled with bioinformatic analyses, we show that p27(kip1) and stathmin conjunctly control activation of the MAPK pathway. From a molecular point of view, we observed that p27(kip1), by controlling MT stability, impinges on H-Ras trafficking and ubiquitination levels, eventually restraining its full activation. Our study identifies a regulatory axis controlling the G1/S-phase transition, relying on the regulation of MT stability by p27(kip1) and finely controlling the spatiotemporal activation of the Ras-MAPK signaling pathway.

  10. CBP and p27KIP1 in Prostate Carcinogenesis

    DTIC Science & Technology

    2008-02-01

    acid ( SAHA ), are effective for the treatment of prostate tumors developed in CBP/p27KIP1 mice. As scheduled in our proposal, we have generated CBP...on tumors developed in CBP/p27KIP1 double knockout mice. 6. References Fero ML et al., A syndrome of multiorgan hyperplasia with features of

  11. Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells.

    PubMed

    Ibañez, Irene L; Bracalente, Candelaria; Notcovich, Cintia; Tropper, Ivanna; Molinari, Beatriz L; Policastro, Lucía L; Durán, Hebe

    2012-01-01

    The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2)O(2)) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2)O(2) removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2)O(2) (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2)O(2) scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27

  12. Phosphorylation and Subcellular Localization of p27Kip1 Regulated by Hydrogen Peroxide Modulation in Cancer Cells

    PubMed Central

    Ibañez, Irene L.; Bracalente, Candelaria; Notcovich, Cintia; Tropper, Ivanna; Molinari, Beatriz L.; Policastro, Lucía L.; Durán, Hebe

    2012-01-01

    The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H2O2) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H2O2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H2O2 (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H2O2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27Kip1. PMID

  13. Cytoplasmic p27Kip1 counteracts the pro-apoptotic function of the open conformation of PTEN by retention and destabilization of PTEN outside of the nucleus.

    PubMed

    Andrés-Pons, Amparo; Gil, Anabel; Oliver, María D; Sotelo, Natalia-Soledad; Pulido, Rafael

    2012-02-01

    The tumor suppressor activity of p27Kip1 takes place in the cell nucleus by inhibitory binding to cyclin/CDK complexes. p27Kip1 can also be localized in the cytoplasm, where it has been proposed to have oncogenic properties. Here, we describe a novel role for cytoplasmic p27Kip1 which could account for its activity as an oncoprotein by negative regulation of the PTEN tumor suppressor. p27Kip1 physically interacted with the open conformation of PTEN, which is competent to enter the nucleus. In mammalian cells, cytoplasmic p27Kip1 retained to nuclear-targeted PTEN in the cytoplasm. This retention was exerted by the C-terminal p27Kip1 region, and was independent of cyclin/CDK-binding. The nuclear accumulation of PTEN triggered by pro-apoptotic TNFα treatment was abolished by cytoplasmic p27Kip1. Furthermore, conformationally-open PTEN displayed diminished protein stability and pro-apoptotic activity in the presence of cytoplasmic p27Kip1. Our results support a conformationally-dependent model of cytoplasmic retention and negative regulation of the activity of nuclear PTEN by oncogenic cytoplasmic p27Kip1, and suggest the existence of reciprocal mechanisms to regulate the levels of both p27Kip1 and PTEN. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Identification of cdk2 binding sites on the p27Kip1 cyclin-dependent kinase inhibitor.

    PubMed

    Kwon, T K; Nordin, A A

    1998-02-12

    A cdk2 binding domain on p27Kip1 located within the sequence of amino acids 53-85 was further characterized by generating a series of point mutations within amino acid residues 62-75. Two regions, FDF (residues 62-64) and GXY (residues 72 and 74), were identified within the beta hairpin region of p27Kip1. Mutations within these regions essentially completely inhibited the binding to in vitro translated cdk2 and cdk2/cyclin E complexes formed in vitro or in vivo. The p27Kip1 GST-fusion protein of the point mutation that replaces phenylalanine at residue 64 to alanine (F64A) showed approximately twofold less inhibition of cdk2 kinase activity. The cellular response to the introduction of the F64A mutant form of p27Kip1 was compared to that of p27Kip1 wild type by transfecting HeLa cells with constructs of full length sense and antisense coding sequences. Overexpression of the F64A mutant form of p27Kip1 bound significantly lower levels of cdk2 as compared to wild type and did not affect the cdk2 related kinase activity of the transfected HeLa cells. Overexpression of wild type p27Kip1 resulted in a reduction of the level of cdk2 kinase activity and effectively suppressed the growth of the transfected HeLa cells.

  15. p27kip1 overexpression promotes paclitaxel-induced apoptosis in pRb-defective SaOs-2 cells.

    PubMed

    Gabellini, Chiara; Pucci, Bruna; Valdivieso, Paola; D'Andrilli, Giuseppina; Tafani, Marco; De Luca, Antonio; Masciullo, Valeria

    2006-08-15

    p27kip1 is a cyclin-dependent kinase (CDK) inhibitor, which controls several cellular processes in strict collaboration with pRb. We evaluated the role of p27kip1 in paclitaxel-induced apoptosis in the pRb-defective SaOs-2 cells. Following 48 h of exposure of SaOs-2 cells to 100 nM paclitaxel, we observed an increase in p27kip1 expression caused by the decrease of the ubiquitin-proteasome activity. Such increase was not observed in SaOs-2 cells treated with the caspase inhibitors Z-VAD-FMK, suggesting that p27kip1 enhancement at 48 h is strictly related to apoptosis. Finally, we demonstrated that SaOs-2 cells transiently overexpressing the p27kip1 protein are more susceptible to paclitaxel-induced apoptosis than SaOs-2 cells transiently transfected with the empty vector. Indeed, after 48 h of paclitaxel treatment, 41.8% of SaOs-2 cells transiently transfected with a pcDNA3-p27kip1 construct were Annexin V-positive compared to 30.6% of SaOs-2 cells transfected with the empty vector (P < 0.05). In conclusion, we demonstrated that transfection of the pRb-defective SaOs-2 cells with the p27kip1 gene via plasmid increases their susceptibility to paclitaxel-induced apoptosis. The promoting effect of p27kip1 overexpression on apoptosis makes p27kip1 and proteasomal inhibitors interesting tools for therapy in patients with pRb-defective cancers. (c) 2006 Wiley-Liss, Inc.

  16. Expression of p27Kip1, a cell cycle repressor protein, is inversely associated with potential carcinogenic risk in the genetic rodent models of obesity and long-lived Ames dwarf mice.

    PubMed

    Eto, Isao

    2013-06-01

    The association of genetic rodent models of obesity and cancer still remains a controversial issue. Although this controversy has largely been resolved in recent years for homozygous leptin receptor-deficient obese Zucker rats and homozygous long-lived Ames dwarf mice, it is still unresolved for homozygous leptin-deficient obese ob/ob mice. The objective of the present study described below was to investigate whether the expression of the cell cycle repressor protein p27(Kip1) is (a) down-regulated in the tumor-free homozygous leptin receptor-deficient obese Zucker rats as well as tumor-free homozygous leptin-deficient obese ob/ob mice and (b) up-regulated in the tumor-free homozygous long-lived Ames dwarf mice. To achieve this objective, we first performed western immunoblot analysis of the hepatic expression of p27. We then performed western immunoblot analysis and proteomic analysis of the hepatic expression of the proteins involved in the upstream molecular signaling pathways for the expression of p27. Lastly, we analyzed the serum levels of glucose, insulin, and branched-chain amino acids, all of which have been shown to regulate, causally and inversely, the expression of p27. The results indicated that the hepatic expression of p27 was down-regulated in the homozygous leptin receptor-deficient obese Zucker rats and up-regulated in the homozygous long-lived Ames dwarf mice as expected. We also found that the hepatic expression of p27 was down-regulated in the homozygous leptin-deficient obese ob/ob mice. This last observation was not completely consistent with all of the results of the published studies where homozygous leptin-deficient obese ob/ob mice were used. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Differential Regulation of P27Kip1 Expression by Mitogenic and Hypertrophic Factors

    PubMed Central

    Servant, Marc J.; Coulombe, Philippe; Turgeon, Benjamin; Meloche, Sylvain

    2000-01-01

    Platelet-derived growth factor-BB (PDGF-BB) acts as a full mitogen for cultured aortic smooth muscle cells (SMC), promoting DNA synthesis and cell proliferation. In contrast, angiotensin II (Ang II) induces cellular hypertrophy as a result of increased protein synthesis, but is unable to drive cells into S phase. In an effort to understand the molecular basis for this differential growth response, we have examined the downstream effects of PDGF-BB and Ang II on regulators of the cell cycle machinery in rat aortic SMC. Both PDGF-BB and Ang II were found to stimulate the accumulation of G1 cyclins with similar kinetics. In addition, little difference was observed in the expression level of their catalytic partners, Cdk4 and Cdk2. However, while both factors increased the enzymatic activity of Cdk4, only PDGF-BB stimulated Cdk2 activity in late G1 phase. The lack of activation of Cdk2 in Ang II-treated cells was causally related to the failure of Ang II to stimulate phosphorylation of the enzyme on threonine and to downregulate p27Kip1 expression. By contrast, exposure to PDGF-BB resulted in a progressive and dramatic reduction in the level of p27Kip1 protein. The time course of p27Kip1 decline was correlated with a reduced rate of synthesis and an increased rate of degradation of the protein. Importantly, the repression of p27Kip1 synthesis by PDGF-BB was associated with a marked attenuation of Kip1 gene transcription and a corresponding decrease in Kip1 mRNA accumulation. We also show that the failure of Ang II to promote S phase entry is not related to the autocrine production of transforming growth factor-β1 by aortic SMC. These results identify p27Kip1 as an important regulator of the phenotypic response of vascular SMC to mitogenic and hypertrophic stimuli. PMID:10662779

  18. Gfer inhibits Jab1-mediated degradation of p27kip1 to restrict proliferation of hematopoietic stem cells

    PubMed Central

    Teng, Ellen C.; Todd, Lance R.; Ribar, Thomas J.; Lento, William; Dimascio, Leah; Means, Anthony R.; Sankar, Uma

    2011-01-01

    Growth factor erv1-like (Gfer) is an evolutionarily conserved sulfhydryl oxidase that is enriched in embryonic and adult stem cells and plays an essential prosurvival role in pluripotent embryonic stem cells. Here we show that knockdown (KD) of Gfer in hematopoietic stem cells (HSCs) compromises their in vivo engraftment potential and triggers a hyper-proliferative response that leads to their exhaustion. KD of Gfer in HSCs does not elicit a significant alteration of mitochondrial morphology or loss of cell viability. However, these cells possess significantly reduced levels of the cyclin-dependent kinase inhibitor p27kip1. In contrast, overexpression of Gfer in HSCs results in significantly elevated total and nuclear p27kip1. KD of Gfer results in enhanced binding of p27kip1 to its inhibitor, the COP9 signalosome subunit jun activation-domain binding protein 1 (Jab1), leading to its down-regulation. Conversely, overexpression of Gfer results in its enhanced binding to Jab1 and inhibition of the Jab1-p27kip1 interaction. Furthermore, normalization of p27kip1 in Gfer-KD HSCs rescues their in vitro proliferation deficits. Taken together, our data demonstrate the presence of a novel Gfer-Jab1-p27kip1 pathway in HSCs that functions to restrict abnormal proliferation. PMID:21346186

  19. Effect of hypoxia and Beraprost sodium on human pulmonary arterial smooth muscle cell proliferation: the role of p27kip1

    PubMed Central

    Kadowaki, Maiko; Mizuno, Shiro; Demura, Yoshiki; Ameshima, Shingo; Miyamori, Isamu; Ishizaki, Takeshi

    2007-01-01

    Background Hypoxia induces the proliferation of pulmonary arterial smooth muscle cell (PASMC) in vivo and in vitro, and prostacyclin analogues are thought to inhibit the growth of PASMC. Previous studies suggest that p27kip1, a kind of cyclin-dependent kinase inhibitor, play an important role in the smooth muscle cell proliferation. However, the mechanism of hypoxia and the subcellular interactions between p27kip1 and prostacyclin analogues in human pulmonary arterial smooth muscle cell (HPASMC) are not fully understood. Methods We investigated the role of p27kip1 in the ability of Beraprost sodium (BPS; a stable prostacyclin analogue) to inhibit the proliferation of HPASMC during hypoxia. To clarify the biological effects of hypoxic air exposure and BPS on HPASMC, the cells were cultured in a hypoxic chamber under various oxygen concentrations (0.1–21%). Thereafter, DNA synthesis was measured as bromodeoxyuridine (BrdU) incorporation, the cell cycle was analyzed by flow cytometry with propidium iodide staining. The p27kip1 mRNA and protein expression and it's stability was measured by real-time RT-PCR and Western blotting. Further, we assessed the role of p27kip1 in HPASMC proliferation using p27kip1 gene knockdown using small interfering RNA (siRNA) transfection. Results Although severe hypoxia (0.1% oxygen) suppressed the proliferation of serum-stimulated HPASMC, moderate hypoxia (2% oxygen) enhanced proliferation in accordance with enhanced p27kip1 protein degradation, whereas BPS suppressed HPASMC proliferation under both hypoxic and normoxic conditions by suppressing p27kip1 degradation with intracellular cAMP-elevation. The 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP), a cAMP analogue, had similar action as BPS in the regulation of p27kip1. Moderate hypoxia did not affect the stability of p27kip1 protein expression, but PDGF, known as major hypoxia-induced growth factors, significantly decreased p27kip1 protein stability. We also demonstrated that

  20. Levels of p27(kip1) determine Aplidin sensitivity.

    PubMed

    Moneo, Victoria; Serelde, Beatriz G; Leal, Juan F M; Blanco-Aparicio, Carmen; Diaz-Uriarte, Ramon; Aracil, Miguel; Tercero, Juan C; Jimeno, José; Carnero, Amancio

    2007-04-01

    Aplidin (plitidepsin) is a novel anticancer drug isolated from the marine tunicate Aplidium albicans. Aplidin shows potent antitumor activity in preclinical models against a wide variety of human tumors. Aplidin is currently in phase II clinical trials in a variety of solid tumors and hematologic malignancies. Moreover, clinical studies of Aplidin in combination with other agents are ongoing because it generally lacks cross-resistance with other known cytotoxic drugs. The mode of action of Aplidin in tumor cells is only partially understood. Aplidin induces an early oxidative stress response, which results in a rapid and sustained activation of the epidermal growth factor receptor, the nonreceptor protein tyrosine kinase Src, and the serine threonine kinases c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase. Here, we show that sensitivity to Aplidin correlates inversely with the levels of expression of the cyclin-dependent kinase inhibitor p27(kip1) (p27) in a panel of low passaged human sarcoma cell lines. Aplidin induces p27 through an oxidation-dependent mechanism and the reduction of p27 levels by specific short hairpin RNA increases Aplidin sensitivity. We confirmed these results in p27 null mouse embryonic fibroblasts corroborating the specificity of the p27 role in Aplidin response because p21(waf1) null mouse embryonic fibroblasts do not show this increased sensitivity. We propose a mechanism of action of Aplidin involving p27 and support the analysis of p27 in the response to Aplidin in currently ongoing clinical trials to establish the levels of this protein as response predictor.

  1. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1

    PubMed Central

    Luo, Jian; Chen, Yongjun; Li, Qiang; Wang, Bing; Zhou, Yanqiong; Lan, Hongzhen

    2016-01-01

    Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin-dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III–IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments. PMID:27279267

  2. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1.

    PubMed

    Luo, Jian; Chen, Yongjun; Li, Qiang; Wang, Bing; Zhou, Yanqiong; Lan, Hongzhen

    2016-08-01

    Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin‑dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III-IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments.

  3. p27KIP1 is abnormally expressed in Diffuse Large B-Cell Lymphomas and is associated with an adverse clinical outcome

    PubMed Central

    Sáez, Al; Sánchez, E; Sánchez-Beato, M; Cruz, M A; Chacón, I; Muñoz, E; Camacho, F I; Martínez-Montero, J C; Mollejo, M; Garcia, J F; Piris, M A

    1999-01-01

    Cell cycle progression is regulated by the combined action of cyclins, cyclin-dependent kinases (CDKs), and CDK-inhibitors (CDKi), which are negative cell cycle regulators. p27KIP1 is a CDKi key in cell cycle regulation, whose degradation is required for G1/S transition. In spite of the absence of p27KIP1 expression in proliferating lymphocytes, some aggressive B-cell lymphomas have been reported to show an anomalous p27KIP1 staining. We analysed p27KIP1 expression in a series of Diffuse Large B-cell Lymphoma (DLBCL), correlating it with the proliferative index and clinical outcome, to characterize the implications of this anomalous staining in lymphomagenesis in greater depth. For the above mentioned purposes, an immunohistochemical technique in paraffin-embedded tissues was employed, using commercially available antibodies, in a series of 133 patients with known clinical outcomes. Statistical analysis was performed in order to ascertain which clinical and molecular variables may influence outcome, in terms of disease-free survival (DFS) and overall survival (OS). The relationships between p27KIP1 and MIB-1 (Ki-67) were also tested. An abnormally high expression of p27KIP1 was found in lymphomas of this type. The overall correlation between p27KIP1 and MIB-1 showed there to be no significant relationship between these two parameters, this differing from observations in reactive lymphoid and other tissues. Analysis of the clinical relevance of these findings showed that a high level of p27KIP1 expression in this type of tumour is an adverse prognostic marker, in both univariate and multivariate analysis. These results show that there is abnormal p27KIP1 expression in DLBCL, with adverse clinical significance, suggesting that this anomalous p27KIP1 protein may be rendered non-functional through interaction with other cell cycle regulator proteins. © 1999 Cancer Research Campaign PMID:10424746

  4. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism

    PubMed Central

    Yu, Dan; Makkar, George; Dong, Tuo; Strickland, Dudley K.; Sarkar, Rajabrata; Monahan, Thomas Stacey

    2015-01-01

    Background Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo. Methods and Results siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization. Conclusions MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular

  5. Notch Signaling Activates Stem Cell Properties of Müller Glia through Transcriptional Regulation and Skp2-mediated Degradation of p27Kip1

    PubMed Central

    Parameswaran, Sowmya; Mathews, Saumi; Xia, Xiaohuan; Zheng, Li; Neville, Andrew J.; Ahmad, Iqbal

    2016-01-01

    Müller glia (MG), the sole glial cells generated by retinal progenitors, have emerged as a viable cellular target for therapeutic regeneration in degenerative blinding diseases, as they possess dormant stem cell properties. However, the mammalian MG does not display the neurogenic potential of their lower vertebrate counterparts, precluding their practical clinical use. The answer to this barrier may be found in two interlinked processes underlying the neurogenic potential, i.e., the activation of the dormant stem cell properties of MG and their differentiation along the neuronal lineage. Here, we have focused on the former and examined Notch signaling-mediated activation of MG. We demonstrate that one of the targets of Notch signaling is the cyclin-dependent kinase inhibitor (CKI), p27Kip1, which is highly expressed in quiescent MG. Notch signaling facilitates the activation of MG by inhibiting p27Kip1 expression. This is likely achieved through the Notch- p27Kip1 and Notch-Skp2-p27Kip1 axes, the former inhibiting the expression of p27Kip1 transcripts and the latter levels of p27Kip1 proteins by Skp2-mediated proteasomal degradation. Thus, Notch signaling may facilitate re-entry of MG into the cell cycle by inhibiting p27Kip1 expression both transcriptionally and post-translationally. PMID:27011052

  6. Prodigiosin down-regulates SKP2 to induce p27KIP1 stabilization and antiproliferation in human lung adenocarcinoma cells

    PubMed Central

    Hsieh, Hsin-Ying; Shieh, Jeng-Jer; Chen, Chun-Jung; Pan, Mu-Yun; Yang, Shu-Yi; Lin, Shin-Chang; Chang, Jo-Shu; Lee, Alan Yueh-Luen; Chang, Chia-Che

    2012-01-01

    BACKGROUND AND PURPOSE High levels of SKP2 are a poor prognostic factor in multiple human cancers and mostly correlate with low p27KIP1 levels. Prodigiosin is a bacterial tripyrrole pigment with strong pro-apoptotic activity. Induction of cell cycle blockade underlies one of its anticancer actions but the mechanisms involved are unclear. The aim of this study was to explore the role of the SKP2–p27KIP1 axis in prodigiosin's cytostatic effect on human lung adenocarcinoma cells. EXPERIMENTAL APPROACH Prodigiosin's effects on cell cycle progression and long-term cell proliferation of human lung adenocarcinoma cells were characterized by flow cytometry and colony formation assay, respectively. Real-time RT-PCR and promoter activity analyses were performed for assessing transcriptional control, while cycloheximide chase analysis evaluated protein stability. Immunoblotting was employed for mechanistic study. KEY RESULTS Prodigiosin increased p27KIP1 expression mainly by stabilizing p27KIP1 through transcriptional repression of SKP2. Importantly, SKP2 overexpression or p27KIP1 depletion restored the colony forming capacity of prodigiosin-treated cells. Furthermore, prodigiosin induced PKB dephosphorylation, leading to PKB inhibition as revealed by decreased serine 9 phosphorylation of GSK-3β. Constitutive PKB activation reduced prodigiosin-induced SKP2 repression. Prodigiosin also down-regulated E2F1 (mediates PI3K/PKB-induced SKP2 transcription), but E2F1 overexpression failed to restore SKP2 expression in prodigiosin-treated cells. CONCLUSIONS AND IMPLICATIONS Transcriptional repression of SKP2 and the consequent accumulation of p27KIP1 are essential for prodigiosin's antiproliferative action. Mechanistically, prodigiosin induces PKB inhibition to down-regulate SKP2 in a GSK-3β- and E2F1-independent manner. Our findings further implicate the potential for developing prodigiosin as a novel class of SKP2-targeting anticancer agent. PMID:22372491

  7. Contact inhibition modulates intracellular levels of miR-223 in a p27kip1-dependent manner

    PubMed Central

    Armenia, Joshua; Fabris, Linda; Lovat, Francesca; Berton, Stefania; Segatto, Ilenia; D'Andrea, Sara; Ivan, Cristina; Cascione, Luciano; Calin, George A.; Croce, Carlo M.; Colombatti, Alfonso; Vecchione, Andrea; Belletti, Barbara; Baldassarre, Gustavo

    2014-01-01

    MicroRNAs (miRs) are a large class of small regulatory RNAs that function as nodes of signaling networks. This implicates that miRs expression has to be finely tuned, as observed during cell cycle progression. Here, using an expression profiling approach, we provide evidence that the CDK inhibitor p27Kip1 regulates miRs expression following cell cycle exit. By using wild type and p27KO cells harvested in different phases of the cell cycle we identified several miRs regulated by p27Kip1 during the G1 to S phase transition. Among these miRs, we identified miR-223 as a miR specifically upregulated by p27Kip1 in G1 arrested cells. Our data demonstrate that p27Kip1 regulated the expression of miR-223, via two distinct mechanisms. p27Kip1 directly stabilized mature miR-223 expression, acting as a RNA binding protein and it controlled E2F1 expression that, in turn, regulated miR-223 promoter activity. The resulting elevated miR-223 levels ultimately participated to arresting cell cycle progression following contact inhibition. Importantly, this mechanism of growth control was conserved in human cells and deranged in breast cancers. Here, we identify a novel and conserved function of p27Kip1 that, by modulating miR-223 expression, contributes to proper regulation of cell cycle exit following contact inhibition. Thus we propose a new role for miR-223 in the regulation of breast cancer progression. PMID:24727437

  8. Contact inhibition modulates intracellular levels of miR-223 in a p27kip1-dependent manner.

    PubMed

    Armenia, Joshua; Fabris, Linda; Lovat, Francesca; Berton, Stefania; Segatto, Ilenia; D'Andrea, Sara; Ivan, Cristina; Cascione, Luciano; Calin, George A; Croce, Carlo M; Colombatti, Alfonso; Vecchione, Andrea; Belletti, Barbara; Baldassarre, Gustavo

    2014-03-15

    MicroRNAs (miRs) are a large class of small regulatory RNAs that function as nodes of signaling networks. This implicates that miRs expression has to be finely tuned, as observed during cell cycle progression. Here, using an expression profiling approach, we provide evidence that the CDK inhibitor p27Kip1 regulates miRs expression following cell cycle exit. By using wild type and p27KO cells harvested in different phases of the cell cycle we identified several miRs regulated by p27Kip1 during the G1 to S phase transition. Among these miRs, we identified miR-223 as a miR specifically upregulated by p27Kip1 in G1 arrested cells. Our data demonstrate that p27Kip1 regulated the expression of miR-223, via two distinct mechanisms. p27Kip1 directly stabilized mature miR-223 expression, acting as a RNA binding protein and it controlled E2F1 expression that, in turn, regulated miR-223 promoter activity. The resulting elevated miR-223 levels ultimately participated to arresting cell cycle progression following contact inhibition. Importantly, this mechanism of growth control was conserved in human cells and deranged in breast cancers. Here, we identify a novel and conserved function of p27Kip1 that, by modulating miR-223 expression, contributes to proper regulation of cell cycle exit following contact inhibition. Thus we propose a new role for miR-223 in the regulation of breast cancer progression.

  9. Roles of p53 and p27 Kip1 in the regulation of neurogenesis in the murine adult subventricular zone

    PubMed Central

    Gil-Perotin, Sara; Haines, Jeffery D.; Kaur, Jasbir; Marin-Husstege, Mireya; Spinetta, Michael J.; Kim, Kwi-Hye; Duran-Moreno, Maria; Schallert, Timothy; Zindy, Frederique; Roussel, Martine F.; Garcia-Verdugo, Jose M.; Casaccia, Patrizia

    2011-01-01

    The tumor suppressor protein p53 (Trp53) and the cell cycle inhibitor p27 Kip1 (Cdknb1) have both been implicated in regulating proliferation of adult subventricular zone (aSVZ) cells. We previously reported that genetic ablation of Trp53 (Trp53 −/−) or Cdknb1 (p27 Kip1−/−) increased proliferation of cells in the aSVZ, but differentially affected the number of adult born neuroblasts. We therefore hypothesized that these molecules might play non-redundant roles. To test this hypothesis we generated mice lacking both genes (Trp53 −/−;p27 Kip1−/−) and analysed the consequences on aSVZ cells and adult neuroblasts. Proliferation and self-renewal of cultured aSVZ cells were increased in the double mutants compared with control, but the mice did not develop spontaneous brain tumors. In contrast, the number of adult-born neuroblasts in the double mutants was similar to wild-type animals and suggested a complementation of the p27 Kip1−/− phenotype due to loss of Trp53. Cellular differences detected in the aSVZ correlated with cellular changes in the olfactory bulb and behavioral data on novel odor recognition. The exploration time for new odors was reduced in p27 Kip1−/− mice, increased in Trp53 −/− mice and normalized in the double Trp53−/−;p27 Kip1−/− mutants. At the molecular level, Trp53 −/− aSVZ cells were characterized by higher levels of NeuroD and Math3 and by the ability to generate neurons more readily. In contrast, p27 Kip1−/− cells generated fewer neurons, due to enhanced proteasomal degradation of pro-neural transcription factors. Together, these results suggest that p27 Kip1 and p53 function non-redundantly to modulate proliferation and self-renewal of aSVZ cells and antagonistically in regulating adult neurogenesis. PMID:21899604

  10. Mcl1 regulates the terminal mitosis of neural precursor cells in the mammalian brain through p27Kip1.

    PubMed

    Hasan, S M Mahmudul; Sheen, Ashley D; Power, Angela M; Langevin, Lisa Marie; Xiong, Jieying; Furlong, Michael; Day, Kristine; Schuurmans, Carol; Opferman, Joseph T; Vanderluit, Jacqueline L

    2013-08-01

    Cortical development requires the precise timing of neural precursor cell (NPC) terminal mitosis. Although cell cycle proteins regulate terminal mitosis, the factors that influence the cell cycle machinery are incompletely understood. Here we show in mice that myeloid cell leukemia 1 (Mcl1), an anti-apoptotic Bcl-2 protein required for the survival of NPCs, also regulates their terminal differentiation through the cell cycle regulator p27(Kip1). A BrdU-Ki67 cell profiling assay revealed that in utero electroporation of Mcl1 into NPCs in the embryonic neocortex increased NPC cell cycle exit (the leaving fraction). This was further supported by a decrease in proliferating NPCs (Pax6(+) radial glial cells and Tbr2(+) neural progenitors) and an increase in differentiating cells (Dcx(+) neuroblasts and Tbr1(+) neurons). Similarly, BrdU birth dating demonstrated that Mcl1 promotes premature NPC terminal mitosis giving rise to neurons of the deeper cortical layers, confirming their earlier birthdate. Changes in Mcl1 expression within NPCs caused concomitant changes in the levels of p27(Kip1) protein, a key regulator of NPC differentiation. Furthermore, in the absence of p27(Kip1), Mcl1 failed to induce NPC cell cycle exit, demonstrating that p27(Kip1) is required for Mcl1-mediated NPC terminal mitosis. In summary, we have identified a novel physiological role for anti-apoptotic Mcl1 in regulating NPC terminal differentiation.

  11. Rho/ROCK pathway inhibition by the CDK inhibitor p27(kip1) participates in the onset of macrophage 3D-mesenchymal migration.

    PubMed

    Gui, Philippe; Labrousse, Arnaud; Van Goethem, Emeline; Besson, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2014-09-15

    Infiltration of macrophages into tissue can promote tumour development. Depending on the extracellular matrix architecture, macrophages can adopt two migration modes: amoeboid migration--common to all leukocytes, and mesenchymal migration--restricted to macrophages and certain tumour cells. Here, we investigate the initiating mechanisms involved in macrophage mesenchymal migration. We show that a single macrophage is able to use both migration modes. Macrophage mesenchymal migration is correlated with decreased activity of Rho/Rho-associated protein kinase (ROCK) and is potentiated when ROCK is inhibited, suggesting that amoeboid inhibition participates in mechanisms that initiate mesenchymal migration. We identify the cyclin-dependent kinase (CDK) inhibitor p27(kip1) (also known as CDKN1B) as a new effector of macrophage 3D-migration. By using p27(kip1) mutant mice and small interfering RNA targeting p27(kip1), we show that p27(kip1) promotes mesenchymal migration and hinders amoeboid migration upstream of the Rho/ROCK pathway, a process associated with a relocation of the protein from the nucleus to the cytoplasm. Finally, we observe that cytoplasmic p27(kip1) is required for in vivo infiltration of macrophages within induced tumours in mice. This study provides the first evidence that silencing of amoeboid migration through inhibition of the Rho/ROCK pathway by p27(kip1) participates in the onset of macrophage mesenchymal migration.

  12. p27kip1 expression limits H-Ras-driven transformation and tumorigenesis by both canonical and non-canonical mechanisms

    PubMed Central

    Segatto, Ilenia; Citron, Francesca; D'Andrea, Sara; Cusan, Martina; Benevol, Sara; Perin, Tiziana; Massarut, Samuele; Canzonieri, Vincenzo; Schiappacassi, Monica; Belletti, Barbara; Baldassarre, Gustavo

    2016-01-01

    The tumor suppressor protein p27Kip1 plays a pivotal role in the control of cell growth and metastasis formation. Several studies pointed to different roles for p27Kip1 in the control of Ras induced transformation, although no explanation has been provided to elucidate these differences. We recently demonstrated that p27kip1 regulates H-Ras activity via its interaction with stathmin. Here, using in vitro and in vivo models, we show that p27kip1 is an important regulator of Ras induced transformation. In H-RasV12 transformed cells, p27kip1 suppressed cell proliferation and tumor growth via two distinct mechanisms: 1) inhibition of CDK activity and 2) impairment of MT-destabilizing activity of stathmin. Conversely, in K-Ras4BV12 transformed cells, p27kip1 acted mainly in a CDK-dependent but stathmin-independent manner. Using human cancer-derived cell lines and primary breast and sarcoma samples, we confirmed in human models what we observed in mice. Overall, we highlight a pathway, conserved from mouse to human, important in the regulation of H-Ras oncogenic activity that could have therapeutic and diagnostic implication in patients that may benefit from anti-H-Ras therapies. PMID:27579539

  13. p27kip1 expression limits H-Ras-driven transformation and tumorigenesis by both canonical and non-canonical mechanisms.

    PubMed

    Pellizzari, Ilenia; Fabris, Linda; Berton, Stefania; Segatto, Ilenia; Citron, Francesca; D'Andrea, Sara; Cusan, Martina; Benevol, Sara; Perin, Tiziana; Massarut, Samuele; Canzonieri, Vincenzo; Schiappacassi, Monica; Belletti, Barbara; Baldassarre, Gustavo

    2016-10-04

    The tumor suppressor protein p27Kip1 plays a pivotal role in the control of cell growth and metastasis formation.Several studies pointed to different roles for p27Kip1 in the control of Ras induced transformation, although no explanation has been provided to elucidate these differences. We recently demonstrated that p27kip1 regulates H-Ras activity via its interaction with stathmin.Here, using in vitro and in vivo models, we show that p27kip1 is an important regulator of Ras induced transformation. In H-RasV12 transformed cells, p27kip1 suppressed cell proliferation and tumor growth via two distinct mechanisms: 1) inhibition of CDK activity and 2) impairment of MT-destabilizing activity of stathmin. Conversely, in K-Ras4BV12 transformed cells, p27kip1 acted mainly in a CDK-dependent but stathmin-independent manner.Using human cancer-derived cell lines and primary breast and sarcoma samples, we confirmed in human models what we observed in mice.Overall, we highlight a pathway, conserved from mouse to human, important in the regulation of H-Ras oncogenic activity that could have therapeutic and diagnostic implication in patients that may benefit from anti-H-Ras therapies.

  14. Contact with fibrillar collagen inhibits melanoma cell proliferation by up-regulating p27KIP1

    PubMed Central

    Henriet, Patrick; Zhong, Zhi-Duan; Brooks, Peter C.; Weinberg, Kenneth I.; DeClerck, Yves A.

    2000-01-01

    It is known that the extracellular matrix regulates normal cell proliferation, and it is assumed that anchorage-independent malignant cells escape this regulatory function. Here we demonstrate that human M24met melanoma cells remain responsive to growth regulatory signals that result from contact with type I collagen and that the effect on proliferation depends on the physical structure of the collagen. On polymerized fibrillar collagen, M24met cells are growth arrested at the G1/S checkpoint and maintain high levels of p27KIP1 mRNA and protein. In contrast, on nonfibrillar (denatured) collagen, the cells enter the cell cycle, and p27KIP1 is down-regulated. These growth regulatory effects involve contact between type I collagen and the collagen-binding integrin α2β1, which appears restricted in the presence of fibrillar collagen. Thus melanoma cells remain sensitive to negative growth regulatory signals originating from fibrillar collagen, and the proteolytic degradation of fibrils is a mechanism allowing tumor cells to escape these restrictive signals. PMID:10944199

  15. Nanog induces suppression of senescence through downregulation of p27KIP1 expression

    PubMed Central

    Münst, Bernhard; Thier, Marc Christian; Winnemöller, Dirk; Helfen, Martina; Thummer, Rajkumar P.; Edenhofer, Frank

    2016-01-01

    ABSTRACT A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To gain further insight into the molecular activity of Nanog, we analyzed the outcomes of Nanog gain-of-function in various cell models employing a recently developed biologically active recombinant cell-permeant protein, Nanog-TAT. We found that Nanog enhances the proliferation of both NIH 3T3 and primary fibroblast cells. Nanog transduction into primary fibroblasts results in suppression of senescence-associated β-galactosidase activity. Investigation of cell cycle factors revealed that transient activation of Nanog correlates with consistent downregulation of the cell cycle inhibitor p27KIP1 (also known as CDKN1B). By performing chromatin immunoprecipitation analysis, we confirmed bona fide Nanog-binding sites upstream of the p27KIP1 gene, establishing a direct link between physical occupancy and functional regulation. Our data demonstrates that Nanog enhances proliferation of fibroblasts through transcriptional regulation of cell cycle inhibitor p27 gene. PMID:26795560

  16. Loss of Cell Cycle Regulators p27Kip1 and Cyclin E in Transitional Cell Carcinoma of the Bladder Correlates with Tumor Grade and Patient Survival

    PubMed Central

    Del Pizzo, Joseph J.; Borkowski, Andrew; Jacobs, Stephen C.; Kyprianou, Natasha

    1999-01-01

    The cyclin-dependent kinase inhibitor p27Kip1 is a powerful molecular determinant of cell cycle progression. Loss of expression of p27Kip1 has been shown to be predictive of disease progression in several human malignancies. In this study we investigated the expression of two key cell cycle regulators, p27Kip1 and cyclin E, in the progression of transitional cell carcinoma of the bladder. An immunohistochemical analysis was conducted in a series of 50 bladder tumor specimens, including 3 metastatic lymph nodes, and 7 normal bladder specimens, using specific antibodies against the two regulators of the cell cycle, p27Kip1 and cyclin E. The degree of immunoreactivity was correlated with the pathological tumor grade, stage, and patient survival. A uniformly intense immunoreactivity for p27Kip1 and cyclin E was observed in epithelial cells of normal bladder tissue. Malignant bladder tissue demonstrated a heterogeneous pattern of significantly reduced p27Kip1 and cyclin E immunoreactivity, compared with normal urothelium (P < 0.01). In addition, there was progressive loss of expression of both cell cycle proteins with increasing tumor grade and pathological stage. Expression of p27Kip1 was significantly lower in the poorly differentiated tumors (grades III) compared to well and moderately differentiated (grades I and II) tumors (P = 0.004). Moreover, the expression of cyclin E was lower in grade III tumors compared to grade I and II lesions, although this difference failed to reach statistical significance. Most significantly, Kaplan-Meier plots of patient survival show increased mortality risk associated with low levels of p27Kip1 (P = 0.001) and cyclin E (P = 0.002) expression. This is the first evidence that loss of expression of p27Kip1 and cyclin E in human bladder transitional cell carcinoma cells correlates with advancing histological aggressiveness and poor patient survival. These results have clinical importance, because they support a role for p27Kip1 and

  17. Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1

    PubMed Central

    2011-01-01

    Background Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene. Results Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types. Conclusions p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia and tissue disruption seen

  18. Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress.

    PubMed

    Nagano, Yoshito; Fukushima, Toru; Okemoto, Kazuo; Tanaka, Keiichiro; Bowtell, David D L; Ronai, Ze'ev; Reed, John C; Matsuzawa, Shu-ichi

    2011-08-01

    p27(kip1) has been implicated in cell cycle regulation, functioning as an inhibitor of cyclin-dependent kinase activity. In addition, p27 was also shown to affect cell migration, with accumulation of cytoplasmic p27 associated with tumor invasiveness. However, the mechanism underlying p27 regulation as a cytoplasmic protein is poorly understood. Here we show that glucose starvation induces proteasome-dependent degradation of cytoplasmic p27, accompanied by a decrease in cell motility. We also show that the glucose limitation-induced p27 degradation is regulated through an ubiquitin E3 ligase complex involving Siah1 and SIP/CacyBP. SIP (-/-) embryonic fibroblasts have increased levels of cytosolic p27 and exhibit increased cell motility compared to wild-type cells. These observations suggest that the Siah1/SIP E3 ligase complex regulates cell motility through degradation of p27.

  19. A p27Kip1 mutant that does not inhibit CDK activity promotes centrosome amplification and micronucleation.

    PubMed

    Sharma, S S; Ma, L; Bagui, T K; Forinash, K D; Pledger, W J

    2012-08-30

    Mitotic catastrophe occurs when cells enter mitosis with damaged DNA or excess centrosomes. Cells overexpressing the centrosome protein CP110 or depleted of cyclin F, which targets CP110 for destruction, have more than two centrosomes and undergo mitotic catastrophe. Our studies show centrosome reduplication and mitotic catastrophe in osteosarcoma cells inducibly expressing a p27Kip1 mutant (termed p27K) that binds cyclins but not cyclin-dependent kinases (CDKs). p27K inhibited cell proliferation but not CDK activity or cell cycle progression. It did not induce apoptosis; however, cells expressing p27K had more than two centrosomes and, indicative of mitotic catastrophe, irregularly shaped nuclei or multiple micronuclei. p27K interacted with cyclin F in vivo (as did endogenous p27Kip1) and displaced cyclin F from CP110. Depletion of CP110 rescued p27K-expressing cells from centrosome reduplication and mitotic catastrophe. Collectively, our data show that p27Kip1 can perturb mitosis and suggest that it does so by sequestering cyclin F, which prevents its interaction with and the subsequent degradation of CP110, ultimately resulting in centrosome reduplication, mitotic catastrophe and abrogation of cell proliferation.

  20. Oligodendrocyte regeneration after neonatal hypoxia requires FoxO1-mediated p27Kip1 expression.

    PubMed

    Jablonska, Beata; Scafidi, Joseph; Aguirre, Adan; Vaccarino, Flora; Nguyen, Vien; Borok, Erzsebet; Horvath, Tamas L; Rowitch, David H; Gallo, Vittorio

    2012-10-17

    Diffuse white matter injury (DWMI) caused by hypoxia is associated with permanent neurodevelopmental disabilities in preterm infants. The cellular and molecular mechanisms producing DWMI are poorly defined. Using a mouse model of neonatal hypoxia, we demonstrate a biphasic effect on oligodendrocyte development, resulting in hypomyelination. Oligodendrocyte death and oligodendrocyte progenitor cell (OPC) proliferation during the week after hypoxia were followed by delayed oligodendrocyte differentiation and abnormal myelination, as demonstrated by electron microscopy. Cdk2 activation was essential for the regenerative OPC response after hypoxia and was accompanied by reduced FoxO1-dependent p27(Kip1) expression. p27(Kip1) was also reduced in OPCs in human infant white matter lesions after hypoxia. The negative effects of hypoxia on oligodendrogenesis and myelination were more pronounced in p27(Kip1)-null mice; conversely, overexpression of FoxO1 or p27(Kip1) in OPCs after hypoxia promoted oligodendrogenesis. Our studies demonstrate for the first time that neonatal hypoxia affects the Foxo1/p27(Kip1) pathway during white matter development. We also show that molecular manipulation of this pathway enhances oligodendrocyte regeneration during a critical developmental time window after DWMI. Thus, FoxO1 and p27(Kip1) may serve as promising target molecules for promoting timely oligodendrogenesis in neonatal DWMI.

  1. Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated p27Kip1 Expression

    PubMed Central

    Jablonska, Beata; Scafidi, Joseph; Aguirre, Adan; Vaccarino, Flora; Nguyen, Vien; Borok, Erzsebet; Horvath, Tamas L.; Rowitch, David H.; Gallo, Vittorio

    2012-01-01

    Diffuse white matter injury (DWMI) caused by hypoxia is associated with permanent neurodevelopmental disabilities in preterm infants. The cellular and molecular mechanisms producing DWMI are poorly defined. Using a mouse model of neonatal hypoxia, we demonstrate a biphasic effect on oligodendrocyte development, resulting in hypomyelination. Oligodendrocyte death and oligodendrocyte progenitor cell (OPC) proliferation during the week after hypoxia were followed by delayed oligodendrocyte differentiation and abnormal myelination, as demonstrated by electron microscopy. Cdk2 activation was essential for the regenerative OPC response after hypoxia and was accompanied by reduced FoxO1-dependent p27 Kip1 expression. p27 Kip1 was also reduced in OPCs in human infant white matter lesions after hypoxia. The negative effects of hypoxia on oligodendrogenesis and myelination were more pronounced in p27 Kip1-null mice; conversely, overexpression of FoxO1 or p27 Kip1 in OPCs after hypoxia promoted oligodendrogenesis. Our studies demonstrate for the first time that neonatal hypoxia affects the Foxo1/p27 Kip1 pathway during white matter development. We also show that molecular manipulation of this pathway enhances oligodendrocyte regeneration during a critical developmental time window after DWMI. Thus, FoxO1 and p27 Kip1 may serve as promising target molecules for promoting timely oligodendrogenesis in neonatal DWMI. PMID:23077062

  2. miR-222 induces Adriamycin resistance in breast cancer through PTEN/Akt/p27(kip1) pathway.

    PubMed

    Wang, Dan-Dan; Yang, Su-Jin; Chen, Xiu; Shen, Hong-Yu; Luo, Long-Ji; Zhang, Xiao-Hui; Zhong, Shan-Liang; Zhao, Jian-Hua; Tang, Jin-Hai

    2016-11-01

    The high resistant rate of Adriamycin (Adr) is associated with a poor prognosis of breast cancer in women worldwide. Since miR-222 might contribute to chemoresistance in many cancer types, in this study, we aimed to investigate its efficacy in breast cancer through PTEN/Akt/p27 (kip1) pathway. Firstly, in vivo, we verified that miR-222 was upregulated in chemoresistant tissues after surgery compared with the paired preneoadjuvant samples of 21 breast cancer patients. Then, human breast cancer Adr-resistant cell line (MCF-7/Adr) was constructed to validate the pathway from the parental sensitive cell line (MCF-7/S). MCF-7/Adr and MCF-7/S were transfected with miR-222 mimics, miR-222 inhibitors, or their negative controls, respectively. The results showed that inhibition of miR-222 in MCF-7/Adr significantly increased the expressions of PTEN and p27 (kip1) and decreased phospho-Akt (p-Akt) both in mRNA and protein levels (p < 0.05) by using quantitative real-time PCR (qRT-PCR) and western blot. MTT and flow cytometry suggested that lower expressed miR-222 enhanced apoptosis and decreased the IC50 of MCF-7/Adr cells. Additionally, immunofluorescence demonstrated that the subcellular location of p27 (kip1) was dislocated resulting from the alteration of miR-222. Conversely, in MCF-7/S transfected with miR-222 mimics, upregulation of miR-222 is associated with decreasing PTEN and p27 (kip1) and increasing Akt accompanied by less apoptosis and higher IC50. Importantly, Adr resistance induced by miR-222 overexpression through PTEN/Akt/p27 was completely blocked by LY294002, an Akt inhibitor. Taken together, these data firstly elucidated that miR-222 could reduce the sensitivity of breast cancer cells to Adr through PTEN/Akt/p27 (kip1) signaling pathway, which provided a potential target to increase the sensitivity to Adr in breast cancer treatment and further improved the prognosis of breast cancer patients.

  3. Induction of anergy in Th1 cells associated with increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1.

    PubMed

    Jackson, S K; DeLoose, A; Gilbert, K M

    2001-01-15

    Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells.

  4. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms

    PubMed Central

    Colla, Simona; Wu, Xiaosong; Chen, Bangzheng; Stewart, James P.; Kuehl, W. Michael; Barlogie, Bart

    2007-01-01

    Overexpression of CKS1B, a gene mapping within a minimally amplified region between 153 to 154 Mb of chromosome 1q21, is linked to a poor prognosis in multiple myeloma (MM). CKS1B binds to and activates cyclin-dependent kinases and also interacts with SKP2 to promote the ubiquitination and proteasomal degradation of p27Kip1. Overexpression of CKS1B or SKP2 contributes to increased p27Kip1 turnover, cell proliferation, and a poor prognosis in many tumor types. Using 4 MM cell lines harboring MAF-, FGFR3/MMSET-, or CCND1-activating translocations, we show that lentiviral delivery of shRNA directed against CKS1B resulted in ablation of CKS1B mRNA and protein with concomitant stabilization of p27Kip1, cell cycle arrest, and apoptosis. Although shRNA-mediated knockdown of SKP2 and forced expression of a nondegradable form of p27Kip1 (p27T187A) led to cell cycle arrest, apoptosis was modest. Of importance, while knockdown of SKP2 or overexpression of p27T187A induced cell cycle arrest in KMS28PE, an MM cell line with biallelic deletion of CDKN1B/p27Kip1, CKS1B ablation induced strong apoptosis. These data suggest that CKS1B influences myeloma cell growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms and that therapeutic strategies aimed at abolishing CKS1B function may hold promise for the treatment of high-risk disease for which effective therapies are currently lacking. PMID:17303695

  5. Cip2a promotes cell cycle progression in triple-negative breast cancer cells by regulating the expression and nuclear export of p27Kip1.

    PubMed

    Liu, H; Qiu, H; Song, Y; Liu, Y; Wang, H; Lu, M; Deng, M; Gu, Y; Yin, J; Luo, K; Zhang, Z; Jia, X; Zheng, G; He, Z

    2016-10-03

    Triple-negative breast cancer (TNBC) is very aggressive and currently has no specific therapeutic targets; as a consequence, TNBC exhibits poor clinical outcome. In this study, we showed that cancerous inhibitor of protein phosphatase 2A (Cip2a) represents a promising target in TNBC because Cip2a was highly expressed in TNBC cells and tumor tissues, and its expression showed an inverse correlation with overall survival in patients with TNBC. We found that inhibition of Cip2a in TNBC cells induced cell cycle arrest at the G2/M phase, inhibited cell proliferation and delayed tumor growth in the xenograft model. Moreover, Cip2a markedly decreased the expression and nuclear localization of p27Kip1 and this is critical for the ability of Cip2a to promote TNBC progression. Mechanistically, our studies showed that Cip2a promoted p27Kip1 phosphoration at Ser10 via inhibiting Akt-associated PP2A activity, which seems to relocalize p27Kip1 to the cytoplasm in TNBC cells. On the other hand, Cip2a also recruited c-myc to mediate the transcriptional inhibition of p27Kip1. Notably, we observed negative correlation between Cip2a and p27Kip1 expression in TNBC specimens. In addition, our data showed that Cip2a depletion could sensitize TNBC to PARP inhibition. Collectively, these data suggested that Cip2a effectively promotes TNBC cell cycle progression and tumor growth via regulation of PP2A/c-myc/p27Kip1 signaling, which could serve as a potential therapeutic target for TNBC patients.Oncogene advance online publication, 3 October 2016; doi:10.1038/onc.2016.355.

  6. SIRT6 delays cellular senescence by promoting p27Kip1 ubiquitin-proteasome degradation

    PubMed Central

    Zhao, Ganye; Wang, Hui; Xu, Chenzhong; Wang, Pan; Chen, Jun; Wang, Pengfeng; Sun, Zhaomeng; Su, Yuanyuan; Wang, Zhao; Han, Limin; Tong, Tanjun

    2016-01-01

    Sirtuin6 (SIRT6) has been implicated as a key factor in aging and aging-related diseases. However, the role of SIRT6 in cellular senescence has not been fully understood. Here, we show that SIRT6 repressed the expression of p27Kip1 (p27) in cellular senescence. The expression of SIRT6 was reduced during cellular senescence, whereas enforced SIRT6 expression promoted cell proliferation and antagonized cellular senescence. In addition, we demonstrated that SIRT6 promoted p27 degradation by proteasome and SIRT6 decreased the acetylation level and protein half-life of p27. p27 acetylation increased its protein stability. Furthermore, SIRT6 directly interacted with p27. Importantly, p27 was strongly acetylated and had a prolonged protein half-life with the reduction of SIRT6 when cells were senescent, compared with those young cells. Finally, SIRT6 markedly rescued senescence induced by p27. Our findings indicate that SIRT6 decreases p27 acetylation, leading to its degradation via ubiquitin-proteasome pathway and then delays cellular senescence. PMID:27794562

  7. Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27Kip1 Signaling Pathway

    PubMed Central

    Ke, Rui; Liu, Lu; Zhu, Yanting; Li, Shaojun; Xie, Xinming; Li, Fangwei; Song, Yang; Yang, Lan; Gao, Li; Li, Manxiang

    2016-01-01

    It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27Kip1. Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27Kip1 reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27Kip1 downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27Kip1 axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension. PMID:27258250

  8. Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27(Kip1) Signaling Pathway.

    PubMed

    Ke, Rui; Liu, Lu; Zhu, Yanting; Li, Shaojun; Xie, Xinming; Li, Fangwei; Song, Yang; Yang, Lan; Gao, Li; Li, Manxiang

    2016-05-31

    It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27(Kip1). Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27(Kip1) reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27(Kip1) downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27(Kip1) axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension.

  9. Cloning and characterization of rat p27Kip1, a cyclin-dependent kinase inhibitor.

    PubMed

    Nomura, H; Sawada, Y; Fujinaga, K; Ohtaki, S

    1997-06-03

    Cyclin-dependent kinase (Cdk) inhibitors play significant roles in the cell cycle control of various biological phenomena. To characterize the role of Cdk inhibitors in rat cells, we isolated a cDNA encoding rat p27Kip1, a 27-kDa Cdk inhibitor. The 1.04-kb cDNA of rat p27 contained an open reading frame of 197 amino acids that shared high homology with mammalian p27 and significant homology with mammalian p21Cip1 and p57Kip2. p27 mRNA was detected in most rat tissues and cell lines. The levels of p27 protein expression were similar in rat cell lines transformed by E1A and in normal cells. Rat p27 was able to interact with Cdk 2/4 and cyclin A/D in rat cells, but the amounts of rat p27 in Cdk2 complexes were different between transformed cells and normal cells. Thus, the formation of stable complexes of rat p27 may be modulated by E1A. Rat p27 protein could inhibit the increased Cdk2-associated kinase activity in transformed rat cells.

  10. Cytoplasmic expression of p27kip1 is associated with a favourable prognosis in colorectal cancer patients

    PubMed Central

    Watson, Nicholas FS; Durrant, Lindy G; Scholefield, John H; Madjd, Zahra; Scrimgeour, Duncan; Spendlove, Ian; Ellis, Ian O; Patel, Poulam M

    2006-01-01

    AIM: To evaluate the prognostic significance of p27kip1 in colorectal cancer patients. METHODS: Cytoplasmic and nuclear p27kip1 expression was evaluated in 418 colorectal cancers using tissue microarrays. Data were associated with known patient and tumor variables and long-term patient outcomes, providing further insight into the mechanisms by which p27kip1 may influence tumor development. RESULTS: Nuclear and cytoplasmic p27Kip1 expressions were detected in 59% and 19% of tumors respectively. Cytoplasmic p27Kip1 was almost invariably associated with positive nuclear p27Kip1 expression. Neither case correlated with known clinical or pathological variables, including tumor stage, grade or extramural vascular invasion. Furthermore, nuclear p27kip1 expression had no impact on survival. However, we identified a significant correlation between expression of cytoplasmic p27kip1 and longer disease-specific survival times. On multivariate analysis, TNM stage and extramural vascular invasion were highly significant independent prognostic factors, with positive cytoplasmic p27 expression showing a trend towards improved patient survival (P = 0.059). CONCLUSION: These findings support the recent evidence that cytoplasmic p27kip1 has a distinct and important biological role that can influence tumor outcome. PMID:17072952

  11. MicroRNAs 221 and 222 target p27Kip1 in Marek's disease virus-transformed tumour cell line MSB-1.

    PubMed

    Lambeth, Luke S; Yao, Yongxiu; Smith, Lorraine P; Zhao, Yuguang; Nair, Venugopal

    2009-05-01

    MicroRNAs (miRNAs) are a class of short RNAs that function as post-transcriptional suppressors of protein expression and are involved in a variety of biological processes, including oncogenesis. Several recent studies have implicated the involvement of miR-221 and miR-222 in tumorigenesis as these miRNAs are upregulated in a number of cancers and affect the expression of cell cycle regulatory proteins such as the cyclin-dependent kinase (cdk) inhibitor p27(Kip1). Marek's disease virus (MDV) is a highly oncogenic herpesvirus that affects poultry, causing acute neoplastic disease with lymphomatous lesions in several organs. MDV-encoded oncogenes such as Meq are directly implicated in the neoplastic transformation of T cells and have been well studied. More recently, however, the involvement of both host and virus-encoded miRNAs in the induction of MD lymphomas is being increasingly recognized. We analysed the miRNA expression profiles in the MDV-transformed lymphoblastoid cell line MSB-1 and found that endogenous miRNAs miR-221 and miR-222 were significantly upregulated. Demonstration of the conserved binding sites for these miRNAs in the chicken p27(Kip1) 3'-untranslated region sequence and the repression of luciferase activity of reporter constructs indicated that miR-221 and miR-222 target p27(Kip1) in these cells. We also found that overexpression of miR-221 and miR-222 decreased p27(Kip1) levels and that treatment with retrovirally expressed antagomiRs partially alleviated this suppression. These data show that an oncogenic herpesvirus, as in the case of many cancers, can exploit the miRNA machinery for suppressing cell cycle regulatory molecules such as p27(Kip1) in the induction and progression of T-cell lymphomas.

  12. Interferon-γ-induced p27KIP1 binds to and targets MYC for proteasome-mediated degradation

    PubMed Central

    Zakaria, Siti Mariam; Frings, Oliver; Fahlén, Sara; Nilsson, Helén; Goodwin, Jacob; von der Lehr, Natalie; Su, Yingtao; Lüscher, Bernhard; Castell, Alina; Larsson, Lars-Gunnar

    2016-01-01

    The Myc oncoprotein is tightly regulated at multiple levels including ubiquitin-mediated protein turnover. We recently demonstrated that inhibition of Cdk2-mediated phosphorylation of Myc at Ser-62 pharmacologically or through interferon (IFN)-γ-induced expression of p27Kip1 (p27) repressed Myc's activity to suppress cellular senescence and differentiation. In this study we identified an additional activity of p27 to interfere with Myc independent of Ser-62 phosphorylation. p27 is required and sufficient for IFN-γ-induced turnover of Myc. p27 interacted with Myc in the nucleus involving the C-termini of the two proteins, including Myc box 4 of Myc. The C-terminus but not the Cdk2 binding fragment of p27 was sufficient for inducing Myc degradation. Protein expression data of The Cancer Genome Atlas breast invasive carcinoma set revealed significantly lower Myc protein levels in tumors with highly expressed p27 lacking phosphorylation at Thr-157 - a marker for active p27 localized in the nucleus. Further, these conditions correlated with favorable tumor stage and patient outcome. This novel regulation of Myc by IFN-γ/p27KIP1 potentially offers new possibilities for therapeutic intervention in tumors with deregulated Myc. PMID:26701207

  13. PRMT5 is upregulated in malignant and metastatic melanoma and regulates expression of MITF and p27(Kip1.).

    PubMed

    Nicholas, Courtney; Yang, Jennifer; Peters, Sara B; Bill, Matthew A; Baiocchi, Robert A; Yan, Fengting; Sïf, Saïd; Tae, Sookil; Gaudio, Eugenio; Wu, Xin; Grever, Michael R; Young, Gregory S; Lesinski, Gregory B

    2013-01-01

    Protein arginine methyltransferase-5 (PRMT5) is a Type II arginine methyltransferase that regulates various cellular functions. We hypothesized that PRMT5 plays a role in regulating the growth of human melanoma cells. Immunohistochemical analysis indicated significant upregulation of PRMT5 in human melanocytic nevi, malignant melanomas and metastatic melanomas as compared to normal epidermis. Furthermore, nuclear PRMT5 was significantly decreased in metastatic melanomas as compared to primary cutaneous melanomas. In human metastatic melanoma cell lines, PRMT5 was predominantly cytoplasmic, and associated with its enzymatic cofactor Mep50, but not STAT3 or cyclin D1. However, histologic examination of tumor xenografts from athymic mice revealed heterogeneous nuclear and cytoplasmic PRMT5 expression. Depletion of PRMT5 via siRNA inhibited proliferation in a subset of melanoma cell lines, while it accelerated growth of others. Loss of PRMT5 also led to reduced expression of MITF (microphthalmia-associated transcription factor), a melanocyte-lineage specific oncogene, and increased expression of the cell cycle regulator p27(Kip1). These results are the first to report elevated PRMT5 expression in human melanoma specimens and indicate this protein may regulate MITF and p27(Kip1) expression in human melanoma cells.

  14. A prostatic intraepithelial neoplasia-dependent p27kip1 checkpoint induces senescence, inhibits cell proliferation and cancer progression

    PubMed Central

    Majumder, Pradip K.; Grisanzio, Chiara; O’Connell, Fionnuala; Barry, Marc; Brito, Joseph M.; Xu, Qing; Guney, Isil; Berger, Raanan; Herman, Paula; Bikoff, Rachel; Fedele, Giuseppe; Baek, Won-Ki; Wang, Shunyou; Ellwood-Yen, Katharine; Wu, Hong; Sawyers, Charles L.; Signoretti, Sabina; Hahn, William C.; Loda, Massimo; Sellers, William R.

    2008-01-01

    SUMMARY Transgenic expression of activated AKT1 in the murine prostate induces Prostatic Intraepithelial Neoplasia (PIN) that does not progress to invasive prostate cancer (CaP). In luminal epithelial cells of Akt-driven PIN we show the concomitant induction of p27kip1 and senescence. Genetic ablation of p27Kip1 led to down regulation of senescence markers and progression to cancer. In humans, p27Kip1 and senescence markers were elevated in PIN not associated with CaP, but were decreased and absent, respectively in cancer-associated PIN and in CaP. Importantly, p27Kip1 up-regulation in mouse and human in situ lesions did not depend upon mTOR or Akt activation but was instead specifically associated with alterations in cellular polarity, architecture and adhesion molecules. These data suggest that a p27Kip1-driven checkpoint limits progression of PIN to CaP. PMID:18691549

  15. Cooperation between the Cdk inhibitors p27KIP1 and p57KIP2 in the control of tissue growth and development

    PubMed Central

    Zhang, Pumin; Wong, Calvin; DePinho, Ronald A.; Harper, J. Wade; Elledge, Stephen J.

    1998-01-01

    Cell cycle exit is required for terminal differentiation of many cell types. The retinoblastoma protein Rb has been implicated both in cell cycle exit and differentiation in several tissues. Rb is negatively regulated by cyclin-dependent kinases (Cdks). The main effectors that down-regulate Cdk activity to activate Rb are not known in the lens or other tissues. In this study, using multiple mutant mice, we show that the Cdk inhibitors p27KIP1 and p57KIP2 function redundantly to control cell cycle exit and differentiation of lens fiber cells and placental trophoblasts. These studies demonstrate that p27KIP1 and p57KIP2 are critical terminal effectors of signal transduction pathways that control cell differentiation. PMID:9784491

  16. SKP2 siRNA inhibits the degradation of P27kip1 and down-regulates the expression of MRP in HL-60/A cells.

    PubMed

    Xiao, Jie; Yin, Songmei; Li, Yiqing; Xie, Shuangfeng; Nie, Danian; Ma, Liping; Wang, Xiuju; Wu, Yudan; Feng, Jianhong

    2009-08-01

    S-phase kinase-associated protein 2 (SKP2) gene is a tumor suppressor gene, and is involved in the ubiquitin-mediated degradation of P27kip1. SKP2 and P27kip1 affect the proceeding and prognosis of leukemia through regulating the proliferation, apoptosis and differentiation of leukemia cells. In this study, we explored the mechanism of reversing of HL-60/A drug resistance through SKP2 down-regulation. HL-60/A cells were nucleofected by Amaxa Nucleofector System with SKP2 siRNA. The gene and protein expression levels of Skp2, P27kip1, and multi-drug resistance associated protein (MRP) were determined by reverse transcription-polymerase chain reaction and western blot analysis, respectively. The cell cycle was analyzed by flow cytometry. The 50% inhibitory concentration value was calculated using cytotoxic analysis according to the death rate of these two kinds of cells under different concentrations of chemotherapeutics to compare the sensitivity of the cells. HL-60/A cells showed multi-drug resistance phenotype characteristic by cross-resistance to adriamycin, daunorubicin, and arabinosylcytosine, due to the expression of MRP. We found that the expression of SKP2 was higher in HL-60/A cells than in HL-60 cells, but the expression of P27kip1 was lower. The expression of SKP2 in HL-60/A cells nucleofected by SKP2 siRNA was down-regulated whereas the protein level of P27kip1 was up-regulated. Compared with the MRP expression level in the control group (nucleofected by control siRNA), the mRNA and protein expression levels of MRP in HL-60/A cells nucleofected by SKP2 siRNA were lower, and the latter cells were more sensitive to adriamycin, daunorubicin, and arabinosylcytosine. Down-regulating the SKP2 expression and arresting cells in the G0/G1 phase improve drug sensitivity of leukemia cells with down-regulated MRP expression.

  17. p27Kip1 Is Required to Mediate a G1 Cell Cycle Arrest Downstream of ATM following Genotoxic Stress

    PubMed Central

    Cassimere, Erica K.; Mauvais, Claire; Denicourt, Catherine

    2016-01-01

    The DNA damage response (DDR) is a coordinated signaling network that ensures the maintenance of genome stability under DNA damaging stress. In response to DNA lesions, activation of the DDR leads to the establishment of cell cycle checkpoints that delay cell-cycle progression and allow repair of the defects. The tumor suppressor p27Kip1 is a cyclin-CDK inhibitor that plays an important role in regulating quiescence in a variety of tissues. Several studies have suggested that p27Kip1 also plays a role in the maintenance of genomic integrity. Here we demonstrate that p27Kip1 is essential for the establishment of a G1 checkpoint arrest after DNA damage. We also uncovered that ATM phosphorylates p27Kip1 on a previously uncharacterized residue (Ser-140), which leads to its stabilization after induction of DNA double-strand breaks. Inhibition of this stabilization by replacing endogenous p27Kip1 with a Ser-140 phospho-mutant (S140A) significantly sensitized cells to IR treatments. Our findings reveal a novel role for p27Kip1 in the DNA damage response pathway and suggest that part of its tumor suppressing functions relies in its ability to mediate a G1 arrest after the induction of DNA double strand breaks. PMID:27611996

  18. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas.

    PubMed

    Lwin, Tint; Hazlehurst, Lori A; Dessureault, Sophie; Lai, Raymond; Bai, Wenlong; Sotomayor, Eduardo; Moscinski, Lynn C; Dalton, William S; Tao, Jianguo

    2007-09-01

    Mounting evidence suggests that dynamic interactions between a tumor and its microenvironment play a critical role in tumor development, cell-cycle progression, and response to therapy. In this study, we used mantle cell lymphoma (MCL) as a model to characterize the mechanisms by which stroma regulate cell-cycle progression. We demonstrated that adhesion of MCL and other non-Hodgkin lymphoma (NHL) cells to bone marrow stromal cells resulted in a reversible G(1) arrest associated with elevated p27(Kip1) and p21 (WAF1) proteins. The adhesion-mediated p27(Kip1) and p21 increases were posttranslationally regulated via the down-regulation of Skp2, a subunit of SCF(Skp2) ubiquitin ligase. Overexpression of Skp2 in MCL decreased p27(Kip1), whereas inhibition of Skp2 by siRNA increased p27(Kip1) and p21 levels. Furthermore, we found cell adhesion up-regulated Cdh1 (an activating subunit of anaphase-promoting complex [APC] ubiquitin ligase), and reduction of Cdh1 by siRNA induced Skp2 accumulation and hence p27(Kip1) degradation, thus implicating Cdh1 as an upstream effector of the Skp2/p27(Kip1) signaling pathway. Overall, this report, for the first time, demonstrates that cell-cell contact controls the tumor cell cycle via ubiquitin-proteasome proteolytic pathways in MCL and other NHLs. The understanding of this novel molecular pathway may prove valuable in designing new therapeutic approaches for modifying tumor cell growth and response to therapy.

  19. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas

    PubMed Central

    Lwin, Tint; Hazlehurst, Lori A.; Dessureault, Sophie; Lai, Raymond; Bai, Wenlong; Sotomayor, Eduardo; Moscinski, Lynn C.; Dalton, William S.

    2007-01-01

    Mounting evidence suggests that dynamic interactions between a tumor and its microenvironment play a critical role in tumor development, cell-cycle progression, and response to therapy. In this study, we used mantle cell lymphoma (MCL) as a model to characterize the mechanisms by which stroma regulate cell-cycle progression. We demonstrated that adhesion of MCL and other non-Hodgkin lymphoma (NHL) cells to bone marrow stromal cells resulted in a reversible G1 arrest associated with elevated p27Kip1 and p21 (WAF1) proteins. The adhesion-mediated p27Kip1 and p21 increases were posttranslationally regulated via the down-regulation of Skp2, a subunit of SCFSkp2 ubiquitin ligase. Overexpression of Skp2 in MCL decreased p27Kip1, whereas inhibition of Skp2 by siRNA increased p27Kip1 and p21 levels. Furthermore, we found cell adhesion up-regulated Cdh1 (an activating subunit of anaphase-promoting complex [APC] ubiquitin ligase), and reduction of Cdh1 by siRNA induced Skp2 accumulation and hence p27Kip1 degradation, thus implicating Cdh1 as an upstream effector of the Skp2/p27Kip1 signaling pathway. Overall, this report, for the first time, demonstrates that cell-cell contact controls the tumor cell cycle via ubiquitin-proteasome proteolytic pathways in MCL and other NHLs. The understanding of this novel molecular pathway may prove valuable in designing new therapeutic approaches for modifying tumor cell growth and response to therapy. PMID:17502456

  20. AKT1 induces caspase-mediated cleavage of the CDK inhibitor p27Kip1 during cell cycle progression in leukemia cells transformed by FLT3-ITD

    PubMed Central

    Yang, Xinping; Liu, Suiyang; Kharbanda, Surender; Stone, Richard M

    2011-01-01

    p27Kip1 cleavage and caspase-3 regulate cell cycle in human myeloma cells and B cells however regulation of p27Kip1 cleavage during the cell cycle is not known. In BaF3-FLT3-ITD cells, p27Kip1 undergoes C-terminal cleavage. Inhibition of the PI3K/AKT pathway is associated with decreased cleavage of p27Kip1 and G1 phase arrest. The caspase-3 inhibitor reduces p27Kip1 cleavage and inhibits cell proliferation. Knockdown shRNA against AKT1 reduces cleavage of p27Kip1, inhibits caspase-3 activation, and is associated with a delay in cell cycle progression. Taken together, these findings indicate that AKT1 induces caspase-mediated cleavage of p27Kip1, required for G1-S progression in FLT3-ITD cells. PMID:22142798

  1. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms.

    PubMed

    Croft, Daniel R; Olson, Michael F

    2006-06-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.

  2. Auditory Hair Cell-Specific Deletion of p27Kip1 in Postnatal Mice Promotes Cell-Autonomous Generation of New Hair Cells and Normal Hearing

    PubMed Central

    Walters, Bradley J.; Liu, Zhiyong; Crabtree, Mark; Coak, Emily; Cox, Brandon C.

    2014-01-01

    Hearing in mammals relies upon the transduction of sound by hair cells (HCs) in the organ of Corti within the cochlea of the inner ear. Sensorineural hearing loss is a widespread and permanent disability due largely to a lack of HC regeneration in mammals. Recent studies suggest that targeting the retinoblastoma (Rb)/E2F pathway can elicit proliferation of auditory HCs. However, previous attempts to induce HC proliferation in this manner have resulted in abnormal cochlear morphology, HC death, and hearing loss. Here we show that cochlear HCs readily proliferate and survive following neonatal, HC-specific, conditional knock-out of p27Kip1 (p27CKO), a tumor suppressor upstream of Rb. Indeed, HC-specific p27CKO results in proliferation of these cells without the upregulation of the supporting cell or progenitor cell proteins, Prox1 or Sox2, suggesting that they remain HCs. Furthermore, p27CKO leads to a significant addition of postnatally derived HCs that express characteristic synaptic and stereociliary markers and survive to adulthood, although a portion of the newly derived inner HCs exhibit cytocauds and lack VGlut3 expression. Despite this, p27CKO mice exhibit normal hearing as measured by evoked auditory brainstem responses, which suggests that the newly generated HCs may contribute to, or at least do not greatly detract from, function. These results show that p27Kip1 actively maintains HC quiescence in postnatal mice, and suggest that inhibition of p27Kip1 in residual HCs represents a potential strategy for cell-autonomous auditory HC regeneration. PMID:25411503

  3. Auditory hair cell-specific deletion of p27Kip1 in postnatal mice promotes cell-autonomous generation of new hair cells and normal hearing.

    PubMed

    Walters, Bradley J; Liu, Zhiyong; Crabtree, Mark; Coak, Emily; Cox, Brandon C; Zuo, Jian

    2014-11-19

    Hearing in mammals relies upon the transduction of sound by hair cells (HCs) in the organ of Corti within the cochlea of the inner ear. Sensorineural hearing loss is a widespread and permanent disability due largely to a lack of HC regeneration in mammals. Recent studies suggest that targeting the retinoblastoma (Rb)/E2F pathway can elicit proliferation of auditory HCs. However, previous attempts to induce HC proliferation in this manner have resulted in abnormal cochlear morphology, HC death, and hearing loss. Here we show that cochlear HCs readily proliferate and survive following neonatal, HC-specific, conditional knock-out of p27(Kip1) (p27CKO), a tumor suppressor upstream of Rb. Indeed, HC-specific p27CKO results in proliferation of these cells without the upregulation of the supporting cell or progenitor cell proteins, Prox1 or Sox2, suggesting that they remain HCs. Furthermore, p27CKO leads to a significant addition of postnatally derived HCs that express characteristic synaptic and stereociliary markers and survive to adulthood, although a portion of the newly derived inner HCs exhibit cytocauds and lack VGlut3 expression. Despite this, p27CKO mice exhibit normal hearing as measured by evoked auditory brainstem responses, which suggests that the newly generated HCs may contribute to, or at least do not greatly detract from, function. These results show that p27(Kip1) actively maintains HC quiescence in postnatal mice, and suggest that inhibition of p27(Kip1) in residual HCs represents a potential strategy for cell-autonomous auditory HC regeneration.

  4. Tuberous sclerosis complex suppression in cerebellar development and medulloblastoma: separate regulation of mTOR activity and p27Kip1 localization

    PubMed Central

    Bhatia, Bobby; Northcott, Paul A.; Hambardzumyan, Dolores; Govindarajan, Baskaran; Brat, Daniel J.; Arbiser, Jack L.; Holland, Eric C.; Taylor, Michael D.; Kenney, Anna Marie

    2009-01-01

    During development, proliferation of cerebellar granule neuron precursors (CGNPs), candidate cells-of-origin for the pediatric brain tumor medulloblastoma, requires signaling by Sonic hedgehog (Shh) and insulin-like growth factor (IGF), whose pathways are also implicated in medulloblastoma. One of the consequences of IGF signaling is inactivation of the mTOR-suppressing Tuberous Sclerosis Complex (TSC), comprised of TSC1 and TSC2, leading to increased mRNA translation. We show that mice in which TSC function is impaired display increased mTOR pathway activation, enhanced CGNP proliferation, GSK-3α/β inactivation, and cytoplasmic localization of the cyclin-dependent kinase (cdk) inhibitor p27Kip1, which has been proposed to cause its inactivation or gain of oncogenic functions. We observed the same characteristics in wild-type primary cultures of CGNPs in which TSC1 and/or TSC2 were knocked down, and in mouse medulloblastomas induced by ectopic Shh pathway activation. Moreover, Shh-induced mouse medulloblastomas manifested Akt-mediated TSC2 inactivation, and the mutant TSC2 allele synergized with aberrant Shh signaling to increase medulloblastoma incidence in mice. Driving exogenous TSC2 expression in Shh-induced medulloblastoma cells corrected p27Kip1 localization and reduced proliferation. GSK-3α/β inactivation in the tumors in vivo and in primary CGNP cultures was mTOR-dependent, whereas p27Kip1 cytoplasmic localization was regulated upstream of mTOR, by TSC2. These results indicate that a balance between Shh mitogenic signaling and TSC function regulating new protein synthesis and cdk inhibition is essential for normal development and prevention of tumor formation or expansion. PMID:19738049

  5. Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1

    PubMed Central

    Galea, Charles A.; Nourse, Amanda; Wang, Yuefeng; Sivakolundu, Sivashankar G.; Heller, William T.; Kriwacki, Richard W.

    2008-01-01

    Summary p27Kip1 (p27), which controls eukaryotic cell division through interactions with cyclin-dependent kinases (Cdks), integrates and transduces pro-mitogenic signals from various non-receptor tyrosine kinases (NRTKs) by orchestrating its own phosphorylation, ubiquitination and degradation. Intrinsic flexibility allows p27 to act as a “conduit” for sequential signaling mediated by tyrosine and threonine phosphorylation and ubiquitination. While the structural features of the Cdk/cyclin-binding domain of p27 are understood, how the C-terminal regulatory domain coordinates multi-step signaling leading to p27 degradation is poorly understood. We show that the 100-residue p27 C-terminal domain is extended and flexible when p27 is bound to Cdk2/cyclin A. We propose that the intrinsic flexibility of p27 provides a molecular basis for the sequential signal transduction conduit that regulates p27 degradation and cell division. Other intrinsically unstructured proteins possessing multiple sites of post-translational modification may participate in similar signaling conduits. PMID:18177895

  6. p27Kip1, PCAF and PAX5 cooperate in the transcriptional regulation of specific target genes

    PubMed Central

    Perearnau, Anna; Orlando, Serena; Islam, Abul B.M.M.K.; Gallastegui, Edurne; Martínez, Jonatan; Jordan, Albert; Bigas, Anna; Aligué, Rosa; Pujol, Maria Jesús

    2017-01-01

    Abstract The cyclin-dependent kinase inhibitor p27Kip1 (p27) also behaves as a transcriptional repressor. Data showing that the p300/CBP-associated factor (PCAF) acetylates p27 inducing its degradation suggested that PCAF and p27 could collaborate in the regulation of transcription. However, this possibility remained to be explored. We analyzed here the transcriptional programs regulated by PCAF and p27 in the colon cancer cell line HCT116 by chromatin immunoprecipitation sequencing (ChIP-seq). We identified 269 protein-encoding genes that contain both p27 and PCAF binding sites being the majority of these sites different for PCAF and p27. PCAF or p27 knock down revealed that both regulate the expression of these genes, PCAF as an activator and p27 as a repressor. The double knock down of PCAF and p27 strongly reduced their expression indicating that the activating role of PCAF overrides the repressive effect of p27. We also observed that the transcription factor Pax5 interacts with both p27 and PCAF and that the knock down of Pax5 induces the expression of p27/PCAF target genes indicating that it also participates in the transcriptional regulation mediated by p27/PCAF. In summary, we report here a previously unknown mechanism of transcriptional regulation mediated by p27, Pax5 and PCAF. PMID:28158851

  7. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1 is abrogated by c-Myc.

    PubMed Central

    Vlach, J; Hennecke, S; Alevizopoulos, K; Conti, D; Amati, B

    1996-01-01

    We show here that c-Myc antagonizes the cyclin-dependent kinase (CDK) inhibitor p27Kip1. p27 expressed from recombinant retroviruses in Rat1 cells associated with and inhibited cyclin E/CDK2 complexes, induced accumulation of the pRb and p130 proteins in their hypophosphorylated forms, and arrested cells in G1. Prior expression of c-Myc prevented inactivation of cyclin E/CDK2 as well as dephosphorylation of pRb and p130, and allowed continuous cell proliferation in the presence of p27. This effect did not require ubiquitin-mediated degradation of p27. Myc altered neither the susceptibility of cyclin E/CDK2 to inhibition by p27, nor the intrinsic CDK-inhibitory activity of p27, but induced sequestration of p27 in a form unable to bind cyclin E/CDK2. Neither Myc itself nor other G1-cyclin/CDK complexes were directly responsible for p27 sequestration. Retroviral expression of G1 cyclins (D1-3, E or A) or of the Cdc25A phosphatase did not overcome p27-induced arrest. Growth rescue by Myc required dimerization with Max, DNA binding and an intact transcriptional activation domain, as previously shown for cellular transformation. We propose that this activity is mediated by the product of an as yet unknown Myc-Max target gene(s) and represents an essential aspect of Myc's mitogenic and oncogenic functions. Images PMID:8978686

  8. Prognostic role of p27Kip1 and apoptosis in human breast cancer

    PubMed Central

    Wu, J; Shen, Z-Z; Lu, J-S; Jiang, M; Han, Q-X; Fontana, J A; Barsky, S H; Shao, Z-M

    1999-01-01

    Human breast carcinoma is biologically heterogeneous, and its clinical course may vary from an indolent slowly progressive one to a course associated with rapid progression and metastatic spread. It is important to establish prognostic factors which will define subgroups of patients with low vs high risk of recurrence so as to better define the need for additional therapy. Additional characterization of the molecular make-up of breast cancer phenotypes should provide important insights into the biology of breast cancer. In the present study, we investigated apoptosis, expression of p27Kip1 and p53 retrospectively in 181 human breast cancer specimens. In addition, their relevance to the biological behaviour of breast cancer was examined. Our studies found a significant association among high histological grade, high p53, low apoptosis and low p27. Our results also demonstrated that, in human breast cancer, low levels of p27 and apoptotic index (AI) strongly correlated with the presence of lymph node metastasis and decreased patient survival. In node-negative patients, however, p27 also had prognostic value for relapse-free and overall survival in multivariate analysis. Furthermore p27 and AI had predictive value for the benefits of chemotherapy. These latter observations should prompt prospective randomized studies designed to investigate the predictive role of p27 and AI in determining who should receive chemotherapy in node-negative patients. © 1999 Cancer Research Campaign PMID:10188908

  9. miR-222 is upregulated in epithelial ovarian cancer and promotes cell proliferation by downregulating P27(kip1.)

    PubMed

    Sun, Chaoyang; Li, Na; Zhou, Bo; Yang, Zongyuan; Ding, Dong; Weng, Danhui; Meng, Li; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Chen, Gang

    2013-08-01

    Epithelial ovarian cancer (EOC) is the leading cause of female reproductive system cancer mortality in females. The majority of cases of ovarian carcinomas are not identified until a late stage. Identifying the molecular changes that occur during the development and progression of ovarian cancer is an urgent requirement. MicroRNAs (miRNAs) have been identified as gene expression regulators that induce mRNA degradation or translation blockade through pairing to the 3' untranslated region (3-'UTR) of the target mRNAs. In the present study, miR-222 was observed to be frequently upregulated in ovarian cancer. miR-222 upregulation induced an enhancement of ovarian cancer cell proliferation potential, possibly by downregulating its target, P27(Kip1). A bioinformatic analysis showed that the 3'-UTR of the P27(Kip1) mRNA contained a highly-conserved putative miR-222 binding site. Luciferase reporter assays demonstrated that P27(Kip1) was a direct target of miR-222. Consistently, there was an inverse correlation between the P27(Kip1) and miR-222 expression levels in the ovarian cancer cell lines and tissues. Overall, the present results suggest that miR-222 upregulation in human ovarian cancer may promote ovarian cancer cell proliferation during ovarian carcinogenesis.

  10. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    PubMed

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sulforaphane down-regulates SKP2 to stabilize p27(KIP1) for inducing antiproliferation in human colon adenocarcinoma cells.

    PubMed

    Chung, Yuan-Kai; Chi-Hung Or, Richard; Lu, Chien-Hsing; Ouyang, Wei-Ting; Yang, Shu-Yi; Chang, Chia-Che

    2015-01-01

    Sulforaphane is a cruciferous vegetable-derived isothiocyanate with promising chemopreventive and therapeutic activities. Induction of proliferation arrest and apoptosis principally contribute to sulforaphane's anticancer activity, but the precise molecular mechanisms remain elusive. The oncoprotein SKP2 is a key component of the SKP1-CULLIN1-F-box (SCF) E3 ligase complex and is responsible for directing SCF-mediated degradation of cyclin-dependent kinase inhibitor p27(KIP1) to promote cell proliferation. We herein provide the first evidence supporting the critical involvement of the SKP2-p27(KIP1) axis in sulforaphane-induced antiproliferation in various human colon adenocarcinoma cell lines. Specifically, sulforaphane markedly suppressed the levels of bromodeoxyuridine (BrdU) incorporation and clonogenicity in all tested cell lines, illustrating the antiproliferative effect of sulforaphane. Of note, sulforaphane-induced antiproliferation was accompanied with down-regulation of SKP2, leading to the stabilization and thus up-regulation of p27(KIP1). Additionally, sulforaphane was found to down-regulate SKP2 mainly through transcriptional repression, as sulforaphane lowered SKP2 mRNA expression and the SKP2 promoter activity. Furthermore, sulforaphane treatment led to the activation of both AKT and ERK, thus ruling out the possibility that sulforaphane down-regulates SKP2 by inhibiting AKT or ERK. Notably, sulforaphane-elicited suppression of BrdU incorporation and clonogenicity were significantly rescued in the context of SKP2 overexpression or p27(KIP1) depletion, therefore highlighting the important role of SKP2 down-regulation and the ensuing stabilization of p27(KIP1) in sulforaphane-induced antiproliferation. Collectively, these data expand our molecular understanding about how sulforaphane elicits proliferation arrest, but also implicate the application of sulforaphane in therapeutic modalities targeting SKP2. Copyright © 2014 The Society for Biotechnology

  12. HBx-dependent cell cycle deregulation involves interaction with cyclin E/A-cdk2 complex and destabilization of p27Kip1.

    PubMed

    Mukherji, Atish; Janbandhu, Vaibhao C; Kumar, Vijay

    2007-01-01

    The HBx (X protein of hepatitis B virus) is a promiscuous transactivator implicated to play a key role in hepatocellular carcinoma. However, HBx-regulated molecular events leading to deregulation of cell cycle or establishment of a permissive environment for hepatocarcinogenesis are not fully understood. Our cell culture-based studies suggested that HBx had a profound effect on cell cycle progression even in the absence of serum. HBx presence led to an early and sustained level of cyclin-cdk2 complex during the cell cycle combined with increased protein kinase activity of cdk2 heralding an early proliferative signal. The increased cdk2 activity also led to an early proteasomal degradation of p27(Kip1) that could be reversed by HBx-specific RNA interference and blocked by a chemical inhibitor of cdk2 or the T187A mutant of p27. Further, our co-immunoprecipitation and in vitro binding studies with recombinant proteins suggested a direct interaction between HBx and the cyclin E/A-cdk2 complex. Interference with different signalling cascades known to be activated by HBx suggested a constitutive requirement of Src kinases for the association of HBx with these complexes. Notably, the HBx mutant that did not interact with cyclin E/A failed to destabilize p27(Kip1) or deregulate the cell cycle. Thus HBx appears to deregulate the cell cycle by interacting with the key cell cycle regulators independent of its well-established role in transactivation.

  13. Herbal composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra prevents atherosclerosis by upregulating p27 (Kip1) expression.

    PubMed

    Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Han, Joo-Hui; Ma, Jin Yeul

    2016-07-28

    Kiom-18 is a novel composition of Cinnamomum cassia, Pinus densiflora, Curcuma longa and Glycyrrhiza glabra. Curcuma longa and Glycyrrhiza glabra, which are traditional medicines in Asia, have been reported to demonstrate preventive effects against atherosclerosis; however, they have not yet been developed into functional atherosclerosis treatments. We therefore studied the anti-atherosclerotic effects and possible molecular mechanisms of Kiom-18 using vascular smooth muscle cells (VSMCs). To assess the anti-proliferative effect of Kiom-18 in vitro, we performed thymidine incorporation, cell cycle progression, immunoblotting and immunofluorescence assays in VSMCs stimulated by platelet derived-growth factor (PDGF)-BB. In addition, we used LDLr knockout mice to identify the effects of Kiom-18 as a preliminary result in an atherosclerosis animal model. Kiom-18 inhibited platelet-derived growth factor (PDGF)-BB-stimulated-VSMC proliferation and DNA synthesis. Additionally, Kiom-18 arrested the cell cycle transition of G0/G1 stimulated by PDGF-BB and its cell cycle-related proteins. Correspondingly, the level of p27(kip1) expression was upregulated in the presence of the Kiom-18 extract. Moreover, in an atherosclerosis animal model of LDLr knockout mice, Kiom-18 extract showed a preventive effect for the formation of atherosclerotic plaque and suppressed body weight, fat weight, food treatment efficiency, neutrophil count, and triglyceride level. These results indicate that Kiom-18 exerts anti-atherosclerotic effects by inhibiting VSMC proliferation via G0/G1 arrest, which upregulates p27(Kip1) expression.

  14. p27kip1 in Intestinal Tumorigenesis and Chemoprevention in the Mouse

    PubMed Central

    Yang, WanCai; Bancroft, Laura; Liang, Jiao; Zhuang, Min; Augenlicht, Leonard H.

    2010-01-01

    Targeted inactivation of p27kip1 was sufficient for intestinal tumor formation in mice, but this was strictly a function of diet: tumors formed in p27+/− or p27−/− mice fed control AIN-76A diet and were increased by a western-style diet but did not develop in mice fed standard chow diet. When crossed with the Apc1638N+/− mouse, Apc+/−,p27+/− or Apc+/−,p27−/− mice not only formed twice as many tumors than the sum of the tumors from mutation at either locus alone, but on AIN76A diet also developed intestinal intussusception, a tumor-associated pathology in patients leading to intestinal blockage that has not been reported for intestinal cancer in mouse models. Moreover, the frequency of intussusception was increased when the compound mutant mice were maintained on the western diet, leading to early death. Despite this more aggressive tumor phenotype generated by inactivation of p27 than by inactivation of another cyclin-dependent kinase inhibitor, p21WAF1/cip1, the nonsteroidal anti-inflammatory drug sulindac was still effective in inhibiting intestinal tumor formation in Apc+/−,p27+/− or Apc+/−,p27−/− mice, which contrasts with the abrogation of the effects of sulindac in Apc+/−,p21+/− or Apc+/−,p21−/− mice, indicating that p27 is not necessary for tumor inhibition by sulindac. Furthermore, tumor inhibition by sulindac was linked to the induction of p21 expression by the drug, regardless of p27 status, leading to suppression of cell proliferation and promotion of cell differentiation and apoptosis in the intestinal mucosa. PMID:16230399

  15. p27Kip1 in Stage III Colon Cancer: Implications for Outcome Following Adjuvant Chemotherapy in CALGB 89803

    PubMed Central

    Bertagnolli, Monica M.; Warren, Robert S.; Niedzwiecki, Donna; Mueller, Elke; Compton, Carolyn C.; Redston, Mark; Hall, Margaret; Hahn, Hejin P.; Jewell, Scott D.; Mayer, Robert J.; Goldberg, Richard M.; Saltz, Leonard B.; Loda, Massimo

    2010-01-01

    Background In retrospective studies, loss of p27Kip1 (p27), a cyclin dependent kinase inhibitor, has been associated with poor prognosis following colorectal cancer treatment. In a prospective study, we validated this relationship in patients enrolled on a trial of adjuvant chemotherapy for Stage III colon cancer. Methods Cancer and Leukemia Group B (CALGB) protocol 89803 randomized 1264 stage III colon cancer patients to receive weekly bolus fluorouracil/leucovorin (5FU/LV) or weekly bolus irinotecan, fluorouracil, and leucovorin (IFL). The primary endpoint was overall survival (OS); disease-free survival (DFS) was a secondary endpoint. Expression of p27 and DNA mismatch repair (MMR) proteins were determined by immunohistochemistry (IHC) in primary tumor and normal tissue from paraffin blocks. Data were analyzed using logrank test. Results Of 601 tumors analyzed, 207 (34.4%) demonstrated p27 loss, 377 (62.8%) retained p27, and 17 (2.8%) were indeterminate. Patients with p27 negative tumors showed reduced OS (5-year 66%; 95%CI 0.59-0.72 vs. 75%; 95%CI 0.70-0.79, logrank p=0.021). This relationship was not influenced by treatment arm. Combination of p27 status with MMR status, however, identified a small subset of patients that may benefit from IFL (n=36; 5-year DFS 81%; 95%CI 0.64-0.98 vs. 47%; 95%CI 0.21-0.72, logrank p=0.042; 5-year OS 81%; 95%CI 0.64-0.98 vs. 60%; 95%CI 0.35-0.85; logrank p=0.128). Conclusions Loss of p27 is associated with reduced survival in stage III colon cancer, but by itself does not indicate a significant difference in outcome between patients treated IFL or 5FU-LV. PMID:19276255

  16. Sumoylation in p27kip1 via RanBP2 promotes cancer cell growth in cholangiocarcinoma cell line QBC939.

    PubMed

    Yang, Jun; Liu, Yan; Wang, Bing; Lan, Hongzhen; Liu, Ying; Chen, Fei; Zhang, Ju; Luo, Jian

    2017-09-07

    Cholangiocarcinoma is one of the deadly disease with poor 5-year survival and poor response to conventional therapies. Previously, we found that p27kip1 nuclear-cytoplasmic translocation confers proliferation potential to cholangiocarcinoma cell line QBC939 and this process is mediated by crm-1. However, no other post-transcriptional regulation was found in this process including sumoylation in cholangiocarcinoma. In this study, we explored the role of sumoylation in the nuclear-cytoplasmic translocation of p27kip1 and its involvement of QBC939 cells' proliferation. First, we identified K73 as the sumoylation site in p27kip1. By utilizing plasmid flag-p27kip1, HA-RanBP2, GST-RanBP2 and His-p27kip1 and immunoprecipitation assay, we validated that p27kip1 can serve as the sumoylation target of RanBP2 in QBC939. Furthermore, we confirmed crm-1's role in promoting nuclear-cytoplasmic translocation of p27kip1 and found that RanBP2's function relies on crm-1. However, K73R mutated p27kip1 can't be identified by crm-1 or RanBP2 in p27kip1 translocation process, suggesting sumoylation of p27kip1 via K73 site is necessary in this process by RanBP2 and crm-1. Phenotypically, the overexpression of either RanBP2 or crm-1 can partially rescue the anti-proliferative effect brought by p27kip1 overexpression in both the MTS and EdU assay. For the first time, we identified and validated the K73 sumoylation site in p27kip1, which is critical to RanBP2 and crm-1 in p27kip1 nuclear-cytoplasmic translocation process. Taken together, targeted inhibition of sumoylation of p27kip1 may serve as a potentially potent therapeutic target in the eradication of cholangiocarcinoma development and relapses.

  17. BMP-4 Induction of Arrest and Differentiation of Osteoblast-Like Cells via p21CIP1 and p27KIP1 Regulation

    PubMed Central

    Chang, Shun-Fu; Chang, Ting-Kuo; Peng, Hsin-Hsin; Yeh, Yi-Ting; Lee, Ding-Yu; Yeh, Chiuan-Ren; Zhou, Jing; Cheng, Cheng-Kung; Chang, Cheng Allen; Chiu, Jeng-Jiann

    2009-01-01

    Cell cycle regulation by differentiation signals is critical for eukaryote development. We investigated the roles of bone morphogenetic protein (BMP)-4, an important stimulator of osteoblast differentiation and bone formation, in regulating cell cycle distribution in four osteoblast-like cell lines and mouse primary osteoblasts, and the underlying mechanisms. In all cells used, BMP-4 induced G0/G1 arrest. The molecular basis of the BMP-4 effect was analyzed, and the presentation on molecular mechanism is focused on human MG63 cells. BMP-4 induced p21CIP1 and p27KIP1 expressions and hence cell differentiation but had no effects on the expressions of cyclins A, B1, D1, and E, cyclin-dependent protein kinase-2, -4, and -6. Using specific small interfering RNA (siRNA), we found that BMP-4-induced G0/G1 arrest, and p21CIP1 and p27KIP1 expressions were mediated by BMP receptor type IA (BMPRIA)-specific Sma- and Mad-related protein (Smad)1/5. BMP-4 induced transient phosphorylations of ERK; transfection of MG63 cells with ERK2, but not ERK1, -specific siRNA inhibited the BMP-4-induced responses in MG63 cells. Pretreatment of MG63 cells with Arg-Gly-Asp-Ser, which blocks the cell-extracellular matrix interaction, or transfection with β3 integrin-specific siRNA inhibited BMP-4-induced ERK and Smad1/5 phosphorylations. BMP-4 induced transient increases in associations of β3-integrin with focal adhesion kinase and Shc, the dominant-negative mutants of which inhibited BMP-4-induced ERK and Smad1/5 phosphorylations. Our results indicate that BMP-4 induces G0/G1 arrest and hence differentiation in osteoblast-like cells through increased expressions of p21CIP1 and p27KIP1, which are mediated by BMPRIA-specific Smad1/5. The extracellular matrix/β3 integrin/ focal adhesion kinase/Shc/ERK2 signaling pathway is involved in these BMP-4-induced responses in osteoblast-like cells. PMID:19819988

  18. The Role of p27Kip1 in Dasatinib-Enhanced Paclitaxel Cytotoxicity in Human Ovarian Cancer Cells

    PubMed Central

    Mao, Weiqun; He, Guangan; Claret, Francois-Xavier; Xia, Weiya; Ahmed, Ahmed Ashour; Hung, Mien-Chie; Siddik, Zahid H.; Bast, Robert C.

    2011-01-01

    Background Less than 50% of ovarian cancers respond to paclitaxel. Effective strategies are needed to enhance paclitaxel sensitivity. Methods A library of silencing RNAs (siRNAs) was used to identify kinases that regulate paclitaxel sensitivity in human ovarian cancer SKOv3 cells. The effect of dasatinib, an inhibitor of Src and Abl kinases, on paclitaxel sensitivity was measured in ovarian cancer cells and HEY xenografts. The roles of p27Kip1, Bcl-2, and Cdk1 in apoptosis induced by dasatinib and paclitaxel were assessed using a terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL) assay, siRNA knockdown of gene expression, transfection with Bcl-2 and Cdk1 expression vectors, and flow cytometry. All statistical tests were two-sided. Results Src family and Abl kinases were identified as modulators of paclitaxel sensitivity in SKOv3 cells. The siRNA knockdown of Src, Fyn, or Abl1 enhanced paclitaxel-mediated growth inhibition in ovarian cancer cells compared with a control siRNA. HEY cells treated with dasatinib plus paclitaxel formed fewer colonies than did cells treated with either agent alone. Treatment of HEY xenograft–bearing mice with dasatinib plus paclitaxel inhibited tumor growth more than treatment with either agent alone (average tumor volume per mouse, dasatinib + paclitaxel vs paclitaxel: 0.28 vs 0.81 cm3, difference = 0.53 cm3, 95% confidence interval [CI] = 0.44 to 0.62 cm3, P = .014); dasatinib + paclitaxel vs dasatinib: 0.28 vs 0.55 cm3, difference = 0.27 cm3, 95% CI = 0.21 to 0.33 cm3, P = .035). Combined treatment induced more TUNEL-positive apoptotic cells than did either agent alone. The siRNA knockdown of p27Kip1 decreased dasatinib- and paclitaxel-induced apoptosis compared with a negative control siRNA (sub-G1 fraction, control siRNA vs p27Kip1 siRNA: 42.5% vs 20.1%, difference = 22.4%, 95% CI = 20.1% to 24.7%, P = .017). Studies with forced expression and siRNA knockdown of Bcl-2 and Cdk1 suggest that dasatinib

  19. Magnolol elicits activation of the extracellular signal-regulated kinase pathway by inducing p27KIP1-mediated G2/M-phase cell cycle arrest in human urinary bladder cancer 5637 cells.

    PubMed

    Lee, Se-Jung; Cho, Young-Hwa; Park, Keerang; Kim, Eun-Jung; Jung, Kyung-Hwan; Park, Sung-Soo; Kim, Wun-Jae; Moon, Sung-Kwon

    2008-06-15

    Magnolol has been reported to play a role in antitumor activity. However, the relevant pathway integrating cell cycle regulation and signaling pathways involved in growth inhibition in cancer cells remains to be identified. In the present study, magnolol treatment of these cells resulted in significant dose-dependent growth inhibition together with apoptosis, G1- and G2/M-phase cell cycle arrest at a 60 microM (IC50) dose in 5637 bladder cancer cells. In addition, magnolol treatment strongly induced p27KIP1 expression, and down-regulated expression of cyclin-dependent kinases (CDKs) and cyclins. Moreover, treatment with magnolol-induced phosphorylation of ERK, p38 MAP kinase, and JNK. Among the pathway inhibitors examined, only PD98059, an ERK-specific inhibitor, blocked magnolol-dependent p27KIP1 expression. Blockade of ERK function consistently reversed magnolol-mediated inhibition of cell proliferation and decreased G2/M cell cycle proteins, but not G1 cell cycle proteins. Furthermore, magnolol treatment increased both Ras and Raf activation. Transfection of cells with dominant negative Ras (RasN17) and Raf (RafS621A) mutant genes suppressed magnolol-induced ERK activity and p27KIP1 expression. Finally, the magnolol-induced reduction in cell proliferation and G2/M cell cycle proteins was also abolished in the presence of RasN17 and RafS621A mutant genes. These data demonstrate that the Ras/Raf/ERK pathway participates in p27KIP1 induction, leading to a decrease in the levels of cyclin B1/Cdc2 complexes and magnolol-dependent inhibition of cell growth. Overall, these novel findings concerning the molecular mechanisms of magnolol in 5637 bladder cancer cells provide a theoretical basis for therapeutic treatment of malignancies.

  20. The Cell Cycle Inhibitors p21(Cip1) and p27(Kip1) Control Proliferation but Enhance DNA Damage Resistance of Glioma Stem Cells.

    PubMed

    Morris-Hanon, Olivia; Furmento, Verónica Alejandra; Rodríguez-Varela, María Soledad; Mucci, Sofía; Fernandez-Espinosa, Damián Darío; Romorini, Leonardo; Sevlever, Gustavo Emilio; Scassa, María Elida; Videla-Richardson, Guillermo Agustín

    2017-07-01

    High-grade gliomas are the most prevalent and lethal primary brain tumors. They display a hierarchical arrangement with a population of self-renewing and highly tumorigenic cells called cancer stem cells. These cells are thought to be responsible for tumor recurrence, which make them main candidates for targeted therapies. Unbridled cell cycle progression may explain the selective sensitivity of some cancer cells to treatments. The members of the Cip/Kip family p21(Cip1) and p27(Kip1) were initially considered as tumor suppressors based on their ability to block proliferation. However, they are currently looked at as proteins with dual roles in cancer: one as tumor suppressor and the other as oncogene. Therefore, the aim of this study was to determine the functions of these cell cycle inhibitors in five patient-derived glioma stem cell-enriched cell lines. We found that these proteins are functional in glioma stem cells. They negatively regulate cell cycle progression both in unstressed conditions and in response to genotoxic stress. In addition, p27(Kip1) is upregulated in nutrient-restricted and differentiating cells, suggesting that this Cip/Kip is a mediator of antimitogenic signals in glioma cells. Importantly, the lack of these proteins impairs cell cycle halt in response to genotoxic agents, rendering cells more vulnerable to DNA damage. For these reasons, these proteins may operate both as tumor suppressors, limiting cell proliferation, and as oncogenes, conferring cell resistance to DNA damage. Thus, deepening our knowledge on the biological functions of these Cip/Kips may shed light on how some cancer cells develop drug resistance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells.

    PubMed

    Jung, Su-Mi; Park, Sung-Soo; Kim, Wun-Jae; Moon, Sung-Kwon

    2012-04-15

    Cordycepin, the main constituent of Cordyceps militaris, demonstrated an anti-atherogenic effect in experimental animals. However, the effects of cordycepin on cell-cycle regulation and the signaling pathway in vascular smooth muscle cells (VSMC) remain largely unknown; therefore, unexpected roles of cordycepin-induced inhibition in VSMC growth were investigated. Mechanisms in cordycepin-treated VSMC were examined via an MTT assay, a thymidine uptake experiment, FACS analysis, immunoblot analysis, kinase assay, immunoprecipitation assay, and transient transfection assays. Cordycepin inhibited cell growth, induced G1-phase cell-cycle arrest, down-regulated cyclins and cyclin-dependent kinase (CDK) expression, and up-regulated p27KIP1 expression in VSMC. Cordycepin induced activation of JNK, p38MAPK and ERK1/2. Blocking of the ERK function using either ERK1/2-specific inhibitor U0126 or a small interfering RNA (si-ERK1) reversed p27KIP1 expression, inhibition of cell growth, and decreased cell-cycle proteins in cordycepin-treated VSMC. Ras activation was increased by cordycepin. Transfection of cells with dominant negative Ras (RasN17) mutant genes rescued cordycepin-induced ERK1/2 activity, increased p27KIP1 expression, inhibited cell proliferation, and reduced cell cycle proteins. In conclusion, our findings indicate that Ras/ERK1 pathways participate in p27KIP1-mediated G1-phase cell-cycle arrest induced by cordycepin via a decrease in cyclin/CDK complexes in VSMC. Copyright © 2012. Published by Elsevier B.V.

  2. Increased number of multi-oocyte follicles (MOFs) in juvenile p27Kip1 mutant mice: potential role of granulosa cells.

    PubMed

    Pérez-Sanz, J; Arluzea, J; Matorras, R; González-Santiago, N; Bilbao, J; Yeh, N; Barlas, A; Romin, Y; Manova-Todorova, K; Koff, A; de la Hoz, C

    2013-04-01

    Why are female mice that lack a functional p27 protein infertile? The absence of a functional p27 leads to a dramatic increase in the number of multi-oocyte follicles (MOFs) in juvenile female mice; p27 would promote the individualization of follicles favoring the development of fertile eggs. p27-/- female mice are infertile. p27 suppresses excessive follicular endowment and activation and promotes follicular atresia in mice. Ovaries from wild type (WT) and p27Kip1 mutant mice aged 2, 4 and 12 weeks were subjected to immunohistochemistry/immunofluorescence. The slides with whole organs serially sectioned were scanned and examined by image analysis. Compared with WT, p27Kip1 mutant pre-pubertal mice had a greater number of oocytes, a greater number of growing follicles and a greater number of MOFs. These differences were statistically significant (P < 0.05), particularly in the case of MOFs (P > 0.001). The unusually large number of MOFs in juvenile p27-deficient mice is a novel observation. In WT mice p27 protein remains present in the oocyte nucleus but gradually decreases in the ooplasm during follicular growth, while granulosa cells show dynamic, follicle stage-related changes. These results have been obtained in mice and they cannot be directly extrapolated to humans. The dramatic increase in the numbers of MOFs in juvenile p27 mutants has not been previously reported. The number of MOFs declines sharply as the mice become sexually mature, pointing to their negative selection. These findings open a new approach to the study of sterility. This study has been funded by the Basque Government, Dept. of Health grant 2007111063 and Dept. of Industry (Saiotek) grant S-PC11UN008. Jairo Perez-Sanz was the recipient of a grant from Fundación Jesús de Gangoiti Barrera. The authors have no conflicts of interest to declare.

  3. Clinicopathological Comparison of Adenocarcinoma of Cervix and Endometrium Using Cell Cycle Markers: P16ink4a, P21waf1, and p27Kip1 on 132 Cancers

    PubMed Central

    Marican Abu Backer, Farveen; Nik Mustapha, Nik Raihan; Othman, Nor Hayati

    2011-01-01

    Objective. We studied the clinicopathological parameters of adenocarcinoma arising from endocervix (ECA) and from endometrium (EMA) based on the expression of P16ink4a, P21waf1, and p27Kip1 proteins. Study Design. Immunohistochemistry was done on sections of confirmed ECA and EMA from hysterectomy specimens which have had no prior chemotherapy/radiotherapy. Results. There were 40 ECAs and 92 EMAs. The mean age of ECA was 49.82 (SD 10.29); the youngest was 30 years old and the oldest 75 years old. The mean age of EMA was 54.45 (SD 10.92); the youngest was 30 years old and the oldest was 82 years old. For ECA, the size of the tumour is significantly associated with age and with depth of infiltration. FIGO stage is associated with histological grade. p21WAF1 expression is significantly associated with infiltration of the corpus and lymph node metastasis. p27Kip1 expression is significantly associated with lymph node invasion. The presence of lymph node metastasis is strongly associated when p16INK4a and p27Kip1 expressions are analyzed in combination. For EMA, p16INK4a expression is associated with histologic grade. Conclusion. Our study shows that we could use these cell cycle markers as predictors for more aggressive subsets of adenocarcinoma of the cervix and endometrium. PMID:22114462

  4. T-cell intrinsic and extrinsic mechanisms of p27Kip1 in the regulation of CD8 T-cell memory.

    PubMed

    Jatzek, Anna; Marie Tejera, Melba; Plisch, Erin H; Fero, Matthew L; Suresh, M

    2013-02-01

    CD8 T cells exhibit dynamic alterations in proliferation and apoptosis during various phases of the CD8 T-cell response, but the mechanisms that regulate cellular proliferation from the standpoint of CD8 T-cell memory are not well defined. The cyclin-dependent kinase inhibitor p27(Kip1) functions as a negative regulator of the cell cycle in T cells, and it has been implicated in regulating cellular processes, including differentiation, transcription and migration. Here, we investigated whether p27(Kip1) regulates CD8 T-cell memory by T-cell-intrinsic or T-cell-extrinsic mechanisms, by conditional ablation of p27(Kip1) in T cells or non-T cells. Studies of T-cell responses to an acute viral infection show that p27(Kip1) negatively regulates the proliferation of CD8 T cells by T-cell-intrinsic mechanisms. However, the enhanced proliferation of CD8 T cells induced by T-cell-specific p27(Kip1) deficiency minimally affects the primary expansion or the magnitude of CD8 T-cell memory. Unexpectedly, p27(Kip1) ablation in non-T cells markedly augmented the number of high-quality memory CD8 T cells by enhancing the accumulation of memory precursor effector cells without increasing their proliferation. Further studies show that p27(Kip1) deficiency in immunizing dendritic cells fail to enhance CD8 T-cell memory. Nevertheless, we have delineated the T-cell-intrinsic, anti-proliferative activities of p27(Kip1) in CD8 T cells from its role as a factor in non-T cells that restricts the development of CD8 T-cell memory. These findings have implications in vaccine development and understanding the mechanisms that maintain T-cell homeostasis.

  5. MAD1 and p27KIP1 Cooperate To Promote Terminal Differentiation of Granulocytes and To Inhibit Myc Expression and Cyclin E-CDK2 Activity

    PubMed Central

    McArthur, Grant A.; Foley, Kevin P.; Fero, Matthew L.; Walkley, Carl R.; Deans, Andrew J.; Roberts, James M.; Eisenman, Robert N.

    2002-01-01

    To understand how cellular differentiation is coupled to withdrawal from the cell cycle, we have focused on two negative regulators of the cell cycle, the MYC antagonist MAD1 and the cyclin-dependent kinase inhibitor p27KIP1. Generation of Mad1/p27KIP1 double-null mice revealed a number of synthetic effects between the null alleles of Mad1 and p27KIP1, including embryonic lethality, increased proliferation, and impaired differentiation of granulocyte precursors. Furthermore, with granulocyte cell lines derived from the Mad1/p27KIP1 double-null mice, we observed constitutive Myc expression and cyclin E-CDK2 kinase activity as well as impaired differentiation following treatment with an inducer of differentiation. By contrast, similar treatment of granulocytes from Mad1 or p27KIP1 single-null mice resulted in differentiation accompanied by downregulation of both Myc expression and cyclin E-CDK2 kinase activity. In the double-null granulocytic cells, addition of a CDK2 inhibitor in the presence of differentiation inducer was sufficient to restore differentiation and reduce Myc levels. We conclude that Mad1 and p27KIP1 operate, at least in part, by distinct mechanisms to downregulate CDK2 activity and Myc expression in order to promote cell cycle exit during differentiation. PMID:11940659

  6. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts.

    PubMed Central

    Takuwa, N; Takuwa, Y

    1997-01-01

    It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase. PMID:9271412

  7. PI3K/AKT pathway-mediated regulation of p27(Kip1) is associated with cell cycle arrest and apoptosis in cervical cancer.

    PubMed

    Prasad, Shyam Babu; Yadav, Suresh Singh; Das, Mitali; Modi, Arusha; Kumari, Soni; Pandey, Lakshmi Kant; Singh, Sunita; Pradhan, Satyajit; Narayan, Gopeshwar

    2015-06-01

    The cyclin-dependent kinase inhibitor p27(Kip1) is known to act as a putative tumor suppressor in several human cancers, including cervical cancer. Down-regulation of p27(Kip1) may occur either through transcription inhibition or through phosphorylation-dependent proteolytic degradation. As yet, the mechanism underlying p27(Kip1) down-regulation and its putative downstream effects on cervical cancer development are poorly understood. Here we assessed the expression and sub-cellular localization of p27(Kip1) and its effects on proliferation, cell cycle progression and (inhibition of) apoptosis in cervical cancer cells. Primary cervical cancer samples (n = 70), normal cervical tissue samples (n = 30) and cervical cancer-derived cell lines (n = 8) were used to assess the expression of p27(Kip1) and AKT1 by RT-PCR, Western blotting and immunohistochemistry, respectively. The effects of the PI3K inhibitor LY294004 and the proteasome inhibitor MG132 on cervical cancer cell proliferation were investigated using a MTT assay. Apoptosis and cell cycle analyses were carried out using flow cytometry, and sub-cellular p27(Kip1) localization analyses were carried out using immunofluorescence assays. We observed p27(Kip1) down-regulation (p = 0.045) and AKT1 up-regulation (p = 0.046) in both the primary cervical cancer samples and the cervical cancer-derived cell lines, compared to the normal cervical tissue samples tested. Treatment of cervical cancer-derived cell lines with the PI3K inhibitor LY294002 resulted in a reduced AKT1 activity. We also observed a dose-dependent inhibition of cell viability after treatment of these cell lines with the proteasome inhibitor MG132. Treatment of the cells with LY294002 resulted in a G1 cell cycle arrest, a nuclear expression of p27(Kip1), and a cytoplasmic p27(Kip1) accumulation after subsequent treatment with MG132. Additionally, we found that the synergistic effect of MG132 and LY294002 resulted in a sub-G1 cell cycle

  8. NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1α and p27(Kip1) expression in malignant melanoma and other human tumors.

    PubMed

    Antony, Smitha; Jiang, Guojian; Wu, Yongzhong; Meitzler, Jennifer L; Makhlouf, Hala R; Haines, Diana C; Butcher, Donna; Hoon, Dave S; Ji, Jiuping; Zhang, Yiping; Juhasz, Agnes; Lu, Jiamo; Liu, Han; Dahan, Iris; Konate, Mariam; Roy, Krishnendu K; Doroshow, James H

    2017-08-01

    NADPH oxidase 5 (NOX5) generated reactive oxygen species (ROS) have been implicated in signaling cascades that regulate cancer cell proliferation. To evaluate and validate NOX5 expression in human tumors, we screened a broad range of tissue microarrays (TMAs), and report substantial overexpression of NOX5 in malignant melanoma and cancers of the prostate, breast, and ovary. In human UACC-257 melanoma cells that possesses high levels of functional endogenous NOX5, overexpression of NOX5 resulted in enhanced cell growth, increased numbers of BrdU positive cells, and increased γ-H2AX levels. Additionally, NOX5-overexpressing (stable and inducible) UACC-257 cells demonstrated increased normoxic HIF-1α expression and decreased p27(Kip1) expression. Similarly, increased normoxic HIF-1α expression and decreased p27(Kip1) expression were observed in stable NOX5-overexpressing clones of KARPAS 299 human lymphoma cells and in the human prostate cancer cell line, PC-3. Conversely, knockdown of endogenous NOX5 in UACC-257 cells resulted in decreased cell growth, decreased HIF-1α expression, and increased p27(Kip1) expression. Likewise, in an additional human melanoma cell line, WM852, and in PC-3 cells, transient knockdown of endogenous NOX5 resulted in increased p27(Kip1) and decreased HIF-1α expression. Knockdown of endogenous NOX5 in UACC-257 cells resulted in decreased Akt and GSK3β phosphorylation, signaling pathways known to modulate p27(Kip1) levels. In summary, our findings suggest that NOX5 expression in human UACC-257 melanoma cells could contribute to cell proliferation due, in part, to the generation of high local concentrations of extracellular ROS that modulate multiple pathways that regulate HIF-1α and networks that signal through Akt/GSK3β/p27(Kip1) . © 2017 Wiley Periodicals, Inc.

  9. Nkx3.1 and p27(KIP1) cooperate in proliferation inhibition and apoptosis induction in human androgen-independent prostate cancer cells.

    PubMed

    Wang, Ping; Ma, Qi; Luo, JinDan; Liu, Ben; Tan, FuQing; Zhang, ZhiGen; Chen, ZhaoDian

    2009-05-01

    Prostate cancer (PC), which responds well to androgen ablation initially, invariably progresses to treatment resistance. The so-called androgen-independent PC is also a concern, since there is no effective therapy so far. Nkx3.1 is a putative prostate tumor suppressor that is expressed exclusively in the prostate under the regulation of androgen, and p27(KIP1) functions as a cell proliferation inhibitor and apoptosis trigger by disrupting the cyclin-dependent kinase (CDK)-cyclin complex. Lack of expressions of Nkx3.1 and/or p27(KIP1) have been detected in most advanced PC and is associated with poor clinical progression. Here, we show that endogenous expressions of both Nkx3.1 and p27(KIP1) are lost in the androgen-independent PC3 PC cells, while remaining intact in LNCaP PC cells, which contain functional androgen receptor (AR) and are hormone-responsive. Ectopic restoration of either Nkx3.1 or p27(KIP1) in PC3 cells results in reduced cell proliferation, and increased cell death. Both effects are synergistically enhanced when the two molecules are coexpressed. p27(KIP1) overexpression in PC3 results in increased cell population ceased at the G0/G1 phase, and this cell-cycle-arresting effect is significantly enhanced by the coexpression of Nkx3.1. Flow cytometry further revealed that Nkx3.1 and p27(KIP1) also cooperatively render more PC3 cells undergoing apoptosis. Consistently, the coexpression of Nkx3.1 and p27(KIP1) leads to the decreased expression of Bcl-2 oncogene and a concomitantly upregulated Bax expression. It also activates caspase 3 and leads to increased cleavage of PARP. Our findings thus reveal the crucial relevance of the combined antiproliferative and proapoptotic activities of Nkx3.1 and p27(KIP1) in androgen-independent PC cells, and further suggest that a combined, rather than single gene manipulation may be of clinical value for hormone-refractory PC.

  10. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1.

    PubMed

    Lin, Hui-Ping; Lin, Ching-Yu; Huo, Chieh; Hsiao, Ping-Hsuan; Su, Liang-Cheng; Jiang, Shih Sheng; Chan, Tzu-Min; Chang, Chung-Ho; Chen, Li-Tzong; Kung, Hsing-Jien; Wang, Horng-Dar; Chuu, Chih-Pin

    2015-03-30

    Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4-2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.

  11. Interferon-induces expression of cyclin-dependent kinase-inhibitors p21WAF1 and p27Kip1 that prevent activation of cyclin-dependent kinase by CDK-activating kinase (CAK).

    PubMed

    Mandal, M; Bandyopadhyay, D; Goepfert, T M; Kumar, R

    1998-01-15

    To understand the mechanism of interferon (IFN)-mediated suppression of cell cycle progression, we have earlier shown that IFN-alpha enhances the expression of underphosphorylated retinoblastoma protein by inhibiting the cyclin-dependent kinase-2 (CDK-2) activity (Kumar and Atlas, Proc. Natl. Acad. Sci. 89, 6599-6603, 1992; Zhang and Kumar, Biochem. Biophysi. Res. Comm., 200, 522-528, 1994). In the studies presented here, we investigated the mechanism of inhibition of CDKs in IFN-treated cells by delineating the potential role(s) of CDK-inhibitors (CKIs) and CDK-activating kinase (CAK). We report that IFN-alpha inhibits the H-1 kinase activity associated with CDK-4 or CDK-2 due to induction of expression of CDK-inhibitor p21WAF1 (but not p27Kip1) as its immunodepletion from IFN-treated extracts restored the CDK-associated H-1 kinase activity. In addition, we also show that IFN-gamma induces expression of CDK-inhibitors p21WAF1 and p27Kip1 and inhibited the H-1 kinase activity associated with CDK-2 or CDK-4. The observed IFN-gamma-mediated inhibition of CDK-2 and CDK-4 kinase activity was due to enhanced interactions with p21WAF1 and p27Kip1, respectively. We also demonstrated that IFN-induced CKIs prevent CAK from activating the CDK-2 as immunodepletion of induced CKIs from the inhibitory extracts resulted in the restoration of CAK-mediated activation of CDK-2.

  12. Cooperative role between p21cip1/waf1 and p27kip1 in premature senescence in glandular proliferative lesions in mice.

    PubMed

    García-Fernández, R A; García-Palencia, P; Suarez, C; Sánchez, M A; Gil-Gómez, G; Sánchez, B; Rollán, E; Martín-Caballero, J; Flores, J M

    2014-03-01

    Cellular senescence has been considered a novel target for cancer therapy. It has also been pointed out that p21(cip1/waf1) and p27(kip1) cyclin-dependent kinase inhibitors (CKIs) play a role in cellular senescence in some tumor types. Therefore, in order to address the possibility of a cooperative role between p21 and p27 proteins in senescence in vivo we analyzed cellular senescence in spontaneous glandular proliferative lesions (adrenal, thyroid and pituitary glands) in a double-KO mice model, using γH2AX, p53, p16, PTEN and Ki67 as senescence markers. The results obtained showed that p21p27 double-null mice had the lowest number of γH2AX positive cells in glandular hyperplasias and benign tumors. Also, in this group, Ki67 proliferation index correlated with a lower immunohistochemical expression of γH2AX and p53. The expression of p16 and PTEN do not seem to cause synergism of senescence in the benign lesions analyzed in p21p27 double-KO mice. These observations suggest an intrinsic cooperation between p21 and p27 CKIs in the activation of stress-induced cellular senescence and tumor progression in vivo, which would be a physiological mechanism to prevent tumor cell proliferation.

  13. Accumulation of p27(kip1) is associated with cyclin D3 overexpression in the oxyphilic (Hurthle cell) variant of follicular thyroid carcinoma

    PubMed Central

    Troncone, G; Iaccarino, A; Russo, M; Palmieri, E A; Volante, M; Papotti, M; Viglietto, G; Palombini, L

    2007-01-01

    Background The down regulation of protein p27kip1 (p27) in most cases of thyroid cancer has relevant diagnostic and prognostic implications. However, the oxyphilic (Hurthle cell) variant of follicular thyroid carcinoma expresses more p27 than benign oxyphilic lesions do. Aim To evaluate the mechanism underlying this difference in expression of p27. Methods Because high levels of cyclin D3 lead to p27 accumulation in cell lines and clinical samples of thyroid cancer, the immunocytochemical pattern of cyclin D3 in oxyphilic (n = 47) and non‐oxyphilic (n = 70) thyroid neoplasms was investigated. Results In the whole study sample, there was a significant correlation between p27 and cyclin D3 expression (Spearman's r: 0.64; p<0.001). The expression of cyclin D3 and p27 was significantly higher in the oxyphilic variant of follicular carcinomas than in non‐oxyphilic carcinomas (p<0.001). In the former, cyclin D3 overexpression and p27 accumulation were observed in a median of 75% and 55% of cells, respectively. In co‐immunoprecipitation experiments, the level of p27‐bound cyclin D3 was much higher in oxyphilic neoplasias than in normal thyroids and other thyroid tumours. Conclusion These results show that increased p27 expression in the oxyphilic (Hurthle cell) variant of follicular thyroid carcinoma results from cyclin D3 overexpression. PMID:16798934

  14. p27kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage

    PubMed Central

    Cuadrado, Myriam; Gutierrez-Martinez, Paula; Swat, Aneta; Nebreda, Angel R.; Fernandez-Capetillo, Oscar

    2013-01-01

    One of the current models of cancer proposes that oncogenes activate a DNA damage response (DDR), which would limit the growth of the tumor in its earliest stages. In this context, and in contrast to studies focused on the acute responses to a one-time genotoxic insult, understanding how cells respond to a persistent source of DNA damage might become critical for future studies in the field. We here report the discovery of a novel damage-responsive pathway, which involves p27kip1 and retinoblastoma tumour suppressors (TS), and which is only implemented after a persistent exposure to clastogens. In agreement with its late activation, we show that this pathway is critical for the maintenance –but not the initiation- of the cell cycle arrest triggered by DNA damage. Interestingly, this late response is independent of the canonical ATM- and ATR-dependent DDR, but downstream of p38 MAPK. Our results might help to reconcile the oncogene-induced DNA damage model with the clinical evidence that points to non-DDR members as the most important TSs in human cancer. PMID:19843869

  15. Butein inhibits cell proliferation and induces cell cycle arrest in acute lymphoblastic leukemia via FOXO3a/p27kip1 pathway

    PubMed Central

    Wang, Li-Na; Tian, Yun; Shi, Dingbo; Wang, Jingshu; Qin, Ge; Li, Anchuan; Liang, Yan-Ni; Zhou, Huan-Juan; Ke, Zhi-Yong; Huang, Wenlin; Deng, Wuguo; Luo, Xue-Qun

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a common hematological malignancy characterized by the uncontrolled proliferation of leukemia cells in children. Discovering and developing effective chemotherapeutic drugs are needed for ALL. In this study, we investigated the anti-leukemic activity of butein and its action mechanisms in ALL. Butein was found to significantly suppress the cellular proliferation of ALL cell lines and primary ALL blasts in a dose-dependent manner. It also induced cell cycle arrest by decreasing the expression of cyclin E and CDK2. We also found that butein promoted nuclear Forkhead Class box O3a (FOXO3a) localization, enhanced the binding of FOXO3a on the p27kip1 gene promoter and then increased the expression of p27kip1. Moreover, we showed that FOXO3a knockdown significantly decreased the proliferation inhibition by butein, whereas overexpression of FOXO3a enhanced the butein-mediated proliferation inhibition. However, overexpression of FOXO3a mutation (C-terminally truncated FOXO3a DNA-binding domain) decreased the proliferation inhibition by butein through decreasing the expression of p27kip1. Our results therefore demonstrate the therapeutic potential of butein for ALL via FOXO3a/p27kip1 pathway. PMID:26919107

  16. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition.

    PubMed

    Mammoto, Akiko; Huang, Sui; Moore, Kimberly; Oh, Philmo; Ingber, Donald E

    2004-06-18

    Cell shape-dependent control of cell-cycle progression underlies the spatial differentials of growth that drive tissue morphogenesis, yet little is known about how cell distortion impacts the biochemical signaling machinery that is responsible for growth control. Here we show that the Rho family GTPase, RhoA, conveys the "cell shape signal" to the cell-cycle machinery in human capillary endothelial cells. Cells accumulating p27(kip1) and arrested in mid G(1) phase when spreading were inhibited by restricted extracellular matrix adhesion, whereas constitutively active RhoA increased expression of the F-box protein Skp2 required for ubiquitination-dependent degradation of p27(kip1) and restored G(1) progression in these cells. Studies with dominant-negative and constitutively active forms of mDia1, a downstream effector of RhoA, and with a pharmacological inhibitor of ROCK, another RhoA target, revealed that RhoA promoted G(1) progression by altering the balance of activities between these two downstream effectors. These data indicate that signaling proteins such as mDia1 and ROCK, which are thought to be involved primarily in cytoskeletal remodeling, also mediate cell growth regulation by coupling cell shape to the cell-cycle machinery at the level of signal transduction.

  17. CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice.

    PubMed

    Sun, J; Nam, S; Lee, C S; Li, B; Coppola, D; Hamilton, A D; Dou, Q P; Sebti, S M

    2001-02-15

    The ubiquitin proteasome system is responsible for the proteolysis of important cell cycle and apoptosis-regulatory proteins. In this paper we report that the dipeptidyl proteasome inhibitor, phthalimide-(CH2)8CH-(cyclopentyl) CO-Arg(NO2)-Leu-H (CEP1612), induces apoptosis and inhibits tumor growth of the human lung cancer cell line A-549 in an in vivo model. In cultured A-549 cells, CEP1612 treatment results in accumulation of two proteasome natural substrates, the cyclin-dependent kinase inhibitors p21WAF1 and p27KIP1, indicating its ability to inhibit proteasome activity in intact cells. Furthermore, CEP1612 induces apoptosis as evident by caspase-3 activation and poly(ADP-ribose) polymerase cleavage. Treatment of A-549 tumor-bearing nude mice with CEP1612 (10 mg/kg/day, i.p. for 31 days) resulted in massive induction of apoptosis and significant (68%; P < 0.05) tumor growth inhibition, as shown by terminal deoxynucleotidyltransferase-mediated UTP end labeling. Furthermore, immunostaining of tumor specimens demonstrated in vivo accumulation of p21WAF1 and p27KIP1 after CEP1612 treatment. The results suggest that CEP1612 is a promising candidate for further development as an anticancer drug and demonstrate the feasibility of using proteasome inhibitors as novel antitumor agents.

  18. Methylation of tumor suppressor genes p16(INK4a), p27(Kip1) and E-cadherin in carcinogenesis.

    PubMed

    Auerkari, Elza Ibrahim

    2006-01-01

    Not only genomic mutations but also abnormal epigenetic methylation can significantly contribute to gene silencing and carcinogenesis. Methylation is particularly often observed in the CpG islands of the promoter regions in the regulatory genes. However, there are considerable differences in the incidence of methylation e.g. in the tumor suppressor genes, so that aberrant methylation of p16(INK4a) is relatively frequently observed in tumors, p27(Kip1) methylation is rare, and the incidence of E-cadherin methylation occurs at an intermediate rate. Although true genomic defects are generally much less common than methylation, parallel tendencies for both are often observed, probably reflecting the different levels of evolutionary advantage for tumor cells from inactivation of different genes. This also suggests that loss of p27 expression could be more a consequence of carcinogenesis, while lost p16 expression is a true oncogenic event. Due to the role of p27 in maintaining cellular quiescence, however, loss of its expression can still be a useful partial indicator of the aggressiveness of cancer. Loss of E-cadherin or its catenin partners of cellular adhesion will result in increasing invasiveness and metastatic potential of neoplastic cells but, because of several alternative routes to the same effect, incidence of lost expression for one component gene like E-cadherin does not need to be very high. Similarly, there must be a relatively high number of genes with modest or low incidence of aberrant silencing by methylation, to reflect multiple alternatives for the multistep process of carcinogenesis. Nevertheless, methylation of different genes also shows characteristic differences between different cancer and tumor types, and the epigenetic methylation patterns therefore have considerable diagnostic and prognostic potential. Realising this potential requires efficient methods for profiling the status of methylation. Such profiling methods have only recently become

  19. SKP2 oncogene is a direct MYC target gene and MYC down-regulates p27(KIP1) through SKP2 in human leukemia cells.

    PubMed

    Bretones, Gabriel; Acosta, Juan C; Caraballo, Juan M; Ferrándiz, Nuria; Gómez-Casares, M Teresa; Albajar, Marta; Blanco, Rosa; Ruiz, Paula; Hung, Wen-Chun; Albero, M Pilar; Perez-Roger, Ignacio; León, Javier

    2011-03-18

    SKP2 is the ubiquitin ligase subunit that targets p27(KIP1) (p27) for degradation. SKP2 is induced in the G(1)-S transit of the cell cycle, is frequently overexpressed in human cancer, and displays transformation activity in experimental models. Here we show that MYC induces SKP2 expression at the mRNA and protein levels in human myeloid leukemia K562 cells with conditional MYC expression. Importantly, in these systems, induction of MYC did not activate cell proliferation, ruling out SKP2 up-regulation as a consequence of cell cycle entry. MYC-dependent SKP2 expression was also detected in other cell types such as lymphoid, fibroblastic, and epithelial cell lines. MYC induced SKP2 mRNA expression in the absence of protein synthesis and activated the SKP2 promoter in luciferase reporter assays. With chromatin immunoprecipitation assays, MYC was detected bound to a region of human SKP2 gene promoter that includes E-boxes. The K562 cell line derives from human chronic myeloid leukemia. In a cohort of chronic myeloid leukemia bone marrow samples, we found a correlation between MYC and SKP2 mRNA levels. Analysis of cancer expression databases also indicated a correlation between MYC and SKP2 expression in lymphoma. Finally, MYC-induced SKP2 expression resulted in a decrease in p27 protein in K562 cells. Moreover, silencing of SKP2 abrogated the MYC-mediated down-regulation of p27. Our data show that SKP2 is a direct MYC target gene and that MYC-mediated SKP2 induction leads to reduced p27 levels. The results suggest the induction of SKP2 oncogene as a new mechanism for MYC-dependent transformation.

  20. SKP2 Oncogene Is a Direct MYC Target Gene and MYC Down-regulates p27KIP1 through SKP2 in Human Leukemia Cells*

    PubMed Central

    Bretones, Gabriel; Acosta, Juan C.; Caraballo, Juan M.; Ferrándiz, Nuria; Gómez-Casares, M. Teresa; Albajar, Marta; Blanco, Rosa; Ruiz, Paula; Hung, Wen-Chun; Albero, M. Pilar; Perez-Roger, Ignacio; León, Javier

    2011-01-01

    SKP2 is the ubiquitin ligase subunit that targets p27KIP1 (p27) for degradation. SKP2 is induced in the G1-S transit of the cell cycle, is frequently overexpressed in human cancer, and displays transformation activity in experimental models. Here we show that MYC induces SKP2 expression at the mRNA and protein levels in human myeloid leukemia K562 cells with conditional MYC expression. Importantly, in these systems, induction of MYC did not activate cell proliferation, ruling out SKP2 up-regulation as a consequence of cell cycle entry. MYC-dependent SKP2 expression was also detected in other cell types such as lymphoid, fibroblastic, and epithelial cell lines. MYC induced SKP2 mRNA expression in the absence of protein synthesis and activated the SKP2 promoter in luciferase reporter assays. With chromatin immunoprecipitation assays, MYC was detected bound to a region of human SKP2 gene promoter that includes E-boxes. The K562 cell line derives from human chronic myeloid leukemia. In a cohort of chronic myeloid leukemia bone marrow samples, we found a correlation between MYC and SKP2 mRNA levels. Analysis of cancer expression databases also indicated a correlation between MYC and SKP2 expression in lymphoma. Finally, MYC-induced SKP2 expression resulted in a decrease in p27 protein in K562 cells. Moreover, silencing of SKP2 abrogated the MYC-mediated down-regulation of p27. Our data show that SKP2 is a direct MYC target gene and that MYC-mediated SKP2 induction leads to reduced p27 levels. The results suggest the induction of SKP2 oncogene as a new mechanism for MYC-dependent transformation. PMID:21245140

  1. Substituting threonine 187 with alanine in p27Kip1 prevents pituitary tumorigenesis by two-hit loss of Rb1 and enhances humoral immunity in old age.

    PubMed

    Zhao, Hongling; Bauzon, Frederick; Bi, Enguang; Yu, J Jessica; Fu, Hao; Lu, Zhonglei; Cui, Jinhua; Jeon, Hyungjun; Zang, Xingxing; Ye, B Hilda; Zhu, Liang

    2015-02-27

    p27Kip1 (p27) is an inhibitor of cyclin-dependent kinases. Inhibiting p27 protein degradation is an actively developing cancer therapy strategy. One focus has been to identify small molecule inhibitors to block recruitment of Thr-187-phosphorylated p27 (p27T187p) to SCF(Skp2/Cks1) ubiquitin ligase. Since phosphorylation of Thr-187 is required for this recruitment, p27T187A knockin (KI) mice were generated to determine the effects of systemically blocking interaction between p27 and Skp2/Cks1 on tumor susceptibility and other proliferation related mouse physiology. Rb1(+/-) mice develop pituitary tumors with full penetrance and the tumors are invariably Rb1(-/-), modeling tumorigenesis by two-hit loss of RB1 in humans. Immunization induced humoral immunity depends on rapid B cell proliferation and clonal selection in germinal centers (GCs) and declines with age in mice and humans. Here, we show that p27T187A KI prevented pituitary tumorigenesis in Rb1(+/-) mice and corrected decline in humoral immunity in older mice following immunization with sheep red blood cells (SRBC). These findings reveal physiological contexts that depend on p27 ubiquitination by SCF(Skp2-Cks1) ubiquitin ligase and therefore help forecast clinical potentials of Skp2/Cks1-p27T187p interaction inhibitors. We further show that GC B cells and T cells use different mechanisms to regulate their p27 protein levels, and propose a T helper cell exhaustion model resembling that of stem cell exhaustion to understand decline in T cell-dependent humoral immunity in older age.

  2. Substituting Threonine 187 with Alanine in p27Kip1 Prevents Pituitary Tumorigenesis by Two-Hit Loss of Rb1 and Enhances Humoral Immunity in Old Age*

    PubMed Central

    Zhao, Hongling; Bauzon, Frederick; Bi, Enguang; Yu, J. Jessica; Fu, Hao; Lu, Zhonglei; Cui, Jinhua; Jeon, Hyungjun; Zang, Xingxing; Ye, B. Hilda; Zhu, Liang

    2015-01-01

    p27Kip1 (p27) is an inhibitor of cyclin-dependent kinases. Inhibiting p27 protein degradation is an actively developing cancer therapy strategy. One focus has been to identify small molecule inhibitors to block recruitment of Thr-187-phosphorylated p27 (p27T187p) to SCFSkp2/Cks1 ubiquitin ligase. Since phosphorylation of Thr-187 is required for this recruitment, p27T187A knockin (KI) mice were generated to determine the effects of systemically blocking interaction between p27 and Skp2/Cks1 on tumor susceptibility and other proliferation related mouse physiology. Rb1+/− mice develop pituitary tumors with full penetrance and the tumors are invariably Rb1−/−, modeling tumorigenesis by two-hit loss of RB1 in humans. Immunization induced humoral immunity depends on rapid B cell proliferation and clonal selection in germinal centers (GCs) and declines with age in mice and humans. Here, we show that p27T187A KI prevented pituitary tumorigenesis in Rb1+/− mice and corrected decline in humoral immunity in older mice following immunization with sheep red blood cells (SRBC). These findings reveal physiological contexts that depend on p27 ubiquitination by SCFSkp2-Cks1 ubiquitin ligase and therefore help forecast clinical potentials of Skp2/Cks1-p27T187p interaction inhibitors. We further show that GC B cells and T cells use different mechanisms to regulate their p27 protein levels, and propose a T helper cell exhaustion model resembling that of stem cell exhaustion to understand decline in T cell-dependent humoral immunity in older age. PMID:25583987

  3. c-Myc represses FOXO3a-mediated transcription of the gene encoding the p27(Kip1) cyclin dependent kinase inhibitor.

    PubMed

    Chandramohan, Vidyalakshmi; Mineva, Nora D; Burke, Brian; Jeay, Sébastien; Wu, Min; Shen, Jian; Yang, William; Hann, Stephen R; Sonenshein, Gail E

    2008-08-15

    The p27(Kip1) (p27) cyclin-dependent kinase inhibitor and c-Myc oncoprotein play essential roles in control of cell cycle progression and apoptosis. Induction of p27 (CDKN1B) gene transcription by Forkhead box O proteins such as FOXO3a leads to growth arrest and apoptosis. Previously, we observed that B cell receptor (surface IgM) engagement of WEHI 231 immature B lymphoma cells with an anti-IgM antibody results in activation of FOXO3a, growth arrest and apoptosis. As ectopic c-Myc expression in these cells prevented anti-IgM induction of p27 and cell death, we hypothesized that c-Myc represses FOXO3a-mediated transcription. Here we show that c-Myc inhibits FOXO3a-mediated activation of the p27 promoter in multiple cell lines. The mechanism of this repression was explored using a combination of co-immunoprecipitation, oligonucleotide precipitation, and chromatin immunoprecipitation experiments. The studies demonstrate a functional association of FOXO3a and c-Myc on a proximal Forkhead binding element in the p27 promoter. This association involves the Myc box II domain of c-Myc and the N-terminal DNA-binding portion of FOXO3a. Analysis of publicly available microarray datasets showed an inverse pattern of c-MYC and p27 RNA expression in primary acute myeloid leukemia, prostate cancer and tongue squamous cell carcinoma samples. The inhibition of FOXO3a-mediated activation of the p27 gene by the high aberrant expression of c-Myc in many tumor cells likely contributes to their uncontrolled proliferation and invasive phenotype.

  4. A Cytostatic Ruthenium(II)-Platinum(II) Bis(terpyridyl) Anticancer Complex That Blocks Entry into S Phase by Up-regulating p27(KIP1).

    PubMed

    Ramu, Vadde; Gill, Martin R; Jarman, Paul J; Turton, David; Thomas, Jim A; Das, Amitava; Smythe, Carl

    2015-06-15

    Cytostatic agents that interfere with specific cellular components to prevent cancer cell growth offer an attractive alternative, or complement, to traditional cytotoxic chemotherapy. Here, we describe the synthesis and characterization of a new binuclear Ru(II) -Pt(II) complex [Ru(tpy)(tpypma)Pt(Cl)(DMSO)](3+) (tpy=2,2':6',2''-terpyridine and tpypma=4-([2,2':6',2''-terpyridine]-4'-yl)-N-(pyridin-2-ylmethyl)aniline), VR54, which employs the extended terpyridine tpypma ligand to link the two metal centres. In cell-free conditions, VR54 binds DNA by non-intercalative reversible mechanisms (Kb =1.3×10(5)  M(-1) ) and does not irreversibly bind guanosine. Cellular studies reveal that VR54 suppresses proliferation of A2780 ovarian cancer cells with no cross-resistance in the A2780CIS cisplatin-resistant cell line. Through the preparation of mononuclear Ru(II) and Pt(II) structural derivatives it was determined that both metal centres are required for this anti-proliferative activity. In stark contrast to cisplatin, VR54 neither activates the DNA-damage response network nor induces significant levels of cell death. Instead, VR54 is cytostatic and inhibits cell proliferation by up-regulating the cyclin-dependent kinase inhibitor p27(KIP1) and inhibiting retinoblastoma protein phosphorylation, which blocks entry into S phase and results in G1 cell cycle arrest. Thus, VR54 inhibits cancer cell growth by a gain of function at the G1 restriction point. This is the first metal-coordination compound to demonstrate such activity.

  5. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth

    PubMed Central

    Pavlides, Savvas C.; Lecanda, Jon; Daubriac, Julien; Pandya, Unnati M.; Gama, Patricia; Blank, Stephanie; Mittal, Khushbakhat; Shukla, Pratibha; Gold, Leslie I.

    2016-01-01

    ABSTRACT We previously reported that aberrant TGF-β/Smad2/3 signaling in endometrial cancer (ECA) leads to continuous ubiquitylation of p27kip1(p27) by the E3 ligase SCF-Skp2/Cks1 causing its degradation, as a putative mechanism involved in the pathogenesis of this cancer. In contrast, normal intact TGF-β signaling prevents degradation of nuclear p27 by SCF-Skp2/Cks1 thereby accumulating p27 to block Cdk2 for growth arrest. Here we show that in ECA cell lines and normal primary endometrial epithelial cells, TGF-β increases Cdh1 and its binding to APC/C to form the E3 ligase complex that ubiquitylates Cks1 and Skp2 prompting their proteasomal degradation and thus, leaving p27 intact. Knocking-down Cdh1 in ECA cell lines increased Skp2/Cks1 E3 ligase activity, completely diminished nuclear and cytoplasmic p27, and obviated TGF-β-mediated inhibition of proliferation. Protein synthesis was not required for TGF-β-induced increase in nuclear p27 and decrease in Cks1 and Skp2. Moreover, half-lives of Cks1 and Skp2 were extended in the Cdh1-depleted cells. These results suggest that the levels of p27, Skp2 and Cks1 are strongly or solely regulated by proteasomal degradation. Finally, an inverse relationship of low p27 and high Cks1 in the nucleus was shown in patients in normal proliferative endometrium and grade I-III ECAs whereas differentiated secretory endometrium showed the reverse. These studies implicate Cdh1 as the master regulator of TGF-β-induced preservation of p27 tumor suppressor activity. Thus, Cdh1 is a potential therapeutic target for ECA and other human cancers showing an inverse relationship between Cks1/Skp2 and p27 and/or dysregulated TGF-β signaling. PMID:26963853

  6. Carfilzomib induces G2/M cell cycle arrest in human endometrial cancer cells via upregulation of p21(Waf1/Cip1) and p27(Kip1).

    PubMed

    Zhou, Yuanyuan; Wang, Ke; Zhen, Shuai; Wang, Ruili; Luo, Wenjuan

    2016-12-01

    Carfilzomib is a second-generation tetrapeptide epoxyketone proteasome inhibitor used in current clinical therapy of hematologic malignancies. The mechanism of proteasome inhibition in endometrial cancer is not very clear. Carfilzomib inhibition of type I endometrial carcinoma cell proliferation by inducing cell cycle arrest at the G2/M phase was investigated in our study. HEC-1-A and Ishikawa endometrial carcinoma cell lines and three tumor cell lines were treated by different concentrations of carfilzomib. Methyl thiazolyl tetrazolium (MTT) assay was used to detect cell viability. Flow cytometry was used to analyze the cell cycle. Western blot was used to detect proteins involved in cell cycle progression. Carfilzomib impaired viability of myelogenous leukemia cell line K562, cervical cancer cell line HeLa, hepatocellular carcinoma cell line SMCC-7721, and endometrial carcinoma cell lines HEC-1-A and Ishikawa. The cell cycle was arrested at the G2/M phase in carfilzomib-treated HEC-1-A endometrial carcinoma cells, while it was arrested at both S and G2/M phases in carfilzomib-treated Ishikawa cells. Carfilzomib treatment significantly induced p21(Waf1/ Cip1) and p27, while substantially reduced cyclin D3 and cyclin-dependent kinase 1. This study showed that carfilzomib inhibited endometrial cancer proliferation by upregulating cyclin-dependent kinase inhibitors p21(Waf1/Cip1) and p27(Kip1), and reducing cyclin-dependent kinase 1 to arrest the cell cycle at the G2/M phase. Copyright © 2016. Published by Elsevier B.V.

  7. TGF-β activates APC through Cdh1 binding for Cks1 and Skp2 proteasomal destruction stabilizing p27kip1 for normal endometrial growth.

    PubMed

    Pavlides, Savvas C; Lecanda, Jon; Daubriac, Julien; Pandya, Unnati M; Gama, Patricia; Blank, Stephanie; Mittal, Khushbakhat; Shukla, Pratibha; Gold, Leslie I

    2016-01-01

    We previously reported that aberrant TGF-β/Smad2/3 signaling in endometrial cancer (ECA) leads to continuous ubiquitylation of p27(kip1)(p27) by the E3 ligase SCF-Skp2/Cks1 causing its degradation, as a putative mechanism involved in the pathogenesis of this cancer. In contrast, normal intact TGF-β signaling prevents degradation of nuclear p27 by SCF-Skp2/Cks1 thereby accumulating p27 to block Cdk2 for growth arrest. Here we show that in ECA cell lines and normal primary endometrial epithelial cells, TGF-β increases Cdh1 and its binding to APC/C to form the E3 ligase complex that ubiquitylates Cks1 and Skp2 prompting their proteasomal degradation and thus, leaving p27 intact. Knocking-down Cdh1 in ECA cell lines increased Skp2/Cks1 E3 ligase activity, completely diminished nuclear and cytoplasmic p27, and obviated TGF-β-mediated inhibition of proliferation. Protein synthesis was not required for TGF-β-induced increase in nuclear p27 and decrease in Cks1 and Skp2. Moreover, half-lives of Cks1 and Skp2 were extended in the Cdh1-depleted cells. These results suggest that the levels of p27, Skp2 and Cks1 are strongly or solely regulated by proteasomal degradation. Finally, an inverse relationship of low p27 and high Cks1 in the nucleus was shown in patients in normal proliferative endometrium and grade I-III ECAs whereas differentiated secretory endometrium showed the reverse. These studies implicate Cdh1 as the master regulator of TGF-β-induced preservation of p27 tumor suppressor activity. Thus, Cdh1 is a potential therapeutic target for ECA and other human cancers showing an inverse relationship between Cks1/Skp2 and p27 and/or dysregulated TGF-β signaling.

  8. High-Sensitivity IHC Detection of Phosphorylated p27/Kip1 in Human Tissues Using Secondary Antibody Conjugated to Polymer-HRP.

    PubMed

    Grahek, Michael; Ptak, Ana; Kalyuzhny, Alexander E

    2017-01-01

    A complex composed of goat anti-rabbit secondary antibody conjugated to a polymer coated with horseradish peroxidase (HRP) molecules was used to develop rapid and highly sensitive immunostaining protocol for the detection of phosphorylated p27/Kip1 (T157) in human tissues. This polymer-HRP complex produced much better sensitivity detection compared to conventional biotin-streptavidin-HRP chemistry. Using polymer-HRP made it possible to reduce primary antibody concentration, eliminate some incubation steps such as avidin-biotin blocking and incubation with separate biotinylated secondary antibodies, and shorten the incubation time with primary antibody. Specificity of the detection was confirmed by eliminating labeling after treating tissues with lambda phosphatase to remove phosphate groups from p27/Kip1. Secondary antibodies conjugated to polymer-HRP is a reagent of choice in both research and diagnostic pathology allowing detecting low abundant and weakly expressed tissue targets.

  9. miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27(kip1) expression.

    PubMed

    Wang, Dan-Dan; Li, Jian; Sha, Huan-Huan; Chen, Xiu; Yang, Su-Jin; Shen, Hong-Yu; Zhong, Shan-Liang; Zhao, Jian-Hua; Tang, Jin-Hai

    2016-09-15

    Adriamycin (Adr) is a potent chemotherapeutic agent for chemotherapy of breast cancer patients. Despite impressive initial clinical responses, some developed drug resistance to Adr-based therapy and the mechanisms underlying breast cancer cells resistance to Adr are not well known. In our previous study, in vitro, we verified that miR-222 was upregulated in Adr-resistant breast cancer cells (MCF-7/Adr) compared with the sensitive parental cells (MCF-7/S). Here, miR-222 inhibitors or mimics were transfected into MCF-7 cell lines. RT-qPCR and western blot were used to detect the expression of p27(kip1). Immunofluorescence showed that miR-222 altered the subcellular location of p27(kip1) in nucleus. MTT was employed to verify the sensitivity of breast cancer cell lines to Adr. Flow cytometry showed the apoptosis and cell cycles of the cells after adding Adr. The results showed that downregulation of miR-222 in MCF-7/Adr increased sensitivity to Adr and Adr-induced apoptosis, and arrested the cells in G1 phase, accompanied by more expressions of p27(kip1), especially in nucleus. Furthermore, overexpressed miR-222 in MCF-7/S had the inverse results. Taken together, the results found that miR-222 induced Adr-resistance at least in part via suppressing p27(kip1) expression and altering its subcellular localization, and miR-222 inhibitors could reverse Adr-resistance of breast cancer cells. These results disclosed that the future holds much promise for the targeted therapeutic in the treatment of Adr-resistant breast cancer.

  10. Forkhead Box O1 Is Present in Quiescent Pituitary Cells during Development and Is Increased in the Absence of p27Kip1

    PubMed Central

    Majumdar, Sreeparna; Farris, Corrie L.; Kabat, Brock E.; Jung, Deborah O.; Ellsworth, Buffy S.

    2012-01-01

    Congenital pituitary hormone deficiencies have been reported in approximately one in 4,000 live births, however studies reporting mutations in some widely studied transcription factors account for only a fraction of congenital hormone deficiencies in humans. Anterior pituitary hormones are required for development and function of several glands including gonads, adrenals, and thyroid. In order to identify additional factors that contribute to human congenital hormone deficiencies, we are investigating the forkhead transcription factor, FOXO1, which has been implicated in development of several organs including ovary, testis, and brain. We find that FOXO1 is present in the nuclei of non-dividing pituitary cells during embryonic development, consistent with a role in limiting proliferation and/or promoting differentiation. FOXO1 is present in a subset of differentiated cells at e18.5 and in adult with highest level of expression in somatotrope cells. We detected FOXO1 in p27Kip1-positive cells at e14.5. In the absence of p27Kip1 the number of pituitary cells containing FOXO1 is significantly increased at e14.5 suggesting that a feedback loop regulates the interplay between FOXO1 and p27Kip1. PMID:23251696

  11. Forkhead Box O1 is present in quiescent pituitary cells during development and is increased in the absence of p27 Kip1.

    PubMed

    Majumdar, Sreeparna; Farris, Corrie L; Kabat, Brock E; Jung, Deborah O; Ellsworth, Buffy S

    2012-01-01

    Congenital pituitary hormone deficiencies have been reported in approximately one in 4,000 live births, however studies reporting mutations in some widely studied transcription factors account for only a fraction of congenital hormone deficiencies in humans. Anterior pituitary hormones are required for development and function of several glands including gonads, adrenals, and thyroid. In order to identify additional factors that contribute to human congenital hormone deficiencies, we are investigating the forkhead transcription factor, FOXO1, which has been implicated in development of several organs including ovary, testis, and brain. We find that FOXO1 is present in the nuclei of non-dividing pituitary cells during embryonic development, consistent with a role in limiting proliferation and/or promoting differentiation. FOXO1 is present in a subset of differentiated cells at e18.5 and in adult with highest level of expression in somatotrope cells. We detected FOXO1 in p27(Kip1)-positive cells at e14.5. In the absence of p27(Kip1) the number of pituitary cells containing FOXO1 is significantly increased at e14.5 suggesting that a feedback loop regulates the interplay between FOXO1 and p27(Kip1).

  12. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries.

    PubMed Central

    Jin, L.; Qian, X.; Kulig, E.; Sanno, N.; Scheithauer, B. W.; Kovacs, K.; Young, W. F.; Lloyd, R. V.

    1997-01-01

    Transforming growth factor (TGF)-beta has been implicated in the regulation of normal and neoplastic anterior pituitary cell function. TGF-beta regulates the expression of various proteins, including p27Kip1 (p27), a cell cycle inhibitory protein. We examined TGF-beta, TGF-beta type II receptor (TGF-beta-RII), and p27 expression in normal pituitaries, pituitary adenomas, and carcinomas to analyze the possible roles of these proteins in pituitary tumorigenesis. Normal pituitary, pituitary adenomas, and pituitary carcinomas all expressed TGF-beta and TGF-beta-RII immunoreactivity. Reverse transcription polymerase chain reaction analysis showed TGF-beta 1, -beta 2, and -beta 3 isoforms and TGF-beta-RII in normal pituitaries and pituitary adenomas. Pituitary adenomas cells cultured for 7 days in defined media showed a biphasic response to TGF-beta with significant inhibition of follicle-stimulating hormone secretion at higher concentrations (10(-9) mol/L) and stimulation of follicle-stimulating hormone secretion at lower concentrations (10(-13) mol/L) of TGF-beta 1 in gonadotroph adenomas. Immunohistochemical analysis for p27 protein expression showed the highest levels in nontumorous pituitaries with decreased immunoreactivity in adenomas and carcinomas. When nontumorous pituitaries and various adenomas were analyzed for p27 and specific hormone production, growth hormone, luteinizing hormone, and thyroid-stimulating hormone cells and tumors had the highest percentages of cells expressing p27, whereas adrenocorticotrophic hormone cells and tumors had the lowest percentages. Immunoblotting analysis showed that adrenocorticotrophic hormone adenomas also had the lowest levels of p27 protein. Semiquantitative reverse transcription polymerase chain reaction and Northern hybridization analysis did not show significant differences in p27 mRNA expression in the various types of adenomas or in nontumorous pituitaries. In situ hybridization for p27 mRNA showed similar

  13. Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer.

    PubMed

    Pateras, Ioannis S; Apostolopoulou, Kalliopi; Koutsami, Marilena; Evangelou, Kostas; Tsantoulis, Petros; Liloglou, Triantafillos; Nikolaidis, Giorgos; Sigala, Fragiska; Kittas, Christos; Field, John K; Kotsinas, Athanassios; Gorgoulis, Vassilis G

    2006-12-01

    Knowing the status of molecules involved in cell cycle control in cancer is vital for therapeutic approaches aiming at their restoration. The p27(KIP1) and p57(KIP2) cyclin-dependent kinase inhibitors are nodal factors controlling normal cell cycle. Their expression in normal lung raises the question whether they have a mutual exclusive or redundant role in nonsmall cell lung cancer (NSCLC). A comparative comprehensive analysis was performed in a series of 70 NSCLCs. The majority of cases showed significantly reduced expression of both members compared to normal counterparts. Low KIP protein levels correlated with increased proliferation, which seems to be histological subtype preponderant. At mechanistic level, degradation by SKP2 was demonstrated, in vivo and in vitro, by siRNA-methodology, to be the most important downregulating mechanism of both KIPs in NSCLC. Decreased p57(KIP) (2)-transcription complements the above procedure in lowering p57(KIP2)-protein levels. Methylation was the main cause of decreased p57(KIP) (2)-mRNA levels. Allelic loss and imprinting from LIT1 mRNA contribute also to decreased p57(KIP2) transcription. In vitro recapitulation of the in vivo findings, in A549 lung cells (INK4A-B((-/-))), suggested that inhibition of the SKP2-degradation mechanism restores p27(KIP1) and p57(KIP2) expression. Double siRNA treatments demonstrated that each KIP is independently capable of restraining cell growth. An additional demethylation step is required for complete reconstitution of p57(KIP2) expression in NSCLC.

  14. p21/Cip1 and p27/Kip1 Are essential molecular targets of inositol hexaphosphate for its antitumor efficacy against prostate cancer.

    PubMed

    Roy, Srirupa; Gu, Mallikarjuna; Ramasamy, Kumaraguruparan; Singh, Rana P; Agarwal, Chapla; Siriwardana, Sunitha; Sclafani, Robert A; Agarwal, Rajesh

    2009-02-01

    Inositol hexaphosphate (IP6) causes G(1) arrest and increases cyclin-dependent kinase inhibitors p21/Cip1 and p27/Kip1 protein levels in human prostate cancer (PCa) DU145 cells lacking functional p53. However, whether cyclin-dependent kinase inhibitor I induction by IP6 plays any role in its antitumor efficacy is unknown. Herein, we observed that either p21 or p27 knockdown by small interfering RNA has no considerable effect on IP6-induced G(1) arrest, growth inhibition, and death in DU145 cells; however, the simultaneous knockdown of both p21 and p27 reversed the effects of IP6. To further confirm these findings both in vitro and in vivo, we generated DU145 cell variants with knockdown levels of p21 (DU-p21), p27 (DU-p27), or both (DU-p21+p27) via retroviral transduction of respective short hairpin RNAs. Knocking down p21 or p27 individually did not alter IP6-caused cell growth inhibition and G(1) arrest; however, their simultaneous ablation completely reversed the effects of IP6. In tumor xenograft studies, IP6 (2% w/v, in drinking water) caused a comparable reduction in tumor volume (40-46%) and tumor cell proliferation (26-28%) in DU-EV (control), DU-p21, and DU-p27 tumors but lost most of its effect in DU-p21+p27 tumors. IP6-caused apoptosis also occurred in a Cip/Kip-dependent manner because DU-p21+p27 cells were completely resistant to IP6-induced apoptosis both in cell culture and xenograft. Together, these results provide evidence, for the first time, of the critical role of p21 and p27 in mediating the anticancer efficacy of IP6, and suggest their redundant role in the antiproliferative and proapoptotic effects of IP6 in p53-lacking human PCa cells, both in vitro and in vivo.

  15. p27KIP1 loss promotes proliferation and phagocytosis but prevents epithelial–mesenchymal transition in RPE cells after photoreceptor damage

    PubMed Central

    ul Quraish, Reeshan; Sudou, Norihiro; Nomura-Komoike, Kaori; Sato, Fumi

    2016-01-01

    Purpose p27KIP1 (p27), originally identified as a cell cycle inhibitor, is now known to have multifaceted roles beyond cell cycle regulation. p27 is required for the normal histogenesis of the RPE, but the role of p27 in the mature RPE remains elusive. To define the role of p27 in the maintenance and function of the RPE, we investigated the effects of p27 deletion on the responses of the RPE after photoreceptor damage. Methods Photoreceptor damage was induced in wild-type (WT) and p27 knockout (KO) mice with N-methyl-N-nitrosourea (MNU) treatment. Damage-induced responses of the RPE were investigated with bromodeoxyuridine (BrdU) incorporation assays, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays at different stages after MNU treatment. Subcellular localization of p27 in the WT RPE was also analyzed in vivo and in vitro. Results MNU treatment induced photoreceptor-specific degeneration in the WT and KO retinas. BrdU incorporation assays revealed virtually no proliferation of RPE cells in the WT retinas while, in the KO retinas, approximately 16% of the RPE cells incorporated BrdU at day 2 after MNU treatment. The RPE in the KO retinas developed aberrant protrusions into the outer nuclear layer in response to photoreceptor damage and engulfed outer segment debris, as well as TUNEL-positive photoreceptor cells. Increased phosphorylation of myosin light chains and their association with rhodopsin-positive phagosomes were observed in the mutant RPE, suggesting possible deregulation of cytoskeletal dynamics. In addition, WT RPE cells exhibited evidence of the epithelial–mesenchymal transition (EMT), including morphological changes, induction of α-smooth muscle actin expression, and attenuated expression of tight junction protein ZO-1 while these changes were absent in the KO retinas. In the normal WT retinas, p27 was localized to the nuclei of RPE cells while nuclear and cytoplasmic p27 was detected in RPE cells

  16. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    PubMed

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  17. In Vivo Regulation of Colonic Cell Proliferation, Differentiation, Apoptosis and P27Kip1 by Dietary Fish Oil and Butyrate in Rats

    PubMed Central

    Hong, Mee Young; Turner, Nancy D.; Murphy, Mary E.; Carroll, Raymond J.; Chapkin, Robert S.; Lupton, Joanne R.

    2015-01-01

    We have shown that dietary fish oil is protective against experimentally-induced colon cancer and the protective effect is enhanced by co-administration of pectin. However, the underlying mechanism(s) have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27Kip1 mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24 or 48 h post azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL) and p27Kip1 (cell cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N7-methylguanine) was determined by quantitative immunohistochemical analysis. Dietary fish oil decreased DNA damage by 19% (P=0.001) and proliferation by 50% (P=0.003) and increased differentiation by 56% (P=0.039) compared to corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 h post AOM injection compared to a corn oil/butyrate diet (P=0.039). There was an inverse relationship between crypt height and apoptosis in fish oil/butyrate group (r= −0.53, P=0.040). Corn oil/butyrate group showed a positive correlation between p27Kip1 expression and proliferation (r= 0.61, P=0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. PMID:26323483

  18. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27(kip1) signaling: opposite effects of oxLDL and cholesterol loading.

    PubMed

    Zhang, Chongxu; Adamos, Crystal; Oh, Myung-Jin; Baruah, Jugajyoti; Ayee, Manuela A A; Mehta, Dolly; Wary, Kishore K; Levitan, Irena

    2017-09-01

    Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu(2+)-oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu(2+)-oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu(2+)-oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27(kip1)). Both Cu(2+)-oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu(2+)- and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27(kip1) Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis. Copyright © 2017 the American Physiological Society.

  19. In vivo antitumor effects of 4,7-dimethoxy-5-methyl-1,3-benzodioxole isolated from the fruiting body of Antrodia camphorata through activation of the p53-mediated p27/Kip1 signaling pathway.

    PubMed

    Tu, Shih-Hsin; Wu, Chih-Hsiung; Chen, Li-Ching; Huang, Ching-Shui; Chang, Hui-Wen; Chang, Chien-Hsi; Lien, Hsiu-Man; Ho, Yuan-Soon

    2012-04-11

    In this study, 4,7-dimethoxy-5-methyl-1,3-benzodioxole (SY-1) was isolated from three different sources of dried Antrodia camphorata (AC) fruiting bodies. AC is a medicinal mushroom that grows on the inner heartwood wall of Cinnamomum kanehirai Hay (Lauraceae), which is an endemic species that is used in Chinese medicine for its antitumor properties. We demonstrated that SY-1 [given as a 1-30 mg/kg body weight intraperitoneal (ip) injection three times per week] profoundly decreased the growth of COLO-205 human colon cancer cell tumor xenografts in an athymic nude mouse model. We further demonstrated that significant AC extract-mediated antitumor effects were observed at the highest concentration (5 g/kg body weight/day). No gross toxicity signs were observed (i.e., body weight changes, general appearance, or individual organ effects). Frozen COLO-205 xenograft tumors were pulverized in liquid N(2), and the expression of cell cycle regulatory proteins was detected by immunoblotting. We found that the p53-mediated p27/Kip1 protein was significantly induced in the low-dose (1 mg/kg body weight) SY-1-treated tumors, whereas the p21/Cip1 protein levels did not change. The G0/G1 phase cell cycle regulators induced by SY-1 were also associated with a significant decrease in cyclins D1, D3, and A. These results provide further evidence that SY-1 may have significance for cancer chemotherapy.

  20. Aortic endothelial cells regulate proliferation of human monocytes in vitro via a mechanism synergistic with macrophage colony-stimulating factor. Convergence at the cyclin E/p27(Kip1) regulatory checkpoint.

    PubMed

    Antonov, A S; Munn, D H; Kolodgie, F D; Virmani, R; Gerrity, R G

    1997-06-15

    Monocyte-derived macrophages (Mphis) are pivotal participants in the pathogenesis of atherosclerosis. Evidence from both animal and human plaques indicates that local proliferation may contribute to accumulation of lesion Mphis, and the major Mphi growth factor, macrophage colony stimulating factor (MCSF), is present in atherosclerotic plaques. However, most in vitro studies have failed to demonstrate that human monocytes/Mphis possess significant proliferative capacity. We now report that, although human monocytes cultured in isolation showed only limited MCSF-induced proliferation, monocytes cocultured with aortic endothelial cells at identical MCSF concentrations underwent enhanced (up to 40-fold) and prolonged (21 d) proliferation. In contrast with monocytes in isolation, this was optimal at low seeding densities, required endothelial cell contact, and could not be reproduced by coculture with smooth muscle cells. Intimal Mphi isolated from human aortas likewise showed endothelial cell contact-dependent, MCSF-induced proliferation. Consistent with a two-signal mechanism governing Mphi proliferation, the cell cycle regulatory protein, cyclin E, was rapidly upregulated by endothelial cell contact in an MCSFindependent fashion, but MCSF was required for successful downregulation of the cell cycle inhibitory protein p27(Kip1) before cell cycling. Thus endothelial cells and MCSF differentially and synergistically regulate two Mphi genes critical for progression through the cell cycle.

  1. The Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1

    SciTech Connect

    Galea, Charles A.; Nourse, Amanda; Wang, Yuefeng; Sivakolundu, Sivashankar G.; Heller, William T; Kriwacki, Richard W

    2008-02-01

    p27{sup Kip1} (p27), which controls eukaryotic cell division through interactions with cyclin-dependent kinases (Cdks), integrates and transduces promitogenic signals from various nonreceptor tyrosine kinases by orchestrating its own phosphorylation, ubiquitination and degradation. Intrinsic flexibility allows p27 to act as a 'conduit' for sequential signaling mediated by tyrosine and threonine phosphorylation and ubiquitination. While the structural features of the Cdk/cyclin-binding domain of p27 are understood, how the C-terminal regulatory domain coordinates multistep signaling leading to p27 degradation is poorly understood. We show that the 100-residue p27 C-terminal domain is extended and flexible when p27 is bound to Cdk2/cyclin A. We propose that the intrinsic flexibility of p27 provides a molecular basis for the sequential signal transduction conduit that regulates p27 degradation and cell division. Other intrinsically unstructured proteins possessing multiple sites of posttranslational modification may participate in similar signaling conduits.

  2. p27 kip1 haplo-insufficiency improves cardiac function in early-stages of myocardial infarction by protecting myocardium and increasing angiogenesis by promoting IKK activation.

    PubMed

    Zhou, Ningtian; Fu, Yuxuan; Wang, Yunle; Chen, Pengsheng; Meng, Haoyu; Guo, Shouyu; Zhang, Min; Yang, Zhijian; Ge, Yingbin

    2014-08-07

    p27(kip1) (p27) is widely known as a potent cell cycle inhibitor in several organs, especially in the heart. However, its role has not been fully defined during the early phase of myocardial infarction (MI). In this study, we investigated the relationships between p27, vascular endothelial growth factor/hepatocyte growth factor (VEGF/HGF) and NF-κB in post-MI cardiac function repair both in vivo and in the hypoxia/ischemia-induced rat myocardiocyte model. In vivo, haplo-insufficiency of p27 improved cardiac function, diminished the infarct zone, protected myocardiocytes and increased angiogenesis by enhancing the production of VEGF/HGF. In vitro, the presence of conditioned medium from hypoxia/ischemia-induced p27 knockdown myocardiocytes reduced the injury caused by hypoxia/ischemia in myocardiocytes, and this effect was reversed by VEGF/HGF neutralizing antibodies, consistent with the cardioprotection being due to VEGF/HGF secretion. We also observed that p27 bound to IKK and that p27 haplo-insufficiency promoted IKK/p65 activation both in vivo and in vitro, thereby inducing the NF-κB downstream regulator, VEGF/HGF. Furthermore, IKKi and IKK inhibitor negated the effect of VEGF/HGF. Therefore, we conclude that p27 haplo-insufficiency protects against heart injury by VEGF/HGF mediated cardioprotection and increased angiogenesis through promoting IKK activation.

  3. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1.

    PubMed

    Qiu, Mei-Ting; Fan, Qiong; Zhu, Zhu; Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C; Wong, Kwong-Kwok; Bao, Wei

    2015-10-13

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity.

  4. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1

    PubMed Central

    Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C.; Wong, Kwong-Kwok; Bao, Wei

    2015-01-01

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136

  5. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells.

    PubMed

    He, Meilan; Yuan, Hongfeng; Tan, Brandon; Bai, Rosemary; Kim, Heon Seok; Bae, Sangsu; Che, Lu; Kim, Jin-Soo; Gao, Shou-Jiang

    2016-11-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with Kaposi's sarcoma (KS), a malignancy commonly found in AIDS patients. Despite intensive studies in the last two decades, the mechanism of KSHV-induced cellular transformation and tumorigenesis remains unclear. In this study, we found that the expression of SIRT1, a metabolic sensor, was upregulated in a variety of KSHV-infected cells. In a model of KSHV-induced cellular transformation, SIRT1 knockdown with shRNAs or knockout by CRISPR/Cas9 gene editing dramatically suppressed cell proliferation and colony formation in soft agar of KSHV-transformed cells by inducing cell cycle arrest and contact inhibition. SIRT1 knockdown or knockout induced the expression of cyclin-dependent kinase inhibitor 1B (p27Kip1). Consequently, p27 knockdown rescued the inhibitory effect of SIRT1 knockdown or knockout on cell proliferation and colony formation. Furthermore, treatment of KSHV-transformed cells with a SIRT1 inhibitor, nicotinamide (NAM), had the same effect as SIRT1 knockdown and knockout. NAM significantly inhibited cell proliferation in culture and colony formation in soft agar, and induced cell cycle arrest. Significantly, NAM inhibited the progression of tumors and extended the survival of mice in a KSHV-induced tumor model. Collectively, these results demonstrate that SIRT1 suppression of p27 is required for KSHV-induced tumorigenesis and identify a potential therapeutic target for KS.

  6. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells

    PubMed Central

    Tan, Brandon; Bai, Rosemary; Kim, Heon Seok; Bae, Sangsu; Che, Lu; Kim, Jin-Soo; Gao, Shou-Jiang

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with Kaposi's sarcoma (KS), a malignancy commonly found in AIDS patients. Despite intensive studies in the last two decades, the mechanism of KSHV-induced cellular transformation and tumorigenesis remains unclear. In this study, we found that the expression of SIRT1, a metabolic sensor, was upregulated in a variety of KSHV-infected cells. In a model of KSHV-induced cellular transformation, SIRT1 knockdown with shRNAs or knockout by CRISPR/Cas9 gene editing dramatically suppressed cell proliferation and colony formation in soft agar of KSHV-transformed cells by inducing cell cycle arrest and contact inhibition. SIRT1 knockdown or knockout induced the expression of cyclin-dependent kinase inhibitor 1B (p27Kip1). Consequently, p27 knockdown rescued the inhibitory effect of SIRT1 knockdown or knockout on cell proliferation and colony formation. Furthermore, treatment of KSHV-transformed cells with a SIRT1 inhibitor, nicotinamide (NAM), had the same effect as SIRT1 knockdown and knockout. NAM significantly inhibited cell proliferation in culture and colony formation in soft agar, and induced cell cycle arrest. Significantly, NAM inhibited the progression of tumors and extended the survival of mice in a KSHV-induced tumor model. Collectively, these results demonstrate that SIRT1 suppression of p27 is required for KSHV-induced tumorigenesis and identify a potential therapeutic target for KS. PMID:27708228

  7. Sanguinarine-induced G1-phase arrest of the cell cycle results from increased p27KIP1 expression mediated via activation of the Ras/ERK signaling pathway in vascular smooth muscle cells.

    PubMed

    Lee, Beobyi; Lee, Se-Jung; Park, Sung-Soo; Kim, Si-Kwan; Kim, Sung-Ryong; Jung, Jae-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon

    2008-03-15

    The present study identified a novel mechanism for the effects of sanguinarine in vascular smooth muscle cells (VSMC). Sanguinarine treatment of VSMC resulted in significant growth inhibition as a result of G1-phase cell-cycle arrest mediated by induction of p27KIP1 expression, and resulted in a down-regulation of the expression of cyclins and CDKs in VSMC. Moreover, sanguinarine-induced inhibition of cell growth appeared to be linked to activation of Ras/ERK through p27KIP1-mediated G1-phase cell-cycle arrest. Overall, the unexpected effects of sanguinarine treatment in VSMC provide a theoretical basis for clinical use of therapeutic agents in the treatment of atherosclerosis.

  8. PKCη promotes a proliferation to differentiation switch in keratinocytes via upregulation of p27Kip1 mRNA through suppression of JNK/c-Jun signaling under stress conditions

    PubMed Central

    Hara, T; Miyazaki, M; Hakuno, F; Takahashi, S; Chida, K

    2011-01-01

    To maintain epidermal homeostasis, the balance between keratinocyte proliferation and differentiation is tightly controlled. However, the molecular mechanisms underlying this balance remain unclear. In 3D organotypic coculture with mouse keratinocytes and fibroblasts, the thickness of stratified cell layers was prolonged, and growth arrest and terminal differentiation were delayed when PKCη-null keratinocytes were used. Re-expression of PKCη in PKCη-null keratinocytes restored stratified cell layer thickness, growth arrest and terminal differentiation. We show that in 3D cocultured PKCη-null keratinocytes, p27Kip1 mRNA was downregulated, whereas JNK/c-Jun signaling was enhanced. Furthermore, inhibition of JNK/c-Jun signaling in PKCη-null keratinocytes led to upregulation of p27Kip1 mRNA, and to thinner stratified cell layers. Collectively, our findings indicate that PKCη upregulates p27Kip1 mRNA through suppression of JNK/c-Jun signaling. This results in promoting a proliferation to differentiation switch in keratinocytes. PMID:21593789

  9. Inhibitors of SCF-Skp2/Cks1 E3 Ligase Block Estrogen-Induced Growth Stimulation and Degradation of Nuclear p27kip1: Therapeutic Potential for Endometrial Cancer

    PubMed Central

    Pavlides, Savvas C.; Huang, Kuang-Tzu; Reid, Dylan A.; Wu, Lily; Blank, Stephanie V.; Mittal, Khushbakhat; Guo, Lankai; Rothenberg, Eli; Rueda, Bo; Cardozo, Timothy

    2013-01-01

    In many human cancers, the tumor suppressor, p27kip1 (p27), a cyclin-dependent kinase inhibitor critical to cell cycle arrest, undergoes perpetual ubiquitin-mediated proteasomal degradation by the E3 ligase complex SCF-Skp2/Cks1 and/or cytoplasmic mislocalization. Lack of nuclear p27 causes aberrant cell cycle progression, and cytoplasmic p27 mediates cell migration/metastasis. We previously showed that mitogenic 17-β-estradiol (E2) induces degradation of p27 by the E3 ligase Skp1-Cullin1-F-Box- S phase kinase-associated protein2/cyclin dependent kinase regulatory subunit 1 in primary endometrial epithelial cells and endometrial carcinoma (ECA) cell lines, suggesting a pathogenic mechanism for type I ECA, an E2-induced cancer. The current studies show that treatment of endometrial carcinoma cells-1 (ECC-1) with small molecule inhibitors of Skp2/Cks1 E3 ligase activity (Skp2E3LIs) stabilizes p27 in the nucleus, decreases p27 in the cytoplasm, and prevents E2-induced proliferation and degradation of p27 in endometrial carcinoma cells-1 and primary ECA cells. Furthermore, Skp2E3LIs increase p27 half-life by 6 hours, inhibit cell proliferation (IC50, 14.3μM), block retinoblastoma protein (pRB) phosphorylation, induce G1 phase block, and are not cytotoxic. Similarly, using super resolution fluorescence localization microscopy and quantification, Skp2E3LIs increase p27 protein in the nucleus by 1.8-fold. In vivo, injection of Skp2E3LIs significantly increases nuclear p27 and reduces proliferation of endometrial epithelial cells by 42%–62% in ovariectomized E2-primed mice. Skp2E3LIs are specific inhibitors of proteolytic degradation that pharmacologically target the binding interaction between the E3 ligase, SCF-Skp2/Cks1, and p27 to stabilize nuclear p27 and prevent cell cycle progression. These targeted inhibitors have the potential to be an important therapeutic advance over general proteasome inhibitors for cancers characterized by SCF-Skp2/Cks1-mediated

  10. [P27(Kip1), cyclin E and endogenous TGF-beta1 changes in apoptosis of NB4 cells induced by As(2)O(3) and/or TGF-beta1 and their significance].

    PubMed

    Liang, Ying; Li, Yan; Wang, Yue; Li, Xia; Wang, Ping-Ping; Wang, Bai-Xun

    2009-02-01

    This study was aimed to investigate the effects of arsenic trioxide (As(2)O(3)) and/or transforming growth factor-beta1 (TGF-beta1)on cell apoptosis and the changes of P27(Kip1), cyclin E and endogenous TGF-beta1 mRNA levels in NB4 cells. As(2)O(3) cytotoxicity to NB4 cells and the IC(50) were assayed with MTT, the apoptotic morphological changes were observed by Wright-Giemsa staining; the cell cycle and apoptosis were detected with flow cytometry. Semiquantitative RT-PCR was used to examine P27(Kip1), cyclin E and endogenous TGF-beta1 mRNA levels. The results showed that the As(2)O(3) and TGF-beta1 significantly suppressed the growth of NB4 cells, and promoted the apoptosis of these cells. The growth inhibition and apoptosis of NB4 cells treated with As(2)O(3) were in dose-and time-dependent manners. IC(50) were about 12 micromol/L for 24 hours, about 5 micromol/L for 48 hours, and about 3 micromol/L for 72 hours respectively. Cell cycle arrest in NB4 cells was induced by As(2)O(3) and/or TGF-beta1. The arrest of NB4 cells treated by 5 micromol/L As(2)O(3) was in G(2)/M phase, and 5 ng/ml TGF-beta1 in G(1) phase. However, the arrest of NB4 cells caused by combination of As(2)O(3) and TGF-beta1 was in S phase. After treating with As(2)O(3), P27(Kip1) and endogenous TGF-beta1 mRNA expressions of NB4 cells were up-regulated, and cyclin E mRNA expression was down-regulated. When NB4 cells were treated with TGF-beta1 alone, P27(Kip1) and cyclin E mRNA expressions were the same as that treated by As(2)O(3). Exogenous TGF-beta1 enhanced the above effects of As(2)O(3) in combination group. It is concluded that As(2)O(3) and TGF-beta1 are able to induce apoptosis and cell cycle abnormal distribution in NB4 cells. As(2)O(3) and exogenous TGF-beta1 may up-regulate endogenous TGF-beta1, which induce apoptosis of NB4 cells through consequently high expression of P27(Kip1). TGF-beta1 may lead to cell cycle arrest by inhibiting the expression of cyclin E directly, or by the

  11. Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL.

    PubMed

    Halina, Antosz; Artur, Paterski; Barbara, Marzec-Kotarska; Joanna, Sajewicz; Anna, Dmoszyńska

    2010-12-01

    B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.

  12. Effects of adenovirus-mediated expression of p27Kip1, p21Waf1 and p16INK4A in cell lines derived from t(2;5) anaplastic large cell lymphoma and Hodgkin's disease.

    PubMed

    Turturro, Franceso; Arnold, Marilyn D; Frist, Audrey Y; Seth, Prem

    2002-06-01

    We investigated the response of SUDHL-1 and L428 cells, derived from t(2;5)-anaplastic large cell lymphoma (ALCL) and Hodgkin's disease (HD), respectively, to recombinant adenoviruses expressing cyclin-dependent kinase inhibitors (CDKIs) p27Kip1 (Adp27), p21Waf1 (Adp21) and p16INK4A (Adp16). Cell cycle analysis of SUDHL-1 cells after 24 h of infection with 200 multiplicity of infection (MOI) of Adp27, Adp21, and Adp16, showed very high levels of cell debris in the subG1 area. The magnitude of cell debris-events was Adp27/Adp21 > Adp16. Cell cycle analysis of L428 cells revealed absence of cell debris and increased G2 phase in all the groups of cells tested as compared to the controls (mock and AdNull). A minimal increase in G1 phase was also evident in cells infected with Adp27 (52%) compared to uninfected cells (43%), AdNull (45%) and to cells infected with Adp21 (37%) and Adp16 (31%). The presence of significant levels of Coxsackie-adenovirus receptor (CAR) on the cell surface of L428 cells excluded the cell membrane-barrier as responsible for the differences in cell observed in response to the recombinant adenovirus-mediated CDKIs expression as compared to SUDHL-1. We also showed that the recombinant adenovirus-mediated cytotoxicity measured as apoptosis was MOI- and vector-dependent in SUDHL-1 cells at lower MOI (100). In conclusion, the therapeutic effect induced by recombinant adenoviruses expressing p27Kip1, p21Waf1 and p16INK4A is cell-dependent in cells derived from selected lymphoid malignancies. Biochemical cellular differences more than cell surface barriers seem to be responsible for differences in response to recombinant adenovirus-mediated expression of cytotoxic genes. Moreover, the cytotoxicity of recombinant adenoviruses expressing p27Kip1, p21Waf1 and p16INK4A may be further explored as a tool for gene therapy of t(2;5)-derived ALCL.

  13. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27(Kip1) promoter in primordial follicles.

    PubMed

    Jang, Hoon; Na, Younghwa; Hong, Kwonho; Lee, Sangho; Moon, Sohyeon; Cho, Minha; Park, Miseon; Lee, Ok-Hee; Chang, Eun Mi; Lee, Dong Ryul; Ko, Jung Jae; Lee, Woo Sik; Choi, Youngsok

    2017-10-01

    Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy-induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonin's protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin-induced ovarian failure in mouse model. Co-administration of melatonin and ghrelin more effectively prevented cisplatin-induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin-treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co-administration inhibited the cisplatin-induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27(Kip1) promoter in primordial follicles. Co-administration of melatonin and ghrelin in cisplatin-treated ovaries restored the expression of p27(Kip1) , which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co-administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Identification of Genes, including the Gene Encoding p27Kip1, Regulated by Serine 276 Phosphorylation of the p65 Subunit of NF-κB

    PubMed Central

    Prasad, Ratna Chakraborty; Wang, Xiaohui L.; Law, Brian K.; Davis, Bradley; Green, Gail; Boone, Braden; Sims, Lauren; Law, Mary

    2009-01-01

    Phosphorylation of the p65 subunit of NF-κB is required for its transcriptional activity. Recent reports show that phosphorylation of p65 at serine 276 regulates only a subset of genes, such as those encoding IL-6, IL-8, Gro-β, and ICAM-1. In order to identify additional genes regulated by serine 276 phosphorylation, HepG2 hepatoma cells were infected with adenoviruses encoding either wild-type p65 or the S276A mutant of p65, followed by DNA microarray analysis. The results show that mutation of serine 276 affected the expression of several genes that encode proteins involved in cell cycle regulation, signal transduction, transcription, and metabolism. Notably, expression of S276A increased the mRNA and protein level of p27, a cell cycle inhibitory protein, which led to an increased association of p27 with cdk2, and inhibition of cdk2 activity. Furthermore, while wild-type NF-κB is known to increase cell proliferation in a number of different cancer cell lines, our data show that S276A inhibits cell proliferation. Evidence is mounting that NF-κB plays a pivotal role in oncogenesis. Therapeutic agents that regulate the phosphorylation of serine 276 and p27 gene expression, therefore, may be useful as anti-cancer agents in the future. PMID:19038492

  15. Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis.

    PubMed

    Taniguchi, T; Endo, H; Chikatsu, N; Uchimaru, K; Asano, S; Fujita, T; Nakahata, T; Motokura, T

    1999-06-15

    Expression of p21 and p27 cyclin-dependent kinase inhibitors is associated with induced differentiation and cell-cycle arrest in some hematopoietic cell lines. However, it is not clear how these inhibitors are expressed during normal hematopoiesis. We examined various human hematopoietic colonies derived from cord blood CD34(+) cells, bone marrow, and peripheral blood cells using a quantitative reverse transcription-polymerase chain reaction assay, immunochemistry, and/or Western blot analysis. p21 mRNA was expressed increasingly over time in all of the colonies examined (granulocytes, macrophages, megakaryocytes, and erythroblasts), whereas p27 mRNA levels remained low, except for erythroid bursts. Erythroid bursts expressed both p21 and p27 mRNAs with differentiation but expressed neither protein, whereas both proteins were expressed in megakaryocytes and peripheral blood monocytes. In bone marrow, p21 was immunostained almost exclusively in a subset of megakaryocytes and p27 protein was present in megakaryocytes, plasma cells, and endothelial cells. In megakaryocytes, reciprocal expression of p27 to Ki-67 was evident and an inverse relationship between p21 and Ki-67 positivities was also present, albeit less obvious. These observations suggest that a complex lineage-specific regulation is involved in p21 and p27 expression and that these inhibitors are involved in cell-cycle exit in megakaryocytes.

  16. Bcl-2 Retards Cell Cycle Entry through p27Kip1, pRB Relative p130, and Altered E2F Regulation

    PubMed Central

    Vairo, Gino; Soos, Timothy J.; Upton, Todd M.; Zalvide, Juan; DeCaprio, James A.; Ewen, Mark E.; Koff, Andrew; Adams, Jerry M.

    2000-01-01

    Independent of its antiapoptotic function, Bcl-2 can, through an undetermined mechanism, retard entry into the cell cycle. Cell cycle progression requires the phosphorylation by cyclin-dependent kinases (Cdks) of retinoblastoma protein (pRB) family members to free E2F transcription factors. We have explored whether retarded cycle entry is mediated by the Cdk inhibitor p27 or the pRB family. In quiescent fibroblasts, enforced Bcl-2 expression elevated levels of both p27 and the pRB relative p130. Bcl-2 still slowed G1 progression in cells deficient in pRB but not in those lacking p27 or p130. Hence, pRB is not required, but both p27 and p130 are essential mediators. The ability of p130 to form repressive complexes with E2F4 is implicated, because the retardation by Bcl-2 was accentuated by coexpressed E2F4. A plausible relevant target of p130/E2F4 is the E2F1 gene, because Bcl-2 expression delayed E2F1 accumulation during G1 progression and overexpression of E2F1 overrode the Bcl-2 inhibition. Hence, Bcl-2 appears to retard cell cycle entry by increasing p27 and p130 levels and maintaining repressive complexes of p130 with E2F4, perhaps to delay E2F1 expression. PMID:10848600

  17. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase

    SciTech Connect

    Hao, B.; Zheng, N.; Schulman, B.A.; Wu, G.; Miller, J.J.; Pagano, M.; Pavletich, N.P.

    2010-07-19

    The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27{sup Kip1} plays a central role in cell cycle progression, and enhanced degradation of p27{sup Kip1} is associated with many common cancers. Proteolysis of p27{sup Kip1} is triggered by Thr187 phosphorylation, which leads to the binding of the SCF{sup Skp2} (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27{sup Kip1} ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27{sup Kip1} phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27{sup Kip1} binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27{sup Kip1} is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27{sup Kip1} to the SCF{sup Skp2}-Cks1 complex.

  18. Attenuated expression of menin and p27 (Kip1) in an aggressive case of multiple endocrine neoplasia type 1 (MEN1) associated with an atypical prolactinoma and a malignant pancreatic endocrine tumor.

    PubMed

    Ishida, Emi; Yamada, Masanobu; Horiguchi, Kazuhiko; Taguchi, Ryo; Ozawa, Atsushi; Shibusawa, Nobuyuki; Hashimoto, Koshi; Satoh, Tetsuro; Yoshida, Sachiko; Tanaka, Yoshiki; Yokota, Machiko; Tosaka, Masahiko; Hirato, Junko; Yamada, Shozo; Yoshimoto, Yuhei; Mori, Masatomo

    2011-01-01

    Tumors in multiple endocrine neoplasia type 1 (MEN1) are generally benign. Since information on the pathogenesis of MEN1 in malignant cases is limited, we conducted genetic analysis and compared the expression of menin, p27(Kip1)(p27)/CDKN1B and p18(Ink4C)(p18)/CDKN2C with levels in benign cases. We describe the case of a 56 year-old male with an atypical prolactinoma and malignant pancreatic neuroenocrine tumor. At age 50, he had undergone transsphenoidal surgery to remove a prolactinoma. However, the tumor relapsed twice. Histological analysis of the recurrent prolactinoma revealed the presence of prolactin, a high MIB-1 index (32.1 %), p53-positive cells (0.2%), and an unusual association with FSH-positive cells. A few years later, he was also found to have a non-functioning pancreatic tumor with probable metastasis to the extradullar region. The metastatic region tested positive for chromogranin and CD56, and negative for prolactin, with 1.2 % of cells p53-positive. Although genetic analyses of the MEN1, p27, and p18 genes demonstrated no mutation, numbers of menin, p27 and p18 immuno-positive cells were significantly down-regulated in the recurrent prolactinoma, but that of p18 was intact in the metastatic region. Furthermore, MEN1 and p27 mRNA levels of the recurrent prolactinoma were down-regulated, particularly the MEN1 mRNA level, compared to levels in 10 cases of benign prolactinoma, while the p18 mRNA level was similar to that of normal pituitary. The tumor in this case may be a subtype of MEN1 showing more aggressive and malignant features probably induced by low levels of menin and p27.

  19. Intranuclear protein transduction through a nucleoside salvage pathway.

    PubMed

    Hansen, James E; Tse, Chung-Ming; Chan, Grace; Heinze, Emil R; Nishimura, Robert N; Weisbart, Richard H

    2007-07-20

    Regulation of gene expression by intranuclear transduction of macromolecules such as transcription factors is an alternative to gene therapy for the treatment of numerous diseases. The identification of an effective intranuclear delivery vehicle and pathway for the transport of therapeutic macromolecules across plasma and nuclear membranes, however, has posed a significant challenge. The anti-DNA antibody fragment 3E10 Fv has received attention as a novel molecular delivery vehicle due to its penetration into living cells with specific nuclear localization, absence of toxicity, and successful delivery of therapeutic cargo proteins in vitro and in vivo. Elucidation of the pathway that allows 3E10 Fv to cross cell membranes is critical to the development of new molecular therapies. Here we show that 3E10 Fv penetrates cells through a nucleoside salvage transporter. 3E10 Fv is unable to penetrate into cells deficient in the equilibrative nucleoside transporter ENT2, and reconstitution of ENT2 into ENT2-deficient cells restores 3E10 Fv transport into cell nuclei. Our results represent the first demonstration of protein transport through a nucleoside salvage pathway. We expect that our finding will facilitate a variety of methods of gene regulation in the treatment of human diseases, open up new avenues of research in nucleoside salvage pathways, and enhance our understanding of the pathophysiology of autoimmune diseases.

  20. The Amelioration of Renal Damage in Skp2-Deficient Mice Canceled by p27 Kip1 Deficiency in Skp2−/− p27−/− Mice

    PubMed Central

    Suzuki, Sayuri; Fukasawa, Hirotaka; Misaki, Taro; Togawa, Akashi; Ohashi, Naro; Kitagawa, Kyoko; Kotake, Yojiro; Liu, Ning; Niida, Hiroyuki; Nakayama, Keiko; Nakayama, Keiichi I.; Yamamoto, Tatsuo; Kitagawa, Masatoshi

    2012-01-01

    SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral obstruction (UUO) renal injury associated with renal accumulation of p27 in Skp2−/− mice. However, it remains unclear whether the amelioration of renal injury in Skp2−/− mice is solely caused by p27 accumulation, since Skp2 targets several other proteins. Using Skp2−/−p27−/− mice, we investigated whether Skp2 specifically targets p27 in the progressive nephropathy mediated by UUO. In contrast to the marked suppression of UUO renal injury in Skp2−/− mice, progression of tubular dilatation associated with tubular epithelial cell proliferation and tubulointerstitial fibrosis with increased expression of collagen and α-smooth muscle actin were observed in the obstructed kidneys in Skp2−/−p27−/− mice. No significant increases in other Skp2 target proteins including p57, p130, TOB1, cyclin A and cyclin D1 were noted in the UUO kidney in Skp2−/− mice, while p21, c-Myc, b-Myb and cyclin E were slightly increased. Contrary to the ameliorated UUO renal injure by Skp2-deficiency, the amelioration was canceled by the additional p27-deficiency in Skp2−/−p27−/− mice. These findings suggest a pathogenic role of the reduction in p27 targeted by Skp2 in the progression of nephropathy in UUO mice. PMID:22558406

  1. Expression of the the cyclin-kinase inhibitors p21(WAF1) and p27(Kip1) and the p53 tumor suppressor genes in adult-onset laryngeal papillomas.

    PubMed

    Erdamar, Burak; Keles, Nesil; Kaur, Ahmet; Suoglu, Yusufhan; Kiyak, Erkan

    2002-11-01

    Different types of human papilloma virus are known to be closely associated with laryngeal papillomas. On the other hand, the proliferation of epithelial cells is associated with various abnormalities in the mechanisms of cellular regulation. In this study, we detected the expressions of p53, p21 and p27 proteins in adult-onset laryngeal papillomas by immunohistochemical techniques. The objective of this study is to evaluate the expression of these factors in adult-onset laryngeal papillomas and to determine whether such expression is correlated with the existence of dysplastic epithelium covering the papillomas. Eighteen patients with adult-onset papillomas who were surgically treated at the Department of Otolaryngology at the University of Istanbul between January 1994 and December 1999 were included in this study. Anti-p21, -p27 and -p53 antibodies were used to perform immunostaining. Positive nuclear staining for p21 was detected in 14 of the 18 (78%) cases, especially in the parabasal layer. Also, in 78% of the cases, weak to strong immunoreactivity was observed for p27. In all cases, negative immunoreactivity was observed for p53 throughout the epithelium except for the basal and parabasal cells. A negative correlation was observed between the existence of dysplastic epithelium and p21 expression (P=0.02). In conclusion, variable p21 and p27 expression was detected by immunohistochemistry in our series of 18 cases of adult-onset laryngeal papillomatosis, and a statistically significant inverse correlation was detected between p21 expression and the existence of dysplastic epithelium covering the papillomas. Further prospective studies are warranted to determine the prognostic values of these variables and to evaluate their role in the pathogenesis of adult-onset laryngeal papillomas.

  2. Susceptibility of p27 kip1 knockout mice to urinary bladder carcinogenesis induced by N-butyl-N-(4-hydroxybutyl)nitrosamine may not simply be due to enhanced proliferation.

    PubMed

    Hikosaka, Atsuya; Ogawa, Kumiko; Sugiura, Satoshi; Asamoto, Makoto; Takeshita, Fumitaka; Sato, Shin-Ya; Nakanishi, Makoto; Kohri, Kenjiro; Shirai, Tomoyuki

    2008-03-15

    Deregulated proliferation is one of the fundamental characteristics of carcinogenesis. p27 is one of the most well characterized negative cell cycle regulator. In our previous study, expression of p27 protein was found to be dramatically suppressed on stimulation of cell proliferation by calculi in the rodent urinary bladder, withdrawal of the insult resulting in re-expression of p27 and regression of urothelial hyperplastic lesions. In the present study, to evaluate how loss of function impacts on urinary bladder carcinogenesis, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), a bladder carcinogen was given to p27 knockout mice. Males and females with either null, hetero or wild-type p27 alleles were divided into 2 groups, one given drinking water containing 0.05% BBN for 10 weeks and the other receiving distilled water, then, killed at week 20. The experiment was repeated for confirmation of the outcome. In the second experiment, performed with a larger number of animals, the incidence of urinary bladder carcinomas was significantly higher in female p27-null mice than in their wild-type counterparts. p27 deficiency also resulted in their increase of relative weights of urinary bladders and section areas of carcinomas in BBN-treated mice. Interestingly, while BrdU labeling indices generally increased with progression of mucosal proliferative lesions, from normal epithelium, through hyperplasia to carcinoma, there was no significant variation with the p27 genotype, in tumors as well as normal urothelium. These findings suggest that p27 deficient mice have elevated susceptibility to BBN-induction of urinary bladder carcinogenesis through a mechanism which might be independent of acceleration of cell cycling.

  3. UCH-L1 induces podocyte hypertrophy in membranous nephropathy by protein accumulation.

    PubMed

    Lohmann, Frithjof; Sachs, Marlies; Meyer, Tobias N; Sievert, Henning; Lindenmeyer, Maja T; Wiech, Thorsten; Cohen, Clemens D; Balabanov, Stefan; Stahl, R A K; Meyer-Schwesinger, Catherine

    2014-07-01

    Podocytes are terminally differentiated cells of the glomerular filtration barrier that react with hypertrophy in the course of injury such as in membranous nephropathy (MGN). The neuronal deubiquitinase ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed and activated in podocytes of human and rodent MGN. UCH-L1 regulates the mono-ubiquitin pool and induces accumulation of poly-ubiquitinated proteins in affected podocytes. Here, we investigated the role of UCH-L1 in podocyte hypertrophy and in the homeostasis of the hypertrophy associated "model protein" p27(Kip1). A better understanding of the basic mechanisms leading to podocyte hypertrophy is crucial for the development of specific therapies in MGN. In human and rat MGN, hypertrophic podocytes exhibited a simultaneous up-regulation of UCH-L1 and of cytoplasmic p27(Kip1) content. Functionally, inhibition of UCH-L1 activity and knockdown or inhibition of UCH-L1 attenuated podocyte hypertrophy by decreasing the total protein content in isolated glomeruli and in cultured podocytes. In contrast, UCH-L1 levels and activity increased podocyte hypertrophy and total protein content in culture, specifically of cytoplasmic p27(Kip1). UCH-L1 enhanced cytoplasmic p27(Kip1) levels by nuclear export and decreased poly-ubiquitination and proteasomal degradation of p27(Kip1). In parallel, UCH-L1 increased podocyte turnover, migration and cytoskeletal rearrangement, which are associated with known oncogenic functions of cytoplasmic p27(Kip1) in cancer. We propose that UCH-L1 induces podocyte hypertrophy in MGN by increasing the total protein content through altered degradation and accumulation of proteins such as p27(Kip1) in the cytoplasm of podocytes. Modification of both UCH-L1 activity and levels could be a new therapeutic avenue to podocyte hypertrophy in MGN. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effects of the combined blockade of EGFR and ErbB-2 on signal transduction and regulation of cell cycle regulatory proteins in breast cancer cells.

    PubMed

    D'Alessio, Amelia; De Luca, Antonella; Maiello, Monica R; Lamura, Luana; Rachiglio, Anna Maria; Napolitano, Maria; Gallo, Marianna; Normanno, Nicola

    2010-09-01

    Treatment of breast cancer cells with a combination of the EGFR-tyrosine kinase inhibitor (EGFR-TKI) gefitinib and the anti-ErbB-2 monoclonal antibody trastuzumab results in a synergistic antitumor effect. In this study, we addressed the mechanisms involved in this phenomenon. The activation of signaling pathways and the expression of cell cycle regulatory proteins were studied in SK-Br-3 and BT-474 breast cancer cells, following treatment with EGFR and/or ErbB-2 inhibitors. Treatment with the gefitinib/trastuzumab combination produced, as compared with a single agent, a more prolonged blockade of AKT and MAPK activation, a more pronounced accumulation of cells in the G0/G1 phase of the cell cycle, a more significant increase in the levels of p27(kip1) and of hypophosphorylated pRb2, and a decrease in the levels of Cyclin D1 and survivin. Similar findings were observed with the EGFR/ErbB-2 inhibitor lapatinib. Gefitinib, trastuzumab, and their combination increased the stability of p27(kip1), with the combination showing the highest effects. Blockade of both receptors with gefitinib/trastuzumab or lapatinib induced a significant increase in the levels of p27(kip1) mRNA and in the nuclear levels of the p27(kip1) transcription factor FKHRL-1. Inhibition of PI3K signaling also produced a significant raise in p27(kip1) mRNA. Finally, down-modulation of FKHRL-1 with siRNAs prevented the lapatinib-induced increase of p27(kip1) mRNA. The synergism deriving from EGFR and ErbB-2 blockade is mediated by several different alterations in the activation of signaling proteins and in the expression of cell cycle regulatory proteins, including transcriptional and posttranscriptional regulation of p27(kip1) expression.

  5. Intranuclear localization and UV response of ERCC5/XPG protein

    SciTech Connect

    Park, M.S.; Marrone, B.L.; MacInnes, M.A.

    1995-11-01

    The human ERCC5/XPG protein is defective in the hereditary genetic disorder xeroderma pigmentosum, group-G. The XPG gene encodes a single-strand DNA endonuclease which is essential for the incision step of nucleotide excision repair for a wide variety of DNA damages. We have shown previously by indirect immunofluorescence and biochemical fractionation that the XPG protein is localized in the nucleus, in discrete foci, and probably associated with the nuclear matrix. However, the intranuclear localization of XPG is markedly altered for a short time after UV irradiation. Here, we report the identification of XPG protein regions involved in the UV response, and its putative nuclear localization signals (NLS) using a B-galactosidase (B-gal) reporter gene system. Control and fusion reporter genes were expressed in Hela S3 cells after CaPO{sub 4} transfection. B-gal protein was detected by indirect immuno-fluorescence using an anti B-gal monoclonal antibody and FITC-labeled goat anti-mouse antiserum. Two NLS peptides of the XPG carboxy-terminal region (AA 1029-1069 and 1146-1186 term) were shown to independently localize B-gal fusion proteins to the nucleus (>90%). The C-terminus peptide was observed to further localize B-gal into nuclear foci and the perinucleolar regions. When B-gal was fused with two copies of the C-terminal NLS, in tandem, B-gal was extensively sublocalized to the perinucleolar regions. Shortly after cell UV irradiation (5 J/m{sup 2}) this B-gal fusion protein became dissociated from the perinucleolar regions whereupon it was distributed throughout the nucleus. Within 6 hours post-irradiation, the fusion protein reassociated again with the perinucleolar regions. These observations confirm and extend a similar UV response of endogenous XPG protein in UV-irradiation human cells. The involvement of XPG protein and its UV responses will be discussed in context of models nuclear matrix and preferential DNA repair in actively transcribed genes.

  6. Actin-Interacting Protein 1 Contributes to Intranuclear Rod Assembly in Dictyostelium discoideum

    PubMed Central

    Ishikawa-Ankerhold, Hellen C.; Daszkiewicz, Wioleta; Schleicher, Michael; Müller-Taubenberger, Annette

    2017-01-01

    Intranuclear rods are aggregates consisting of actin and cofilin that are formed in the nucleus in consequence of chemical or mechanical stress conditions. The formation of rods is implicated in a variety of pathological conditions, such as certain myopathies and some neurological disorders. It is still not well understood what exactly triggers the formation of intranuclear rods, whether other proteins are involved, and what the underlying mechanisms of rod assembly or disassembly are. In this study, Dictyostelium discoideum was used to examine appearance, stages of assembly, composition, stability, and dismantling of rods. Our data show that intranuclear rods, in addition to actin and cofilin, are composed of a distinct set of other proteins comprising actin-interacting protein 1 (Aip1), coronin (CorA), filactin (Fia), and the 34 kDa actin-bundling protein B (AbpB). A finely tuned spatio-temporal pattern of protein recruitment was found during formation of rods. Aip1 is important for the final state of rod compaction indicating that Aip1 plays a major role in shaping the intranuclear rods. In the absence of both Aip1 and CorA, rods are not formed in the nucleus, suggesting that a sufficient supply of monomeric actin is a prerequisite for rod formation. PMID:28074884

  7. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments.

    PubMed

    Meng, Fanchi; Na, Insung; Kurgan, Lukasz; Uversky, Vladimir N

    2015-12-25

    The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions.

  8. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments

    PubMed Central

    Meng, Fanchi; Na, Insung; Kurgan, Lukasz; Uversky, Vladimir N.

    2015-01-01

    The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions. PMID:26712748

  9. The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive

    PubMed Central

    Calapez, Alexandre; Pereira, Henrique M.; Calado, Angelo; Braga, José; Rino, José; Carvalho, Célia; Tavanez, João Paulo; Wahle, Elmar; Rosa, Agostinho C.; Carmo-Fonseca, Maria

    2002-01-01

    fAter being released from transcription sites, messenger ribonucleoprotein particles (mRNPs) must reach the nuclear pore complexes in order to be translocated to the cytoplasm. Whether the intranuclear movement of mRNPs results largely from Brownian motion or involves molecular motors remains unknown. Here we have used quantitative photobleaching techniques to monitor the intranuclear mobility of protein components of mRNPs tagged with GFP. The results show that the diffusion coefficients of the poly(A)-binding protein II (PABP2) and the export factor TAP are significantly reduced when these proteins are bound to mRNP complexes, as compared with nonbound proteins. The data further show that the mobility of wild-type PABP2 and TAP, but not of a point mutant variant of PABP2 that fails to bind to RNA, is significantly reduced when cells are ATP depleted or incubated at 22°C. Energy depletion has only minor effects on the intranuclear mobility of a 2,000-kD dextran (which corresponds approximately in size to 40S mRNP particles), suggesting that the reduced mobility of PABP2 and TAP is not caused by a general alteration of the nuclear environment. Taken together, the data suggest that the mobility of mRNPs in the living cell nucleus involves a combination of passive diffusion and ATP-dependent processes. PMID:12473688

  10. Screening of cell cycle fusion proteins to identify kinase signaling networks.

    PubMed

    Trojanowsky, Michelle; Vidovic, Dusica; Simanski, Scott; Penas, Clara; Schurer, Stephan; Ayad, Nagi G

    2015-01-01

    Kinase signaling networks are well-established mediators of cell cycle transitions. However, how kinases interact with the ubiquitin proteasome system (UPS) to elicit protein turnover is not fully understood. We sought a means of identifying kinase-substrate interactions to better understand signaling pathways controlling protein degradation. Our prior studies used a luciferase fusion protein to uncover kinase networks controlling protein turnover. In this study, we utilized a similar approach to identify pathways controlling the cell cycle protein p27(Kip1). We generated a p27(Kip1)-luciferase fusion and expressed it in cells incubated with compounds from a library of pharmacologically active compounds. We then compared the relative effects of the compounds on p27(Kip1)-luciferase fusion stabilization. This was combined with in silico kinome profiling to identify potential kinases inhibited by each compound. This approach effectively uncovered known kinases regulating p27(Kip1) turnover. Collectively, our studies suggest that this parallel screening approach is robust and can be applied to fully understand kinase-ubiquitin pathway interactions.

  11. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    PubMed

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. p27(kipl) protein expression: an independent prognostic factor in rectal carcinoma stages I-III.

    PubMed

    Pucciarelli; Esposito; Fassina; Alaggio; Masin; Toppan; Chieco-Bianchi; Lise

    1999-11-01

    To evaluate the impact of some molecular markers on lymph node metastases, overall (OS) and disease-free survival (DFS) in rectal cancer. We investigated p27(kip1) , p53, nm23, and vascular endothelial growth factor (VEGF) expression in 109 primary rectal cancer specimens (stage I, n=38; stage II, n=24; stage III, n=20; and stage IV, n=27) from patients operated on between 1990 and 1995 at Clinica Chirurgica II. Tumour differentiation (P=0.0469), depth of rectal wall invasion (T status) (P=0.0000), distant metastases (P=0.0000), vascular invasion (P=0.0000), and p27(kip1) expression (P=0.0022) were associated with lymph node metastases (N status). During follow up (median duration 47 months), 48 patients died, and 25 patients (stages I-III) had recurrences. At multivariate analysis, T and N status, and intratumoural necrosis were independent risk factors for OS. The relative risk (RR) of death for patients with lymph node metastases, advanced T status and intratumoural necrosis was 3.3 (P=0.0002), 2.03 (P=0.0127), and 1.47 (P=0.1935), respectively. When analysis included only stage I-III patients, N status and p27(kip1) protein expression were found to be independent risk factors for OS. The RR of death for patients with lymph node metastases and those without p27(kip1) expression was 2.98 (P=0.0251), and 3.57 (P=0.0231), respectively. At multivariate analysis, N status, p27(kip1) expression, and intratumoural necrosis were independent risk factors for DFS. The RR of recurrence for patients with lymph node metastases, intratumoural necrosis and absence of p27(kip1) expression was 6.29 (P=0.0001), 3.04 (P=0.0168), and 3.25 (P=0.0387), respectively. Absence of p27(kip1) expression is a useful marker of tumour aggressiveness in rectal carcinoma stages I-III, and an independent predictor for OS and DFS.

  13. Cell Cycle Regulatory Proteins p27(kip), Cyclins Dl and E and Proliferative Activity in Oncocytic (Hurthle Cell) Lesions of the Thyroid.

    PubMed

    Maynes, Lincoln J.; Hutzler, Michael J.; Patwardhan, Nilima A.; Wang, Songtao; Khan, Ashraf

    2000-01-01

    Cyclins are prime cell-cycle regulators central to the control of cell proliferation in eukaryotic cells. The formation of cyclin/cyclin-dependent kinases (CDK) complexes activates the kinases and initiates a cascade of events, which directs cells through the cell cycle. CDK inhibitors (CDKIs) such as p27(kip1) inhibit cyclln-CDK complexes and function as negative regulators of the cell cycle. Previous studies have shown that p27(kip1) is decreased In malignant relative to benign thyroid tumors, but its role and Interaction with other cell cycle regulatory proteins have not been well established In oncocytic lesions of the thyroid. We studied the expression of p27(kip1), cyclins D1 and E, and Ki67 In 20 cases of oncocytic adenoma (AD). 6 cases of oncocytic carcinoma (CA). 8 cases of Hashimoto's thyroiditis (HT). and 9 cases of nodular goiter with oncocytic change (NG) by Immunohistochemlstry. In the latter two lesions only oncocytic cells were evaluated. The positive staining was stratified Into four groups. Statistical analysis was done using the Kruslcal-Wallis one-way analysis of variance test, and, when significant the Dunn multiple-comparisons procedure was used to determine pairwise differences. AllI 20 AD were p27(kip1) posItive, 10 were 4+, 2 were 3+, and the remaining 8 were 1+. In contrast all 6 CA showed 4+ p27(kip1) staining, of the 8 HT 2 were 4+, two 3+, three1+, and I was negative.All 9 NG were p27 positive, 7 showed 4+, one 3+, and one 1+ staining. On pairwise comparison differences in p27(kip1) staining between AD and CA and between HT and CA were statistically significant (p=0.0243 and p=0.0142, respectively). In all but one case Ki67 expression was either very low (<3%) or negative. No significant differences were seen in the expression of cyclin D1 or cyclin E among the groups observed. In conclusion, the increased p27(kip1) expression in malignant oncocytlc tumors relative to benign oncocytic lesions is unlike any other malignant progression

  14. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments.

    PubMed

    Na, Insung; Meng, Fanchi; Kurgan, Lukasz; Uversky, Vladimir N

    2016-08-16

    Recent analyses indicated that autophagy can be regulated via some nuclear transcriptional networks and many important players in the autophagy and other forms of programmed cell death are known to be intrinsically disordered. To this end, we analyzed similarities and differences in the intrinsic disorder distribution of nuclear and non-nuclear proteins related to autophagy. We also looked at the peculiarities of the distribution of the intrinsically disordered autophagy-related proteins in various intra-nuclear organelles, such as the nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinucleolar compartment. This analysis revealed that the autophagy-related proteins constitute about 2.5% of the non-nuclear proteins and 3.3% of the nuclear proteins, which corresponds to a substantial enrichment by about 32% in the nucleus. Curiously, although, in general, the autophagy-related proteins share similar characteristics of disorder with a generic set of all non-nuclear proteins, chromatin and nuclear speckles are enriched in the intrinsically disordered autophagy proteins (29 and 37% of these proteins are disordered, respectively) and have high disorder content at 0.24 and 0.27, respectively. Therefore, our data suggest that some of the nuclear disordered proteins may play important roles in autophagy.

  15. Protein Crystals in Adenovirus Type 5-Infected Cells: Requirements for Intranuclear Crystallogenesis, Structural and Functional Analysis

    PubMed Central

    Franqueville, Laure; Henning, Petra; Magnusson, Maria; Vigne, Emmanuelle; Schoehn, Guy; Blair-Zajdel, Maria E.; Habib, Nagy; Lindholm, Leif; Blair, G. Eric; Hong, Saw See; Boulanger, Pierre

    2008-01-01

    Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors. PMID

  16. Valosin-containing protein immunoreactivity in tauopathies, synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease.

    PubMed

    Mori, Fumiaki; Tanji, Kunikazu; Toyoshima, Yasuko; Sasaki, Hidenao; Yoshida, Mari; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2013-12-01

    Valosin-containing protein (VCP) is associated with multiple cellular functions, including ubiquitin-dependent protein degradation. Mutations in VCP are known to cause inclusion body myopathy with Paget's disease and frontotemporal dementia and familial amyotrophic lateral sclerosis (fALS; ALS14), both of which are characterized by trans-activation response DNA protein 43 (TDP-43)-positive neuronal cytoplasmic and nuclear inclusions. Recently, immunoreactivity for fALS-associated proteins (TDP-43, fused in sarcoma (FUS), optineurin and ubiquilin-2) were reported to be present in cytoplasmic and nuclear inclusions in various neurodegenerative diseases. However, the extent and frequency of VCP-immunoreactive structures in these neurodegenerative diseases are uncertain. We immunohistochemically examined the brains of 72 cases with neurodegenerative diseases and five control cases. VCP immunoreactivity was present in Lewy bodies in Parkinson's disease and dementia with Lewy bodies, and neuronal nuclear inclusions in five polyglutamine diseases and intranuclear inclusion body disease, as well as in Marinesco bodies in aged control subjects. However, other neuronal and glial cytoplasmic inclusions in tauopathies and TDP-43 proteinopathies were unstained. These findings suggest that VCP may have common mechanisms in the formation or degradation of cytoplasmic and nuclear inclusions of neurons, but not of glial cells, in several neurodegenerative conditions.

  17. The p27Kip1 Tumor Suppressor and Multi-Step Tumorigenesis

    DTIC Science & Technology

    2001-08-01

    completion of the Celera mouse genome . Sequenced IPCR clones were searched against the Celera database and clones that fell within the same Celera ...in all of the lymphomas containing XPC-1 insertions. There is significant sequence conservation between the murine XPC-1 locus and the syntenic human ...Xq26 region, and sequences homologous to A1464896 and the cloned insertion sites are present in the human Xq26 region with spacing quite similar to

  18. Orchid Fleck Virus Structural Proteins N and P Form Intranuclear Viroplasm-Like Structures in the Absence of Viral Infection

    PubMed Central

    Chiba, Sotaro; Andika, Ida Bagus; Maruyama, Kazuyuki; Tamada, Tetsuo; Suzuki, Nobuhiro

    2013-01-01

    Orchid fleck virus (OFV) has a unique two-segmented negative-sense RNA genome that resembles that of plant nucleorhabdoviruses. In infected plant cells, OFV and nucleorhabdoviruses induce an intranuclear electron-lucent viroplasm that is believed to be the site for virus replication. In this study, we investigated the molecular mechanism by which OFV viroplasms are produced in vivo. Among OFV-encoded proteins, the nucleocapsid protein (N) and the putative phosphoprotein (P) were present in nuclear fractions of OFV-infected Nicotiana benthamiana plants. Transient coexpression of N and P, in the absence of virus infection, was shown to be sufficient for formation of an intranuclear viroplasm-like structure in plant cells. When expressed independently as a fluorescent protein fusion product in uninfected plant cells, N protein accumulated throughout the cell, while P protein accumulated in the nucleus. However, the N protein, when coexpressed with P, was recruited to a subnuclear region to induce a large viroplasm-like focus. Deletion and substitution mutagenesis demonstrated that the P protein contains a nuclear localization signal (NLS). Artificial nuclear targeting of the N-protein mutant was insufficient for formation of viroplasm-like structures in the absence of P. A bimolecular fluorescence complementation assay confirmed interactions between the N and P proteins within subnuclear viroplasm-like foci and interactions of two of the N. benthamiana importin-α homologues with the P protein but not with the N protein. Taken together, our results suggest that viroplasm formation by OFV requires nuclear accumulation of both the N and P proteins, which is mediated by P-NLS, unlike nucleorhabdovirus viroplasm utilizing the NLS on protein N. PMID:23616651

  19. Intranuclear Delivery of a Novel Antibody-Derived Radiosensitizer Targeting the DNA-Dependent Protein Kinase Catalytic Subunit

    SciTech Connect

    Xiong Hairong; Lee, Robert J.; Haura, Eric B.; Edwards, John G.; Dynan, William S.; Li Shuyi

    2012-07-01

    Purpose: To inhibit DNA double-strand break repair in tumor cells by delivery of a single-chain antibody variable region fragment (ScFv 18-2) to the cell nucleus. ScFv 18-2 binds to a regulatory region of the DNA-dependent protein kinase (DNA-PK), an essential enzyme in the nonhomologous end-joining pathway, and inhibits DNA end-joining in a cell-free system and when microinjected into single cells. Development as a radiosensitizer has been limited by the lack of a method for intranuclear delivery to target cells. We investigated a delivery method based on folate receptor-mediated endocytosis. Methods and Materials: A recombinant ScFv 18-2 derivative was conjugated to folate via a scissile disulfide linker. Folate-ScFv 18-2 was characterized for its ability to be internalized by tumor cells and to influence the behavior of ionizing radiation-induced repair foci. Radiosensitization was measured in a clonogenic survival assay. Survival curves were fitted to a linear-quadratic model, and between-group differences were evaluated by an F test. Sensitization ratios were determined based on mean inhibitory dose. Results: Human KB and NCI-H292 lung cancer cells treated with folate-conjugated ScFv 18-2 showed significant radiosensitization (p < 0.001). Sensitization enhancement ratios were 1.92 {+-} 0.42 for KB cells and 1.63 {+-} 0.13 for NCI-H292 cells. Studies suggest that treatment inhibits repair of radiation-induced DSBs, as evidenced by the persistence of {gamma}-H2AX-stained foci and by inhibition of staining with anti-DNA-PKcs phosphoserine 2056. Conclusions: Folate-mediated endocytosis is an effective method for intranuclear delivery of an antibody-derived DNA repair inhibitor.

  20. Studies of a nuclear matrix protein restricted to normal brain cells and lead-induced intranuclear inclusion bodies of kidney

    SciTech Connect

    Shelton, K.; Egle, P.; Redford, K.; Bigbee, J.

    1986-05-01

    A nuclear matrix protein, p32/6.3, with an unusual tissue distribution, has been identified. Protein from 21 tissues was surveyed by immunoprobing Western blots. In normal adult rats p32/6.3 is found only in grey matter from the cerebrum and the cerebellum, occurring in both neurons and astrocytes. Other brain cell types have not been examined. The protein appears to be developmentally regulated. It is detectable in the brain within a few days after birth and reaches adult levels within one to two weeks. Brain p32/6.3 has been found in all animals tested including rat, mouse, dog, cow, pig, chicken and human. This conservation indicates a fundamental role for p32/6.3 in the nucleus of brain cells. Possible functions for p32/6.3 may be indicated by a second novel occurrence. Chronic lead poisoning characteristically induces intranuclear inclusion bodies in the cells lining kidney proximal tubules. p32/6.3 is a major constituent of these inclusion bodies. They are also rich in lead and other metals including calcium, iron, zinc, copper and cadmium. These diverse observations suggest that p32/6.3 may have a role in metal homeostasis in the brain of normal animals.

  1. Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation.

    PubMed Central

    Durand, B; Gao, F B; Raff, M

    1997-01-01

    Many types of vertebrate precursor cells divide a limited number of times before they stop and terminally differentiate. In no case is it known what causes them to stop dividing. We have been studying this problem in the proliferating precursor cells that give rise to postmitotic oligodendrocytes, the cells that make myelin in the central nervous system. We show here that two components of the cell cycle control system, cyclin D1 and the Cdc2 kinase, are present in the proliferating precursor cells but not in differentiated oligodendrocytes, suggesting that the control system is dismantled in the oligodendrocytes. More importantly, we show that the cyclin-dependent kinase (Cdk) inhibitor p27 progressively accumulates in the precursor cells as they proliferate and is present at high levels in oligodendrocytes. Our findings are consistent with the possibility that the accumulation of p27 is part of both the intrinsic counting mechanism that determines when precursor cell proliferation stops and differentiation begins and the effector mechanism that arrests the cell cycle when the counting mechanism indicates it is time. The recent findings of others that p27-deficient mice have an increased number of cells in all of the organs examined suggest that this function of p27 is not restricted to the oligodendrocyte cell lineage. PMID:9029151

  2. Isolation of human cytomegalovirus intranuclear capsids, characterization of their protein constituents, and demonstration that the B-capsid assembly protein is also abundant in noninfectious enveloped particles.

    PubMed Central

    Irmiere, A; Gibson, W

    1985-01-01

    Two types of intranuclear capsids have been recovered from human cytomegalovirus (HCMV, strain AD169)-infected cells. By analogy with strain Colburn (simian CMV) particles, these have been designated as A- and B-capsids. Both types of capsids are composed of proteins with molecular weights of 153,000 (major capsid protein), 34,000 (minor capsid protein), 28,000, and 11,000 (smallest capsid protein). In addition to these species, B-capsids contain a 36,000-molecular-weight (36K) protein which has been designated as the HCMV "assembly protein," based on its similarities to counterparts in strain Colburn CMV (i.e., 37K protein) and herpes simplex virus (i.e., VP22a/p40/NC-3/ICP35e). Peptide comparisons established that the assembly protein of HCMV B-capsids and the 36K protein that distinguishes HCMV noninfectious enveloped particles from virions are the same, providing direct evidence that noninfectious enveloped particles are enveloped B-capsids. Images PMID:2993655

  3. Signal transduction of receptor-mediated antiproliferative action of melatonin on human prostate epithelial cells involves dual activation of Gα(s) and Gα(q) proteins.

    PubMed

    Shiu, Stephen Y W; Pang, Bo; Tam, Chun W; Yao, Kwok-Ming

    2010-10-01

    Melatonin has been shown to inhibit the proliferation of malignant and transformed human prostate epithelial cells by transcriptional up-regulation of p27(Kip1) expression via MTNR1A receptor-mediated activation of protein kinase A (PKA) and protein kinase C (PKC) in parallel. Given that melatonin MTNR1A receptor is a G protein-coupled receptor, this study was conducted to identify the specific G proteins that mediate the antiproliferative action of melatonin on human prostate epithelial cells. In 22Rv1 and RWPE-1 cells, knockdown of either Gα(s) or Gα(q) , but not Gα(i2) expression by RNA interference, abrogated the effects of melatonin on p27(Kip1) and cell proliferation. Conversely, cellular overexpression of activated mutants of Gα(s) and Gα(q) in 22Rv1 and RWPE-1 cells mimicked the effects of melatonin on prostate epithelial cell antiproliferation by increasing p27(Kip1) expression through downstream activation of PKA and PKC in parallel. Moreover, melatonin or 2-iodomelatonin induced elevation of adenosine-3',5'-cyclic monophosphate (cAMP) in 22Rv1 and RWPE-1 cells. The effects of 2-iodomelatonin on cAMP were blocked by the nonselective MTNR1A/MTNR1B receptor antagonist luzindole but were not affected by the selective MTNR1B receptor antagonist 4-phenyl-2-propionamidotetraline (4-P-PDOT). Furthermore, knockdown of Gα(s) mitigated the stimulatory effects of 2-iodomelatonin on cAMP. Collectively, the data demonstrated, for the first time, functional coupling of MTNR1A receptor to Gα(s) in cancerous or transformed human cells expressing endogenous melatonin receptors. Our results also showed that dual activation of Gα(s) and Gα(q) proteins is involved in the signal transduction of MTNR1A receptor-mediated antiproliferative action of melatonin on human prostate epithelial cells.

  4. Autographa californica nuclear polyhedrosis virus: subcellular localization and protein trafficking of BV/ODV-E26 to intranuclear membranes and viral envelopes.

    PubMed

    Beniya, H; Braunagel, S C; Summers, M D

    1998-01-05

    The Autographa californica nuclear polyhedrosis virus da26 gene codes for an envelope protein of both budded virus (BV) and occlusion derived virus (ODV). Western blot and temporal analysis of infected cell extracts detected a protein of 26 kDa by 4 h postinfection (p.i.). The amount of protein increased by 16 h p.i. and remained at high levels throughout infection. By 36 h p.i. several additional immunoreactive proteins were detected which migrated at approximately 18 kDa and remained through 96 h p.i. Western blot analysis of purified virus envelope and nucleocapsid preparations revealed that both the 26- and 18-kDa proteins are structural proteins of the envelope of BV and ODV. Immunoelectron microscopy performed at a time when only the 26-kDa species of the protein was present confirmed that the protein located to ODV envelope. The protein was named BV/ODV-E26 to designate incorporation into viral progeny, envelope location, and apparent molecular weight. Studies designed to follow localization of BV/ODV-E26 demonstrated that early in infection, the protein was incorporated into cytoplasmic vesicles and by 16 h p.i., BV/ODV-E26 was detected in the nucleus associated with virus-induced intranuclear microvesicles and ODV envelope. Coimmunoprecipitation and yeast two-hybrid assays showed that BV/ODV-E26 and FP25K were capable of interacting with each other to form a complex and coimmunoprecipitation assays indicated that cellular actin was a third component of this complex. Together, these data suggest that FP25K and cellular actin may participate in the regulation, or movement through the cell, of baculovirus proteins and/or virus nucleocapsids.

  5. ALS-associated protein FIG4 is localized in Pick and Lewy bodies, and also neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases.

    PubMed

    Kon, Tomoya; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Yoshida, Mari; Sasaki, Hidenao; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2014-02-01

    FIG4 is a phosphatase that regulates intracellular vesicle trafficking along the endosomal-lysosomal pathway. Mutations of FIG4 lead to the development of Charcot-Marie-Tooth disease type 4J and amyotrophic lateral sclerosis (ALS). Moreover, ALS-associated proteins (transactivation response DNA protein 43 (TDP-43), fused in sarcoma (FUS), optineurin, ubiquilin-2, charged mutivesicular body protein 2b (CHMP2B) and valosin-containing protein) are involved in inclusion body formation in several neurodegenerative diseases. Using immunohistochemistry, we examined the brains and spinal cords of patients with various neurodegenerative diseases, including sporadic TDP-43 proteinopathy (ALS and frontotemporal lobar degeneration). TDP-43 proteinopathy demonstrated no FIG4 immunoreactivity in neuronal inclusions. However, FIG4 immunoreactivity was present in Pick bodies in Pick's disease, Lewy bodies in Parkinson's disease and dementia with Lewy bodies, neuronal nuclear inclusions in polyglutamine and intranuclear inclusion body diseases, and Marinesco and Hirano bodies in aged control subjects. These findings suggest that FIG4 is not incorporated in TDP-43 inclusions and that it may have a common role in the formation or degradation of neuronal cytoplasmic and nuclear inclusions in several neurodegenerative diseases. © 2013 Japanese Society of Neuropathology.

  6. Regulation of Cop9 signalosome activity by the EF-hand Ca2+-binding protein tescalcin

    PubMed Central

    Levay, Konstantin; Slepak, Vladlen Z.

    2014-01-01

    ABSTRACT The Ca2+-binding protein tescalcin is known to be involved in hematopoietic cell differentiation; however, this mechanism is poorly understood. Here, we identify CSN4 (subunit 4 of the COP9 signalosome) as a novel binding partner of tescalcin. The COP9 signalosome (CSN) is a multiprotein complex that is essential for development in all eukaryotes. This interaction is selective, Ca2+-dependent and involves the PCI domain of CSN4 subunit. We then investigated tescalcin and CSN activity in human erythroleukemia HEL and promyelocytic leukemia K562 cells and find that phorbol 12-myristate 13-acetate (PMA)-induced differentiation, resulting in the upregulation of tescalcin, coincides with reduced deneddylation of cullin-1 (Cul1) and stabilization of p27Kip1 – molecular events that are associated with CSN activity. The knockdown of tescalcin led to an increase in Cul1 deneddylation, expression of F-box protein Skp2 and the transcription factor c-Jun, whereas the levels of cell cycle regulators p27Kip1 and p53 decreased. These effects are consistent with the hypothesis that tescalcin might play a role as a negative regulator of CSN activity towards Cul1 in the process of induced cell differentiation. PMID:24659803

  7. Reduced Intranuclear Mobility of APL Fusion Proteins Accompanies Their Mislocalization and Results in Sequestration and Decreased Mobility of Retinoid X Receptor α

    PubMed Central

    Dong, Shuo; Stenoien, David L.; Qiu, Jihui; Mancini, Michael A.; Tweardy, David J.

    2004-01-01

    Acute promyelocytic leukemia (APL) cells contain one of five chimeric retinoic acid α-receptor (RARα) genes (X-RARα) created by chromosomal translocations or deletion; each generates a fusion protein thought to transcriptionally repress RARα target genes and block myeloid differentiation by an incompletely understood mechanism. To gain spatiotemporal insight into these oncogenic processes, we employed fluorescence microscopy and fluorescence recovery after photobleaching (FRAP). Fluorescence microscopy demonstrated that the intracellular localization of each of the X-RARα proteins was distinct from that of RARα and established which portion(s) of each X-RARα protein—X, RAR, or both—contributed to its altered localization. Using FRAP, we demonstrated that the intranuclear mobility of each X-RARα was reduced compared to that of RARα. In addition, the mobility of each X-RARα was reduced further by ligand addition, in contrast to RARα, which showed no change in mobility when ligand was added. Both the reduced baseline mobility of X-RARα and the ligand-induced slowing of X-RARα could be attributed to the protein interaction domain contained within X. RXRα aberrantly colocalized within each X-RARα; colocalization of RXRα with promyelocytic leukemia (PML)-RARα resulted in reduced mobility of RXRα. Thus, X-RARα may interfere with RARα through its aberrant nuclear dynamics, resulting in spatial and temporal sequestration of RXRα and perhaps other nuclear receptor coregulators critical for myeloid differentiation. PMID:15121864

  8. N-terminal sequences from Autographa californica nuclear polyhedrosis virus envelope proteins ODV-E66 and ODV-E25 are sufficient to direct reporter proteins to the nuclear envelope, intranuclear microvesicles and the envelope of occlusion derived virus.

    PubMed

    Hong, T; Summers, M D; Braunagel, S C

    1997-04-15

    Baculovirus occlusion-derived virus (ODV) derives its envelope from an intranuclear membrane source. N-terminal amino acid sequences of the Autographa californica nuclear polyhedrosis virus (AcMNPV) envelope proteins, ODV-E66 and ODV-E25 (23 and 24 amino acids, respectively) are highly hydrophobic. Recombinant viruses that express the two N-terminal amino acid sequences fused to green fluorescent protein (23GFP or 24GFP) provided visual markers to follow protein transport and localization within the nucleus during infection. Autoflourescence was first detected along the cytoplasmic periphery of the nucleus and subsequently localized as foci to discrete locations within the nucleus. Immunoelectron microscopy confirmed that these foci predominantly contained intranuclear microvesicles and the reporter fusion proteins were also detected in cytoplasmic membranes near the nucleus, and the outer and inner nuclear membrane. Therefore, these defined hydrophobic domains are sufficient to direct native and fusion proteins to induced membrane microvesicles within a baculovirus-infected cell nucleus and the viral envelope. In addition, these data suggest that movement of these proteins into the nuclear envelope may initiate through cytoplasmic membranes, such as endoplasmic reticulum, and that transport into the nucleus may be mediated through the outer and inner nuclear membrane.

  9. The ND10 Component Promyelocytic Leukemia Protein Relocates to Human Papillomavirus Type 1 E4 Intranuclear Inclusion Bodies in Cultured Keratinocytes and in Warts

    PubMed Central

    Roberts, Sally; Hillman, Michele L.; Knight, Gillian L.; Gallimore, Phillip H.

    2003-01-01

    Human papillomavirus type 1 (HPV1) E4 protein is associated with cytoplasmic and nuclear inclusions in productively infected keratinocytes. Here we have used transient expression of HPV1 E4 (also known as E1^E4) protein in keratinocytes to reproduce formation of E4 inclusions. Immunofluorescence analysis showed that progressive formation of inclusions correlated with diminished colocalization between E4 and keratin intermediate filaments (IFs). Our results support a model in which the HPV1 E4-keratin IF association is transient, occurring only at an early stage of inclusion formation. We also demonstrate that E4 induces relocation of the promyelocytic leukemia protein (PML) from multiple intranuclear speckles (ND10 bodies) to the periphery of nuclear E4 inclusions and that this activity is specific to full-length E4 protein. Analysis of HPV1-induced warts demonstrated that nuclear PML-E4 inclusions were present in productively infected keratinocytes, indicating that reorganization of PML occurs during the virus's replication cycle. It has been suggested that ND10 bodies are the sites for papillomavirus genome replication and virion assembly. Our finding that E4 induces reorganization of ND10 bodies in vitro and in vivo is further strong evidence that these domains play an important role in the papillomavirus life cycle. This study indicates that HPV1 is analogous to other DNA viruses that disrupt or reorganize ND10 domains, possibly to increase efficiency of virus infection. We hypothesize that HPV1 E4-induced reorganization of PML is necessary for efficient replication of the virus during the virus-producing phase. PMID:12477870

  10. Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids

    SciTech Connect

    Bucks, Michelle A.; O'Regan, Kevin J.; Murphy, Michael A.; Wills, John W.; Courtney, Richard J. . E-mail: rcourtney@psu.edu

    2007-05-10

    The assembly of the tegument of herpes simplex virus type 1 (HSV-1) is a complex process that involves a number of events at various sites within virus-infected cells. Our studies focused on determining whether tegument proteins, VP1/2 and UL37, are added to capsids located within the nucleus. Capsids were isolated from the nuclear fraction of HSV-1-infected cells and purified by rate-zonal centrifugation to separate B capsids (containing the scaffold proteins and no viral DNA) and C capsids (containing DNA and no scaffold proteins). Western blot analyses of these capsids indicated that VP1/2 associated primarily with C capsids and UL37 associated with B and C capsids. The results demonstrate that at least two of the tegument proteins of HSV-1 are associated with capsids isolated from the nuclear fraction, and these capsid-tegument protein interactions may represent initial events of the tegumentation process.

  11. Specific Residues of a Conserved Domain in the N Terminus of the Human Cytomegalovirus pUL50 Protein Determine Its Intranuclear Interaction with pUL53*

    PubMed Central

    Milbradt, Jens; Auerochs, Sabrina; Sevvana, Madhumati; Muller, Yves A.; Sticht, Heinrich; Marschall, Manfred

    2012-01-01

    Herpesviral capsids are assembled in the host cell nucleus and are subsequently translocated to the cytoplasm. During this process it has been demonstrated that the human cytomegalovirus proteins pUL50 and pUL53 interact and form, together with other viral and cellular proteins, the nuclear egress complex at the nuclear envelope. In this study we provide evidence that specific residues of a conserved N-terminal region of pUL50 determine its intranuclear interaction with pUL53. In silico evaluation and biophysical analyses suggested that the conserved region forms a regular secondary structure adopting a globular fold. Importantly, site-directed replacement of individual amino acids by alanine indicated a strong functional influence of specific residues inside this globular domain. In particular, mutation of the widely conserved residues Glu-56 or Tyr-57 led to a loss of interaction with pUL53. Consistent with the loss of binding properties, mutants E56A and Y57A showed a defective function in the recruitment of pUL53 to the nuclear envelope in expression plasmid-transfected and human cytomegalovirus-infected cells. In addition, in silico analysis suggested that residues 3–20 form an amphipathic α-helix that appears to be conserved among Herpesviridae. Point mutants revealed a structural role of this N-terminal α-helix for pUL50 stability rather than a direct role in the binding of pUL53. In contrast, the central part of the globular domain including Glu-56 and Tyr-57 is directly responsible for the functional interaction with pUL53 and thus determines formation of the basic nuclear egress complex. PMID:22589554

  12. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    PubMed

    Slomiany, Amalia; Grabska, Maria; Slomiany, Bronislaw L

    2006-08-30

    Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860). In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN), the outer nuclear membrane (ONM), the inner nuclear membrane (INM) and the cell cytosol (CC). In contrast to Endoplasmic Reticulum (ER) which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM) of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA). The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of the lipids

  13. Enhancement of gene targeting in human cells by intranuclear permeation of the Saccharomyces cerevisiae Rad52 protein

    PubMed Central

    Kalvala, Arjun; Rainaldi, Giuseppe; Di Primio, Cristina; Liverani, Vania; Falaschi, Arturo; Galli, Alvaro

    2010-01-01

    The introduction of exogenous DNA in human somatic cells results in a frequency of random integration at least 100-fold higher than gene targeting (GT), posing a seemingly insurmountable limitation for gene therapy applications. We previously reported that, in human cells, the stable over-expression of the Saccharomyces cerevisiae Rad52 gene (yRAD52), which plays the major role in yeast homologous recombination (HR), caused an up to 37-fold increase in the frequency of GT, indicating that yRAD52 interacts with the double-strand break repair pathway(s) of human cells favoring homologous integration. In the present study, we tested the effect of the yRad52 protein by delivering it directly to the human cells. To this purpose, we fused the yRAD52 cDNA to the arginine-rich domain of the TAT protein of HIV (tat11) that is known to permeate the cell membranes. We observed that a recombinant yRad52tat11 fusion protein produced in Escherichia coli, which maintains its ability to bind single-stranded DNA (ssDNA), enters the cells and the nuclei, where it is able to increase both intrachromosomal recombination and GT up to 63- and 50-fold, respectively. Moreover, the non-homologous plasmid DNA integration decreased by 4-fold. yRAD52tat11 proteins carrying point mutations in the ssDNA binding domain caused a lower or nil increase in recombination proficiency. Thus, the yRad52tat11 could be instrumental to increase GT in human cells and a ‘protein delivery approach’ offers a new tool for developing novel strategies for genome modification and gene therapy applications. PMID:20519199

  14. Herpes simplex virus regulatory proteins VP16 and ICP0 counteract an innate intranuclear barrier to viral gene expression.

    PubMed

    Hancock, Meaghan H; Corcoran, Jennifer A; Smiley, James R

    2006-08-15

    HSV regulatory proteins VP16 and ICP0 play key roles in launching the lytic program of viral gene expression in most cell types. However, these activation functions are dispensable in U2OS osteosarcoma cells, suggesting that this cell line either expresses an endogenous activator of HSV gene expression or lacks inhibitory mechanisms that are inactivated by VP16 and ICP0 in other cells. To distinguish between these possibilities, we examined the phenotypes of somatic cell hybrids formed between U2OS cells and highly restrictive HEL fibroblasts. The U2OS-HEL heterokarya were as non-permissive as HEL cells, a phenotype that could be overcome by providing either VP16 or ICP0 in trans. Our data indicate that human fibroblasts contain one or more inhibitory factors that act within the nucleus to limit HSV gene expression and argue that VP16 and ICP0 stimulate viral gene expression at least in part by counteracting this innate antiviral defence mechanism.

  15. Genetic association between the cyclin-dependent kinase inhibitor gene p27/Kip1 polymorphism (rs34330) and cancer susceptibility: a meta-analysis

    PubMed Central

    Cheng, Xiao-Ke; Wang, Xue-Jun; Li, Xiao-Dong; Ren, Xue-Qun

    2017-01-01

    The p27 rs34330 (-79C/T) polymorphism has been widely studied for human cancer susceptibility. The current findings, however, still remained controversial. Therefore, we performed the meta-analysis to provide a more accurate result. Eligible studies were identified from PubMed database up to June 2015. The association of p27 rs34330 polymorphism and cancer susceptibility was estimated with odds ratios and corresponding 95% confidence intervals. The meta-analysis was performed with Stata 12. A total of ten studies with 11,214 cases and more than 8,776 controls were included in the meta-analysis (including breast, lung, thyroid, endometrial, and hepatocellular cancer). In pooled analysis, p27 gene rs34330 polymorphism significantly increased the cancer susceptibility. Subgroup analysis indicated that the elevated risk was observed under all the genetic models for Asians and under three genetic models for Caucasians. Results of sensitivity analysis were similar to the overall results. The results suggested that the p27 rs34330 polymorphism increased the cancer susceptibility, especially in Asians. Further well-designed and large sample size studies are warranted to verify the conclusion. PMID:28317869

  16. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1.

    PubMed

    Wang, Chunyan; Nie, Zhi; Zhou, Zhongmei; Zhang, Hailin; Liu, Rong; Wu, Jing; Qin, Junying; Ma, Yun; Chen, Liang; Li, Shumo; Chen, Wenlin; Li, Fubing; Shi, Peiguo; Wu, Yingying; Shen, Jian; Chen, Ceshi

    2015-07-10

    Growing evidence suggests that YAP/TAZ are mediators of the Hippo pathway and promote breast cancer. However, the roles of YAP/TAZ transcription factor partners TEADs in breast cancer remain unclear. Here we found that TEAD4 was expressed in breast cancer cell lines, especially in triple negative breast cancers (TNBC) cell lines. TEAD4 binds to KLF5. Knockdown of either TEAD4 or KLF5 in HCC1937 and HCC1806 cells induced the expression of CDK inhibitor p27. Depletion of either TEAD4 or KLF5 activated the p27 gene promoter and increased the p27 mRNA levels. Depletion of p27 partially prevents growth inhibition caused by TEAD4 and KLF5 knockdown. TEAD4 overexpression stimulated proliferation in vitro and tumor growth in mice, while stable knockdown of TEAD4 inhibited proliferation in vitro and tumor growth in mice. Thus TEAD4 and KLF5, in collaboration, promoted TNBC cell proliferation and tumor growth in part by inhibiting p27 gene transcription. TEAD4 is a potential target and biomarker for the development of novel therapeutics for breast cancer.

  17. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1

    PubMed Central

    Zhou, Zhongmei; Zhang, Hailin; Liu, Rong; Wu, Jing; Qin, Junying; Ma, Yun; Chen, Liang; Li, Shumo; Chen, Wenlin; Li, Fubing; Shi, Peiguo; Wu, Yingying; Shen, Jian; Chen, Ceshi

    2015-01-01

    Growing evidence suggests that YAP/TAZ are mediators of the Hippo pathway and promote breast cancer. However, the roles of YAP/TAZ transcription factor partners TEADs in breast cancer remain unclear. Here we found that TEAD4 was expressed in breast cancer cell lines, especially in triple negative breast cancers (TNBC) cell lines. TEAD4 binds to KLF5. Knockdown of either TEAD4 or KLF5 in HCC1937 and HCC1806 cells induced the expression of CDK inhibitor p27. Depletion of either TEAD4 or KLF5 activated the p27 gene promoter and increased the p27 mRNA levels. Depletion of p27 partially prevents growth inhibition caused by TEAD4 and KLF5 knockdown. TEAD4 overexpression stimulated proliferation in vitro and tumor growth in mice, while stable knockdown of TEAD4 inhibited proliferation in vitro and tumor growth in mice. Thus TEAD4 and KLF5, in collaboration, promoted TNBC cell proliferation and tumor growth in part by inhibiting p27 gene transcription. TEAD4 is a potential target and biomarker for the development of novel therapeutics for breast cancer. PMID:25970772

  18. The Cell Cycle Inhibitor p27KIP1: A Key Mediator of G1 Arrest by Androgen Ablation an dby Vitamin D3 Analog

    DTIC Science & Technology

    2000-02-01

    Thomas Director, Research Administration Sunnybrook Health Science Centre Reichmann Research Building, S-130 2075 Bayview Avenue Toronto, Ontario M4N...Administration or subcontracting of a PHS-supported activity by this institution. Room S-133, S-Wimg Reichmann Res Bldg. II. Institutional Policy Tel: (416) 480...Research Administration Address: Sunnybrook Health Science Centre, Reichmann Research Building, S-130 2075 Bayew Av u Toronto. ON 4N 3M5 Phone: 416-480-5720

  19. The Cell Cycle Inhibitor p27KIP1: A Key of G1 Arrest by Androgen Ablation and by Vitamin D3 Analog

    DTIC Science & Technology

    2001-02-01

    EB 1089 . Work during final year of the grant period has addressed how processes regulating p27 are altered during prostate cancer progression...Effects of androgens and vDR activation by EB 1089 on p27 function were assayed. We demonstrated that physiologic concentrations of DHT and EB 1089 have...DHT and EB 1089 in pre-clinical trials using LNCaP xenografts in immunodeficient mice. Our preliminary data analysis of these in vivo studies in

  20. Molecular Pathways: Turning Proteasomal Protein Degradation into a Unique Treatment Approach

    PubMed Central

    Stintzing, Sebastian; Lenz, Heinz-Josef

    2015-01-01

    Cancer treatment regimens have evolved from single cytotoxic substances affecting all proliferative tissues towards antibodies and kinase inhibitors targeting tumor specific pathways. Treatment efficacy and cancer survival has overall improved and side effects have become less frequent. The ubiquitin proteasome system (UPS) mediated proteasomal protein degradation is the most critical pathway to regulate the quantity of signal proteins involved in carcinogenesis and tumor progression. These processes are, as well as protein recycling, highly regulated and offer targets for biomarker and drug development. Unspecific proteasome inhibitors such as bortezomib and carfilzomib have shown clinical efficacy and are approved for clinical use. Inhibitors of more substrate specific enzymes of degradation processes are developed and in early clinical trials. The novel compounds focus on the degradation of key regulatory proteins such as p53, p27Kip1 and β-catenin, and inhibitors specific for growth factor receptor kinases turnover are in pre-clinical testing. PMID:24756373

  1. Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease

    PubMed Central

    Besbes, Anissa; Le Goff, Salomé; Antunes, Ana; Terrade, Aude; Hong, Eva; Giorgini, Dario; Taha, Muhamed-Kheir; Deghmane, Ala-Eddine

    2015-01-01

    Differential modulation of NF-κB during meningococcal infection is critical in innate immune response to meningococcal disease. Non-invasive isolates of Neisseria meningitidis provoke a sustained NF-κB activation in epithelial cells. However, the hyperinvasive isolates of the ST-11 clonal complex (ST-11) only induce an early NF-κB activation followed by a sustained activation of JNK and apoptosis. We show that this temporal activation of NF-κB was caused by specific cleavage at the C-terminal region of NF-κB p65/RelA component within the nucleus of infected cells. This cleavage was mediated by the secreted 150 kDa meningococcal ST-11 IgA protease carrying nuclear localisation signals (NLS) in its α-peptide moiety that allowed efficient intra-nuclear transport. In a collection of non-ST-11 healthy carriage isolates lacking NLS in the α-peptide, secreted IgA protease was devoid of intra-nuclear transport. This part of iga polymorphism allows non-invasive isolates lacking NLS, unlike hyperinvasive ST-11 isolates of N. meningitides habouring NLS in their α-peptide, to be carried asymptomatically in the human nasopharynx through selective eradication of their ability to induce apoptosis in infected epithelial cells. PMID:26241037

  2. Distinct effects of methylseleninic acid versus selenite on apoptosis, cell cycle, and protein kinase pathways in DU145 human prostate cancer cells.

    PubMed

    Jiang, Cheng; Wang, Zaisen; Ganther, Howard; Lü, Junxuan

    2002-10-01

    Selenium has been implicated as a promising chemopreventive agent for prostate cancer. Whereas the anticancer mechanisms have not been clearly defined, one hypothesis relates to selenium metabolites, especially the monomethyl selenium pool, generated under supranutritional selenium supplementation. To explore potential molecular targets for mediating the chemopreventive activity, we contrasted the effects of methylseleninic acid (MSeA), a novel precursor of methylselenol, versus sodium selenite, a representative of the hydrogen selenide metabolite pool, on apoptosis execution, cell cycle distribution, and selected protein kinases in DU145 human prostate cancer cells. Exposure of DU145 cells to 3 microM MSeA led to a profound G1 arrest at 24 h, and exposure to greater concentrations led to not only G1 arrest, but also to DNA fragmentation and caspase-mediated cleavage of poly(ADP-ribose) polymerase (PARP), two biochemical hallmarks of apoptosis. Immunobiot analyses indicated that G1 arrest induced by the subapoptogenic doses of MSeA was associated with increased expression of p27kip1 and p21cip1, but apoptosis was accompanied by dose-dependent decreases of phosphorylation of protein kinase AKT and extracellular signal-regulated kinase (ERK1/2) in the absence of any phosphorylation change in p38 mitogen-activated protein kinase (p38MAPK) and c-Jun NH2-terminal kinase (JNK1/2). In contrast, selenite exposure caused S-phase arrest and caspase-independent apoptotic DNA fragmentation, which were associated with decreased expression of p27kip1 and p21cip1 and increased phosphorylation of AKT, JNK1/2, and p38MAPK. Although apoptosis induction by MSeA exposure was not sensitive to superoxide dismutase added into the cell culture medium, cell detachment and DNA nucleosomal fragmentation induced by selenite exposure were greatly attenuated by this enzyme, supporting a chemical mediator role of superoxide for these processes. Despite a temporal relationship of AKT and ERK1

  3. Cif type III effector protein: a smart hijacker of the host cell cycle.

    PubMed

    Samba-Louaka, Ascel; Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2009-09-01

    During coevolution with their hosts, bacteria have developed functions that allow them to interfere with the mechanisms controlling the proliferation of eukaryotic cells. Cycle inhibiting factor (Cif) is one of these cyclomodulins, the family of bacterial effectors that interfere with the host cell cycle. Acquired early during evolution by bacteria isolated from vertebrates and invertebrates, Cif is an effector protein of type III secretion machineries. Cif blocks the host cell cycle in G1 and G2 by inducing the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). The x-ray crystal structure of Cif reveals it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases. This review summarizes and discusses what we know about Cif, from the bacterial gene to the host target.

  4. Real-Time Analysis of Folding upon Binding of a Disordered Protein by Using Dissolution DNP NMR Spectroscopy.

    PubMed

    Ragavan, Mukundan; Iconaru, Luigi I; Park, Cheon-Gil; Kriwacki, Richard W; Hilty, Christian

    2017-06-12

    The kinase inhibitory domain of the cell cycle regulatory protein p27(Kip1) (p27) was nuclear spin hyperpolarized using dissolution dynamic nuclear polarization (D-DNP). While intrinsically disordered in isolation, p27 adopts secondary structural motifs, including an α-helical structure, upon binding to cyclin-dependent kinase 2 (Cdk2)/cyclin A. The sensitivity gains obtained with hyperpolarization enable the real-time observation of (13) C NMR signals during p27 folding upon binding to Cdk2/cyclin A on a time scale of several seconds. Time-dependent intensity changes are dependent on the extent of folding and binding, as manifested in differential spin relaxation. The analysis of signal decay rates suggests the existence of a partially folded p27 intermediate during the timescale of the D-DNP NMR experiment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney.

    PubMed

    Zhu, Kai; Kakehi, Tomoko; Matsumoto, Misaki; Iwata, Kazumi; Ibi, Masakazu; Ohshima, Yoichi; Zhang, Jia; Liu, Junjie; Wen, Xiaopeng; Taye, Ashraf; Fan, Chunyuan; Katsuyama, Masato; Sharma, Kumar; Yabe-Nishimura, Chihiro

    2015-06-01

    Increased oxidative stress and activation of protein kinase C (PKC) under hyperglycemia have been implicated in the development of diabetic nephropathy. Because reactive oxygen species derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, NOX1 accelerate the translocation of PKC isoforms, NOX1 is postulated to play a causative role in the development of diabetic nephropathy. Hyperglycemia was induced in wild-type and Nox1-deficient mice (KO) by two doses of streptozotocin injection. At 3 weeks after the induction of hyperglycemia, glomeruli and cortical tubules were isolated from kidneys. The mRNA level of Nox1 was significantly upregulated in the renal cortex at 3 weeks of hyperglycemia. Urinary albumin and expression of inflammatory or fibrotic mediators were similarly elevated in diabetic wild-type and KO; however, increases in glomerular volume and mesangial matrix area were attenuated in diabetic KO. Nox1 deficiency significantly reduced the levels of renal thiobarbituric acid-reacting substances and 8-hydroxydeoxyguanosine, membranous translocation of PKCα/β, activity of PKC, and phosphorylation of p38 mitogen-activated protein kinase in the diabetic kidney. Furthermore, increased staining of senescence-associated β-galactosidase in glomeruli and cortical tubules of diabetic mice was significantly suppressed in KO. Whereas the levels of cyclin-dependent kinase inhibitors, p16(INK4A) and p21(Cip1), were equivalent between the genotypes, increased levels of p27(Kip1) and γ-H2AX, a biomarker for DNA double-strand breaks, were significantly attenuated in isolated glomeruli and cortical tubules of diabetic KO. Taken together, NOX1 modulates the p38/p27(Kip1) signaling pathway by activating PKC and promotes premature senescence in early stage diabetic nephropathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    PubMed Central

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27kip1 and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27kip1 mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. PMID:26926106

  7. A Pleiotropic RNA-Binding Protein Controls Distinct Cell Cycle Checkpoints to Drive Resistance of p53-Defective Tumors to Chemotherapy.

    PubMed

    Cannell, Ian G; Merrick, Karl A; Morandell, Sandra; Zhu, Chang-Qi; Braun, Christian J; Grant, Robert A; Cameron, Eleanor R; Tsao, Ming-Sound; Hemann, Michael T; Yaffe, Michael B

    2015-11-09

    In normal cells, p53 is activated by DNA damage checkpoint kinases to simultaneously control the G1/S and G2/M cell cycle checkpoints through transcriptional induction of p21(cip1) and Gadd45α. In p53-mutant tumors, cell cycle checkpoints are rewired, leading to dependency on the p38/MK2 pathway to survive DNA-damaging chemotherapy. Here we show that the RNA binding protein hnRNPA0 is the "successor" to p53 for checkpoint control. Like p53, hnRNPA0 is activated by a checkpoint kinase (MK2) and simultaneously controls both cell cycle checkpoints through distinct target mRNAs, but unlike p53, this is through the post-transcriptional stabilization of p27(Kip1) and Gadd45α mRNAs. This pathway drives cisplatin resistance in lung cancer, demonstrating the importance of post-transcriptional RNA control to chemotherapy response.

  8. microRNA-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs.

    PubMed

    Pan, Yi; Liang, Hongwei; Chen, Weixu; Zhang, Hongjie; Wang, Nan; Wang, Feng; Zhang, Suyang; Liu, Yanqing; Zhao, Chihao; Yan, Xin; Zhang, Junfeng; Zhang, Chen-Yu; Gu, Hongwei; Zen, Ke; Chen, Xi

    2015-01-01

    MicroRNA-200b and microRNA-200c (miR-200b/c) are 2 of the most frequently upregulated oncomiRs in colorectal cancer cells. The role of miR-200b/c during colorectal tumorigenesis, however, remains unclear. In the present study, we report that miR-200b/c can promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs (RECK). Firstly, bioinformatics analysis predicted RECK as a conserved target of miR-200b/c. By overexpressing or knocking down miR-200b/c in colorectal cancer cells, we experimentally validated that miR-200b/c are direct regulators of RECK. Secondly, an inverse correlation between the levels of miR-200b/c and RECK protein was found in human colorectal cancer tissues and cell lines. Thirdly, we demonstrated that repression of RECK by miR-200b/c consequently triggered SKP2 (S-phase kinase-associated protein 2) elevation and p27(Kip1) (also known as cyclin-dependent kinase inhibitor 1B) degradation in colorectal cancer cells, which eventually promotes cancer cell proliferation. Finally, promoting tumor cell growth by miR-200b/c-targeting RECK was also observed in the xenograft mouse model. Taken together, our results demonstrate that miR-200b/c play a critical role in promoting colorectal tumorigenesis through inhibiting RECK expression and subsequently triggering SKP2 elevation and p27(Kip1) degradation.

  9. Intranuclear coccidiosis in tortoises: nine cases.

    PubMed

    Garner, M M; Gardiner, C H; Wellehan, J F X; Johnson, A J; McNamara, T; Linn, M; Terrell, S P; Childress, A; Jacobson, E R

    2006-05-01

    Chelonian intranuclear coccidiosis has been reported once, in two radiated tortoises (Geochelone radiata), and is apparently rare. We describe intranuclear coccidiosis diagnosed histologically in two radiated tortoises, three Travancore tortoises (Indotestudo forstenii), two leopard tortoises (Geochelone pardalis), one bowsprit tortoise (Chersina angulata), and one impressed tortoise (Manouria impressa). Infection was systemic and involved alimentary, urogenital, respiratory, lymphoid, endocrine, and integumentary systems. Trophozoites, meronts, merozoites, macrogametocytes, microgametocytes, and nonsporulated oocysts were seen histologically or by electron microscopy. Intracytoplasmic and extracellular stages of parasite development also were identified histologically. Sequencing of a coccidial 18S rRNA consensus polymerase chain reaction (PCR) product revealed a novel sequence that provided phylogenetic information and may be useful for further diagnostic test design. Intranuclear coccidiosis was associated with variable degrees of inflammation in all cases, was considered the cause of death in six tortoises, and was a substantial contributing factor to the cause of death in two tortoises.

  10. A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors

    PubMed Central

    Miranda-Carboni, Gustavo A.; Krum, Susan A.; Yee, Kathleen; Nava, Miguel; Deng, Qiming E.; Pervin, Shehla; Collado-Hidalgo, Alicia; Galić, Zoran; Zack, Jerome A.; Nakayama, Keiko; Nakayama, Keiichi I.; Lane, Timothy F.

    2008-01-01

    Loss of the CDK inhibitor p27KIP1 is widely linked with poor prognosis in human cancer. In Wnt10b-expressing mammary tumors, levels of p27KIP1 were extremely low; conversely, Wnt10b-null mammary cells expressed high levels of this protein, suggesting Wnt-dependent regulation of p27KIP1. Interestingly we found that Wnt-induced turnover of p27KIP1 was independent from classical SCFSKP2-mediated degradation in both mouse and human cells. Instead, turnover required Cullin 4A and Cullin 4B, components of an alternative E3 ubiquitin ligase induced in response to active Wnt signaling. We found that CUL4A was a novel Wnt target gene in both mouse and human cells and that CUL4A physically interacted with p27KIP1 in Wnt-responding cells. We further demonstrated that both Cul4A and Cul4B were required for Wnt-induced p27KIP1 degradation and S-phase progression. CUL4A and CUL4B are therefore components of a conserved Wnt-induced proteasome targeting (WIPT) complex that regulates p27KIP1 levels and cell cycle progression in mammalian cells. PMID:19056892

  11. Genetics Home Reference: intranuclear rod myopathy

    MedlinePlus

    ... fibers and are important for muscle contraction. Attachment (binding) and release of the overlapping thick and thin filaments allows them to move relative to each other so that the muscles can contract. ACTA1 gene mutations that cause intranuclear rod myopathy ...

  12. Protein-protein interactions involved in the recognition of p27 by E3 ubiquitin ligase.

    PubMed Central

    Xu, Kui; Belunis, Charles; Chu, Wei; Weber, David; Podlaski, Frank; Huang, Kuo-Sen; Reed, Steven I; Vassilev, Lyubomir T

    2003-01-01

    The p27(Kip1) protein is a potent cyclin-dependent kinase inhibitor, the level of which is decreased in many common human cancers as a result of enhanced ubiquitin-dependent degradation. The multiprotein complex SCF(Skp2) has been identified as the ubiquitin ligase that targets p27, but the functional interactions within this complex are not well understood. One component, the F-box protein Skp2, binds p27 when the latter is phosphorylated on Thr(187), thus providing substrate specificity for the ligase. Recently, we and others have shown that the small cell cycle regulatory protein Cks1 plays a critical role in p27 ubiquitination by increasing the binding affinity of Skp2 for p27. Here we report the development of a homogeneous time-resolved fluorescence assay that allows the quantification of the molecular interactions between human recombinant Skp2, Cks1 and a p27-derived peptide phosphorylated on Thr(187). Using this assay, we have determined the dissociation constant of the Skp2-Cks1 complex (K(d) 140 +/- 14 nM) and have shown that Skp2 binds phosphorylated p27 peptide with high affinity only in the presence of Cks1 (K(d) 37 +/- 2 nM). Cks1 does not bind directly to the p27 phosphopeptide or to Skp1, which confirms its suggested role as an allosteric effector of Skp2. PMID:12529174

  13. Ultrastructural cytochemical analysis of intranuclear arsenic inclusions

    SciTech Connect

    Sorensen, E.M.B.

    1987-01-01

    To establish the chemical composition of the arsenic inclusion, freshly isolated preparations of inclusions and epon-embedded thin sections of inclusions were subjected to ultrastructural cytochemical analysis. Intranuclear inclusions are composed of amorphous, arsenic-containing subunits aligned linearly to form a coiled complex. Lipase, ribonuclease, deoxyribonuclease, trypsin, pepsin, protease, amylase, or ethylenediaminetetraacetic acid (EDTA) was used to digest or chelate these inclusions. Following enzymatic digestion or chelation, the electron opacity of inclusions was compared with that of control sections exposed for equal times to equivalent solutions lacking the enzymes. Exposure to amylase caused a consistent reduction in the electron opacity of thin sections of inclusions and almost complete digestion of the freshly isolated preparations of inclusions. This was indicative of the presence of a carbohydrate moiety within arsenic inclusions. Incubation of inclusions with EDTA resulted in solubilization of freshly isolated and thin-sectioned embedded material. These data indicated that the intranuclear arsenic inclusion is composed of both metallic and carbohydrate moieties, confirming earlier studies which identified arsenic within inclusions using instrumental neutron activation analysis and x-ray microprobe analysis.

  14. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway.

    PubMed

    Singh, Santosh Kumar; Banerjee, Saswati; Acosta, Edward P; Lillard, James W; Singh, Rajesh

    2017-02-13

    Resveratrol (RES) is the most effective natural products used for the treatment of a variety of cancers. In this study, we tested the effect of RES in enhancing the efficacy of docetaxel (DTX) treatment in prostate cancer (PCa) cells. The C4-2B and DU-145 cell lines were treated with RES, DTX and combination followed by evaluating the apoptosis and cell cycle progression. The combined drug treatment up-regulates the pro-apoptotic genes (BAX, BID, and BAK), cleaved PARP and down regulates the anti-apoptotic genes (MCL-1, BCL-2, BCL-XL) promoting apoptosis. In C4-2B cells the combination up regulated the expression of p53, and cell cycle inhibitors (p21WAF1/CIP1, p27KIP), which, in turn, inhibited the expression of CDK4, cyclin D1, cyclin E1 and induced hypo-phosphorylation of Rb thus blocking the transition of cells in the G0/G1 to S phase. In contrast, the synergistic effect was not profound in DU145 due to its lesser sensitivity to DTX. The suppression of cyclin B1 and CDK1 expression in both cell lines inhibits the further progression of cells in G2/M phase. The current study demonstrates that combination treatment blocks the cell cycle arrest by modulation of key regulators and promotes apoptosis via p53 dependent and independent mechanism in PCa.

  15. Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype.

    PubMed

    Malanga, Donatella; De Gisi, Silvia; Riccardi, Miriam; Scrima, Marianna; De Marco, Carmela; Robledo, Mercedes; Viglietto, Giuseppe

    2012-03-01

    The aim of this study was to investigate the presence of germline mutations in the CDKN1B gene that encodes the cyclin-dependent kinase (Cdk) inhibitor p27 in multiple endocrine neoplasia 1 (MEN1)-like Spanish index patients. The CDKN1B gene has recently been identified as a tumor susceptibility gene for MEN4, with six germline mutations reported so far in patients with a MEN-like phenotype but negative for MEN1 mutations. Fifteen Spanish index cases with MEN-like symptoms were screened for mutations in the CDKN1B gene and the mutant variant was studied functionally by transcription/translation assays in vitro and in transiently transfected HeLa cells. We report the identification of a heterozygous GAGA deletion in the 5'-UTR of CDKN1B, NM_004064.3:c.-32_-29del, in a patient affected by gastric carcinoid tumor and hyperparathyroidism. This deletion falls inside the region that is responsible for CDKN1B transcription and is predicted to destroy a secondary stem and loop structure that includes the GAGAGA element responsible for ribosome recruitment. Accordingly, in vitro studies of coupled transcription/translation assays and transient transfection in HeLa cells showed that the GAGA deletion in the CDKN1B 5'-UTR significantly impairs the transcription of downstream reporter luciferase (of ∼40-60%) and, possibly, the translation of the corresponding mRNA. This mutation was associated with a significant reduction in the amount of CDKN1B mRNA in peripheral blood leukocytes from the patient, as demonstrated by quantitative real-time PCR. Our results confirm that germline CDKN1B mutations may predispose to a human MEN4 condition and add novel evidence that alteration in the transcription/translation rate of CDKN1B mRNA might be the mechanism implicated in tumor susceptibility.

  16. Intranuclear rods myopathy with autonomic dysfunction.

    PubMed

    Chou, Po-Ching; Liang, Wen-Chen; Nonaka, Ikuya; Mitsuhashi, Satomi; Nishino, Ichizo; Jong, Yuh-Jyh

    2013-08-01

    Intranuclear rods myopathy (IRM), a variant of nemaline myopathy (NM), is characterized by rod structure in the myonuclei. Patients with IRM present with similar symptoms to those of severe infantile-type NM but have worse outcome. Several extramuscular manifestations have been reported in NM but no dysautonomia. We herein report a 2-year-old girl with IRM and a heterozygous mutation, c.430C>T (p.L144F) in ACTA1. During the infancy, the patient showed severe diaphoresis and facial flushing. Arrhythmia and hypertension with the precipitating factors of feeding, defecation, and urination were observed. Sympathetic antagonist was prescribed and showed some effectiveness. Our report may widen the clinical spectrum of IRM. It also reminds clinicians that autonomic dysfunction may occur in patients with IRM or other actinopathies and appropriate treatment may be necessary.

  17. RPLP1, a crucial ribosomal protein for embryonic development of the nervous system.

    PubMed

    Perucho, Laura; Artero-Castro, Ana; Guerrero, Sergi; Ramón y Cajal, Santiago; LLeonart, Matilde E; Wang, Zhao-Qi

    2014-01-01

    Ribosomal proteins are pivotal to development and tissue homeostasis. RP Large P1 (Rplp1) overexpression is associated with tumorigenesis. However, the physiological function of Rplp1 in mammalian development remains unknown. In this study, we disrupted Rplp1 in the mouse germline and central nervous system (Rplp1CNSΔ). Rplp1 heterozygosity caused body size reductions, male infertility, systemic abnormalities in various tissues and a high frequency of early postnatal death. Rplp1CNSΔ newborn mice exhibited perinatal lethality and brain atrophy with size reductions of the neocortex, midbrain and ganglionic eminence. The Rplp1 knockout neocortex exhibited progenitor cell proliferation arrest and apoptosis due to the dysregulation of key cell cycle and apoptosis regulators (cyclin A, cyclin E, p21CIP1, p27KIP1, p53). Similarly, Rplp1 deletion in pMEFs led to proliferation arrest and premature senescence. Importantly, Rplp1 deletion in primary mouse embryonic fibroblasts did not alter global protein synthesis, but did change the expression patterns of specific protein subsets involved in protein folding and the unfolded protein response, cell death, protein transport and signal transduction, among others. Altogether, we demonstrated that the translation "fine-tuning" exerted by Rplp1 is essential for embryonic and brain development and for proper cell proliferation.

  18. Electrostatically Accelerated Coupled Binding and Folding of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Otieno, Steve; Waddell, Brett; Iconaru, Luigi; Kriwacki, Richard W.; Chen, Jianhan

    2012-01-01

    Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27Kip1 (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering), but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition. PMID:22721951

  19. STAT3 protein interacts with Class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4(+) T cells.

    PubMed

    Oh, Hyun-Mee; Yu, Cheng-Rong; Dambuza, Ivy; Marrero, Bernadette; Egwuagu, Charles E

    2012-08-31

    An important feature of the adaptive immune response is its remarkable capacity to regulate the duration of inflammatory responses, and effector T cells have been shown to limit excessive immune responses by producing anti-inflammatory cytokines such as IL-10 and IL-27. However, how anti-inflammatory cytokines mediate their suppressive activities is not well understood. In this study, we show that STAT3 contributes to mechanisms that control the duration of T cell proliferation by regulating the subcellular location of FoxO1 and FoxO3a, two Class O Forkhead transcription factors that mediate lymphocyte quiescence and inhibit T cell activation. We show that active FoxO1 and FoxO3a reside exclusively in the nucleus of naïve T cells whereas inactive pFoxO1 and pFoxO3a were most abundant in activated T cells and sequestered in their cytoplasm in association with unphosphorylated STAT3 (U-STAT3) and 14-3-3. We further show that FoxO1/FoxO3a rapidly relocalized into the nucleus in response to pSTAT3 activation by IL-6 or IL-10, and the accumulation of FoxO1/FoxO3a in their nuclei coincided with increased expression of p27(Kip1) and p21(WAF1). STAT3 inhibitors completely abrogated cytokine-induced translocation of FoxO1/FoxO3a into the nucleus. In naïve or resting STAT3-deficient T cells, expression of pFoxO1/pFoxO3a was predominantly in the cytoplasm and correlated with defects in p27(Kip1) and p21(WAF1) expression, suggesting requirement of STAT3 for importation or retention of FoxO in the nucleus and attenuation of lymphocyte proliferation. Taken together, these results suggest that U-STAT3 collaborates with 14-3-3 to sequester pFoxO1/pFoxO3a in cytoplasm and thus prolong T cell activation, whereas pSTAT3 activation by anti-inflammatory cytokines would curtail the duration of TCR activation and re-establish lymphocyte quiescence by inducing nuclear localization of FoxO1/FoxO3a and FoxO-mediated expression of growth-inhibitory proteins.

  20. STAT3 Protein Interacts with Class O Forkhead Transcription Factors in the Cytoplasm and Regulates Nuclear/Cytoplasmic Localization of FoxO1 and FoxO3a Proteins in CD4+ T Cells*

    PubMed Central

    Oh, Hyun-Mee; Yu, Cheng-Rong; Dambuza, Ivy; Marrero, Bernadette; Egwuagu, Charles E.

    2012-01-01

    An important feature of the adaptive immune response is its remarkable capacity to regulate the duration of inflammatory responses, and effector T cells have been shown to limit excessive immune responses by producing anti-inflammatory cytokines such as IL-10 and IL-27. However, how anti-inflammatory cytokines mediate their suppressive activities is not well understood. In this study, we show that STAT3 contributes to mechanisms that control the duration of T cell proliferation by regulating the subcellular location of FoxO1 and FoxO3a, two Class O Forkhead transcription factors that mediate lymphocyte quiescence and inhibit T cell activation. We show that active FoxO1 and FoxO3a reside exclusively in the nucleus of naïve T cells whereas inactive pFoxO1 and pFoxO3a were most abundant in activated T cells and sequestered in their cytoplasm in association with unphosphorylated STAT3 (U-STAT3) and 14-3-3. We further show that FoxO1/FoxO3a rapidly relocalized into the nucleus in response to pSTAT3 activation by IL-6 or IL-10, and the accumulation of FoxO1/FoxO3a in their nuclei coincided with increased expression of p27Kip1 and p21WAF1. STAT3 inhibitors completely abrogated cytokine-induced translocation of FoxO1/FoxO3a into the nucleus. In naïve or resting STAT3-deficient T cells, expression of pFoxO1/pFoxO3a was predominantly in the cytoplasm and correlated with defects in p27Kip1 and p21WAF1 expression, suggesting requirement of STAT3 for importation or retention of FoxO in the nucleus and attenuation of lymphocyte proliferation. Taken together, these results suggest that U-STAT3 collaborates with 14-3-3 to sequester pFoxO1/pFoxO3a in cytoplasm and thus prolong T cell activation, whereas pSTAT3 activation by anti-inflammatory cytokines would curtail the duration of TCR activation and re-establish lymphocyte quiescence by inducing nuclear localization of FoxO1/FoxO3a and FoxO-mediated expression of growth-inhibitory proteins. PMID:22761423

  1. Intranuclear Anchoring of Repetitive DNA Sequences

    PubMed Central

    Weipoltshammer, Klara; Schöfer, Christian; Almeder, Marlene; Philimonenko, Vlada V.; Frei, Klemens; Wachtler, Franz; Hozák, Pavel

    1999-01-01

    Centromeres, telomeres, and ribosomal gene clusters consist of repetitive DNA sequences. To assess their contributions to the spatial organization of the interphase genome, their interactions with the nucleoskeleton were examined in quiescent and activated human lymphocytes. The nucleoskeletons were prepared using “physiological” conditions. The resulting structures were probed for specific DNA sequences of centromeres, telomeres, and ribosomal genes by in situ hybridization; the electroeluted DNA fractions were examined by blot hybridization. In both nonstimulated and stimulated lymphocytes, centromeric alpha-satellite repeats were almost exclusively found in the eluted fraction, while telomeric sequences remained attached to the nucleoskeleton. Ribosomal genes showed a transcription-dependent attachment pattern: in unstimulated lymphocytes, transcriptionally inactive ribosomal genes located outside the nucleolus were eluted completely. When comparing transcription unit and intergenic spacer, significantly more of the intergenic spacer was removed. In activated lymphocytes, considerable but similar amounts of both rDNA fragments were eluted. The results demonstrate that: (a) the various repetitive DNA sequences differ significantly in their intranuclear anchoring, (b) telomeric rather than centromeric DNA sequences form stable attachments to the nucleoskeleton, and (c) different attachment mechanisms might be responsible for the interaction of ribosomal genes with the nucleoskeleton. PMID:10613900

  2. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    PubMed Central

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  3. Cytochemical study of abnormal intranuclear structures rich in beryllium.

    PubMed

    Berry, J P; Mentre, P; Hallegot, P; Levi-Setti, R; Galle, P

    1989-01-01

    During prolonged intoxication with beryllium sulphate, intranuclear beryllium-rich structures (IBRS) develop mainly in the cells of the convoluted tubules of the kidney. These structures are constituted by the accumulation of dense granules approximately 20 nm in diameter. The present work shows: 1) by electron probe microanalysis that IBRS are rich in phosphorus and calcium, and 2) by high resolution ion microanalysis that the granules are rich in beryllium and proteins. Staining with thallium alcoholate and regressive staining with ethylenediaminetetraacetate (EDTA) seem to demonstrate the presence of ribonucleoproteins in the granules. But the richness in calcium and phosphorus makes it difficult to interprete cytochemical reactions based on thallium and lead because complexes can be formed between calcium and thallium or lead, and between phosphorus and lead. Extraction with EDTA and digestion with RNase carried out on floating slices fixed with glutaraldehyde and embedded in glycol methacrylate show that: 1) the positive response of IBRS to cytochemical techniques used seems due solely to calcium; 2) the RNase forms a stable complex with a constituent of the granules that could be the highly phosphorylated acidic protein that binds preferentially to beryllium described by Parker and Stevens.

  4. Incipient intranuclear inclusion body disease in a 78-year-old woman.

    PubMed

    Mori, Fumiaki; Miki, Yasuo; Tanji, Kunikazu; Ogura, Eriko; Yagihashi, Norito; Jensen, Poul H; Wakabayashi, Koichi

    2011-04-01

    We report an incipient case of intranuclear inclusion body disease (INIBD) in a 78-year-old woman. No apparent neurological symptoms were noticed during the clinical course. Post mortem examination revealed widespread occurrence of eosinophilic intranuclear inclusions in neuronal and glial cells of the central and peripheral nervous systems, as well as in parenchymal cells of the visceral organs. The inclusions were observed more frequently in glial cells than in neuronal cells. Ultrastructurally, the inclusions consisted of granular and filamentous material. Immunohistochemically, the inclusions were positive for ubiquitin, ubiquitin-related proteins (NEDD8 ultimate buster 1, small ubiquitin modifier-1, small ubiquitin modifier-2 and p62), promyelocytic leukemia protein and abnormally expanded polyglutamine. Consistent with previous studies, the vast majority of inclusion-bearing glial cells were astrocytes. Furthermore, p25α-positive oligodendrocytes rarely contained intranuclear inclusions. These findings suggest that INIBD may occur in non-demented elderly individuals and that oligodendrocyte is also involved in the disease process of INIBD.

  5. Murine gamma-herpesvirus 68 latency protein M2 binds to Vav signaling proteins and inhibits B-cell receptor-induced cell cycle arrest and apoptosis in WEHI-231 B cells.

    PubMed

    Madureira, Patrícia A; Matos, Paulo; Soeiro, Inês; Dixon, Linda K; Simas, J Pedro; Lam, Eric W-F

    2005-11-11

    The MHV-68 latent protein, M2, does not have homology to any known viral or cellular proteins, and its function is unclear. To define the role played by M2 during MHV-68 latency as well as the molecular mechanism involved, we used M2 as bait to screen a yeast two-hybrid mouse B-cell cDNA library. Vav1 was identified as an M2-interacting protein in two independent screenings. Subsequent yeast two-hybrid interaction studies showed that M2 also binds to Vav2, but not Vav3, and that three "PXXP" motifs located at the C terminus of M2 are important for this interaction. The interactions between M2 and Vav proteins were also confirmed in vivo in 293T and WEHI-231 B-cells by co-immunoprecipitation assays. Rac1/GST-PAK "pull-down" experiments and Western blot analysis using a phospho-Vav antibody demonstrated that expression of M2 in WEHI-231 cells enhances Vav activity. We further showed in WEHI-231 cells that M2 expression promotes proliferation and survival and is associated with enhanced cyclin D2 and repressed p27(Kip1), p130, and Bim expression. Taken together, these experiments suggest that M2 might have an important role in disseminating the latent virus during the establishment and maintenance of latency by modulating B-cell receptor-mediated signaling events through Vav to promote B-cell activation, proliferation, and survival.

  6. Depletion of the Fragile X Mental Retardation Protein in Embryonic Stem Cells Alters the Kinetics of Neurogenesis.

    PubMed

    Khalfallah, Olfa; Jarjat, Marielle; Davidovic, Laetitia; Nottet, Nicolas; Cestèle, Sandrine; Mantegazza, Massimo; Bardoni, Barbara

    2017-02-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, βIII-tubulin, p27(kip1) , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.

  7. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease

    PubMed Central

    Sone, Jun; Mori, Keiko; Inagaki, Tomonori; Katsumata, Ryu; Takagi, Shinnosuke; Yokoi, Satoshi; Araki, Kunihiko; Kato, Toshiyasu; Nakamura, Tomohiko; Koike, Haruki; Takashima, Hiroshi; Hashiguchi, Akihiro; Kohno, Yutaka; Kurashige, Takashi; Kuriyama, Masaru; Takiyama, Yoshihisa; Tsuchiya, Mai; Kitagawa, Naoyuki; Kawamoto, Michi; Yoshimura, Hajime; Suto, Yutaka; Nakayasu, Hiroyuki; Uehara, Naoko; Sugiyama, Hiroshi; Takahashi, Makoto; Kokubun, Norito; Konno, Takuya; Katsuno, Masahisa; Tanaka, Fumiaki; Iwasaki, Yasushi; Yoshida, Mari

    2016-01-01

    Neuronal intranuclear inclusion disease (NIID) is a slowly progressive neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the central and peripheral nervous system, and also in the visceral organs. NIID has been considered to be a heterogeneous disease because of the highly variable clinical manifestations, and ante-mortem diagnosis has been difficult. However, since we reported the usefulness of skin biopsy for the diagnosis of NIID, the number of NIID diagnoses has increased, in particular adult-onset NIID. In this study, we studied 57 cases of adult-onset NIID and described their clinical and pathological features. We analysed both NIID cases diagnosed by post-mortem dissection and by ante-mortem skin biopsy based on the presence of characteristic eosinophilic, hyaline and ubiquitin-positive intanuclear inclusion: 38 sporadic cases and 19 familial cases, from six families. In the sporadic NIID cases with onset age from 51 to 76, dementia was the most prominent initial symptom (94.7%) as designated ‘dementia dominant group’, followed by miosis, ataxia and unconsciousness. Muscle weakness and sensory disturbance were also observed. It was observed that, in familial NIID cases with onset age less than 40 years, muscle weakness was seen most frequently (100%), as designated ‘limb weakness group’, followed by sensory disturbance, miosis, bladder dysfunction, and dementia. In familial cases with more than 40 years of onset age, dementia was most prominent (100%). Elevated cerebrospinal fluid protein and abnormal nerve conduction were frequently observed in both sporadic and familial NIID cases. Head magnetic resonance imaging showed high intensity signal in corticomedullary junction in diffusion-weighted image in both sporadic and familial NIID cases, a strong clue to the diagnosis. All of the dementia dominant cases presented with this type of leukoencephalopathy on head magnetic resonance imaging. Both sporadic and

  8. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells

    PubMed Central

    Parasido, Erika; Tricoli, Lucas; Sivakumar, Angiela; Mikhaiel, John P.; Yenugonda, Venkata; Rodriguez, Olga C.; Karam, Sana D.; Rood, Brian R.; Avantaggiati, Maria Laura; Albanese, Chris

    2015-01-01

    Medulloblastoma (MB), a primitive neuroectodermal tumor, is the most common malignant childhood brain tumor and remains incurable in about a third of patients. Currently, survivors carry a significant burden of late treatment effects. The p53 tumor suppressor protein plays a crucial role in influencing cell survival in response to cellular stress and while the p53 pathway is considered a key determinant of anti-tumor responses in many tumors, its role in cell survival in MB is much less well defined. Herein, we report that the experimental drug VMY-1-103 acts through induction of a partial DNA damage-like response as well induction of non-survival autophagy. Surprisingly, the genetic or chemical silencing of p53 significantly enhanced the cytotoxic effects of both VMY and the DNA damaging drug, doxorubicin. The inhibition of p53 in the presence of VMY revealed increased late stage apoptosis, increased DNA fragmentation and increased expression of genes involved in apoptosis, including CAPN12 and TRPM8, p63, p73, BIK, EndoG, CIDEB, P27Kip1 and P21cip1. These data provide the groundwork for additional studies on VMY as a therapeutic drug and support further investigations into the intriguing possibility that targeting p53 function may be an effective means of enhancing clinical outcomes in MB. PMID:26540407

  9. Hepatocyte growth factor (HGF) inhibits skeletal muscle cell differentiation: a role for the bHLH protein twist and the cdk inhibitor p27.

    PubMed

    Leshem, Y; Spicer, D B; Gal-Levi, R; Halevy, O

    2000-07-01

    Hepatocyte growth factor (HGF) plays a crucial role in regulating the differentiation of both fetal and adult skeletal myoblasts. This study aimed at defining the intracellular factors that mediate the effect of HGF on adult myoblast differentiation. HGF increased Twist expression while decreasing p27(kip1) protein levels and not affecting the induction of p21(Cip1/Waf1) in satellite cells. Like HGF, overexpression of Twist did not affect p21 expression while inhibiting muscle-specific proteins. Both ectopic Twist-antisense (Twist-AS) and p27 partially rescued the effects of HGF on bromodeoxyuridine (BrdU) incorporation and myosin heavy chain (MHC) expression in muscle satellite cells; the two plasmids together effected full rescue, suggesting that HGF independently regulates these two factors to mediate its effects. Ectopic p27 promoted differentiation in the presence of HGF by blocking the induction of Twist. Using Twist-AS to lower Twist levels restored the HGF-dependent reduction of p27 and MHC. In the presence of ectopic HGF, satellite cells formed thin mononuclear myotubes. Neither ectopic p27, Twist-AS, or their combination reversed this change in cell morphology, suggesting that HGF acts through additional mediators to inhibit downstream events during myogenesis. Taken together, the results suggest that the effects of HGF on muscle cell proliferation and differentiation are mediated through changes in the expression levels of the myogenic-inhibitory basic helix-loop-helix (bHLH) protein Twist and the cell-cycle inhibitor p27.

  10. The Drosophila F-box protein dSkp2 regulates cell proliferation by targeting Dacapo for degradation.

    PubMed

    Dui, Wen; Wei, Bin; He, Feng; Lu, Wei; Li, Changqing; Liang, Xuehong; Ma, Jun; Jiao, Renjie

    2013-06-01

    Cell cycle progression is controlled by a complex regulatory network consisting of interacting positive and negative factors. In humans, the positive regulator Skp2, an F-box protein, has been a subject of intense investigation in part because of its oncogenic activity. By contrast, the molecular and developmental functions of its Drosophila homologue, dSkp2, are poorly understood. Here we investigate the role of dSkp2 by focusing on its functional relationship with Dacapo (Dap), the Drosophila homologue of the cyclin-dependent kinase inhibitors p21(cip1)/p27(kip1)/p57(kip2). We show that dSkp2 interacts physically with Dap and has a role in targeting Dap for ubiquitination and proteasome-mediated degradation. We present evidence that dSkp2 regulates cell cycle progression by antagonizing Dap in vivo. dSkp2 knockdown reduces cell density in the wing by prolonging the cell doubling time. In addition, the wing phenotype caused by dSkp2 knockdown resembles that caused by dap overexpression and can be partially suppressed by reducing the gene dose of dap. Our study thus documents a conserved functional relationship between dSkp2 and Dap in their control of cell cycle progression, suggesting the possibility of using Drosophila as a model system to study Skp2-mediated tumorigenesis.

  11. Prognostic significance of cell cycle proteins and genomic instability in borderline, early and advanced stage ovarian carcinomas.

    PubMed

    Blegen, H.; Einhorn, N.; Sjövall, K.; Roschke, A.; Ghadimi, B. M.; McShane, L. M.; Nilsson, B.; Shah, K.; Ried, T.; Auer, G.

    2000-11-01

    Disturbed cell cycle-regulating checkpoints and impairment of genomic stability are key events during the genesis and progression of malignant tumors. We analyzed 80 epithelial ovarian tumors of benign (n = 10) and borderline type (n = 18) in addition to carcinomas of early (n = 26) and advanced (n = 26) stages for the expression of Ki67, cyclin A and cyclin E, p21WAF-1, p27KIP-1 and p53 and correlated the results with the clinical course. Genomic instability was assessed by DNA ploidy measurements and, in 35 cases, by comparative genomic hybridization. Overexpression of cyclin A and cyclin E was observed in the majority of invasive carcinomas, only rarely in borderline tumors and in none of the benign tumors. Similarly, high expression of p53 together with undetectable p21 or loss of chromosome arm 17p were frequent events only in adenocarcinomas. Both borderline tumors and adenocarcinomas revealed a high number of chromosomal gains and losses. However, regional chromosomal amplifications were found to occur 13 times more frequently in the adenocarcinomas than in the borderline tumors. The expression pattern of low p27 together with high Ki67 was found to be an independent predictor of poor outcome in invasive carcinomas. The results provide a link between disturbed cell cycle regulatory proteins, chromosomal aberrations and survival in ovarian carcinomas.

  12. Reduced Expression of the Retinoblastoma Protein Shows That the Related Signaling Pathway Is Essential for Mediating the Antineoplastic Activity of Erufosine

    PubMed Central

    Zaharieva, Maya M.; Kirilov, Milen; Chai, Minquang; Berger, Stefan M.; Konstantinov, Spiro; Berger, Martin R.

    2014-01-01

    Erufosine is a new antineoplastic agent of the group of alkylphosphocholines, which interferes with signal transduction and induces apoptosis in various leukemic and tumor cell lines. The present study was designed to examine for the first time the mechanism of resistance to erufosine in malignant cells with permanently reduced expression of the retinoblastoma (Rb) protein. Bearing in mind the high number of malignancies with reduced level of this tumor-suppressor, this investigation was deemed important for using erufosine, alone or in combination, in patients with compromised RB1 gene expression. For this purpose, clones of the leukemic T-cell line SKW-3 were used, which had been engineered to constantly express differently low Rb levels. The alkylphosphocholine induced apoptosis, stimulated the expression of the cyclin dependent kinase inhibitor p27Kip1 and inhibited the synthesis of cyclin D3, thereby causing a G2 phase cell cycle arrest and death of cells with wild type Rb expression. In contrast, Rb-deficiency impeded the changes induced by eru-fosine in the expression of these proteins and abrogated the induction of G2 arrest, which was correlated with reduced antiproliferative and anticlonogenic activities of the compound. In conclusion, analysis of our results showed for the first time that the Rb signaling pathway is essential for mediating the antineoplastic activity of erufosine and its efficacy in patients with malignant diseases may be predicted by determining the Rb status. PMID:24987858

  13. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases

    PubMed Central

    Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W.

    2014-01-01

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21Cip1, p27Kip1 and p57Kip2. Their kinase inhibitory activities are mediated by a homologous N-terminal kinase-inhibitory domain (KID). The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the KID and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, and its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. PMID:25463440

  14. Gfer is a critical regulator of HSC proliferation.

    PubMed

    Sankar, Uma; Means, Anthony R

    2011-07-15

    Hematopoietic stem cells (HSC) are a relatively quiescent pool of cells that perform the arduous task of replacing the short-lived mature cells of the peripheral blood. While a rapid expansion of HSCs under periods of hematological stress is warranted, their enhanced proliferation during homeostasis leads to loss of function. We recently reported that in HSCs, the evolutionarily conserved growth factor erv1-like (Gfer) acts to counter jun activation domain-binding protein 1 (Jab1)-mediated nuclear export and destabilization of the cell cycle inhibitor, p27kip1, by directly binding to and sequestering the COP9 signalosome (CSN) subunit. Through this mechanism, Gfer promotes quiescence and maintains the functional integrity of HSCs. Here, we extend our study to demonstrate an association between Gfer and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) in the regulation of HSC proliferation. Highly proliferative and functionally deficient Camk4-/- HSCs possess significantly lower levels of Gfer and p27kip1. Ectopic expression of Gfer restores quiescence and elevates p27kip1 expression in Camk4-/- HSCs. These results further substantiate a critical role for Gfer in the restriction of unwarranted proliferation in HSCs through the inhibition of Jab1 and subsequent stabilization and nuclear retention of p27kip1. This Gfer-mediated pro-quiescence mechanism could be therapeutically exploited in the treatment of hematological malignancies associated with elevated Jab1 and reduced p27kip1.

  15. Gfer is a critical regulator of HSC proliferation

    PubMed Central

    Means, Anthony R

    2011-01-01

    Hematopoietic stem cells (HSC) are a relatively quiescent pool of cells that perform the arduous task of replacing the short-lived mature cells of the peripheral blood. While a rapid expansion of HSCs under periods of hematological stress is warranted, their enhanced proliferation during homeostasis leads to loss of function. We recently reported that in HSCs, the evolutionarily conserved growth factor erv1-like (Gfer) acts to counter jun activation domain-binding protein 1 (Jab1)-mediated nuclear export and destabilization of the cell cycle inhibitor, p27kip1, by directly binding to and sequestering the COP9 signalosome (CSN) subunit. Through this mechanism, Gfer promotes quiescence and maintains the functional integrity of HSCs. Here, we extend our study to demonstrate an association between Gfer and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) in the regulation of HSC proliferation. Highly proliferative and functionally deficient Camk4-/- HSCs possess significantly lower levels of Gfer and p27kip1. Ectopic expression of Gfer restores quiescence and elevates p27kip1 expression in Camk4-/- HSCs. These results further substantiate a critical role for Gfer in the restriction of unwarranted proliferation in HSCs through the inhibition of Jab1 and subsequent stabilization and nuclear retention of p27kip1. This Gfer-mediated pro-quiescence mechanism could be therapeutically exploited in the treatment of hematological malignancies associated with elevated Jab1 and reduced p27kip1. PMID:21636978

  16. Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways.

    PubMed

    Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki

    2015-04-20

    We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21(WAF1/CIP1) and p27(KIP1) expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2'-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC.

  17. Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways

    PubMed Central

    Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki

    2015-01-01

    We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21WAF1/CIP1 and p27KIP1 expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2′-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC. PMID:25797254

  18. Phosphorylation of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) by Akt promotes stability and mitogenic function of S-phase kinase-associated protein-2 (Skp2).

    PubMed

    Song, Gyun Jee; Leslie, Kristen L; Barrick, Stacey; Mamonova, Tatyana; Fitzpatrick, Jeremy M; Drombosky, Kenneth W; Peyser, Noah; Wang, Bin; Pellegrini, Maria; Bauer, Philip M; Friedman, Peter A; Mierke, Dale F; Bisello, Alessandro

    2015-01-30

    The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21(cip1) and p27(kip1) thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.

  19. Cofilin is a Component of Intranuclear and Cytoplasmic Actin Rods Induced in Cultured Cells

    NASA Astrophysics Data System (ADS)

    Nishida, Eisuke; Iida, Kazuko; Yonezawa, Naoto; Koyasu, Shigeo; Yahara, Ichiro; Sakai, Hikoichi

    1987-08-01

    Incubation of cultured cells under specific conditions induces a dramatic change in the actin organization: induction of intranuclear and/or cytoplasmic actin rods (actin paracrystal-like intracellular structures). We have found that cofilin, a 21-kDa actin-binding protein, is a component of these rods. Antibodies directed against cofilin labeled intranuclear actin rods induced in cells treated with dimethyl sulfoxide or exposed to heat shock and also labeled cytoplasmic actin rods induced in cells incubated in specific salt buffers. Moreover, we found that these actin rods are not stained with fluorescent phalloidin derivatives at all and appear to be right-handed helices, different from straight bundles of F-actin such as stress fibers. In vitro experiments revealed that cofilin and phalloidin compete with each other for binding to F-actin. Since cofilin and phalloidin have the ability to stoichiometrically bind actin molecule in the filament in vitro, the above results seem to suggest that cofilin directly binds to actin molecule in nearly an equimolar ratio in these rods. We call these rods ``actin/cofilin rods.''

  20. Salmonid intranuclear microsporidosis: Chapter 3.2.17

    USGS Publications Warehouse

    Hedrick, Ronald P.; Purcell, Maureen K.; Kurobe, Tomofumi

    2012-01-01

    Nucleospora salmonis is an intra-nuclear microsporidian parasite in the family Enterocytozoonidae (Docker et al. 1997). Prespore stages of the parasite were first observed among adult and then juvenile Chinook salmon (Oncorhynchus tshawytscha) by Elston et al. (1987) and Morrison et al. (1990), respectively in Washington, U.S.A. The microsporidian nature of the parasite was subsequently confirmed by the observation of spores in lymphoblasts of juvenile Chinook salmon from California (Hedrick et al. 1991). The principal target cell for N. salmonis are hematopoietic cells which, upon infection, undergo proliferative changes leading to a leukemia-like condition with an accompanying anemia (Wongtavatchai et al. 1995). 

  1. Shell structure and few-nucleon removal in intranuclear cascade

    NASA Astrophysics Data System (ADS)

    Mancusi, D.; Boudard, A.; Carbonell, J.; Cugnon, J.; David, J.-C.; Leray, S.

    2015-02-01

    It is well known that intranuclear-cascade models generally overestimate the cross sections for one-proton removal from heavy, stable nuclei by a high-energy proton beam, but they yield reasonable predictions for one-neutron removal from the same nuclei and for one- nucleon removal from light targets. We use simple shell-model calculations to investigate the reasons of this deficiency. We find that a correct description of the neutron skin and of the energy density in the nuclear surface is crucial for the aforementioned observables. Neither ingredient is sufficient if taken separately.

  2. The expression of growth-arrest genes in the liver and kidney of the protein-restricted rat fetus.

    PubMed

    Maloney, Christopher A; Lilley, Christina; Cruickshank, Morven; McKinnon, Caroline; Hay, Susan M; Rees, William D

    2005-07-01

    During fetal life, there are periods of rapid cell proliferation, which are uniquely sensitive to nutritional perturbation. Feeding the pregnant rat a protein-restricted diet alters the growth trajectory of major fetal organs such as the kidney. By day 21 of gestation, the ratio of kidney weight to total body weight is reduced in the fetuses of dams fed a protein-deficient diet. In contrast, the ratio of fetal liver weight to total body weight is unchanged. To investigate the mechanisms underlying this disproportionate change in organ growth in the low-protein group, cell proliferation and differentiation have been assessed in the liver and kidney. The steady-state levels of mRNA for the growth-arrest and DNA-damage gene gadd153/CHOP-10, CCAAT enhancer-binding proteins alpha and beta were unaffected by maternal diet in both fetal liver and kidney. The mRNA for alpha-fetoprotein, albumin and hepatic glucokinase were unchanged in the liver, suggesting that maternal protein deficiency does not alter the state of differentiation. The steady-state levels of the mRNA coding for the cyclin-dependent protein kinase inhibitors (p15(INK4a), p19(INK4d), p21(CIP1), p27(KIP1) and p57(KIP2)) were unchanged in the fetal livers but were significantly increased in the kidneys of fetuses from dams fed the low-protein diet. These results show that the asymmetrical growth of the kidney is associated with increases in mRNA for the Cip/Kip cyclin-dependent kinase inhibitors and that these may reflect specific lesions in organ development.

  3. Intranuclear DNA density affects chromosome condensation in metazoans

    PubMed Central

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-01-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or “intranuclear DNA density.” Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans. PMID:23783035

  4. Intranuclear DNA density affects chromosome condensation in metazoans.

    PubMed

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-08-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or "intranuclear DNA density." Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans.

  5. p27 Protein Protects Metabolically Stressed Cardiomyocytes from Apoptosis by Promoting Autophagy*

    PubMed Central

    Sun, Xuetao; Momen, Abdul; Wu, Jun; Noyan, Hossein; Li, Renke; von Harsdorf, Rüdiger; Husain, Mansoor

    2014-01-01

    p27Kip1 (p27), a key regulator of cell division, has been implicated in autophagy of cancer cells. However, its role in autophagy, the evolutionarily conserved catabolic process that enables cells to remove unwanted proteins and damaged organelles, had not been examined in the heart. Here we report that ectopic delivery of a p27 fusion protein (TAT-p27) was sufficient to induce autophagy in neonatal rat ventricular cardiomyocytes in vitro, under basal conditions and after glucose deprivation. Conversely, lentivirus-delivered shRNA against p27 successfully reduced p27 levels and suppressed basal and glucose-deprived levels of autophagy in cardiomyocytes in vitro. Glucose deprivation mimics myocardial ischemia and induces apoptosis in cardiomyocytes. During glucose deprivation, TAT-p27 inhibited apoptosis, whereas down-regulation of p27 decreased survival of cardiomyocytes. However, inhibition of autophagy by pharmacological (3-methyladenine, chloroquine, or bafilomycin A1) or genetic approaches (siRNA-mediated knockdown of Atg5) sensitized cardiomyocytes to glucose deprivation-induced apoptosis, even in the presence of TAT-p27. TAT-p27 was also able to provoke greater levels of autophagy in resting and fasting cardiomyocytes in vivo. Further, TAT-p27 enhanced autophagy and repressed cardiomyocytes apoptosis, improved cardiac function, and reduced infarct size following myocardial infarction. Again, these effects were lost when cardiac autophagy in vivo was blocked by chloroquine. Taken together, these data show that p27 positively regulates cardiac autophagy in vitro and in vivo, at rest and after metabolic stress, and that TAT-p27 inhibits apoptosis by promoting autophagy in glucose-deprived cardiomyocytes in vitro and in post-myocardial infarction hearts in vivo. PMID:24794871

  6. A graphics processor-based intranuclear cascade and evaporation simulation

    NASA Astrophysics Data System (ADS)

    Wan Chan Tseung, H.; Beltran, C.

    2014-07-01

    Monte Carlo simulations of the transport of protons in human tissue have been deployed on graphics processing units (GPUs) with impressive results. To provide a more complete treatment of non-elastic nuclear interactions in these simulations, we developed a fast intranuclear cascade-evaporation simulation for the GPU. This can be used to model non-elastic proton collisions on any therapeutically relevant nuclei at incident energies between 20 and 250 MeV. Predictions are in good agreement with Geant4.9.6p2. It takes approximately 2 s to calculate 1×106 200 MeV proton-16O interactions on a NVIDIA GTX680 GPU. A speed-up factor of ∼20 relative to one Intel i7-3820 core processor thread was achieved.

  7. HSV-1 Cgal+ Infection Promotes Quaking RNA Binding Protein Production and Induces Nuclear-Cytoplasmic Shuttling of Quaking I-5 Isoform in Human Hepatoma Cells*

    PubMed Central

    Sánchez-Quiles, Virginia; Mora, María I.; Segura, Victor; Greco, Anna; Epstein, Alberto L.; Foschini, Maria Giovanna; Dayon, Loïc; Sanchez, Jean-Charles; Prieto, Jesús; Corrales, Fernando J.; Santamaría, Enrique

    2011-01-01

    Herpesvirus type 1 (HSV-1) based oncolytic vectors arise as a promising therapeutic alternative for neoplastic diseases including hepatocellular carcinoma. However, the mechanisms mediating the host cell response to such treatments are not completely known. It is well established that HSV-1 infection induces functional and structural alterations in the nucleus of the host cell. In the present work, we have used gel-based and shotgun proteomic strategies to elucidate the signaling pathways impaired in the nucleus of human hepatoma cells (Huh7) upon HSV-1 Cgal+ infection. Both approaches allowed the identification of differential proteins suggesting impairment of cell functions involved in many aspects of host-virus interaction such as transcription regulation, mRNA processing, and mRNA splicing. Based on our proteomic data and additional functional studies, cellular protein quaking content (QKI) increases 4 hours postinfection (hpi), when viral immediate-early genes such as ICP4 and ICP27 could be also detected. Depletion of QKI expression by small interfering RNA results in reduction of viral immediate-early protein levels, subsequent decrease in early and late viral protein content, and a reduction in the viral yield indicating that QKI directly interferes with viral replication. In particular, HSV-1 Cgal+ induces a transient increase in quaking I-5 isoform (QKI-5) levels, in parallel with an enhancement of p27Kip1 protein content. Moreover, immunofluorescence microscopy showed an early nuclear redistribution of QKI-5, shuttling from the nucleus to the cytosol and colocalizing with nectin-1 in cell to cell contact regions at 16–24 hpi. This evidence sheds new light on mechanisms mediating hepatoma cell response to HSV-1 vectors highlighting QKI as a central molecular mediator. PMID:21467216

  8. Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10.

    PubMed

    Zheng, Mingzhong; Bocangel, Dora; Doneske, Blair; Mhashilkar, Abner; Ramesh, Rajagopal; Hunt, Kelly K; Ekmekcioglu, Suhendan; Sutton, R Bryan; Poindexter, Nancy; Grimm, Elizabeth A; Chada, Sunil

    2007-02-01

    The melanoma differentiation-associated gene-7 (mda-7/IL-24) is a unique member of the interleukin 10 (IL-10) family of cytokines, with ubiquitous tumor cell pro-apoptotic activity. Recent data have shown that IL-24 is secreted as a glycosylated protein and functions as a pro-Th1 cytokine and as a potent anti-angiogenic molecule. In this study, we analyzed the activity of Ad-mda7 and its protein product, secreted IL-24, against human breast cancer cells. We show that Ad-mda7 transduction of human breast cancer cells results in G(2)/M phase cell cycle arrest and apoptotic cell death, which correlates with secretion of IL-24 protein. Neutralizing antibody against IL-24 significantly inhibited Ad-mda7 cytotoxicity. IL-24 and IL-10 both engage their cognate receptors on breast cancer cells resulting in phosphorylation and activation of STAT3, however, IL-10 receptor binding failed to induce cell killing, indicating that tumor cell killing by IL-24 is independent of STAT3 phosphorylation. Treatment with exogenous IL-24 induced apoptosis in breast cancer cells and this effect was abolished by addition of anti-IL-24 antibody or anti-IL-20R1, indicating that bystander cell killing is mediated via IL-24 binding to the IL-20R1/IL-20R2 heterodimeric receptor complex. Co-administration of the related cytokine IL-10 inhibited killing mediated by IL-24 and concomitantly inhibited IL-24 mediated up-regulation of the tumor suppressor proteins, p53 and p27(Kip1). In summary, we have defined a tumor-selective cytotoxic bystander role for secreted IL-24 protein and identified a novel receptor-mediated death pathway in breast cancer cells, wherein the related cytokines IL-24 and IL-10 exhibit antagonistic activity.

  9. Selective in situ protein expression profiles correlate with distinct phenotypes of basal cell carcinoma and squamous cell carcinoma of the skin.

    PubMed

    Stelkovics, E; Kiszner, G; Meggyeshazi, N; Korom, I; Varga, E; Nemeth, I; Molnar, J; Marczinovits, I; Krenacs, T

    2013-07-01

    Non-melanoma skin cancer is the most common malignancy that shows increasing incidence due to our cumulative exposure to ultraviolet irradiation. Its major subtypes, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) differ in pathobiology, phenotype and clinical behavior, which must be reflected at the molecular level. In this study, protein expression profiles of BCC and SCC were tested in tissue microarrays and correlated with that of actinic keratosis, Bowen's disease, seborrheic keratosis and normal epidermis by detecting 22 proteins involved in cell interactions, growth, cell cycle regulation or apoptosis. The significantly more reduced collagen XVII, CD44v6, pan-Desmoglein levels and more evident E-Cadherin delocalization in BCC compared to SCC correlated with the de novo dermal invasion of BCC against the progressive invasion from in situ lesions in SCC development. EGFR was also expressed at a significantly higher level in SCC than in BCC. The upregulated cell communication protein connexin43 in BCC could contribute to the protection of BCC from metastatic invasion. Elevated cell replication in BCC was underlined by the increased topoisomerase IIα and reduced p21(waf1) and p27(kip1) positive cells fractions compared to SCC. Compared to differentiated keratinocytes, caspase-8 and -9 were equally upregulated in skin carcinoma subtypes for either mediating apoptosis induction or immune escape of tumor cells. Hierarchical cluster analysis grouped SCC and actinic keratosis cases exclusively together in support of their common origin and malignant phenotype. BCC cases were also clustered fully together. Differentially expressed proteins reflect the distinct pathobiology of skin carcinoma subtypes and can serve as surrogate markers in doubtful cases.

  10. Sodium phenylacetate inhibits the Ras/MAPK signaling pathway to induce reduction of the c-Raf-1 protein in human and canine breast cancer cells.

    PubMed

    Watanabe, Manabu; Miyajima, Nozomi; Igarashi, Maki; Endo, Yoshifumi; Watanabe, Natsuko; Sugano, Sumio

    2009-11-01

    An aromatic fatty acid, phenylacetate (PA), has been shown to have cytostatic, antitumor and cell differentiation-inducing effects on various kinds of tumors. Previously, we have demonstrated cell growth inhibition, malignant phenotype reduction and cell differentiation effects of sodium phenylacetate (NaPA) treatment in a canine mammary tumor cell line. To clarify the molecular mechanism of these effects, we examined the expression of Ras/MAPK signaling pathway-related molecules in human and canine breast cancer cell lines, and found that the level of c-Raf-1 protein was reduced by 5, 10 and 20 mM of NaPA treatments, though Ras activation was maintained. Dephosphorylation of c-Raf-1 at Serine (Ser) 259, Ser 338, and Ser 621 were also seen in NaPA-treated cells. Downstream factors in the pathway, such as mitogen-activated protein kinase/ERK kinase (MEK)1/2 and ERK1/2, showed decreased activity, and accordingly, expressions of cyclinD1, c-myc, and inactivation of p90 ribosomal S6 kinase (RSK), which are MAPK targets, were reduced. We also observed the reduction of cell-cycle-promoted molecules, such as cdc1/cdk2, cdk4, PCNA cyclin A, and cyclin B, and the increased expression of p27kip1. Furthermore, expression of an epithelial marker, E-cadherin, was increased by NaPA treatment. These results suggest that one of the molecular targets of NaPA treatment was the reduction of c-Raf-1 protein, and that its reduction results in the decrease of malignant characteristics of tumor cells through blockage of the Ras/MAPK signaling pathway.

  11. A model for mammalian cochlear hair cell differentiation in vitro: effects of retinoic acid on cytoskeletal proteins and potassium conductances.

    PubMed

    Helyer, R; Cacciabue-Rivolta, D; Davies, D; Rivolta, M N; Kros, C J; Holley, M C

    2007-02-01

    We have established a model for the in-vitro differentiation of mouse cochlear hair cells and have used it to explore the influence of retinoic acid on proliferation, cytoskeletal proteins and voltage-gated potassium conductances. The model is based on the conditionally immortal cell line University of Sheffield/ventral otocyst-epithelial cell line clone 36 (US/VOT-E36), derived from ventral otic epithelial cells of the mouse at embryonic day 10.5 and transfected with a reporter for myosin VIIa. Retinoic acid did not increase cell proliferation but led to up-regulation of myosin VIIa and formation of prominent actin rings that gave rise to numerous large, linear actin bundles. Cells expressing myosin VIIa had larger potassium conductances and did not express the cyclin-dependent kinase inhibitor p27(kip1). US/VOT-E36 endogenously expressed the voltage-gated potassium channel alpha-subunits Kv1.3 and Kv2.1, which we subsequently identified in embryonic and neonatal hair cells in both auditory and vestibular sensory epithelia in vivo. These subunits could underlie the embryonic and neonatal delayed-rectifiers recorded in nascent hair cells in vivo. Kv2.1 was particularly prominent on the basolateral membrane of cochlear inner hair cells. Kv1.3 was distributed throughout all hair cells but tended to be localized to the cuticular plates. US/VOT-E36 recapitulates a coherent pattern of cell differentiation under the influence of retinoic acid and will provide a convenient model for screening the effects of other extrinsic factors on the differentiation of cochlear epithelial cell types in vitro.

  12. A retroviral expression system based on tetracycline-regulated tricistronic transactivator/repressor vectors for functional analyses of antiproliferative and toxic genes.

    PubMed

    Ausserlechner, Michael J; Obexer, Petra; Deutschmann, Andrea; Geiger, Kathrin; Kofler, Reinhard

    2006-08-01

    Establishment of stably transfected mammalian cells with conditional expression of antiproliferative or proapoptotic proteins is often hampered by varying expression within bulk-selected cells and high background in the absence of the inducing drug. To overcome such limitations, we designed a gene expression system that transcribes the tetracycline-dependent rtTA2-M2-activator, TRSID-silencer, and selection marker as a tricistronic mRNA from a single retroviral vector. More than 92% of bulk-selected cells expressed enhanced green fluorescent protein or luciferase over more than three orders of magnitude in an almost linear, dose-dependent manner. To functionally test this system, we studied how dose-dependent expression of p27(Kip1) affects proliferation and viability of SH-EP neuroblastoma cells. Low to moderate p27(Kip1) expression caused transient G(0)-G(1) accumulation without reduced viability, whereas high p27(Kip1) levels induced significant apoptosis after 72 hours. This proves that this expression system allows concentration-dependent analysis of gene function and implicates p27(Kip1) as a critical regulator of both proliferation and apoptosis in SH-EP neuroblastoma cells.

  13. Neuronal intranuclear inclusions distinguish familial FTD-MND type from sporadic cases.

    PubMed

    Mackenzie, Ian R A; Feldman, Howard

    2004-01-01

    Ubiquitin-immunoreactive (ub-ir) neuronal cytoplasmic inclusions are characteristically found in the extramotor cortex in patients with motor neuron disease (MND) and dementia (MND-dementia) and in a subset of patients with frontotemporal dementia (FTD) without motor symptoms (FTD-MND type). Recently, ub-ir neuronal intranuclear inclusions have been described in a small number of patients with familial FTD-MND type. To better define the sensitivity and specificity of this pathological change, we examined postmortem tissue from 14 patients with FTD-MND type (8 familial, 6 sporadic), 10 cases of MND-dementia (5 familial, 5 sporadic) and 19 cases of MND with no history of cognitive dysfunction (2 familial, 17 sporadic). Numerous intranuclear inclusions were found in multiple anatomic sites in 6/8 cases of familial FTD-MND. Rare intranuclear inclusions were present in the hippocampal dentate granule cells in 1 case of familial MND-dementia. No sporadic cases had intranuclear inclusions. These findings suggest that intranuclear inclusions are specific for familial FTD and may identify a subset of families with a common genetic basis. Although intranuclear inclusions are most characteristic of families with pure FTD, they may also be found in some pedigrees with both FTD and MND, further supporting the hypothesis that FTD-MND type and MND-dementia represent a clinicopathological spectrum of disease.

  14. Paraspeckles modulate the intranuclear distribution of paraspeckle-associated Ctn RNA

    PubMed Central

    Anantharaman, Aparna; Jadaliha, Mahdieh; Tripathi, Vidisha; Nakagawa, Shinichi; Hirose, Tetsuro; Jantsch, Michael F.; Prasanth, Supriya G.; Prasanth, Kannanganattu V.

    2016-01-01

    Paraspeckles are sub-nuclear domains that are nucleated by long noncoding RNA Neat1. While interaction of protein components of paraspeckles and Neat1 is understood, there is limited information on the interaction of non-structural RNA components with paraspeckles. Here, by varying paraspeckle number and size, we investigate how paraspeckles influence the nuclear organization of their non-structural RNA component Ctn RNA. Our results show that Ctn RNA remains nuclear-retained in the absence of intact paraspeckles, suggesting that they do not regulate nuclear retention of Ctn RNA. In the absence of Neat1, Ctn RNA continues to interact with paraspeckle protein NonO to form residual nuclear foci. In addition, in the absence of Neat1-nucleated paraspeckles, a subset of Ctn RNA localizes to the perinucleolar regions. Concomitant with increase in number of paraspeckles, transcriptional reactivation resulted in increased number of paraspeckle-localized Ctn RNA foci. Similar to Neat1, proteasome inhibition altered the localization of Ctn RNA, where it formed enlarged paraspeckle-like foci. Super-resolution structured illumination microscopic analyses revealed that in paraspeckles, Ctn RNA partially co-localized with Neat1, and displayed a more heterogeneous intra-paraspeckle localization. Collectively, these results show that while paraspeckles do not influence nuclear retention of Ctn RNA, they modulate its intranuclear compartmentalization. PMID:27665741

  15. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer

    PubMed Central

    Slotky, Merav; Shapira, Ma'anit; Ben-Izhak, Ofer; Linn, Shai; Futerman, Boris; Tsalic, Medy; Hershko, Dan D

    2005-01-01

    Introduction Loss of the cell-cycle inhibitory protein p27Kip1 is associated with a poor prognosis in breast cancer. The decrease in the levels of this protein is the result of increased proteasome-dependent degradation, mediated and rate-limited by its specific ubiquitin ligase subunits S-phase kinase protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1). Skp2 was recently found to be overexpressed in breast cancers, but the role of Cks1 in these cancers is unknown. The present study was undertaken to examine the role of Cks1 expression in breast cancer and its relation to p27Kip1 and Skp2 expression and to tumor aggressiveness. Methods The expressions of Cks1, Skp2, and p27Kip1 were examined immunohistochemically on formalin-fixed, paraffin-wax-embedded tissue sections from 50 patients with breast cancer and by immunoblot analysis on breast cancer cell lines. The relation between Cks1 levels and patients' clinical and histological parameters were examined by Cox regression and the Kaplan–Meier method. Results The expression of Cks1 was strongly associated with Skp2 expression (r = 0.477; P = 0.001) and inversely with p27Kip1 (r = -0.726; P < 0.0001). Overexpression of Cks1 was associated with loss of tumor differentiation, young age, lack of expression of estrogen receptors and of progesterone receptors, and decreased disease-free (P = 0.0007) and overall (P = 0.041) survival. In addition, Cks1 and Skp2 expression were increased by estradiol in estrogen-dependent cell lines but were down-regulated by tamoxifen. Conclusion These results suggest that Cks1 is involved in p27Kip1 down-regulation and may have an important role in the development of aggressive tumor behavior in breast cancer. PMID:16168119

  16. New neuropathological findings in Unverricht-Lundborg disease: neuronal intranuclear and cytoplasmic inclusions.

    PubMed

    Cohen, Nicola R; Hammans, Simon R; Macpherson, James; Nicoll, James A R

    2011-03-01

    Unverricht-Lundborg disease (EPM1A), also known as Baltic myoclonus, is the most common form of progressive myoclonic epilepsy. It is inherited as an autosomal recessive trait, due to mutations in the Cystatin-B gene promoter region. Although there is much work on rodent models of this disease, there is very little published neuropathology in patients with EPM1A. Here, we present the neuropathology of a patient with genetically confirmed EPM1A, who died at the age of 76. There was atrophy and gliosis affecting predominantly the cerebellum, frontotemporal cortex, hippocampus and thalamus. We have identified neuronal cytoplasmic inclusions containing the lysosomal proteins, Cathepsin-B and CD68. These inclusions also showed immunopositivity to both TDP-43 and FUS, in some cases associated with an absence of normal neuronal nuclear TDP-43 staining. There were also occasional ubiquitinylated neuronal intranuclear inclusions, some of which were FUS immunopositive. This finding is consistent with neurodegeneration in EPM1A as at least a partial consequence of lysosomal damage to neurons, which have reduced Cystatin-B-related neuroprotection. It also reveals a genetically defined neurodegenerative disease with both FUS and TDP-43 related pathology.

  17. Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke.

    PubMed

    Kimura-Ohba, Shihoko; Yang, Yi

    2016-01-01

    Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.

  18. Over 10 years MRI observation of a patient with neuronal intranuclear inclusion disease

    PubMed Central

    Abe, Kazuo; Fujita, Masashi

    2017-01-01

    We present a sporadic neuronal intranuclear inclusion disease (NIID) patient with neuropathy followed by cognitive dysfunction along with brain MRIs findings of leucoencephalopathy. Her cognitive impairment gradually progressed along with abnormal intensity lesions in diffusion-weighted images. This pathological and clinical deterioration resemble pathological process in prion diseases. PMID:28237949

  19. Adenosine Attenuates Human Coronary Artery Smooth Muscle Cell Proliferation by Inhibiting Multiple Signaling Pathways That Converge on Cyclin D.

    PubMed

    Dubey, Raghvendra K; Fingerle, Jürgen; Gillespie, Delbert G; Mi, Zaichuan; Rosselli, Marinella; Imthurn, Bruno; Jackson, Edwin K

    2015-12-01

    The goal of this study was to determine whether and how adenosine affects the proliferation of human coronary artery smooth muscle cells (HCASMCs). In HCASMCs, 2-chloroadenosine (stable adenosine analogue), but not N(6)-cyclopentyladenosine, CGS21680, or N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, inhibited HCASMC proliferation (A2B receptor profile). 2-Chloroadenosine increased cAMP, reduced phosphorylation (activation) of ERK and Akt (protein kinases known to increase cyclin D expression and activity, respectively), and reduced levels of cyclin D1 (cyclin that promotes cell-cycle progression in G1). Moreover, 2-chloroadenosine inhibited expression of S-phase kinase-associated protein-2 (Skp2; promotes proteolysis of p27(Kip1)) and upregulated levels of p27(Kip1) (cell-cycle regulator that impairs cyclin D function). 2-Chloroadenosine also inhibited signaling downstream of cyclin D, including hyperphosphorylation of retinoblastoma protein and expression of cyclin A (S phase cyclin). Knockdown of A2B receptors prevented the effects of 2-chloroadenosine on ERK1/2, Akt, Skp2, p27(Kip1), cyclin D1, cyclin A, and proliferation. Likewise, inhibition of adenylyl cyclase and protein kinase A abrogated 2-chloroadenosine's inhibitory effects on Skp2 and stimulatory effects on p27(Kip1) and rescued HCASMCs from 2-chloroadenosine-mediated inhibition. Knockdown of p27(Kip1) also reversed the inhibitory effects of 2-chloroadenosine on HCASMC proliferation. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 μmol/L for 7 days) downregulated vascular expression of Skp2, upregulated vascular expression of p27(Kip1), and reduced neointima hyperplasia by 71% (P<0.05; neointimal thickness: control, 37 424±18 371 pixels; treated, 10 352±2824 pixels). In conclusion, the adenosine/A2B receptor/cAMP/protein kinase A axis inhibits HCASMC proliferation by blocking multiple signaling pathways (ERK1/2, Akt, and Skp2) that converge at cyclin D, a key G1 cyclin

  20. Nucleospora cyclopteri n. sp., an intranuclear microsporidian infecting wild lumpfish, Cyclopterus lumpus L., in Icelandic waters

    PubMed Central

    2013-01-01

    Background Commercial fisheries of lumpfish Cyclopterus lumpus have been carried out in Iceland for centuries. Traditionally the most valuable part is the eggs which are harvested for use as a caviar substitute. Previously reported parasitic infections from lumpfish include an undescribed intranuclear microsporidian associated with abnormal kidneys and mortalities in captive lumpfish in Canada. During Icelandic lumpfish fisheries in spring 2011, extensive enlargements to the kidneys were observed in some fish during processing. The aim of this study was to identify the pathogen responsible for these abnormalities. Methods Lumpfish from the Icelandic coast were examined for the causative agent of kidney enlargement. Fish were dissected and used in histological and molecular studies. Results Lumpfish, with various grades of clinical signs, were observed at 12 of the 43 sites sampled around Iceland. From a total of 77 fish examined, 18 had clear clinical signs, the most prominent of which was an extensive enlargement and pallor of the kidneys. The histopathology of the most severely affected fish consisted of extensive degeneration and necrosis of kidney tubules and vacuolar degeneration of the haematopoietic tissue. Intranuclear microsporidians were detected in all organs examined in fish with prominent clinical signs and most organs of apparently healthy fish using the new PCR and histological examination. One or multiple uniformly oval shaped spores measuring 3.12 ± 0.15 × 1.30 ± 0.12 μm were observed in the nucleus of affected lymphocytes and lymphocyte precursor cells. DNA sequencing provided a ribosomal DNA sequence that was strongly supported in phylogenetic analyses in a clade containing other microsporidian parasites from the Enterocytozoonidae, showing highest similarity to the intranuclear microsporidian Nucleospora salmonis. Conclusions Intranuclear microsporidian infections are common in wild caught lumpfish from around the Icelandic

  1. Nucleospora cyclopteri n. sp., an intranuclear microsporidian infecting wild lumpfish, Cyclopterus lumpus L., in Icelandic waters.

    PubMed

    Freeman, Mark A; Kasper, Jacob M; Kristmundsson, Árni

    2013-02-27

    Commercial fisheries of lumpfish Cyclopterus lumpus have been carried out in Iceland for centuries. Traditionally the most valuable part is the eggs which are harvested for use as a caviar substitute.Previously reported parasitic infections from lumpfish include an undescribed intranuclear microsporidian associated with abnormal kidneys and mortalities in captive lumpfish in Canada. During Icelandic lumpfish fisheries in spring 2011, extensive enlargements to the kidneys were observed in some fish during processing. The aim of this study was to identify the pathogen responsible for these abnormalities. Lumpfish from the Icelandic coast were examined for the causative agent of kidney enlargement. Fish were dissected and used in histological and molecular studies. Lumpfish, with various grades of clinical signs, were observed at 12 of the 43 sites sampled around Iceland. From a total of 77 fish examined, 18 had clear clinical signs, the most prominent of which was an extensive enlargement and pallor of the kidneys. The histopathology of the most severely affected fish consisted of extensive degeneration and necrosis of kidney tubules and vacuolar degeneration of the haematopoietic tissue. Intranuclear microsporidians were detected in all organs examined in fish with prominent clinical signs and most organs of apparently healthy fish using the new PCR and histological examination. One or multiple uniformly oval shaped spores measuring 3.12 ± 0.15 × 1.30 ± 0.12 μm were observed in the nucleus of affected lymphocytes and lymphocyte precursor cells. DNA sequencing provided a ribosomal DNA sequence that was strongly supported in phylogenetic analyses in a clade containing other microsporidian parasites from the Enterocytozoonidae, showing highest similarity to the intranuclear microsporidian Nucleospora salmonis. Intranuclear microsporidian infections are common in wild caught lumpfish from around the Icelandic coast. Infections can cause severe clinical

  2. Adenosine Attenuates Human Coronary Artery Smooth Muscle Cell Proliferation By Inhibiting Multiple Signaling Pathways that Converge on Cyclin D

    PubMed Central

    Dubey, Raghvendra K.; Fingerle, Juergen; Gillespie, Delbert G.; Mi, Zaichuan; Rosselli, Marinella; Imthurn, Bruno; Jackson, Edwin K.

    2015-01-01

    The goal of this study was to determine whether and how adenosine affects the proliferation of human coronary artery smooth muscle cells (HCASMCs). In HCASMCs, 2-chloroadenosine (stable adenosine analogue), but not N6-cyclopentyladenosine, CGS21680, or N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, inhibited HCASMC proliferation (A2B-receptor profile). 2-Chloroadenosine increased cAMP, reduced phosphorylation (activation) of ERK and Akt (protein kinases known to increase cyclin D expression and activity, respectively), and reduced levels of cyclin D1 (cyclin that promotes cell-cycle progression in G1). Moreover, 2-chloroadenosine inhibited expression of Skp2 (promotes proteolysis of p27Kip1) and up-regulated levels of p27Kip1 (cell-cycle regulator that impairs cyclin D function). 2-Chloroadenosine also inhibited signaling downstream of cyclin D including hyperphosphorylation of retinoblastoma protein and expression of cyclin A (S phase cyclin). Knockdown of A2B receptors prevented the effects of 2-chloroadenosine on ERK1/2, Akt, Skp2, p27Kip1, cyclin D1, cyclin A, and proliferation. Likewise, inhibition of adenylyl cyclase and protein kinase A abrogated 2-chloroadenosine’s inhibitory effects on Skp2 and stimulatory effects on p27Kip1, and rescued HCASMCs from 2-chloroadenosine-mediated inhibition. Knockdown of p27Kip1 also reversed the inhibitory effects of 2-chloroadenosine on HCASMC proliferation. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 µmol/L for 7 days) down-regulated vascular expression of Skp2, up-regulated vascular expression of p27Kip1, and reduced neointima hyperplasia by 71% (p<0.05; neointimal thickness: control, 37,424±18,371 pixels; treated, 10,352±2,824 pixels). Conclusion The adenosine/A2B receptor/cAMP/protein kinase A axis inhibits HCASMC proliferation by blocking multiple signaling pathways (ERK1/2, Akt, and Skp2) that converge at cyclin D, a key G1 cyclin that controls cell-cycle progression. PMID:26416848

  3. Enterospora sp., an intranuclear microsporidian infection of hermit crab Eupagurus bernhardus.

    PubMed

    Stentiford, G D; Bateman, K S

    2007-03-29

    Recent work at our laboratory has led to the discovery of a new genus of microsporidian parasite residing in the family Enterocytozoonidae. The type species of this new genus, Enterospora canceri, is an intranuclear parasite infecting the hepatopancreatocytes of the decapod crustacean Cancer pagurus. Here we provide the second description of a parasite within the genus Enterospora, this time infecting the hermit crab Eupagurus bernhardus from U.K. waters. The pathological manifestation and ultrastructural features of the hermit crab parasite are very similar to those described for E. canceri. Further taxonomic comparisons based upon ultrastructural and molecular affinities of Enterospora are now required to define firmer links between this new genus within the Enterocytozoonidae and all other microsporidian families. The opportunistic nature of the discovery of a second intranuclear microsporidian within the Crustacea suggests that their presence may be more common than in higher animal groups.

  4. Adenomatoid mesothelioma with intranuclear inclusion bodies: a case report with cytological and histological findings.

    PubMed

    Kawai, Toshiaki; Kawashima, Katsuhiko; Serizawa, Hiromi; Miura, Hiroyuki; Kyeongil, Kim

    2014-05-01

    We report a very unusual cytologic feature, intranuclear inclusion bodies, in mesothelioma of a predominantly adenomatoid type. The patient, a 57-year-old woman, was presented with dyspnea and right pleural effusion. Pleural aspiration cytology revealed many cohesive ball-like clusters, with a tubular pattern, composed of small atypical cells displaying a high-nuclear-cytoplasmic ratio. They had a nuclear groove and irregular intranuclear inclusion bodies. Right lung partial resection with thoracoscopy revealed that a white tumor had proliferated along the pleural surface at S(8) . Histology revealed nodular tumor cells forming dilated structures mixed with small tubular or glandular structures similar to those seen in benign adenomatoid tumors. These tumor cells had invaded peripheral lung tissues. Such inclusion bodies have not been reported earlier in mesothelioma. On the basis of this observation, we propose that the adenomatoid type of malignant mesothelioma be added to the differential diagnosis of malignant effusions when tumor cells with nuclear grooves and intranuclear inclusions are found in pleural aspiration cytology. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  5. Survival and Intra-Nuclear Trafficking of Burkholderia pseudomallei: Strategies of Evasion from Immune Surveillance?

    PubMed Central

    Vadivelu, Jamuna; Vellasamy, Kumutha Malar; Thimma, Jaikumar; Mariappan, Vanitha; Kang, Wen-Tyng; Choh, Leang-Chung; Wong, Kum Thong

    2017-01-01

    Background During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure. Methods We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells. Results TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei. Conclusion B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection. PMID:28045926

  6. Maintenance of Epithelial Stem Cells by Cbl Proteins

    DTIC Science & Technology

    2012-09-01

    Med. 2011;17:320–9. [PubMed: 21383745] 50. Polyak K, Kalluri R. The role of the microenvironment in mammary gland development and cancer. Cold Spring...E., Flanagan, W. M., Coats, S., Polyak , K., Lee, M. H., Massague, J., Crabtree, G. R., and Roberts, J. M. (1994) Interleukin-2- mediated elimination...of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 372, 570–573 27. Reynisdóttir, I., Polyak , K., Iavarone, A., and

  7. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging

    NASA Astrophysics Data System (ADS)

    Sahay, Peeyush; Shukla, Pradeep K.; Ghimire, Hemendra M.; Almabadi, Huda M.; Tripathi, Vibha; Mohanty, Samarendra K.; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-04-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10–12 week-old mice fed a Lieber–DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  8. Presence of intranuclear inclusions in the principal cells of the epididymis of the garden dormouse Eliomys quercinus L.

    PubMed

    Hawkes, F; Rzepka, J; Gontrand, G

    1988-04-01

    Globular inclusions are present in the nuclei of the columnar epithelial cells lining the ductus epididymidis in the garden dormouse, Eliomys quercinus L. Such inclusions have been reported in the dog where they are very abundant, in the stallion and in man. They have been found to be absent from sheep, cat, rabbit, guinea pig, rat and mouse. We have now found them in the garden dormouse, an ascrotal hibernator, but have been unable to detect them in another hibernator, the thirteen-lined ground squirrel Citellus tridecemlineatus, this time a scrotal mammal. The globular inclusions are first seen in the perinuclear space formed by the two membranes of the nuclear envelope; they are then invested by the inner membrane of the nuclear envelope and transferred into the nucleus. They later disintegrate and the vacuole is finally left with an electron-transparent content. The number of inclusions varies with the hormonal status of the animal: the granules are always present as soon as there is a rise in plasma testosterone. Electron energy-loss spectroscopy in the electron microscope (EELS) shows that inclusions contain C, N, O, Fe, Mg, P and S. This suggests that the intranuclear granules are made of protein cross-linked by disulphur bonds and contain iron, magnesium and phosphorus.

  9. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.

    PubMed

    Oshikawa, Kiyotaka; Matsumoto, Masaki; Oyamada, Koji; Nakayama, Keiichi I

    2012-02-03

    Ubiquitin conjugation (ubiquitylation) plays important roles not only in protein degradation but also in many other cellular functions. However, the sites of proteins that are targeted for such modification have remained poorly characterized at the proteomic level. We have now developed a method for the efficient identification of ubiquitylation sites in target proteins with the use of an engineered form of ubiquitin (K0-Ub), in which all seven lysine residues are replaced with arginine. K0-Ub is covalently attached to lysine residues of target proteins via an isopeptide bond, but further formation of a polyubiquitin chain does not occur on K0-Ub. We identified a total of 1392 ubiquitylation sites of 794 proteins from HEK293T cells. Profiling of ubiquitylation sites indicated that the sequences surrounding lysine residues targeted for ubiquitin conjugation do not share a common motif or structural feature. Furthermore, we identified a critical ubiquitylation site of the cyclin-dependent kinase inhibitor p27(Kip1). Mutation of this site thus inhibited ubiquitylation of and stabilized p27(Kip1), suggesting that this lysine residue is the target site of p27(Kip1) for ubiquitin conjugation in vivo. In conclusion, our method based on K0-Ub is a powerful tool for proteome-wide identification of ubiquitylation sites of target proteins.

  10. Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels.

    PubMed

    Zielinski, Frank U; Pernthaler, Annelie; Duperron, Sébastien; Raggi, Luciana; Giere, Olav; Borowski, Christian; Dubilier, Nicole

    2009-05-01

    Many parasitic bacteria live in the cytoplasm of multicellular animals, but only a few are known to regularly invade their nuclei. In this study, we describe the novel bacterial parasite "Candidatus Endonucleobacter bathymodioli" that invades the nuclei of deep-sea bathymodiolin mussels from hydrothermal vents and cold seeps. Bathymodiolin mussels are well known for their symbiotic associations with sulfur- and methane-oxidizing bacteria. In contrast, the parasitic bacteria of vent and seep animals have received little attention despite their potential importance for deep-sea ecosystems. We first discovered the intranuclear parasite "Ca. E. bathymodioli" in Bathymodiolus puteoserpentis from the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. Using primers and probes specific to "Ca. E. bathymodioli" we found this intranuclear parasite in at least six other bathymodiolin species from vents and seeps around the world. Fluorescence in situ hybridization and transmission electron microscopy analyses of the developmental cycle of "Ca. E. bathymodioli" showed that the infection of a nucleus begins with a single rod-shaped bacterium which grows to an unseptated filament of up to 20 microm length and then divides repeatedly until the nucleus is filled with up to 80,000 bacteria. The greatly swollen nucleus destroys its host cell and the bacteria are released after the nuclear membrane bursts. Intriguingly, the only nuclei that were never infected by "Ca. E. bathymodioli" were those of the gill bacteriocytes. These cells contain the symbiotic sulfur- and methane-oxidizing bacteria, suggesting that the mussel symbionts can protect their host nuclei against the parasite. Phylogenetic analyses showed that the "Ca. E. bathymodioli" belongs to a monophyletic clade of Gammaproteobacteria associated with marine metazoans as diverse as sponges, corals, bivalves, gastropods, echinoderms, ascidians and fish. We hypothesize that many of the sequences from this clade

  11. Acid-fast intranuclear inclusion bodies in the kidneys of mallards fed lead shot

    USGS Publications Warehouse

    Locke, L.N.; Bagley, George E.; Irby, H.D.

    1966-01-01

    Acid-fast intranuclear inclusion bodies were found in the cells of the proximal convoluted tubules of the kidneys of mallards fed one, two, three or eight number 6 lead shot and maintained on cracked or whole corn and on grain-duck pellet diets. No acid-fast inclusion bodies were found in mallards fed one or three lead shot but maintained on a duck pellet ration. Dietary factors may be responsible for the failure of mallards fed a duck pellet ration to develop lead Inclusion bodies when treated with one or three lead shot. The authors suggest these inclusion bodies can be used as presumptive evidence for lead intoxication in mallards.

  12. Structure-based repurposing of FDA-approved drugs as inhibitors of NEDD8-activating enzyme.

    PubMed

    Zhong, Hai-Jing; Liu, Li-Juan; Chan, Daniel Shiu-Hin; Wang, Hui-Min; Chan, Philip Wai Hong; Ma, Dik-Lung; Leung, Chung-Hang

    2014-07-01

    We report the discovery of an inhibitor of NEDD8-activating enzyme (NAE) by an integrated virtual screening approach. Piperacillin 1 inhibited NAE activity in cell-free and cell-based systems with high selectivity. Furthermore, piperacillin 1 was able to inhibit the degradation of the NAE downstream protein substrate p27(kip1). Our molecular modeling and kinetic studies suggested that this compound may act as a non-covalent ATP-competitive inhibitor of NAE.

  13. Effects of the kava chalcone flavokawain A differ in bladder cancer cells with wild-type versus mutant p53.

    PubMed

    Tang, Yaxiong; Simoneau, Anne R; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2008-11-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G(1) arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2, which then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G(2)-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation, which then led to a G(2)-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G(2)-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G(2)-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer.

  14. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  15. Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance.

    PubMed

    Tam, Chun W; Chan, Kwok W; Liu, Vincent W S; Pang, Bo; Yao, Kwok-Ming; Shiu, Stephen Y W

    2008-11-01

    Circannual variation in the human serum levels of prostate-specific antigen, a growth marker of the prostate gland, has been reported recently. The present study was conducted to investigate the role of the photoperiodic hormone melatonin (MLT) and its membrane receptors in the modulation of human prostate growth. Expression of MT(1) and MT(2) receptors was detected in benign human prostatic epithelial tissues and RWPE-1 cells. MLT and 2-iodomelatonin inhibited RWPE-1 cell proliferation and up-regulated p27(Kip1) gene and protein expression in the cells. The effects of MLT were blocked by the nonselective MT(1)/MT(2) receptor antagonist luzindole, but were not affected by the selective MT(2) receptor antagonist 4-phenyl-2-propionamidotetraline. Of note, the antiproliferative action of MLT on benign prostate epithelial RWPE-1 cells was effected via increased p27(Kip1) gene transcription through MT(1) receptor-mediated activation of protein kinase A (PKA) and protein kinase C (PKC) in parallel, a signaling process which has previously been demonstrated in 22Rv1 prostate cancer cells. Taken together, the demonstration of the MT(1)/PKA+PKC/p27(Kip1) antiproliferative pathway in benign and malignant prostate epithelial cell lines indicated the potential importance of this MLT receptor-mediated signaling mechanism in growth regulation of the human prostate gland in health and disease. Collectively, our data support the hypothesis that MLT may function as a negative mitogenic hormonal regulator of human prostate epithelial cell growth.

  16. Hypoxic ischemic encephalopathy in a case of intranuclear rod myopathy without any prenatal sentinel event.

    PubMed

    Kawase, Koya; Nishino, Ichizo; Sugimoto, Mari; Kouwaki, Masanori; Koyama, Norihisa; Yokochi, Kenji

    2015-02-01

    Intranuclear rod myopathy (IRM), a variant of nemaline myopathy, is characterized by the presence of nemaline bodies in myonuclei. We report a case of IRM presenting with hypoxic ischemic encephalopathy (HIE). There were no prenatal complications caused by fetal brain injury. Although no nemaline bodies were observed in the cytoplasm, intranuclear rods were observed in some fibers under light and electron microscopy. Molecular analysis identified a heterozygous variant, c.449C>T (p.Thr150Ile), in ACTA1. On magnetic resonance imaging at 9days of age, injuries to the basal ganglia, thalamus, and brainstem consistent with perinatal HIE were seen. Respiratory insufficiency at birth was strongly suspected to be the cause of HIE. Our case highlights that a patient with a congenital neuromuscular disorder who presents with severe respiratory dysfunction requiring substantial resuscitative efforts at birth can be complicated by HIE without any prenatal sentinel event. Prenatal detection of neuromuscular disorders, careful management of delivery, and neonatal resuscitation and adequate respiratory management are important in preventing irreversible brain injury in these patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Intranuclear Pseudo-inclusions and Grooves in Fine Needle Aspiration Cytology of Pulmonary Carcinoid Tumor.

    PubMed

    Mokhtari, Maral; Kumar, Perikala Vijayananda

    2016-02-01

    Cytologic findings of pulmonary carcinoid have been well described. We report new cytological findings in a case of carcinoid tumor. The patient is a 36-year-old man presenting with hemoptysis of about six months in duration. Chest CT scans showed a well-defined round polypoid lesion measuring 1 × 1 cm within the right upper lobe of the bronchus with hyperinflation of the right upper lobe. Trans-bronchial fine needle aspiration and biopsy were done. Cytologic smears showed isolated and loose clusters of uniform round to spindle shape cells with round centrally located nuclei, fine granular (salt and pepper) chromatin and pale cytoplasm. Intranuclear pseudo-inclusions and grooves were seen in some tumor cells. No mitotic figures or necrosis were evident. A cytological diagnosis of carcinoid tumor was made and histopathologic examination and subsequent immunohistochemical study confirmed the diagnosis. Carcinoid tumor may be reliably diagnosed on fine needle aspiration cytology smears. Intranuclear pseudo-inclusions and grooves may be evident in tumor cells.

  18. Karyomegaly and intranuclear inclusions in the renal tubules of sentinel ICR mice (mus musculus).

    PubMed

    Baze, Wallace B; Steinbach, Thomas J; Fleetwood, Michelle L; Blanchard, Terrell W; Barnhart, Kirstin F; McArthur, Mark J

    2006-10-01

    Among 585 sentinel ICR mice (Mus musculus), 8 (7 female, 1 male) had unusual microscopic lesions in the kidney. Light microscopy revealed occasional tubular epithelial cells with large, karyomegalic nuclei that contained intranuclear inclusions and marginated chromatin. These cells were randomly present in the cortex and medulla but were more prominent near the corticomedullary junc tion. Rare pyknotic cells and mild interstitial infiltrates of lymphocytes and plasma cells were associated with occasional foci of abnormal cells. Electron microscopy performed on 2 (1 female, 1 male) of the mice demonstrated intranuclear inclusions composed of abundant flocculent, electron-lucent material. No viral particles or other pathogens were identified. General health monitoring that included serology, microbiology, parasitology, necropsy, and histopathology was negative for pathogens. Polymerase chain reaction-based testing for polyomavirus and immunohistochemistry for adenovirus were performed on 5 of the 7 female mice; all were negative for both viruses. In light of microscopy findings and the lack of evidence for an infectious agent, the tubular lesions were considered degenerative changes, possibly due to a toxic insult. The cause and significance of the findings in these mice can not be explained fully.

  19. Neuronal intranuclear inclusions are ultrastructurally and immunologically distinct from cytoplasmic inclusions of neuronal intermediate filament inclusion disease.

    PubMed

    Mosaheb, Sabrina; Thorpe, Julian R; Hashemzadeh-Bonehi, Lida; Bigio, Eileen H; Gearing, Marla; Cairns, Nigel J

    2005-10-01

    Abnormal neuronal cytoplasmic inclusions (NCIs) containing aggregates of alpha-internexin and the neurofilament (NF) subunits, NF-H, NF-M, and NF-L, are the signature lesions of neuronal intermediate filament (IF) inclusion disease (NIFID). The disease has a clinically heterogeneous phenotype, including frontotemporal dementia, pyramidal and extrapyramidal signs presenting at a young age. NCIs are variably ubiquitinated and about half of cases also have neuronal intranuclear inclusions (NIIs), which are also ubiquitinated. NIIs have been described in polyglutamine-repeat expansion diseases, where they are strongly ubiquitin immunoreactive. The fine structure of NIIs of NIFID has not previously been described. Therefore, to determine the ultrastructure of NIIs, immunoelectron microscopy was undertaken on NIFID cases and normal aged control brains. Our results indicate that the NIIs of NIFID are strongly ubiquitin immunoreactive. However, unlike NCIs which contain ubiquitin, alpha-internexin and NF epitopes, NIIs contain neither epitopes of alpha-internexin nor NF subunits. Neither NIIs nor NCIs were recognised by antibodies to expanded polyglutamine repeats. The NII of NIFID lacks a limiting membrane and contains straight filaments of 20 nm mean width (range 11-35 nm), while NCIs contain filaments with a mean width of 10 nm (range 5-18 nm; t-test, P<0.001). Biochemistry revealed no differences in neuronal IF protein mobilities between NIFID and normal brain tissue. Therefore, NIIs of NIFID contain filaments morphologically and immunologically distinct from those of NCIs, and both types of inclusion lack expanded polyglutamine tracts of the triplet-repeat expansion diseases. These observations indicate that abnormal protein aggregation follows separate pathways in different neuronal compartments of NIFID.

  20. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  1. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  2. Epstein-Barr virus mRNA export factor EB2 is essential for intranuclear capsid assembly and production of gp350.

    PubMed

    Batisse, Julien; Manet, Evelyne; Middeldorp, Jaap; Sergeant, Alain; Gruffat, Henri

    2005-11-01

    Most human herpesviruses, including Epstein-Barr virus (EBV), express a protein which functions primarily as an mRNA export factor. Previously, we deleted the gene for the Epstein-Barr virus mRNA export factor EB2 from the EBV genome and then introduced the mutated genome into 293 cells. Using a transcomplementation assay in which ectopic expression of the transcription factor EB1/ZEBRA was sufficient to induce the EBV productive cycle, we showed that Ori-Lyt-dependent replication of the EBV DNA occurs in the absence of EB2, indicating that EB2 is not essential for the expression and export of early mRNAs. However, in the absence of EB2, no infectious viral particles are produced (H. Gruffat, J. Batisse, D. Pich, B. Neuhierl, E. Manet, W. Hammerschmidt, and A. Sergeant, J. Virol. 76:9635-9644, 2002). In this report, we now show that EB2 is essential for the nuclear export of most, but not all, late mRNAs produced from intronless genes that translate into proteins involved in intranuclear capsid assembly and maturation. As a consequence, we show that EB2 is essential for the proper assembly of intranuclear capsids. Interestingly, the late BLLF1 gene contains an intron, and both unspliced and spliced mRNAs must be exported to the cytoplasm to be translated into gp350 and gp220, respectively (M. Hummel, D. A. Thorley-Lawson, and E. Kieff, J. Virol. 49:413-417, 1984). Our results also demonstrate that although BLLF1 spliced mRNAs are exported to the cytoplasm independently of EB2, EB2 is essential for the nuclear export of unspliced BLLF1 mRNA. In the same assay, herpes simplex virus 1 ICP27 completely inhibited the nuclear export of BLLF1 spliced mRNAs whereas unspliced BLLF1 mRNAs were exported, confirming that in a physiological assay, ICP27 inhibits splicing.

  3. Epstein-Barr Virus mRNA Export Factor EB2 Is Essential for Intranuclear Capsid Assembly and Production of gp350

    PubMed Central

    Batisse, Julien; Manet, Evelyne; Middeldorp, Jaap; Sergeant, Alain; Gruffat, Henri

    2005-01-01

    Most human herpesviruses, including Epstein-Barr virus (EBV), express a protein which functions primarily as an mRNA export factor. Previously, we deleted the gene for the Epstein-Barr virus mRNA export factor EB2 from the EBV genome and then introduced the mutated genome into 293 cells. Using a transcomplementation assay in which ectopic expression of the transcription factor EB1/ZEBRA was sufficient to induce the EBV productive cycle, we showed that Ori-Lyt-dependent replication of the EBV DNA occurs in the absence of EB2, indicating that EB2 is not essential for the expression and export of early mRNAs. However, in the absence of EB2, no infectious viral particles are produced (H. Gruffat, J. Batisse, D. Pich, B. Neuhierl, E. Manet, W. Hammerschmidt, and A. Sergeant, J. Virol. 76:9635-9644, 2002). In this report, we now show that EB2 is essential for the nuclear export of most, but not all, late mRNAs produced from intronless genes that translate into proteins involved in intranuclear capsid assembly and maturation. As a consequence, we show that EB2 is essential for the proper assembly of intranuclear capsids. Interestingly, the late BLLF1 gene contains an intron, and both unspliced and spliced mRNAs must be exported to the cytoplasm to be translated into gp350 and gp220, respectively (M. Hummel, D. A. Thorley-Lawson, and E. Kieff, J. Virol. 49:413-417, 1984). Our results also demonstrate that although BLLF1 spliced mRNAs are exported to the cytoplasm independently of EB2, EB2 is essential for the nuclear export of unspliced BLLF1 mRNA. In the same assay, herpes simplex virus 1 ICP27 completely inhibited the nuclear export of BLLF1 spliced mRNAs whereas unspliced BLLF1 mRNAs were exported, confirming that in a physiological assay, ICP27 inhibits splicing. PMID:16254345

  4. Detection of Metastatic Potential in Breast Cancer by RhoC-GTPase and WISP3 Proteins

    DTIC Science & Technology

    2006-05-01

    WISP3 polyclonal antibody (gift from Dr Matthew Warman), p27kip1, p21waf1, PCNA (Zymed, San Francisco , CA, USA) cyclin E (SC-247, Santa Cruz, CA, USA...Zamora P, Arias JI, Salazar R, et al. (2004). The variant E233G of the RAD51D gene could be a low-penetrance allele in high-risk breast cancer...gene expression in epithelial tumour cells. Nat Cell Biol 2000, 2:84-89. 37. Cano A, Perez -Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG

  5. Disassembly of the lens fiber cell nucleus to create a clear lens: The p27 descent.

    PubMed

    Rowan, Sheldon; Chang, Min-Lee; Reznikov, Natalie; Taylor, Allen

    2017-03-01

    The eye lens is unique among tissues: it is transparent, does not form tumors, and the majority of its cells degrade their organelles, including their cell nuclei. A mystery for over a century, there has been considerable recent progress in elucidating mechanisms of lens fiber cell denucleation (LFCD). In contrast to the disassembly and reassembly of the cell nucleus during mitosis, LFCD is a unidirectional process that culminates in destruction of the fiber cell nucleus. Whereas p27(Kip1), the cyclin-dependent kinase inhibitor, is upregulated during formation of LFC in the outermost cortex, in the inner cortex, in the nascent organelle free zone, p27(Kip1) is degraded, markedly activating cyclin-dependent kinase 1 (Cdk1). This process results in phosphorylation of nuclear Lamins, dissociation of the nuclear membrane, and entry of lysosomes that liberate DNaseIIβ (DLAD) to cleave chromatin. Multiple cellular pathways, including the ubiquitin proteasome system and the unfolded protein response, converge on post-translational regulation of p27(Kip1). Mutations that impair these pathways are associated with congenital cataracts and loss of LFCD. These findings highlight new regulatory nodes in the lens and suggest that we are close to understanding this fascinating terminal differentiation process. Such knowledge may offer a new means to confront proliferative diseases including cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. CacyBP/SIP promotes the proliferation of colon cancer cells.

    PubMed

    Zhai, Huihong; Shi, Yongquan; Chen, Xiong; Wang, Jun; Lu, Yuanyuan; Zhang, Faming; Liu, Zhengxiong; Lei, Ting; Fan, Daiming

    2017-01-01

    CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

  7. CacyBP/SIP promotes the proliferation of colon cancer cells

    PubMed Central

    Chen, Xiong; Wang, Jun; Lu, Yuanyuan; Zhang, Faming; Liu, Zhengxiong; Lei, Ting; Fan, Daiming

    2017-01-01

    CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1. PMID:28196083

  8. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin.

    PubMed

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Hwang, Jae Sam; Seok, Heon; Choi, Hyemin; Lee, Dong Gun; Kim, Jae Il; Kim, Ho

    2014-06-06

    We recently isolated a polypeptide from the earthworm Lumbricus terrestris that is structurally similar to defensin, a well-known antibacterial peptide. An 11-mer antibacterial peptide (NH2-RNRRWCIDQQA), designated Lumbricusin, was synthesized based on the amino acid sequence of the isolated polypeptide. Since we previously reported that CopA3, a dung beetle peptide, enhanced neuronal cell proliferation, we here examined whether Lumbricusin exerted neurotropic and/or neuroprotective effects. Lumbricusin treatment induced a time-dependent increase (∼51%) in the proliferation of human neuroblastoma SH-SY5Y cells. Lumbricusin also significantly inhibited the apoptosis and decreased viability induced by treatment with 6-hydroxy dopamine, a Parkinson's disease-mimicking agent. Immunoblot analyses revealed that Lumbricusin treatment increased ubiquitination of p27(Kip1) protein, a negative regulator of cell-cycle progression, in SH-SY5Y cells, and markedly promoted its degradation. Notably, adenoviral-mediated over-expression of p27(Kip1) significantly blocked the antiapoptotic effect of Lumbricusin in 6-hydroxy dopamine-treated SH-SY5Y cells. These results suggest that promotion of p27(Kip1) degradation may be the main mechanism underlying the neuroprotective and neurotropic effects of Lumbricusin.

  9. New capabilities of the Liège intranuclear-cascade model for particle-transport codes

    NASA Astrophysics Data System (ADS)

    Mancusi, D.; Boudard, A.; Cugnon, J.; David, J.-C.; Hagiwara, M.; Leprince, A.; Leray, S.

    2014-06-01

    We review and discuss the latest developments of the Liège Intranuclear Cascade model. The new capabilities are illustrated by comparisons with selected experimental data. We also present examples of thick-target calculations performed using particle-transport codes.

  10. Improving the description of proton-induced one-nucleon removal in intranuclear-cascade models

    NASA Astrophysics Data System (ADS)

    Mancusi, Davide; Boudard, Alain; Carbonell, Jaume; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie

    2015-03-01

    It is a well-established fact that intranuclear-cascade models generally overestimate the cross sections for one-proton removal from heavy, stable nuclei by a high-energy proton beam, but they yield reasonable predictions for one-neutron removal from the same nuclei and for one-nucleon removal from light targets. We use simple shell-model calculations to investigate the reasons for this deficiency. We find that a refined description of the neutron skin and of the energy density in the nuclear surface is crucial for the aforementioned observables, and that neither ingredient is sufficient if taken separately. As a by-product, the predictions for removal of several nucleons are also improved by the refined treatment.

  11. The Ran GTPase-activating protein (RanGAP1) is critically involved in smooth muscle cell differentiation, proliferation and migration following vascular injury: implications for neointima formation and restenosis.

    PubMed

    Vorpahl, Marc; Schönhofer-Merl, Sabine; Michaelis, Cornelia; Flotho, Annette; Melchior, Frauke; Wessely, Rainer

    2014-01-01

    Differentiation and dedifferentiation, accompanied by proliferation play a pivotal role for the phenotypic development of vascular proliferative diseases (VPD), such as restenosis. Increasing evidence points to an essential role of regulated nucleoporin expression in the choice between differentiation and proliferation. However, whether components of the Ran GTPase cycle, which is of pivotal importance for both nucleocytoplasmic transport and for mitotic progression, are subject to similar regulation in VPD is currently unknown. Here, we show that differentiation of human coronary artery smooth muscle cell (CASMC) to a contractile phenotype by stepwise serum depletion leads to significant reduction of RanGAP1 protein levels. The inverse event, dedifferentiation of cells, was assessed in the rat carotid artery balloon injury model, a well-accepted model for neointima formation and restenosis. As revealed by temporospatial analysis of RanGAP1 expression, neointima formation in rat carotid arteries was associated with a significant upregulation of RanGAP1 expression at 3 and 7 days after balloon injury. Of note, neointimal cells located at the luminal surface revealed persistent RanGAP1 expression, as opposed to cells in deeper layers of the neointima where RanGAP1 expression was less or not detectable at all. To gain first evidence for a direct influence of RanGAP1 levels on differentiation, we reduced RanGAP1 in human coronary artery smooth muscle cells by siRNA. Indeed, downregulation of the essential RanGAP1 protein by 50% induced a differentiated, spindle-like smooth muscle cell phenotype, accompanied by an upregulation of the differentiation marker desmin. Reduction of RanGAP1 levels also resulted in a reduction of mitogen induced cellular migration and proliferation as well as a significant upregulation of the cyclin-dependent kinase inhibitor p27KIP1, without evidence for cellular necrosis. These findings suggest that RanGAP1 plays a critical role in smooth

  12. Mutations within the Autographa californica nucleopolyhedrovirus FP25K gene decrease the accumulation of ODV-E66 and alter its intranuclear transport.

    PubMed

    Braunagel, S C; Burks, J K; Rosas-Acosta, G; Harrison, R L; Ma, H; Summers, M D

    1999-10-01

    Previous reports indicate that mutations within the Autographa californica nucleopolyhedrosis virus FP25K gene (open reading frame 61) significantly reduce incorporation of enveloped nucleocapsids into viral occlusions. We report that FP25K is a nucleocapsid protein of both the budded virus (BV) and occluded virus (ODV), and we describe the effects of two FP25K mutations (480-1 [N-terminal truncation] and FP-betagal [C-terminal fusion]) on the expression and cellular localization of ODV-E66 and ODV-E25. Significantly decreased amounts of ODV-E66 are detected in cells infected with 480-1 or FP-betagal viral mutants, even though during FP-betagal infection, steady-state levels of ODV-E66 transcripts remain unchanged. While ODV-E66 is normally detected in intranuclear microvesicles and ODV envelopes by 24 h postinfection (p.i.), ODV-E66 remains cytosolic throughout infection in cells infected with 480-1 virus (up to 96 h p.i.), and its intranuclear localization is not detected until 96 h p.i. in cells infected with the FP-betagal mutant virus. The nuclear localization of ODV-E25 is not affected during infection by the FP-betagal mutant; however, its trafficking is significantly delayed during infection by the 480-1 mutant. Temporal Western blot analyses of cell lysates show that both 480-1 and FP-betagal mutant virus infections result in altered accumulation patterns of several structural proteins, including gp67, BV/ODV-E26, and the major capsid protein p39. In addition to BV/ODV-E26, ODV-E66 and gp67 may interact with FP25K, and ODV-E25 and p39 may also be components of a protein complex containing ODV-E66 and FP25K. Together, these data suggest that FP25K and its associated protein complex(es) may play an important role in the targeting and intracellular transport of viral proteins during infection.

  13. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    SciTech Connect

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  14. Intranuclear sites of Np 237 in mammalian cells: a study using electron microscopy and electron probe microanalysis.

    PubMed

    Boulahdour, H; Poncy, J L; Berry, J P; Galle, P

    1995-07-01

    Two methods, electron microscopy and wavelength dispersive electron probe microanalysis, were used to determine the intracellular sites and chemical form of concentrations of neptunium nitrate 237 after chronic intoxication by the intraperitoneal route in two organs in the rat known to concentrate this element (kidney, liver). Abnormal intranuclear formations in the form of clusters of dense granules containing neptunium, phosphorus, sulphur, and calcium were found in the nuclei of kidney proximal tubule cells and hepatocytes. These formations had a maximum diameter of the order of 2 microns and were located in the central part of the nucleus, away from the nucleolus and peripheral chromatin. Serious nuclear and cytoplasmic ultrastructural lesions are often associated in cells containing neptunium inclusions. The absorbed doses in the kidney and the liver were very low. A relationship between these abnormal intranuclear structures and the carcinogenic effect of neptunium remains to be clarified. This effect is related more probably to the chemical toxicity of Np 237.

  15. Extension of the Liège intranuclear-cascade model to reactions induced by light nuclei

    NASA Astrophysics Data System (ADS)

    Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; David, Jean-Christophe; Kaitaniemi, Pekka; Leray, Sylvie

    2014-11-01

    The purpose of this paper is twofold. First, we present the extension of the Liège intranuclear-cascade model to reactions induced by light ions. We describe here the ideas upon which we built our treatment of nucleus-nucleus reactions and we compare the model predictions against a vast set of heterogeneous experimental data. In spite of the discussed limitations of the intranuclear-cascade scheme, we find that our model yields valid predictions for a number of observables and positions itself as one of the most attractive alternatives available to geant4 users for the simulation of light-ion-induced reactions. Second, we describe the c++ version of the code, which is physicswise equivalent to the legacy version, is available in geant4, and will serve as the basis for all future development of the model.

  16. A novel intranuclear RNA vector system for long-term stem cell modification

    PubMed Central

    Ikeda, Yasuhiro; Makino, Akiko; Matchett, William E.; Holditch, Sara J.; Lu, Brian; Dietz, Allan B.; Tomonaga, Keizo

    2015-01-01

    Genetically modified stem and progenitor cells have emerged as a promising regenerative platform in the treatment of genetic and degenerative disorders, highlighted by their successful therapeutic use in inherent immunodeficiencies. However, biosafety concerns over insertional mutagenesis resulting from integrating recombinant viral vectors have overshadowed the widespread clinical applications of genetically modified stem cells. Here, we report an RNA-based episomal vector system, amenable for long-term transgene expression in stem cells. Specifically, we used a unique intranuclear RNA virus, Borna disease virus (BDV), as the gene transfer vehicle, capable of persistent infections in various cell types. BDV-based vectors allowed for long-term transgene expression in mesenchymal stem cells (MSCs) without affecting cellular morphology, cell surface CD105 expression, or the adipogenicity of MSCs. Similarly, replication-defective BDV vectors achieved long-term transduction of human induced pluripotent stem cells (iPSCs), while maintaining the ability to differentiate into three embryonic germ layers. Thus, the BDV-based vectors offer a genomic modification-free, episomal RNA delivery system for sustained stem cell transduction. PMID:26632671

  17. ORIGIN, DEVELOPMENT, AND NATURE OF INTRANUCLEAR RODLETS AND ASSOCIATED BODIES IN CHICKEN SYMPATHETIC NEURONS

    PubMed Central

    Masurovsky, Edmund B.; Benitez, Helena H.; Kim, Seung U.; Murray, Margaret R.

    1970-01-01

    Correlative data are presented here on the developmental history, dynamics, histochemistry, and fine structure of intranuclear rodlets in chicken sympathetic neurons from in vivo material and long-term organized tissue cultures. The rodlets consist of bundles of ∼70 ± 10 A proteinaceous filaments closely associated with ∼0.4–0.8 µ spheroidal, granulofibrillar (gf) bodies of a related nature. These bodies are already present in the developing embryo a week or more in advance of the rodlets. In early formative stages rodlets consist of small clusters of aligned filaments contiguous with the gf-bodies. As neuronal differentiation progresses these filaments increase in number and become organized into well-ordered polyhedral arrays. Time-lapse cinemicrography reveals transient changes in rodlet contour associated with intrinsic factors, changes in form and position of the nucleolus with respect to the rodlet, and activity of the gf-bodies. With the electron microscope filaments may be seen extending between the nucleolus, gf-bodies, and rodlets; nucleoli display circumscribed regions with fine structural features and staining reactions reminiscent of those of gf-bodies, We suggest that the latter may be derivatives of the nucleolus and that the two may act together in the assemblage and functional dynamics of the rodlet. The egress of rodlet filaments into the cytoplasm raises the possibility that these might represent a source of the cell's filamentous constituents. PMID:4901373

  18. Nuclear actin depolymerization in transcriptionally active avian and amphibian oocytes leads to collapse of intranuclear structures

    PubMed Central

    Maslova, Antonina; Krasikova, Alla

    2012-01-01

    Actin, which is normally depleted in the nuclei of somatic cells, accumulates in high amounts in giant nuclei of amphibian oocytes. The supramolecular organization and functions of this nuclear pool of actin in growing vertebrate oocyte are controversial. Here, we investigated the role of nuclear actin in the maintenance of the spatial architecture of intranuclear structures in avian and amphibian growing oocytes. A meshwork of filamentous actin was not detected in freshly isolated or fixed oocyte nuclei of Xenopus, chicken or quail. We found that the actin meshwork inside the oocyte nucleus could be induced by phalloidin treatment. Actin polymerization is demonstrated to be required to stabilize the specific spatial organization of nuclear structures in avian and amphibian growing oocytes. In experiments with the actin depolymerizing drugs cytochalasin D and latrunculin A, we showed that disassembly of nuclear actin polymers led to chromosome condensation and their transportation to a limited space within the oocyte nucleus. Experimentally induced “collapsing” of chromosomes and nuclear bodies, together with global inhibition of transcription, strongly resembled the process of karyosphere formation during oocyte growth. PMID:22572951

  19. Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia.

    PubMed

    Wiredu Boakye, Dominic; Jaroenlak, Pattana; Prachumwat, Anuphap; Williams, Tom A; Bateman, Kelly S; Itsathitphaisarn, Ornchuma; Sritunyalucksana, Kallaya; Paszkiewicz, Konrad H; Moore, Karen A; Stentiford, Grant D; Williams, Bryony A P

    2017-05-01

    Glycolysis and oxidative phosphorylation are the fundamental pathways of ATP generation in eukaryotes. Yet in microsporidia, endoparasitic fungi living at the limits of cellular streamlining, oxidative phosphorylation has been lost: energy is obtained directly from the host or, during the dispersive spore stage, via glycolysis. It was therefore surprising when the first sequenced genome from the Enterocytozoonidae - a major family of human and animal-infecting microsporidians - appeared to have lost genes for glycolysis. Here, we sequence and analyse genomes from additional members of this family, shedding new light on their unusual biology. Our survey includes the genome of Enterocytozoon hepatopenaei, a major aquacultural parasite currently causing substantial economic losses in shrimp farming, and Enterospora canceri, a pathogen that lives exclusively inside epithelial cell nuclei of its crab host. Our analysis of gene content across the clade suggests that Ent. canceri's adaptation to intranuclear life is underpinned by the expansion of transporter families. We demonstrate that this entire lineage of pathogens has lost glycolysis and, uniquely amongst eukaryotes, lacks any obvious intrinsic means of generating energy. Our study provides an important resource for the investigation of host-pathogen interactions and reductive evolution in one of the most medically and economically important microsporidian lineages. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. A Majority of FXTAS Cases Present with Intranuclear Inclusions Within Purkinje Cells.

    PubMed

    Ariza, Jeanelle; Rogers, Hailee; Monterrubio, Angela; Reyes-Miranda, Adriana; Hagerman, Paul J; Martínez-Cerdeño, Verónica

    2016-10-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive neurodegenerative disorder that affects carriers of a FMR1 premutation. Symptoms include cerebellar ataxia, tremor, and cognitive deficits. The most characteristic pathology of FXTAS is the presence of eosinophilic ubiquitin-positive intranuclear inclusions in neurons and astrocytes throughout the nervous system and non-nervous tissues. Inclusions are present in neurons throughout the brain but are widely believed not to be present in the Purkinje cells (PCs) of the cerebellum. However, we analyzed 26 postmortem cases of FXTAS and demonstrated that 65 % of cases presented with inclusions within PCs of the cerebellum. We determined that the presence or absence of inclusions in PCs is correlated with age and that those cases with PC inclusions were overall 11 years older than those with no PC inclusions. Half of the cases with PCs with inclusions presented with twin nuclear inclusions. This novel finding demonstrating the presence of inclusions within PCs provides an insight into the understanding of the FXTAS motor symptoms and provides a novel target for the development of therapeutic strategies.

  1. Differential sensitivity of intranuclear and systemic oxytocin release to central noradrenergic receptor stimulation during mid- and late gestation in rats.

    PubMed

    Lipschitz, David L; Crowley, William R; Bealer, Steven L

    2004-09-01

    A number of changes occur in the oxytocin (OT) system during gestation, such as increases in hypothalamic OT mRNA, increased neural lobe and systemic OT, and morphological and electrophysiological changes in OT-containing magnocellular neurons, suggestive of altered neuronal sensitivity, which may be mediated by ovarian steroids. Because central norepinephrine (NE) and histamine (HA) are potent stimulators of OT release during parturition and lactation, the present study investigated the effects of central noradrenergic and histaminergic receptor activation on systemic (NE, HA) and intranuclear (NE) OT release in pregnant rats and in ovariectomized rats treated with ovarian steroids. Plasma OT levels in late gestation were significantly higher compared with all other groups, and neither adrenergic nor histaminergic receptor blockade decreased these elevated levels. Furthermore, the alpha-adrenergic agonist phenylephrine, but not histamine, stimulated systemic OT release to a significantly greater extent in late gestation than in midpregnant, ovariectomized, or steroid-treated females. Although basal extracellular OT levels in the paraventricular nucleus, as measured with microdialysis, were unchanged during pregnancy or steroid treatment, noradrenergic receptor stimulation of intranuclear OT release was significantly elevated in midgestation females compared with all other groups. These studies indicate that sensitivity of intranuclear and systemic OT release to noradrenergic receptor activation differentially varies during the course of gestation.

  2. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.

    PubMed

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2015-12-02

    Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Topochemistry of Internuclear and Intranuclear Interneurons of the Vasomotor Area in the Medulla Oblongata of Hypertensive Rats.

    PubMed

    Chertok, V M; Kotsyuba, A E; Startseva, M S

    2016-01-01

    Immunohistochemical examination with the antiserum against neuronal NO synthase and cystathionine β-synthase was used to study the following two pools of interneurons in Wistar rats at various periods after the development of renovascular hypertension: intranuclear interneurons (lying in the projection of the solitary nucleus, reticular gigantocellular nucleus, and parvocellular nucleus) and 2 groups of internuclear interneurons (small interneurons, area 50-300 μ(2); and large interneurons, area above 350 μ(2)). Intranuclear and internuclear interneurons probably play a role in the central mechanisms of hemodynamics regulation. These interneurons differ by not only in topochemical parameters, but also functional properties (different resistances to BP changes). Intranuclear interneurons are characterized by high sensitivity of the gas transmitter systems to a continuous increase in BP, which results in remodeling and dysfunction of the bulbar part of the cardiovascular center. Large internuclear interneurons demonstrate a strong reaction to BP rise, which confirms their involvement into hemodynamics regulation. By contrast, small internuclear interneurons retain their characteristics in arterial hypertension and probably perform an integrative function.

  4. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles.

    PubMed

    Fan, Wenpei; Shen, Bo; Bu, Wenbo; Zheng, Xiangpeng; He, Qianjun; Cui, Zhaowen; Ni, Dalong; Zhao, Kuaile; Zhang, Shengjian; Shi, Jianlin

    2015-11-01

    Biophotonic technology that uses light and ionizing radiation for positioned cancer therapy is a holy grail in the field of biomedicine because it can overcome the systemic toxicity and adverse side effects of conventional chemotherapy. However, the existing biophotonic techniques fail to achieve the satisfactory treatment efficacy, which remains a big challenge for clinical implementation. Herein, we develop a novel theranostic technique of "intranuclear biophotonics" by the smart design of a nuclear-targeting biophotonic system based on photo-/radio-sensitizers covalently co-loaded upconversion nanoparticles. These nuclear-targeting biophotonic agents can not only generate a great deal of multiple cytotoxic reactive oxygen species in the nucleus by making full use of NIR/X-ray irradiation, but also produce greatly enhanced intranuclear synergetic radio-/photodynamic therapeutic effects under the magnetic/luminescent bimodal imaging guidance, which may achieve the optimal efficacy in treating radio-resistant tumors. We anticipate that the highly effective intranuclear biophotonics will contribute significantly to the development of biophotonic techniques and open new perspectives for a variety of cancer theranostic applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fine-needle aspiration biopsy of breast adenomyoepithelioma: a potential false positive pitfall and presence of intranuclear cytoplasmic inclusions.

    PubMed

    Saad, Reda S; Richmond, Lara; Nofech-Mozes, Sharon; Ghorab, Zeina

    2012-11-01

    Cytologic diagnosis of adenomyoepithelioma can be very challenging. We report fine needle aspiration cytology (FNAC) findings of a benign adenomyoepithelioma. The cytologic features are characterized by hypercellularity and the presence of numerous atypical dispersed cells with epithelioid morphology and intact cytoplasm. The nuclei showed stippled chromatin, irregular nuclear membrane, and prominent eosinophilic nucleoli. No necrosis or mitoses were seen. The presence of naked nuclei, and extensive intranuclear cytoplasmic inclusions were identified and raised the possibility of adenomyoepithelioma. Immunohistochemically, the atypical cells showed strong positivity for myosin heavy chain, p63, and CK5/6, while the epithelial cells reacted with estrogen receptors. This immunophenotypic pattern supports the myoepithelial origin of the atypical cell proliferation and favors the diagnosis of benign adenomyoepithelioma. However, biopsy was recommended to exclude malignancy. Histologically, the tumor showed prominent myoepithelial cells with significant atypia, intranuclear cytoplasmic inclusions, and dense cytoplasm. No evidence of malignancy was identified. In conclusion, we report a case of adenomyoepithelioma with a significant cytological atypia that may result in confusion with malignant breast tumors. The presence of intranuclear cytoplasmic inclusions, naked nuclei, and expression of myoepithelial markers should provide clues to the right diagnosis and benign nature of this lesion. Cytopathologists should be familiarized with this entity to avoid a misdiagnosis of carcinoma.

  6. Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization.

    PubMed

    Fan, Wenpei; Shen, Bo; Bu, Wenbo; Zheng, Xiangpeng; He, Qianjun; Cui, Zhaowen; Zhao, Kuaile; Zhang, Shengjian; Shi, Jianlin

    2015-03-01

    Clinically applied chemotherapy and radiotherapy is sometimes not effective due to the limited dose acting on DNA chains resident in the nuclei of cancerous cells. Herein, we develop a new theranostic technique of "intranuclear radiosensitization" aimed at directly damaging the DNA within the nucleus by a remarkable synergetic chemo-/radiotherapeutic effect based on intranuclear chemodrug-sensitized radiation enhancement. To achieve this goal, a sub-50 nm nuclear-targeting rattle-structured upconversion core/mesoporous silica nanotheranostic system was firstly constructed to directly transport the radiosensitizing drug Mitomycin C (MMC) into the nucleus for substantially enhanced synergetic chemo-/radiotherapy and simultaneous magnetic/upconversion luminescent (MR/UCL) bimodal imaging, which can lead to efficient cancer treatment as well as multi-drug resistance circumvention in vitro and in vivo. We hope the technique of intranuclear radiosensitization along with the design of nuclear-targeting nanotheranostics will contribute greatly to the development of cancer theranostics as well as to the improvement of the overall therapeutic effectiveness.

  7. Gene and protein expression in pituitary corticotroph adenomas: a systematic review of the literature.

    PubMed

    Seltzer, Justin; Ashton, Charles E; Scotton, Thomas C; Pangal, Dhiraj; Carmichael, John D; Zada, Gabriel

    2015-02-01

    , and gene underexpression in 58 genes and 15 proteins was reported. Immunohistochemistry was used in 39 of the studies, and reverse transcriptase polymerase chain reaction was used in 26 of the studies, primarily, and as validation for 4 others. Thirteen studies used both immunohistochemistry and reverse transcriptase polymerase chain reaction. Other methods used included microarray, in situ hybridization, Northern blot analysis, and Western blot analysis. Expression of prioritized genes emphasized in multiple studies were often validated on both the gene and protein levels. Genes/proteins found to be overexpressed in ACTH-PAs relative to the normal pituitary gland included hPTTG1/securin, NEUROD1/NeuroD1 (Beta2), HSD11B2/11β-hydroxysteroid dehydrogenase 2, AKT/Akt, protein kinase B, and CCND1/cyclin D1. Candidate genes/proteins found to be underexpressed in ACTH-PAs relative to the normal pituitary gland included CDKN1B/p27(Kip1), CDKN2A/p16, KISS1/kisspeptin, ACTHR/ACTH-R, and miR-493. CONCLUSIONS On the basis of the authors' systematic review, many significant gene and protein targets that may contribute to tumorigenesis, invasion, and hormone production/secretion of ACTH have been identified and validated in ACTH-PAs. Many of these potential targets have not been fully analyzed for their therapeutic and diagnostic potential but may represent candidate molecular targets for biomarker development and drug targeting. This review may help catalyze additional research efforts using modern profiling and sequencing techniques and alteration of gene expression.

  8. Fitness Impact of Obligate Intranuclear Bacterial Symbionts Depends on Host Growth Phase

    PubMed Central

    Bella, Chiara; Koehler, Lars; Grosser, Katrin; Berendonk, Thomas U.; Petroni, Giulio; Schrallhammer, Martina

    2016-01-01

    According to text book definition, parasites reduce the fitness of their hosts whereas mutualists provide benefits. But biotic and abiotic factors influence symbiotic interactions, thus under certain circumstances parasites can provide benefits and mutualists can harm their host. Here we addressed the question which intrinsic biotic factors shape a symbiosis and are crucial for the outcome of the interaction between the obligate intranuclear bacterium Holospora caryophila (Alphaproteobacteria; Rickettsiales) and its unicellular eukaryotic host Paramecium biaurelia (Alveolata; Ciliophora). The virulence of H. caryophila, i.e., the negative fitness effect on host division and cell number, was determined by growth assays of several P. biaurelia strains. The performances of genetically identical lines either infected with H. caryophila or symbiont-free were compared. Following factors were considered as potentially influencing the outcome of the interaction: (1) host strain, (2) parasite strain, and (3) growth phases of the host. All three factors revealed a strong effect on the symbiosis. In presence of H. caryophila, the Paramecium density in the stationary growth phase decreased. Conversely, a positive effect of the bacteria during the exponential phase was observed for several host × parasite combinations resulting in an increased growth rate of infected P. biaurelia. Furthermore, the fitness impact of the tested endosymbionts on different P. biaurelia lines was not only dependent on one of the two involved strains but distinct for the specific combination. Depending on the current host growth phase, the presence of H. caryophila can be harmful or advantageous for P. biaurelia. Thus, under the tested experimental conditions, the symbionts can switch from the provision of benefits to the exploitation of host resources within the same host population and a time-span of less than 6 days. PMID:28066397

  9. Altered Intra-Nuclear Organisation of Heterochromatin and Genes in ICF Syndrome

    PubMed Central

    Jefferson, Andrew; Colella, Stefano; Moralli, Daniela; Wilson, Natalie; Yusuf, Mohammed; Gimelli, Giorgio; Ragoussis, Jiannis; Volpi, Emanuela V.

    2010-01-01

    The ICF syndrome is a rare autosomal recessive disorder, the most common symptoms of which are immunodeficiency, facial anomalies and cytogenetic defects involving decondensation and instability of chromosome 1, 9 and 16 centromeric regions. ICF is also characterised by significant hypomethylation of the classical satellite DNA, the major constituent of the juxtacentromeric heterochromatin. Here we report the first attempt at analysing some of the defining genetic and epigenetic changes of this syndrome from a nuclear architecture perspective. In particular, we have compared in ICF (Type 1 and Type 2) and controls the large-scale organisation of chromosome 1 and 16 juxtacentromeric heterochromatic regions, their intra-nuclear positioning, and co-localisation with five specific genes (BTG2, CNN3, ID3, RGS1, F13A1), on which we have concurrently conducted expression and methylation analysis. Our investigations, carried out by a combination of molecular and cytological techniques, demonstrate the existence of specific and quantifiable differences in the genomic and nuclear organisation of the juxtacentromeric heterochromatin in ICF. DNA hypomethylation, previously reported to correlate with the decondensation of centromeric regions in metaphase described in these patients, appears also to correlate with the heterochromatin spatial configuration in interphase. Finally, our findings on the relative positioning of hypomethylated satellite sequences and abnormally expressed genes suggest a connection between disruption of long-range gene-heterochromatin associations and some of the changes in gene expression in ICF. Beyond its relevance to the ICF syndrome, by addressing fundamental principles of chromosome functional organisation within the cell nucleus, this work aims to contribute to the current debate on the epigenetic impact of nuclear architecture in development and disease. PMID:20613881

  10. Environmental enrichment reduces neuronal intranuclear inclusion load but has no effect on messenger RNA expression in a mouse model of Huntington disease.

    PubMed

    Benn, Caroline L; Luthi-Carter, Ruth; Kuhn, Alexandre; Sadri-Vakili, Ghazaleh; Blankson, Kwabena L; Dalai, Sudeb C; Goldstein, Darlene R; Spires, Tara L; Pritchard, Joel; Olson, James M; van Dellen, Anton; Hannan, Anthony J; Cha, Jang-Ho J

    2010-08-01

    Huntington disease (HD) is a fatal neurodegenerative disease with no effective treatment. In the R6/1 mouse model of HD, environmental enrichment delays the neurologic phenotype onset and prevents cerebral volume loss by unknown molecular mechanisms. We examined the effects of environmental enrichment on well-characterized neuropathological parameters in a mouse model of HD. We found a trend toward preservation of downregulated neurotransmitter receptors in striatum of environmentally enriched mice and assessed possible enrichment-related modifications in gene expression using microarrays. We observed similar gene expression changes in R6/1 and R6/2 transgenic mice but found no specific changes in enrichment-related microarray expression profiles in either transgenic or wild-type mice. Furthermore, specific corrections in transprotein-induced transcriptional dysregulation in R6/1 mice were not detected by microarray profiling. However, gene-specific analyses suggested that long-term environmental enrichment may beneficially modulate gene expression dysregulation. Finally, environmental enrichment significantly decreased neuronal intranuclear inclusion load, despite unaffected transgene expression levels. Thus, the therapeutic effects of environmental enrichment likely contribute to decreasing aggregated polyglutamine protein levels without exerting strong effects on gene expression.

  11. Spontaneously Occurring Formation of Intranuclear and Cytoplasmic Inclusions in Renal Proximal Epithelium Due to Accumulation of D-Amino Acid Oxidase in Wistar Hannover Rats.

    PubMed

    Shimoyama, Natsumi; Nakatsuji, Shunji; Andoh, Rie; Yamaguchi, Yuko; Tamura, Kazutoshi; Hoshiya, Toru

    2015-07-01

    Intranuclear and cytoplasmic inclusions in the renal proximal tubular epithelium were observed in nontreated male and female Wistar Hannover rats in a 26-week study (32 weeks of age) and a 104-week study (110 weeks of age). The incidence rates were less than 5% in these two studies. In affected animals, the inclusions were observed in more than 60% of proximal tubular epithelium as various sized (approximately 1-8 μm in diameter) round and eosinophilic materials, but not in distal tubules, Henle's loop, or collecting ducts. Ultrastructurally, inclusions appeared finely granular, homogenous with middle-electron density, and without a limiting membrane. These inclusions were determined to be protein histochemically stained by Azan-Mallory and immunoreactive with an antibody against D-amino acid oxidase (DAO). There was no abnormality in in-life observations or in clinical test values suggestive of renal dysfunction. There were no associated degenerative or inflammatory changes in the kidneys, and no similar inclusions were observed in the other organs. These inclusions are very similar to propiverine hydrochloride (propiverine) and norepinephreine/serotonin reuptake inhibitor-induced inclusions. This is the first report of accumulation of DAO and formation of inclusions occurring spontaneously in rat kidneys. The data are important for toxicological studies using Wistar Hannover rats.

  12. Stochasticity of Intranuclear Biochemical Reaction Processes Controls the Final Decision of Cell Fate Associated with DNA Damage

    PubMed Central

    Iwamoto, Kazunari; Hamada, Hiroyuki; Eguchi, Yukihiro; Okamoto, Masahiro

    2014-01-01

    A massive integrative mathematical model of DNA double-strand break (DSB) generation, DSB repair system, p53 signaling network, and apoptosis induction pathway was constructed to explore the dominant factors of unknown criteria of cell fate decision. In the proposed model, intranuclear reactions were modeled as stochastic processes and cytoplasmic reactions as deterministic processes, and both reaction sets were simulated simultaneously. The simulated results at the single-cell level showed that the model generated several sustained oscillations (pulses) of p53, Mdm2, ATM, and Wip1, and cell-to-cell variability in the number of p53 pulses depended on IR intensity. In cell populations, the model generated damped p53 oscillations, and IR intensity affected the amplitude of the first p53 oscillation. Cells were then subjected to the same IR dose exhibiting apoptosis induction variability. These simulated results are in quantitative agreement with major biological findings observed in human breast cancer epithelial MCF7, NIH3T3, and fibrosarcoma cells, demonstrating that the proposed model was concededly biologically appropriate. Statistical analysis of the simulated results shows that the generation of multiple p53 pulses is a prerequisite for apoptosis induction. Furthermore, cells exhibited considerable individual variability in p53 dynamics, which correlated with intrinsic apoptosis induction. The simulated results based on the proposed model demonstrated that the stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. Applying stochastic simulation to an exploration of intranuclear biochemical reaction processes is indispensable in enhancing the understanding of the dynamic characteristics of biological multi-layered systems of higher organisms. PMID:25003668

  13. Stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage.

    PubMed

    Iwamoto, Kazunari; Hamada, Hiroyuki; Eguchi, Yukihiro; Okamoto, Masahiro

    2014-01-01

    A massive integrative mathematical model of DNA double-strand break (DSB) generation, DSB repair system, p53 signaling network, and apoptosis induction pathway was constructed to explore the dominant factors of unknown criteria of cell fate decision. In the proposed model, intranuclear reactions were modeled as stochastic processes and cytoplasmic reactions as deterministic processes, and both reaction sets were simulated simultaneously. The simulated results at the single-cell level showed that the model generated several sustained oscillations (pulses) of p53, Mdm2, ATM, and Wip1, and cell-to-cell variability in the number of p53 pulses depended on IR intensity. In cell populations, the model generated damped p53 oscillations, and IR intensity affected the amplitude of the first p53 oscillation. Cells were then subjected to the same IR dose exhibiting apoptosis induction variability. These simulated results are in quantitative agreement with major biological findings observed in human breast cancer epithelial MCF7, NIH3T3, and fibrosarcoma cells, demonstrating that the proposed model was concededly biologically appropriate. Statistical analysis of the simulated results shows that the generation of multiple p53 pulses is a prerequisite for apoptosis induction. Furthermore, cells exhibited considerable individual variability in p53 dynamics, which correlated with intrinsic apoptosis induction. The simulated results based on the proposed model demonstrated that the stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. Applying stochastic simulation to an exploration of intranuclear biochemical reaction processes is indispensable in enhancing the understanding of the dynamic characteristics of biological multi-layered systems of higher organisms.

  14. A Honey Bee Hexamerin, HEX 70a, Is Likely to Play an Intranuclear Role in Developing and Mature Ovarioles and Testioles

    PubMed Central

    Martins, Juliana R.; Anhezini, Lucas; Dallacqua, Rodrigo P.; Simões, Zilá L. P.; Bitondi, Márcia M. G.

    2011-01-01

    Insect hexamerins have long been known as storage proteins that are massively synthesized by the larval fat body and secreted into hemolymph. Following the larval-to-pupal molt, hexamerins are sequestered by the fat body via receptor-mediated endocytosis, broken up, and used as amino acid resources for metamorphosis. In the honey bee, the transcript and protein subunit of a hexamerin, HEX 70a, were also detected in ovaries and testes. Aiming to identify the subcellular localization of HEX 70a in the female and male gonads, we used a specific antibody in whole mount preparations of ovaries and testes for analysis by confocal laser-scanning microscopy. Intranuclear HEX 70a foci were evidenced in germ and somatic cells of ovarioles and testioles of pharate-adult workers and drones, suggesting a regulatory or structural role. Following injection of the thymidine analog EdU we observed co-labeling with HEX 70a in ovariole cell nuclei, inferring possible HEX 70a involvement in cell proliferation. Further support to this hypothesis came from an injection of anti-HEX 70a into newly ecdysed queen pupae where it had a negative effect on ovariole thickening. HEX 70a foci were also detected in ovarioles of egg laying queens, particularly in the nuclei of the highly polyploid nurse cells and in proliferating follicle cells. Additional roles for this storage protein are indicated by the detection of nuclear HEX 70a foci in post-meiotic spermatids and spermatozoa. Taken together, these results imply undescribed roles for HEX 70a in the developing gonads of the honey bee and raise the possibility that other hexamerins may also have tissue specific functions. PMID:22205988

  15. Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn).

    PubMed

    Schröder, J M; Durling, H; Laing, N

    2004-09-01

    Mutations in the skeletal muscle alpha-actin gene ( ACTA1) are associated by and large with three muscle diseases (1) congenital actin myopathy, (2) nemaline myopathy, and (3) intranuclear rod myopathy. More than 70 mutations have now been identified. The majority of ACTA1 mutations are dominant, a small number are recessive and most isolated cases with no previous family history have de novo dominant mutations. The present case, a boy of healthy Turkish parents, had a severe form of the disease of the latter type due to a heterozygous, presumably de novo mutation of the ACTA1 gene in exon 4 (Asp154Asn), with lack of spontaneous movements at birth requiring immediate mechanical ventilation. He died at the age of 9 weeks due to respiratory failure, secondary pneumonia, and chylothorax. The biopsy specimen of the femoral muscle was characterized by pleomorphic alterations with numerous muscle fibers showing accumulation of actin filaments, but, in addition, both nemaline bodies and intranuclear rod bodies. This was also seen in several other muscles investigated at autopsy. No developmental abnormalities of the central nervous system, and no loss of spinal motor neurons were detected despite atrophy or hypotrophy of a considerable number of muscle fibers. The peripheral nervous system, which has not been studied before in patients with ACTA1 mutations, showed no loss of motor or sensory myelinated fibers and no loss of sensory neurons in spinal ganglia.

  16. Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1.

    PubMed

    Nakanishi, M; Robetorye, R S; Adami, G R; Pereira-Smith, O M; Smith, J R

    1995-02-01

    The cloning of the negative growth regulatory gene, p21Sdi1, has led to the convergence of the fields of cellular senescence, cell cycle regulation and tumor suppression. This gene was first cloned as an inhibitor of DNA synthesis that was overexpressed in terminally non-dividing senescent human fibroblasts (SD11) and later as a p53 transactivated gene (WAF1) and a Cdk-interacting protein (CIP1, p21) that inhibited cyclin-dependent kinase activity. To identify the active region(s) of p21Sdi1, cDNA constructs encoding various deleted forms of the protein were analyzed. Amino acids 22-71 were found to be the minimal region required for DNA synthesis inhibition. Amino acids 49-71 were involved in binding to Cdk2, and constructs deleted in this region expressed proteins that were unable to inhibit Cdk2 kinase activity in vitro. The latter stretch of amino acids shared sequence similarity with amino acids 60-76 of the p27Kip1 protein, another Cdk inhibitor. Point mutations made in p21Sdi1 in this region confirmed that amino acids common to both proteins were involved in DNA synthesis inhibition. Additionally, a chimeric protein, in which amino acids 49-65 of p21Sdi1 were substituted with amino acids 60-76 of p27Kip1, had almost the same DNA synthesis inhibitory activity as the wild-type protein. The results indicate that the region of sequence similarity between p21Sdi1 and p27Kip1 encodes an inhibitory motif characteristic of this family of Cdk inhibitors.

  17. Antibody penetration into living cells. I. Intranuclear immunoglobulin in peripheral blood mononuclear cells in mixed connective tissue disease and systemic lupus erythematosus.

    PubMed

    Alarcón-Segovia, D; Ruíz-Argüelles, A; Fishbein, E

    1979-03-01

    We have shown recently (Alarcón-Segovia, Ruíz-Argüelles & Fishbein, 1978) that an IgG anti-RNP antibody obtained from a patient with mixed connective tissue disease (MCTD) can penetrate viable mononuclear cells (MNC) from normal donors via their Fc receptors. Live MNC from twelve MCTD patients incubated with goat anti-Ig antibody had intranuclear antibody with a speckled pattern in a mean of 5.5% of all MNC and 57.3% of all Fc receptor-bearing MNC. We found intranuclear immunoglobulins in all twelve patients with MCTD which were present only in cells with Fc receptors. Only three out of twenty-one patients with systemic lupus erythematosus (SLE) were found to have intranuclear antibody in a mean of 17.2% of their Fc receptor-bearing cells. Further experiments with MNC from SLE patients revealed a partial blocking of penetration of antibody via Fc receptors. MNC from ten scleroderma, ten rheumatoid arthritis patients and eleven normal controls did not have intranuclear immunoglobulin. In vivo penetration of autoantibodies into Fc receptor-bearing cells in MCTD, and probably in SLE as well, may represent an important pathogenetic mechanism.

  18. Antibody penetration into living cells. I. Intranuclear immunoglobulin in peripheral blood mononuclear cells in mixed connective tissue disease and systemic lupus erythematosus.

    PubMed Central

    Alarcón-Segovia, D; Ruíz-Argüelles, A; Fishbein, E

    1979-01-01

    We have shown recently (Alarcón-Segovia, Ruíz-Argüelles & Fishbein, 1978) that an IgG anti-RNP antibody obtained from a patient with mixed connective tissue disease (MCTD) can penetrate viable mononuclear cells (MNC) from normal donors via their Fc receptors. Live MNC from twelve MCTD patients incubated with goat anti-Ig antibody had intranuclear antibody with a speckled pattern in a mean of 5.5% of all MNC and 57.3% of all Fc receptor-bearing MNC. We found intranuclear immunoglobulins in all twelve patients with MCTD which were present only in cells with Fc receptors. Only three out of twenty-one patients with systemic lupus erythematosus (SLE) were found to have intranuclear antibody in a mean of 17.2% of their Fc receptor-bearing cells. Further experiments with MNC from SLE patients revealed a partial blocking of penetration of antibody via Fc receptors. MNC from ten scleroderma, ten rheumatoid arthritis patients and eleven normal controls did not have intranuclear immunoglobulin. In vivo penetration of autoantibodies into Fc receptor-bearing cells in MCTD, and probably in SLE as well, may represent an important pathogenetic mechanism. Images FIG. 1 PMID:378481

  19. Neuronal intranuclear inclusion disease: two cases of dopa-responsive juvenile parkinsonism with drug-induced dyskinesia.

    PubMed

    Lai, Szu-Chia; Jung, Shih-Ming; Grattan-Smith, Padraic; Sugo, Ella; Lin, Yen-Wen; Chen, Rou-Shayn; Chen, Chiung-Chu; Wu-Chou, Yah-Huei; Lang, Anthony E; Lu, Chin-Song

    2010-07-15

    There are very few conditions that present with dopa-responsive juvenile parkinsonism. We present two such children with neuronal intranuclear inclusion disease (NIID) who had an initial good levodopa response that was soon complicated by disabling dopa-induced dyskinesia. One child was diagnosed by rectal biopsy in life, and the other diagnosis was confirmed at postmortem. In this patient, dopamine transporter imaging showed severely decreased binding of the radiotracer in the striatum on both sides. Bilateral subthalamic deep brain stimulation in this patient produced initial improvement, but this was not sustained. Both patients died within 10 years of symptom onset. As well as levodopa responsiveness with rapid onset of dyskinesia, clues to the diagnosis of NIID in patients presenting with parkinsonism include the presence of gaze-evoked nystagmus, early onset dysarthria and dysphagia and oculogyric crises. Differential diagnosis of clinical symptoms and neuropathological findings are discussed including the approach to rectal biopsy for early diagnosis.

  20. Cross sections of proton- and neutron-induced reactions by the Liège intranuclear cascade model

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Dong, Tiekuang; Ren, Zhongzhou

    2016-06-01

    The purpose of the paper is mainly to test the validity of the Liège intranuclear cascade (INCL) model in calculating the cross sections of proton-induced reactions for cosmogenic nuclei using the newly compiled database of proton cross sections. The model calculations of 3He display the rising tendency of cross sections with the increase of energy, in accordance with the experimental data. Meanwhile, the differences between the theoretical results and experimental data of production cross sections (10Be and 26Al) are generally within a factor of 3, meaning that the INCL model works quite well for the proton-induced reactions. Based on the good agreement, we predict the production cross sections of 26Al from reactions n + 27Al, n + 28Si, and n + 40Ca and those of 10Be from reactions n + 16O and n + 28Si. The results also show a good agreement with a posteriori excitation functions.

  1. Transforming growth factor-beta inhibition of proteasomal activity: a potential mechanism of growth arrest.

    PubMed

    Tadlock, Laura; Yamagiwa, Yoko; Hawker, James; Marienfeld, Carla; Patel, Tushar

    2003-08-01

    Although the proteasome plays a critical role in the controlled degradation of proteins involved in cell cycle control, the direct modulation of proteasomal function by growth regulatory signaling has not yet been demonstrated. We assessed the effect of transforming growth factor (TGF)-beta, a potent inhibitor of cell growth, on proteasomal function. TGF-beta selectively decreased hydrolysis of the proteasomal substrate Cbz-Leu-Leu-Leu-7-amido-4-methyl-coumarin (z-LLL-AMC) in a concentration-dependent manner but did not inhibit hydrolysis of other substrates Suc-Leu-Leu-Val-Tyr-AMC (suc-LLVY-AMC) or Cbz-Leu-Leu-Glu-AMC (z-LLE-AMC). An increase in intracellular oxidative injury occurred during incubation with TGF-beta. Furthermore, in vitro hydrolysis of z-LLL-AMC, but not suc-LLVY-AMC, was decreased by hydrogen peroxide. TGF-beta did not increase cellular expression of heat shock protein (HSP)90, a potent inhibitor of z-LLL-AMC hydrolysis in vitro. The physiological relevance of TGF-beta inhibition of proteasomal activity was studied by assessing the role of z-LLL-AMC hydrolysis on cyclin-dependent kinase inhibitor expression and cell growth. TGF-beta increased expression of p27KIP1 but did not alter expression of p21WAF1 or p16INK4A. The peptide aldehyde Cbz-Leu-Leu-leucinal (LLL-CHO or MG132) potently inhibited z-LLL-AMC hydrolysis in cell extracts as well as increasing p27KIP1 and decreasing cell proliferation. Thus growth inhibition by TGF-beta decreases a specific proteasomal activity via an HSP90-independent mechanism that may involve oxidative inactivation or modulation of proteasomal subunit composition and results in altered cellular expression of key cell cycle regulatory proteins such as p27KIP1.

  2. Intranuclear drug delivery and effective in vivo cancer therapy via estradiol-PEG-appended multiwalled carbon nanotubes.

    PubMed

    Das, Manasmita; Singh, Raman Preet; Datir, Satyajit R; Jain, Sanyog

    2013-09-03

    Cancer cell-selective, nuclear targeting is expected to enhance the therapeutic efficacy of a myriad of antineoplastic drugs, particularly those whose pharmacodynamic site of action is the nucleus. In this study, a steroid-macromolecular bioconjugate based on PEG-linked 17β-Estradiol (E2) was appended to intrinsically cell-penetrable multiwalled carbon nanotubes (MWCNTs) for intranuclear drug delivery and effective breast cancer treatment, both in vitro and in vivo. Taking Doxorubicin (DOX) as a model anticancer agent, we tried to elucidate how E2 appendage influences the cell internalization, intracellular trafficking, and antitumor efficacy of the supramolecularly complexed drug. We observed that the combination of DOX with E2-PEG-MWCNTs not only facilitated nuclear targeting through an estrogen receptor (ER)-mediated pathway but also deciphered to a synergistic anticancer response in vivo. The antitumor efficacy of DOX@E2-PEG-MWCNTs in chemically breast cancer-induced female rats was approximately 18, 17, 5, and 2 times higher compared to the groups exposed to saline, drug-deprived E2-PEG-MWCNTs, free DOX, and DOX@m-PEG-MWCNTs, respectively. While free DOX treatment induced severe cardiotoxicity in animals, animals treated with DOX@m-PEG-MWCNTs and DOX@E2-PEG-MWCNTs were devoid of any perceivable cardiotoxicity, hepatotoxicity, and nephrotoxicity. To the best of our knowledge, this is the first instance in which cancer cell-selective, intranuclear drug delivery, and, subsequently, effective in vivo breast cancer therapy has been achieved using estrogen-appended MWCNTs as the molecular transporter.

  3. Physalis angulata induced G2/M phase arrest in human breast cancer cells.

    PubMed

    Hsieh, Wen-Tsong; Huang, Kuan-Yuh; Lin, Hui-Yi; Chung, Jing-Gung

    2006-07-01

    Physalis angulata (PA) is employed in herbal medicine around the world. It is used to treat diabetes, hepatitis, asthma and malaria in Taiwan. We have evaluated PA as a cancer chemopreventive agent in vitro by studying the role of PA in regulation of proliferation, cell cycle and apoptosis in human breast cancer cell lines. PA inhibited cell proliferation and induced G2/M arrest and apoptosis in human breast cancer MAD-MB 231 and MCF-7 cell lines. In this study, under treatment with various concentrations of PA in MDA-MB 231 cell line, we checked mRNA levels for cyclin A and cyclin B1 and the protein levels of cyclin A and cyclin B1, Cdc2 (cyclin-dependent kinases), p21(waf1/cip1) and P27(Kip1) (cyclin-dependent kinase inhibitors), Cdc25C, Chk2 and Wee1 kinase (cyclin-dependent kinase relative factors) in cell cycle G2/M phase. From those results, we determined that PA arrests MDA-MB 231 cells at the G2/M phase by (i) inhibiting synthesis or stability of mRNA and their downstream protein levels of cyclin A and cyclin B1, (ii) increasing p21(waf1/cip1) and P27(kip1) levels, (iii) increasing Chk2, thus causing an increase in Cdc25C phosphorylation/inactivation and inducing a decrease in Cdc2 levels and an increase in Wee1 level. According to the results obtained, PA appears to possess anticarcinogenic properties; these results suggest that the effect of PA on the levels of phosphorylated/inactivated Cdc25C are mediated by Chk2 activation, at least in part, via p21(waf1/cip1) and P27(kip1) cyclin-dependent kinase inhibitors pathway to arrest cells at G2/M phase in breast cancer carcinoma cells.

  4. Insulin-like growth factor-1 promotes G(1)/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex.

    PubMed

    Mairet-Coello, Georges; Tury, Anna; DiCicco-Bloom, Emanuel

    2009-01-21

    Although survival-promoting effects of insulin-like growth factor-1 (IGF-1) during neurogenesis are well characterized, mitogenic effects remain less well substantiated. Here, we characterize cell cycle regulators and signaling pathways underlying IGF-1 effects on embryonic cortical precursor proliferation in vitro and in vivo. In vitro, IGF-1 stimulated cell cycle progression and increased cell number without promoting cell survival. IGF-1 induced rapid increases in cyclin D1 and D3 protein levels at 4 h and cyclin E at 8 h. Moreover, p27(KIP1) and p57(KIP2) expression were reduced, suggesting downregulation of negative regulators contributes to mitogenesis. Furthermore, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway specifically underlies IGF-1 activity, because blocking this pathway, but not MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinase), prevented mitogenesis. To determine whether mechanisms defined in culture relate to corticogenesis in vivo, we performed transuterine intracerebroventricular injections. Whereas blockade of endogenous factor with anti-IGF-1 antibody decreased DNA synthesis, IGF-1 injection stimulated DNA synthesis and increased the number of S-phase cells in the ventricular zone. IGF-1 treatment increased phospho-Akt fourfold at 30 min, cyclins D1 and E by 6 h, and decreased p27(KIP1) and p57(KIP2) expression. Moreover, blockade of the PI3K/Akt pathway in vivo decreased DNA synthesis and cyclin E, increased p27(KIP1) and p57(KIP2) expression, and prevented IGF-1-induced cyclin E mRNA upregulation. Finally, IGF-1 injection in embryos increased postnatal day 10 brain DNA content by 28%, suggesting a role for IGF-1 in brain growth control. These results demonstrate a mitogenic role for IGF-1 that tightly controls both positive and negative cell cycle regulators, and indicate that the PI3K/Akt pathway mediates IGF-1 mitogenic signaling during corticogenesis.

  5. Persistent p21Cip1 induction mediates G(1) cell cycle arrest by methylseleninic acid in DU145 prostate cancer cells.

    PubMed

    Wang, Zhe; Lee, Hyo-Jeong; Chai, Yubo; Hu, Hongbo; Wang, Lei; Zhang, Yong; Jiang, Cheng; Lü, Junxuan

    2010-05-01

    The induction of G(1) cell cycle arrest and apoptosis by second-generation selenium compounds (e.g., methylselenol precursors such as methylseleninic acid, MSeA) may contribute to their anti-cancer activities. We have documented previously induction of G(1) arrest and apoptosis by MSeA in association with upregulation of cyclin-dependent kinase inhibitor (CDKI) proteins p21Cip1 and/or p27Kip1 in DU145 prostate cancer cells. However, whether these CDKIs play a critical mediator role in G(1) arrest and apoptosis by MSeA has not been addressed. In the present work, we show exposure of p53-mutant DU145 cells to sub-apoptotic concentrations of MSeA induced p21cip1 mRNA (3 h) and protein (6 h) much faster than p27kip1 mRNA (12 h) and protein (12 h). Knocking down of p21 by siRNA completely abolished G(1) arrest induction by MSeA in DU145 cells, yet si-p27 RNA had no attenuation effect on the G(1) arrest. Depletion of p21Cip1 alone or both p21Cip1 and p27Kip1 increased MSeA-induced caspase-mediated apoptosis. Immunoprecipitation detected increased binding of p21Cip1 to CDK2 and CDK6 in MSeA-exposed DU145 cells. In DU145 xenografts from mice acutely treated with MSeA p.o., the induction of p21Cip1 was observed at 72 h of daily exposure. In p53-wild type LNCaP PCa cells and p53-null PC-3 PCa cells, MSeA modestly and transiently upregulated p21Cip1 protein level, subsiding to basal level by 24 h, without affecting P27Kip1 abundance in the same duration. Si-p21 RNA knockdown in these cells have only a partial effect to reverse G(1) arrest induction by MSeA. Together, our data support persistent, p53-independent, p21Cip1 induction as a critical mediator of MSeA-induced G(1) arrest in DU145 PCa cells, however, p21Cip1 induction and G(1) arrest were not necessary for, and may antagonize, caspase-mediated apoptosis.

  6. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

    PubMed Central

    Leite de Oliveira, Felipe; Soares, Nathália; de Mattos, Rômulo Medina; Hecht, Fábio; Dezonne, Rômulo Sperduto; Vairo, Leandro; Goldenberg, Regina Coeli dos Santos; Gomes, Flávia Carvalho Alcântara; de Carvalho, Denise Pires; Gadelha, Mônica R.; Nasciutti, Luiz Eurico; Miranda-Alves, Leandro

    2013-01-01

    Pituitary adenomas comprise approximately 10–15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2) and increased expression of p27kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing’s disease. PMID:23667519

  7. Loss of p12CDK2-AP1 Expression in Human Oral Squamous Cell Carcinoma with Disrupted Transforming Growth Factor-β-Smad Signaling Pathway1

    PubMed Central

    Peng, Hui; Shintani, Satoru; Kim, Yong; Wong, David T

    2006-01-01

    Abstract We examined correlations between TGF-β1, TβR-I and TβR-II, p12CDK2-AP1, p21WAF1, p27KIP1, Smad2, and p-Smad2 in 125 cases of human oral squamous cell carcinoma (OSCC) to test the hypothesis that resistance to TGF-β1-induced growth suppression is due to the disruption of its signaling pathway as a consequence of reduced or lost p12CDK2-AP1. Immunoreactivity for TβR-II decreased in OSCC with increasing disease aggressiveness; however, no differences were observed for TβR-I and TGF-β1. The expression of TβR-II significantly correlated with p12CDK2-AP1 and p27KIP1 (P < .001 and P < .01, respectively). Furthermore, there was a significant relationship between TβR-II expression and p-Smad2 (P < .001). The in vivo correlation of the levels of TβR-II, p12CDK2-AP1, and p27KIP1 was confirmed in normal and OSCC cell lines. Additionally, in vitro analysis of TGF-β1-treated cells showed that TGF-β1 treatment of normal keratinocytes suppressed cell growth with upregulation of p-Smad2, p12CDK2-AP1, and p21WAF1 expression, whereas there was no effect on OSCC cell lines. These results provide evidence of a link between a disrupted TGF-β-Smad signaling pathway and loss of induction of cell cycle-inhibitory proteins, especially p12CDK2-AP1 in OSCC, which may lead to the resistance of TGF-β1 growth-inhibitory effect on OSCC. PMID:17217620

  8. IGF-1 promotes G1/S cell cycle progression through bidirectional regulation of cyclins and CDK inhibitors via the PI3K/Akt pathway in developing rat cerebral cortex

    PubMed Central

    Mairet-Coello, Georges; Tury, Anna; DiCicco-Bloom, Emanuel

    2011-01-01

    While survival promoting effects of insulin-like growth factor-1 (IGF-1) during neurogenesis are well characterized, mitogenic effects remain less well substantiated. Here, we characterize cell cycle regulators and signaling pathways underlying IGF-1 effects on embryonic cortical precursor proliferation in vitro and in vivo. In vitro, IGF-1 stimulated cell cycle progression and increased cell number without promoting cell survival. IGF-1 induced rapid increases in cyclin D1 and D3 protein levels at 4h and cyclin E at 8h. Moreover, p27KIP1 and p57KIP2 expression were reduced, suggesting downregulation of negative regulators contributes to mitogenesis. Further, the PI3K/Akt pathway specifically underlies IGF-1 activity, as blocking this pathway, but not MEK/ERK, prevented mitogenesis. To determine whether mechanisms defined in culture relate to corticogenesis in vivo, we performed transuterine intracerebroventricular injections. While blockade of endogenous factor with anti-IGF-1 antibody decreased DNA synthesis, IGF-1 injection stimulated DNA synthesis and increased the number of S-phase cells in the VZ. IGF-1 treatment increased phospho-Akt 4 fold at 30 min, cyclins D1 and E by 6h, and decreased p27KIP1 and p57KIP2 expression. Moreover, blockade of the PI3K/Akt pathway in vivo decreased DNA synthesis and cyclin E, increased p27KIP1 and p57KIP2 expression, and prevented IGF-1 induced cyclin E mRNA upregulation. Finally, IGF-1 injection in embryos increased P10 brain DNA content by 28%, suggesting a role for IGF-1 in brain growth control. These results demonstrate a mitogenic role for IGF-1 which tightly controls both positive and negative cell cycle regulators, and indicate that the PI3K/Akt pathway mediates IGF-1 mitogenic signaling during corticogenesis. PMID:19158303

  9. Expression profile of malignant and non-malignant diseases of the thyroid gland reveals altered expression of a common set of genes in goiter and papillary carcinomas.

    PubMed

    Stolf, Beatriz S; Abreu, Cintia M; Mahler-Araújo, Maria B; Dellamano, Márcia; Martins, Waleska K; de Carvalho, Marcos Brasilino; Curado, Maria P; Díaz, Juan P; Fabri, Artur; Brentani, Helena; Carvalho, Alex F; Soares, Fernando A; Kowalski, Luiz P; Hirata, Roberto; Reis, Luiz F L

    2005-09-08

    Using cDNA microarrays with 3800 cDNA fragments, we determined the expression profile of normal thyroid tissue, goiter, adenoma and papillary carcinoma (10 samples from each class). After background correction and statistical analysis, we identified a set of 160 genes as being differentially expressed in all pair-wise comparisons. Here we demonstrate that, at least on the basis of these differentially expressed genes, a positive correlation between goiter and papillary carcinomas could be observed. We identified a common set of genes whose expression is diminished in both goiter and papillary carcinomas as compared to normal thyroid tissue. Moreover, no genes with inverse correlation in samples from goiter and papillary carcinomas could be detected. Using Real-Time PCR and/or tissue microarrays, we confirmed the altered expression of some of the identified genes. Of notice, we demonstrate that the reduced mRNA levels of p27(kip1) observed in papillary carcinomas as compared to either goiter or normal thyroid tissues (P<0.001) is accompanied by an altered protein distribution within the cell. In papillary carcinomas, P27(KIP1) is preferentially cytoplasmic as opposed to goiter or normal thyroid tissue, where P27(KIP1) is preferentially located in the nucleus. The exploitation of the data presented here could contribute to the understanding of the molecular events related to thyroid diseases and gives support to the notion that common molecular events might be related to the frequent observation of areas of papillary carcinomas in the gland of patients with goiter.

  10. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors

    PubMed Central

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-01-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy. PMID:12153511

  11. The ability of antigen, but not interleukin-2, to promote n-butyrate-induced T helper 1 cell anergy is associated with increased expression and altered association patterns of cyclin-dependent kinase inhibitors.

    PubMed

    Jackson, Stephanie K; DeLoose, Annick; Gilbert, Kathleen M

    2002-08-01

    The ability of the cell cycle inhibitor n-butyrate to induce T helper 1 (Th1) cell anergy is dependent upon its ability to block the cell cycle progression of activated Th1 cells in G1. Results reported here show that although both interleukin (IL)-2 and antigen (Ag) push Th1 cells into G1 where they are blocked by n-butyrate, only the Ag-activated Th1 cells demonstrate functional anergy once the n-butyrate has been removed from the culture. Because n-butyrate-induced Th1 cell anergy has been linked to increased expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, mechanistic experiments focused on the role of these inhibitors. It was found that when Th1 cells were reincubated in Ag-stimulated secondary cultures, the Th1 cells previously exposed to Ag and n-butyrate (anergic Th1 cells) demonstrated a cumulative increase in p21Cip1 and p27Kip1 when compared with Th1 cells previously exposed to recombinant (r)IL-2 and n-butyrate (non-anergic Th1 cells). p27Kip1 in the anergic Th1 cells from the secondary cultures was associated with cyclin-dependent kinases (cdks). In contrast, p21Cip1 in the anergic Th1 cells, although present at high levels, did not associate significantly with cdks, suggesting that p21Cip1 may target some other protein in the anergic Th1 cells. Taken together, these findings suggest that Th1 cell exposure to Ag and n-butyrate, rather than IL-2 and n-butyrate, is needed to induce the cumulative increase in p21Cip1 and p27Kip1 that is associated with the proliferative unresponsiveness in anergic Th1 cells. In addition, p21Cip1 may inhibit proliferation in the anergic Th1 cells by some mechanism other than suppression of cdks that is unique to the induction of Th1 cell anergy.

  12. Altered expression of G1/S regulatory genes occurs early and frequently in lung carcinogenesis in transforming growth factor-beta1 heterozygous mice.

    PubMed

    Kang, Yang; Ozbun, Laurent L; Angdisen, Jerry; Moody, Terry W; Prentice, Margaret; Diwan, Bhalchandra A; Jakowlew, Sonia B

    2002-07-01

    We developed the AJBL6 transforming growth factor-beta 1 (TGF-beta1) heterozygous (HT) mouse by mating A/J mice with C57BL/6 TGF-beta1 HT mice that shows increased carcinogen-induced lung lesions with decreased latency to examine progressive events in lung tumorigenesis. Mouse cDNA macroarrays were used to identify cell cycle genes that are differentially regulated in ethyl carbamate-induced lung adenocarcinomas compared with normal lung tissue in AJBL6 TGF-beta1 HT mice using probes that were generated from tissues isolated using laser capture microdissection. While expression of the genes for cyclin D1, CDK4, and E2F1 increased in lung adenocarcinomas relative to normal lung, expression of p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), p57(Kip2), and pRb genes decreased in comparison. Competitive RT-PCR showed that the levels of cyclin D1 and CDK4 mRNAs were 2- and 3-fold higher, respectively, in lung adenocarcinomas than in normal lung, while the mRNAs for p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), and pRb were 3- to 4-fold lower in adenocarcinomas than in normal lung, thus validating the macroarray findings. Competitive RT-PCR of microdissected lesions also showed that the levels of cyclin D1 and CDK4 mRNAs increased significantly, while the mRNAs for p15(Ink4b) and p27(Kip1) decreased significantly as lung tumorigenesis progressed. Immunohistochemical staining for cyclin D1 and CDK4 showed staining in >80% of nuclei in adenocarcinomas compared with fewer than 20% of nuclei staining positively in normal lung. In contrast, while >60% of normal lung cells showed immunostaining for p15(Ink4b), p16(Ink4a), p21(Cip1), p27(Kip1), and pRb, staining for these proteins decreased in hyperplasias, adenomas, and adenocarcinomas. These data show that multiple components of the cyclin D1/CDK4/p16(Ink4a)/pRb signaling pathway are frequently altered early in lung lesions of AJBL6 TGF-beta1 HT mice that are induced by ethyl carbamate as a function of progressive lung

  13. Subcellular and intranuclear localization of neptunium-237 (V) in rat liver.

    PubMed

    Paquet, F; Verry, M; Grillon, G; Landesman, C; Masse, R; Taylor, D M

    1995-08-01

    The present investigation was aimed at establishing the distribution of 237Np within the different structures of hepatocytes. Rats were contaminated experimentally by intravenous injection of 237Np (V) and the subcellular structures of the liver were separated by ultracentrifugation. Twenty-four hours after contamination, the nuclear and cytosolic fractions bound 54 and 32%, respectively, of the total radionuclide. Purification of the nuclei followed by dissociation of the protein components in medium of increasing ionic strength showed a specific binding of neptunium to the structural proteins of the nuclear matrix.

  14. Recent Developments of the Liège Intranuclear Cascade Model in View of its Use into High-energy Transport Codes

    NASA Astrophysics Data System (ADS)

    Leray, S.; Boudard, A.; Braunn, B.; Cugnon, J.; David, J. C.; Leprince, A.; Mancusi, D.

    2014-04-01

    Recent extensions of the Liège Intranuclear Cascade model, INCL, at energies below 100 MeV and for light-ion (up to oxygen) induced reactions are reported. Comparisons with relevant experimental data are shown. The model has been implemented into several high-energy transport codes allowing simulations in a wide domain of applications. Examples of simulations performed for spallation targets with the model implemented into MCNPX and in the domain of medical applications with GEANT4 are presented.

  15. Studying Smad2 intranuclear diffusion dynamics by mathematical modelling of FRAP experiments.

    PubMed

    González-Pérez, Vinicio; Schmierer, Bernhard; Hill, Caroline S; Sear, Richard P

    2011-03-01

    We combine Fluorescence Recovery After Photobleaching (FRAP) experiments with mathematical modelling to study the dynamics inside the nucleus of both the TGF-β-sensitive transcriptional regulator Smad2, and Green-Fluorescent Protein (GFP). We show how combining modelling with bleaching strips of different areas allows a rigorous test of whether or not a protein is moving via diffusion as a single species. As noted recently by others, it is important to consider diffusion during the bleaching process. Neglecting it can cause serious error. Also, it is possible to use the bleaching process itself to provide an extra consistency test to the models predicting the recovery. With our method we show that the dynamics of GFP are consistent with it diffusing as a single species in a uniform environment in which flow is negligible. In contrast, the dynamics of the intracellular signal transducer Smad2 are never consistent with it moving as a single species via simple diffusion in a homogeneous environment without flow. Adding TGF-β slows down the dynamics of Smad2 but even without TGF-β, the Smad2 dynamics are influenced by one or more of: association, flow, and inhomogeneity in space of the dynamics. We suggest that the dynamics inside cells of many proteins may be poorly described by simple diffusion of a single species, and that our methodology provides a general and powerful way to test this hypothesis.

  16. In vivo optical detection of intranuclear cancer biomarkers using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Sonia; Sokolov, Konstantin; Richards-Kortum, Rebecca

    2006-02-01

    Specific genotypes of human papillomavirus (HPV) are well correlated with cervical oncogenesis. The major transforming and immortalizing protein in high risk HPVs, namely HPV16, is E7 protein. E7 protein functions by deregulating the cell cycle and promoting S-phase reentry in differentiated keratinocytes. Currently, clinical diagnosis of cervical cancer is based on phenotypic changes observed in a screening Papanicolaou smear. Although screening has been effective in reducing the occurrence of cervical cancer, the low specificity of the Pap smear results in resources wasted on the evaluation of low-grade lesions not likely to progress to cervical cancer. Molecular characterization of active HPV infections using molecular specific contrast agents are combined with in-vivo optical imaging is proposed to be a cost-effective, non-invasive technique for the detection of cervical pre-cancers. Contrast is achieved by exploiting the peak absorbance and scattering shift in aggregated gold nanoparticles over isolated ones and molecular specificity is achieved via recognition moieties with high affinities for E7. Conjugates of gold nanoparticles and HPV16 anti-E7 antibodies are delivered into the nucleus of living cells and imaged with reflectance confocal microscopy. These contrast agents have been used to successfully enhance contrast in HPV16+ cervical cancer cells over HPV- cells by a factor of 2.5. Further characterization and development of these contrast agents will provide a robust, low cost screening tool for the detection of cervical pre-cancers.

  17. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression.

    PubMed

    Normanno, Davide; Dahan, Maxime; Darzacq, Xavier

    2012-06-01

    Precise expression of specific genes in time and space is at the basis of cellular viability as well as correct development of organisms. Understanding the mechanisms of gene regulation is fundamental and still one of the great challenges for biology. Gene expression is regulated also by specific transcription factors that recognize and bind to specific DNA sequences. Transcription factors dynamics, and especially the way they sample the nucleoplasmic space during the search for their specific target in the genome, are a key aspect for regulation and it has been puzzling researchers for forty years. The scope of this review is to give a state-of-the-art perspective over the intra-nuclear mobility and the target search mechanisms of specific transcription factors at the molecular level. Going through the seminal biochemical experiments that have raised the first questions about target localization and the theoretical grounds concerning target search processes, we describe the most recent experimental achievements and current challenges in understanding transcription factors dynamics and interactions with DNA using in vitro assays as well as in live prokaryotic and eukaryotic cells. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Atypical sporadic CJD-MM phenotype with white matter kuru plaques associated with intranuclear inclusion body and argyrophilic grain disease.

    PubMed

    Berghoff, Anna S; Trummert, Anita; Unterberger, Ursula; Ströbel, Thomas; Hortobágyi, Tibor; Kovacs, Gabor G

    2015-08-01

    We describe an atypical neuropathological phenotype of sporadic Creutzfeldt-Jakob disease in a 76-year-old man. The clinical symptoms were characterized by progressive dementia, gait ataxia, rigidity and urinary incontinence. The disease duration was 6 weeks. MRI did not show prominent atrophy or hyperintensities in cortical areas, striatum or thalamus. Biomarker examination of the cerebrospinal fluid deviated from that seen in pure Alzheimer's disease. Triphasic waves in the EEG were detected only later in the disease course, while 14-3-3 assay was positive. PRNP genotyping revealed methionine homozygosity (MM) at codon 129. Neuropathology showed classical CJD changes corresponding to the MM type 1 cases. However, a striking feature was the presence of abundant kuru-type plaques in the white matter. This rare morphology was associated with neuropathological signs of intranuclear inclusion body disease and advanced stage of argyrophilic grain disease. These alterations did not show correlation with each other, thus seemed to develop independently. This case further highlights the complexity of neuropathological alterations in the ageing brain. © 2015 Japanese Society of Neuropathology.

  19. Direct Intra-nuclear Anticancer Drug Delivery via Polydimethylsiloxane Nanoparticles: In Vitro and In Vivo Xenograft Studies.

    PubMed

    Mishra, Gargi; Bhattacharyya, Souryadeep; Bhatia, Vipul; Ateeq, Bushra; Sharma, Ashutosh; Sivakumar, Sri

    2017-09-13

    Direct delivery of anticancer drugs to nuclei of tumor cells is required to enhance the therapeutic activity which can be achieved by a nuclear localization signal (NLS) or peptide-decorated nano-vehicles. However, NLS/peptide-based approaches may create certain undesirable immunological responses and the utilized synthesis processes are generally labor intensive. To this end, we report ligand-free, enhanced intra-nuclear delivery of Doxorubicin (Dox) to different cancer cells via porous polydimethylsiloxane (PDMS) nanoparticles (NPs). PDMS NPs were prepared by sacrificial silica template-based approach and Dox was loaded into the pores of PDMS NPs. These Dox-loaded PDMS NPs show enhanced cytotoxicity and reduce the IC50 values by 84% and 54% for HeLa and PC-3 respectively compared to free Dox. Further, DNA damage in HeLa cells was estimated using comet assay suggesting enhanced DNA damage (72%) with Dox-loaded PDMS NPs as compared to free Dox (12%). The therapeutic efficiency of PDMS-Dox drug delivery system was tested in prostate cancer (PC-3) xenografts in NOD/SCID mice which showed enhanced tumor reduction (~66%) as compared to free Dox. Taken together, our PDMS-Dox delivery system shows efficient and enhanced transportation of Dox to tumor cells which can be harnessed to develop advanced chemotherapy based approaches to treat prostate and other cancers.

  20. Cell Cycle Regulators during Human Atrial Development

    PubMed Central

    Kim, Won Ho; Joo, Chan Uhng; Ku, Ja Hong; Ryu, Chul Hee; Koh, Keum Nim; Koh, Gou Young; Ko, Jae Ki

    1998-01-01

    Objectives The molecular mechanisms that regulate cardiomyocyte cell cycle and terminal differentiation in humans remain largely unknown. To determine which cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) are important for cardiomyocyte proliferation, we have examined protein levels of cyclins, CDKs and CKIs during normal atrial development in humans. Methods Atrial tissues were obtained in the fetus from inevitable abortion and in the adult during surgery, Cyclin and CDK proteins were determined by Western blot analysis, CDK activities were determined by phosphorylation amount using specific substrate. Results Most cyclins and CDKs were high during the fetal period and their levels decreased at different rates during the adult period. While the protein levels of cyclin D1, cyclin D3, CDK4, CDK6 and CDK2 were still detectable in adult atria, the protein levels of cyclin E, cyclin A, cyclin B, cdc2 and PCNA were not detectable. Interestingly, p27KIP 1 protein increased markedly in the adult period, while p21C IP 1 protein in atria was detectable only in the fetal period. While the activities of CDK6, CDK2 and cdc2 decreased markedly, the activity of CDK4 did not change from the fetal period to the adult period. Conclusion These findings indicate that marked reduction of protein levels and activities of cyclins and CDKs, and marked induction of p27KIP 1 in atria, are associated with the withdrawal of cardiac cell cycle in adult humans. PMID:9735660

  1. Oxaliplatin retains HMGB1 intranuclearly and ameliorates collagen type II-induced arthritis

    PubMed Central

    Östberg, Therese; Wähämaa, Heidi; Palmblad, Karin; Ito, Norimasa; Stridh, Pernilla; Shoshan, Maria; Lotze, Michael T; Harris, Helena Erlandsson; Andersson, Ulf

    2008-01-01

    Introduction High mobility group box chromosomal protein 1 (HMGB1) is a nuclear protein that acts as a pro-inflammatory mediator following extracellular release. The protein is aberrantly expressed extracellularly in the settings of clinical and experimental synovitis. Therapy based on HMGB1 antagonists has shown encouraging results in experimental arthritis and warrants further scientific exploration using independent methods. In the present study we asked whether nuclear sequestration of HMGB1 preventing HMGB1 release would be beneficial for synovitis treatment. Methods Oxaliplatin-based therapy was evaluated in collagen type II-induced arthritis in DBA/1 mice by clinical scoring and immunostaining of articular tissue. Oxaliplatin is an antineoplastic platinum-based compound that generates DNA adducts which tightly bind HMGB1. Secretion and intracellular location of HMGB1 were assessed by a novel HMGB1-specific ELISPOT assay and immunofluorescent staining. Results Intraperitoneal injections of oxaliplatin in early collagen type II-induced arthritis trapped HMGB1 with a distinct biphasic response pattern. Oxaliplatin therapy showed beneficial results for approximately 1 week. Microscopic evaluation of synovitis during this period showed strong nuclear HMGB1 staining in the oxaliplatin treated animals with much lower quantities of extracellular HMGB1 when compared to control treated animals. Furthermore, cellular infiltration, as well as cartilage and bone damage, were all reduced in the oxaliplatin treated group. A dramatic and as yet unexplained clinical relapse occurred later in the oxaliplatin exposed animals, which coincided with a massive synovial tissue expression of extracellular HMGB1 in all treated animals. This rebound-like reaction was also accompanied by a significantly increased incidence of arthritis in the oxaliplatin treated group. These results indicate a distinct temporal and spatial relationship between the clinical course of disease and the

  2. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Au, Giang H. T.; Y Shih, Wan; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control.

  3. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments

    PubMed Central

    Davidson, Patricia M.; Sliz, Josiah; Isermann, Philipp; Denais, Celine; Lammerding, Jan

    2015-01-01

    The ability of cells to migrate through tissues and interstitial space is an essential factor during development and tissue homeostasis, immune cell mobility, and in various human diseases. Deformation of the nucleus and its associated lamina during 3-D migration is gathering increasing interest in the context of cancer metastasis, with the underlying hypothesis that a softer nucleus, resulting from reduced levels of lamin A/C, may aid tumour spreading. However, current methods to study the migration of cells in confining three dimensional (3-D) environments are limited by their imprecise control over the confinement, physiological relevance, and/or compatibility with high resolution imaging techniques. We describe the design of a polydimethylsiloxane (PDMS) microfluidic device composed of channels with precisely-defined constrictions mimicking physiological environments that enable high resolution imaging of live and fixed cells. The device promotes easy cell loading and rapid, yet long-lasting (>24 hours) chemotactic gradient formation without the need for continuous perfusion. Using this device, we obtained detailed, quantitative measurements of dynamic nuclear deformation as cells migrate through tight spaces, revealing distinct phases of nuclear translocation through the constriction, buckling of the nuclear lamina, and severe intranuclear strain. Furthermore, we found that lamin A/C-deficient cells exhibited increased and more plastic nuclear deformations compared to wild-type cells but only minimal changes in nuclear volume, implying that low lamin A/C levels facilitate migration through constrictions by increasing nuclear deformability rather than compressibility. The integration of our migration devices with high resolution time-lapse imaging provides a powerful new approach to study intracellular mechanics and dynamics in a variety of physiologically-relevant applications, ranging from cancer cell invasion to immune cell recruitment. PMID:26549481

  4. Differential Somatostatin Receptor (SSTR) 1-5 Expression and Downstream Effectors in Histologic Subtypes of Growth Hormone Pituitary Tumors3.1

    PubMed Central

    Kiseljak-Vassiliades, Katja; Xu, Mei; Mills, Taylor; Smith, Elizabeth E.; Silveira, Lori J.; Lillehei, Kevin O.; Kerr, Janice M.; Kleinschmidt-DeMasters, B.K.; Wierman, Margaret E.

    2015-01-01

    Purpose The aim of this study was to examine whether differential expression of somatostatin receptors (SSTR) 1-5 and downstream effectors are different in densely (DG) and sparsely (SG) granulated histological growth hormone (GH) pituitary tumor subtypes. Methods The study included 33 acromegalic patients with 23 DG and 10 SG tumors. SSTR1-5 were measured by qPCR and immunoblotting. Signaling candidates downstream of SSTR2 were also assessed. Results SSTR2 mRNA and protein levels were significantly higher in DG compared to SG tumors. Downstream of SSTR2, p27kip1 was decreased (2.6-fold) in SG compared to DG tumors, suggesting a potential mechanism of SSA resistance in SG tumors with intact SSTR2 expression. Re-expression of E-cadherin in GH pituitary cell increased p27kip1 levels. Conclusions Histological subtyping correlated with SSTR2, E cadherin and p27 kip protein levels and these may serve as useful biomarkers in GH tumors to predict behavior and response to therapy with SSA. PMID:26391562

  5. Zinc-Dependent Interaction between JAB1 and Pre-S2 Mutant Large Surface Antigen of Hepatitis B Virus and Its Implications for Viral Hepatocarcinogenesis

    PubMed Central

    Hsu, Jye-Lin; Chuang, Woei-Jer; Su, Ih-Jen; Gui, Wen-Jun; Chang, Yu-Ying; Lee, Yun-Ping; Ai, Yu-Lin; Chuang, David T.

    2013-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The pre-S2 mutant large HBV surface protein (Δ2 LHBS), which contains an in-frame deletion of approximately 17 amino acids in LHBS, is highly associated with risks and prognoses of HBV-induced HCC. It was previously reported that Δ2 LHBS interacts with the Jun activation domain-binding protein 1 (JAB1), a zinc metalloprotease. This promotes the degradation of the cell cycle regulator p27Kip1 and is believed to be the major mechanism for Δ2 LHBS-induced HCC. In this study, it was found that the interaction between JAB1 and Δ2 LHBS is facilitated by divalent metal Zn2+ ions. The binding of JAB1 to Δ2 LHBS requires the JAB1/CSN5 MPN metalloenzyme (JAMM) motif and residue H138 that binds to Zn2+ ions in JAB1. Isothermal titration calorimetry showed that Δ2 LHBS binds directly to Zn2+ ions in a two-site binding mode. Residues H71 and H116 in Δ2 LHBS, which also contact Zn2+ ions, are also indispensable for Δ2 LHBS-mediated p27Kip1 degradation in human HuH7 cells. These results suggest that developing drugs that interrupt interactions between Δ2 LHBS and JAB1 can be used to mitigate Δ2 LHBS-associated risks for HCC. PMID:24049181

  6. Statin-induced depletion of geranylgeranyl pyrophosphate inhibits cell proliferation by a novel pathway of Skp2 degradation

    PubMed Central

    Vosper, Jonathan; Masuccio, Alessia; Kullmann, Michael; Ploner, Christian; Geley, Stephan; Hengst, Ludger

    2015-01-01

    Statins, such as lovastatin, can induce a cell cycle arrest in the G1 phase. This robust antiproliferative activity remains intact in many cancer cells that are deficient in cell cycle checkpoints and leads to an increased expression of CDK inhibitor proteins p27Kip1 and p21Cip1. The molecular details of this statin-induced growth arrest remains unclear. Here we present evidence that lovastatin can induce the degradation of Skp2, a subunit of the SCFSkp2 ubiquitin ligase that targets p27Kip1 and p21Cip1 for proteasomal destruction. The statin-induced degradation of Skp2 is cell cycle phase independent and does not require its well characterised degradation pathway mediated by APC/CCdh1- or Skp2 autoubiquitination. An N-terminal domain preceding the F-box of Skp2 is both necessary and sufficient for its statin mediated degradation. The degradation of Skp2 results from statin induced depletion of geranylgeranyl isoprenoid intermediates of cholesterol biosynthesis. Inhibition of geranylgeranyl-transferase-I also promotes APC/CCdh1-independent degradation of Skp2, indicating that de-modification of a geranylgeranylated protein triggers this novel pathway of Skp2 degradation. PMID:25605247

  7. An essential role for Ink4 and Cip/Kip cell-cycle inhibitors in preventing replicative stress

    PubMed Central

    Quereda, V; Porlan, E; Cañamero, M; Dubus, P; Malumbres, M

    2016-01-01

    Cell-cycle inhibitors of the Ink4 and Cip/Kip families are involved in cellular senescence and tumor suppression. These inhibitors are individually dispensable for the cell cycle and inactivation of specific family members results in increased proliferation and enhanced susceptibility to tumor development. We have now analyzed the consequences of eliminating a substantial part of the cell-cycle inhibitory activity in the cell by generating a mouse model, which combines the absence of both p21Cip1 and p27Kip1 proteins with the endogenous expression of a Cdk4 R24C mutant insensitive to Ink4 inhibitors. Pairwise combination of Cdk4 R24C, p21-null and p27-null alleles results in frequent hyperplasias and tumors, mainly in cells of endocrine origin such as pituitary cells and in mesenchymal tissues. Interestingly, complete abrogation of p21Cip1 and p27Kip1 in Cdk4 R24C mutant mice results in a different phenotype characterized by perinatal death accompanied by general hypoplasia in most tissues. This phenotype correlates with increased replicative stress in developing tissues such as the nervous system and subsequent apoptotic cell death. Partial inhibition of Cdk4/6 rescues replicative stress signaling as well as p53 induction in the absence of cell-cycle inhibitors. We conclude that one of the major physiological activities of cell-cycle inhibitors is to prevent replicative stress during development. PMID:26292757

  8. ARTD1 regulates cyclin E expression and consequently cell-cycle re-entry and G1/S progression in T24 bladder carcinoma cells.

    PubMed

    Léger, Karolin; Hopp, Ann-Katrin; Fey, Monika; Hottiger, Michael O

    2016-08-02

    ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27(Kip 1) protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27(Kip 1) stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.

  9. Nuclear factor of activated T cells (NFAT) signaling regulates PTEN expression and intestinal cell differentiation

    PubMed Central

    Wang, Qingding; Zhou, Yuning; Jackson, Lindsey N.; Johnson, Sara M.; Chow, Chi-Wing; Evers, B. Mark

    2011-01-01

    The nuclear factor of activated T cell (NFAT) proteins are a family of transcription factors (NFATc1–c4) involved in the regulation of cell differentiation and adaptation. Previously we demonstrated that inhibition of phosphatidylinositol 3-kinase or overexpression of PTEN enhanced intestinal cell differentiation. Here we show that treatment of intestinal-derived cells with the differentiating agent sodium butyrate (NaBT) increased PTEN expression, NFAT binding activity, and NFAT mRNA expression, whereas pretreatment with the NFAT signaling inhibitor cyclosporine A (CsA) blocked NaBT-mediated PTEN induction. Moreover, knockdown of NFATc1 or NFATc4, but not NFATc2 or NFATc3, attenuated NaBT-induced PTEN expression. Knockdown of NFATc1 decreased PTEN expression and increased the phosphorylation levels of Akt and downstream targets Foxo1 and GSK-3α/β. Furthermore, overexpression of NFATc1 or the NFATc4 active mutant increased PTEN and p27kip1 expression and decreased Akt phosphorylation. In addition, pretreatment with CsA blocked NaBT-mediated induction of intestinal alkaline phosphatase (IAP) activity and villin and p27kip1 expression; knockdown of either NFATc1 or NFATc4 attenuated NaBT-induced IAP activity. We provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation. PMID:21148296

  10. The predictive value of immunohistochemical markers in untreated Wilms' tumour: are they useful?

    PubMed

    Ghanem, Mazen A; van der Kwast, Theo H; Molenaar, W M; Safan, Manal A; Nijman, Rien J; van Steenbrugge, Gert Jan

    2013-08-01

    This study reevaluates the potential role of different tumour markers as prognostic indicators in untreated nephroblastoma. Expression of a broad panel of tumour markers was investigated by means of immunohistochemical analysis in 43 WT patients. Patients were treated by radical nephrectomy and had a mean follow-up of 11.9 years. Generally, all the tumour markers studied were expressed in normal kidney tissue and at variable levels in the three cell types of WT (blastema, epithelium and stroma). Immunoreactive blastemal (Bcl-X, Bcl-2 and CD44s) and epithelial (Bcl-X, Bcl-2 and MIB-1) cells were present in the majority of tumours. No correlation was found between their expression and pathological stages. Univariate analysis showed that blastemal WT-1, TGF-α, VEGF, MIB-1 and p27 Kip1 were indicative for clinical progression. In a multivariate analysis, WT-1 protein expression by blastemal cells was an independent prognostic marker for clinical progression. The blastemal WT-1, TGF-α, VEGF, MIB-1 and p27Kip1 expression correlate with clinical progression in untreated nephroblastoma. Therefore, their expression may be of value in identifying patients with a high propensity to develop distant metastases.

  11. E3 Ubiquitin Ligases as Molecular Targets in Human Oral Cancers.

    PubMed

    Masumoto, Kazuma; Kitagawa, Masatoshi

    2016-01-01

    The ubiquitin-proteasome pathway is involved in various biological processes. Several oncogenic E3 ligases target tumor suppressor proteins for ubiquitin-mediated degradation. Alternatively, some other E3 ligases play as a tumor suppressor specifically targeting oncogene products. Deregulation of these E3 ligases induces unbalance between oncogenic signal and tumor suppressor pathway and leads to cellular transformation, tumor growth and metastasis in various human malignancies including oral, and head and neck cancers. Facilitated degradation of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) has been observed in oral, and head and neck cancers, and is correlated with their poor prognosis. SCF(Skp2), KPC complex, Pirh2 and CRL4(DDB2-Artemis) have been reported as E3 ligases targeting p27(Kip1) for degradation. In oral cancers, it is reported that overexpression of Skp2 and Pirh2 is associated with poor prognosis. Thus, chemical inhibitors against these E3 ligases are applicable for oral cancer therapy. Some potential compounds that inhibit E3 ligase activity of SCF(Skp2) have been reported. Moreover, the HECT-type E3 ligase WWP family and Smurf1 are also involved in the development and growth of human oral cancers. Therefore, small molecule inhibitors against HECT-type E3 ligases are discussed as anti-oral cancer drugs.

  12. Pleomorphic carcinomas of the lung show a selective distribution of gene products involved in cell differentiation, cell cycle control, tumor growth, and tumor cell motility: a clinicopathologic and immunohistochemical study of 31 cases.

    PubMed

    Pelosi, Giuseppe; Fraggetta, Filippo; Nappi, Oscar; Pastorino, Ugo; Maisonneuve, Patrick; Pasini, Felice; Iannucci, Antonio; Solli, Piergiorgio; Musavinasab, Hossein S; De Manzoni, Giovanni; Terzi, Alberto; Viale, Giuseppe

    2003-09-01

    We investigated 31 cases of pleomorphic carcinomas of the lung, with a double component of neoplastic epithelial cells and of spindle and/or giant cells. To correlate the morphologic diversity of these two cell components with their immunophenotype, we evaluated the expression of several gene products involved in cell differentiation (cytokeratins, epithelial membrane antigen, carcinoembryonic antigen, vimentin, S-100 protein, smooth muscle actin, desmin), cell cycle control and apoptosis (p53, p21Waf1, p27Kip1, FHIT), tumor growth (proliferative fraction, assessed by Ki-67 antigen, and microvascular density, assessed by CD34 immunostaining), and tumor cell motility (fascin). We found the epithelial component to be significantly more immunoreactive for cytokeratins, epithelial membrane antigen, carcinoembryonic antigen, cell cycle inhibitors p21Waf1, p27Kip1 and tumor suppressor gene FHIT, whereas the sarcomatoid component, independent of tumor stage and size, was more immunoreactive for vimentin, fascin, and microvascular density. Accordingly, we suggest a model of tumorigenesis whereby the mesenchymal phenotype of pleomorphic cells is likely induced by the selective activation and segregation of several molecules involved in cell differentiation, cell cycle control, and tumor cell growth and motility. Whether pleomorphic carcinomas of the lung are tumors with a dismal prognosis still remains an unsettled issue. In our series, however, stage I pleomorphic carcinomas have the same clinical behavior as ordinary non-small cell lung cancer, and only a high proliferative index (Ki-67 labeling index >35%) is associated with a worse prognosis in these tumors.

  13. BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3.

    PubMed

    Nakayama, Joji; Yamamoto, Mutsumi; Hayashi, Katsuhiko; Satoh, Hitoshi; Bundo, Kenji; Kubo, Masato; Goitsuka, Ryo; Farrar, Michael A; Kitamura, Daisuke

    2009-02-12

    Pre-B-cell leukemia spontaneously develops in BLNK-deficient mice, and pre-B-cell acute lymphoblastic leukemia cells in children often lack BLNK protein expression, demonstrating that BLNK functions as a tumor suppressor. However, the mechanism by which BLNK suppresses pre-B-cell leukemia, as well as the identification of other genetic alterations that collaborate with BLNK deficiency to cause leukemogenesis, are still unknown. Here, we demonstrate that the JAK3/STAT5 signaling pathway is constitutively activated in pre-B leukemia cells derived from BLNK(-/-) mice, mostly due to autocrine production of IL-7. Inhibition of IL-7R signaling or JAK3/STAT5 activity resulted in the induction of p27(kip1) expression and cell-cycle arrest, accompanied by apoptosis in the leukemia cells. Transgene-derived constitutively active STAT5 (STAT5b-CA) strongly synergized with the loss of BLNK to initiate leukemia in vivo. In the leukemia cells, exogenously expressed BLNK inhibited autocrine JAK3/STAT5 signaling, resulting in p27(kip1) induction, cell-cycle arrest, and apoptosis. BLNK-inhibition of JAK3 was dependent on the binding of BLNK to JAK3. These data indicate that BLNK normally regulates IL-7-dependent proliferation and survival of pre-B cells through direct inhibition of JAK3. Thus, somatic loss of BLNK and concomitant mutations leading to constitutive activation of Jak/STAT5 pathway result in the generation of pre-B-cell leukemia.

  14. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    PubMed Central

    da Silva, Tereza Cristina; Cogliati, Bruno; Latorre, Andréia Oliveira; Akisue, Gokithi; Nagamine, Márcia Kazumi; Haraguchi, Mitsue; Hansen, Daiane; Sanches, Daniel Soares; Dagli, Maria Lúcia Zaidan

    2015-01-01

    Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng) show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation. PMID:26075002

  15. New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles

    NASA Astrophysics Data System (ADS)

    Boudard, A.; Cugnon, J.; David, J.-C.; Leray, S.; Mancusi, D.

    2013-01-01

    The new version (incl4.6) of the Liège intranuclear cascade (INC) model for the description of spallation reactions is presented in detail. Compared to the standard version (incl4.2), it incorporates several new features, the most important of which are: (i) the inclusion of cluster production through a dynamical phase space coalescence model, (ii) the Coulomb deflection for entering and outgoing charged particles, (iii) the improvement of the treatment of Pauli blocking and of soft collisions, (iv) the introduction of experimental threshold values for the emission of particles, (v) the improvement of pion dynamics, (vi) a detailed procedure for the treatment of light-cluster-induced reactions taking care of the effects of binding energy of the nucleons inside the incident cluster and of the possible fusion reaction at low energy. Performances of the new model concerning nucleon-induced reactions are illustrated by a comparison with experimental data covering total reaction cross sections, neutron, proton, pion, and composite double-differential cross-sections, neutron multiplicities, residue mass and charge distributions, and residue recoil velocity distributions. Whenever necessary, the incl4.6 model is coupled to the ABLA07 de-excitation model and the respective merits of the two models are then tentatively disentangled. Good agreement is generally obtained in the 200 MeV to 2 GeV range. Below 200 MeV and down to a few tens of MeV, the total reaction cross section is well reproduced and differential cross sections are reasonably well described. The model is also tested for light-ion induced reactions at low energy, below 100 MeV incident energy per nucleon. Beyond presenting the update of the incl4.2 model, attention has been paid to applications of the new model to three topics for which some particular aspects are discussed for the first time. The first topic is the production of clusters heavier than alpha particle. It is shown that the energy spectra of

  16. [NESPRINS--nuclear envelope proteins ensuring integrity].

    PubMed

    Pershina, E G; Morozova, K N; Kiseleva, E V

    2014-01-01

    This review describes the nesprins (nuclear envelope spectrin-repeat proteins), which are recently discovered family of nuclear envelope proteins. These proteins play an important role in maintaining the cellular architecture and establish the link between the nucleus and other sub-cellular compartments. Many tissue-specific diseases including lipodystrophies, hearing loss, cardiac and skeletal myopathies are associated with nesprins mutations. These proteins comprise of multiple tissue specific isoforms which contain spectrin repeats providing interaction of nesprins with other nuclear membrane proteins, cytoskeleton and intranuclear matrix. We summarize recent findings and suggestions about nesprins structural organization and function inside the cell. Human diseases caused by abnormal nesprins expression are also described.

  17. Identification and Characterization of Mechanism of Action of P61-E7, a Novel Phosphine Catalysis-Based Inhibitor of Geranylgeranyltransferase-I

    PubMed Central

    Chan, Lai N.; Fiji, Hannah D. G.; Watanabe, Masaru; Kwon, Ohyun; Tamanoi, Fuyuhiko

    2011-01-01

    Small molecule inhibitors of protein geranylgeranyltransferase-I (GGTase-I) provide a promising type of anticancer drugs. Here, we first report the identification of a novel tetrahydropyridine scaffold compound, P61-E7, and define effects of this compound on pancreatic cancer cells. P61-E7 was identified from a library of allenoate-derived compounds made through phosphine-catalyzed annulation reactions. P61-E7 inhibits protein geranylgeranylation and blocks membrane association of geranylgeranylated proteins. P61-E7 is effective at inhibiting both cell proliferation and cell cycle progression, and it induces high p21CIP1/WAF1 level in human cancer cells. P61-E7 also increases p27Kip1 protein level and inhibits phosphorylation of p27Kip1 on Thr187. We also report that P61-E7 treatment of Panc-1 cells causes cell rounding, disrupts actin cytoskeleton organization, abolishes focal adhesion assembly and inhibits anchorage independent growth. Because the cellular effects observed pointed to the involvement of RhoA, a geranylgeranylated small GTPase protein shown to influence a number of cellular processes including actin stress fiber organization, cell adhesion and cell proliferation, we have evaluated the significance of the inhibition of RhoA geranylgeranylation on the cellular effects of inhibitors of GGTase-I (GGTIs). Stable expression of farnesylated RhoA mutant (RhoA-F) results in partial resistance to the anti-proliferative effect of P61-E7 and prevents induction of p21CIP1/WAF1 and p27Kip1 by P61-E7 in Panc-1 cells. Moreover, stable expression of RhoA-F rescues Panc-1 cells from cell rounding and inhibition of focal adhesion formation caused by P61-E7. Taken together, these findings suggest that P61-E7 is a promising GGTI compound and that RhoA is an important target of P61-E7 in Panc-1 pancreatic cancer cells. PMID:22028818

  18. On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3.

    PubMed

    Seidel, Kay; Siswanto, Sonny; Fredrich, Michaela; Bouzrou, Mohamed; den Dunnen, Wilfred F A; Özerden, Inci; Korf, Horst-Werner; Melegh, Bela; de Vries, Jeroen J; Brunt, Ewout R; Auburger, Georg; Rüb, Udo

    2017-05-01

    The polyglutamine (polyQ) diseases are a group of genetically and clinically heterogeneous neurodegenerative diseases, characterized by the expansion of polyQ sequences in unrelated disease proteins, which form different types of neuronal aggregates. The aim of this study was to characterize the aggregation pathology in the brainstem of spinocerebellar ataxia type 2 (SCA2) and 3 (SCA3) patients. For good recognition of neurodegeneration and rare aggregates, we employed 100 µm PEG embedded brainstem sections, which were immunostained with the 1C2 antibody, targeted at polyQ expansions, or with an antibody against p62, a reliable marker of protein aggregates. Brainstem areas were scored semiquantitatively for neurodegeneration, severity of granular cytoplasmic staining (GCS) and frequency of neuronal nuclear inclusions (NNI). SCA2 and SCA3 tissue exhibited the same aggregate types and similar staining patterns. Several brainstem areas showed statistically significant differences between disease groups, whereby SCA2 showed more severe GCS and SCA3 showed more numerous NNI. We observed a positive correlation between GCS severity and neurodegeneration in SCA2 and SCA3 and an inverse correlation between the frequency of NNI and neurodegeneration in SCA3. Although their respective disease proteins are unrelated, SCA2 and SCA3 showed the same aggregate types. Apparently, the polyQ sequence alone is sufficient as a driver of protein aggregation. This is then modified by protein context and intrinsic properties of neuronal populations. The severity of GCS was the best predictor of neurodegeneration in both disorders, while the inverse correlation of neurodegeneration and NNI in SCA3 tissue implies a protective role of these aggregates. © 2016 International Society of Neuropathology.

  19. N-myc downstream regulated 1 (NDRG1) is regulated by eukaryotic initiation factor 3a (eIF3a) during cellular stress caused by iron depletion.

    PubMed

    Lane, Darius J R; Saletta, Federica; Suryo Rahmanto, Yohan; Kovacevic, Zaklina; Richardson, Des R

    2013-01-01

    Iron is critical for cellular proliferation and its depletion leads to a suppression of both DNA synthesis and global translation. These observations suggest that iron depletion may trigger a cellular "stress response". A canonical response of cells to stress is the formation of stress granules, which are dynamic cytoplasmic aggregates containing stalled pre-initiation complexes that function as mRNA triage centers. By differentially prioritizing mRNA translation, stress granules allow for the continued and selective translation of stress response proteins. Although the multi-subunit eukaryotic initiation factor 3 (eIF3) is required for translation initiation, its largest subunit, eIF3a, may not be essential for this activity. Instead, eIF3a is a vital constituent of stress granules and appears to act, in part, by differentially regulating specific mRNAs during iron depletion. Considering this, we investigated eIF3a's role in modulating iron-regulated genes/proteins that are critically involved in proliferation and metastasis. In this study, eIF3a was down-regulated and recruited into stress granules by iron depletion as well as by the classical stress-inducers, hypoxia and tunicamycin. Iron depletion also increased expression of the metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), and a known downstream repressed target of eIF3a, namely the cyclin-dependent kinase inhibitor, p27(kip1). To determine if eIF3a regulates NDRG1 expression, eIF3a was inducibly over-expressed or ablated. Importantly, eIF3a positively regulated NDRG1 expression and negatively regulated p27(kip1) expression during iron depletion. This activity of eIF3a could be due to its recruitment to stress granules and/or its ability to differentially regulate mRNA translation during cellular stress. Additionally, eIF3a positively regulated proliferation, but negatively regulated cell motility and invasion, which may be due to the eIF3a-dependent changes in expression of NDRG1 and p27

  20. Acute damage by naphthalene triggers expression of the neuroendocrine marker PGP9.5 in airway epithelial cells

    PubMed Central

    Poulsen, Thomas T.; Naizhen, Xu; Poulsen, Hans S.; Linnoila, R. Ilona

    2008-01-01

    Protein Gene Product 9.5 (PGP9.5) is highly expressed in nervous tissue. Recently PGP9.5 expression has been found to be upregulated in the pulmonary epithelium of smokers and in non-small cell lung cancer, suggesting that it also plays a role in carcinogen-inflicted lung epithelial injury and carcinogenesis. We investigated the expression of PGP9.5 in mice in response to two prominent carcinogens found in tobacco smoke: Naphthalene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). By immunostaining, we found that PGP9.5 protein was highly expressed throughout the airway epithelium in the days immediately following a single injection of naphthalene. In contrast, PGP9.5 was exclusively confined to neurons and neuroendocrine cells in the control and NNK-exposed lungs. Furthermore, we investigated the expression of PGP9.5 mRNA in the lungs by quantitative RT-PCR (qPCR). PGP9.5 mRNA expression was highly upregulated in the days immediately following naphthalene injection and gradually returning to that of control mice 5 days after naphthalene injection. In contrast, exposure to NNK did not result in a significant increase in PGP9.5 mRNA 10 weeks after exposure. No increased expression of two other neuroendocrine markers was found in the non-neuroendocrine epithelial cells after naphthalene exposure. In contrast, immunostaining for the cell cycle regulator p27Kip1, which has previously been associated with PGP9.5 in lung cancer cells, revealed transient downregulation of p27Kip1 in naphthalene exposed airways compared to controls, indicating that the rise in PGP9.5 in the airway epithelium is related to downregulation of p27Kip1. This study is the first to specifically identify the carcinogen naphthalene as an inducer of PGP9.5 expression in non-neuroendocrine epithelium after acute lung injury and further strengthens the accumulating evidence of PGP9.5 as a central player in lung epithelial damage and early carcinogenesis. PMID:18687389

  1. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer.

    PubMed

    Yu, Sheng-Yung; Liao, Chiung-Ho; Chien, Ming-Hsien; Tsai, Tsung-Yu; Lin, Jen-Kun; Weng, Meng-Shih

    2014-03-05

    Garcinol, a polyisoprenylated benzophenone, from Garcinia indica fruit rind has possessed anti-inflammatory, antioxidant, antiproliferation, and anticancer activities. However, the anticancer mechanisms of garcinol in lung cancer were still unclear. Therefore, we examine the effects of garcinol on antiproliferation in human lung cancer cells. Treatments with garcinol for 24 h exhibited morphological changes and inhibited the proliferation of H460 (p53-wild type) and H1299 (p53-null) cells in dose- and time-dependent manners. Furthermore, a significant G1 cell cycle arrest was observed in a dose-dependent treatment after H1299 cells were exposed in garcinol, whereas garcinol induced apoptosis rather than cell cycle arrest in H460 cells. Moreover, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), cyclin D1, and cyclin D3 were decreased, although cyclin E and cyclin-dependent kinase 6 (CDK6) were increased in garcinol-treated H1299 cells. Meanwhile, the protein levels of CDK inhibitors p21(Waf1/Cip1) and p27(KIP1) also exhibited upregulation after garcinol treatments. The enhanced protein-associated level between p21(Waf1/Cip1) and CDK4/2 rather than p27(KIP1) and CDK4/2 was demonstrated in garcinol-treated cells. Additionally, knock-down p21(Waf1/Cip1) by specific siRNA competently prevented garcinol-induced G1 arrest. Besides, garcinol also inhibited ERK and p38-MAPK activations in time-dependent mode. The pretreatment with p38-MAPK inhibitor but not ERK inhibitor raised garcinol-induced G1 population cells. Co-treatment with p38-MAPK inhibitor and garcinol synergistically elevated cyclin E, p21(Waf1/Cip1), and p27(Kip1) expressions. Meanwhile, overexpression dominant negative p38-MAPK also enhanced garcinol-induced p21(Waf1/Cip1) expression in H1299 cells. Accordingly, our data suggested that garcinol induced G1 cell cycle arrest and apoptosis in lung cancer cells under different p53 statuses. The p53-independent G1 cell cycle arrest induced by

  2. The Liège Intranuclear Cascade model - Towards a unified description of nuclear reactions induced by nucleons and light ions from a few MeV to a few GeV

    NASA Astrophysics Data System (ADS)

    Cugnon, Joseph; Boudard, Alain; David, Jean-Christophe; Leray, Sylvie; Mancusi, Davide

    2014-03-01

    The predictive power of the last version INCL4.6 of the Liège Intranuclear Cascade model for spallation is reviewed. The good results obtained both at low and high energy extend the domain of validity of the model and allow the description of spallation reactions, except the coherent processes, by a unique model from a few MeV to a few GeV incident energy.

  3. Recruitment of hepatocyte nuclear factor 4 into specific intranuclear compartments depends on tyrosine phosphorylation that affects its DNA-binding and transactivation potential.

    PubMed Central

    Ktistaki, E; Ktistakis, N T; Papadogeorgaki, E; Talianidis, I

    1995-01-01

    Hepatocyte nuclear factor 4 (HNF-4) is a prominent member of the family of liver-enriched transcription factors, playing a role in the expression of a large number of liver-specific genes. We report here that HNF-4 is a phosphoprotein and that phosphorylation at tyrosine residue(s) is important for its DNA-binding activity and, consequently, for its transactivation potential both in cell-free systems and in cultured cells. Tyrosine phosphorylation did not affect the transport of HNF-4 from the cytoplasm to the nucleus but had a dramatic effect on its subnuclear localization. HNF-4 was concentrated in distinct nuclear compartments, as evidenced by in situ immunofluorescence and electron microscopy. This compartmentalization disappeared when tyrosine phosphorylation was inhibited by genistein. The correlation between the intranuclear distribution of HNF-4 and its ability to activate endogenous target genes demonstrates a phosphorylation signal-dependent pathway in the regulation of transcription factor activity. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7568236

  4. Intranuclear cascade-percolation approach for protons and light fragments production in neon-niobium reactions at 400 and 800 MeV per nucleon

    SciTech Connect

    Montarou, G.; Marroncle, J.; Alard, J.P.; Augerat, J.; Bastid, N.; Charmensat, P.; Dupieux, P.; Fraysse, L.; Parizet, M.J.; Rahmani, A. ); Babinet, R.; Cavata, C.; Demoulins, M.; Fanet, H.; Gosset, J.; L'Hote, D.; Lemaire, M.C.; Lucas, B.; Poitou, J.; Valette, O. ); Brochard, F.; Gorodetzky, P.; Racca, C. ); Cugnon, J. )

    1993-06-01

    The results of intranuclear cascade calculations (ideal gas with two-body collisions and no mean field), complemented by a simple percolation procedure, are compared with experimental data on protons and light nuclear fragments ([ital d], [ital t], [sup 3]He, and [sup 4]He) measured in 400 and 800 MeV/nucleon Ne+Nb collisions using a large solid angle detector. The model reproduces quite well global experimental observables like nuclear fragment multiplicity distributions or production cross sections, and nuclear fragment to proton ratios. For rapidity distributions the best agreement occurs for peripheral reactions. Transverse momentum analysis confirms once again that the cascade, although being a microscopic approach, gives too small a collective flow, the best agreement being reached for [ital Z]=2 nuclear fragments. Nevertheless these comparisons are encouraging for further improvements of the model. Moreover, such an approach is easy to extend to any other models that could calculate the nucleon phase space distribution after the compression stage of the reaction, when light nuclear fragments emitted at large angles are constructed from percolation.

  5. Identification of Autographa californica nucleopolyhedrovirus ac93 as a core gene and its requirement for intranuclear microvesicle formation and nuclear egress of nucleocapsids.

    PubMed

    Yuan, Meijin; Huang, Zhenqiu; Wei, Denghui; Hu, Zhaoyang; Yang, Kai; Pang, Yi

    2011-11-01

    Autographa californica nucleopolyhedrovirus (AcMNPV) orf93 (ac93) is a highly conserved uncharacterized gene that is found in all of the sequenced baculovirus genomes except for Culex nigripalpus NPV. In this report, using bioinformatics analyses, ac93 and odv-e25 (ac94) were identified as baculovirus core genes and thus p33-ac93-odv-e25 represent a cluster of core genes. To investigate the role of ac93 in the baculovirus life cycle, an ac93 knockout AcMNPV bacmid was constructed via homologous recombination in Escherichia coli. Fluorescence and light microscopy showed that the AcMNPV ac93 knockout did not spread by infection, and titration assays confirmed a defect in budded virus (BV) production. However, deletion of ac93 did not affect viral DNA replication. Electron microscopy indicated that ac93 was required for the egress of nucleocapsids from the nucleus and the formation of intranuclear microvesicles, which are precursor structures of occlusion-derived virus (ODV) envelopes. Immunofluorescence analyses showed that Ac93 was concentrated toward the cytoplasmic membrane in the cytoplasm and in the nuclear ring zone in the nucleus. Western blot analyses showed that Ac93 was associated with both nucleocapsid and envelope fractions of BV, but only the nucleocapsid fraction of ODV. Our results suggest that ac93, although not previously recognized as a core gene, is one that plays an essential role in the formation of the ODV envelope and the egress of nucleocapsids from the nucleus.

  6. Hydroxyurea-induced replication stress causes poly(ADP-ribose) polymerase-2 accumulation and changes its intranuclear location in root meristems of Vicia faba.

    PubMed

    Rybaczek, Dorota

    2016-07-01

    Replication stress induced by 24 and 48h exposure to 2.5mM hydroxyurea (HU) increased the activity of poly(ADP-ribose) polymerase-2 (PARP-2; EC 2.4.2.30) in root meristem cells of Vicia faba. An increase in the number of PARP-2 foci was accompanied by their delocalization from peripheral areas to the interior of the nucleus. Our results indicate that the increase in PARP-2 was connected with an increase in S139-phosphorylated H2AX histones. The findings suggest the possible role of PARP-2 in replication stress. We also confirm that the intranuclear location of PARP-2 depends on the duration of HU-induced replication stress, confirming the role of PARP-2 as an indicator of stress intensity. Finally, we conclude that the more intense the HU-mediated replication stress, the greater the probability of PARP-2 activation or H2AXS139 phosphorylation, but also the greater the chance of increasing the efficiency of repair processes and a return to normal cell cycle progression.

  7. Markers for Sebaceoma Show a Spectrum of Cell Cycle Regulators, Tumor Suppressor Genes, and Oncogenes

    PubMed Central

    Velez, Ana Maria Abreu; Howard, Michael S; Kim, Jinah; Googe, Paul B

    2015-01-01

    Background: Sebaceoma is a tumor for which the causative oncogenes are not well-understood. Sebaceomas demonstrate some histopathologic features similar to basal cell carcinoma (BCC), such as palisading borders and basaloid cells with additional features, including foamy cytoplasm and indented nuclei. Aims: We examine multiple cell-cycle, oncogene, and tumor suppressor gene markers in sebaceomas, to try to find some suitable biological markers for this tumor, and compare with other published studies. Materials and Methods: We investigated a panel of immunohistochemical (IHC) stains that are important for cellular signaling, including a cell cycle regulator, tumor suppressor gene, oncogene, hormone receptor, and genomic stability markers in our cohort of sebaceomas. We collected 30 sebaceomas from three separate USA dermatopathology laboratories. The following IHC panel: Epithelial membrane antigen (EMA)/CD227, cytokeratin AE1/AE3, cyclin D1, human breast cancer 1 protein (BRCA-1), C-erb-2, Bcl-2, human androgen receptor (AR), cyclin-dependent kinase inhibitor 1B (p27kip1), p53, topoisomerase II alpha, proliferating cell nuclear antigen, and Ki-67 were tested in our cases. Results: EMA/CD227 was positive in the well-differentiated sebaceomas (13/30). Cyclin-dependent kinase inhibitor 1B was positive in tumors with intermediate differentiation (22/30). The less well-differentiated tumors failed to stain with EMA and AR. Most of the tumors with well-differentiated palisaded areas demonstrated positive staining for topoisomerase II alpha, p27kip1, and p53, with positive staining in tumoral basaloid areas (22/30). Numerous tumors were focally positive with multiple markers, indicating a significant degree of variability in the complete group. Conclusions: Oncogenes, tumor suppressor genes, cell cycle regulators, and hormone receptors are variably expressed in sebaceomas. Our results suggest that in these tumors, selected marker staining seems to correlate with tumor

  8. Pirh2: an E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation.

    PubMed

    Halaby, Marie-jo; Hakem, Razqallah; Hakem, Anne

    2013-09-01

    Ubiquitylation is currently recognized as a major posttranslational modification that regulates diverse cellular processes. Pirh2 is a ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. Here we review the role of Pirh2 as a regulator of the DNA damage response through the ubiquitylation of p53, Chk2, p73, and PolH. By ubiquitylating these proteins, Pirh2 regulates cell cycle checkpoints and cell death in response to DNA double-strand breaks or the formation of bulky DNA lesions. We also discuss how Pirh2 affects cell proliferation and differentiation in unstressed conditions through ubiquitylation and degradation of c-Myc, p63, and p27(kip1). Finally, we link these different functions of Pirh2 to its role as a tumor suppressor in mice and as a prognosis marker in various human cancer subtypes.

  9. Dysregulated expression of SKP2 and its role in hematological malignancies.

    PubMed

    Kulinski, Michal; Achkar, Iman W; Haris, Mohammad; Dermime, Said; Mohammad, Ramzi M; Uddin, Shahab

    2017-08-10

    S-phase kinase-associated protein 2 (SKP2) is a well-studied F-box protein and a critical part of the Skp1-Cul1-Fbox (SCF) E3 ligase complex. It controls cell cycle by regulating the expression level of p27 and p21 through ubiquitination and proteasomal degradation. SKP2-mediated loss of p27Kip1 is associated with poor clinical outcome in various types of cancers including hematological malignancies. It is however well established that SKP2 is an oncogene, and its targeting may be an attractive therapeutic strategy for the management of hematological malignancies. In this article, we have highlighted the recent findings from our group and other investigators regarding the role of SKP2 in the pathogenesis of hematological malignancies.

  10. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  11. Sigma-1 receptor is involved in degradation of intranuclear inclusions in a cellular model of Huntington's disease.

    PubMed

    Miki, Yasuo; Tanji, Kunikazu; Mori, Fumiaki; Wakabayashi, Koichi

    2015-02-01

    The sigma-1 receptor (SIGMAR1) is one of the endoplasmic reticulum (ER) chaperones, which participate in the degradation of misfolded proteins via the ER-related degradation machinery linked to the ubiquitin-proteasome pathway. ER dysfunction in the formation of inclusion bodies in various neurodegenerative diseases has also become evident. Recently, we demonstrated that accumulation of SIGMAR1 was common to neuronal nuclear inclusions in polyglutamine diseases including Huntington's disease. Our study also indicated that SIGMAR1 might shuttle between the cytoplasm and the nucleus. In the present study, we investigated the role of SIGMAR1 in nuclear inclusion (NI) formation, using HeLa cells transfected with N-terminal mutant huntingtin. Cell harboring the mutant huntingtin produced SIGMAR1-positive NIs. SIGMAR1 siRNA and a specific inhibitor of the proteasome (epoxomicin) caused significant accumulation of aggregates in the cytoplasm and nucleus. A specific inhibitor of exportin 1 (leptomycin B) also caused NIs. Huntingtin became insolubilized in Western blot analysis after treatments with SIGMAR1 siRNA and epoxomicin. Furthermore, proteasome activity increased chronologically along with the accumulation of mutant huntingtin, but was significantly reduced in cells transfected with SIGMAR1 siRNA. By contrast, overexpression of SIGMAR1 reduced the accumulation of NIs containing mutant huntingtin. Although the LC3-I level was decreased in cells treated with both SIGMAR1 siRNA and control siRNA, the levels of LC3-II and p62 were unchanged. SIGMAR1 agonist and antagonist had no effect on cellular viability and proteasome activity. These findings suggest that the ubiquitin-proteasome pathway is implicated in NI formation, and that SIGMAR1 degrades aberrant proteins in the nucleus via the ER-related degradation machinery. SIGMAR1 might be a promising candidate for therapy of Huntington's disease.

  12. Rho/ROCK signaling in regulation of corneal epithelial cell cycle progression.

    PubMed

    Chen, Jian; Guerriero, Emily; Lathrop, Kira; SundarRaj, Nirmala

    2008-01-01

    The authors' previous study showed that the expression of a Rho-associated serine/threonine kinase (ROCK) is regulated during cell cycle progression in corneal epithelial cells. The present study was conducted to determine whether and how Rho/ROCK signaling regulates cell cycle progression. Rabbit corneal epithelial cells (RCECs) in culture were arrested in the G(0) phase of the cell cycle by serum deprivation and then allowed to re-enter the cell cycle in the presence or absence of the ROCK inhibitor (Y27632) in serum-supplemented medium. The number of cells in the S phase, the relative levels of specific cyclins and CDKs and their intracellular distribution, and the relative levels of mRNAs were determined by BrdU labeling, Western blot and immunocytochemical analyses, and real-time RT-PCR, respectively. ROCK inhibition delayed the progression of G(1) to S phase and led to a decrease in the number of RCECs entering the S phase between 12 and 24 hours from 31.5% +/- 4.5% to 8.1% +/- 2.6%. During the cell cycle progression, protein and mRNA levels of cyclin-D1 and -D3 and cyclin-dependent kinases CDK4 and CDK6 were significantly lower, whereas the protein levels of the CDK inhibitor p27(Kip1) were higher in ROCK-inhibited cells. Intracellular mRNA or protein levels of cyclin-E and protein levels of CDK2 were not significantly affected, but their nuclear translocation was delayed by ROCK inhibition. ROCK signaling is involved in cell cycle progression in RCECs, possibly by upregulation of cyclin-D1 and -D3 and CDK4, -6, and -2; nuclear translocation of CDK2 and cyclin-E; and downregulation of p27(Kip1).

  13. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP).

    PubMed

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E

    2012-10-26

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.

  14. The RB-E2F1 Pathway Regulates Autophagy

    PubMed Central

    Jiang, Hong; Martin, Vanesa; Gomez-Manzano, Candelaria; Johnson, David G.; Alonso, Marta; White, Erin; Xu, Jing; McDonnell, Timothy J.; Shinojima, Naoki; Fueyo, Juan

    2011-01-01

    Autophagy is a protective mechanism that renders cells viable in stressful conditions. Emerging evidence suggests that this cellular process is also a tumor suppressor pathway. Previous studies showed that cyclin-dependent kinase inhibitors (CDKI) induce autophagy. Whether retinoblastoma protein (RB), a key tumor suppressor and downstream target of CDKIs, induces autophagy is not clear. Here, we show that RB triggers autophagy and that the RB activators p16INK4a and p27/kip1 induce autophagy in an RB-dependent manner. RB binding to E2 transcription factor (E2F) is required for autophagy induction and E2F1 antagonizes RB-induced autophagy, leading to apoptosis. Downregulation of E2F1 in cells results in high levels of autophagy. Our findings indicate that RB induces autophagy by repressing E2F1 activity. We speculate that this newly discovered aspect of RB function is relevant to cancer development and therapy. PMID:20807803

  15. Kick-starting the cell cycle: From growth-factor stimulation to initiation of DNA replication

    NASA Astrophysics Data System (ADS)

    Aguda, Baltazar D.

    2001-03-01

    The essential genes, proteins and associated regulatory networks involved in the entry into the mammalian cell cycle are identified, from activation of growth-factor receptors to intracellular signal transduction pathways that impinge on the cell cycle machinery and ultimately on the initiation of DNA replication. Signaling pathways mediated by the oncoproteins Ras and Myc induce the activation of cyclin-dependent kinases CDK4 and CDK2, and the assembly and firing of pre-replication complexes require a collaboration among E2F, CDK2, and Cdc7 kinase. A proposed core mechanism of the restriction point, the major checkpoint prior to commitment to DNA synthesis, involves cyclin E/CDK2, the phosphatase Cdc25A, and the CDK inhibitor p27Kip1.

  16. [Protein oxidation in the aging of skin fibroblasts].

    PubMed

    Grune, T

    2003-09-01

    The ageing process is accompanied by enhanced oxidative damage. All cellular components including proteins are affected by oxidation. Within the cell, the proteasome is responsible for the degradation of these oxidised proteins. During the ageing process this function of the proteasome is increasingly diminished, therefore oxidised proteins accumulate. Furthermore lipofuscin, a highly cross-linked and modified protein aggregate, is formed. This aggregate accumulates within cells and is able to inhibit the proteasome. The nucleus of the cells is less affected by these changes due to the lack of intranuclear lipofuscin accumulation.

  17. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms.

    PubMed

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang; Li, Rongshan

    2015-07-01

    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27(Kip1), p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27(Kip1) at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN.

  18. The expression of AIP-related molecules in elucidation of cellular pathways in pituitary adenomas.

    PubMed

    Heliövaara, Elina; Raitila, Anniina; Launonen, Virpi; Paetau, Anders; Arola, Johanna; Lehtonen, Heli; Sane, Timo; Weil, Robert J; Vierimaa, Outi; Salmela, Pasi; Tuppurainen, Karoliina; Mäkinen, Markus; Aaltonen, Lauri A; Karhu, Auli

    2009-12-01

    Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene predispose to the development of pituitary adenomas. Here, we characterized AIP mutation positive (AIPmut+) and AIP mutation negative (AIPmut-) pituitary adenomas by immunohistochemistry. The expressions of the AIP-related proteins aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), cyclin-dependent kinase inhibitor 1B encoding p27(Kip1), and hypoxia-inducible factor 1-alpha were examined in 14 AIPmut+ and 53 AIPmut- pituitary adenomas to detect possible expression differences. In addition, the expression of CD34, an endothelial and hematopoietic stem cell marker, was analyzed. We found ARNT to be less frequently expressed in AIPmut+ pituitary adenomas (P = 0.001), suggesting that AIP regulates the ARNT levels. AIP small interfering RNA-treated HeLa, HEK293, or Aip-null mouse embryonic fibroblast cells did not show lowered expression of ARNT. Instead, in the pituitary adenoma cell line GH3, Aip silencing caused a partial reduction of Arnt and a clear increase in cell proliferation. We also observed a trend for increased expression of nuclear AHR in AIPmut+ samples, although the difference was not statistically significant (P = 0.06). The expressions of p27(Kip1), hypoxia-inducible factor 1-alpha, or CD34 did not differ between tumor types. The present study shows that the expression of ARNT protein is significantly reduced in AIPmut+ tumors. We suggest that the down-regulation of ARNT may be connected to an imbalance in AHR/ARNT complex formation arising from aberrant cAMP signaling.

  19. Rare sugar D-allose enhances anti-tumor effect of 5-fluorouracil on the human hepatocellular carcinoma cell line HuH-7.

    PubMed

    Yamaguchi, Fuminori; Kamitori, Kazuyo; Sanada, Keiko; Horii, Mariko; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2008-09-01

    d-Allose is a novel anti-tumor monosaccharide that causes cell growth inhibition, specifically of the cancer cells, by inducing the tumor suppressor gene thioredoxin interacting protein (TXNIP). The commonly used anti-tumor drug, 5-fluorouracil (5-FU), blocks the cell cycle by inhibiting thymidylate synthase, and is also known to induce TXNIP gene expression. In this study, we examined the synergistic effect of d-allose and 5-FU and the role of TXNIP on cancer cell growth. The treatment of HuH-7 cells with d-allose or 5-FU inhibited the cell growth in a dose-dependent manner (75.2+/-2.7% with 50 mM d-allose and 66.1+/-2.7% with 0.5 mug/ml 5-FU) and d-allose enhanced the anti-tumor effect of 5-FU (55.3+/-1.1 %). TUNEL analysis did not show any evidence of apoptosis with either d-allose or 5-FU treatment. 5-FU suppressed the expression of p27(kip1), p53, and cyclin E, whereas d-allose induced p53 and reduced cyclins D, A, and E. The expression of p27(kip1) remained unchanged by d-allose at transcriptional level, but increased at the protein level suggesting an increase in protein stability by TXNIP. d-Allose and to a lesser extent 5-FU induced TXNIP expression significantly (808.4+/-122.9% and 186.8+/-32.9%, respectively) and the combination of both further enhanced TXNIP expression. As d-allose has no known side effects on normal cells, the combination of d-allose and 5-FU might be a potent candidate for cancer therapy.

  20. Functional regulation of D-type cyclins by insulin-like growth factor-I and serum in multiple myeloma cells.

    PubMed

    Glassford, Janet; Rabin, Neil; Lam, Eric W-F; Yong, Kwee L

    2007-10-01

    D-type cyclin genes are universally dysregulated in multiple myeloma (MM), but the functional consequences are unclear as D-type cyclin gene expression does not correlate with proliferation or disease progression. We examined the protein expression and regulation of D-type cyclins and other cell cycle regulators in human myeloma cell lines and primary CD138(+) plasma cells (PCs). Cyclin D1, cyclin D2, cyclin dependent kinase (CDK) 4, CDK6, p27(Kip1) p18(INK4C) and retinoblastoma protein (pRb) were absent in normal PCs, heterogeneously expressed in primary MM cells and positively correlated with disease activity/progression. Cyclins D1 and D2 complexed with both CDK4 and CDK6, suggesting that both phosphorylate pRb in MM. Furthermore, cyclin D2 expressed via either t(14;16) or t(4;14) IgH translocations was functionally upregulated by fetal calf serum or insulin-like growth factor-I, leading to pRb phosphorylation and cell cycle entry/progression, and in some cases inversely correlated with p27(Kip1). However, pRb phosphorylation and cell cycle progression mediated by cyclin D1 expressed via t(11;14) was less dependent on exogenous stimuli. These data suggest that the presence or absence of specific IgH translocations underlying aberrant D-type cyclin expression may influence their response to mitogens in the bone marrow microenvironment. We showed for the first time that D-type cyclins are functionally regulated in MM, differentially responsive to exogenous growth factors and upregulated with disease progression.

  1. In Vitro and in Vivo Anti-tumor Activity of miR-221/222 Inhibitors in Multiple Myeloma

    PubMed Central

    Di Martino, Maria Teresa; Gullà, Annamaria; Cantafio, Maria Eugenia Gallo; Lionetti, Marta; Leone, Emanuela; Amodio, Nicola; Guzzi, Pietro Hiram; Foresta, Umberto; Conforti, Francesco; Cannataro, Mario; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-01-01

    A rising body of evidence suggests that silencing microRNAs (miRNAs) with oncogenic potential may represent a successful therapeutic strategy for human cancer. We investigated the therapeutic activity of miR-221/222 inhibitors against human multiple myeloma (MM) cells. Enforced expression of miR-221/222 inhibitors triggered in vitro anti-proliferative effects and up-regulation of canonic miR-221/222 targets, including p27Kip1, PUMA, PTEN and p57Kip2, in MM cells highly expressing miR-221/222. Conversely, transfection of miR-221/222 mimics increased S-phase and down-regulated p27Kip1 protein expression in MM with low basal miR-221/222 levels. The effects of miR-221/222 inhibitors was also evaluated in MM xenografts in SCID/NOD mice. Significant anti-tumor activity was achieved in xenografted mice by the treatment with miR-221/222 inhibitors, together with up-regulation of canonic protein targets in tumors retrieved from animals. These findings provide proof of principle that silencing the miR-221/222 cluster exerts significant therapeutic activity in MM cells with high miR-221/222 level of expression, which mostly occurs in TC2 and TC4 MM groups. These findings suggest that MM genotyping may predict the therapeutic response. All together our results support a framework for clinical development of miR-221/222 inhibitors-based therapeutic strategy in this still incurable disease. PMID:23479461

  2. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax.

    PubMed

    Yang, Liangpeng; Kotomura, Naoe; Ho, Yik-Khuan; Zhi, Huijun; Bixler, Sandra; Schell, Michael J; Giam, Chou-Zen

    2011-03-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL), a malignancy of CD4(+) T cells whose etiology is thought to be associated with the viral trans-activator Tax. We have shown recently that Tax can drastically upregulate the expression of p27(Kip1) and p21(CIP1/WAF1) through protein stabilization and mRNA trans-activation and stabilization, respectively. The Tax-induced surge in p21(CIP1/WAF1) and p27(Kip1) begins in S phase and results in cellular senescence. Importantly, HeLa and SupT1 T cells infected by HTLV-1 also arrest in senescence, thus challenging the notion that HTLV-1 infection causes cell proliferation. Here we use time-lapse microscopy to investigate the effect of Tax on cell cycle progression in two reporter cell lines, HeLa/18x21-EGFP and HeLa-FUCCI, that express enhanced green fluorescent protein (EGFP) under the control of 18 copies of the Tax-responsive 21-bp repeat element and fluorescent ubiquitin cell cycle indicators, respectively. Tax-expressing HeLa cells exhibit elongated or stalled cell cycle phases. Many of them bypass mitosis and become single senescent cells as evidenced by the expression of senescence-associated β-galactosidase. Such cells have twice the normal equivalent of cellular contents and hence are enlarged, with exaggerated nuclei. Interestingly, nocodazole treatment revealed a small variant population of HeLa/18x21-EGFP cells that could progress into mitosis normally with high levels of Tax expression, suggesting that genetic or epigenetic changes that prevent Tax-induced senescence can occur spontaneously at a detectable frequency.

  3. In vitro and in vivo anti-tumor activity of miR-221/222 inhibitors in multiple myeloma.

    PubMed

    Di Martino, Maria Teresa; Gullà, Annamaria; Cantafio, Maria Eugenia Gallo; Lionetti, Marta; Leone, Emanuela; Amodio, Nicola; Guzzi, Pietro Hiram; Foresta, Umberto; Conforti, Francesco; Cannataro, Mario; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-02-01

    A rising body of evidence suggests that silencing microRNAs (miRNAs) with oncogenic potential may represent a successful therapeutic strategy for human cancer. We investigated the therapeutic activity of miR-221/222 inhibitors against human multiple myeloma (MM) cells. Enforced expression of miR-221/222 inhibitors triggered in vitro anti-proliferative effects and up-regulation of canonic miR-221/222 targets, including p27Kip1, PUMA, PTEN and p57Kip2, in MM cells highly expressing miR-221/222. Conversely, transfection of miR-221/222 mimics increased S-phase and down-regulated p27Kip1 protein expression in MM with low basal miR-221/222 levels. The effects of miR-221/222 inhibitors was also evaluated in MM xenografts in SCID/ NOD mice. Significant anti-tumor activity was achieved in xenografted mice by the treatment with miR-221/222 inhibitors, together with up-regulation of canonic protein targets in tumors retrieved from animals. These findings provide proof of principle that silencing the miR-221/222 cluster exerts significant therapeutic activity in MM cells with high miR-221/222 level of expression, which mostly occurs in TC2 and TC4 MM groups. These findings suggest that MM genotyping may predict the therapeutic response. All together our results support a framework for clinical development of miR-221/222 inhibitors-based therapeutic strategy in this still incurable disease.

  4. Chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury.

    PubMed

    Ando, Hideyuki; Fukuda, Noboru; Kotani, Motoko; Yokoyama, Shin ichiro; Kunimoto, Satoshi; Matsumoto, Koichi; Saito, Satoshi; Kanmatsuse, Katsuo; Mugishima, Hideo

    2004-01-12

    We designed and synthesized a chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor (TGF)-beta 1 mRNA and found that this ribozyme effectively and specifically inhibited growth of vascular smooth muscle cells. We examined the effects of the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA on neointima formation and investigated the underlying mechanism to develop a possible gene therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty. Expression of mRNAs encoding TGF-beta 1, p27kip1, and connective tissue growth factor (CTGF) in carotid artery increased after balloon injury. Fluorescein-isothiocyanate (FITC)-labeled ribozyme was taken up into the midlayer smooth muscle of the injured carotid artery. Both 2 and 5 mg of ribozyme reduced neointima formation by 65% compared to that of controls. Ribozyme markedly decreased expression of TGF-beta 1 mRNA and protein in injured vessel. Mismatch ribozyme had no effect on expression of TGF-beta 1 mRNA protein in injured vessel. Ribozyme markedly decreased expression of fibronectin, p27kip1, and CTGF mRNAs in injured vessel, whereas a mismatch ribozyme had no effect on these mRNAs. These findings indicate that the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury with suppression of TGF-beta 1 and inhibition of extracellular matrix and CTGF. In conclusion, the hammerhead ribozyme against TGF-beta 1 may have promise as a therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty.

  5. PKCθ promotes c-Rel–driven mammary tumorigenesis in mice and humans by repressing estrogen receptor α synthesis

    PubMed Central

    Belguise, Karine; Sonenshein, Gail E.

    2007-01-01

    The vast majority of primary human breast cancer tissues display aberrant nuclear NF-κB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor α (ERα) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCθ-Akt pathway that leads to downregulation of ERα synthesis and derepression of c-Rel. ERα levels were lower in c-Rel–induced mammary tumors compared with normal mammary gland tissue. PKCθ induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2α–driven mouse mammary tumor–derived cell lines. RNA expression levels of PKCθ and c-Rel target genes were inversely correlated with ERα levels in human breast cancer specimens. PKCθ activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERα and p27Kip1. Thus we have shown that activation of PKCθ inhibits the FOXO3a/ERα/p27Kip1 axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer. PMID:18037997

  6. Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer.

    PubMed

    Lee, Jeong-Yeon; Jang, Ki-Seok; Shin, Dong-Hui; Oh, Mi-Yun; Kim, Hyun-Jun; Kim, Yongseok; Kong, Gu

    2008-06-01

    Mel-18, a polycomb group (PcG) protein, has been suggested as a tumor suppressor in human breast cancer. Previously, we reported that Mel-18 has antiproliferative activity in breast cancer cells. However, its functional mechanism has not been fully elucidated. Here, we investigated the role of Mel-18 in human breast cancer. We saw an inverse correlation between Mel-18 and phospho-Akt, which were expressed at low and high levels, respectively, in primary breast tumor tissues from 40 breast cancer patients. The effect of Mel-18 on cell growth was examined in two breast cancer cell lines, SK-BR-3 and T-47D, which express relatively low and high levels of endogenous Mel-18, respectively. On Mel-18 overexpression in SK-BR-3 cells, cell growth was attenuated and G(1) arrest was observed. Likewise, suppression of Mel-18 by antisense expression in T-47D cells led to enhanced cell growth and accelerated G(1)-S phase transition. In these cells, cyclin-dependent kinase (Cdk)-4 and Cdk2 activities were affected by Mel-18, which were mediated by changes in cyclin D1 expression and p27(Kip1) phosphorylation at Thr(157), but not by INK4a/ARF genes. The changes were both dependent on the phosphatidylinositol 3-kinase/Akt signaling pathway. Akt phosphorylation at Ser(473) was reduced by Mel-18 overexpression in SK-BR-3 cells and enhanced by Mel-18 suppression in T-47D cells. Akt-mediated cytoplasmic localization of p27(Kip1) was inhibited by Mel-18 in SK-BR-3 cells. Moreover, Mel-18 overexpression showed reduced glycogen synthase kinase-3beta phosphorylation, beta-catenin nuclear localization, T-cell factor/lymphoid enhancer factor promoter activity, and cyclin D1 mRNA level. Taken together, we established a linear relationship between Mel-18-->Akt-->G(1) phase regulators.

  7. 14-3-3ε Plays a Role in Cardiac Ventricular Compaction by Regulating the Cardiomyocyte Cell Cycle

    PubMed Central

    Kosaka, Yasuhiro; Cieslik, Katarzyna A.; Li, Ling; Lezin, George; Maguire, Colin T.; Saijoh, Yukio; Toyo-oka, Kazuhito; Gambello, Michael J.; Vatta, Matteo; Wynshaw-Boris, Anthony; Baldini, Antonio; Yost, H. Joseph

    2012-01-01

    Trabecular myocardium accounts for the majority of the ventricles during early cardiogenesis, but compact myocardium is the primary component at later developmental stages. Elucidation of the genes regulating compact myocardium development is essential to increase our understanding of left ventricular noncompaction (LVNC), a cardiomyopathy characterized by increased ratios of trabecular to compact myocardium. 14-3-3ε is an adapter protein expressed in the lateral plate mesoderm, but its in vivo cardiac functions remain to be defined. Here we show that 14-3-3ε is expressed in the developing mouse heart as well as in cardiomyocytes. 14-3-3ε deletion did not appear to induce compensation by other 14-3-3 isoforms but led to ventricular noncompaction, with features similar to LVNC, resulting from a selective reduction in compact myocardium thickness. Abnormal compaction derived from a 50% decrease in cardiac proliferation as a result of a reduced number of cardiomyocytes in G2/M and the accumulation of cardiomyocytes in the G0/G1 phase of the cell cycle. These defects originated from downregulation of cyclin E1 and upregulation of p27Kip1, possibly through both transcriptional and posttranslational mechanisms. Our work shows that 14-3-3ε regulates cardiogenesis and growth of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via both cyclin E1 and p27Kip1. These data are consistent with the long-held view that human LVNC may result from compaction arrest, and they implicate 14-3-3ε as a new candidate gene in congenital human cardiomyopathies. PMID:23071090

  8. Ablation of human telomerase reverse transcriptase (hTERT) induces cellular senescence in gastric cancer through a galectin-3 dependent mechanism

    PubMed Central

    La, Sun-Hyuk; Kim, Seok-Jun; Kang, Hyeok-Gu; Lee, Han-Woong; Chun, Kyung-Hee

    2016-01-01

    The human Telomerase Reverse Transcriptase (hTERT) gene encodes a rate-limiting catalytic subunit of telomerase that maintains genomic integrity. Suppression of hTERT expression could induce cellular senescence and is considered a potent approach for gastric cancer therapy. However, control of hTERT expression and function remains poorly understood in gastric cancer. In this study, we demonstrated that high expression levels of hTERT in malignant tissues are correlated with poor survival probability in gastric cancer patients. Knockdown of hTERT expression retarded cell proliferation and cellular senescence, which was confirmed by increased protein expression levels of p21cip1 and p27kip1, and decreased phosphorylation of Rb. In contrast, overexpression of hTERT increased cell proliferation and decreased cellular senescence. Remarkably, the down-regulation of hTERT expression was detected in lgals3−/− mouse embryo fibroblasts (MEFs). Knockdown of galectin-3 decreased the expression of hTERT in gastric cancer cells. Galectin-3 ablation-induced cellular senescence was rescued by concomitant overexpression of hTERT. hTERT ablation-induced cellular senescence and p21cip1 and p27kip1 expression was rescued by concomitant overexpression of galectin-3. The size of tumor burdens was increased in hTERT-overexpressed gastric cancer cells xenografted mice, whereas it was repressed by concomitant depletion of galectin-3. Additionally, we determined that the N-terminal domain of galectin-3 directly interacted with hTERT. The telomeric activity of hTERT was also decreased by galectin-3 ablation. Taken together, ablation of hTERT induces cellular senescence and inhibits the growth of gastric cancer cells, suggesting that it could be a potent target in gastric cancer therapy. We also propose that galectin-3 is an important regulator of hTERT expression and telomeric activity in gastric tumorigenesis. PMID:27494887

  9. Corneal Antifibrotic Switch Identified in Genetic and Pharmacological Deficiency of Vimentin*

    PubMed Central

    Bargagna-Mohan, Paola; Paranthan, Riya R.; Hamza, Adel; Zhan, Chang-Guo; Lee, Do-Min; Kim, Kyung Bo; Lau, Daniel L.; Srinivasan, Cidambi; Nakayama, Keiko; Nakayama, Keiichi I.; Herrmann, Harald; Mohan, Royce

    2012-01-01

    The type III intermediate filaments (IFs) are essential cytoskeletal elements of mechanosignal transduction and serve critical roles in tissue repair. Mice genetically deficient for the IF protein vimentin (Vim−/−) have impaired wound healing from deficits in myofibroblast development. We report a surprising finding made in Vim−/− mice that corneas are protected from fibrosis and instead promote regenerative healing after traumatic alkali injury. This reparative phenotype in Vim−/− corneas is strikingly recapitulated by the pharmacological agent withaferin A (WFA), a small molecule that binds to vimentin and down-regulates its injury-induced expression. Attenuation of corneal fibrosis by WFA is mediated by down-regulation of ubiquitin-conjugating E3 ligase Skp2 and up-regulation of cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1. In cell culture models, WFA exerts G2/M cell cycle arrest in a p27Kip1- and Skp2-dependent manner. Finally, by developing a highly sensitive imaging method to measure corneal opacity, we identify a novel role for desmin overexpression in corneal haze. We demonstrate that desmin down-regulation by WFA via targeting the conserved WFA-ligand binding site shared among type III IFs promotes further improvement of corneal transparency without affecting cyclin-dependent kinase inhibitor levels in Vim−/− mice. This dissociates a direct role for desmin in corneal cell proliferation. Taken together, our findings illuminate a previously unappreciated pathogenic role for type III IF overexpression in corneal fibrotic conditions and also validate WFA as a powerful drug lead toward anti-fibrosis therapeutic development. PMID:22117063

  10. Integrated Cox's model for predicting survival time of glioblastoma multiforme.

    PubMed

    Ai, Zhibing; Li, Longti; Fu, Rui; Lu, Jing-Min; He, Jing-Dong; Li, Sen

    2017-04-01

    Glioblastoma multiforme is the most common primary brain tumor and is highly lethal. This study aims to figure out signatures for predicting the survival time of patients with glioblastoma multiforme. Clinical information, messenger RNA expression, microRNA expression, and single-nucleotide polymorphism array data of patients with glioblastoma multiforme were retrieved from The Cancer Genome Atlas. Patients were separated into two groups by using 1 year as a cutoff, and a logistic regression model was used to figure out any variables that can predict whether the patient was able to live longer than 1 year. Furthermore, Cox's model was used to find out features that were correlated with the survival time. Finally, a Cox model integrated the significant clinical variables, messenger RNA expression, microRNA expression, and single-nucleotide polymorphism was built. Although the classification method failed, signatures of clinical features, messenger RNA expression levels, and microRNA expression levels were figured out by using Cox's model. However, no single-nucleotide polymorphisms related to prognosis were found. The selected clinical features were age at initial diagnosis, Karnofsky score, and race, all of which had been suggested to correlate with survival time. Both of the two significant microRNAs, microRNA-221 and microRNA-222, were targeted to p27(Kip1) protein, which implied the important role of p27(Kip1) on the prognosis of glioblastoma multiforme patients. Our results suggested that survival modeling was more suitable than classification to figure out prognostic biomarkers for patients with glioblastoma multiforme. An integrated model containing clinical features, messenger RNA levels, and microRNA expression levels was built, which has the potential to be used in clinics and thus to improve the survival status of glioblastoma multiforme patients.

  11. Proteins Connecting the Nuclear Pore Complex with the Nuclear Interior

    PubMed Central

    Strambio-de-Castillia, Caterina; Blobel, Günter; Rout, Michael P.

    1999-01-01

    While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC. PMID:10085285

  12. Hsp105 reduces the protein aggregation and cytotoxicity by expanded-polyglutamine proteins through the induction of Hsp70

    SciTech Connect

    Yamagishi, Nobuyuki; Goto, Kazumasa; Nakagawa, Satomi; Saito, Youhei; Hatayama, Takumi

    2010-09-10

    Hsp105{alpha} and Hsp105{beta} are major heat shock proteins in mammalian cells and belong to the HSP105/110 family. Hsp105{alpha} is expressed constitutively in the cytoplasm of cells, while Hsp105{beta}, an alternatively spliced form of Hsp105{alpha}, is expressed specifically in the nucleus of cells during mild heat shock. Here, we show that not only Hsp105{beta} but also Hsp105{alpha} accumulated in the nucleus of cells following the expression of enhanced green fluorescent protein with a pathological length polyQ tract (EGFP-polyQ97) and suppressed the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Mutants of Hsp105{alpha} and Hsp105{beta} with changes in the nuclear localization signal sequences, which localized exclusively in the cytoplasm with or without the expression of EGFP-polyQ97, did not suppress the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Furthermore, Hsp70 was induced by the co-expression of Hsp105{alpha} and EGFP-polyQ97, and the knockdown of Hsp70 reduced the inhibitory effect of Hsp105{alpha} and Hsp105{beta} on the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. These observations suggested that Hsp105{alpha} and Hsp105{beta} suppressed the expanded polyQ tract-induced protein aggregation and apoptosis through the induction of Hsp70.

  13. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    PubMed

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  14. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  15. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  16. Protein

    USDA-ARS?s Scientific Manuscript database

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  17. Development of a quantitative PCR for rapid and sensitive diagnosis of an intranuclear coccidian parasite in Testudines (TINC), and detection in the critically endangered Arakan forest turtle (Heosemys depressa).

    PubMed

    Alvarez, W Alexander; Gibbons, Paul M; Rivera, Sam; Archer, Linda L; Childress, April L; Wellehan, James F X

    2013-03-31

    The intranuclear coccidian parasite of Testudines (TINC) is responsible for significant disease in turtles and tortoises causing high mortality and affecting several threatened species. Diagnostic testing has been limited to relatively labor intensive and expensive pan-coccidial PCR and sequencing techniques. A qPCR assay targeting a specific and conserved region of TINC 18S rRNA was designed. The qPCR reaction was run on samples known to be TINC positive and the results were consistent and analytically specific. The assay was able to detect as little as 10 copies of target DNA in a sample. Testing of soil and invertebrates was negative and did not provide any further insights into life cycles. This assay was used to identify TINC in a novel host species, the critically endangered Arakan forest turtle (Heosemys depressa).

  18. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  19. New approach to description of (d,xn) spectra at energies below 50 MeV in Monte Carlo simulation by intra-nuclear cascade code with Distorted Wave Born Approximation

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Iwamoto, Y.; Sato, T.; Niita, K.; Boudard, A.; Cugnon, J.; David, J.-C.; Leray, S.; Mancusi, D.

    2014-08-01

    A new approach to describing neutron spectra of deuteron-induced reactions in the Monte Carlo simulation for particle transport has been developed by combining the Intra-Nuclear Cascade of Liège (INCL) and the Distorted Wave Born Approximation (DWBA) calculation. We incorporated this combined method into the Particle and Heavy Ion Transport code System (PHITS) and applied it to estimate (d,xn) spectra on natLi, 9Be, and natC targets at incident energies ranging from 10 to 40 MeV. Double differential cross sections obtained by INCL and DWBA successfully reproduced broad peaks and discrete peaks, respectively, at the same energies as those observed in experimental data. Furthermore, an excellent agreement was observed between experimental data and PHITS-derived results using the combined method in thick target neutron yields over a wide range of neutron emission angles in the reactions. We also applied the new method to estimate (d,xp) spectra in the reactions, and discussed the validity for the proton emission spectra.

  20. Identification of a sequence element directing a protein to nuclear speckles.

    PubMed

    Eilbracht, J; Schmidt-Zachmann, M S

    2001-03-27

    SF3b(155) is an essential spliceosomal protein, highly conserved during evolution. It has been identified as a subunit of splicing factor SF3b, which, together with a second multimeric complex termed SF3a, interacts specifically with the 12S U2 snRNP and converts it into the active 17S form. The protein displays a characteristic intranuclear localization. It is diffusely distributed in the nucleoplasm but highly concentrated in defined intranuclear structures termed "speckles," a subnuclear compartment enriched in small ribonucleoprotein particles and various splicing factors. The primary sequence of SF3b(155) suggests a multidomain structure, different from those of other nuclear speckles components. To identify which part of SF3b(155) determines its specific intranuclear localization, we have constructed expression vectors encoding a series of epitope-tagged SF3b(155) deletion mutants as well as chimeric combinations of SF3b(155) sequences with the soluble cytoplasmic protein pyruvate kinase. Following transfection of cultured mammalian cells, we have identified (i) a functional nuclear localization signal of the monopartite type (KRKRR, amino acids 196--200) and (ii) a molecular segment with multiple threonine-proline repeats (amino acids 208--513), w