Sample records for intrathecal long-acting liposomal

  1. Efficacy and Toxicity of Intrathecal Liposomal Cytarabine in First-line Therapy of Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Levinsen, Mette; Harila-Saari, Arja; Grell, Kathrine; Jonsson, Olafur Gisli; Taskinen, Mervi; Abrahamsson, Jonas; Vettenranta, Kim; Åsberg, Ann; Risteli, Juha; Heldrup, Jesper; Schmiegelow, Kjeld

    2016-11-01

    We investigated efficacy and toxicity of replacing conventional triple (cytarabine, methotrexate, and hydrocortisone) intrathecal therapy (TIT) with liposomal cytarabine during maintenance therapy among 40 acute lymphoblastic leukemia patients. Twenty-eight of 29 patients in the TIT arm received TIT and 9/11 in the liposomal cytarabine arm received liposomal cytarabine. Arachnoiditis occurred in all initial 5 patients given liposomal cytarabine and intrathecal prednisolone succinate. Subsequently liposomal cytarabine was given with systemic dexamethasone. Neurotoxicity occurred at 6/27 liposomal cytarabine administrations with concomitant dexamethasone (22%). More liposomal cytarabine-treated patients experienced neurotoxicity in relation to intrathecal therapy during at least 1 cycle compared with TIT-treated patients (6/9 [67%] vs. 3/28 [11%], P=0.002). Apart from intermittent lower extremity sensory pain in 1 liposomal cytarabine-treated patient, no permanent adverse neurological sequelae were observed. In intention-to-treat analysis, projected 5-year event-free survival (pEFS-5y) was borderline higher for patients in the liposomal cytarabine arm compared with the TIT arm (1.0 vs. 0.69, P=0.046). However, pEFS-5y and projected 5-year relapse-free survival did not differ signficantly between patients treated with liposomal cytarabine or TIT (1.0 vs. 0.73, P=0.10; 1.0 vs. 0.76, P=0.12). Larger prospective trials are needed to explore whether liposomal cytarabine should be used as first-line prevention of relapse.

  2. Randomized trial of radiation-free central nervous system prophylaxis comparing intrathecal triple therapy with liposomal cytarabine in acute lymphoblastic leukemia.

    PubMed

    Bassan, Renato; Masciulli, Arianna; Intermesoli, Tamara; Audisio, Ernesta; Rossi, Giuseppe; Pogliani, Enrico Maria; Cassibba, Vincenzo; Mattei, Daniele; Romani, Claudio; Cortelezzi, Agostino; Corti, Consuelo; Scattolin, Anna Maria; Spinelli, Orietta; Tosi, Manuela; Parolini, Margherita; Marmont, Filippo; Borlenghi, Erika; Fumagalli, Monica; Cortelazzo, Sergio; Gallamini, Andrea; Marfisi, Rosa Maria; Oldani, Elena; Rambaldi, Alessandro

    2015-06-01

    Developing optimal radiation-free central nervous system prophylaxis is a desirable goal in acute lymphoblastic leukemia, to avoid the long-term toxicity associated with cranial irradiation. In a randomized, phase II trial enrolling 145 adult patients, we compared intrathecal liposomal cytarabine (50 mg: 6/8 injections in B-/T-cell subsets, respectively) with intrathecal triple therapy (methotrexate/cytarabine/prednisone: 12 injections). Systemic therapy included methotrexate plus cytarabine or L-asparaginase courses, with methotrexate augmented to 2.5 and 5 g/m(2) in Philadelphia-negative B- and T-cell disease, respectively. The primary study objective was the comparative assessment of the risk/benefit ratio, combining the analysis of feasibility, toxicity and efficacy. In the liposomal cytarabine arm 17/71 patients (24%) developed grade 3-4 neurotoxicity compared to 2/74 (3%) in the triple therapy arm (P=0.0002), the median number of episodes of neurotoxicity of any grade was one per patient compared to zero, respectively (P=0.0001), and even though no permanent disabilities or deaths were registered, four patients (6%) discontinued intrathecal prophylaxis on account of these toxic side effects (P=0.06). Neurotoxicity worsened with liposomal cytarabine every 14 days (T-cell disease), and was improved by the adjunct of intrathecal dexamethasone. Two patients in the liposomal cytarabine arm suffered from a meningeal relapse (none with T-cell disease, only one after high-dose chemotherapy) compared to four in the triple therapy arm (1 with T-cell disease). While intrathecal liposomal cytarabine could contribute to improved, radiation-free central nervous system prophylaxis, the toxicity reported in this trial does not support its use at 50 mg and prompts the investigation of a lower dosage. (clinicaltrials.gov identifier: NCT-00795756). Copyright© Ferrata Storti Foundation.

  3. No Difference in Early Analgesia Between Liposomal Bupivacaine Injection and Intrathecal Morphine After TKA.

    PubMed

    Barrington, John W; Emerson, Roger H; Lovald, Scott T; Lombardi, Adolph V; Berend, Keith R

    2017-01-01

    Opioid analgesics have been a standard modality for postoperative pain management after total knee arthroplasty (TKA) but are also associated with increased risk of nausea, pruritus, vomiting, respiratory depression, prolonged ileus, and cognitive dysfunction. There is still a need for a method of anesthesia that can deliver effective long-term postoperative pain relief without incurring the high cost and health burden of opioids and nerve blocks. (1) Is liposomal bupivacaine-based periarticular injection (PAI) more effective than morphine-based spinal anesthesia or ropivacaine-based PAI in controlling postoperative pain after TKA? (2) Do patients treated with liposomal bupivacaine-based PAI experience fewer opioid-related adverse events compared with patients treated with morphine-based spinal anesthesia or ropivacaine-based PAI in controlling postoperative pain after TKA? This multicenter, blind trial randomized 119 patients undergoing TKA with spinal anesthesia to receive spinal anesthesia plus periarticular injection with liposomal bupivacaine (40 patients), spinal anesthesia with bupivacaine plus intrathecal morphine (41 patients) but no liposomal bupivacaine injection, or spinal anesthesia with bupivacaine (38 patients) and no liposomal bupivacaine injection. The two groups that did not receive periarticular liposomal bupivacaine did receive periarticular injection with ropivacaine, and all three groups had ketorolac (30 mg) plus epinephrine (1:1000) in the periarticular injections. Patients in all three groups received identical perioperative multimodal analgesic and antiemetic drugs. All patients were analyzed in the group to which they were randomized and no patients were lost to followup. The primary study endpoints were visual analog score (VAS) for pain and narcotic use during postoperative day 1. Secondary endpoints included side effects associated with narcotic administration during the hospital stay. Mean VAS pain in the liposomal bupivacaine PAI

  4. Safe and efficient drug delivery system with liposomes for intrathecal application of an antivasospastic drug, fasudil.

    PubMed

    Ishida, Tatsuhiro; Takanashi, Yoshihiro; Kiwada, Hiroshi

    2006-03-01

    Pharmacological treatment for cerebral ischemia and cerebral vasospasm following subarachnoid hemorrhage (SAH) cannot attain sufficiently high concentrations of the drugs in the cerebrospinal fluid (CSF) without precipitating systemic side effects. We recently developed a liposomal drug delivery system for intrathecal application that can maintain effective concentrations of cerebral vasodilator, fasudil, in the CSF. A single intrathecal injection of liposomal fasudil could maintain a therapeutic drug concentration in the CSF over a period time due to their sustained-release property, significantly decreasing infarct size in a rat model of acute ischemia and reducing vasoconstriction of the rat and dog basilar artery in a model of SAH. In this review, we are introducing our new less-invasive intrathecal drug delivery system that provides an alternative and safe method to deliver therapeutic agents.

  5. Safety and tolerability of intrathecal liposomal cytarabine as central nervous system prophylaxis in patients with acute lymphoblastic leukemia.

    PubMed

    Valentin, Angelika; Troppan, Katharina; Pfeilstöcker, Michael; Nösslinger, Thomas; Linkesch, Werner; Neumeister, Peter

    2014-08-01

    Central nervous system recurrence in acute lymphoblastic leukemia (ALL) occurs in up to 15% of patients and is frequently associated with poor outcome. The purpose of our study was to evaluate the efficacy and safety of a slow-release liposomal formulation of cytarabine for intrathecal (IT) meningeal prophylaxis in patients suffering from ALL. Forty patients aged 20-77 years (median 36) were preventively treated with a total of 96 (range 1-6) single doses containing 50 mg of liposomal cytarabine on a compassionate use basis. After a median observation period of 23 months (range 2-118) only two patients experienced a combined medullary-leptomeningeal disease recurrence after primary diagnosis. Except for headache grade 2 in two patients, no specific toxicity attributable to IT liposomal cytarabine application was noted. Long-term neurological side effects were not observed. IT liposomal cytarabine therapy with concomitant dexamethasone appears to be feasible and well tolerated.

  6. The effects of intrathecal morphine encapsulated in L- and D-dipalmitoylphosphatidyl choline liposomes on acute nociception in rats.

    PubMed

    Nishiyama, T; Ho, R J; Shen, D D; Yaksh, T L

    2000-08-01

    Liposomes can serve as a sustained-release carrier system, permitting the spinal delivery of large opioid doses restricting the dose for acute systemic uptake. We evaluated the antinociceptive effects of morphine encapsulated in liposomes of two isomeric phospholipids, L-dipalmitoylphosphatidyl choline (L-DPPC) and D-dipalmitoylphosphatidyl choline (D-DPPC), in comparison with morphine in saline. Sprague-Dawley rats with chronic lumbar intrathecal catheters were tested for their acute nociceptive response using a hindpaw thermal escape test. Their general behavior, motor function, pinna reflex, and corneal reflex were also examined. The duration of antinociception was longer in both liposomal morphine groups than in the free morphine group. The peak antinociceptive effects were observed within 30 min after intrathecal morphine, L-DPPC or D-DPPC morphine injection. The rank order of the area under the effect-time curve for antinociception was L-DPPC morphine > D-DPPC morphine > morphine. The 50% effective dose was: 2.7 microg (morphine), 4.6 microg (L-DPPC morphine), and 6.4 microg (D-DPPC morphine). D-DPPC morphine had less side effects for a given antinociceptive AUC than morphine. In conclusion, L-DPPC and D-DPPC liposome encapsulation of morphine prolonged the antinociceptive effect on acute thermal stimulation and could decrease side effects, compared with morphine alone. Two isomers of liposome (L-dipalmitoylphosphatidyl choline and D-dipalmitoylphosphatidyl choline) encapsulation of morphine prolonged the analgesic effect on acute thermal-induced pain when administered intrathecally and could decrease side effects, compared with morphine alone.

  7. Pharmacokinetics and toxicity of intrathecal liposomal cytarabine in children and adolescents following age-adapted dosing.

    PubMed

    Peyrl, Andreas; Sauermann, Robert; Chocholous, Monika; Azizi, Amedeo A; Jäger, Walter; Höferl, Martina; Slavc, Irene

    2014-02-01

    Assessment of the optimal drug dose for intrathecal therapy in children is challenging because of the non-linear increase in cerebrospinal fluid (CSF) volume throughout childhood and potential differences in the elimination rate in children versus adults. The present study was designed to prospectively collect pharmacokinetic and safety data on age-adapted intrathecal liposomal cytarabine in children aged >3 years. Sixteen patients with malignant brain tumours were included in the study. Children aged 3-10 years received liposomal cytarabine 35 mg with concomitant dexamethasone, and those aged >10 years received 50 mg. Serial CSF and plasma samples were collected before administration and 1 h, 12 h, 24 h, 1 week and 2 weeks post-dosing. CSF was analysed for free and encapsulated cytarabine, and plasma was analysed for free cytarabine. The average elimination half-life values in children aged 3-10 years and in those aged >10 years, treated with liposomal cytarabine 35 mg and 50 mg, respectively, were 40.9 and 43.7 h for free cytarabine and 31.5 and 36.4 h for encapsulated cytarabine in CSF. Although these values were lower than those previously reported, cytarabine concentrations exceeded the cytotoxic threshold of 0.1 mg/L in all patients until 1 week post-intraventricular administration. Cytarabine concentrations in plasma were negligible. In general, liposomal cytarabine was well tolerated, with relevant but manageable toxicities. Liposomal cytarabine in doses of 35 mg for children aged 3-10 years and 50 mg for older patients shows sufficient drug exposure for at least 1 week and appears to be well tolerated.

  8. Liposomal Aerosols of Nitric Oxide (NO) Donor as a Long-Acting Substitute for the Ultra-Short-Acting Inhaled NO in the Treatment of PAH.

    PubMed

    Nahar, Kamrun; Rashid, Jahidur; Absar, Shahriar; Al-Saikhan, Fahad I; Ahsan, Fakhrul

    2016-07-01

    This study seeks to develop a liposomal formulation of diethylenetriamine NONOate (DN), a long acting nitric oxide (NO) donor, with a goal to replace inhaled NO (iNO) in the treatment of pulmonary arterial hypertension (PAH). Liposomal formulations were prepared by a lipid film hydration method and modified with a cell penetrating peptide, CAR. The particles were characterized for size, polydispersity index (PDI), zeta potential, entrapment efficiency, storage and nebulization stability, and in-vitro release profiles. The cellular uptake and transport were assessed in rat alveolar macrophages (NR8383) and transforming growth factor β (TGF-β) activated rat pulmonary arterial smooth muscle cells (PASMCs). The fraction of the formulation that enters the systemic circulation, after intratracheal administration, was determined in an Isolated Perfused Rat Lung (IPRL) model. The safety of the formulations were assessed using an MTT assay and by measuring injury markers in the bronchoalveolar lavage (BAL) fluid; the pharmacological efficacy was evaluated by monitoring the changes in the mean pulmonary arterial (mPAP) and systemic pressure (mSAP) in a monocrotaline (MCT) induced-PAH rat model Liposome size, zeta potential, and entrapment efficiency were 171 ± 4 nm, -37 ± 3 mV, and 46 ± 5%, respectively. The liposomes released 70 ± 5% of the drug in 8 h and were stable when stored at 4°C. CAR-conjugated-liposomes were taken up more efficiently by PASMCs than liposomes-without-CAR; the uptake of the formulations by rat alveolar macrophages was minimal. DN-liposomes did not increase lung weight, protein quantity, and levels of injury markers in the BAL fluid. Intratracheal CAR-liposomes reduced the entry of liposomes from the lung to blood; the formulations produced a 40% reduction in mPAP for 180 minutes. This study establishes the proof-of-concept that peptide modified liposomal formulations of long-acting NO donor can be an alternative to short-acting

  9. Neurologic complications of intrathecal liposomal cytarabine administered prophylactically to patients with non-Hodgkin lymphoma.

    PubMed

    Gállego Pérez-Larraya, Jaime; Palma, José Alberto; Carmona-Iragui, María; Fernández-Torrón, Roberto; Irimia, Pablo; Rodríguez-Otero, Paula; Panizo, Carlos; Martínez-Vila, Eduardo

    2011-07-01

    Central nervous system (CNS) prophylaxis is required during initial treatment of non-Hodgkin lymphoma (NHL) subtypes that carry a high risk of CNS involvement. Intrathecal (IT) liposomal cytarabine, a formulation with prolonged half-life, has been shown to be safe and effective in the treatment of meningeal disease in patients with high-grade lymphoma. We retrospectively reviewed all adult patients with high-grade NHL that received prophylactic therapy with IT liposomal cytarabine and developed neurologic complications in our institution between April 2007 and May 2009. We recorded information on hospital admission, chemotherapy regimens, clinical features, neuroimaging, cerebrospinal fluid, neurophysiology data, and outcome. Neurotoxicity was graded according to the National Cancer Institute Common Toxicity Criteria (NCI-CTC). Four of fourteen patients (28%) developed moderate or severe neurotoxicity (grades 2 and 3 of the NCI-CTC), manifested as conus medullaris/cauda equine syndrome or pseudotumour cerebri-like syndrome, after a median of 3.5 IT courses of liposomal cytarabine. All patients had received corticosteroids to prevent arachnoiditis. Liposomal cytarabine given via the IT route, even with concomitant corticosteroid administration, can result in significant neurotoxicity in some patients. We discuss the potential pathogenesis of these effects and suggest hypothetical therapeutic measures to prevent these complications. Specialists should be aware of these possible complications when administering prophylactic IT liposomal cytarabine in high-grade NHL patients, and additional prospective studies should be conducted to more clearly delineate the frequency and characteristics of these complications.

  10. Application of long-circulating liposomes to cancer photodynamic therapy.

    PubMed

    Oku, N; Saito, N; Namba, Y; Tsukada, H; Dolphin, D; Okada, S

    1997-06-01

    Photodynamic therapy (PDT) as a cancer treatment is notable for its quite low side effects in comparison with those of chemotherapy and radiotherapy. However, the accumulation of porphyrin derivatives used in PDT into tumor tissues is rather low. Since long-circulating liposomes are known to accumulate passively into tumor tissues, we liposomalized a porphyrin derivative, benzoporphyrin derivative monoacid ring A (BPD-MA), and used these liposomes to investigate the usefulness of PDT for tumor-bearing mice. BPD-MA was liposomalized into glucuronate-modified liposomes, which are known to be long-circulating. These liposomes were injected i.v. into Balb/c mice bearing Meth A sarcoma, and tumor regression and survival time were monitored after irradiation with laser light. Tumor regression and complete curing of tumor (80% cure rate by the treatment with 6 mg/kg BPD-MA) were observed when long circulating liposomalized BPD-MA was injected and laser-irradiated. In contrast, only a 20% cure rate was obtained when the animals were treated with BPD-MA solution or BPD-MA entrapped in conventional liposomes. These results suggest that a long-circulating liposomal formulation of photo-sensitive agents is useful for PDT.

  11. Antinociception and side effects of L- and D-dipalmitoylphosphatidyl choline liposome-encapsulated alfentanil after spinal delivery in rats.

    PubMed

    Isackson, J; Wallace, M S; Ho, R J; Shen, D D; Yaksh, T L

    1995-11-01

    We have observed that spinal liposome administration in the rat resulted in in an allodynia evoked by light touch. We later determined that liposomes composed of D-isomer phospholipids were essentially non-toxic. This study examines the effects of alfentanil encapsulated in liposomes made from the natural L-isomer and synthetic D-isomer of dipalmitoyl phosphatidyl choline on antinoceiception, side effects, and algogenic behaviour. Both unilamellar and multilamellar liposomes were studied. Rats prepared with chronic intrathecal catheters received intrathecal injections of alfentanil (5 or 50 micrograms) in saline or encapsulated in liposomes composed of either L- or D-isomers of dipalmitoyl phosphatidyl choline (DPPC) in unilamellar or multilamellar liposome formulations. Antinociception was measured using the hot plate test (52.5 degrees). Side effects were measured by catalepsy, corneal responses, pinna response, righting reflex, and paw step. Allodynia was measured by lightly stroking the animal's back. Intrathecal alfentanil in saline or in the liposomes produced a dose-dependent increased latency in the hot plate response. Encapsulation of alfentanil in the liposomes produced a significant decrease in the loss of corneal, paw step and righting reflex and a slight decrease in catalepsy and loss of the pinna response. There was no significant difference between liposome preparations in preventing side effects. L-multilamellar-DPPC produced allodynia in 100% of the animals whereas significantly less allodynia was observed with the other preparations. This study indicates that liposomal preparations can significantly enhance the therapeutic ratio of a lipid soluble opioid after spinal delivery. However, the choice of lipids for the formulation of liposomes intended for spinal drug delivery must be considered since the L-isomer and larger lipid load of multilamellar liposomes have a direct spinal effect leading to alledynia. Previous studies have in fact shown that

  12. Breast cancer leptomeningeal metastasis: the results of combined treatment and the comparison of methotrexate and liposomal cytarabine as intra-cerebrospinal fluid chemotherapy.

    PubMed

    Niwińska, Anna; Rudnicka, Halina; Murawska, Magdalena

    2015-02-01

    This was a prospective observational study to assess the results of the treatment of patients with breast cancer leptomeningeal metastasis (LM) and to compare the efficacy of methotrexate and liposomal cytarabine in patients treated intrathecally by lumbar puncture. In this prospective observational study, 149 consecutive patients with breast cancer and LM treated between the years 1999 and 2011 were assessed. Multimodality treatment methods were used: systemic therapy in 77 patients, radiotherapy in 92 patients, intrathecal methotrexate in 81 patients, and intrathecal liposomal cytarabine in 15 patients. The median survival of all patients was 4.2 months. The median survival of patients in whom systemic intravenous/oral treatment was used was 6 months, in those who did not have systemic treatment, the median survival was 2 months (P < .001). The median survival of patients treated with intrathecal methotrexate was 4.2 months; in patients treated with intrathecal liposomal cytarabine, the median survival was 4.6 months, and in patients who did not receive intrathecal treatment, the median survival was 3.7 months (P = .717). Median survival after whole-brain radiotherapy was 4.6 months and with no radiotherapy, it was 3.2 months (P = .028). Multivariate analysis revealed a Karnofsky performance status (KPS) of > 70. Systemic intravenous/oral treatment and bone as a site of metastasis were factors prolonging survival from LM. Among treatment methods, only systemic therapy prolonged survival in patients with LM. Neither radiotherapy nor lumbar intrathecal therapy influenced survival in those patients; however, both methods alleviated signs and symptoms of LM. No difference in survival was observed in patients treated intrathecally with methotrexate and those treated with liposomal cytarabine. Treatment with both drugs was comparable. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Long-circulating, pH-sensitive liposomes versus long-circulating, non-pH-sensitive liposomes as a delivery system for tumor identification.

    PubMed

    de Barros, André Luís Branco; Mota, Luciene das Graças; Soares, Daniel Crístian Ferreira; de Souza, Cristina Maria; Cassali, Geovanni Dantas; Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2013-09-01

    Bombesin (BBN) is a tetradecapeptide that binds specifically to gastrin-releasing peptide receptors in humans. Several forms of cancer, including lung, prostate, breast, and colon over-express receptors for bombesin-like peptides. Therefore, radiolabeled bombesin analogs might be useful for tumor identification. Nevertheless, it is well known that higher tumor uptake can yield images in higher quality. Hence, drug delivery systems, such as liposomes, can be used to achieve a higher concentration of radiotracer in tumor site, and also improve the radiotracer stability, since peptides can suffer easily degradation in vivo by natural plasma and tissue peptides. In this paper, we prepared long-circulating, pH-sensitive liposomes and long-circulation, non-pH sensitive liposomes. Both formulations were able to encapsulate the radiolabeled bombesin derivative (99mTc-BBN(7_14)), and also showing high in vitro stability. Biodistribution studies were performed in Ehrlich tumor bearing-mice to compare the ability of pH-sensitive and non-pH sensitive liposomes to deliver 99mTc-BBN(7_14) to tumor site. Results showed higher tumor uptake (2-fold) when pH-sensitive liposomes were used, suggesting that these vesicles can facilitate the access to the tumor by releasing the diagnostic agent into the ideal area. As a result, tumor-to-muscle ratio achieved with pH-sensitive liposomes was higher than that obtained with non-pH-sensitive formulation. In addition, scintigraphic images for pH-sensitive liposomes showed evident tumor uptake, corroborating with biodistribution data. Therefore, the results presented in this paper suggest that pH-sensitive liposomes are able to deliver more efficiently the radiolabeled bombesin analog. This finding poses a new possibility to improve images quality, since the tumor-to-muscle ratio was strongly enhanced.

  14. Liposomal cytarabine in the prophylaxis and treatment of CNS lymphoma: toxicity analysis in a retrospective case series study conducted at Polish Lymphoma Research Group Centers.

    PubMed

    Jurczak, Wojciech; Kroll-Balcerzak, Renata; Giebel, Sebastian; Machaczka, Maciej; Giza, Agnieszka; Ogórka, Tomasz; Fornagiel, Szymon; Rybka, Justyna; Wróbel, Tomasz; Kumiega, Beata; Skotnicki, Aleksander B; Komarnicki, Mieczysław

    2015-04-01

    Lymphomas with primary or secondary involvement of central nervous system (CNS) have poor prognosis despite specific treatment protocols which include whole brain radiotherapy and high-dose systemic and/or intrathecal chemotherapy. Toxicity of intrathecal liposomal cytarabine-based regimens collected between November 2006 and January 2012 was assessed retrospectively. Data from 120 adult lymphoma patients with, or at high risk of CNS involvement who received intrathecal liposomal cytarabine-based regimens at six Polish Lymphoma Research Group centres between November 2006 and January 2012 were assessed retrospectively. Patients were divided into three cohorts: A (high risk of CNS disease, n = 88), B (cerebrospinal fluid pleocytosis without neurological symptoms or pathological imaging findings, n = 7), and C (CNS disease/neurological involvement; n = 25). In all examined groups, toxicity of treatment was found to be acceptable (including the prophylactic setting). None of the patients in cohorts A or B who took intrathecal liposomal cytarabine 50 mg, repeated every 2-4 weeks (mean 3.8 doses) had experienced a CNS relapse at a median follow-up time of 3 years. Patients in cohort C had a 76 % overall neurological response rate (including a 40 % complete response rate) and median overall survival of 4.8 years. Regimens incorporating liposomal cytarabine seem to be safe and effective treatments for lymphomas with CNS involvement.

  15. Central nervous system prophylaxis with intrathecal liposomal cytarabine in a subset of high-risk patients with diffuse large B-cell lymphoma receiving first line systemic therapy in a prospective trial.

    PubMed

    González-Barca, E; Canales, M; Salar, A; Ferreiro-Martínez, J J; Ferrer-Bordes, S; García-Marco, J A; Sánchez-Blanco, J J; García-Frade, J; Peñalver, J; Bello-López, J L; Sancho, J M; Caballero, D

    2016-05-01

    The dissemination in the central nervous system (CNS) is an uncommon but fatal complication occurring in patients with diffuse large B-cell lymphoma (DLBCL). Standard prophylaxis has been demonstrated to reduce CNS relapse and improve survival rates. Intrathecal (IT) liposomal cytarabine allows maintaining elevated drug levels in the cerebrospinal fluid for an extended period of time. Data on the efficacy and safety of liposomal cytarabine as CNS prophylaxis in patients with DLBCL are still insufficient. The objective of the present study was to evaluate the effectiveness and safety of the prophylaxis with IT liposomal cytarabine in prevention of CNS relapse in high-risk patients with DLBCL who were included in a trial of first line systemic therapy with 6 cycles of dose-dense R-CHOP every 14 days. Twenty-four (18.6 %) out of 129 patients were identified to have risk factors for CNS involvement, defined as follows: >30 % bone marrow infiltration, testes infiltration, retroperitoneal mass ≥10 cm, Waldeyer ring, or bulky cervical nodes involvement. Liposomal cytarabine (50 mg) was administered by lumbar puncture the first day of the 1st, 2nd, and 6th cycle of R-CHOP14 scheme. Among 70 IT infusions, grade 3-4 adverse events reported were headache (one patient) and nausea/vomiting (one patient). With a median follow-up of 40.1 months, no CNS involvement by DLBCL was observed in any patient. In conclusion, IT liposomal cytarabine is safe, feasible, and effective for CNS prophylaxis, causing few associated risks and little discomfort to patients with DLBCL.

  16. Liposomal cytarabine in prophylaxis or curative treatment of central nervous system involvement in Burkitt leukemia/lymphoma.

    PubMed

    Segot, Amandine; Raffoux, Emmanuel; Lengline, Etienne; Thieblemont, Catherine; Dombret, Hervé; Boissel, Nicolas; Cluzeau, Thomas

    2015-11-01

    In recent years, the outcome of Burkitt leukemia/lymphoma (BL) has improved significantly. Central nervous system (CNS) involvement continues to be a poor prognostic indicator. High doses of intravenous polychemotherapy, intrathecal chemotherapy, and cranio-spinal radiation therapy are used by numerous groups. Majority of patients are cured after this strategy. The next challenge is to decrease toxicities of treatment, including long-term toxicities secondary to cranio-spinal radiation therapy observed in these cured patients. Liposomal cytarabine could be a good alternative to cranio-spinal radiation therapy as already reported in acute lymphoblastic leukemia. We report here eleven patients treated in our center for BL, with liposomal cytarabine instead of cranio-spinal radiation therapy as prophylactic or curative treatment for CNS involvement. Treatment was safe with no short-term grade >3 adverse events. Moreover, no long-term side effects and no impact on outcome were observed. We conclude that LC could be a good option to decrease short/long-term side effects of cranio-spinal radiation therapy in BL and could be evaluated in a future clinical trial.

  17. Safety and Efficacy of Liposomal Cytarabine in the Treatment of Neoplastic Meningitis.

    PubMed

    Jahn, Franziska; Jordan, Karin; Behlendorf, Timo; Globig, Cordula; Schmoll, Hans-Joachim; Müller-Tidow, Carsten; Jordan, Berit

    2015-01-01

    Although rare, neoplastic meningitis (NM) has been increasingly observed in patients with cancer due to the prolonged course of the disease. Intrathecal chemotherapy with methotrexate or cytarabine with repeating injection schedules of 2-3 times per week is currently the mainstay of treatment. An efficacious and comfortable treatment alternative might be represented by liposomal cytarabine. In this retrospective study, we reviewed all patients with NM due to solid tumors or hematological malignancies treated with liposomal cytarabine at our institution between March 2004 and September 2011. The primary endpoint was treatment response, which was defined as improvement in neurological symptoms and/or conversion of the initial cerebrospinal fluid cytology and/or response in the radiological findings. The main secondary endpoint was safety. Fifty-one adult patients were evaluable for safety and 44 patients for efficacy. In 36 patients (81.8%), a treatment response was achieved. The median overall survival after diagnosis of NM was 11 months (95% confidence interval 8.8-13.2). Adverse events grade 1-4 occurred in 31 patients (60.8%), whereas grade 3-4 occurred in 18 patients (35.3%). The encouraging efficacy and safety data obtained in our analysis and the convenient administration schedule make intrathecal liposomal cytarabine a favorable treatment option for NM patients.

  18. Liposomal bupivacaine for regional anesthesia.

    PubMed

    Uskova, Anna; O'Connor, Jessica E

    2015-10-01

    Using a regional block in a multimodal approach to postoperative analgesia management involves addressing, which local anesthetic and how much should be used to ensure adequate pain relief to reduce related morbidity and mortality. This article will review literature surrounding the recently approved formulation of slow release liposomal bupivacaine, define its proven benefits, and identify ongoing studies to further examine the utility of this novel formulation by various routes. Recent Phase II and III clinical trials have demonstrated the ability of liposomal bupivacaine to provide prolonged analgesia, maintain a high safety profile in therapeutic doses, and decrease opioid requirements when compared with placebo in local infiltration applications for up to 24 h. Between 24 and 72 h after study drug administration, there was minimal to no difference between EXPAREL and placebo treatments on mean pain intensity. Conventional bupivacaine or ropivacaine groups (current standard practice in many hospitals in the USA) were not compared. In addition, the analgesic efficacy, cost-effectiveness, and safety profile of liposomal bupivacaine has not thoroughly been studied in various standard clinical settings such as perineural, intrathecal, and epidural administration. Current published data do not provide superior clinical results for EXPAREL over conventional bupivacaine based upon the lack of adequately powered multicentered clinical trials with comparison groups. Further investigation is necessary to identify the analgesic efficacy and safety profile of liposomal bupivacaine versus standard local anesthetics and to define the optimal clinical indication for liposomal bupivacaine administration in regional anesthesia.

  19. Alendronate-coated long-circulating liposomes containing 99mtechnetium-ceftizoxime used to identify osteomyelitis

    PubMed Central

    Ferreira, Diego dos Santos; Boratto, Fernanda Alves; Cardoso, Valbert Nascimento; Serakides, Rogéria; Fernandes, Simone Odília; Ferreira, Lucas Antônio Miranda; Oliveira, Mônica Cristina

    2015-01-01

    Osteomyelitis is a progressive destruction of bones caused by microorganisms. Inadequate or absent treatment increases the risk of bone growth inhibition, fractures, and sepsis. Among the diagnostic techniques, functional images are the most sensitive in detecting osteomyelitis in its early stages. However, these techniques do not have adequate specificity. By contrast, radiolabeled antibiotics could improve selectivity, since they are specifically recognized by the bacteria. The incorporation of these radiopharmaceuticals in drug-delivery systems with high affinity for bones could improve the overall uptake. In this work, long-circulating and alendronate-coated liposomes containing 99mtechnetium-radiolabeled ceftizoxime were prepared and their ability to identify infectious foci (osteomyelitis) in animal models was evaluated. The effect of the presence of PEGylated lipids and surface-attached alendronate was evaluated. The bone-targeted long-circulating liposomal 99mtechnetium–ceftizoxime showed higher uptake in regions of septic inflammation than did the non-long-circulating and/or alendronate-non-coated liposomes, showing that both the presence of PEGylated lipids and alendronate coating are important to optimize the bone targeting. Scintigraphic images of septic or aseptic inflammation-bearing Wistar rats, as well as healthy rats, were acquired at different time intervals after the intravenous administration of these liposomes. The target-to-non-target ratio proved to be significantly higher in the osteomyelitis-bearing animals for all investigated time intervals. Biodistribution studies were also performed after the intravenous administration of the formulation in osteomyelitis-bearing animals. A significant amount of liposomes were taken up by the organs of the mononuclear phagocyte system (liver and spleen). Intense renal excretion was also observed during the entire experiment period. Moreover, the liposome uptake by the infectious focus was significantly

  20. Use of external ventriculostomy and intrathecal anti-fungal treatment in cerebral mucormycotic abscess.

    PubMed

    Grannan, Benjamin L; Yanamadala, Vijay; Venteicher, Andrew S; Walcott, Brian P; Barr, John C

    2014-10-01

    Mucormycosis is an invasive fungal infection associated with a high mortality. Cerebral mucor abscesses can result secondary to rhinocerebral or hematogenous spread. Amphotericin B, posaconazole, and aggressive surgical resection are the hallmarks of treatment. While amphotericin is typically administered intravenously, less is known about the use of intrathecal amphotericin B. We describe a 42-year-old man who developed a cerebellar mucor abscess after undergoing hematopoietic stem cell transplant for the treatment of myelodysplastic syndrome. In the post-operative period he was admitted to the neurocritical care unit and received liposomal amphotericin B intravenously and through an external ventricular drain. This patient demonstrates that utilization of an external ventricular drain for intrathecal antifungal therapy in the post-operative period may warrant further study in patients with difficult to treat intracranial fungal abscesses. Copyright © 2014. Published by Elsevier Ltd.

  1. Long-Circulating, pH-Sensitive Liposomes.

    PubMed

    Momekova, Denitsa; Rangelov, Stanislav; Lambov, Nikolay

    2017-01-01

    A major limiting factor for the wide application of pH-sensitive liposomes is their recognition and sequestration by the phagocytes of the reticuloendothelial system, which conditions a very short circulation half-life. Typically prolonged circulation of liposomes is achieved by grafting their membranes with pegylated phospholipids (PEG-lipids), which have been shown, however, to deteriorate membrane integrity on one hand and to hamper the pH-responsiveness on the other. Hence, the need for novel alternative surface modifying agents to ensure effective half-life prolongation of pH-sensitive liposomes is a subject of intensive research. A series of copolymers having short blocks of lipid-mimetic units has been shown to sterically stabilize conventional liposomes based on different phospholipids. This has prompted us to broaden their utilization to pH-sensitive liposomes, too. The present contribution gives a thorough account on the chemical synthesis of these copolymers their incorporation in DOPE:CHEMs pH-sensitive liposomes and detailed explanation on the battery of techniques for the biopharmaceutical characterization of the prepared formulations in terms of pH-responsiveness, cellular internalization, in vivo pharmacokinetics and biodistribution.

  2. Long-circulating, pH-sensitive liposomes.

    PubMed

    Momekova, Denitsa; Rangelov, Stanislav; Lambov, Nikolay

    2010-01-01

    A major limiting factor for the wide application of pH-sensitive liposomes is their recognition and sequestration by the phagocytes of the reticulo-endothelial system, which conditions a very short circulation half-life. Typically prolonged circulation of liposomes is achieved by grafting their membranes with pegylated phospholipids (PEG-lipids), which have been shown, however, to deteriorate membrane integrity on one hand and to hamper the pH-responsiveness on the other. Hence, the need for novel alternative surface modifying agents to ensure effective half-life prolongation of pH-sensitive liposomes is a subject of intensive research. A series of copolymers having short blocks of lipid-mimetic units has been shown to sterically stabilize conventional liposomes based on different phospholipids. This has prompted us to broaden their utilization to pH-sensitive liposomes, too. The present contribution gives thorough account on the chemical synthesis of these copolymers their incorporation in DOPE:CHEMs pH-sensitive liposomes and detailed explanation on the battery of techniques for the biopharmaceutical characterization of the prepared formulations in terms of pH-responsiveness, cellular internalization, in vivo pharmacokinetics and biodistribution.

  3. Effects of severe spasticity treatment with intrathecal Baclofen in multiple sclerosis patients: Long term follow-up.

    PubMed

    Stampacchia, Giulia; Gerini, Adriana; Mazzoleni, Stefano

    2016-04-06

    Intrathecal Baclofen is available to treat severe generalized spasticity in Multiple Sclerosis (MS) unresponsive to oral drug delivery. The aims of this study were to investigate the effects and the drug dosage of intrathecal Baclofen in a selected population of MS patients, affected by severe spasticity at long term follow-up. A prospective cohort study of 14 MS patients is presented. Spasticity and pain were periodically assessed and the Baclofen dosage was adjusted. The initial Baclofen dosage was 136.2 ± 109.3 μg, then it was increased at 12 months to 228.6 ± 179.2 μg (p < 0.05). The subsequent dose adjustments did not result in significant changes up to 76 months. Spasticity on the lower limbs decreased significantly from pre-implantation assessment (median: 3.5, IQR: 3.0-4.0) to 12 months evaluation (median: 0.5, IQR: 0.0-2.0) (p < 0.001); no further decrease was observed after 24 months (median: 0.5, IQR: 0.0-1.5); when pain was present, it decreased. Some effects on cerebellar symptoms were observed. Botulinum toxin injections were used with intrathecal Baclofen therapy. A reduced spasticity and pain was observed after the intrathecal Baclofen infusion for at least 76 months. To obtain these results a dosage adjustment was needed only in the first year after the implantation.

  4. Efficacy of Periarticular Injection With a Long-Acting Local Analgesic in Joint Arthroplasty.

    PubMed

    Barrington, John W

    2015-10-01

    Attention to patient satisfaction is critical in today's health care environment-satisfaction surveys inform the development of hospital performance standards and can influence an institution's rankings and reimbursement. The effectiveness of postoperative pain management can affect clinical outcomes and also influence the patient's perception of the overall surgical experience. Ample clinical- trial data now exist that demonstrate the benefits of periarticular injections as part of a multimodal regimen in patients undergoing joint arthroplasty. One option that surgeons now use widely is bupivacaine liposome injectable suspension (EXPAREL®, Pacira Pharmaceuticals, Inc), a long-acting local analgesic that the orthopedic surgeon can administer intraoperatively. The US Food and Drug Administration has approved liposomal bupivacaine for injection into the surgical site to produce postsurgical analgesia. The safety and efficacy of liposomal bupivacaine has been demonstrated in clinical studies in multiple types of surgical procedure, including double-blind, randomized, controlled clinical trials that involved over 1300 patients. In a case-control study comparing clinical and economic parameters before and after the introduction of liposomal bupivacaine as a component of the multimodal perioperative pain regimen for total joint arthroplasty, liposomal bupivacaine provided improved overall pain scores, an increase in patients reporting a pain score of 0, increased patient satisfaction, decreased length of stay, and a decrease in overall costs.

  5. Intrathecal oxybuprocaine and proxymetacaine produced potent and long-lasting spinal anesthesia in rats.

    PubMed

    Hung, Ching-Hsia; Wang, Jhi-Joung; Chen, Yu-Chung; Chu, Chin-Chen; Chen, Yu-Wen

    2009-05-01

    Proxymetacaine and oxybuprocaine were clinically used for topical ocular anesthesia but never for spinal anesthesia, and therefore spinal anesthetic effects of proxymetacaine and oxybuprocaine were performed and compared with bupivacaine and lidocaine. After rats were injected intrathecally with proxymetacaine, oxybuprocaine, bupivacaine, and lidocane, dose-response curves were constructed. We evaluated the potencies (ED(50)) and durations (time to full recovery) of proxymetacaine and oxybuprocaine on spinal blockades of motor function, proprioception, and nociception and compared with bupivacaine and lidocaine in rats. We found that proxymetacaine and oxybuprocaine acted like bupivacaine or lidocaine and produced dose-related spinal blockades of motor function, proprioception and nociception. On the ED(50) basis, the ranks of potencies in motor, proprioception, and nociception were proxymetacaine>oxybuprocaine>bupivacaine>lidocaine (P<0.01 for the differences). On an equipotent basis (ED(20), ED(50), ED(80)), oxybuprocaine and bupivacaine produced similarly longer spinal blockades than did proxymetacaine or lidocaine (P<0.05 for the differences). Intrathecal proxymetacaine, oxybuprocaine, and bupivacaine also produced longer sensory blockade than motor blockade. These data demonstrated that oxybuprocaine and proxymetacaine produced more potent spinal blockades, when compared with bupivacaine or lidocaine. Oxybuprocaine and bupivacaine with a more sensory-selective action over motor blockade produced longer spinal blockade than did proxymetacaine or lidocaine.

  6. Synergistic effects between intrathecal clonidine and neostigmine in the formalin test.

    PubMed

    Yoon, M H; Yoo, K Y; Jeong, C Y

    2001-08-01

    Spinal alpha-2 adrenoceptors and cholinergic receptors are involved in the regulation of acute nociception and the facilitated processing. The aim of this study was to examine the pharmacological effect of an intrathecal alpha-2 agonist and a cholinesterase inhibitor on the facilitated pain model induced by formalin injection and to determine the nature of drug interaction using an isobolographic analysis. Both intrathecal clonidine and neostigmine dose-dependently suppressed the flinching during phase 1 and phase 2. Intrathecal pretreatment with atropine reversed the antinociceptive effects of clonidine and neostigmine in both phases. Pretreatment with intrathecal yohimbine attenuated the effect of clonidine. The antinociception of clonidine and neostigmine was not reversed by mecamylamine. Isobolographic analysis showed that intrathecal clonidine and neostigmine acted synergistically in both phase 1 and 2. Intrathecal pretreatment with atropine and yohimbine antagonized the effect of the mixture of clonidine and neostigmine in both phases, but no antagonism was observed with mecamylamine pretreatment. These data indicate that spinal clonidine and neostigmine are effective to counteract the facilitated state evoked formalin stimulus, and these two drugs interact in a synergistic fashion. In addition, the analgesic action of intrathecal clonidine is mediated by spinal muscarinic receptors as well as alpha-2 adrenoceptors.

  7. Long-Circulating and pH-Sensitive Liposome Preparation Trapping a Radiotracer for Inflammation Site Detection.

    PubMed

    Mota, Luciene Das Graças; de Barros, André Luís Branco; Fuscaldi, Leonardo Lima; de Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2015-06-01

    Inflammatory and infectious diseases are one of the most common causes of mortality and morbidity. This paper aimed to prepare and to evaluate the ability of long-circulating and pH-sensitive liposomes, trapping a radiotracer, to identify inflamed focus. The physicochemical characterization of freeze-dried liposomes, using glucose as cryoprotectant, showed 80% of the vesicles with adequate mean diameter and good vesicle size homogeneity. Radiotracer encapsulation percentage in liposomes was 10.65%, of which 4.88% was adsorbed on the surface of the vesicles. Furthermore, liposomes presented positive zeta potential. Freeze-dried liposomes, stored for 180 days at 4 degrees C, did not show significant changes in the mean diameter, indicating good stability. Free radiotracer and radiolabeled liposomes were injected into inflammation focus-bearing rats, and ex-vivo biodistribution studies and scintigraphic images were performed. Results showed that radiopharmaceutical, free and encapsulated into liposomes, were able to identify the inflamed site. Target/non-target ratios, obtained by scintigraphic images, were greater than 1.5 at all investigated times. Data did not show significant differences between the free radiotracer and radiolabeled liposomes. Results suggest that this liposomal preparation could be employed as an alternative procedure for inflamed site detection by means of scintigraphic images. However, as the radiotracer is adsorbed onto the liposome surface by electrostatic forces, it is suggested that a neutral radiopharmaceutical be used to confirm the potential of this formulation as a scintigraphic probe for inflammation/infection detection.

  8. Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s

    PubMed Central

    Romberg, Birgit; Oussoren, Christien; Snel, Cor J.; Hennink, Wim E.

    2007-01-01

    Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications. PMID:17674159

  9. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes.

    PubMed

    Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C

    2015-01-01

    The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.

  10. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory.

    PubMed

    Wang, Ce; Liu, Peng; Zhuang, Yan; Li, Ping; Jiang, Boling; Pan, Hong; Liu, Lanlan; Cai, Lintao; Ma, Yifan

    2014-09-22

    Although retaining antigens at the injection site (the so-called "depot effect") is an important strategy for vaccine development, increasing evidence showed that lymphatic-targeted vaccine delivery with liposomes could be a promising approach for improving vaccine efficacy. However, it remains unclear whether antigen depot or lymphatic targeting would benefit long-term immunological memory, a major determinant of vaccine efficacy. In the present study, OVA antigen was encapsulated with DOTAP cationic liposomes (LP) or DOTAP-PEG-mannose liposomes (LP-Man) to generate depot or lymphatic-targeted liposome vaccines, respectively. The result of in vivo imaging showed that LP mostly accumulated near the injection site, whereas LP-Man not only effectively accumulated in draining lymph nodes (LNs) and the spleen, but also enhanced the uptake by resident antigen-presenting cells. Although LP vaccines with depot effect induced anti-OVA IgG more potently than LP-Man vaccines did on day 40 after priming, they failed to mount an effective B-cell memory response upon OVA re-challenge after three months. In contrast, lymphatic-targeted LP-Man vaccines elicited sustained antibody production and robust recall responses three months after priming, suggesting lymphatic targeting rather than antigen depot promoted the establishment of long-term memory responses. The enhanced long-term immunological memory by LP-Man was attributed to vigorous germinal center responses as well as increased Tfh cells and central memory CD4(+) T cells in the secondary lymphoid organs. Hence, lymphatic-targeted vaccine delivery with LP-Man could be an effective strategy to promote long-lasting immunological memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Intrathecal Baclofen Pump for Spasticity

    PubMed Central

    2005-01-01

    English-language journal articles from selected databases. Summary of Findings Level 2 evidence supports the effectiveness of intrathecal baclofen infusion for the short-term reduction of severe spasticity in patients who are unresponsive or cannot tolerate oral baclofen Level 3 evidence supports the effectiveness of intrathecal baclofen for the long-term reduction of severe spasticity in patients who are unresponsive or cannot tolerate oral baclofen Level 4 qualitative evidence demonstrates functional improvement for patients who are unresponsive or cannot tolerate oral baclofen Intrathecal baclofen is cost-effective with costs which may or may not be avoided in the Ontario health system True functional use remains to be determined PMID:23074476

  12. Manufacturing Methods for Liposome Adjuvants.

    PubMed

    Perrie, Yvonne; Kastner, Elisabeth; Khadke, Swapnil; Roces, Carla B; Stone, Peter

    2017-01-01

    A wide range of studies have shown that liposomes can act as suitable adjuvants for a range of vaccine antigens. Properties such as their amphiphilic character and biphasic nature allow them to incorporate antigens within the lipid bilayer, on the surface, or encapsulated within the inner core. However, appropriate methods for the manufacture of liposomes are limited and this has resulted in issues with cost, supply, and wider scale application of these systems. Within this chapter we explore manufacturing processes that can be used for the production of liposomal adjuvants, and we outline new manufacturing methods can that offer fast, scalable, and cost-effective production of liposomal adjuvants.

  13. Integration of β-carotene molecules in small liposomes

    NASA Astrophysics Data System (ADS)

    Andreeva, Atanaska; Popova, Antoaneta

    2010-11-01

    The most typical feature of carotenoids is the long polyene chain with conjugated double bonds suggesting that they can serve as conductors of electrons, acting as ''molecular wires'', important elements in the molecular electronic devices. Carotenoids are essential components of photosynthetic systems, performing different functions as light harvesting, photoprotection and electron transfer. They act also as natural antioxidants. In addition they perform structural role stabilizing the three-dimensional organization of photosynthetic membranes. Carotenoids contribute to the stability of the lipid phase, preserving the membrane integrity under potentially harmful environmental conditions. Carotenoids can be easily integrated into model membranes, facilitating the investigation of their functional roles. In carotenoid-egg phosphatidylcholine (EPC) liposomes ß-carotene is randomly distributed in the hydrocarbon interior of the bilayer, without any preferred, well defined orientation and retains a substantial degree of mobility. Here we investigate the degree of integration of ß-carotene in small unilamellar EPC liposomes and the changes in ß-carotene absorption and Raman spectra due to the lipid-pigment interaction. All observed changes in ß-carotene absorption and Raman spectra may be regarded as a result of the lipid-pigment interactions leading to the polyene geometry distortion and increasing of the environment heterogenety in the liposomes as compared to the solutions.

  14. Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy.

    PubMed

    Kaushik, Mahesh K; Aritake, Kosuke; Imanishi, Aya; Kanbayashi, Takashi; Ichikawa, Tadashi; Shimizu, Tetsuo; Urade, Yoshihiro; Yanagisawa, Masashi

    2018-06-05

    Narcolepsy-cataplexy is a chronic neurological disorder caused by loss of orexin (hypocretin)-producing neurons, associated with excessive daytime sleepiness, sleep attacks, cataplexy, sleep paralysis, hypnagogic hallucinations, and fragmentation of nighttime sleep. Currently, human narcolepsy is treated by providing symptomatic therapies, which can be associated with an array of side effects. Although peripherally administered orexin does not efficiently penetrate the blood-brain barrier, centrally delivered orexin can effectively alleviate narcoleptic symptoms in animal models. Chronic intrathecal drug infusion through an implantable pump is a clinically available strategy to treat a number of neurological diseases. Here we demonstrate that the narcoleptic symptoms of orexin knockout mice can be reversed by lumbar-level intrathecal orexin delivery. Orexin was delivered via a chronically implanted intrathecal catheter at the upper lumbar level. The computed tomographic scan confirmed that intrathecally administered contrast agent rapidly moved from the spinal cord to the brain. Intrathecally delivered orexin was detected in the brain by radioimmunoassay at levels comparable to endogenous orexin levels. Cataplexy and sleep-onset REM sleep were significantly decreased in orexin knockout mice during and long after slow infusion of orexin (1 nmol/1 µL/h). Sleep/wake states remained unchanged both quantitatively as well as qualitatively. Intrathecal orexin failed to induce any changes in double orexin receptor-1 and -2 knockout mice. This study supports the concept of intrathecal orexin delivery as a potential therapy for narcolepsy-cataplexy to improve the well-being of patients.

  15. Validation of a Preclinical Spinal Safety Model: Effects of Intrathecal Morphine in the Neonatal Rat

    PubMed Central

    Westin, B. David; Walker, Suellen M.; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L.

    2010-01-01

    Background Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long term function following intrathecal morphine in the neonatal rat. Methods Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P)3, 10 and 21. The relationship between injectate volume and segmental spread was assessed post mortem and by in-vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 minutes following intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis and glial response were evaluated 1 and 7 days following P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Results Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally-mediated analgesia at all ages with lower dose requirements in younger pups. High dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. Conclusions The therapeutic ratio for intrathecal morphine (toxic dose / antinociceptive dose) was at least 300 at P3, and at least 20 at P21 (latter doses limited by side effects). This data provides relative efficacy and safety data for comparison with other analgesic preparations and contributes supporting evidence for the validity of this preclinical neonatal safety model. PMID:20526189

  16. Validation of a preclinical spinal safety model: effects of intrathecal morphine in the neonatal rat.

    PubMed

    Westin, B David; Walker, Suellen M; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L

    2010-07-01

    Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long-term function after intrathecal morphine in the neonatal rat. Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P) 3, 10, and 21. The relationship between injectate volume and segmental spread was assessed postmortem and by in vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 min after intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis, and glial response were evaluated 1 and 7 days after P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally mediated analgesia at all ages with lower dose requirements in younger pups. High-dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. The therapeutic ratio for intrathecal morphine (toxic dose/antinociceptive dose) was at least 300 at P3 and at least 20 at P21 (latter doses limited by side effects). These data provide relative efficacy and safety for comparison with other analgesic preparations and contribute supporting evidence for the validity of this preclinical neonatal safety model.

  17. Intrathecal baclofen for treating spasticity in children with cerebral palsy.

    PubMed

    Hasnat, Monika J; Rice, James E

    2015-11-13

    demonstrated that intrathecal baclofen therapy reduces spasticity in children with cerebral palsy. However, two of these studies utilised inappropriate techniques for statistical analysis of results. The single longer-term study demonstrated minimal reduction in spasticity with the use of intrathecal baclofen therapy.One of the short-term studies and the longer term study showed improvement in comfort and ease of care. The longer term study found a small improvement in gross motor function and also in some domains of health-related quality of life.Some caution is required in interpreting the findings of the all the studies in the review due to methodological issues. In particular, there was a high risk of bias in the methodology of the longer term study due to the lack of placebo use in the control group and the absence of blinding to the intervention after randomisation for both participants and investigators. There is some limited short-term evidence that intrathecal baclofen is an effective therapy for reducing spasticity in children with cerebral palsy. The effect of intrathecal baclofen on long-term spasticity outcomes is less certain.The validity of the evidence for the effectiveness of intrathecal baclofen in treating spasticity in children with cerebral palsy from the studies in the review is constrained by the small sample sizes of the studies and methodological issues in some studies.Spasticity is a impairment in the domain of body structure and function. Consideration must also be given to the broader context in determining whether intrathecal baclofen therapy is effective. The aim of therapy may be, for example, to improve gross motor function, to increase participation at a social role level, to improve comfort, to improve the ease of care by others or to improve the overall quality of life of the individual. Intrathecal baclofen may improve gross motor function in children with cerebral palsy, but more reliable evidence is needed to determine this.There is some

  18. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles.

    PubMed

    Ducat, E; Deprez, J; Gillet, A; Noël, A; Evrard, B; Peulen, O; Piel, G

    2011-11-28

    The purpose of this study is to propose a suitable vector combining increased circulation lifetime and intracellular delivery capacities for a therapeutic peptide. Long circulating classical liposomes [SPC:CHOL:PEG-750-DSPE (47:47:6 molar% ratio)] or pH-sensitive stealth liposomes [DOPE:CHEMS:CHOL:PEG(750)-DSPE (43:21:30:6 molar% ratio)] were used to deliver a therapeutic peptide to its nuclear site of action. The benefit of using stealth pH-sensitive liposomes was investigated and formulations were compared to classical liposomes in terms of size, shape, charge, encapsulation efficiency, stability and, most importantly, in terms of cellular uptake. Confocal microscopy and flow cytometry were used to evaluate the intracellular fate of liposomes themselves and of their hydrophilic encapsulated material. Cellular uptake of peptide-loaded liposomes was also investigated in three cell lines: Hs578t human epithelial cells from breast carcinoma, MDA-MB-231 human breast carcinoma cells and WI-26 human diploid lung fibroblast cells. The difference between formulations in terms of peptide delivery from the endosome to the cytoplasm and even to the nucleus was investigated as a function of time. Characterization studies showed that both formulations possess acceptable size, shape and encapsulation efficiency but cellular uptake studies showed the important benefit of the pH-sensitive formulation over the classical one, in spite of liposome PEGylation. Indeed, stealth pH-sensitive liposomes were able to deliver hydrophilic materials strongly to the cytoplasm. Most importantly, when encapsulated in pH-sensitive stealth liposomes, the peptide was able to reach the nucleus of tumorigenic and non tumorigenic breast cancer cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Liposomal adjuvants for human vaccines.

    PubMed

    Alving, Carl R; Beck, Zoltan; Matyas, Gary R; Rao, Mangala

    2016-06-01

    Liposomes are well-known as drug carriers, and are now critical components of two of six types of adjuvants present in licensed vaccines. The liposomal vaccine adjuvant field has long been dynamic and innovative, and research in this area is further examined as new commercial products appear in parallel with new vaccines. In an arena where successful products exist the potential for new types of vaccines with liposomal adjuvants, and alternative liposomal adjuvants that could emerge for new types of vaccines, are discussed. Major areas include: virosomes, constructed from phospholipids and proteins from influenza virus particles; liposomes containing natural and synthetic neutral or anionic phospholipids, cholesterol, natural or synthetic monophosphoryl lipid A, and QS21 saponin; non-phospholipid cationic liposomes; and combinations and mixtures of liposomes and immunostimulating ingredients as adjuvants for experimental vaccines. Liposomes containing monophosphoryl lipid A and QS21 have considerable momentum that will result soon in emergence of prophylactic vaccines to malaria and shingles, and possible novel cancer vaccines. The licensed virosome vaccines to influenza and hepatitis A will be replaced with virosome vaccines to other infectious diseases. Alternative liposomal formulations are likely to emerge for difficult diseases such as tuberculosis or HIV-1 infection.

  20. Asialofetuin liposome-mediated human alpha1-antitrypsin gene transfer in vivo results in stationary long-term gene expression.

    PubMed

    Dasí, F; Benet, M; Crespo, J; Crespo, A; Aliño, S F

    2001-05-01

    The development of nonviral vectors for in vivo gene delivery to hepatocytes is an interesting topic in view of their safety and tremendous gene therapy potential. Since cationic liposomes and liposome uptake by receptor-mediated mechanisms could offer advantages in the efficacy of liposome-mediated gene transfer, we studied the effect of liposome charge (anionic vs. cationic) and the covalently coupled asialofetuin ligand on the liposome surface in mediating human alpha1-antitrypsin (hAAT) gene transfer to mice in vivo. The changes in liposome charge were made by adding the following lipids to the backbone liposomes: anionic phosphatidylserine, cationic N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl-ammonium methylsulfate or a lipopeptide synthesized from dipalmitoylphosphatidylethanolamine and covalently coupled to the cationic nuclear localization signal peptide. Two plasmids containing the hAAT gene were used: pTG7101, containing the complete genomic sequence of the human gene driven by the natural promoter, and p216, containing the human hAAT cDNA under the control of the CMV promoter. The results indicate that both untargeted anionic and cationic liposomes mediate plasma levels of hAAT that decline over time. However, asialofetuin liposomes increase the plasma levels of hAAT and can mediate long-term gene expression (>12 months) with stationary plasma levels of protein. Results from quantitative and qualitative reverse transcriptase polymerase chain reaction match those from protein plasma levels and confirm both the human origin of the message and the liver as source of the protein. The use of asialofetuin liposomes in hepatic gene therapy may both increase and prolong in vivo gene expression of hAAT and other clinically important genes.

  1. Preparation, pharmacokinetics and tumour-suppressive activity of berberine liposomes.

    PubMed

    Wang, Xinghui; Wang, Qiong; Liu, Zhihui; Zheng, Xiao

    2017-06-01

    Berberine (BBR) has shown promising antitumour effects in vitro. However, intravenous administration of BBR solution is complicated by lethal adverse cardiovascular effects. The aim of this study was to prepare common and polyethylene glycol (PEG)-modified long-circulating BBR liposomes and evaluate their efficacy and safety as potential antitumour agents. Physiochemical properties of common and long-circulating BBR liposomes were characterized including particle size, Zeta potential and thermal stability. Pharmacokinetic and tissue distribution study of liposomal BBR was performed in rats and tumour-bearing nude mice, respectively. Antitumour efficacy and safety were observed in SGC-7901 tumour-xenografted mice. Berberine liposomes showed homogenous morphology, storage stability and sustained-releasing behaviour in vitro. BBR liposomes led to significantly increased circulation retention of BBR in comparison with BBR solution. In tumour-bearing mice, BBR liposomes selectively increased BBR concentrations in the liver, spleen, lung and tumour, while conferred lower distribution to the heart and kidney. Importantly, chronic administration of BBR liposomes proved effective and safe in suppressing the tumour growth in nude mice, especially the PEG-modified long-circulating liposomes. Our study suggested that BBR liposomes may provide a safe form of intravenous drug therapy for strengthening the antitumour effects of BBR. © 2017 Royal Pharmaceutical Society.

  2. Intrathecal treatment in cancer patients unresponsive to multiple trials of systemic opioids.

    PubMed

    Mercadante, Sebastiano; Intravaia, Giuseppe; Villari, Patrizia; Ferrera, Patrizia; Riina, Salvatore; David, Fabrizio; Mangione, Salvatore

    2007-01-01

    patients, bladder catheterization in 6 patients, reoperation for bleeding or changes of catheter position in 4 patients, unrelated death in 1 patient, and stroke in another 1. Late complications included local infection in 2 patients, and discontinuation of intrathecal therapy due to spinal compression. In patients who had received multiple trial of opioids and routes of administration, the intrathecal treatment started with an oral-intrathecal morphine conversion ratio of 100:1, and local anesthetics at the most convenient clinical doses provided a long-term improvement of analgesia, with a decrease in adverse effects and opioid consumption until death.

  3. Cautious Use of Intrathecal Baclofen in Walking Spastic Patients: Results on Long-term Follow-up.

    PubMed

    Dones, Ivano; Nazzi, Vittoria; Tringali, Giovanni; Broggi, Giovanni

    2006-04-01

    Intrathecal baclofen is presently the most effective treatment for diffuse spasticity whatever the cause. The fact that both spasticity is always accompanied by a degree of muscle weakness and that any antispastic treatment causes a decrease in muscle strength indicate that major attention must be paid in treating spasticity in ambulant patients. Methods.  We present here a retrospective study, approved by the insitutional ethics committee, of 22 ambulant spastic patients, selected as homogeneous for disease and disease duration, who were treated with intrathecal baclofen at the Istituto Nazionale Neurologico "C.Besta" in Milan. These patients were followed-up for to 15 years of treatment and their clinical assessment was enriched by the evaluation of their functional independence measurement (FIM) before and during treatment. Results.  There was improvement in quality of life as measured by the FIM scale; however, an increase in the patient's motor performance could not be detected. Conclusion.  Although we did not show any improvement in muscle performance, intrathecal baclofen did improve daily quality of life, even in spastic patients who were able to walk.

  4. Serum-Stable, Long-Circulating, pH-Sensitive PEGylated Liposomes.

    PubMed

    Bertrand, Nicolas; Simard, Pierre; Leroux, Jean-Christophe

    2017-01-01

    pH-sensitive liposomes have been designed to deliver active compounds, specifically to acidic intracellular organelles, and to augment their cytoplasmic concentrations. These systems combine the protective effects of other liposomal formulations with specific environment-controlled drug release. They are stable at physiological pH, but abruptly discharge their contents when endocytosed into acidic compartments, allowing the drug to be released before it is exposed to the harsh environment of the lysosomes.Serum-stable formulations with minimal leakage at physiological pH and rapid drug release at pH 5.0 to 5.5 can be easily prepared by inserting a hydrophobically modified N-isopropylacrylamide/methacrylic acid copolymer (poly(NIPAM-co-MAA)) in the lipid bilayer of sterically stabilized liposomes. The present chapter describes polymer synthesis, as well as the preparation and characterization of large unilamellar pH-sensitive vesicles.

  5. Bupivacaine Versus Liposomal Bupivacaine For Pain Control.

    PubMed

    Beiranvand, Siavash; Moradkhani, Mahmoud Reza

    2017-11-06

    Local infiltrations and regional blocks have been some of the effective ways employed to manage and control post-operative pain. One of the limitations of administration of local anesthesia drugs in post-operative conditions is its inability to act for a longer period of time. Multi-vesicular liposomes made up of bupivacaine have been progressively used for their increased duration of action. Compared to bupivacaine HCL, local infiltration of liposomal bupivacaine have shown to have a significantly increase the duration and delay in peak plasma concentration. In this article, we attempt to compare liposomal bupivacaine and bupivacaine based on available clinical literatures. Liposomal bupivacaine has been demonstrated to have promising implications in post- operative pain control resulting in increased patient satisfaction; reduced hospital admission and opioid induced adverse events. Clinical studies have identified liposomal bupivacaine to be effective in delivering increased post-operative pain control. The purpose of this review is to give a comprehensive comparison between bupivacaine liposomal and conventional bupivacaine based on reported clinical trials. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Near Death Experience from Placement of an Intrathecal Catheter.

    PubMed

    Padalia, Devang; Jassal, Navdeep; Patel, Sagar

    2016-05-01

    The management of pain due to cancer is challenging and often requires invasive therapy in addition to medication management. Intrathecal drug delivery is a form of advanced therapy that delivers medication locally in the intrathecal space while reducing systemic side effects associated with high doses of opioids. Although risks associated with intrathecal drug delivery are low, some common complications include dislodgement, kinking, or fracture of the catheter, bleeding, neurological injury, infection, and cerebrospinal leaks. We present a case of a 38-year-old woman with a medical history significant for stage IV breast cancer, L2 metastatic lesion, opioid tolerance, and chronic neck and low back pain who was admitted to the hospital for intractable pain. She had failed multiple interventional procedures in the past including lumbar medial nerve radiofrequency ablation, epidural steroid injection, and trigger point injections as well as a kyphoplasty at the L2 level. Failing both oral and parenteral opioid treatments, the decision was made to place an intrathecal pump in the patient. After placement of the intrathecal catheter and prior to any bolus of medication being given, the patient became bradycardic with a heart rate in the 20s and experienced a 10 second pause. The patient had intermittent bradycardia over the following days and symptoms resolved only after removal of the intrathecal catheter itself. To our knowledge, this is the first reported case with a complication of recurrent bradycardic and asystolic episodes prior to the administration of intrathecal opioid but shortly after placement of the intrathecal catheter itself. Intrathecal drug delivery, complications, cancer pain, intrathecal analgesia, bradycardia, opioids.

  7. Octanol-assisted liposome assembly on chip

    PubMed Central

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells. PMID:26794442

  8. Octanol-assisted liposome assembly on chip.

    PubMed

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E C; Dekker, Cees

    2016-01-22

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  9. Octanol-assisted liposome assembly on chip

    NASA Astrophysics Data System (ADS)

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  10. pH-Sensitive Liposomes: Acid-Induced Liposome Fusion

    NASA Astrophysics Data System (ADS)

    Connor, Jerome; Yatvin, Milton B.; Huang, Leaf

    1984-03-01

    Sonicated unilamellar liposomes containing phosphatidylethanolamine and palmitoylhomocysteine fuse rapidly when the medium pH is lowered from 7 to 5. Liposome fusion was demonstrated by (i) mixing of the liposomal lipids as shown by resonance energy transfer, (ii) gel filtration, and (iii) electron microscopy. The pH-sensitive fusion of liposomes was observed only when palmitoylhomocysteine (>= 20 mol%) was present in the liposomes. The presence of phosphatidyl-ethanolamine in the liposomes greatly enhanced fusion whereas the presence of phosphatidylcholine inhibited fusion. During fusion of liposomes containing phosphatidylethanolamine and palmitoylhomocysteine (8:2, mol/mol), almost all of the encapsulated calcein was released. Inclusion of cholesterol (40 mol%) in the liposomes substantially decreased leakage without impairing fusion.

  11. Liposome retention in size exclusion chromatography

    PubMed Central

    Ruysschaert, Tristan; Marque, Audrey; Duteyrat, Jean-Luc; Lesieur, Sylviane; Winterhalter, Mathias; Fournier, Didier

    2005-01-01

    Background Size exclusion chromatography is the method of choice for separating free from liposome-encapsulated molecules. However, if the column is not presaturated with lipids this type of chromatography causes a significant loss of lipid material. To date, the mechanism of lipid retention is poorly understood. It has been speculated that lipid binds to the column material or the entire liposome is entrapped inside the void. Results Here we show that intact liposomes and their contents are retained in the exclusion gel. Retention depends on the pore size, the smaller the pores, the higher the retention. Retained liposomes are not tightly fixed to the beads and are slowly released from the gels upon direct or inverted eluent flow, long washing steps or column repacking. Further addition of free liposomes leads to the elution of part of the gel-trapped liposomes, showing that the retention is transitory. Trapping reversibility should be related to a mechanism of partitioning of the liposomes between the stationary phase, water-swelled polymeric gel, and the mobile aqueous phase. Conclusion Retention of liposomes by size exclusion gels is a dynamic and reversible process, which should be accounted for to control lipid loss and sample contamination during chromatography. PMID:15885140

  12. Designing liposomal adjuvants for the next generation of vaccines.

    PubMed

    Perrie, Yvonne; Crofts, Fraser; Devitt, Andrew; Griffiths, Helen R; Kastner, Elisabeth; Nadella, Vinod

    2016-04-01

    Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Severe neurotoxicity following intrathecal methotrexate with nitrous oxide sedation in a child with acute lymphoblastic leukemia.

    PubMed

    Löbel, U; Trah, J; Escherich, G

    2015-03-01

    Systemic and intrathecal methotrexate is widely used in treatment protocols for childhood acute lymphoblastic leukemia. Its side effects vary in characteristics, intensity and time of onset, and depend on the administration route. Interactions with several drugs are known. Side effects of nitrous oxide sedation, often used for moderately painful procedures, typically occur after long time use and include neurological symptoms. We present a child who experienced a severe and long-lasting neurotoxicity after the third intrathecal application of methotrexate with short sedation by nitrous oxide during induction therapy for acute lymphoblastic leukemia. Symptoms completely resolved after 12 months. © 2014 Wiley Periodicals, Inc.

  14. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents--effect of liposome size and internal gadolinium concentration.

    PubMed

    Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan

    2008-10-01

    Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.

  15. Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue.

    PubMed

    Davidsen, Jesper; Jørgensen, Kent; Andresen, Thomas L; Mouritsen, Ole G

    2003-01-10

    Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A(2) (PLA(2)) at the diseased target tissue. The secretory PLA(2) hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA(2) only at the diseased target sites, such as inflamed or cancerous tissue.

  16. Bombesin Encapsulated in Long-Circulating pH-Sensitive Liposomes as a Radiotracer for Breast Tumor Identification.

    PubMed

    De Barros, André Luís Branco; Mota, Luciene Das Graças; Coelho, Marina Melo Antunes; Corrêa, Natássia Caroline Resende; De Góes, Alfredo Miranda; Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2015-02-01

    Bombesin (BBN) is a tetradecapeptide that binds specifically to gastrin-releasing peptide receptors in humans. These receptors are over-expressed in several forms of cancer; radiolabeled BBN could therefore be used to detect such cancers. However, the degradation of peptides is a critical issue in the development of tumor tracers. Liposomes can be used to overcome this problem and improve the uptake of tracers by tumors. Therefore, the purpose of this study was to prepare and characterize long-circulating and pH-sensitive liposomes (SpHL) containing 99mTc-HYNIC-βAla-Bombesin(7-14) (99mTc-BBN(7-14). In addition, the ability of this system to identify human breast cancer tissue was evaluated using biodistribution studies and scintigraphic images. Long-circulating and pH-sensitive liposomes (SpHL) were prepared and freeze-dried in the presence of cryoprotectants (glucose, mannitol, and trehalose). They were subsequently reconstituted with a solution of 99mTc-HYNIC-βAla-Bombesin(7-14) (99mTc-BBN(7-14)). The liposomes were evaluated for size, encapsulation percentage, radiotracer leakage, and storage stability. In addition, in vivo studies were performed in breast tumor-bearing nude mice. Liposomes in the presence of glucose (SpHLG), exhibited a mean diameter of 164.5 ± 6.5 nm and exhibited a 99mTc-BBN(7-14) encapsulation percentage of 30%. In addition, they remained highly stable for up to 120 days of storage. SpHLG- 99mTc-BBN(7-14) showed longer blood circulation than free 99mTc-BBN(7-14), did. The tumor-to-muscle and tumor-to-blood ratios for SpHLG-99mTc-BBN(7-14 were high at 4 h post-injection (9.31%ID/g and 7.93%ID/g, respectively). Furthermore, scintigraphic images revealed a strong signal in the tumor area, indicating tumor specificity of SpHLG-99mTc-BBN(7-14). In summary, SpHLG-99mTc-BBN(7-14) presented characteristics suitable for a diagnostic agent, and is a potential tool for tumor identification.

  17. Technetium-99m-labeled ceftizoxime loaded long-circulating and pH-sensitive liposomes used to identify osteomyelitis.

    PubMed

    Ferreira, Soraya Maria Zandim Maciel Dias; Domingos, Giselle Pires; Ferreira, Diego dos Santos; Rocha, Talita Guieiro Ribeiro; Serakides, Rogéria; de Faria Rezende, Cleuza Maria; Cardoso, Valbert Nascimento; Fernandes, Simone Odília Antunes; Oliveira, Mônica Cristina

    2012-07-15

    Osteomyelitis is an infectious disease located in the bone or bone marrow. Long-circulating and pH-sensitive liposomes containing a technetium-99m-labeled antibiotic, ceftizoxime, (SpHL-(99m)Tc-CF) were developed to identify osteomyelitis foci. Biodistribution studies and scintigraphic images of bone infection or non infection-bearing rats that had been treated with these liposomes were performed. A high accumulation in infectious foci and high values in the target-non target ratio could be observed. These results indicate the potential of SpHL-(99m)Tc-CF as a potential agent for the diagnosis of bone infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A comparison of image contrast with 64Cu-labeled long circulating liposomes and 18F-FDG in a murine model of mammary carcinoma

    PubMed Central

    Wong, Andrew W; Ormsby, Eleanor; Zhang, Hua; Seo, Jai Woong; Mahakian, Lisa M; Caskey, Charles F; Ferrara, Katherine W

    2013-01-01

    Conjugation of the 64Cu PET radioisotope (t1/2 = 12.7 hours) to long circulating liposomes enables long term liposome tracking. To evaluate the potential clinical utility of this radiotracer in diagnosis and therapeutic guidance, we compare image contrast, tumor volume, and biodistribution of 64Cu-liposomes to metrics obtained with the dominant clinical tracer, 18F-FDG. Twenty four female FVB mice with MET1 mammary carcinoma tumor grafts were examined. First, serial PET images were obtained with the 18F-FDG radiotracer at 0.5 hours after injection and with the 64Cu-liposome radiotracer at 6, 18, 24, and 48 hours after injection (n = 8). Next, paired imaging and histology were obtained at four time points: 0.5 hours after 18F-FDG injection and 6, 24, and 48 hours after 64Cu-liposome injection (n = 16). Tissue biodistribution was assessed with gamma counting following necropsy and tumors were paraffin embedded, sectioned, and stained with hematoxylin and eosin. The contrast ratio of images obtained using 18F-FDG was 0.88 ± 0.01 (0.5 hours after injection), whereas with the 64Cu-liposome radiotracer the contrast ratio was 0.78 ± 0.01, 0.89 ± 0.01, 0.88 ± 0.01, and 0.94 ± 0.01 at 6, 18, 24, and 48 hours, respectively. Estimates of tumor diameter were comparable between 64Cu-liposomes and 18F-FDG, 64Cu-liposomes and necropsy, and 64Cu-liposomes and ultrasound with Pearson’s r-squared values of 0.79, 0.79, and 0.80, respectively. Heterogeneity of tumor tracer uptake was observed with both tracers, correlating with regions of necrosis on histology. The average tumor volume of 0.41 ± 0.05 cc measured with 64Cu-liposomes was larger than that estimated with 18F-FDG (0.28 ± 0.04 cc), with this difference apparently resulting primarily from accumulation of the radiolabeled particles in the pro-angiogenic tumor rim. The imaging of radiolabeled nanoparticles can facilitate tumor detection, identification of tumor margins, therapeutic evaluation and interventional

  19. Intrathecal tetanus immunoglobulins in the management of tetanus.

    PubMed

    Geeta, M G; Krishnakumar, P; Mathews, Lulu

    2007-01-01

    To study the clinical profile, treatment and outcome of tetanus in children treated with intrathecal tetanus immunoglobulin. (TIG) METHODS: Retrospective analysis of hospital records of tetaus cases admitted to the pediatric ICU during the five year period between 1999 to 2004 was done. There were 66 cases of tetanus treated with intrathecal TIG. Children below 5 years formed 53% of cases and 47% were above 5 years. Totally unimmunized children constituted 82% of cases and 18% partially immunized children. The portal of entry was otogenic in 58% of cases and injury in30% of cases. The common complications observed included thrombophlebitis, aspiration pneumonia, laryngospasm and autonomic system involvement. There were no complications specific to intrathecal administration of TIG. The mortality due to tetanus was 9%. Mortality and morbidity due to tetanus was less in the present study compared to other centers where TIG is given intramuscularly. Intrathecal TIG is effective in the treatment of mild and moderate tetanus. Randomized controlled clinical trials are needed to evaluate the efficacy of intrathecal TIG in the management of severe tetanus.

  20. Liposomal bupivacaine versus traditional bupivacaine for pain control after total hip arthroplasty

    PubMed Central

    Ma, Ting-Ting; Wang, Yu-Hui; Jiang, Yun-Feng; Peng, Cong-Bin; Yan, Chao; Liu, Zi-Gui; Xu, Wei-Xing

    2017-01-01

    Abstract Background: In the past, the efficacy of local infiltration of liposomal bupivacaine for total hip arthroplasty (THA) patients was in debate. Therefore, this meta-analysis was conducted to determine whether local infiltration of liposomal bupivacaine provides better pain relief after THA. Methods: We searched Web of Science, PubMed, Embase, and the Cochrane Library databases to the April 2017. Any studies comparing liposomal bupivacaine and traditional bupivacaine were included in our meta-analysis. The outcomes included visual analog scale (VAS) at 24, 48, and 72 hours, total morphine consumption at 24 hours, and the length of hospital stay. We assessed the pooled data using a random-effect model. Results: Six studies were finally included in this meta-analysis. Our pooled data analysis demonstrated that liposomal bupivacaine was more effective than the traditional bupivacaine in terms of VAS at 24 hours (P  =  .018) and the length of hospital stay (P  =  .000). There was no significant difference in terms of the VAS at 48 and 72 hours and total morphine consumption at 24 hours (P >.05). Conclusion: Compared with the traditional bupivacaine, liposomal bupivacaine shows better pain control at 24 hours and reduces the length of hospital stay after THA. Its economic costs must be assessed in multimodal center randomized controlled trials when being recommended as a long-acting alternative analgesic agent for a THA patient. PMID:28640101

  1. Intrathecal Analgesia and Palliative Care: A Case Study

    PubMed Central

    Salins, Naveen S; Crawford, Gregory B

    2010-01-01

    Intrathecal analgesia is an interventional form of pain relief with definite advantages and multiple complications. Administration of intrathecal analgesia needs a good resource setting and expertise. Early complications of intrathecal analgesia can be very distressing and managing these complications will need a high degree of knowledge, technical expertise and level of experience. Pain control alone cannot be the marker of quality in palliative care. A holistic approach may need to be employed that is more person and family oriented. PMID:20859471

  2. Fasudil and DETA NONOate, Loaded in a Peptide-Modified Liposomal Carrier, Slow PAH Progression upon Pulmonary Delivery.

    PubMed

    Rashid, Jahidur; Nahar, Kamrun; Raut, Snehal; Keshavarz, Ali; Ahsan, Fakhrul

    2018-05-07

    We investigated the feasibility of a combination therapy comprising fasudil, a Rho-kinase inhibitor, and DETA NONOate (diethylenetriamine NONOate, DN), a long-acting nitric oxide donor, both loaded in liposomes modified with a homing peptide, CAR (CARSKNKDC), in the treatment of pulmonary arterial hypertension (PAH). We first prepared and characterized unmodified and CAR-modified liposomes of fasudil and DN. Using individual drugs alone or a mixture of fasudil and DN as controls, we studied the efficacy of the two liposomal preparations in reducing mean pulmonary arterial pressure (mPAP) in monocrotaline (MCT) and SUGEN-hypoxia-induced PAH rats. We also conducted morphometric studies (degree of muscularization, arterial medial wall thickness, and collagen deposition) after treating the PAH rats with test and control formulations. When the rats were treated acutely and chronically, the reduction in mPAP was more pronounced in the liposomal formulation-treated rats than in plain drug-treated rats. CAR-modified liposomes were more selective in reducing mPAP than unmodified liposomes of the drugs. Both drugs, formulated in CAR-modified liposomes, reduced the degree of muscularization, medial arterial wall thickness, and collagen deposition more than the combination of plain drugs did. As seen with the in vivo data, CAR-modified liposomes of fasudil or DN increased the levels of the vasodilatory signaling molecule, cGMP, in the smooth muscle cells of PAH-afflicted human pulmonary arteries. Overall, fasudil and DN, formulated in liposomes, could be used as a combination therapy for a better management of PAH.

  3. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach.

    PubMed

    Tefas, Lucia Ruxandra; Sylvester, Bianca; Tomuta, Ioan; Sesarman, Alina; Licarete, Emilia; Banciu, Manuela; Porfire, Alina

    2017-01-01

    The aim of this work was to use the quality-by-design (QbD) approach in the development of long-circulating liposomes co-loaded with curcumin (CUR) and doxorubicin (DOX) and to evaluate the cytotoxic potential of these liposomes in vitro using C26 murine colon carcinoma cell line. Based on a risk assessment, six parameters, namely the phospholipid, CUR and DOX concentrations, the phospholipid:cholesterol molar ratio, the temperature during the evaporation and hydration steps and the pH of the phosphate buffer, were identified as potential risk factors for the quality of the final product. The influence of these variables on the critical quality attributes of the co-loaded liposomal CUR and DOX was investigated: particle size, zeta potential, drug loading and entrapment efficiency. For this, a 2 6-2 factorial design was employed to establish a proper regression model and to generate the contour plots for the responses. The obtained data served to establish the design space for which different combinations of variables yielded liposomes with characteristics within predefined specifications. The validation of the model was carried out by preparing two liposomal formulations corresponding to the robust set point from within the design space and one outside the design space and calculating the percentage bias between the predicted and actual experimental results. The in vitro antiproliferative test showed that at higher CUR concentrations, the liposomes co-encapsulating CUR and DOX had a greater cytotoxic effect than DOX-loaded liposomes. Overall, this study showed that QbD is a useful instrument for controlling and optimizing the manufacturing process of liposomes co-loaded with CUR and DOX and that this nanoparticulate system possesses a great potential for use in colon cancer therapy.

  4. Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes

    PubMed Central

    Paoli, Eric E.; Ingham, Elizabeth S.; Zhang, Hua; Mahakian, Lisa M.; Fite, Brett Z.; Gagnon, M. Karen; Tam, Sarah; Kheirolomoom, Azadeh; Cardiff, Robert D.; Ferrara, Katherine W.

    2014-01-01

    Advancements in liposomal drug delivery have produced long circulating and very stable drug formulations. These formulations minimize systemic exposure; however, unfortunately, therapeutic efficacy has remained limited due to the slow diffusion of liposomal particles within the tumor and limited release or uptake of the encapsulated drug. Here, the carboxyl-terminated CRPPR peptide, with affinity for the receptor neuropilin-1 (NRP), which is expressed on both endothelial and cancer cells, was conjugated to liposomes to enhance the tumor accumulation. Using a pH sensitive probe, liposomes were optimized for specific NRP binding and subsequent cellular internalization using in vitro cellular assays. Liposomes conjugated with the carboxyl-terminated CRPPR peptide (termed C-LPP liposomes) bound to the NRP-positive primary prostatic carcinoma cell line (PPC-1) but did not bind to the NRP-negative PC-3 cell line, and binding was observed with liposomal peptide concentrations as low as 0.16 mol%. Binding of the C-LPP liposomes was receptor-limited, with saturation observed at high liposome concentrations. The identical peptide sequence bearing an amide terminus did not bind specifically, accumulating only with a high (2.5 mol%) peptide concentration and adhering equally to NRP positive and negative cell lines. The binding of C-LPP liposomes conjugated with 0.63 mol% of the peptide was 83-fold greater than liposomes conjugated with the amide version of the peptide. Cellular internalization was also enhanced with C-LPP liposomes, with 80% internalized following 3hr incubation. Additionally, fluorescence in the blood pool (~40% of the injected dose) was similar for liposomes conjugated with 0.63 mol% of carboxyl-terminated peptide and non-targeted liposomes at 24 hr after injection, indicating stable circulation. Prior to doxorubicin treatment, in vivo tumor accumulation and vascular targeting were increased for peptide-conjugated liposomes compared to non-targeted liposomes

  5. Safety of real-time convection-enhanced delivery of liposomes to primate brain: a long-term retrospective.

    PubMed

    Krauze, Michal T; Vandenberg, Scott R; Yamashita, Yoji; Saito, Ryuta; Forsayeth, John; Noble, Charles; Park, John; Bankiewicz, Krystof S

    2008-04-01

    Convection-enhanced delivery (CED) is gaining popularity in direct brain infusions. Our group has pioneered the use of liposomes loaded with the MRI contrast reagent as a means to track and quantitate CED in the primate brain through real-time MRI. When co-infused with therapeutic nanoparticles, these tracking liposomes provide us with unprecedented precision in the management of infusions into discrete brain regions. In order to translate real-time CED into clinical application, several important parameters must be defined. In this study, we have analyzed all our cumulative animal data to answer a number of questions as to whether real-time CED in primates depends on concentration of infusate, is reproducible, allows prediction of distribution in a given anatomic structure, and whether it has long term pathological consequences. Our retrospective analysis indicates that real-time CED is highly predictable; repeated procedures yielded identical results, and no long-term brain pathologies were found. We conclude that introduction of our technique to clinical application would enhance accuracy and patient safety when compared to current non-monitored delivery trials.

  6. New formulations of bupivacaine for the treatment of postoperative pain: liposomal bupivacaine and SABER-Bupivacaine.

    PubMed

    Skolnik, Aaron; Gan, Tong J

    2014-08-01

    Although generally considered both safe and effective, local anesthetics are often used in conjunction with opioids postoperatively in part because of the limited duration of drug action of local anesthetics. Much interest exists in extending the duration of local anesthetics' effects, which may reduce the requirement for opioid pain medications that are frequently associated with side effects, including nausea and vomiting, pruritus and respiratory depression. This article introduces liposomal bupivacaine and SABER®-Bupivacaine, two new formulations of bupivacaine that increase the duration of analgesia postoperatively through two novel slow-release technologies. The pharmacodynamics, pharmacokinetics, efficacy and safety of both preparations of bupivacaine are reviewed. An electronic database search conducted using the Cochrane Central Register of Controlled Trials and MEDLINE/PubMed with the following search terms: 'bupivacaine,' 'liposomal bupivacaine', 'liposome bupivacaine', 'Exparel', 'SABER-Bupivacaine', 'SABER Bupivacaine', and 'SABER' yielded 90 articles (no language or date of publication restrictions were imposed). Clinical trials involving liposomal bupivacaine and SABER-Bupivacaine indicate that both safely prolong analgesia, while decreasing opioid requirements when compared with placebo. However, additional clinical studies are necessary to better determine the efficacy and cost-effectiveness of these long-acting local anesthetic formulations.

  7. Formulation and Evaluation of Long Circulating Liposomal Amphotericin B: A Scinti-kinetic Study using 99mTc in BALB/C Mice

    PubMed Central

    Jadhav, M. P.; Nagarsenker, Mangal S.; Gaikwad, R. V.; Samad, A.; Kshirsagar, Nilima A.

    2011-01-01

    In the present study, we formulated long circulating liposomes for amphotericin B and characterized them. The formulation was optimized using 23 factorial designs. Pegylated liposomal formulation showed favorable results with reference to particle size (247.33±9.60 nm), percent entrapment efficiency (94.55±3.34%). TEM studies revealed that the liposomes were essentially spherical, hollow, and appeared like powder puff structures. From DSC study it was concluded that the pegylated formulation containing Amp B showed better stability and membrane integrity of the formulation. During the stability studies the formulation was found to be stable. When subjected to gamma scintigraphy kinetic tracer studies the formulation showed longer residence time in the blood in BALB/C mice. PMID:22131622

  8. The bifunctional liposomes constructed by poly(2-ethyl-oxazoline)-cholesteryl methyl carbonate: an effectual approach to enhance liposomal circulation time, pH-sensitivity and endosomal escape.

    PubMed

    Xu, Huan; Zhang, Wei; Li, Yan; Ye, Fei F; Yin, Peng P; Yu, Xiu; Hu, Mei N; Fu, Yuan S; Wang, Che; Shang, De J

    2014-11-01

    A novel bifunctional liposome with long-circulating and pH-sensitive properties was constructed using poly(2-ethyl-oxazoline)-cholesteryl methyl carbonate (PEtOz-CHMC) in this study. PEtOz-CHMC was synthesized and characterized by TLC, IR and (1)H-NMR. The obtained PEtOz lipid was inserted into liposomes by the post-insertion method. Through a series of experiments, such as drug release, tumor cell uptake, cytotoxicity, calcium-induced aggregation, pharmacokinetic experiments, etc., the pH-sensitive and long-circulating properties of PEtOzylated liposomes was identified. PEtOz-CHMC modified liposomes (PEtOz-L) showed increased calcein release at low pH. Flow cytometric analysis results showed that the fusion and cellular uptake of PEtOz-L could be promoted significantly at pH 6.4 compared with those at pH 7.4. Confocal laser scanning microscope observations revealed that PEtOz-L could respond to low endosomal pH and directly released the fluorescent tracer into the cytoplasm. MTT assays in HeLa cells demonstrated that doxorubicin hydrochloride (DOX) loaded PEtOz-L exhibited stronger anti-tumor activity in a medium at pH 6.4 than in a medium pH 7.4. PEtOz-L remained stable when these liposomes were incubated in calcium chloride solution. The cumulative calcein release rate of PEtOz-L was significantly lower than that of CL when the liposomes were dialysed in PBS. The pharmacokinetic experiments of liposomes in rats showed that t 1/2 and AUC of PEtOz-L were 4.13 times and 4.71 times higher than those of CL. PEtOzylated liposomes exhibits excellent long-circulating and pH-sensitive properties. Our results suggest that PEtOz is a promising biomaterial for the modification of liposome in drug delivery.

  9. [Complications of intrathecal baclofen therapy].

    PubMed

    Paskhin, D L; Dekopov, A V; Tomsky, A A; Isagulyan, E D; Salova, E M

    To analyze complications of intrathecal baclofen therapy and identify high-risk groups. We implanted 52 pumps to spastic patients for chronic intrathecal baclofen infusion. Two groups of patients were distinguished: 23 patients with spinal spasticity (group 1) and 29 patients with cerebral spasticity (group 2). The mean patient age was 37.2±14.6 years in group 1 and 17.3±10.3 years in group 2. Surgery was performed according to a standard procedure. A Medstream (Codman) pump was implanted in 10 cases, and a Synchromed II (Medtronic) pump was implanted in the remaining 42 cases. Complications developed in 12 (23%) patients. We divided complications into 3 groups: baclofen underdose, baclofen overdose, and others. Insufficiency of intrathecal therapy was observed in 7 cases, which was caused by catheter migration (5 cases) and pump dysfunction (2 cases). In one case, baclofen overdose was observed after air travel. Other complications included 4 cases of persistent peri-implant seroma and infectious complications. Groups with a high risk of complications were identified based on an analysis of the results. Patients with severe dystonia of the trunk muscles have an increased risk of spinal catheter migration. Pronounced communicating hydrocephalus is associated with the risk of cerebrospinal fluid leak through a catheter shaft channel. Weakness of the axial musculature can lead to progression of scoliotic deformity. In some cases, chronic intrathecal baclofen therapy can be accompanied by various complications. This technique should be carefully used in patients from high-risk groups.

  10. Intrathecal Morphine Attenuates Recovery of Function after a Spinal Cord Injury

    PubMed Central

    Moreno, Georgina; Woller, Sarah; Puga, Denise; Hoy, Kevin; Balden, Robyn; Grau, James W.

    2009-01-01

    Abstract Prior work has shown that a high dose (20 mg/kg) of systemic morphine, required to produce significant analgesia in the acute phase of a contusion injury, undermines the long-term health of treated subjects and increases lesion size. Moreover, a single dose of systemic morphine in the early stage of injury (24 h post-injury) led to symptoms of neuropathic pain 3 weeks later, in the chronic phase. The present study examines the locus of the effects using intrathecal morphine administration. Subjects were treated with one of three doses (0, 30, or 90 μg) of intrathecal morphine 24 h after a moderate contusion injury. The 90-μg dose produced significant analgesia when subjects were exposed to noxious stimuli (thermal and incremented shock) below the level of injury. Yet, despite analgesic efficacy, intrathecal morphine significantly attenuated the recovery of locomotor function and increased lesion size rostral to the injury site. A single dose of 30 or 90 μg of intrathecal morphine also decreased weight gain, and more than doubled the incidence of mortality and autophagia when compared to vehicle-treated controls. Morphine is one of the most effective pharmacological agents for the treatment of neuropathic pain and, therefore, is indispensable for the spinally injured. Treatment can, however, adversely affect the recovery process. A morphine-induced attenuation of recovery may result from increases in immune cell activation and, subsequently, pro-inflammatory cytokine concentrations in the contused spinal cord. PMID:19388818

  11. Six years of continuous intrathecal infusion of opioid and bupivacaine in the treatment of refractory pain due to intrapelvic extrusion of bone cement after total hip arthroplasty.

    PubMed

    Dahm, P O; Nitescu, P V; Appelgren, L K; Curelaru, I D

    1998-01-01

    There is at present no reliable method for long-term treatment of severe pain following complications of total hip arthroplasty. We explored the long-term use of continuous intrathecal opioid/bupivacaine analgesia in a case not amendable to corrective surgery. A 77-year-old woman, having a total hip arthroplasty, developed refractory nociceptive-neuropathic pain located at the ventral and dorsal aspects of the left hip. Radiographs showed a mandarine-sized intrapelvic mass of bone cement adhering to the roof of the acetabular cup. Further surgery had been declined by the surgeon and by the patient. An 18-gauge Portex intrathecal catheter was inserted, and an intrathecal infusion of 4.75 mg/mL bupivacaine and 0.015 mg/mL buprenorphine was started from a portable Pharmacia-Deltec (St. Paul, Minnesota) pump. The mean daily doses during the treatment period (more than 6 years up to now) were 37 mg for bupivacaine and 0.114 mg for buprenorphine. The intrathecal treatment gave the patient 85-100% pain relief. The patient could transport herself in a wheelchair, was able to perform her own hygiene, receive visits, read, watch television, and also shop and visit restaurants. There has been no need to replace the intrathecal catheter. Intrathecal infusion of opioid/bupivacaine can provide satisfactory long-term analgesia in patients with refractory pain from the hip joint.

  12. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    PubMed Central

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  13. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses.

    PubMed

    Hendricks, Gabriel L; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C; Viswanathan, Karthik; Albers, Leila; Comolli, James C; Shriver, Zachary; Knipe, David M; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Trevejo, Jose M; Wang, Jennifer P; Finberg, Robert W

    2015-04-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Liposomal bupivacaine versus traditional bupivacaine for pain control after total hip arthroplasty: A meta-analysis.

    PubMed

    Ma, Ting-Ting; Wang, Yu-Hui; Jiang, Yun-Feng; Peng, Cong-Bin; Yan, Chao; Liu, Zi-Gui; Xu, Wei-Xing

    2017-06-01

    In the past, the efficacy of local infiltration of liposomal bupivacaine for total hip arthroplasty (THA) patients was in debate. Therefore, this meta-analysis was conducted to determine whether local infiltration of liposomal bupivacaine provides better pain relief after THA. We searched Web of Science, PubMed, Embase, and the Cochrane Library databases to the April 2017. Any studies comparing liposomal bupivacaine and traditional bupivacaine were included in our meta-analysis. The outcomes included visual analog scale (VAS) at 24, 48, and 72 hours, total morphine consumption at 24 hours, and the length of hospital stay. We assessed the pooled data using a random-effect model. Six studies were finally included in this meta-analysis. Our pooled data analysis demonstrated that liposomal bupivacaine was more effective than the traditional bupivacaine in terms of VAS at 24 hours (P  =  .018) and the length of hospital stay (P  =  .000). There was no significant difference in terms of the VAS at 48 and 72 hours and total morphine consumption at 24 hours (P >.05). Compared with the traditional bupivacaine, liposomal bupivacaine shows better pain control at 24 hours and reduces the length of hospital stay after THA. Its economic costs must be assessed in multimodal center randomized controlled trials when being recommended as a long-acting alternative analgesic agent for a THA patient.

  15. [Liposomal cytarabine for the treatment of leptomeningeal dissemination of central nervous system tumours in children and adolescents].

    PubMed

    Moreno, Lucas; García Ariza, Miguel Angel; Cruz, Ofelia; Calvo, Carlota; Fuster, Jose Luis; Salinas, Jose Antonio; Moscardo, Cristina; Portugal, Raquel; Merino, Jose Manuel; Madero, Luis

    2016-11-01

    Leptomeningeal dissemination in paediatric central nervous system (CNS) tumours is associated with a poor outcome, and new therapeutic strategies are desperately needed. One of the main difficulties in the treatment of CNS tumours is blood brain barrier penetration. Intrathecal therapy has shown to be effective in several paediatric tumours. The aim of this article is to review the data available on the use of liposomal cytarabine for paediatric patients with leptomeningeal dissemination of CNS tumours, including the pharmacology, administration route, safety and efficacy data. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Profound Bradycardia After Intrathecal Baclofen Injection in a Patient With Hydranencephaly.

    PubMed

    Sechrist, Catherine; Kinsman, Stephen; Cain, Nicole

    2015-12-01

    Intrathecal baclofen is often used to treat medically intractable spasticity of cerebral or spinal origin. Complications are rare but close monitoring is routinely performed with intrathecal test doses and before pump implantation. We describe a 6 year-old girl with hydranencephaly who underwent an intrathecal baclofen test dose and developed severe bradycardia. A 6 year-old girl with hydranencephaly, quadriplegic cerebral palsy, and severe spasticiityn was a candidate for an intrathecal baclofen pump. She underwent an intrathecal baclofen test dose and within 4 hours developed a heart rate between 30-40 beats per minute and mild hypotension without neurological side effects. Vital signs subsequently normalized, and she was discharged home within 48 hours of admission. Although neurological side effects such as drowsiness and weakness are commonly associated with intrathecal baclofen test doses, attention should also be focused on possible hemodynamic complications including significant bradycardia, especially in vulnerable patients such as those with possible or known hypothalamic dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Intrathecal opioids versus epidural local anesthetics for labor analgesia: a meta-analysis.

    PubMed

    Bucklin, Brenda A; Chestnut, David H; Hawkins, Joy L

    2002-01-01

    Some anesthesiologists contend that intrathecal opioid administration has advantages over conventional epidural techniques during labor. Randomized clinical trials comparing analgesia and obstetric outcome using single-injection intrathecal opioids versus epidural local anesthetics suggest that intrathecal opioids provide comparable analgesia with few serious side effects. This meta-analysis compared the analgesic efficacy, side effects, and obstetric outcome of single-injection intrathecal opioid techniques versus epidural local anesthetics in laboring women. Relevant clinical studies were identified using electronic and manual searches of the literature covering the period from 1989 to 2000. Searches used the following descriptors: intrathecal analgesia, spinal opioids, epidural analgesia, epidural local anesthetics, and analgesia for labor. Data were extracted from 7 randomized clinical trials comparing analgesic measures, incidence of motor block, pruritus, nausea, hypotension, mode of delivery, and/or Apgar scores. Combined test results indicated comparable analgesic efficacy 15 to 20 minutes after injection with single-injection intrathecal opioid administration. Intrathecal opioid injections were associated with a greater incidence of pruritus (odds ratio, 14.01; 99% confidence interval, 6.9 to 28.3), but there was no difference in the incidence of nausea or in the method of delivery. Published studies suggest that intrathecal opioids provide comparable early labor analgesia when compared with epidural local anesthetics. Intrathecal opioid administration results in a greater incidence of pruritus. The choice of technique does not appear to affect the method of delivery.

  18. Investigation of alternative organic solvents and methods for the preparation of long-circulating and pH-sensitive liposomes containing cisplatin.

    PubMed

    Giuberti, Cristiane dos Santos; Boratto, Fernanda Alves; Degobert, Ghania; Silveira, Josianne Nicácio; Oliveira, Mônica Cristina

    2013-09-01

    Recent studies using long-circulating and pH-sensitive liposomes containing cisplatin (SpHL-CDDP) have resulted in a formulation with improved pharmacokinetic, toxicity and tumor localization properties. In this study, SpHL-CDDP were prepared in both laboratory and pilot scales. This study evaluated the possibility of using the dehydration-rehydration method, as well as using alternative organic solvents (ethyl acetate/ethanol mixtures at 2:1 and 1:1 volume ratios), for the preparation of liposomes by the reverse-phase evaporation (REV) method. The influence of different concentrations of cisplatin (CDDP) (2.0, 1.0, 0.5 and 0.25 mg/mL) on the entrapment percentage and size of SpHL-CDDP was also investigated. In addition, carbohydrates were tested as cryoprotectants in a freeze-thaw study as a pretest to screen the type to be used in the freeze-drying process. A decrease in the encapsulation percentage of CDDP and an increase in the vesicle diameter could be observed for both liposome formulations prepared with ethyl acetate:ethanol mixtures, as compared with REV liposomes prepared with ethyl ether. It is important to note that after applying either quick or slow cooling, the mean diameter of SpHL (empty liposomes) proved to be similar when in the presence of cryoprotectants. In sum, the optimal processing conditions were achieved when using a 0.5 mg/mL CDDP solution, ethyl ether and the REV method, resulting in liposomal dispersions of mean diameters and homogeneities that were deemed suitable for intravenous administration.

  19. Liposomal nanomedicines.

    PubMed

    Fenske, David B; Cullis, Pieter R

    2008-01-01

    Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines, represent an advanced class of drug delivery systems, with several formulations presently on the market and many more in clinical trials. Over the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs (such as anticancer drugs and antibiotics) and the new genetic drugs (plasmid DNA containing therapeutic genes, antisense oligonucleotides and small interfering RNA) within LNs. If the LNs possess certain properties, they tend to accumulate at sites of disease, such as tumours, where the endothelial layer is 'leaky' and allows extravasation of particles with small diameters. These properties include a diameter centred on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (> 6 h) circulation lifetime. These properties permit the LNs to protect their contents during circulation, prevent contact with healthy tissues, and accumulate at sites of disease. The authors discuss recent advances in this field involving conventional anticancer drugs, as well as applications involving gene delivery, stimulation of the immune system and silencing of unwanted gene expression. Liposomal nanomedicines have the potential to offer new treatments in such areas as cancer therapy, vaccine development and cholesterol management.

  20. Technique for Periarticular Local Infiltrative Anesthesia Delivery Using Liposomal Bupivacaine in Total Knee Arthroplasty.

    PubMed

    Connelly, Jacob O; Edwards, Paul K; Mears, Simon C; Barnes, C Lowry

    2015-01-01

    Postoperative pain control after total knee arthroplasty is a major contributing factor to patient satisfaction, rehabilitation, and length of stay. Current clinical practice guidelines recommend a multimodal pain management protocol, including the use of regional anesthesia. Periarticular injection (PAI) has been shown to provide excellent pain relief after total knee arthroplasty. Recently, liposomal bupivacaine has been introduced as a long-acting alternative to traditional local anesthetics, such as bupivacaine or ropivacaine. Liposomal bupivacaine is a sustained-release preparation designed to provide local analgesia up to 72 hours after initial application. The efficacy of PAI relies significantly on a meticulous, systematic injection technique. This article details recommendations for solution preparation and injection during total knee arthroplasty on the basis of the experience of a high-volume orthopaedic reconstruction service.

  1. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    PubMed

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  2. From conventional to stealth liposomes: a new frontier in cancer chemotherapy.

    PubMed

    Cattel, Luigi; Ceruti, Maurizio; Dosio, Franco

    2003-01-01

    Many attempts have been made to achieve good selectivity to targeted tumor cells by preparing specialized carrier agents that are therapeutically profitable for anticancer therapy. Among these, liposomes are the most studied colloidal particles thus far applied in medicine and in particular in antitumor therapy. Although they were first described in the 1960s, only at the beginning of 1990s did the first therapeutic liposomes appear on the market. The first-generation liposomes (conventional liposomes) comprised a liposome-containing amphotericin B, Ambisome (Nexstar, Boulder, CO, USA), used as an antifungal drug, and Myocet (Elan Pharma Int, Princeton, NJ, USA), a doxorubicin-containing liposome, used in clinical trials to treat metastatic breast cancer. The second-generation liposomes ("pure lipid approach") were long-circulating liposomes, such as Daunoxome, a daunorubicin-containing liposome approved in the US and Europe to treat AIDS-related Kaposi's sarcoma. The third-generation liposomes were surface-modified liposomes with gangliosides or sialic acid, which can evade the immune system responsible for removing liposomes from circulation. The fourth-generation liposomes, pegylated liposomal doxorubicin, were called "stealth liposomes" because of their ability to evade interception by the immune system, in the same way as the stealth bomber was able to evade radar. Actually, the only stealth liposome on the market is Caelyx/Doxil (Schering-Plough, Madison NJ, USA), used to cure AIDS-related Kaposi's sarcoma, resistant ovarian cancer and metastatic breast cancer. Pegylated liposomal doxorubicin is characterized by a very long-circulation half-life, favorable pharmacokinetic behavior and specific accumulation in tumor tissues. These features account for the much lower toxicity shown by Caelyx in comparison to free doxorubicin, in terms of cardiotoxicity, vesicant effects, nausea, vomiting and alopecia. Pegylated liposomal doxorubicin also appeared to be less

  3. Liposomal adjuvant development for leishmaniasis vaccines.

    PubMed

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-08-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis.

  4. Liposomal adjuvant development for leishmaniasis vaccines

    PubMed Central

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-01-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis. PMID:29201374

  5. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential

    PubMed Central

    Immordino, Maria Laura; Dosio, Franco; Cattel, Luigi

    2006-01-01

    Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles (“first-generation liposomes”) to “second-generation liposomes”, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol) (PEG) in liposome composition. The presence of PEG on the surface of the liposomal carrier has been shown to extend blood-circulation time while reducing mononuclear phagocyte system uptake (stealth liposomes). This technology has resulted in a large number of liposome formulations encapsulating active molecules, with high target efficiency and activity. Further, by synthetic modification of the terminal PEG molecule, stealth liposomes can be actively targeted with monoclonal antibodies or ligands. This review focuses on stealth technology and summarizes pre-clinical and clinical data relating to the principal liposome formulations; it also discusses emerging trends of this promising technology. PMID:17717971

  6. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route.

    PubMed

    Ravindran, Rajesh; Maji, Mithun; Ali, Nahid

    2012-01-01

    The development of a long-term protective subunit vaccine against visceral leishmaniasis depends on antigens and adjuvants that can induce an appropriate immune response. The immunization of leishmanial antigens alone shows limited efficacy in the absence of an appropriate adjuvant. Earlier we demonstrated sustained protection against Leishmania donovani with leishmanial antigens entrapped in cationic liposomes through an intraperitoneal route. However, this route is not applicable for human administration. Herein, we therefore evaluated the immune response and protection induced by liposomal soluble leishmanial antigen (SLA) formulated with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) through a subcutaneous route. Subcutaneous immunization of BALB/c mice with SLA entrapped in liposomes or with MPL-TDM elicited partial protection against experimental visceral leishmaniasis. In contrast, liposomal SLA adjuvanted with MPL-TDM induced significantly higher levels of protection in liver and spleen in BALB/c mice challenged 10 days post-vaccination. Protection conferred by this formulation was sustained up to 12 weeks of immunization, and infection was controlled for at least 4 months of the challenge, similar to liposomal SLA immunization administered intraperitoneally. An analysis of cellular immune responses of liposomal SLA + MPL-TDM immunized mice demonstrated the induction of IFN-γ and IgG2a antibody production not only 10 days or 12 weeks post-vaccination but also 4 months after the challenge infection and a down regulation of IL-4 production after infection. Moreover, long-term immunity elicited by this formulation was associated with IFN-γ production also by CD8⁺ T cells. Taken together, our results suggest that liposomal SLA + MPL-TDM represent a good vaccine formulation for the induction of durable protection against L. donovani through a human administrable route.

  7. pH-Sensitive, Long-Circulating Liposomes as an Alternative Tool to Deliver Doxorubicin into Tumors: a Feasibility Animal Study.

    PubMed

    Silva, Juliana O; Fernandes, Renata S; Lopes, Sávia C A; Cardoso, Valbert N; Leite, Elaine A; Cassali, Geovanni D; Marzola, Maria Cristina; Rubello, Domenico; Oliveira, Monica C; de Barros, Andre Luis Branco

    2016-12-01

    Therapeutic agents used in chemotherapy have low specificity leading to undesired severe side effects. Hence, the development of drug delivery systems that improve drug specificity, such as liposome moieties, is an alternative to overcome chemotherapy limitations and increase antitumor efficacy. In this study, the biodistribution profile evaluation of pH-sensitive long-circulating liposomes (SpHL) containing [ 99m Tc]DOX in 4T1 tumor-bearing BALB/c mice is described. [ 99m Tc]DOX was radiolabeled by direct method. Liposomes were prepared and characterized. [ 99m Tc]DOX was encapsulated into liposomes by freezing and thawing. Circulation time for SpHL-[ 99m Tc]DOX was determined by measuring the blood activity from healthy animals. Biodistribution studies were carried out in tumor-bearing mice at 1, 4, and 24 h after injection. Blood levels of the SpHL-[ 99m Tc]DOX declined in a biphasic manner, with an α half-life of 14.1 min and β half-life of 129.0 min. High uptake was achieved in the liver and spleen, due to the macrophages captured. Moreover, tumor uptake was higher than control tissue, resulting in high tumor-to-muscle ratios, indicating higher specificity for the tumor area. [ 99m Tc]DOX was successfully encapsulated in liposomes. Biodistribution indicated high tumor-to-muscle ratios in breast tumor-bearing BALB/c mice. In summary, these results showed the higher accumulation of SpHL-[ 99m Tc]DOX in the tumor area, suggesting selective delivery of doxorubicin into tumor.

  8. Pros and cons of the liposome platform in cancer drug targeting.

    PubMed

    Gabizon, Alberto A; Shmeeda, Hilary; Zalipsky, Samuel

    2006-01-01

    Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil or Caelyx, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor.

  9. Physicochemical characterization and study of in vitro interactions of pH-sensitive liposomes with the complement system.

    PubMed

    Carmo, Vildete A S; De Oliveira, Mônica C; Reis, Eduardo C O; Guimarães, Tânia M P D; Vilela, José M C; Andrade, Margareth S; Michalick, Marilene S M; Cardoso, Valbert N

    2008-01-01

    Complement activation is an important step in the acceleration of liposome clearance. The anaphylatoxins released following complement activation may motivate a wide variety of physiologic changes. We performed physicochemical characterization and in vitro studies of the interaction of complement system with both noncirculating and long-circulating pH-sensitive and nonpH-sensitive liposomes. The liposomes were characterized by diameter, zeta potential, and atomic force microscopy (AFM). The study of liposome interactions with complement system was conducted using hemolytic assay in rat serum. All liposomes presented a similar mean diameter (between 99.8 and 124.3 nm). The zeta potential was negative in all liposome preparations, except in liposomes modified with aminopoly (ethyleneglycol) 2000-distearoylphosphatidylethanolamine (aPEG(2000)-DSPE), which presented positive zeta potential. Atomic force microscopy images showed that non-long-circulating pH-sensitive liposomes are prone to vesicles aggregation. Non-pH-sensitive liposomes complement system activates, while pH-sensitive liposomes showed to be poor complement activators in rat serum.

  10. An Unreported Cause of Intrathecal Baclofen Withdrawal Symptoms in a Woman With Spastic Cerebral Palsy Who Received Intrathecal Gablofen.

    PubMed

    Duraski, Sylvia A; Sayyad, Anjum

    2018-04-01

    This article details an unreported potential cause of withdrawal symptoms in a patient with cerebral palsy who experienced intrathecal baclofen withdrawal shortly after placement of a baclofen pump with subsequent refill with Gablofen. Initial implantation of the baclofen pump with Lioresal occurred after a successful hospital trial of intrathecal injection via lumbar puncture. However, later, the patient did experience signs and symptoms of baclofen withdrawal after a pump refill was performed with Gablofen.

  11. Systematic Review of Liposomal Bupivacaine (Exparel) for Postoperative Analgesia.

    PubMed

    Vyas, Krishna S; Rajendran, Sibi; Morrison, Shane D; Shakir, Afaaf; Mardini, Samir; Lemaine, Valerie; Nahabedian, Maurice Y; Baker, Stephen B; Rinker, Brian D; Vasconez, Henry C

    2016-10-01

    Management of postoperative pain often requires multimodal approaches. Suboptimal dosages of current therapies can leave patients experiencing periods of insufficient analgesia, often requiring rescue therapy. With absence of a validated and standardized approach to pain management, further refinement of treatment protocols and targeted therapeutics is needed. Liposomal bupivacaine (Exparel) is a longer acting form of traditional bupivacaine that delivers the drug by means of a multivesicular liposomal system. The effectiveness of liposomal bupivacaine has not been systematically analyzed relative to conventional treatments in plastic surgery. A comprehensive literature search of the MEDLINE, PubMed, and Google Scholar databases was conducted for studies published through October of 2015 with search terms related to liposomal bupivacaine and filtered for relevance to postoperative pain control in plastic surgery. Data on techniques, outcomes, complications, and patient satisfaction were collected. A total of eight articles were selected and reviewed from 160 identified. Articles covered a variety of techniques using liposomal bupivacaine for postoperative pain management. Four hundred five patients underwent procedures (including breast reconstruction, augmentation mammaplasty, abdominal wall reconstruction, mastectomy, and abdominoplasty) where pain was managed with liposomal bupivacaine and compared with those receiving traditional pain management. Liposomal bupivacaine use showed adequate safety and tolerability and, compared to traditional protocols, was equivalent or more effective in postoperative pain management. Liposomal bupivacaine is a safe method for postoperative pain control in the setting of plastic surgery and may represent an alternative to more invasive pain management systems such as patient-controlled analgesia, epidurals, peripheral nerve catheters, or intravenous narcotics.

  12. Fentanyl overdose caused by malfunction of SynchroMed II intrathecal pump: two case reports.

    PubMed

    Maino, Paolo; Koetsier, Eva; Perez, Roberto S G M

    2014-01-01

    Intrathecal drug delivery systems (intrathecal pumps) are used to treat patients with chronic refractory pain syndromes and spasticity. The objective of our case report was to demonstrate that intrathecal pump malfunction can lead to intrathecal overdosing of drugs. We present 2 cases of intrathecal pump malfunction leading to overinfusion. The first case concerns a patient with an intrathecal pump that was implanted almost 5 years before the reported incident. During a refill procedure, 12.5 mL was aspirated instead of the expected 21.8 mL. Analysis of the pump revealed that the pump was overinfusing. The second case concerns a patient with an intrathecal pump that was implanted more than 5 years before the reported incident. Ten hours after a regular refill of the pump, she was found in a comatose state, and when the intrathecal pump was emptied, only 16 mL was aspirated instead of the 19.6 mL expected. Analysis of the pump revealed that the inner tubing was not running smoothly over the roller arms, possibly causing spurts, which could have caused an overinfusion. We present 2 cases of intrathecal pump malfunction, which most likely led to overinfusion of fentanyl intrathecally. To reduce the risk of this complication, particular attention should be paid to drug reservoir volume discrepancies and overdose symptoms reported by patients.

  13. Aptamer-based liposomes improve specific drug loading and release.

    PubMed

    Plourde, Kevin; Derbali, Rabeb Mouna; Desrosiers, Arnaud; Dubath, Céline; Vallée-Bélisle, Alexis; Leblond, Jeanne

    2017-04-10

    Aptamer technology has shown much promise in cancer therapeutics for its targeting abilities. However, its potential to improve drug loading and release from nanocarriers has not been thoroughly explored. In this study, we employed drug-binding aptamers to actively load drugs into liposomes. We designed a series of DNA aptamer sequences specific to doxorubicin, displaying multiple binding sites and various binding affinities. The binding ability of aptamers was preserved when incorporated into cationic liposomes, binding up to 15equivalents of doxorubicin per aptamer, therefore drawing the drug into liposomes. Optimization of the charge and drug/aptamer ratios resulted in ≥80% encapsulation efficiency of doxorubicin, ten times higher than classical passively-encapsulating liposomal formulations and similar to a pH-gradient active loading strategy. In addition, kinetic release profiles and cytotoxicity assay on HeLa cells demonstrated that the release and therapeutic efficacy of liposomal doxorubicin could be controlled by the aptamer's structure. Our results suggest that the aptamer exhibiting a specific intermediate affinity is the best suited to achieve high drug loading while maintaining efficient drug release and therapeutic activity. This strategy was successfully applied to tobramycin, a hydrophilic drug suffering from low encapsulation into liposomes, where its loading was improved six-fold using aptamers. Overall, we demonstrate that aptamers could act, in addition to their targeting properties, as multifunctional excipients for liposomal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study.

    PubMed

    Monteiro, Liziane O F; Fernandes, Renata S; Oda, Caroline M R; Lopes, Sávia C; Townsend, Danyelle M; Cardoso, Valbert N; Oliveira, Mônica C; Leite, Elaine A; Rubello, Domenico; de Barros, André L B

    2018-01-01

    A range of antitumor agents for cancer treatment is available; however, they show low specificity, which often limit their use. Recently, we have reported the preparation of folate-coated long-circulating and pH-sensitive liposomes (SpHL-folate-PTX) loaded with paclitaxel (PTX), an effective drug for the treatment of solid tumors, including breast cancer. The purpose of this study was to prepare and characterize SpHL-PTX and SpHL-folate-PTX radiolabeled with technetium-99m ( 99m Tc). Biodistribution studies and scintigraphic images were performed after intravenous administration of 99m Tc-PTX, 99m Tc-SpHL-PTX and 99m Tc-SpHL-folate-PTX into healthy and tumor-bearing mice. High radiochemical purity (>98%) and in vitro stability (>90%) were achieved for both liposome formulations. The pharmacokinetic properties of 99m Tc-SpHL-DTPA-PTX and 99m Tc-SpHL-folate-DTPA-PTX decreased in a monophasic manner showing half-life of 400.1 and 541.8min, respectively. Scintigraphic images and biodistribution studies showed a significant uptake in liver, spleen and kidneys, demonstrating these routes as way for excretion. At 8h post-injection, the liposomal tumor uptake was higher than 99m Tc-PTX. Interesting, 4h after administration, the liposome folate coated showed higher tumor-to-muscle ratio than 99m Tc-SpHL-DTPA-PTX and 99m Tc-PTX. In conclusion, the liposomal systems, showed high tumor uptake by scintigraphic images, especially the 99m Tc-SpHL-folate-DTPA-PTX that showed a sustained and higher tumor-to-muscle ratio than non-functionalized liposome, which indicate its feasibility as a PTX delivery system to folate positive tumors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. The Use of Convection-Enhanced Delivery with Liposomal Toxins in Neurooncology

    PubMed Central

    Fiandaca, Massimo S.; Berger, Mitchel S.; Bankiewicz, Krystof S.

    2011-01-01

    Liposomes have long been effective delivery vehicles for transport of toxins to peripheral cancers. The combination of convection-enhanced delivery (CED) with liposomal toxins was originally proposed to circumvent the limited delivery of intravascular liposomes to the central nervous system (CNS) due to the blood-brain-barrier (BBB). CED offers markedly improved distribution of infused therapeutics within the CNS compared to direct injection or via drug eluting polymers, both of which depend on diffusion for parenchymal distribution. This review examines the basis for improved delivery of liposomal toxins via CED within the CNS, and discusses preclinical and clinical experience with these therapeutic techniques. How CED and liposomal technologies may influence future neurooncologic treatments are also considered. PMID:22069714

  16. Comparison of the pharmacokinetics of imipenem after intravenous and intrathecal administration in rabbits.

    PubMed

    Wang, Y; Qiu, L; Dong, J; Wang, B; Shi, Z; Liu, B; Wang, W; Zhang, J; Cai, S; Ye, G; Cai, X

    2013-03-01

    Intrathecal administration of antibiotics has potentially high effectiveness for the treatment for severe intracranial infections, particularly nosocomial meningitis. The use of intrathecal injection of antibiotics has been reported mostly in case reports. However, there is sparse data regarding the pharmacokinetics of antibiotics after intrathecal administration. This study investigated whether intrathecal injection is an effective method for the administration of imipenem. The pharmacokinetics of imipenem after intrathecal and intravenous administration of 1:1 imipenem: cilastatin (IMI/CIL) to rabbits were compared. The AUC0-t in the cerebrospinal fluid for intrathecal administration was approximately twice that of an equal dose of intravenous administration at doses of 0.35, 0.7, and 1.4 mg/kg. Brain concentrations of imipenem after intrathecal injection were three times greater than observed after intravenous injection and remained high for at least 8 hours post-injection. Elimination of imipenem after administration by either route was primarily via urine, but a transient surge of imipenem in bile and intestinal tissue was observed. Results indicate that there is a clinical potential for intrathecally administered IMI/CIL. Further studies are warranted to investigate the potential for seizure and to assess the translatability of the rabbit model to human treatment.

  17. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed

    McCormack, M; Brecher, P

    1987-06-15

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.

  18. Intrathecal Drug Delivery Systems for Noncancer Pain: A Health Technology Assessment.

    PubMed

    2016-01-01

    Intrathecal drug delivery systems can be used to manage refractory or persistent chronic nonmalignant (noncancer) pain. We investigated the benefits, harms, cost-effectiveness, and budget impact of these systems compared with current standards of care for adult patients with chronic pain owing to nonmalignant conditions. We searched Ovid MEDLINE, Ovid Embase, the Cochrane Library, and the National Health Service's Economic Evaluation Database and Tufts Cost-Effectiveness Analysis Registry from January 1994 to April 2014 for evidence of effectiveness, harms, and cost-effectiveness. We used existing systematic reviews that had employed reliable search and screen methods and also searched for studies published after the search date reported in the latest systematic review to identify studies. Two reviewers screened records and assessed study validity. We found comparative evidence of effectiveness and harms in one cohort study at high risk of bias (≥ 3-year follow-up, N = 130). Four economic evaluations of low to very low quality were also included. Compared with oral opioid analgesia alone or a program of analgesia plus rehabilitation, intrathecal drug delivery systems significantly reduced pain (27% additional improvement) and morphine consumption. Despite these reductions, intrathecal drug delivery systems were not superior in patient-reported well-being or quality of life. There is no evidence of superiority of intrathecal drug delivery systems over oral opioids in global pain improvement and global treatment satisfaction. Comparative evidence of harms was not found. Cost-effectiveness evidence is of insufficient quality to assess the appropriateness of funding intrathecal drug delivery systems. Evidence comparing intrathecal drug delivery systems with standard care was of very low quality. Current evidence does not establish (or rule out) superiority or cost-effectiveness of intrathecal drug delivery systems for managing chronic refractory nonmalignant pain

  19. Intrathecal baclofen withdrawal: A rare cause of reversible cardiomyopathy.

    PubMed

    Awuor, Stephen O; Kitei, Paul M; Nawaz, Yassir; Ahnert, Amy M

    2016-03-01

    Baclofen is commonly used to treat spasticity of central etiology. Unfortunately, a potentially lethal withdrawal syndrome can complicate its use. This is especially true when the drug is administered intrathecally. There are very few cases of baclofen withdrawal leading to reversible cardiomyopathy described in the literature. The authors present a patient with a history of chronic intrathecal baclofen use who, in the setting of acute baclofen withdrawal, develops laboratory, electrocardiogram, and echocardiogram abnormalities consistent with cardiomyopathy. Upon reinstitution of intrathecal baclofen, the cardiomyopathy and associated abnormalities quickly resolve. Although rare, it is crucial to be aware of this reversible cardiomyopathy to ensure its prompt diagnosis and treatment.

  20. Inadvertent intrathecal injection of atracurium

    PubMed Central

    Zirak, Nahid; Soltani, Ghasem; Ghomian, Naiere; Hasanpour, Mohamad Reza; Mashayekhi, Zahra

    2011-01-01

    This report relates how tracurium was given by mistake, intrathecally, during spinal anesthesia, to a 38-year-old woman, who was a candidate for abdominal hysterectomy. When no analgesia was observed, the mistake in giving the injection was understood. She was evaluated postoperatively by train of four ratio, measuring her breathing rate, eye opening, and protruding of tongue at one, two, twenty-four, and forty-eight hours, and then at one and two weeks, with the final evaluation the following month. The patient had normal timings during the operation and postoperation periods, and no abnormal findings were observed through the first month. This finding was contrary to several studies, which described adverse reactions due to accidental intrathecal injection of neuromuscular blocking drugs. PMID:21804808

  1. Inadvertent intrathecal injection of atracurium.

    PubMed

    Zirak, Nahid; Soltani, Ghasem; Ghomian, Naiere; Hasanpour, Mohamad Reza; Mashayekhi, Zahra

    2011-04-01

    This report relates how tracurium was given by mistake, intrathecally, during spinal anesthesia, to a 38-year-old woman, who was a candidate for abdominal hysterectomy. When no analgesia was observed, the mistake in giving the injection was understood. She was evaluated postoperatively by train of four ratio, measuring her breathing rate, eye opening, and protruding of tongue at one, two, twenty-four, and forty-eight hours, and then at one and two weeks, with the final evaluation the following month. The patient had normal timings during the operation and postoperation periods, and no abnormal findings were observed through the first month. This finding was contrary to several studies, which described adverse reactions due to accidental intrathecal injection of neuromuscular blocking drugs.

  2. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  3. State of the Art of Stimuli-Responsive Liposomes for Cancer Therapy

    PubMed Central

    Heidarli, Elmira; Dadashzadeh, Simin; Haeri, Azadeh

    2017-01-01

    Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered. PMID:29552041

  4. State of the Art of Stimuli-Responsive Liposomes for Cancer Therapy.

    PubMed

    Heidarli, Elmira; Dadashzadeh, Simin; Haeri, Azadeh

    2017-01-01

    Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at the target site and endosomal entrapment of long circulating liposomes are very important obstacles for achieving maximum anticancer efficacy. Thus, additional strategies such as stimulus-sensitive drug release are necessary to improve efficacy. Stimuli-sensitive liposomes are stable in blood circulation, however, activated by responding to external or internal stimuli and control the cargo release at the target site. This review focuses on state of the art of stimuli-responsive liposomes. Both external stimuli-responsive liposomes, including hyperthermia (HT), magnetic, light, and ultrasound-sensitive liposomes and internal stimuli (pH, reduction, and enzyme) responsive liposomes are covered.

  5. Influence of different surfactants on the physicochemical properties of elastic liposomes.

    PubMed

    Barbosa, R M; Severino, P; Preté, P S C; Santana, M H A

    2017-05-01

    Elastic liposomes are capable to improve drug transport through the skin by acting as penetration enhancers due to the high fluidity and elasticity of the liposome membranes. Therefore, elastic liposomes were prepared and characterized to facilitate the transdermal transport of bioactive molecules. Liposomes consisted of dimyristoylphosphatidylcholine (DMPC) as the structural component, with different surfactants derived from lauric acid as elastic components: C 12 E 5 (polyoxyethylene-5-lauryl ether), PEG4L (polyethyleneglycol-4-lauryl ester), PEG4DL (polyethylene glycol-4-dilauryl ester), PEG8L (polyethylene glycol-8-lauryl ester) and PEG8DL (polyethylene glycol-8-dilauryl ester). The elastic liposomes were characterized in terms of their phospholipid content, mean diameter, size distribution, elasticity and stability during storage, as well as their ability to incorporate surfactant and permeate through 50 nm pore size membranes. The results showed that the phospholipid phase transition temperature, the fluidity of the lipid bilayer resulting from incorporation of the surfactant and the preservation of particle integrity were factors determining the performance of the elastic liposomes in permeating through nanoporous membranes. The best results were obtained using DMPC combined with the surfactants PEG8L or PEG8DL. The findings demonstrate the potential of using elastic liposomes for transdermal administration of drugs.

  6. Development of a simple, rapid, and robust intrathecal catheterization method in the rat.

    PubMed

    Mazur, Curt; Fitzsimmons, Bethany; Kamme, Fredrik; Nichols, Brandon; Powers, Berit; Wancewicz, Ed

    2017-03-15

    The blood brain barrier (BBB) is an impediment to the development of large and highly charged molecules as therapeutics for diseases and injuries of the central nervous system (CNS). Antisense oligonucleotides (ASOs) are large (6000-8000MW) and highly charged and therefore do not cross the BBB. A method of circumventing the blood brain barrier to test ASOs, and other non-BBB penetrant molecules, as CNS therapeutics is the direct administration of these molecules to the CNS tissue or cerebral spinal fluid. We developed a rapid, simple and robust method for the intrathecal catheterization of rats to test putatively therapeutic antisense oligonucleotides. This method utilizes 23-gauge needles, simply constructed ½in. long 19-gauge guide cannulas and 8cm long plastic PE-10 sized catheters. Unlike the cisterna magna approach, this method uses a lumbar approach for intrathecal catheterization with the catheter residing entirely in the cauda equina space minimizing spinal cord compression. Readily available materials and only a few specialized pieces of equipment, which are easily manufactured, are used for this intrathecal catheterization method. This method is easy to learn and has been taught to multiple in house surgeons, collaborators and contract laboratories. Greater than 90% catheterization success is routinely achieved with this method and as many as 100 catheters can be placed and test substance administered in one 6-h period. This method has allowed the pre-clinical testing of hundreds of ASOs as therapeutics for CNS indications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Changes in body composition after spasticity treatment with intrathecal baclofen.

    PubMed

    Skogberg, Olle; Samuelsson, Kersti; Ertzgaard, Per; Levi, Richard

    2017-01-19

    To assess changes in body composition, body weight and resting metabolic rate in patients who received intrathecal baclofen therapy for spasticity. Prospective, longitudinal, quasi-experimental, with a pre/post design. Twelve patients with spasticity, fulfilling study criteria, and due for pump implantation for intrathecal baclofen therapy, completed the study. Data were obtained before, 6 months and 12 months after commencement of intrathecal baclofen therapy as regards body composition (by skinfold calliper), body weight, and resting metabolic rate (by resting oxygen consumption). Spasticity was assessed according to the Modified Ashworth Scale (MAS) and Penn Spasm Frequency Scale (PSFS). A reduction in spasticity according to MAS occurred. Mean fat body mass increased and mean lean body mass decreased. Mean body weight showed a non-significant increase and resting metabolic rate a non-significant decrease. This explorative study indicates that unfavourable changes in body composition might occur after intrathecal baclofen therapy. Since obesity and increased fat body mass contribute to an increased cardiovascular risk, these findings may indicate a need for initiation of countermeasures, e.g. increased physical activity and/or dietary measures, in conjunction with intrathecal baclofen therapy. Further studies, including larger study samples and control groups, are needed to corroborate these findings.

  8. New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid.

    PubMed

    Sánchez, Marina; Aranda, Francisco J; Teruel, José A; Ortiz, Antonio

    2011-01-01

    Phosphatidylethanolamine-based pH-sensitive liposomes of various compositions have been described as efficient systems for cytoplasmic delivery of molecules into cells. Incorporation of an amphiphile of appropriate structure is needed for the stabilization and performance of these vesicles. Among the wide variety of interesting activities displayed by Pseudomonas aeruginosa dirhamnolipids (diRL), is their capacity to stabilize bilayer structures in phosphatidylethanolamine systems. In this work, X-ray scattering, dynamic light scattering, fluorescence spectroscopy and fluorescence microscopy have been used to study the structure and pH-dependent behaviour of phosphatidylethanolamine/diRL liposomes. We show that diRL, in combination with dioleoylphosphatidylethanolamine (DOPE), forms stable multilamellar and unilamellar liposomes. Acidification of DOPE/diRL vesicles leads to membrane destabilization, fusion, and release of entrapped aqueous vesicle contents. Finally, DOPE/diRL pH-sensitive liposomes act as efficient vehicles for the cytoplasmic delivery of fluorescent probes into cultured cells. It is concluded that DOPE/diRL form stable pH-sensitive liposomes, and that these liposomes are incorporated into cultured cells through the endocytic pathway, delivering its contents into the cytoplasm, which means a potential use of these liposomes for the delivery of foreign substances into living cells. Our results establish a new application of diRL as a bilayer stabilizer in phospholipid vesicles, and the use of diRL-containing pH-sensitive liposomes as delivery vehicles. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Memantine Protects Rats Treated with Intrathecal Methotrexate from Developing Spatial Memory Deficits

    PubMed Central

    Cole, Peter D.; Vijayanathan, Veena; Ali, Nafeeza F.; Wagshul, Mark E.; Tanenbaum, Eric J.; Price, Jeremy; Dalal, Vidhi; Gulinello, Maria E.

    2014-01-01

    Purpose To test whether memantine can prevent methotrexate-induced cognitive deficits in a preclinical model. Experimental Design After noting that methotrexate exposure induces prolonged elevations of the glutamate analog homocysteic acid (HCA) within cerebrospinal fluid, we tested whether intrathecal injection of HCA would produce memory deficits similar to those observed after intrathecal methotrexate. We then tested whether memantine, an antagonist of the N-methyl-D-aspartate (NMDA) subclass of glutamate receptors, could protect animals treated with clinically relevant doses of intrathecal methotrexate against developing memory deficits. Finally, we asked whether memantine affected this pathway beyond inhibiting the NMDA receptor by altering expression of the NMDA receptor or affecting concentrations of HCA or glutamate within the central nervous system. Results Four intrathecal doses of methotrexate induced deficits in spatial memory, persisting at least one month following the final injection. Intrathecal HCA was sufficient to reproduce this deficit. Concurrent administration of memantine during the period of methotrexate exposure was protective, decreasing the incidence of methotrexate-induced spatial memory deficits from 56% to 20% (P < 0.05). Memantine neither altered expression of NMDA receptors within the hippocampus nor blunted the methotrexate-induced increases in glutamate or HCA. Conclusions Excitotoxic glutamate analogs including HCA contribute to cognitive deficits observed after intrathecal methotrexate. Memantine, an NMDA receptor antagonist, reduces the incidence of cognitive deficits in rats treated with intrathecal methotrexate, and may therefore benefit patients with cancer receiving similar treatment. PMID:23833301

  10. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    PubMed

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  11. Efficacy and safety of oral baclofen in the management of spasticity: A rationale for intrathecal baclofen.

    PubMed

    Ertzgaard, Per; Campo, Claudia; Calabrese, Alessandra

    2017-03-06

    Oral baclofen has long been a mainstay in the management of spasticity. This review looks at the clinical evidence for the efficacy and safety of oral baclofen in patients with spasticity of any origin or severity, to determine whether there is a rationale for the use of intrathecal baclofen. Results suggest that oral baclofen may be effective in many patients with spasticity, regardless of the underlying disease or severity, and that it is at least comparable with other antispasmodic agents. However, adverse effects, such as muscle weakness, nausea, somnolence and paraesthesia, are common with oral baclofen, affecting between 25% and 75% of patients, and limiting its usefulness. Intrathecal baclofen may be an effective alternative as the drug is delivered directly into the cerebrospinal fluid, thus bypassing the blood-brain barrier and thereby optimizing the efficacy of baclofen while minimizing drug-related side-effects. Intrathecal baclofen is a viable option in patients who experience intolerable side-effects or who fail to respond to the maximum recommended dose of oral baclofen.

  12. Intrathecal Drug Delivery and Spinal Cord Stimulation for the Treatment of Cancer Pain.

    PubMed

    Xing, Fangfang; Yong, R Jason; Kaye, Alan David; Urman, Richard D

    2018-02-05

    The purpose of the present investigation is to summarize the body and quality of evidence including the most recent studies in support of intrathecal drug delivery systems and spinal cord stimulation for the treatment of cancer-related pain. In the past 3 years, a number of prospective studies have been published supporting intrathecal drug delivery systems for cancer pain. Additional investigation with adjuvants to morphine-based analgesia including dexmedetomidine and ziconotide support drug-induced benefits of patient-controlled intrathecal analgesia. A study has also been recently published regarding cost-savings for intrathecal drug delivery system compared to pharmacologic management, but an analysis in the Ontario, Canada healthcare system projects additional financial costs. Finally, the Polyanalgesic Consensus Committee has updated its recommendations regarding clinical guidelines for intrathecal drug delivery systems to include new information on dosing, trialing, safety, and systemic opioid reduction. There is still a paucity of clinical evidence for spinal cord stimulation in the treatment of cancer pain. There are new intrathecal drugs under investigation including various conopeptides and AYX1. Large, prospective, modern, randomized controlled studies are still needed to support the use of both intrathecal drug delivery systems as well as spinal cord stimulation for cancer pain populations. There are multiple prospective and small randomized controlled studies that highlight a potential promising future for these interventional modalities. Related to the challenge and urgency of cancer pain, the pain practitioner community is moving toward a multimodal approach that includes discussions regarding the role of intrathecal therapies and spinal cord stimulation to the individualized treatment of patients.

  13. Tumor bombesin analog loaded long-circulating and pH-sensitive liposomes as tool for tumor identification.

    PubMed

    de Barros, André Luís Branco; Mota, Luciene das Graças; Soares, Daniel Crístian Ferreira; Coelho, Marina Melo Antunes; Oliveira, Mônica Cristina; Cardoso, Valbert Nascimento

    2011-12-15

    Long-circulating and pH-sensitive liposomes trapping (99m)Tc-HYNIC-βAla-bombesin((7-14)) (aSpHL-(99m)Tc-BBN((7-14))) were successfully prepared. Biodistribution studies and scintigraphic images were performed in Ehrlich tumor-bearing Swiss mice. This system showed high accumulation in tumor tissue with high tumor-to-muscle ratio. Therefore, aSpHL-(99m)Tc-BBN((7-14)) could be considered as a potential agent for tumor diagnosis. Published by Elsevier Ltd.

  14. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment.

    PubMed

    Calias, Pericles; Banks, William A; Begley, David; Scarpa, Maurizio; Dickson, Patricia

    2014-11-01

    Disorders of the central nervous system (CNS), including stroke, neurodegenerative diseases, and brain tumors, are the world's leading causes of disability. Delivery of drugs to the CNS is complicated by the blood-brain barriers that protect the brain from the unregulated leakage and entry of substances, including proteins, from the blood. Yet proteins represent one of the most promising classes of therapeutics for the treatment of CNS diseases. Many strategies for overcoming these obstacles are in development, but the relatively straightforward approach of bypassing these barriers through direct intrathecal administration has been largely overlooked. Originally discounted because of its lack of usefulness for delivering small, lipid-soluble drugs to the brain, the intrathecal route has emerged as a useful, in some cases perhaps the ideal, route of administration for certain therapeutic protein and targeted disease combinations. Here, we review blood-brain barrier functions and cerebrospinal fluid dynamics and their relevance to drug delivery via the intrathecal route, discuss animal and human studies that have investigated intrathecal delivery of protein therapeutics, and outline several characteristics of protein therapeutics that can allow them to be successfully delivered intrathecally. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Labour analgesia with intrathecal fentanyl decreases maternal stress.

    PubMed

    Cascio, M; Pygon, B; Bernett, C; Ramanathan, S

    1997-06-01

    Lumbar epidural analgesia (LEA) decreases maternal stress as measured by maternal circulating plasma catecholamine concentrations. Intrathecal fentanyl (ITF) provides effective labour analgesia but its effect on maternal epinephrine (Epi) and norepinephrine (NE) concentrations is not known. This study assesses whether ITF reduces maternal stress in the same manner as conventional LEA. Twenty-four healthy women in active labour received either 25 micrograms ITF (n = 12) or epidural lidocaine 1.5% (n = 12) for analgesia. Venous blood samples were collected before anaesthesia and at five minute intervals for 30 min following anaesthesia for the measurement of plasma Epi and NE by high performance liquid chromatography. Maternal blood pressure (BP), heart rate (HR), visual analog scores (VAS) to pain and pruritus were recorded at the same time. Both ITF and LEA decreased pain VAS scores, maternal BP, and plasma Epi concentrations with only minimal effects on plasma NE concentrations. Intrathecal fentanyl (ITF) and LEA reduced plasma epi to a similar extent, with ITF reducing the levels slightly faster than LEA. Intrathecal fentanyl(ITF) and LEA reduced plasma Epi concentrations by 52% and 51%, respectively (P value < 0.01). We conclude that ITF is as effective as LEA in producing pain relief in the labouring patient. Intrathecal Fentanyl (ITF) is also capable of reducing maternal plasma epinephrine concentration, thus avoiding the possibly deleterious side effects of excess amounts of this catecholamine during labour.

  16. The Efficacy of Liposomal Bupivacaine Using Periarticular Injection in Total Knee Arthroplasty: A Systematic Review and Meta-Analysis.

    PubMed

    Kuang, Ming-Jie; Du, Yuren; Ma, Jian-Xiong; He, Weiwei; Fu, Lin; Ma, Xin-Long

    2017-04-01

    Total knee arthroplasty (TKA) is gradually emerging as the treatment of choice for end-stage osteoarthritis. In the past, the method of liposomal bupivacaine by periarticular injection (PAI) showed better effects on pain reduction and opioid consumption after surgery. However, some recent studies have reported that liposomal bupivacaine by PAI did not improve pain control and functional recovery in patients undergoing TKA. Therefore, this meta-analysis was conducted to determine whether liposomal bupivacaine provides better pain relief and functional recovery after TKA. Web of Science, PubMed, Embase, and the Cochrane Library were comprehensively searched. Randomized controlled trials, controlled clinical trials, and cohort studies were included in our meta-analysis. Eleven studies that compared liposomal bupivacaine using the PAI technique with the conventional PAI method were included in our meta-analysis. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines and Cochrane Handbook were applied to assess the quality of the results published in all included studies to ensure that the results of our meta-analysis were reliable and veritable. Our pooled data analysis demonstrated that liposomal bupivacaine was as effective as the control group in terms of visual analog scale score at 24 hours (P = .46), 48 hours (P = .43), 72 hours (P = .21), total amount of opioid consumption (P = .25), range of motion (P = .28), length of hospital stay (P = .53), postoperative nausea (P = .34), and ambulation distance (P = .07). Compared with the conventional PAI method, liposomal bupivacaine shows similar pain control and functional recovery after TKA. Considering the cost for pain control, liposomal bupivacaine is not worthy of being recommended as a long-acting alternative analgesic agent using the PAI method. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Safety of inadvertent administration of overdose of intrathecal Cytarabine in a pediatric patient.

    PubMed

    Al Omar, Suha; Amayiri, Nisreen; Madanat, Faris

    2015-10-01

    To describe a medication error of intrathecal Cytarabine overdose that was managed conservatively with no apparent toxicities. An 11-year-old girl was diagnosed with bone marrow relapsed precursor B-cell acute lymphoblastic leukemia. According to her chemotherapy protocol, she was started on triple intrathecal chemotherapy consisting of Methotrexate, Cytarabine and Hydrocortisone on day 1 of the protocol. After the intrathecal therapy being administered to the patient, the pharmacist who checked the medication realized that the wrong formulation of Cytarabine was used to prepare the intrathecal therapy; this error resulted in five times overdose of Cytarabine. The patient was then managed conservatively without cerebrospinal fluid exchange. Our patient remained clinically and neurologically stable without apparent toxicities and was discharged safely from hospital. Supportive care without the need for invasive procedures such as cerebrospinal fluid exchange may be adequate for managing intrathecal Cytarabine overdose. © The Author(s) 2014.

  18. Effect of Surface Properties on Liposomal siRNA Delivery

    PubMed Central

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2015-01-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117

  19. Liposomes as nanomedical devices

    PubMed Central

    Bozzuto, Giuseppina; Molinari, Agnese

    2015-01-01

    Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials. PMID:25678787

  20. Failure of intrathecal ketorolac to reduce remifentanil-induced postinfusion hyperalgesia in humans.

    PubMed

    Eisenach, James C; Tong, Chuanyao; Curry, Regina S

    2015-01-01

    In rodents, acute exposure to opioids results in transient antinociception followed by longer lasting hypersensitivity to tactile or thermal stimuli, a phenomenon termed opioid-induced hyperalgesia. This hypersensitivity can be blocked or reversed by intrathecally administered cyclooxygenase inhibitors, including ketorolac, suggesting a role for spinal prostaglandins. In surgical patients, the dose of intraoperative opioid, particularly the short-acting drug, remifentanil, is directly related to increased pain and opioid requirements for many hours postoperatively. In addition, experimentally induced tactile hypersensitivity in humans is exaggerated after cessation of remifentanil infusions. The degree of this experimental opioid-induced hyperalgesia is reduced by systemic treatment with cyclooxygenase inhibitors, and investigators have speculated that this reduction reflects the actions in the central nervous system, most likely in the spinal cord. To test this hypothesis, we measured cerebrospinal fluid prostaglandin E2 concentrations during and after remifentanil infusion in 30 volunteers. These volunteers received intrathecal ketorolac or saline in a random, blinded manner during intravenous remifentanil infusion after generation of hypersensitivity by topical capsaicin. Remifentanil reduced pain to noxious heat stimuli and reduced areas of capsaicin-induced hypersensitivity similarly in those receiving intrathecal ketorolac or saline. The primary outcome measure, area of capsaicin-induced hypersensitivity after stopping remifentanil, showed a similar increase in those receiving ketorolac as in those receiving saline. Cerebrospinal fluid prostaglandin E2 concentrations did not increase during postinfusion hyperalgesia compared with those during infusion, and they were not increased during infusion compared with those in historical controls. These data fail to support the hypothesis that acute opioid-induced hyperalgesia reflects spinal cyclooxygenase activation

  1. Long-Acting Antiretrovirals: Where Are We now?

    PubMed

    Nyaku, Amesika N; Kelly, Sean G; Taiwo, Babafemi O

    2017-04-01

    Current HIV treatment options require daily use of combination antiretroviral drugs. Many persons living with HIV experience treatment fatigue and suboptimal adherence as a result. Long-acting antiretroviral drugs are being developed to expand options for HIV treatment. Here, we review the agents in development, and evaluate data from recent clinical trials. In addition, we anticipate challenges to successful widespread use of long-acting antiretrovirals. Parenteral nanosuspensions of cabotegravir and rilpivirine, and dapivirine vaginal ring are the farthest in clinical development. Long-acting modalities in earlier development stages employ drug-loaded implants, microparticles, or targeted mutagenesis, among other innovations. Long-acting antiretroviral drugs promise new options for HIV prevention and treatment, and ways to address poor adherence and treatment fatigue. Further studies will identify the long-acting agents or combinations that are suitable for routine use. Creative solutions will be needed for anticipated implementation challenges.

  2. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  3. Inhibition of tracheal vascular extravasation by liposome-encapsulated albuterol in rats.

    PubMed

    Zhang, W; Guo, L; Nadel, J A; Papahadjopoulos, D

    1998-03-01

    To develop a liposome-based system for systemic delivery of anti-inflammatory drugs to airways and other inflamed tissues. Postcapillary venular gap junctions open during airway inflammation and allow fluid accumulation and permit molecules (e.g. complement, kininogen) to enter tissues, initiating inflammatory cascades. Beta-adrenergic agonists prevent inflammatory plasma extravasation, but because of their deleterious side effects, they are not used intravenously. When sterically stabilized "stealth" liposomes are injected i.v., they remain in the circulation for long periods. Inflammatory mediators [e.g., substance P(SP)] open postcapillary venular gaps and allow liposomes and their contents to be deposited selectively in the inflamed tissue. We hypothesized that liposomes encapsulating a beta-adrenergic agonist, such as albuterol, would deposit selectively in inflamed airway tissue, where the drug would slowly leak out of the liposomes, resulting in closure of the gaps, thus preventing subsequent inflammatory extravasation. To test this hypothesis, we delivered albuterol-loaded liposomes i.v. in rats. Then we injected SP to open the venular gaps and allow accumulation of the drug-loaded liposomes in airway tissue. We examined whether this treatment resulted in inhibition of subsequent plasma extravasation induced by SP. The results indicate that liposome-encapsulated albuterol inhibits subsequent extravasation, presumably by leaking out of liposomes in airway tissue. This inhibition occurs for prolonged periods of time and with limited side effects compared to the effect of free albuterol. We conclude that liposomes loaded with appropriate drugs, by migrating to inflamed tissue and subsequently inhibiting inflammatory cascades, may be of therapeutic value in inflammatory diseases.

  4. Effectiveness of Liposomal Bupivacaine in Colorectal Surgery: A Pragmatic Nonsponsored Prospective Randomized Double Blinded Trial in a Community Hospital.

    PubMed

    Knudson, Rachel A; Dunlavy, Paul W; Franko, Jan; Raman, Shankar R; Kraemer, Soren R

    2016-09-01

    Prior industry conducted studies have shown that long acting liposomal bupivacaine injection improves pain control postoperatively. To evaluate whether liposomal bupivacaine reduced the use of postoperative opioid (http://links.lww.com/DCR/A253) pain medication as compared to standard bupivacaine following colorectal surgery. A double blinded, prospective, randomized controlled trial comparing liposomal bupivacaine versus standard bupivacaine in patients undergoing elective colon resection. Community hospital with general surgery residency program with all cases performed by colorectal surgeons. Fifty-seven patients were randomized and reported as intention-to-treat analysis with 6 protocol violations. Sensitivity analysis excluding these 6 patients demonstrated no change in study results or conclusion. Mean age was 67 ± 2 years and 56% were male. There were 36 patients who underwent minimally invasive surgery, and 21 patients had an open colon resection. Experimental arm received liposomal bupivacaine while control arm received standard bupivacaine. Primary outcome measure was intravenous hydromorphone equivalent used via PCA during first 48 hours after operation. There was no significant difference between the two groups in the amount of opioid used orally or intravenously in the postoperative period. The primary outcome measure was PCA hydromorphone consumption during first two postoperative days after operation (hydromorphone equivalent use in standard bupivacaine group 11.3 ± 8.9 mg versus 13.3 ± 11.9 mg in liposomal bupivacaine group, p = 0.58 Mann-Whitney test). Small pragmatic trials typically remain underpowered for secondary analyses. A larger study could help to further delineate other outcomes that are impacted by postoperative pain. Liposomal bupivacaine did not change the amount of opioid used postoperatively. Based on our study, liposomal bupivacaine does not provide any added benefit over conventional bupivacaine after colon

  5. Italian multicentre study on intrathecal fluorescein for craniosinusal fistulae.

    PubMed

    Felisati, G; Bianchi, A; Lozza, P; Portaleone, S

    2008-08-01

    Cerebrospinal fluid leak (CSF), clinical sign of a dural lesion of the skull base, is a relatively rare event that can present with a variety of symptoms. Every craniosinus fistula should be considered a serious, potentially life-threatening situation (even those cases with hidden CSF leak). Reports of experience concerning diagnosis and treatment of craniosinus fistulae have appeared in the Literature. In the last few years, the endoscopic nasal approach is proving effective as it makes diagnosis much easier and is the least invasive surgical approach, with the greatest percentage of success. Various classifications are being proposed to improve clinical evaluation of CSF leaks and to simplify the diagnostic and therapeutic approach. The most common parameters of classification are: aetiology (traumatic, iatrogenic, non-traumatic, etc.) site, type of flow (high or low pressure) and, as far as concerns treatment, the type of graft used, all of which have contributed to various diagnostic and therapeutic algorithms being proposed. Therefore, the subject seems to be widely schematized and the therapeutic attitude widely agreed. However, one of the diagnostic and therapeutic approaches is now being questioned. For some, it is the heart of the clinical approach, while for others, it is a useful tool yet too dangerous to be used on account of potential side effects: namely, the fluorescein test. This procedure, consisting of intrathecal injection of a colorant (fluorescein), is well known by the Food and Drug Administration (FDA) which neither explicitly prohibits it, nor allows it, intrathecal administration is, therefore, an off label use. As far as the Authors know, authorization of this procedure has not been forthcoming anywhere in the world although the procedure itself is widely employed. As far as concerns the use of intrathecal fluorescein, many scientific papers have been written, clearly supporting its clinical usefulness. One limit to the use of fluorescein

  6. Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity.

    PubMed

    Wang, Lilin; Geng, Di; Su, Haijia

    2014-11-01

    Incorporating the pH-sensitivity of octylamine grafted poly aspartic acid (PASP) with the biocompatibility of liposomes, a novel pH sensitive drug delivery system, octylamine-graft-PASP (PASP-g-C8) modified liposomes (OPLPs), was obtained. Since hydrophobic chains have been grafted into PASP backbones, the octylamine chain could act as the "anchor" to implant onto liposomes. The structure of PASP-g-C8, involving long-chain and hydrophobic anchors can significantly enhance the stability of the drug carrier. The shortcoming of single PASP chain modified liposomes (PLPs), that cannot sustain a slow and controlled release especially in a physiological pH solution (resembling normal tissues of pH 7.4) is thus overcome. Drug release experiments were carried out and the result showed that OPLPs sustained a slow and steady release in comparison with PLPs in the physiological pH 7.4 environment. However, OPLPs can provide a fast release in subacid environment (pH 5.0 of resembled tumor tissues). The results of diameter analysis and zeta potential demonstrated that OPLPs presented a larger diameter and higher electronegativity. Furthermore, in the "chain-anchor" structure of PASP-g-C8, the degree of substitution (DS) of the "anchor" is a remarkable factor to alter the pH-sensitivity of OPLPs. The in vitro tumor inhibition and cell toxicity studies revealed that tumor cells treated with OPLPs survived only 35.0% after 48 h whereas normal cells survived 100% in the same condition. The pH sensitive OPLPs are promising tumor targeting drug delivery with high tumor inhibition and insignificant cytotoxicity. Copyright © 2014. Published by Elsevier B.V.

  7. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  8. History and therapeutic rationale of long acting antipsychotics.

    PubMed

    De Risio, Alessandro; Lang, Antonella P

    2014-02-01

    Despite their widespread use, long acting antipsychotics, are often regarded with prejudice, due to fears of punishment, control and insufficient evolution towards psychosocial development of psychotic patients raised by their improper utilization. Another major shortcoming of long-acting antipsychotics is the impossibility of altering their dosage if side-effects appear. However, long-acting antipsychotics proved effective in schizophrenia and other severe psychotic disorders as a consequence of stable dose administration, leading to reduction of relapses and increased treatment adherence. Therapeutic opportunities have also risen after introduction of newer long acting second generation antipsychotics in recent years. Newer long-acting antipsychotics were developed to tackle the need for pharmacotherapy enhancing adherence in integrated rehabilitation programmes. This review is an outline of the development and introduction of older and newer long-acting antipsychotics in the treatment of schizophrenia and other psychoses, with considerations on past and present pharmacological and therapeutic issues.

  9. New Initiation of Long-Acting Opioids in Long-Stay Nursing Home Residents

    PubMed Central

    Pimentel, Camilla B.; Gurwitz, Jerry H.; Tjia, Jennifer; Hume, Anne L.; Lapane, Kate L.

    2016-01-01

    BACKGROUND Despite known risks of overdose and respiratory depression when treating opioid-naïve individuals with long-acting opioids, use of these potent agents may be common in nursing homes. OBJECTIVES To estimate prevalence of new initiation of long-acting opioids since national efforts to increase prescriber and public awareness on safe use of transdermal fentanyl patches. DESIGN Cross-sectional. SETTING US nursing homes. PARTICIPANTS 22,253 Medicare-enrolled long-stay nursing home residents. MEASUREMENTS The Minimum Data Set 3.0 linked with Medicare enrollment, hospital claims, and prescription drug transaction data (January–December 2011) were used to determine the prevalence of new initiation among nursing home residents who were prescribed a long-acting opioid in the nursing home. RESULTS Of nursing home residents who were prescribed a long-acting opioid within 30 days of a nursing home admission (n = 12,278), 9.4% (95% confidence interval [CI]: 8.9–9.9%) lacked a prescription drug claim for a short-acting opioid in the previous 60 days. The most common initial prescriptions of long-acting opioids were fentanyl patch (51.9% of opioid-naïve nursing home residents), morphine sulfate (28.1%), and oxycodone (17.2%). CONCLUSION New initiation of long-acting opioids—especially fentanyl patches that have been the subject of safety communications—persists in nursing homes. PMID:27487158

  10. The effect of propofol on intrathecal morphine-induced pruritus and its mechanism.

    PubMed

    Liu, Xiulan; Zhang, Jing; Zhao, Hongyan; Mei, Hongxia; Lian, Qingquan; Shangguan, Wangning

    2014-02-01

    Previous studies have shown that a low dose of propofol IV bolus had a beneficial effect on intrathecal morphine-induced pruritus in humans. However, its exact mechanism has not been fully understood. In this study, we hypothesized that propofol relieved intrathecal morphine-induced pruritus in rats by upregulating the expression of cannabinoid-1 (CB[1]) receptors in anterior cingulate cortex (ACC). Twenty-four Sprague-Dawley rats were divided into a control group and 20, 40, 80 μg/kg morphine groups to create an intrathecal morphine-induced scratching model. The effects of propofol on intrathecal 40 μg/kg morphine-induced scratching responses were then evaluated. Sixty rats were randomly assigned to control, normal saline, intralipid, and propofol groups, with pruritus behavior observation or killed 8 minutes after venous injection of normal saline, intralipid, or propofol, and brain tissues were then collected for assay. Immunohistochemistry was then performed to identify the expression of CB (1) receptor in ACC, and the concentration of CB(1) receptor in ACC was determined by Western blot analysis. Compared with the control group, rats in the 20, 40, 80 μg/kg morphine groups had higher mean scratching response rates after intrathecal morphine injection (P =0.020, 0.005, and 0.002, respectively). There was a statistical difference between 20 and 40 μg/kg morphine groups at 10 to 15 and 15 to 20 timepoints after intrathecal morphine injection (P = 0.049 and 0.017, respectively). Propofol almost abolished the scratching response that was induced by 40 μg/kg intrathecal morphine injection (F[2, 15] = 46.87, P < 0.001; F[22, 165] = 2.37, P = 0.001). Compared with the intralipid and normal saline groups, the scratching behavior was significantly attenuated in the propofol group (P < 0.001). Compared with control, normal saline, and intralipid groups, the protein expression of CB(1) receptor in ACC (Western blot) in the propofol group increased (0.86 ± 0.21, 0

  11. Ultralow Dose of Naloxone as an Adjuvant to Intrathecal Morphine Infusion Improves Perceived Quality of Sleep but Fails to Alter Persistent Pain

    PubMed Central

    Lundborg, Christopher; Bjersing, Jan; Dahm, Peter; Hansson, Elisabeth; Biber, Björn

    2015-01-01

    Introduction: This randomized, cross-over, double-blind, controlled study of continuous intrathecal morphine administration in patients with severe, long-term pain addresses whether the supplementation of low doses of naloxone in this setting is associated with beneficial clinical effects. Methods: All of the study subjects (n=11) provided informed consent and were recruited from a subset of patients who were already undergoing long-term treatment with continuous intrathecal morphine because of difficult-to-treat pain. The patients were (in a randomized order) also given intrathecal naloxone (40 ng/24 h or 400 ng/24 h). As control, the patients’ ordinary dose of morphine without any additions was used. The pain (Numeric Rating Scale, NRS) during activity, perceived quality of sleep, level of activity, and quality of life as well as the levels of several proinflammatory and anti-inflammatory cytokines in the blood were assessed. The prestudy pain (NRS during activity) in the study group ranged from 3 to 10. Results: A total of 64% of the subjects reported improved quality of sleep during treatment with naloxone at a dose of 40 ng per 24 hours as compared with 9% with sham treatment (P=0.024). Although not statistically significant, pain was reduced by 2 NRS steps or more during supplemental treatment with naloxone in 36% of subjects when using the 40 ng per 24 hours dose and in 18% of the subjects when using naloxone 400 ng per 24 hours dose. The corresponding percentage among patients receiving unaltered treatment was 27%. Conclusions: To conclude, the addition of an ultralow dose of intrathecal naloxone (40 ng/24 h) to intrathecal morphine infusion in patients with severe, persistent pain improved perceived quality of sleep. We were not able to show any statistically significant effects of naloxone on pain relief, level of activity, or quality of life. PMID:25629634

  12. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist.

    PubMed

    Allon, Nahum; Saxena, Ashima; Chambers, Carolyn; Doctor, Bhupendra P

    2012-06-10

    We formulated a new gene delivery system based on targeted liposomes. The efficacy of the delivery system was demonstrated in in vitro and in vivo models. The targeting moiety consists of a high-affinity 7-amino-acid peptide, covalently and evenly conjugated to the liposome surface. The targeting peptide acts as an endothelin antagonist, and accelerates liposome binding and internalization. It is devoid of other biological activity. Liposomes with high phosphatidyl serine (PS) were specially formulated to help their fusion with the endosomal membrane at low pH and enable release of the liposome payload into the cytoplasm. A DNA payload, pre-compressed by protamine, was encapsulated into the liposomes, which directed the plasmid into the cell's nucleus. Upon exposure to epithelial cells, binding of the liposomes occurred within 5-10 min, followed by facilitated internalization of the complex. Endosomal escape was complete within 30 min, followed by DNA accumulation in the nucleus 2h post-transfection. A549 lung epithelial cells transfected with plasmid encoding for GFP encapsulated in targeted liposomes expressed significantly more protein than those transfected with plasmid complexed with Lipofectamine. The intra-tracheal instillation of plasmid encoding for GFP encapsulated in targeted liposomes into rat lungs resulted in the expression of GFP in bronchioles and alveoli within 5 days. These results suggest that this delivery system has great potential in targeting genes to lungs. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Liposome formation in microgravity.

    PubMed

    Claassen, D E; Spooner, B S

    1996-01-01

    Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.

  14. Liposome formation in microgravity

    NASA Astrophysics Data System (ADS)

    Claassen, D. E.; Spooner, B. S.

    Liposomes are artificial vesicles with a phospholipid bilayer membrane. The formation of liposomes is a self-assembly process that is driven by the amphipathic nature of phospholipid molecules and can be observed during the removal of detergent from phospholipids dissolved in detergent micelles. As detergent concentration in the mixed micelles decreases, the non-polar tail regions of phospholipids produce a hydrophobic effect that drives the micelles to fuse and form planar bilayers in which phospholipids orient with tail regions to the center of the bilayer and polar head regions to the external surface. Remaining detergent molecules shield exposed edges of the bilayer sheet from the aqueous environment. Further removal of detergent leads to intramembrane folding and membrane vesiculation, forming liposomes. We have observed that the formation of liposomes is altered in microgravity. Liposomes that were formed at 1-g did not exceed 150 nm in diameter, whereas liposomes that were formed during spaceflight exhibited diameters up to 2000 nm. Using detergent-stabilized planar bilayers, we determined that the stage of liposome formation most influenced by gravity is membrane vesiculation. In addition, we found that small, equipment-induced fluid disturbances increased vesiculation and negated the size-enhancing effects of microgravity. However, these small disturbances had no effect on liposome size at 1-g, likely due to the presence of gravity-induced buoyancy-driven fluid flows (e.g., convection currents). Our results indicate that fluid disturbances, induced by gravity, influence the vesiculation of membranes and limit the diameter of forming liposomes.

  15. Respiratory failure following delayed intrathecal morphine pump refill: a valuable, but costly lesson.

    PubMed

    Ruan, Xiulu; Couch, J Patrick; Liu, HaiNan; Shah, Rinoo V; Wang, Frank; Chiravuri, Srinivas

    2010-01-01

    Spinal analgesia, mediated by opioid receptors, requires only a fraction of the opioid dose that is needed systemically. By infusing a small amount of opioid into the cerebrospinal fluid in close proximity to the receptor sites in the spinal cord, profound analgesia may be achieved while sparing some of the side effects due to systemic opioids. Intraspinal drug delivery (IDD) has been increasingly used in patients with intractable chronic pain, when these patients have developed untoward side effects with systemic opioid usage. The introduction of intrathecal opioids has been considered one of the most important breakthroughs in pain management in the past three decades. A variety of side effects associated with the long-term usage of IDD have been recognized. Among them, respiratory depression is the most feared. To describe a severe adverse event, i.e., respiratory failure, following delayed intrathecal morphine pump refill. A 65-year-old woman with intractable chronic low back pain, due to degenerative disc disease, and was referred to our clinic for an intraspinal drug delivery evaluation, after failing to respond to multidisciplinary pain treatment. Following a psychological evaluation confirming her candidacy, she underwent an outpatient patient-controlled continuous epidural morphine infusion trial. The infusion trial lasted 12 days and was beneficial in controlling her pain. The patient reported more than 90% pain reduction with improved distance for ambulation. She subsequently consented and was scheduled for permanent intrathecal morphine pump implantation. The intrathecal catheter was inserted at right paramedian L3-L4, with catheter tip advanced to L1, confirmed under fluoroscopy. Intrathecal catheter placement was confirmed by positive CSF flow and by myelogram. A non-programmable Codman 3000 constant-flow rate infusion pump was placed in the right mid quandrant between right rib cage and right iliac crest. The intrathecal infusion consisted of

  16. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications.

    PubMed

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  17. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in in vivo, noninvasive imaging of biological structures at depths but it can also be used for drug release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  18. Interaction of colistin and colistin methanesulfonate with liposomes: colloidal aspects and implications for formulation.

    PubMed

    Wallace, Stephanie J; Li, Jian; Nation, Roger L; Prankerd, Richard J; Boyd, Ben J

    2012-09-01

    Interaction of colistin and colistin methanesulfonate (CMS) with liposomes has been studied with the view to understanding the limitations to the use of liposomes as a more effective delivery system for pulmonary inhalation of this important class of antibiotic. Thus, in this study, liposomes containing colistin or CMS were prepared and characterized with respect to colloidal behavior and drug encapsulation and release. Association of anionic CMS with liposomes induced negative charge on the particles. However, degradation of the CMS to form cationic colistin over time was directly correlated with charge reversal and particle aggregation. The rate of degradation of CMS was significantly more rapid when associated with the liposome bilayer than when compared with the same concentration in aqueous solution. Colistin liposomes carried positive charge and were stable. Encapsulation efficiency for colistin was approximately 50%, decreasing with increasing concentration of colistin. Colistin was rapidly released from liposomes on dilution. Although the studies indicate limited utility of colistin or CMS liposomes for long duration controlled-release applications, colistin liposomes were highly stable and may present a potential opportunity for coformulation of colistin with a second antibiotic to colocalize the two drugs after pulmonary delivery. Copyright © 2012 Wiley Periodicals, Inc.

  19. Interaction of Colistin and Colistin Methanesulfonate with Liposomes: Colloidal Aspects and Implications for Formulation

    PubMed Central

    WALLACE, STEPHANIE J.; LI, JIAN; NATION, ROGER L.; PRANKERD, RICHARD J.; BOYD, BEN J.

    2012-01-01

    Interaction of colistin and colistin methanesulfonate (CMS) with liposomes has been studied with the view to understanding the limitations to the use of liposomes as a more effective delivery system for pulmonary inhalation of this important class of antibiotic. Thus, in this study, liposomes containing colistin or CMS were prepared and characterized with respect to colloidal behavior and drug encapsulation and release. Association of anionic CMS with liposomes induced negative charge on the particles. However, degradation of the CMS to form cationic colistin over time was directly correlated with charge reversal and particle aggregation. The rate of degradation of CMS was significantly more rapid when associated with the liposome bilayer than when compared with the same concentration in aqueous solution. Colistin liposomes carried positive charge and were stable. Encapsulation efficiency for colistin was approximately 50%, decreasing with increasing concentration of colistin. Colistin was rapidly released from liposomes on dilution. Although the studies indicate limited utility of colistin or CMS liposomes for long duration controlled-release applications, colistin liposomes were highly stable and may present a potential opportunity for coformulation of colistin with a second antibiotic to colocalize the two drugs after pulmonary delivery. PMID:22623044

  20. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach.

    PubMed

    Soema, Peter C; Willems, Geert-Jan; Jiskoot, Wim; Amorij, Jean-Pierre; Kersten, Gideon F

    2015-08-01

    In this study, the effect of liposomal lipid composition on the physicochemical characteristics and adjuvanticity of liposomes was investigated. Using a design of experiments (DoE) approach, peptide-containing liposomes containing various lipids (EPC, DOPE, DOTAP and DC-Chol) and peptide concentrations were formulated. Liposome size and zeta potential were determined for each formulation. Moreover, the adjuvanticity of the liposomes was assessed in an in vitro dendritic cell (DC) model, by quantifying the expression of DC maturation markers CD40, CD80, CD83 and CD86. The acquired data of these liposome characteristics were successfully fitted with regression models, and response contour plots were generated for each response factor. These models were applied to predict a lipid composition that resulted in a liposome with a target zeta potential. Subsequently, the expression of the DC maturation factors for this lipid composition was predicted and tested in vitro; the acquired maturation responses corresponded well with the predicted ones. These results show that a DoE approach can be used to screen various lipids and lipid compositions, and to predict their impact on liposome size, charge and adjuvanticity. Using such an approach may accelerate the formulation development of liposomal vaccine adjuvants. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used.

  2. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape.

    PubMed

    Zylberberg, Claudia; Matosevic, Sandro

    2016-11-01

    Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposome-based systems for clinical use to market.

  3. Long-acting rilpivirine for HIV prevention.

    PubMed

    Jackson, Akil; McGowan, Ian

    2015-07-01

    Long-acting injectable antiretroviral (ARV) formulations are being developed for the treatment and prevention of HIV infection. The purpose of this review is to summarize recent preclinical and clinical data on TMC278 (rilpivirine), a nonnucleoside reverse transcriptase inhibitor (NNRTI), that is being developed for both a treatment and prevention indication. Long-acting rilpivirine has demonstrated efficacy in preventing HIV acquisition in a humanized mouse model and has been found to be well tolerated and acceptable in several Phase I clinical trials. Pharmacokinetic data from Phase I studies suggest that 1200 mg of long-acting rilpivirine administered every 8 weeks would be associated with plasma and tissue levels of rilpivirine anticipated to be necessary for preventing HIV infection. This regimen is being evaluated in the HPTN-076 Phase II expanded safety study that will enroll women in South Africa, Zimbabwe, and the USA. The HPTN-076 study requires a 4-week run in with oral rilpivirine (25 mg capsules) before receiving 1200 mg of rilpivirine. It is not yet certain whether oral dosing will remain a prerequisite in future trials or post licensure. Long-acting rilpivirine shows promise as a candidate agent for HIV prevention. Preclinical efficacy has been demonstrated in a murine model. Phase I studies have shown good safety and efficacy, but breakthrough infection and resistance have been documented with lower doses of long-acting rilpivirine. Phase II development for a prevention indication is ongoing.

  4. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies

    NASA Astrophysics Data System (ADS)

    Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana

    2016-01-01

    The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.

  5. Integrating Patient-Controlled Analgesia Using Implanted Intrathecal Pumps for Postoperative Pain Management: A Case Report.

    PubMed

    Peniche, Alec; Poree, Lawrence; Schumacher, Mark; Yu, Xiaobing

    2018-06-01

    Intrathecal patient-controlled analgesia (IT-PCA) through implanted intrathecal infusion pumps has been increasingly utilized for severe cancer and chronic noncancer pain management. However, its application for acute postoperative pain management has not been reported to date. We present a case of a patient with an implanted intrathecal pump for chronic nonmalignant back pain who underwent an extensive spinal fusion surgery. The IT-PCA functionality of her intrathecal pump was successfully integrated into her postoperative multimodal pain regimen. Hence, IT-PCA can be safely incorporated into acute postoperative pain management with vigilant monitoring and close multidisciplinary collaboration.

  6. Protease-sensitive, polymer-caged liposomes: a method for making highly targeted liposomes using triggered release.

    PubMed

    Basel, Matthew T; Shrestha, Tej B; Troyer, Deryl L; Bossmann, Stefan H

    2011-03-22

    Liposomes have become useful and well-known drug delivery vehicles because of their ability to entrap drugs without chemically modifying them and to deliver them somewhat selectively to tumorous tissue via the enhanced permeation and retention (EPR) effect. Although useful, liposome preparations are still less than ideal because of imperfect specificity, slow release kinetics in the tumor, and leakiness prior to reaching the tumor site. Cancer-associated proteases (CAPs), which are differentially expressed in tumors, have also gained traction recently as a method for tumor targeting and drug delivery. By combining the EPR effect with CAPs sensitivity, a much more specific liposome can be produced. The method described here creates an improved liposome system that can target more specifically, with faster release kinetics and lower general leaking, by deliberately producing a very unstable liposome (loaded with hyperosmotic vehicle) that is subsequently stabilized by a cross-linked polymer shell containing consensus sequences for cancer-associated proteases (protease-triggered, caged liposomes). A cholesterol-anchored, graft copolymer, composed of a short peptide sequence for urokinase plasminogen activator (uPA) and poly(acrylic acid), was synthesized and incorporated into liposomes prepared at high osmolarities. Upon cross-linking of the polymers, the protease-triggered, caged liposomes showed significant resistance to osmotic swelling and leaking of contents. Protease-triggered, caged liposomes also showed significant and substantial differential release of contents in the presence of uPA, while bare liposomes showed no differential effect in the presence of uPA. Thus a protease-sensitive liposome system with fast release kinetics was developed that could be used for more specific targeting to tumors.

  7. Intrathecal Catheterization and Drug Delivery in Guinea Pigs: A Small-animal Model for Morphine-evoked Granuloma Formation.

    PubMed

    Eddinger, Kelly A; Rondon, Eric S; Shubayev, Veronica I; Grafe, Marjorie R; Scadeng, Miriam; Hildebrand, Keith R; Page, Linda M; Malkmus, Shelle A; Steinauer, Joanne J; Yaksh, Tony L

    2016-08-01

    Intrathecal infusion of opioids in dogs, sheep, and humans produces local space-occupying masses. To develop a small-animal model, the authors examined effects of intrathecal catheterization and morphine infusion in guinea pigs. Under isoflurane, polyethylene or polyurethane catheters were advanced from the cisterna magna to the lumbar enlargement. Drugs were delivered as a bolus through the externalized catheter or continuously by subcutaneous minipumps. Hind paw withdrawal to a thermal stimulus was assessed. Spinal histopathology was systematically assessed in a blinded fashion. To assist in determining catheter placement, ex vivo images were obtained using magnetic resonance imaging in several animals. Canine spinal tissue from previous intrathecal morphine studies was analyzed in parallel. (1) Polyethylene (n = 30) and polyurethane (n = 25) catheters were implanted in the lumbar intrathecal space. (2) Bolus intrathecal morphine produced a dose-dependent (20 to 40 μg/10 μl) increase in thermal escape latencies. (3) Absent infusion, a catheter-associated distortion of the spinal cord and a fibrotic investment were noted along the catheter tract (polyethylene > polyurethane). (4) Intrathecal morphine infusion (25 mg/ml/0.5 μl/h for 14 days) resulted in intrathecal masses (fibroblasts, interspersed collagen, lymphocytes, and macrophages) arising from meninges proximal to the catheter tip in both polyethylene- and polyurethane-catheterized animals. This closely resembles mass histopathology from intrathecal morphine canine studies. Continuous intrathecal infusion of morphine leads to pericatheter masses that morphologically resemble those observed in dogs and humans. This small-animal model may be useful for studying spinal drug toxicology in general and the biology of intrathecal granuloma formation in particular.

  8. Use of liposomal bupivacaine in the postoperative management of posterior spinal decompression.

    PubMed

    Grieff, Anthony N; Ghobrial, George M; Jallo, Jack

    2016-07-01

    OBJECTIVE The aim in this paper was to evaluate the efficacy of long-acting liposomal bupivacaine in comparison with bupivacaine hydrochloride for lowering postoperative analgesic usage in the management of posterior cervical and lumbar decompression and fusion. METHODS A retrospective cohort-matched chart review of 531 consecutive cases over 17 months (October 2013 to February 2015) for posterior cervical and lumbar spinal surgery procedures performed by a single surgeon (J.J.) was performed. Inclusion criteria for the analysis were limited to those patients who received posterior approach decompression and fusion for cervical or lumbar spondylolisthesis and/or stenosis. Patients from October 1, 2013, through December 31, 2013, received periincisional injections of bupivacaine hydrochloride, whereas after January 1, 2014, liposomal bupivacaine was solely administered to all patients undergoing posterior approach cervical and lumbar spinal surgery through the duration of treatment. Patients were separated into 2 groups for further analysis: posterior cervical and posterior lumbar spinal surgery. RESULTS One hundred sixteen patients were identified: 52 in the cervical cohort and 64 in the lumbar cohort. For both cervical and lumbar cases, patients who received bupivacaine hydrochloride required approximately twice the adjusted morphine milligram equivalent (MME) per day in comparison with the liposomal bupivacaine groups (5.7 vs 2.7 MME, p = 0.27 [cervical] and 17.3 vs 7.1 MME, p = 0.30 [lumbar]). The amounts of intravenous rescue analgesic requirements were greater for bupivacaine hydrochloride in comparison with liposomal bupivacaine in both the cervical (1.0 vs 0.39 MME, p = 0.31) and lumbar (1.0 vs 0.37 MME, p = 0.08) cohorts as well. None of these differences was found to be statistically significant. There were also no significant differences in lengths of stay, complication rates, or infection rates. A subgroup analysis of both cohorts of opiate-naive versus

  9. Efficient Human Breast Cancer Xenograft Regression after a Single Treatment with a Novel Liposomal Formulation of Epirubicin Prepared Using the EDTA Ion Gradient Method

    PubMed Central

    Gubernator, Jerzy; Lipka, Dominik; Korycińska, Mariola; Kempińska, Katarzyna; Milczarek, Magdalena; Wietrzyk, Joanna; Hrynyk, Rafał; Barnert, Sabine; Süss, Regine; Kozubek, Arkadiusz

    2014-01-01

    Liposomes act as efficient drug carriers. Recently, epirubicin (EPI) formulation was developed using a novel EDTA ion gradient method for drug encapsulation. This formulation displayed very good stability and drug retention in vitro in a two-year long-term stability experiment. The cryo-TEM images show drug precipitate structures different than ones formed with ammonium sulfate method, which is usually used to encapsulate anthracyclines. Its pharmacokinetic properties and its efficacy in the human breast MDA-MB-231 cancer xenograft model were also determined. The liposomal EPI formulation is eliminated slowly with an AUC of 7.6487, while the free drug has an AUC of only 0.0097. The formulation also had a much higher overall antitumor efficacy than the free drug. PMID:24621591

  10. CDP-choline liposomes provide significant reduction in infarction over free CDP-choline in stroke

    PubMed Central

    Adibhatla, Rao Muralikrishna; Hatcher, J.F.; Tureyen, K.

    2007-01-01

    Cytidine-5′-diphosphocholine (CDP-choline, Citicoline, Somazina) is in clinical use (intravenous administration) for stroke treatment in Europe and Japan, while USA phase III stroke clinical trials (oral administration) were disappointing. Others showed that CDP-choline liposomes significantly increased brain uptake over the free drug in cerebral ischemia models. Liposomes were formulated as DPPC, DPPS, cholesterol, GM1 ganglioside; 7/4/7/1.57 molar ratio or 35.8/20.4/35.8/8.0 mol%. GM1 ganglioside confers long-circulating properties to the liposomes by suppressing phagocytosis. CDP-choline liposomes deliver the agent intact to the brain, circumventing the rate-limiting, cytidine triphosphate:phosphocholine cytidylyltransferase in phosphatidylcholine synthesis. Our data show that CDP-choline liposomes significantly ( P < 0.01) decreased cerebral infarction (by 62%) compared to the equivalent dose of free CDP-choline (by 26%) after 1 h focal cerebral ischemia and 24 h reperfusion in spontaneously hypertensive rats. Beneficial effects of CDP-choline liposomes in stroke may derive from a synergistic effect between the phospholipid components of the liposomes and the encapsulated CDP-choline. PMID:16153613

  11. Intrathecal immunoglobulin synthesis in patients with symptomatic epilepsy and epilepsy of unknown etiology ('cryptogenic').

    PubMed

    Fauser, S; Soellner, C; Bien, C G; Tumani, H

    2017-09-01

    To compare the frequency of intrathecal immunoglobulin (Ig) synthesis in patients with symptomatic epilepsy and epilepsy of unknown etiology ('cryptogenic'). Patients with epileptic (n = 301) and non-epileptic (n = 10) seizures were retrospectively screened for autochthonous intrathecal Ig synthesis and oligoclonal bands (OCBs) in the cerebrospinal fluid. Intrathecal IgG/OCBs were detected in 8% of patients with epilepsies of unknown etiology, 5% of patients with first seizures of unknown cause and 0-4% of patients with epilepsy due to brain tumors, cerebrovascular disease or other etiologies. Intrathecal IgG/OCBs were not seen in patients with psychogenic seizures. Identical OCBs in serum and cerebrospinal fluid were more common in all patient groups (10-40% depending on underlying etiology). Intrathecal IgG synthesis/OCBs were observed slightly more frequently in patients with 'cryptogenic' epilepsy and with first seizures of unknown etiology than in other patient groups. However, this remained an infrequent finding and thus we could not confirm humoral immunity as a leading disease mechanism in patients with epilepsy in general or with unknown etiology in particular. © 2017 EAN.

  12. Intrathecal Drug Delivery Systems for Cancer Pain: A Health Technology Assessment

    PubMed Central

    2016-01-01

    Background Intrathecal drug delivery systems can be used to manage refractory or persistent cancer pain. We investigated the benefits, harms, cost-effectiveness, and budget impact of these systems compared with current standards of care for adult patients with chronic pain due owing to cancer. Methods We searched Ovid MEDLINE, Ovid Embase, the Cochrane Library databases, National Health Service's Economic Evaluation Database, and Tufts Cost-Effectiveness Analysis Registry from January 1994 to April 2014 for evidence of effectiveness, harms, and cost-effectiveness. We used existing systematic reviews that had employed reliable search and screen methods and searched for studies published after the search date reported in the latest systematic review to identify studies. Two reviewers screened records and assessed study validity. The cost burden of publicly funding intrathecal drug delivery systems for cancer pain was estimated for a 5-year timeframe using a combination of published literature, information from the device manufacturer, administrative data, and expert opinion for the inputs. Results We included one randomized trial that examined effectiveness and harms, and one case series that reported an eligible economic evaluation. We found very low quality evidence that intrathecal drug delivery systems added to comprehensive pain management reduce overall drug toxicity; no significant reduction in pain scores was observed. Weak conclusions from economic evidence suggested that intrathecal drug delivery systems had the potential to be more cost-effective than high-cost oral therapy if administered for 7 months or longer. The cost burden of publicly funding this therapy is estimated to be $100,000 in the first year, increasing to $500,000 by the fifth year. Conclusions Current evidence could not establish the benefit, harm, or cost-effectiveness of intrathecal drug delivery systems compared with current standards of care for managing refractory cancer pain in

  13. Intrathecal Drug Delivery Systems for Cancer Pain: A Health Technology Assessment.

    PubMed

    2016-01-01

    Intrathecal drug delivery systems can be used to manage refractory or persistent cancer pain. We investigated the benefits, harms, cost-effectiveness, and budget impact of these systems compared with current standards of care for adult patients with chronic pain due owing to cancer. We searched Ovid MEDLINE, Ovid Embase, the Cochrane Library databases, National Health Service's Economic Evaluation Database, and Tufts Cost-Effectiveness Analysis Registry from January 1994 to April 2014 for evidence of effectiveness, harms, and cost-effectiveness. We used existing systematic reviews that had employed reliable search and screen methods and searched for studies published after the search date reported in the latest systematic review to identify studies. Two reviewers screened records and assessed study validity. The cost burden of publicly funding intrathecal drug delivery systems for cancer pain was estimated for a 5-year timeframe using a combination of published literature, information from the device manufacturer, administrative data, and expert opinion for the inputs. We included one randomized trial that examined effectiveness and harms, and one case series that reported an eligible economic evaluation. We found very low quality evidence that intrathecal drug delivery systems added to comprehensive pain management reduce overall drug toxicity; no significant reduction in pain scores was observed. Weak conclusions from economic evidence suggested that intrathecal drug delivery systems had the potential to be more cost-effective than high-cost oral therapy if administered for 7 months or longer. The cost burden of publicly funding this therapy is estimated to be $100,000 in the first year, increasing to $500,000 by the fifth year. Current evidence could not establish the benefit, harm, or cost-effectiveness of intrathecal drug delivery systems compared with current standards of care for managing refractory cancer pain in adults. Publicly funding intrathecal drug

  14. Ciprofloxacin as ocular liposomal hydrogel.

    PubMed

    Hosny, Khaled Mohamed

    2010-03-01

    The purpose of this study was to prepare and characterize an ocular effective prolonged-release liposomal hydrogel formulation containing ciprofloxacin. Reverse-phase evaporation was used for preparation of liposomes consisting of soybean phosphatidylcholine (PC) and cholesterol (CH). The effect of PC/CH molar ratio on the percentage drug encapsulation was investigated. The effect of additives such as stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively, were studied. Morphology, mean size, encapsulation efficiency, and in vitro release of ciprofloxacin from liposomes were evaluated. For hydrogel preparation, Carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency of 73.04 +/- 3.06% was obtained from liposomes formulated with PC/CH at molar ratio of 5:3 and by increasing CH content above this limit, the encapsulation decreased. Positively charged liposomes showed superior entrapment efficiency (82.01 +/- 0.52) over the negatively charged and the neutral liposomes. Hydrogel containing liposomes with lipid content PC, CH, and SA in molar ratio 5:3:1, respectively, showed the best release and transcorneal permeation with the percentage permeation of 30.6%. These results suggest that the degree of encapsulation of ciprofloxacin into liposomes and prolonged in vitro release depend on composition of the vesicles. In addition, the polymer hydrogel used in preparation ensure steady and prolonged transcorneal permeation. In conclusion, ciprofloxacin liposomal hydrogel is a suitable delivery system for improving the ocular bioavailability of ciprofloxacin.

  15. Capacious and programmable multi-liposomal carriers

    NASA Astrophysics Data System (ADS)

    Yaroslavov, Alexander A.; Sybachin, Andrey V.; Zaborova, Olga V.; Migulin, Vasiliy A.; Samoshin, Vyacheslav V.; Ballauff, Matthias; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Menger, Fredric M.

    2015-01-01

    Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes.Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational

  16. Intrathecal baclofen treatment in dystonic cerebral palsy: a randomized clinical trial: the IDYS trial

    PubMed Central

    2013-01-01

    Background Dystonic cerebral palsy is primarily caused by damage to the basal ganglia and central cortex. The daily care of these patients can be difficult due to dystonic movements. Intrathecal baclofen treatment is a potential treatment option for dystonia and has become common practice. Despite this widespread adoption, high quality evidence on the effects of intrathecal baclofen treatment on daily activities is lacking and prospective data are needed to judge the usefulness and indications for dystonic cerebral palsy. The primary aim of this study is to provide level one clinical evidence for the effects of intrathecal baclofen treatment on the level of activities and participation in dystonic cerebral palsy patients. Furthermore, we hope to identify clinical characteristics that will predict a beneficial effect of intrathecal baclofen in an individual patient. Methods/Design A double blind placebo-controlled multi-center randomized clinical trial will be performed in 30 children with dystonic cerebral palsy. Patients aged between 4 and 25 years old with a confirmed diagnosis of dystonic cerebral palsy, Gross Motor Functioning Classification System level IV or V, with lesions in the cerebral white matter, basal ganglia or central cortex and who are eligible for intrathecal baclofen treatment will be included. Group A will receive three months of continuous intrathecal baclofen treatment and group B will receive three months of placebo treatment, both via an implanted pump. After this three month period, all patients will receive intrathecal baclofen treatment, with a follow-up after nine months. The primary outcome measurement will be the effect on activities of and participation in daily life measured by Goal Attainment Scaling. Secondary outcome measurements on the level of body functions include dystonia, spasticity, pain, comfort and sleep-related breathing disorders. Side effects will be monitored and we will study whether patient characteristics

  17. Pain Reduction in Untreated Symptomatic Irreversible Pulpitis Using Liposomal Bupivacaine (Exparel): A Prospective, Randomized, Double-blind Trial.

    PubMed

    Bultema, Kristy; Fowler, Sara; Drum, Melissa; Reader, Al; Nusstein, John; Beck, Mike

    2016-12-01

    In the treatment of patients with symptomatic irreversible pulpitis, endodontic debridement is a predictable method to relieve pain. However, there are clinical situations in which emergency care cannot be provided immediately. An unexplored treatment option in these cases may be the use of a long-acting anesthetic to reduce pain in untreated irreversible pulpitis. Some medical studies have shown potential for infiltrations of liposomal bupivacaine (Exparel; Pacira Pharmaceuticals, San Diego, CA) to prolong pain relief and reduce opioid use postoperatively. The Food and Drug Administration has approved Exparel only for infiltrations; therefore, the purpose of this study was to compare an infiltration of liposomal bupivacaine versus bupivacaine for pain control in untreated, symptomatic irreversible pulpitis. Ninety-five emergency patients received 2% lidocaine with 1:100,000 epinephrine via infiltration or an inferior alveolar nerve block to relieve their initial presenting pain. Patients then randomly received either 4 mL liposomal bupivacaine (13.3 mg/mL) or 4 mL 0.5% bupivacaine with 1:200,000 epinephrine by infiltration. Patients received a diary for the day of the appointment and 3 days postinjection to record soft tissue numbness, pain levels, and analgesic (non-narcotic and narcotic) use. No significant differences (P < .05) were found between the 2 anesthetic formulations for pain or the use of pain medications. A statistically higher level of soft tissue numbness was found on days 1 to 3 for the liposomal bupivacaine group. Although liposomal bupivacaine had some effect on soft tissue anesthesia, it did not reduce pain to manageable clinical levels in patients presenting with untreated, symptomatic irreversible pulpitis. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Extensive scarring induced by chronic intrathecal tubing augmented cord tissue damage and worsened functional recovery after rat spinal cord injury.

    PubMed

    Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-08-30

    Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubing's tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Pain Control and Functional Milestones in Total Knee Arthroplasty: Liposomal Bupivacaine versus Femoral Nerve Block.

    PubMed

    Yu, Stephen; Szulc, Alessandra; Walton, Sharon; Bosco, Joseph; Iorio, Richard

    2017-01-01

    Although pain management after total knee arthroplasty (TKA) affects rehabilitation, length of stay, and functional outcomes, pain management for patients undergoing TKA has yet to be standardized. Femoral nerve blocks (FNBs) are commonly used as an adjunct; however, these can result in transient quadriceps weakness and have been associated with in-hospital falls. Periarticular infiltration of liposomal bupivacaine has been recently introduced as a long-acting analgesic that can be administered without affecting motor function. (1) Does periarticular liposomal bupivacaine compared with FNB result in improved pain control as measured by pain scores and narcotic consumption? (2) How do liposomal bupivacaine and FNB compare in terms of gait and stairclimbing milestones and the proportion of patients who experienced a fall in the hospital? Between September 2013 and October 2014, a retrospective analysis was conducted involving 24 surgeons who performed a total of 1373 unilateral, primary TKAs. From September 2013 to April 2014, the routine approach to TKA pain management pathway consisted of preoperative administration of oral analgesics, intraoperative anesthesia (preferred spinal or general), an ultrasound-guided FNB, intraoperative analgesic cocktail injection, patient-controlled analgesia, and oral and IV narcotics for pain as needed. A total of 583 patients were included in this study group. Starting May 2014, FNBs were discouraged and there was department-wide adoption of liposomal bupivacaine. Liposomal bupivacaine became routinely used in all patients undergoing TKA with no other changes made to the multimodal analgesia protocol at that time, and 527 patients in this study group were compared with the FNB cohort. Chart review on a total of 1110 patients was conducted by a research assistant who was not participating in patient care. During the inpatient stay, pain scores during 8-hour intervals, narcotic use, and physical therapy milestones were compared. With

  20. A fluorescence study of liposomes entrapped in sol-gel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, S.A.; Singh, S.; Sasaki, D.Y.

    1997-12-31

    Liposomes of phosphatidylcholine lipids were successfully entrapped in silicates using the sol-gel method with complete retention of the molecular aggregates over long periods in aqueous solution. Fluorescent studies of the small unilamellar vesicles of 5% pyrene labeled lipid PSIDA with DSPC remobilized in the gel found significant lipid reorganization upon aging in aqueous solutions. Monitoring of pyrene excimer (470 nm) to monomer (375 nm) ratios in the bilayer reveals that the silicate matrix tends to disperse PSIDA lipid aggregates from that observed in free solution. On an interesting note, the liposomes in the gel at pH 7.5. The PSIDA/DSPC liposomes,more » sensitive to heavy metal ions in free solution, maintain similar sensitivity in the gel yet the sensor material can not be recycled.« less

  1. New drug candidates for liposomal delivery identified by computer modeling of liposomes' remote loading and leakage.

    PubMed

    Cern, Ahuva; Marcus, David; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2017-04-28

    Remote drug loading into nano-liposomes is in most cases the best method for achieving high concentrations of active pharmaceutical ingredients (API) per nano-liposome that enable therapeutically viable API-loaded nano-liposomes, referred to as nano-drugs. This approach also enables controlled drug release. Recently, we constructed computational models to identify APIs that can achieve the desired high concentrations in nano-liposomes by remote loading. While those previous models included a broad spectrum of experimental conditions and dealt only with loading, here we reduced the scope to the molecular characteristics alone. We model and predict API suitability for nano-liposomal delivery by fixing the main experimental conditions: liposome lipid composition and size to be similar to those of Doxil® liposomes. On that basis, we add a prediction of drug leakage from the nano-liposomes during storage. The latter is critical for having pharmaceutically viable nano-drugs. The "load and leak" models were used to screen two large molecular databases in search of candidate APIs for delivery by nano-liposomes. The distribution of positive instances in both loading and leakage models was similar in the two databases screened. The screening process identified 667 molecules that were positives by both loading and leakage models (i.e., both high-loading and stable). Among them, 318 molecules received a high score in both properties and of these, 67 are FDA-approved drugs. This group of molecules, having diverse pharmacological activities, may be the basis for future liposomal drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction.

    PubMed

    Allijn, Iris E; Czarny, Bertrand M S; Wang, Xiaoyuan; Chong, Suet Yen; Weiler, Marek; da Silva, Acarilia Eduardo; Metselaar, Josbert M; Lam, Carolyn Su Ping; Pastorin, Giorgia; de Kleijn, Dominique P V; Storm, Gert; Wang, Jiong-Wei; Schiffelers, Raymond M

    2017-02-10

    Inflammation is a known mediator of adverse ventricular remodeling after myocardial infarction (MI) that may lead to reduction of ejection fraction and subsequent heart failure. Berberine is a isoquinoline quarternary alkaloid from plants that has been associated with anti-inflammatory, anti-oxidative, and cardioprotective properties. Its poor solubility in aqueous buffers and its short half-life in the circulation upon injection, however, have been hampering the extensive usage of this natural product. We hypothesized that encapsulation of berberine into long circulating liposomes could improve its therapeutic availability and efficacy by protecting cardiac function against MI in vivo. Berberine-loaded liposomes were prepared by ethanol injection and characterized. They contained 0.3mg/mL of the drug and were 0.11μm in diameter. Subsequently they were tested for IL-6 secretion inhibition in RAW 264.7 macrophages and for cardiac function protection against adverse remodeling after MI in C57BL/6J mice. In vitro, free berberine significantly inhibited IL-6 secretion (IC 50 =10.4μM), whereas encapsulated berberine did not as it was not released from the formulation in the time frame of the in vitro study. In vivo, berberine-loaded liposomes significantly preserved the cardiac ejection fraction at day 28 after MI by 64% as compared to control liposomes and free berberine. In conclusion, liposomal encapsulation enhanced the solubility of berberine in buffer and preserves ejection fraction after MI. This shows that delivery of berberine-loaded liposomes significantly improves its therapeutic availability and identifies berberine-loaded liposomes as potential treatment of adverse remodeling after MI. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Intrathecal Baclofen Therapy: Benefits and Complications

    ERIC Educational Resources Information Center

    Zdolsek, Helena Aniansson; Olesch, Christine; Antolovich, Giuliana; Reddihough, Dinah

    2011-01-01

    Background: Spasticity and dystonia in children with cerebral palsy has been treated with intrathecal baclofen therapy (ITB) at the Royal Children's Hospital, Melbourne, Australia (RCH) since 1999. Methods: The records of children having received or still receiving ITB during the period September 1999 until August 2005 were studied to evaluate…

  4. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation

    PubMed Central

    Chen, Jingde; Jiang, Hong; Wu, Yin; Li, Yandong; Gao, Yong

    2015-01-01

    In this study, oxaliplatin (OX) liposomes surface-modified with glycyrrhetinic acid (GA) were developed by the film-dispersion method. Their morphology, physical and chemical properties, and in vitro release performance were investigated. The transmission electron microscope (TEM) image showed that most liposomes were spherical particles with similar size and uniform dispersion. Both OX-liposomes and GA-OX-liposomes had an average size of 90 nm. They were negatively charged, with zeta potentials of −20.6 and −21.3 mV, respectively, and the entrapment efficiency values of both were higher than 94%. In vitro data showed that the application of liposomes could prolong the OX release. The relatively high correlation coefficient values obtained from analyzing the amount of drug released versus the square root of time depicted that release followed the Weibull model. No significant changes were observed after the addition of GA to the liposomes. In vivo, the relatively long time to reach the maximum plasma concentration of OX-liposomes suggested a sustained-release profile of liposomes, which was consistent with the results of the in vitro release study. The increased area under the curve and maximum plasma concentration of OX-liposomes and GA-OX-liposomes demonstrated an increased absorption. The drug concentration in tissues indicated that the GA-modified liposomes delivered OX mainly to liver after intravenous administration. In addition, no severe signs, such as appearance of epithelial necrosis or sloughing of epithelial cells, were detected in histology studies. PMID:25945038

  5. Nanoparticle Stabilized Liposomes for Acne Therapy

    NASA Astrophysics Data System (ADS)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  6. Consciousness recovery induced by intrathecal baclofen administration after subarachnoid hemorrhage -two case reports-.

    PubMed

    Oyama, Hirofumi; Kito, Akira; Maki, Hideki; Hattori, Kenichi; Tanahashi, Kuniaki

    2010-01-01

    Two patients with subarachnoid hemorrhage recovered consciousness after intrathecal baclofen administration using an implanted intrathecal baclofen pump delivering 50 microg per day using a simple infusion mode. Intrathecal baclofen resulted in significant reduction of spasticity 3 months after the implantation. Case 1 was reduced to a completely bedridden state with spasticity and could slightly move her fingers following commands. However, the patient could eat food and wash her face with minimal assistance at 3 months after the implantation, and could stand up in the parallel bars with assistance and speak several words at 8 months. Case 2 was in a completely bedridden state at 10 months after onset and could neither drink water nor follow instructions. However, the patient became oriented and could eat by herself within 3 to 4 weeks of implantation. She could walk with a cane and use the stairs with minimal assistance at 2 and 3 months after implantation. The patient could speak fluently within 6 months of implantation. Flatulence and dysuria happened during the screening test, but these symptoms were not repeated after implantation of a pump-catheter-system and continuous intrathecal baclofen infusion. Continuous intrathecal baclofen infusion caused both improvement in muscle tone and spasms and consciousness recovery from the vegetative state. This therapy is a strong candidate treatment for patients with spasticity and consciousness disturbance.

  7. Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications.

    PubMed

    Terreno, Enzo; Delli Castelli, Daniela; Cabella, Claudia; Dastrù, Walter; Sanino, Alberto; Stancanello, Joseph; Tei, Lorenzo; Aime, Silvio

    2008-10-01

    This article illustrates some innovative applications of liposomes loaded with paramagnetic lanthanide-based complexes in MR molecular imaging field. When a relatively high amount of a Gd(III) chelate is encapsulated in the vesicle, the nanosystem can simultaneously affect both the longitudinal (R(1)) and the transverse (R(2)) relaxation rate of the bulk H2O H-atoms, and this finding can be exploited to design improved thermosensitive liposomes whose MRI response is not longer dependent on the concentration of the probe. The observation that the liposome compartmentalization of a paramagnetic Ln(III) complex induce a significant R(2) enhancement, primarily caused by magnetic susceptibility effects, prompted us to test the potential of such agents in cell-targeting MR experiments. The results obtained indicated that these nanoprobes may have a great potential for the MR visualization of cellular targets (like the glutamine membrane transporters) overexpressing in tumor cells. Liposomes loaded with paramagnetic complexes acting as NMR shift reagents have been recently proposed as highly sensitive CEST MRI agents. The main peculiarity of CEST probes is to allow the MR visualization of different agents present in the same region of interest, and this article provides an illustrative example of the in vivo potential of liposome-based CEST agents.

  8. HEPC-based liposomes trigger cytokine release from peripheral blood cells: effects of liposomal size, dose and lipid composition.

    PubMed

    Yamamoto, Sayaka; Ishida, Tatsuhiro; Inoue, Akiko; Mikami, Junko; Muraguchi, Masahiro; Ohmoto, Yasukazu; Kiwada, Hiroshi

    2002-04-02

    The immune response caused by liposome stimulation was studied by assessing the level of several cytokines released from human peripheral blood cells. Liposome stimulation resulted in the release of IL-6, IL-10, IL-1beta, TNF-alpha and IFN-gamma. The size of the liposomes affected the degree of the cytokine releases with larger sized liposomes causing higher levels of cytokine induction. In addition, it appears that the lipid composition of liposomes had no effect on the degree of cytokine release. The release of cytokines occurred even in the absence of serum, suggesting that serum proteins did not contribute to liposome stimulation in peripheral blood cells. The release of cytokines induced by liposome stimulation was inhibited by the presence of either protein kinase-C (PKC) or protein tyrosine kinase (PTK) inhibitor, but not by the presence of an endocytosis inhibitor. This indicates that signal transduction via PKC or PTK is necessary, in order for human peripheral blood cells to release cytokines (IL-6, IL-10, IL-1beta, TNF-alpha and IFN-gamma) as the result of liposome stimulation. These quantitative data on the release of cytokines by liposomal stimulation provide useful information for the development of rational drug delivery systems and the safety of cytokine induction via the use of liposomes.

  9. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    NASA Astrophysics Data System (ADS)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted

  10. Effects of intrathecal lidocaine on hyperalgesia and allodynia following chronic constriction injury in rats.

    PubMed

    Tian, Jie; Gu, Yiwen; Su, Diansan; Wu, Yichao; Wang, Xiangrui

    2009-02-01

    The present study investigated the effects of different doses of intrathecal lidocaine on established thermal hyperalgesia and tactile allodynia in the chronic constriction injury model of neuropathic pain, defined the effective drug dose range, the duration of pain-relief effects, and the influence of this treatment on the body and tissues. Male Sprague-Dawley rats were divided into five groups and received intrathecal saline or lidocaine (2, 6.5, 15, and 35 mg/kg) 7 days after loose sciatic ligation. Respiratory depression and hemodynamic instability were found to become more severe as doses of lidocaine increased during intrathecal therapy. Two animals in the group receiving 35 mg/kg lidocaine developed pulmonary oedema and died. Behavioral tests indicated that 6.5, 15, and 35 mg/kg intrathecal lidocaine showed different degrees of reversal of thermal hyperalgesia, and lasted for 2-8 days, while 2 mg/kg lidocaine did not. The inhibition of tactile allodynia was only observed in rats receiving 15 and 35 mg/kg lidocaine, and the anti-allodynic effects were identical in these two groups. Histopathologic examinations on the spinal cords revealed mild changes in rats receiving 2-15 mg/kg lidocaine. However, lesions were severe after administration of 35 mg/kg lidocaine. These findings indicate that intrathecal lidocaine has prolonged therapeutic effects on established neuropathic pain. The balance between sympathetic and parasympathetic nervous activities could be well preserved in most cases, except for 35 mg/kg. Considering the ratio between useful effects and side effects, doses of 15 mg/kg are suitable for intrathecal injection for relief of neuropathic pain.

  11. Spinal myoclonus following intrathecal administration of diatrizoate meglumine.

    PubMed

    Sam, M C; Gutmann, L

    1996-10-01

    Life-threatening myoclonus developed in a patient following inadvertent intrathecal usage of 60% diatrizoate meglumine. Rhabdomyolysis and myoglobinuria occurred. The patient was successfully treated with midazolam and vecuronium and complete recovery occurred.

  12. Solid phase immobilization of optically responsive liposomes insol-gel materials for chemical and biological sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Stacey A.; Charych, Deborah H.; Loy, Douglas A.

    1997-04-01

    Liposomes enhanced with surface recognition groups have previously been found to have high affinity for heavy metal ions and virus particles with unique fluorescent and colorimetric responses, respectively. These lipid aggregate systems have now been successfully immobilized in a silica matrix via the sol-gel method, affording sensor materials that are robust, are easily handled, and offer optical clarity. The mild processing conditions allow quantitative entrapment of preformed liposomes without modification of the aggregate structure. Lipid extraction studies of immobilized nonpolymerized liposomes showed no lipid leakage in aqueous solution over a period of 3 months. Heavy metal fluorescent sensor materials preparedmore » with 5 percent N-[8-[1-octadecyl-2-(9-(1-pyrenyl)nonyl)-rac-glyceroyl]-3,6-dioxaoctyl]imino acid/distearylphosphatidylcholineliposomes exhibited a 4-50-fold enhancement in sensitivity to various metal ions compared to that of the liposomes in free solution. Through ionic attraction the anionic silicate surface, at the experimental pH of 7.4, may act as a preconcentrator of divalent metal ions, boosting the gel's internal metal concentration. Entrapped sialic acid-coated polydiacetylene liposomes responded with colorimetric signaling to influenza virus X31, although slower than the free liposomes in solution. The successful transport of the virus (50-100 nm diameter) reveals a large pore diameter of the gel connecting the liposome to the bulk solution. The porous and durable silica matrix additionally provides a protective barrier to biological attack (bacterial, fungal) and allows facile recycling of the liposome heavy metal sensor.« less

  13. Directive counseling on long-acting contraception.

    PubMed Central

    Moskowitz, E; Jennings, B

    1996-01-01

    National rates of unintended births are a major public health concern. The availability of highly effective long-acting contraceptives has prompted some public officials to promote the coercive use of these methods to reduce such problems as intergenerational poverty and child abuse. Broad-brush public policies that require long-term contraceptive use are unethical. However, persuasion to use these methods can be appropriate. One place for exerting ethically justified influence is in family planning counseling. The dominant nondirective counseling model, which excludes the possibility of vigorous persuasion, is overly rigid. Family planning professionals should develop practice protocols that permit and guide the exercise of directive counseling to use long-acting contraception. PMID:8659650

  14. Liposomal membrane disruption by means of miniaturized dielectric-barrier discharge in air: liposome characterization

    NASA Astrophysics Data System (ADS)

    Svarnas, P.; Asimakoulas, L.; Katsafadou, M.; Pachis, K.; Kostazos, N.; Antimisiaris, S. G.

    2017-08-01

    The increasing interest of the plasma community in the application of atmospheric-pressure cold plasmas to bio-specimen treatment has led to the creation of the emerging field of plasma biomedicine. Accordingly, plasma setups based on dielectric-barrier discharges have already been widely tested for the inactivation of various cells. Most of these systems refer to the plasma jet concept where noble gases penetrate atmospheric air and are subjected to the influence of high electric fields, thus forming guided streamers. Following the original works of our group where liposomal membranes were proposed as models for studying the interaction between plasma jets and cells, we present herein a study on liposomal membrane disruption by means of miniaturized dielectric-barrier discharge running in atmospheric air. Liposomal membranes of various lipid compositions, lamellarities, and sizes are treated at different times. It is shown that the dielectric-barrier discharge of low mean power leads to efficient liposomal membrane disruption. The latter is achieved in a controllable manner and depends on liposome properties. Additionally, it is clearly demonstrated that liposomal membrane disruption takes place even after plasma extinction, i.e. during post-treatment, resembling thus an ‘apoptosis’ effect, which is well known today mainly for cell membranes. Thus, the adoption of the present concept would be beneficial for tailoring studies on plasma-treated cell-mimics. Finally, the liposome treatment is discussed with respect to possible physicochemical mechanisms and potential discharge modification due to the various compositions of the liquid electrode.

  15. Intrathecal [6]-gingerol administration alleviates peripherally induced neuropathic pain in male Sprague-Dawley rats.

    PubMed

    Gauthier, Marie-Lou; Beaudry, Francis; Vachon, Pascal

    2013-08-01

    [6]-Gingerol, a structural analog of capsaicin, is an agonist of the transient receptor potential vanilloid 1 channel, which is known to have therapeutic properties for the treatment of pain and inflammation. The main objective of this study was to determine the central effect of [6]-gingerol on neuropathic pain when injected intrathecally at the level of the lumbar spinal cord. [6]-Gingerol distribution was evaluated following a 40 mg/kg intraperitoneal injection, and the brain-to-plasma and spinal cord-to-plasma ratios (0.73 and 1.7, respectively) suggest that [6]-gingerol penetrates well the central nervous system of rats. Induction of pain was performed using the sciatic nerve ligation model on rats, and a 10-µg intrathecal injections of [6]-gingerol was performed to evaluate its central effect. The results suggest a significant decrease of secondary mechanical allodynia after 30 min, 2 h and 4 h (p < 0.05, p < 0.01 and p < 0.001) and thermal hyperalgesia after 30 min, 2 h and 4 h (p < 0.05, p < 0.01 and p < 0.01). These promising results illustrate that [6]-gingerol could alleviate neuropathic pain by acting centrally at the level of the spinal cord. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Oblique Intrathecal Injection in Lumbar Spine Surgery: A Technical Note.

    PubMed

    Jewett, Gordon A E; Yavin, Daniel; Dhaliwal, Perry; Whittaker, Tara; Krupa, JoyAnne; Du Plessis, Stephan

    2017-09-01

    Intrathecal morphine (ITM) is an efficacious method of providing postoperative analgesia and reducing pain associated complications. Despite adoption in many surgical fields, ITM has yet to become a standard of care in lumbar spine surgery. Spine surgeons' reticence to make use of the technique may in part be attributed to concerns of precipitating a cerebrospinal fluid (CSF) leak. Herein we describe a method for oblique intrathecal injection during lumbar spine surgery to minimize risk of CSF leak. The dural sac is penetrated obliquely at a 30° angle to offset dural and arachnoid puncture sites. Oblique injection in instances of limited dural exposure is made possible by introducing a 60° bend to a standard 30-gauge needle. The technique was applied for injection of ITM or placebo in 104 cases of lumbar surgery in the setting of a randomized controlled trial. Injection was not performed in two cases (2/104, 1.9%) following preinjection dural tear. In the remaining 102 cases no instances of postoperative CSF leakage attributable to oblique intrathecal injection occurred. Three cases (3/102, 2.9%) of transient CSF leakage were observed immediately following intrathecal injection with no associated sequelae or requirement for postsurgical intervention. In two cases, the observed leak was repaired by sealing with fibrin glue, whereas in a single case the leak was self-limited requiring no intervention. Oblique dural puncture was not associated with increased incidence of postoperative CSF leakage. This safe and reliable method of delivery of ITM should therefore be routinely considered in lumbar spine surgery.

  17. Biocompatibility and light transmission of liposomal lenses.

    PubMed

    Danion, Anne; Doillon, Charles J; Giasson, Claude J; Djouahra, Saliha; Sauvageau, Patrick; Paradis, Renée; Vermette, Patrick

    2007-10-01

    To validate the biocompatibility and transmittance properties of contact lenses bearing intact liposomes. These liposomal lenses loaded with therapeutics can be used as ophthalmic drug delivery systems. The biocompatibility of soft contact lenses, coated with liposomes was evaluated through in vitro direct and indirect cytocompatibility assays on human corneal epithelial cells, on reconstructed human corneas and on ex vivo rabbit corneas. The direct and indirect transmission spectra of liposome-covered lenses were also evaluated to test if they transmit all wavelengths of the ultraviolet-visible spectrum, to thereby fulfill their optical function, without gross alteration of the colors perception and with a minimum of light dispersion. Contact lenses bearing layers of stable liposomes did not induce any significant changes in cell viability and in cell growth, compared with lenses bearing no liposome. Elution assays revealed that no cytotoxic compound leaks from the lenses whether bearing liposomes or not. Histological analyses of reconstructed human corneas and ex vivo rabbit corneas directly exposed to liposomal lenses revealed neither alteration to the cell nor to the tissue structures. Contact lenses bearing layers of liposomes did not significantly affect light transmission compared with control lenses without liposome at the wavelength of maximal photopic sensitivity, i.e., 550 nm. In addition, the contact lenses afford more eye protection in the ultraviolet spectrum, compared with the control lenses. Liposomal contact lenses are biocompatible and their transmittance properties are not affected in the visible light range.

  18. Liposomes as carriers of macrolides: preferential association of erythromycin A and azithromycin with liposomes of phosphatidylglycerol containing unsaturated fatty acid(s).

    PubMed

    Stuhne-Sekalec, L; Stanacev, N Z; Djokic, S

    1991-01-01

    To assess the most favourable phospholipid composition of a liposomal carrier for antibiotics, small multilamellar liposomes were prepared from phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol of varying fatty acid composition in the presence of erythromycin A and azithromycin. Crude liposomes were subjected to Sepharose CL-4B column chromatography, and liposomes containing antibiotics were well separated from free antibiotics. These experiments established that the greatest association of antibiotics was achieved with liposomes prepared from phosphatidylglycerol rather than phosphatidylcholine or phosphatidylethanolamine. Furthermore, the composition of fatty acids in phosphatidylglycerol liposomes influenced the amount of antibiotics associated with liposomes; the highest amount was obtained with dioleoylphosphatidylglycerol followed by phosphatidylglycerol of fatty acid composition similar to that of egg yolk lecithin. It was established that purified liposomes, prepared from [3H]phosphatidylglycerol containing unsaturated fatty acid(s) bind about 25 per cent of originally present antibiotic. Both antibiotics, erythromycin A and azithromycin, were similar in respect to the amount of their association with liposomes. Determination of the size of phosphatidylglycerol/antibiotic liposomes established that the mean diameter of liposomes containing antibiotics was 200-350 nm, very close to that of liposomes without them.

  19. Liposomes as potential masking agents in sport doping. Part 2: Detection of liposome-entrapped haemoglobin by flow cytofluorimetry.

    PubMed

    Esposito, Simone; Colicchia, Sonia; de la Torre, Xavier; Donati, Francesco; Mazzarino, Monica; Botrè, Francesco

    2017-02-01

    This work presents an analytical procedure for the identification and characterization of liposome-entrapped haemoglobins, based on flow cytofluorimetry. Flow cytofluorimetric detection is carried out following labelling by two distinct fluorescent reagents, an anti-haemoglobin antibody, fluorescein isothiocyanate conjugated, and an anti-poly(ethylene glycol) antibody, streptavidin-phycoerythrin conjugated. This experimental strategy allows the detection of liposome-entrapped haemoglobins in aqueous media, including plasma; the efficacy of the proposed approach has been verified on whole blood samples added with the liposomal formulation (ex-vivo). Additionally, the proposed technique allows the characterization of several key parameters in the study of liposomal haemoglobins, including, for instance (1) the determination of the degree of haemoglobin entrapment by liposomes; (2) the poly(ethylene glycol) insertion efficiency; and (3) the evaluation of liposome-entrapped haemoglobins stability following storage at 4 °C, allowing to follow both the process of haemoglobin loss from liposomes and the liposome degradation. The procedure is proposed for the detection and characterization of liposome-entrapped haemoglobin formulations to control their misuse in sport, but is also suggested for further applications in biological and clinical laboratory investigations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Liposomal Bupivacaine Suspension, Can Reduce Length of Stay and Improve Discharge Status of Patients Undergoing Total Hip Arthroplasty.

    PubMed

    Cherian, Jeffrey J; Barrington, John; Elmallah, Randa K; Chughtai, Morad; Mistry, Jaydev B; Mont, Michael A

    2015-11-01

    To ensure good rehabilitation and improved outcomes following total hip arthroplasty (THA), optimal pain control is necessary. Newer methods of pain control have been advocated, as current modalities have been associated with undesirable side effects and serious complications. One such modality is liposomal bupivacaine, which provides long-acting, slow-release analgesia. The purpose of this study was to evaluate: (1) lengths of hospital stay and (2) the discharge status of patients who underwent THA with liposomal bupivacaine compared to a cohort who received standard analgesic regimens. We utilized a hospital discharge database from July 1, 2013 to June 30, 2014, which included 7,704,919 patients for our analysis. We selected patients aged 18 years or older who had an inpatient stay for THA using ICD-9 procedure code (ICD-9-CM = 81.51), which resulted in 55,129 THA patients. Patients who had a nerve block in the time period from the surgery date to the discharge date were then excluded, which resulted in 54,604 THA patients. The THA cohort who received liposomal bupivacaine suspension consisted of 5,267 patients (2,907 women; 2,360 men) who had a mean age of 64 years, while the THA without injections or nerve block consisted of 49,337 patients who had a mean age of 65 years that consisted of 27,530 women and 21,807 men. We analyzed length-of-stay by controlling for race, region, age, sex, Charlson Index, and operating time using a log link linear model with a negative binomial distribution. The discharge status to home compared to short-term nursing facility or rehabilitation was analyzed using logistic regression while controlling for the aforementioned covariates. The mean lengths of stay, after adjusting for covariates, for the liposomal bupivacaine cohort was significantly shorter than the no injection cohort. The distribution of patients being discharged to home compared to a short-term nursing facility or a rehabilitation facility was higher in the liposomal

  1. Quantitation of protein orientation in flow-oriented unilamellar liposomes by linear dichroism

    NASA Astrophysics Data System (ADS)

    Rajendra, Jascindra; Damianoglou, Angeliki; Hicks, Matthew; Booth, Paula; Rodger, P. Mark; Rodger, Alison

    2006-07-01

    The linear dichroism of the visible wavelength transitions of retinal have been used to analyse linear dichroism spectra to determine the orientation of aromatic and peptide structural motifs of Bacteriorhodopsin incorporated into unilamellar soy bean liposomes. The results are consistent with the available X-ray data. This proves that visible light absorbing chromophores can be used to analyse linear dichroism data to give the orientation of membrane proteins in membrane mimicking environments. The work has been extended by screening a wide range of hydrophobic molecules with high extinction coefficients in transitions above 300 nm to find molecules that could be used as independent probes of liposome orientation for experiments involving proteins incorporated into liposomes. Three probes were found to have potential for future work: bis-(1,3-dibutylbarbituric acid)pentamethine oxonol (DiBAC 4), retinol and rhodamine B. All three can be used to determine the orientation of the porphyrin of cytochrome c, the aromatic residues of gramicidin and the helices of both proteins. The orientation parameter, S, for the liposomes varied from batch to batch of unilamellar liposomes prepared by extruding through a 100 nm membrane. The value and variation in S was 0.030 ± 0.010. Repeat experiments with the same batch of liposomes showed less variation. Film LD data were measured for DiBAC 4 and rhodamine B to determine the polarisations of their long wavelength transitions.

  2. Liposomal Fasudil, a Rho-Kinase Inhibitor, for Prolonged Pulmonary Preferential Vasodilation in Pulmonary Arterial Hypertension

    PubMed Central

    Gupta, Vivek; Gupta, Nilesh; Shaik, Imam H.; Mehvar, Reza; McMurtry, Ivan F.; Oka, Masahiko; Nozik-Grayck, Eva; Komatsu, Masanobu; Ahsan, Fakhrul

    2013-01-01

    Current pharmacological interventions for pulmonary arterial hypertension (PAH) require continuous infusions, multiple inhalations, or oral administration of drugs that act on various pathways involved in the pathogenesis of PAH. However, invasive methods of administration, short duration of action, and lack of pulmonary selectivity result in noncompliance and poor patient outcomes. In this study, we tested the hypothesis that encapsulation of an investigational anti-PAH molecule fasudil (HA-1077), a Rho-kinase inhibitor, into liposomal vesicles results in prolonged vasodilation in distal pulmonary arterioles. Liposomes were prepared by hydration and extrusion method and fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient. Liposomes were then characterized for various physicochemical properties. Optimized formulations were tested for pulmonary absorption and their pharmacological efficacy in a monocrotaline (MCT) induced rat model of PAH. The entrapment efficiency of optimized liposomal fasudil formulations was between 68.1±0.8% and 73.6±2.3%, and the cumulative release at 37°C was 98–99% over a period of 5 days. Compared to intravenous (IV) fasudil, a ~10 fold increase in the terminal plasma half-life was observed when liposomal fasudil was administered as aerosols. The t1/2 of IV fasudil was 0.39±0.12 h. and when given as liposomes via pulmonary route, the t1/2 extended to 4.71±0.72 h. One h after intratracheal instillation of liposomal fasudil, mean pulmonary arterial pressure (MPAP) was reduced by 37.6±5.7% and continued to decrease for about 3 h, suggesting that liposomal formulations produced pulmonary preferential vasodilation in MCT induced PAH rats. Overall, this study established the proof-of-principle that aerosolized liposomal fasudil is a feasible option for a non-invasive, controlled release and pulmonary preferential treatment of PAH. PMID:23353807

  3. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy.

    PubMed

    Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L; Serafini, Luciano Neder; Tiezzi, Daniel G; Lee, Robert J; Marchetti, Juliana Maldonado

    2016-05-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preliminary data of the antipancreatic tumor efficacy and toxicity of long-circulating and pH-sensitive liposomes containing cisplatin.

    PubMed

    Carlesso, Fernanda N; Araújo, Raquel S; Fuscaldi, Leonardo L; Mendes Miranda, Sued E; Rubello, Domenico; Teixeira, Cláudia S; Dos Reis, Diego C; Leite, Elaine A; Silveira, Josianne N; Fernandes, Simone O A; Cassali, Geovanni D; de Oliveira, Mônica C; Colletti, Patrick M; de Barros, André L B; Cardoso, Valbert N

    2016-07-01

    Pancreatic cancer is the fourth most common cause of cancer-related death in the USA. This is mainly because of the chemoresistance of this type of tumor; thus, the development of novel therapeutic modalities is needed. Long-circulating and pH-sensitive liposomes containing cisplatin (SpHL-CDDP) were administered systemically into pancreatic tumor-bearing mice for a period of 14 days. The antitumor efficacy and toxicity of this new treatment method on the basis of cisplatin-loaded liposomes was compared with the classical free-CDDP method. Tc-HYNIC-βAla-bombesin(7-14) tumor uptake and histopathologic findings were used to monitor and compare the two treatment modalities. The antitumor activity of SpHL-CDDP treatment was shown by (a) decrease in tumor volume, (b) development of tumor necrotic areas, and (c) decrease in Tc-HYNIC-βAla-bombesin(7-14) tumor uptake. Toxicity was evaluated by the development of inflammation and necrotic areas in the kidneys, liver, spleen, and intestine: toxic effects were greater with free-CDDP than SpHL-CDDP. SpHL-CDDP showed significant antitumor activity in pancreatic cancer-bearing mice, with lower toxicity in comparison with free-CDDP.

  5. Long-term use of short- and long-acting nitrates in stable angina pectoris.

    PubMed

    Kosmicki, Marek Antoni

    2009-05-01

    Long-acting nitrates are effective antianginal drugs during initial treatment. However, their therapeutic value is compromised by the rapid development of tolerance during sustained therapy, which means that their clinical efficacy is decreased during long-term use. Sublingual nitroglycerin (NTG), a short-acting nitrate, is suitable for the immediate relief of angina. In patients with stable angina treated with oral long-acting nitrates, NTG maintains its full anti-ischemic effect both after initial oral ingestion and after intermittent long-term oral administration. However, NTG attenuates this effect during continuous treatment, when tolerance to oral nitrates occurs, and this is called cross-tolerance. In stable angina long-acting nitrates are considered third-line therapy because a nitrate-free interval is required to avoid the development of tolerance. Nitrates vary in their potential to induce the development of tolerance. During long-lasting nitrate therapy, except pentaerythritol tetranitrate (PETN), one can observe the development of reactive oxygen species (ROS) inside the muscular cell of a vessel wall, and these bind with nitric oxide (NO). This leads to decreased NO activity, thus, nitrate tolerance. PETN has no tendency to form ROS, and therefore during long-term PETN therapy, there is probably no tolerance or cross-tolerance, as during treatment with other nitrates.

  6. Long-term therapy with intrathecal baclofen improves quality of life in children with severe spastic cerebral palsy.

    PubMed

    Kraus, Tanja; Gegenleitner, Kathrin; Svehlik, Martin; Novak, Michael; Steinwender, Gerhardt; Singer, Georg

    2017-05-01

    Children with severe spastic cerebral palsy (CP) are highly limited in daily life activities causing a reduced quality of life (QoL). This is partly due to an increased muscle tone causing pain and contractures. Continuous intrathecal infusion of baclofen (ITB) reduces the spasticity of affected patients. The hypothesis of the present study was that ITB leads to a significant improvement of QoL in non-ambulant children with CP. 13 patients (10 male, 3 female, mean age 14 years) were included. Mean time between pump implantation and follow-up was 60 months (range, 12-100). QoL was assessed before and after baclofen pump implantation using standardized questionnaires (CP CHILD, KINDL). Spasticity was evaluated using the modified Ashworth Scale (MAS) at the two time points. QoL evaluated with the CPCHILD questionnaire and the KINDL improved from pre - implantation to follow-up. MAS markedly decreased from 3.8 to 1.7. All interviewed participants indicated that their expectations had been met and that they would choose ITB treatment again. Intrathecal treatment of baclofen is an excellent method for spasticity management in children with severe cerebral palsy. Quality of life sustainably improves, parents' satisfaction is high and the level of spasticity decreases. Therefore, baclofen treatment can be highly recommended in non-ambulant children with CP suffering from spasticity. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. Development of Long-Circulating pH-Sensitive Liposomes to Circumvent Gemcitabine Resistance in Pancreatic Cancer Cells.

    PubMed

    Xu, Hongtao; Paxton, James W; Wu, Zimei

    2016-07-01

    To develop pH-sensitive liposomes (PSL) containing a high content of gemcitabine; and to investigate whether drug loading (DL) would alter the in vitro and pharmacokinetic properties. PSL with a high DL were obtained using a modified small-volume incubation method. The DL effects on drug release rate and in vitro cytotoxicity of PSL were evaluated using MIA PaCa-2 pancreatic cancer cells and their pharmacokinetics investigated in rats. The highest DL of 4.5 ± 0.1% was achieved for gemcitabine in PSL with 145 ± 5 nm diameter. DL did not alter the in vitro release rate from PSL. The IC50 (48 h) of PSL (DL 0.5 and 4.5%) and non pH-sensitive liposomes (NPSL, DL 4.2%) were 1.1 ± 0.1, 0.7 ± 0.1 and 37.0 ± 7.5 μM, respectively. The PSL resulted in a 4.2-fold increase in its elimination half-life (6.2 h) compared to gemcitabine solution (1.4 h) in rats. No significant difference in pharmacokinetic parameters was observed between the two PSL (DL 0.5 and 4.5%). The PSL offered advantages over NPSL in restoring the sensitivity of pancreatic cancer cells to gemcitabine without requiring a high DL. DL in the PSL did not alter release rate, cytotoxicity or their long-circulating properties. Graphical Abstract ᅟ.

  8. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer.

    PubMed

    Feng, Chan; Li, Xiaoyan; Dong, Chunyan; Zhang, Xuemei; Zhang, Xie; Gao, Yong

    2015-01-01

    In this study, long-circulating Arg-Gly-Asp (RGD)-modified aclacinomycin A (ACM) liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was -22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4) and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0-∞ (1.54-fold), mean residence time (2.09-fold), and elimination half-life (1.2-fold) when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549) cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts.

  9. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer

    PubMed Central

    Feng, Chan; Li, Xiaoyan; Dong, Chunyan; Zhang, Xuemei; Zhang, Xie; Gao, Yong

    2015-01-01

    In this study, long-circulating Arg-Gly-Asp (RGD)-modified aclacinomycin A (ACM) liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was −22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4) and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0–∞ (1.54-fold), mean residence time (2.09-fold), and elimination half-life (1.2-fold) when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549) cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts. PMID:26316700

  10. Use of liposomes as injectable-drug delivery systems.

    PubMed

    Ostro, M J; Cullis, P R

    1989-08-01

    The formation of liposomes and their application as delivery systems for injectable drugs are described. Liposomes are microscopic vesicles composed of one or more lipid membranes surrounding discrete aqueous compartments. These vesicles can encapsulate water-soluble drugs in their aqueous spaces and lipid-soluble drugs within the membrane itself. Liposomes release their contents by interacting with cells in one of four ways: adsorption, endocytosis, lipid exchange, or fusion. Liposome-entrapped drugs are distributed within the body much differently than free drugs; when administered intravenously to healthy animals and humans, most of the injected vesicles accumulate in the liver, spleen, lungs, bone marrow, and lymph nodes. Liposomes also accumulate preferentially at the sites of inflammation and infection and in some solid tumors; however, the reason for this accumulation is not clear. Four major factors influence liposomes' in vivo behavior and biodistribution: (1) liposomes tend to leak if cholesterol is not included in the vesicle membrane, (2) small liposomes are cleared more slowly than large liposomes, (3) the half-life of a liposome increases as the lipid dose increases, and (4) charged liposomal systems are cleared more rapidly than uncharged systems. The most advanced application of liposome-based therapy is in the treatment of systemic fungal infections, especially with amphotericin B. Liposomes are also under investigation for treatment of neoplastic disorders. Liposomes' uses in cancer therapy include encapsulation of known antineoplastic agents such as doxorubicin and methotrexate, delivery of immune modulators such as N-acetylmuramyl-L-alanine-D-isoglutamine, and encapsulation of new chemical entities that are synthesized with lipophilic segments tailored for insertion into lipid bilayers. Liposomal formulations of injectable antimicrobial agents and antineoplastic agents already are undergoing clinical testing, and most probably will receive

  11. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  12. Treatment of severe tetanus with intrathecal baclofen via implantable infusion device: a case report.

    PubMed

    Dapul, Geraldine; Patel, Pritesh; Pannu, Tejpaul; Meythaler, Jay

    2014-12-01

    Severe tetanus remains a serious issue in less developed countries, leading to prolonged hospitalization due to prolonged neuromuscular contraction of muscles. We present a case of severe tetanus in the United States that was successfully managed with intrathecal baclofen. A 42-year-old male without tetanus vaccination history presented to the emergency department with intractable jaw pain and worsening diffuse muscle contractures due to severe generalized tetanus requiring prolonged paralysis and ventilator support. After 14 days of continuous neuromuscular treatment with benzodiazepines, vecuronium, propofol, and magnesium sulfate, a baclofen pump trial was performed 14 days post-admission as an alternative to prolonged neuromuscular blockade. After demonstrable improvement in spasms and paroxysmal contractures due to intrathecal baclofen (ITB), a baclofen pump was implanted on hospital day 17. The catheter was threaded to T4 for maximal effect of intrathecal baclofen on the upper and lower extremities at an initial rate of 100 μg/day. ITB was titrated upward, the vecuronium was slowly weaned, and the patient was weaned off a ventilator by day 14 of ITB treatment. At an ITB dose of 450 μg/day, propofol was discontinued. ITB was continued over the next four weeks and eventually weaned over the next two weeks. The ITB pump was removed eight weeks after placement, and the patient was successfully discharged to home. Due to prolonged muscle weakness associated with long-term use of paralytic agents and sedation, early ITB trial and pump placement should be considered as an alternative in the treatment of severe tetanus to shorten length of stay and improve the functional outcome of the patient. © 2014 International Neuromodulation Society.

  13. Long-acting injectable hormonal dosage forms for contraception.

    PubMed

    Wu, Linfeng; Janagam, Dileep R; Mandrell, Timothy D; Johnson, James R; Lowe, Tao L

    2015-07-01

    Although great efforts have been made to develop long-acting injectable hormonal contraceptives for more than four decades, few long-acting injectable contraceptives have reached the pharmaceutical market or even entered clinical trials. On the other hand, in clinical practice there is an urgent need for injectable long-acting reversible contraceptives which can provide contraceptive protection for more than 3 months after one single injection. Availability of such products will offer great flexibility to women and resolve certain continuation issues currently occurring in clinics. Herein, we reviewed the strategies exploited in the past to develop injectable hormonal contraceptive dosages including drug microcrystal suspensions, drug-loaded microsphere suspensions and in situ forming depot systems for long-term contraception and discussed the potential solutions for remaining issues met in the previous development.

  14. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens

    PubMed Central

    Watson, Douglas S.; Endsley, Aaron N.; Huang, Leaf

    2012-01-01

    Liposomes (phospholipid bilayer vesicles) are versatile and robust delivery systems for induction of antibody and T lymphocyte responses to associated subunit antigens. In the last 15 years, liposome vaccine technology has matured and now several vaccines containing liposome-based adjuvants have been approved for human use or have reached late stages of clinical evaluation. Given the intensifying interest in liposome-based vaccines, it is important to understand precisely how liposomes interact with the immune system and stimulate immunity. It has become clear that the physicochemical properties of liposomal vaccines – method of antigen attachment, lipid composition, bilayer fluidity, particle charge, and other properties – exert dramatic effects on the resulting immune response. Here, we present a comprehensive review of the physicochemical properties of liposomal vaccines and how they influence immune responses. A discussion of novel and emerging immunomodulators that are suitable for inclusion in liposomal vaccines is also presented. Through a comprehensive analysis of the body of liposomal vaccine literature, we enumerate a series of principles that can guide the rational design of liposomal vaccines to elicit immune responses of a desired magnitude and quality. We also identify major unanswered questions in the field, pointing the direction for future study. PMID:22306376

  15. Effects of Intrathecal Opioids Use in Cesarean Section on Breastfeeding and Newborns’ Weight Gaining

    PubMed Central

    Yousefshahi, Fardin; Davari-Tanha, Fatemeh; Najafi, Atabak; Kaveh, Mahbod; Rezaei Hemami, Mohsen; Khashayar, Patricia; Anbarafshan, Mohammad

    2016-01-01

    Objective: To assess the association between intrapartum intrathecal opioid use and breastfeeding and weight gain following cesarean section. Materials and methods: The prospective double-blinded study was conducted on term pregnant women, undergoing elective cesarean section under spinal anesthesia. They divided into two groups. In the first group, intrathecal Morphine was used to achieve analgesia during or after the operation. The remainder divided into two subgroups, those who did not receive any opioid or those received systemic opioids. Following labor breastfeeding accessed in a follow-up, two month latter. Results: There was no difference between the demographic variables of the mothers and newborns APGAR score and weight at the time of birth. Breastfeeding rate was similar in intrathecal group in compare with other patents (P value = 0.518). While, the infants’ weight at the end of second month was lower in spinal opioid group (P value = 0.036). Conclusion: The present study was the first to suggest that spinal (intrathecal) opioids do not have any impact on breastfeeding. However the relationship between spinal anesthesia on weight gaining needs more investigation. PMID:28546816

  16. Effects of Intrathecal Opioids Use in Cesarean Section on Breastfeeding and Newborns' Weight Gaining.

    PubMed

    Yousefshahi, Fardin; Davari-Tanha, Fatemeh; Najafi, Atabak; Kaveh, Mahbod; Rezaei Hemami, Mohsen; Khashayar, Patricia; Anbarafshan, Mohammad

    2016-12-01

    Objective: To assess the association between intrapartum intrathecal opioid use and breastfeeding and weight gain following cesarean section. Materials and methods: The prospective double-blinded study was conducted on term pregnant women, undergoing elective cesarean section under spinal anesthesia. They divided into two groups. In the first group, intrathecal Morphine was used to achieve analgesia during or after the operation. The remainder divided into two subgroups, those who did not receive any opioid or those received systemic opioids. Following labor breastfeeding accessed in a follow-up, two month latter. Results: There was no difference between the demographic variables of the mothers and newborns APGAR score and weight at the time of birth. Breastfeeding rate was similar in intrathecal group in compare with other patents (P value = 0.518). While, the infants' weight at the end of second month was lower in spinal opioid group (P value = 0.036). Conclusion: The present study was the first to suggest that spinal (intrathecal) opioids do not have any impact on breastfeeding. However the relationship between spinal anesthesia on weight gaining needs more investigation.

  17. Comparison of Major Immunoglobulins Intrathecal Synthesis Patterns in Ecuadorian and Cuban Patients with Angiostrongyliasis

    PubMed Central

    Padilla-Docal, Bárbara; Dorta-Contreras, Alberto J.; Moreira, Juan M.; Martini-Robles, Luiggi; Muzzio-Aroca, Jenny; Alarcón, Fernando; Magraner-Tarrau, María Esther; Bu-Coifiu-Fanego, Raisa

    2011-01-01

    Angiostrongylus cantonensis meningitis was first reported in Cuba in 1981, and it was recently reported in South America. The aim of this paper is to evaluate the intrathecal immunoglobulin synthesis patterns from Cuba's and Ecuador's patients with angiostrongyliasis; 8 Ecuadorian patients from two different outbreaks and 28 Cuban patients were studied. Simultaneous blood and cerebrospinal fluid simples were taken. Immunoglobulin (Ig) A, IgM, IgG, and albumin were quantified by radial immunodiffusion. Corresponding Reibergrams were applied. A three-Ig pattern was the most frequent in the two groups, but IgM was presented in all Ecuadorian young mature patients; however, in the Cuban children, only 12 of 28 patients had intrathecal IgM, but about 90% had an IgA and IgG synthesis at time of later puncture. This indicates that, with a larger amount of parasites ingested, clinical symptoms are more severe, and a higher frequency of intrathecal IgM synthesis could be observed. This is discussed as a similarity with the intrathecal IgM synthesis in African trypanosomiasis. PMID:21363978

  18. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer.

    PubMed

    Yang, Lijun; Kress, Benjamin T; Weber, Harris J; Thiyagarajan, Meenakshisundaram; Wang, Baozhi; Deane, Rashid; Benveniste, Helene; Iliff, Jeffrey J; Nedergaard, Maiken

    2013-05-01

    Neurodegenerative diseases such as Alzheimer's are associated with the aggregation of endogenous peptides and proteins that contribute to neuronal dysfunction and loss. The glymphatic system, a brain-wide perivascular pathway along which cerebrospinal fluid (CSF) and interstitial fluid (ISF) rapidly exchange, has recently been identified as a key contributor to the clearance of interstitial solutes from the brain, including amyloid β. These findings suggest that measuring changes in glymphatic pathway function may be an important prognostic for evaluating neurodegenerative disease susceptibility or progression. However, no clinically acceptable approach to evaluate glymphatic pathway function in humans has yet been developed. Time-sequenced ex vivo fluorescence imaging of coronal rat and mouse brain slices was performed at 30-180 min following intrathecal infusion of CSF tracer (Texas Red- dextran-3, MW 3 kD; FITC- dextran-500, MW 500 kD) into the cisterna magna or lumbar spine. Tracer influx into different brain regions (cortex, white matter, subcortical structures, and hippocampus) in rat was quantified to map the movement of CSF tracer following infusion along both routes, and to determine whether glymphatic pathway function could be evaluated after lumbar intrathecal infusion. Following lumbar intrathecal infusions, small molecular weight TR-d3 entered the brain along perivascular pathways and exchanged broadly with the brain ISF, consistent with the initial characterization of the glymphatic pathway in mice. Large molecular weight FITC-d500 remained confined to the perivascular spaces. Lumbar intrathecal infusions exhibited a reduced and delayed peak parenchymal fluorescence intensity compared to intracisternal infusions. Lumbar intrathecal contrast delivery is a clinically useful approach that could be used in conjunction with dynamic contrast enhanced MRI nuclear imaging to assess glymphatic pathway function in humans.

  19. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer

    PubMed Central

    2013-01-01

    Background Neurodegenerative diseases such as Alzheimer’s are associated with the aggregation of endogenous peptides and proteins that contribute to neuronal dysfunction and loss. The glymphatic system, a brain-wide perivascular pathway along which cerebrospinal fluid (CSF) and interstitial fluid (ISF) rapidly exchange, has recently been identified as a key contributor to the clearance of interstitial solutes from the brain, including amyloid β. These findings suggest that measuring changes in glymphatic pathway function may be an important prognostic for evaluating neurodegenerative disease susceptibility or progression. However, no clinically acceptable approach to evaluate glymphatic pathway function in humans has yet been developed. Methods Time-sequenced ex vivo fluorescence imaging of coronal rat and mouse brain slices was performed at 30–180 min following intrathecal infusion of CSF tracer (Texas Red- dextran-3, MW 3 kD; FITC- dextran-500, MW 500 kD) into the cisterna magna or lumbar spine. Tracer influx into different brain regions (cortex, white matter, subcortical structures, and hippocampus) in rat was quantified to map the movement of CSF tracer following infusion along both routes, and to determine whether glymphatic pathway function could be evaluated after lumbar intrathecal infusion. Results Following lumbar intrathecal infusions, small molecular weight TR-d3 entered the brain along perivascular pathways and exchanged broadly with the brain ISF, consistent with the initial characterization of the glymphatic pathway in mice. Large molecular weight FITC-d500 remained confined to the perivascular spaces. Lumbar intrathecal infusions exhibited a reduced and delayed peak parenchymal fluorescence intensity compared to intracisternal infusions. Conclusion Lumbar intrathecal contrast delivery is a clinically useful approach that could be used in conjunction with dynamic contrast enhanced MRI nuclear imaging to assess glymphatic pathway function in

  20. Modeling cell membrane transport: interaction of guanidinylated poly(propylene imine) dendrimers with a liposomal membrane consisting of phosphate-based lipids.

    PubMed

    Tsogas, Ioannis; Tsiourvas, Dimitris; Nounesis, George; Paleos, Constantinos M

    2006-12-19

    Mixed anionic liposomes consisting of dihexadecyl phosphate, phosphatidylcholine, and cholesterol were employed as model systems for assessing the ability of a series of functionalized dendrimers, bearing a varying number of guanidinium groups at their surface, to translocate across the liposomal bilayers. At low guanidinium/phosphate molar ratios or when weakly guanidinylated dendrimeric derivatives were employed, the dendrimeric derivative acted as a kind of "molecular glue" leading to a simple adhesion of the liposomes. Liposomal fusion occurred to a certain extent at high guanidinium/phosphate molar ratios or when highly guanidinylated dendrimeric derivatives were employed. Furthermore, translocation of these dendrimeric derivatives to the liposomal core was observed for low to medium guanidinylation and at low guanidinium/phosphate molar ratios which was, however, enhanced when the lipid bilayer was in its fluid liquid-crystalline phase. Thus, an optimum balance is required between the binding strength of guanidinium with the phosphate groups and the degree of hydrophilicity of the guanidinylated dendrimers for the transport of the latter to the liposomal core to occur.

  1. Cationic liposomes as vaccine adjuvants.

    PubMed

    Christensen, Dennis; Korsholm, Karen S; Rosenkrands, Ida; Lindenstrøm, Thomas; Andersen, Peter; Agger, Else Marie

    2007-10-01

    Cationic liposomes are lipid-bilayer vesicles with a positive surface charge that have re-emerged as a promising new adjuvant technology. Although there is some evidence that cationic liposomes themselves can improve the immune response against coadministered vaccine antigens, their main functions are to protect the antigens from clearance in the body and deliver the antigens to professional antigen-presenting cells. In addition, cationic liposomes can be used to introduce immunomodulators to enhance and modulate the immune response in a desirable direction and, thereby, represent an efficient tool when designing tailor-made adjuvants for specific disease targets. In this article we review the recent progress on cationic liposomes as vehicles, enhancing the effect of immunomodulators and the presentation of vaccine antigens.

  2. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.

    PubMed

    Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel

    2009-11-01

    Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.

  3. Ultrasound Pulsed-Wave Doppler Detects an Intrathecal Location of an Epidural Catheter Tip: A Case Report.

    PubMed

    Elsharkawy, Hesham; Saasouh, Wael; Patel, Bimal; Babazade, Rovnat

    2018-04-01

    Currently, no gold standard method exists for localization of an epidural catheter after placement. The technique described in this report uses pulsed-wave Doppler (PWD) ultrasound to identify intrathecal location of an epidural catheter. A thoracic epidural catheter was inserted after multiple trials with inconclusive aspiration and test dose. Ultrasound PWD confirmed no flow in the epidural space and positive flow in the intrathecal space. A fluid aspirate was positive for glucose, reconfirming intrathecal placement. PWD is a potential tool that can be used to locate the tip of an epidural catheter.

  4. Long-term physical and oxidative stability of liposomes containing glycerides of lipoic acid

    USDA-ARS?s Scientific Manuscript database

    The acyl glycerides of lipoic and dihydrolipoic acids may serve as slow-release sources for cutaneous delivery of these antioxidants when formulated in a liposomal vehicle. Accelerated storage testing was conducted to determine the storage stability of the lipoic derivatives and of the soybean phosp...

  5. Drug release through liposome pores.

    PubMed

    Dan, Nily

    2015-02-01

    Electrical, ultrasound and other types of external fields are known to induce the formation of pores in cellular and model membranes. This paper examines drug release through field induced liposome pores using Monte Carlo simulations. We find that drug release rates vary as a function of pore size and spacing, as well as the overall fraction of surface area covered by pores: The rate of release from liposomes is found to increase rapidly with pore surface coverage, approaching that of the fully ruptured liposome at fractional pore areas. For a given pore surface coverage, the pore size affects the release rate in the limit of low coverage, but not when the pores cover a relatively high fraction of the liposome surface area. On the other hand, for a given pore size and surface coverage, the distribution of pores significantly affects the release in the limit of high surface coverage: The rate of release from a liposome covered with a regularly spaced array of pores is, in this limit, higher than the release rate from (most) systems where the pores are distributed randomly on the liposome surface. In contrast, there is little effect of the pore distribution on release when the pore surface coverage is low. The simulation results are in good agreement with the predictions of detailed diffusion models. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Synergistic interaction between fentanyl and bupivacaine given intrathecally for labor analgesia.

    PubMed

    Ngan Kee, Warwick D; Khaw, Kim S; Ng, Floria F; Ng, Karman K L; So, Rita; Lee, Anna

    2014-05-01

    Lipophilic opioids and local anesthetics are often given intrathecally in combination for labor analgesia. However, the nature of the pharmacologic interaction between these drugs has not been clearly elucidated in humans. Three hundred nulliparous women randomly received 1 of 30 different combinations of fentanyl and bupivacaine intrathecally using a combined spinal-epidural technique for analgesia in the first stage of labor. Visual analogue scale pain scores were recorded for 30 min. Response was defined by percentage decrease in pain score from baseline at 15 and 30 min. Dose-response curves for individual drugs were fitted to a hyperbolic dose-response model using nonlinear regression. The nature of the drug interaction was determined using dose equivalence methodology to compare observed effects of drug combinations with effects predicted by additivity. The derived dose-response models for individual drugs (doses in micrograms) at 15 min were: Effect = 100 × dose / (13.82 + dose) for fentanyl, and Effect = 100 × dose / (1,590 + dose) for bupivacaine. Combinations of fentanyl and bupivacaine produced greater effects than those predicted by additivity at 15 min (P < 0.001) and 30 min (P = 0.015) (mean differences, 9.1 [95% CI, 4.1-14.1] and 6.4 [95% CI, 1.2-11.5] units of the normalized response, respectively), indicating a synergistic interaction. The pharmacologic interaction between intrathecal fentanyl and bupivacaine is synergistic. Characterization and quantification of this interaction provide a theoretical basis and support for the clinical practice of combining intrathecal opioids and local anesthetics.

  7. Intrathecal morphine for analgesia in children undergoing selective dorsal rhizotomy.

    PubMed

    Dews, T E; Schubert, A; Fried, A; Ebrahim, Z; Oswalt, K; Paranandi, L

    1996-03-01

    Selective dorsal root rhizotomy is performed for relief of spasticity in children with cerebral palsy. Postoperative pain relief can be provided by intrathecal morphine administered at the time of the procedure. We sought to define an optimal dose of intrathecal morphine in children undergoing selective rhizotomy, through a randomized, double-blinded prospective trial. After institutional approval and parental written informed consent, 27 patients, ages 3-10 years, were randomized to receive 10, 20, or 30 micrograms.kg-1 (Groups A, B, and C, respectively) of preservative-free morphine administered intrathecally by the surgeon after dural closure. Postoperatively, vital signs, pulse oximetry, and pain intensity scores were recorded hourly for 24 hr. Supplemental intravenous morphine was administered postoperatively according to a predetermined schedule based on pain scores. There was considerable individual variability in the time to initial morphine dosing and cumulative supplemental morphine dose. Time to first supplemental morphine dose was not different between groups. When compared to Groups A and B, cumulative 6-hr supplemental morphine dose was significantly lower in Group C (38.6 +/- 47 micrograms versus 79.1 +/- 74 and 189.6 +/- 126 for Groups A and B, respectively). By 12 hr, cumulative supplemental morphine dose was similar in Groups A and C. Group B consistently had a higher supplemental dose requirement than Groups A and C at 6, 12, and 18 hr. By 24 hr, there was no difference in cumulative dose among groups. Postoperative pain scores and the incidence of respiratory events, nausea, vomiting and pruritus were comparable among groups. These data suggest that intrathecal morphine at 30 micrograms.kg-1 provides the most intense analgesia at 6 hr following selective dorsal root rhizotomy, but was otherwise comparable to the 10 micrograms.kg-1 dose.

  8. Effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain.

    PubMed

    Lv, Jing; Li, Zhenci; She, Shouzhang; Xu, Lixin; Ying, Yanlu

    2015-08-01

    To evaluate the effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain. Healthy 30 male Sprague Dawley (SD) rats were randomly divided into six groups (n = 5 in each group): (1) control group without any treatments; (2) chronic constriction injury (CCI) group; (3) Early-rapamycin group with intrathecal injection of rapamycin 4 hours after CCI days; (4) Early-vehicle group with intrathecal injection of DMSO; (5) Late-rapamycin group with intrathecal injection of rapamycin 7 days after CCI; (6) Late-vehicle group with intrathecal injection of DMSO 7 days after CCI. Rapamycin or DMSO was injected for 3 consecutive days. Mechanical and thermal threshold were tested before and after the CCI operation. Lumbar segment of spinal cords was tested for glial fibrillary acidic protein (GFAP) by immunohistochemistry on 14th day after operation. Mechanical and thermal hyperalgesia emerged on fourth day were maintained till fourteenth day after operation. After intrathecal injection of rapamycin 4 hours or 7 days after CCI, mechanical and thermal threshold significantly increased compared to injection of DMSO. The area of GFAP positive and the mean density of GFAP positive area in the dorsal horn of the ipsilateral side greatly increased in rapamycin-treated groups. Intrathecal injection of rapamycin may attenuate CCI-induced hyperalgesia and inhibit the activation of astrocyte.

  9. Biophysical characterization of gold nanoparticles-loaded liposomes.

    PubMed

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge.

    PubMed

    Dadashzadeh, S; Mirahmadi, N; Babaei, M H; Vali, A M

    2010-12-01

    In the treatment of peritoneal carcinomatosis, systemic chemotherapy is not quite effective due to the poor penetration of cytotoxic agents into the peritoneal cavity, whereas intraperitoneal administration of chemotherapeutic agents is generally accompanied by quick absorption of the free drug from the peritoneum. Local delivery of drugs with controlled-release delivery systems like liposomes could provide sustained, elevated drug levels and reduce local and systemic toxicity. In order to achieve an ameliorated liposomal formulation that results in higher peritoneal levels of the drug and retention, vesicles composed of different phospholipid compositions (distearoyl [DSPC]; dipalmitoyl [DPPC]; or dimiristoylphosphatidylcholine [DMPC]) and various charges (neutral; negative, containing distearoylphosphatidylglycerol [DSPG]; or positive, containing dioleyloxy trimethylammonium propane [DOTAP]) were prepared at two sizes of 100 and 1000nm. The effect of surface hydrophilicity was also investigated by incorporating PEG into the DSPC-containing neutral and charged liposomes. Liposomes were labeled with (99m)Tc and injected into mouse peritoneum. Mice were then sacrificed at eight different time points, and the percentage of injected radiolabel in the peritoneal cavity and the tissue distribution in terms of the percent of the injected dose/gram of tissue (%ID/g) were obtained. The ratio of the peritoneal AUC to the free label ranged from a minimum of 4.95 for DMPC/CHOL (cholesterol) 100nm vesicles to a maximum of 24.99 for DSPC/CHOL/DOTAP 1000nm (DOTAP 1000) vesicles. These last positively charged vesicles had the greatest peritoneal level; moreover, their level remained constant at approximately 25% of the injected dose from 2 to 48h. Among the conventional (i.e., without PEG) 100nm liposomes, the positively charged vesicles again showed the greatest retention. Incorporation of PEG at this size into the lipid structures augmented the peritoneal level, particularly

  11. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes.

    PubMed

    Kierstead, Paul H; Okochi, Hideaki; Venditto, Vincent J; Chuong, Tracy C; Kivimae, Saul; Fréchet, Jean M J; Szoka, Francis C

    2015-09-10

    A variety of water-soluble polymers, when attached to a liposome, substantially increase liposome circulation half-life in animals. However, in certain conditions, liposomes modified with the most widely used polymer, polyethylene glycol (PEG), induce an IgM response resulting in an accelerated blood clearance (ABC) of the liposome upon the second injection. Modification of liposomes with other water-soluble polymers: HPMA (poly[N-(2-hydroxypropyl) methacrylamide]), PVP (poly(vinylpyrrolidone)), PMOX (poly(2-methyl-2-oxazoline)), PDMA (poly(N,N-dimethyl acrylamide)), and PAcM (poly(N-acryloyl morpholine)), increases circulation times of liposomes; but a precise comparison of their ability to promote long circulation or induce the ABC effect has not been reported. To obtain a more nuanced understanding of the role of polymer structure/MW to promote long circulation, we synthesized a library of polymer diacyl chain lipids with low polydispersity (1.04-1.09), similar polymer molecular weights (2.1-2.5kDa) and incorporated them into 100nm liposomes of a narrow polydispersity (0.25-1.3) composed of polymer-lipid/hydrogenated soy phosphatidylcholine/cholesterol/diD: 5.0/54.5/40/0.5. We confirm that HPMA, PVP, PMOX, PDMA and PAcM modified liposome have increased circulation times in rodents and that PVP, PDMA, and PAcM do not induce the ABC effect. We demonstrate for the first time, that HPMA does not cause an ABC effect whereas PMOX induces a pronounced ABC effect in rats. We find that a single dose of liposomes coated with PEG and PMOX generates an IgM response in rats towards the respective polymer. Finally, in this homologous polymer series, we observe a positive correlation (R=0.84 in rats, R=0.92 in mice) between the circulation time of polymer-modified liposomes and polymer viscosity; PEG and PMOX, the polymers that can initiate an ABC response were the two most viscous polymers. Our findings suggest that polymers that do not cause an ABC effect such as, HPMA or

  12. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis

    PubMed Central

    2010-01-01

    Introduction The objective of this study was to evaluate the efficacy of intravenous (i.v.) injection of liposomally encapsulated dexamethasone phosphate (DxM-P) in comparison to free DxM-P in rats with established adjuvant arthritis (AA). This study focused on polyethylene glycol (PEG)-free liposomes, to minimize known allergic reactions caused by neutral PEG-modified (PEG-ylated) liposomes. Methods Efficacy was assessed clinically and histologically using standard scores. Non-specific and specific immune parameters were monitored. Activation of peritoneal macrophages was analyzed via cytokine profiling. Pharmacokinetics/biodistribution of DxM in plasma, synovial membrane, spleen and liver were assessed via mass spectrometry. Results Liposomal DxM-P (3 × 1 mg/kg body weight; administered intravenously (i.v.) on Days 14, 15 and 16 of AA) suppressed established AA, including histological signs, erythrocyte sedimentation rate, white blood cell count, circulating anti-mycobacterial IgG, and production of interleukin-1beta (IL-1β) and IL-6 by peritoneal macrophages. The suppression was strong and long-lasting. The clinical effects of liposomal DxM-P were dose-dependent for dosages between 0.01 and 1.0 mg/kg. Single administration of 1 mg/kg liposomal DxM-P and 3 × 1 mg/kg of free DxM-P showed comparable effects consisting of a partial and transient suppression. Moreover, the effects of medium-dose liposomal DxM-P (3 × 0.1 mg/kg) were equal (in the short term) or superior (in the long term) to those of high-dose free DxM-P (3 × 1 mg/kg), suggesting a potential dose reduction by a factor between 3 and 10 by liposomal encapsulation. For at least 48 hours after the last injection, the liposomal drug achieved significantly higher levels in plasma, synovial membrane, spleen and liver than the free drug. Conclusions This new PEG-free formulation of macrophage-targeting liposomal DxM-P considerably reduces the dose and/or frequency required to treat AA, with a potential

  13. Unusual placement of intrathecal baclofen pumps: report of two cases.

    PubMed

    Devine, Oliver; Harborne, Andrew; Lo, William B; Weinberg, Daniel; Ciras, Mahesh; Price, Rupert

    2016-01-01

    Intrathecal baclofen delivery via implantable pump represents an important modality for symptomatic relief in patients with chronic spasticity. Pumps are routinely implanted subcutaneously in the anterior abdominal wall. We describe two unusual cases where skin-related complications necessitated revision surgery in order to relocate the pump to alternative sites. The first patient was an international power canoeist, whose strenuous exercise programme interfered with his pump's original siting. The second patient was a cachectic university student with a history of cerebral palsy, who maintained low body mass despite attempted weight gain. The relocation of these two intrathecal devices to the medial compartment of the right thigh and right iliac fossa, respectively, is described.

  14. Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging.

    PubMed

    Jensen, Andreas I; Severin, Gregory W; Hansen, Anders E; Fliedner, Frederikke P; Eliasen, Rasmus; Parhamifar, Ladan; Kjær, Andreas; Andresen, Thomas L; Henriksen, Jonas R

    2018-01-10

    Liposomes are nanoparticles used in drug delivery that distribute over several days in humans and larger animals. Radiolabeling with long-lived positron emission tomography (PET) radionuclides, such as manganese-52 ( 52 Mn, T½=5.6days), allow the imaging of this biodistribution. We report optimized protocols for radiolabeling liposomes with 52 Mn, through both remote-loading and surface labeling. For comparison, liposomes were also remote-loaded and surface labeled with copper-64 ( 64 Cu, T½=12.7h) through conventional means. The chelator DOTA was used in all cases. The in vivo stability of radiometal chelates is widely debated but studies that mimic a realistic in vivo setting are lacking. Therefore, we employed these four radiolabeled liposome types as platforms to demonstrate a new concept for such in vivo evaluation, here of the chelates 52 Mn-DOTA and 64 Cu-DOTA. This was done by comparing "shielded" remote-loaded with "exposed" surface labeled variants in a CT26 tumor-bearing mouse model. Remote loading (90min at 55°C) and surface labeling (55°C for 2h) of 52 Mn gave excellent radiolabeling efficiencies of 97-100% and 98-100% respectively, and the liposome biodistribution was imaged by PET for up to 8days. Liposomes with surface-conjugated 52 Mn-DOTA exhibited a significantly shorter plasma half-life (T ½ =14.4h) when compared to the remote-loaded counterpart (T ½ =21.3h), whereas surface-conjugated 64 Cu-DOTA cleared only slightly faster and non-significantly, when compared to remote-loaded (17.2±2.9h versus 20.3±1.2h). From our data, we conclude the successful remote-loading of liposomes with 52 Mn, and furthermore that 52 Mn-DOTA may be unstable in vivo whereas 64 Cu-DOTA appears suitable for quantitative imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Complications of intrathecal opioids and bupivacaine in the treatment of "refractory" cancer pain.

    PubMed

    Nitescu, P; Sjöberg, M; Appelgren, L; Curelaru, I

    1995-03-01

    To test the concept that externalized tunneled intrathecal catheters lead to a high risk of complications, such as meningitis and epidural abscess, and therefore should not be used for durations of intrathecal pain treatment of > 1 week. Prospective, cohort, nonrandomized, consecutive, historical control trial. Tertiary care center, institutional practice, hospitalized and ambulatory care. Two hundred adults (107 women, 93 men) with refractory cancer pain treated for 1-575 (median, 33; total, 14,485) days; 79 patients were treated at home for 2-226 (median, 36; total, 4,711) days. All patients had died by the close of the study. Insertion of intrathecal tunneled nylon (Portex) catheters (223 in 200 patients) with Millipore filters. The catheter hubs were securely fixed to the skin with steel sutures. Standardized care after insertion: (a) daily phone contact with the patients, their families, or the nurses in charge; (b) weekly dressing change at the tunnel outlet by the nurses; (c) refilling of the infusion containers by the nurses; (d) exchange of the infusion systems when empty (within 1 month) and of the antibacterial filter once a month by specially instructed Pain Department nurses. All contact between the connections of the syringes, cassettes, and needles with the operator's hands was carefully avoided during filling and refilling of the infusion containers and exchange of the antibacterial filters; no other aseptic precautions were taken. We recorded the rates of perfect function and complications of the systems. The rates of complications recorded in this study with externalized tunneled intrathecal catheters are discussed and compared with the rates reported in the literature with externalized (tunneled and non-tunneled) epidural and intrathecal catheters, as well as with internalized (both epidural and intrathecal) catheters connected to subcutaneous ports, reservoirs, and pumps. The following rates (as a percentage of number of patients) of perfect

  16. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  17. Preparation, physicochemical characterization, and cell viability evaluation of long-circulating and pH-sensitive liposomes containing ursolic acid.

    PubMed

    Caldeira de Araújo Lopes, Sávia; Vinícius Melo Novais, Marcus; Salviano Teixeira, Cláudia; Honorato-Sampaio, Kinulpe; Tadeu Pereira, Márcio; Ferreira, Lucas Antônio Miranda; Braga, Fernão Castro; Cristina Oliveira, Mônica

    2013-01-01

    Cancer is one of the leading causes of death worldwide. Although several drugs are used clinically, some tumors either do not respond or are resistant to the existing pharmacotherapy, thus justifying the search for new drugs. Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low solubility in aqueous medium, which presents a barrier to its biological applications. In this context, the use of liposomes presents a promising strategy to deliver UA and allow for its intravenous administration. In this work, long-circulating and pH-sensitive liposomes containing UA (SpHL-UA) were developed, and their chemical and physicochemical properties were evaluated. SpHL-UA presented adequate properties, including a mean diameter of 191.1 ± 6.4 nm, a zeta potential of 1.2 ± 1.4 mV, and a UA entrapment of 0.77 ± 0.01 mg/mL. Moreover, this formulation showed a good stability after having been stored for 2 months at 4 °C. The viability studies on breast (MDA-MB-231) and prostate (LNCaP) cancer cell lines demonstrated that SpHL-UA treatment significantly inhibited cancer cell proliferation. Therefore, the results of the present work suggest the applicability of SpHL-UA as a new and promising anticancer formulation.

  18. The role of cavitation in liposome formation.

    PubMed

    Richardson, Eric S; Pitt, William G; Woodbury, Dixon J

    2007-12-15

    Liposome size is a vital parameter of many quantitative biophysical studies. Sonication, or exposure to ultrasound, is used widely to manufacture artificial liposomes, yet little is known about the mechanism by which liposomes are affected by ultrasound. Cavitation, or the oscillation of small gas bubbles in a pressure-varying field, has been shown to be responsible for many biophysical effects of ultrasound on cells. In this study, we correlate the presence and type of cavitation with a decrease in liposome size. Aqueous lipid suspensions surrounding a hydrophone were exposed to various intensities of ultrasound and hydrostatic pressures before measuring their size distribution with dynamic light scattering. As expected, increasing ultrasound intensity at atmospheric pressure decreased the average liposome diameter. The presence of collapse cavitation was manifested in the acoustic spectrum at high ultrasonic intensities. Increasing hydrostatic pressure was shown to inhibit the presence of collapse cavitation. Collapse cavitation, however, did not correlate with decreases in liposome size, as changes in size still occurred when collapse cavitation was inhibited either by lowering ultrasound intensity or by increasing static pressure. We propose a mechanism whereby stable cavitation, another type of cavitation present in sound fields, causes fluid shearing of liposomes and reduction of liposome size. A mathematical model was developed based on the Rayleigh-Plesset equation of bubble dynamics and principles of acoustic microstreaming to estimate the shear field magnitude around an oscillating bubble. This model predicts the ultrasound intensities and pressures needed to create shear fields sufficient to cause liposome size change, and correlates well with our experimental data.

  19. Antileishmanial Activity of Liposomal Clarithromycin against Leishmania Major Promastigotes

    PubMed Central

    Sazgarnia, Ameneh; Zabolinejad, Naghmeh; Layegh, Pouran; Rajabi, Omid; Berenji, Fariba; Javidi, Zari; Salari, Roshanak

    2012-01-01

    Objective(s) Cutaneous leishmaniasis is a common parasitic disease which is endemic in some parts of the world. In vitro and in vivo studies have shown azithromycin efficacy on some Leishmania species. Because of structural similarity between clarithromycin and azithromycin and efficacy of clarithromycin against intracellular organisms and due to the absence of previous studies in this respect, we decided to evaluate the efficacy of clarithromycin against promastigotes of L. major in vitro. Materials and Method First, liposomal and non- liposomal clarithromycin were prepared, then both forms of the drug were incubated with promastigotes for 24 hr in NNN culture media without red phenol in the presence of 5% FCS with different concentrations as follows: 20, 40, 80, 100, 200 and 500 µg/ml. Results According to the results, clarithromycin in both liposomal and non- liposomal forms has in vitro activity against the promastigotes of L. major. The concentration of drug that killed 50% of parasites (ED 50) was 169 and 253.6 µg/ml for liposomal and non- liposomal forms, respectively which shows that lower concentrations of liposomal drug are required to have the same effect as non- liposomal drug and the liposomal form of the drug is more effective than non- liposomal form. Conclusion Clarithromycin in both liposomal and non- liposomal forms has in vitro activity against the promastigotes of L. major. PMID:23658854

  20. Antileishmanial Activity of Liposomal Clarithromycin against Leishmania Major Promastigotes.

    PubMed

    Sazgarnia, Ameneh; Zabolinejad, Naghmeh; Layegh, Pouran; Rajabi, Omid; Berenji, Fariba; Javidi, Zari; Salari, Roshanak

    2012-11-01

    Cutaneous leishmaniasis is a common parasitic disease which is endemic in some parts of the world. In vitro and in vivo studies have shown azithromycin efficacy on some Leishmania species. Because of structural similarity between clarithromycin and azithromycin and efficacy of clarithromycin against intracellular organisms and due to the absence of previous studies in this respect, we decided to evaluate the efficacy of clarithromycin against promastigotes of L. major in vitro. First, liposomal and non- liposomal clarithromycin were prepared, then both forms of the drug were incubated with promastigotes for 24 hr in NNN culture media without red phenol in the presence of 5% FCS with different concentrations as follows: 20, 40, 80, 100, 200 and 500 µg/ml. According to the results, clarithromycin in both liposomal and non- liposomal forms has in vitro activity against the promastigotes of L. major. The concentration of drug that killed 50% of parasites (ED 50) was 169 and 253.6 µg/ml for liposomal and non- liposomal forms, respectively which shows that lower concentrations of liposomal drug are required to have the same effect as non- liposomal drug and the liposomal form of the drug is more effective than non- liposomal form. Clarithromycin in both liposomal and non- liposomal forms has in vitro activity against the promastigotes of L. major.

  1. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery.

    PubMed

    Zou, Peng; Stern, Stephan T; Sun, Duxin

    2014-03-01

    Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly (lactic-coglycolicacid) (PLGA). BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 min. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 h. The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs.

  2. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery

    PubMed Central

    Zou, Peng; Stern, Stephan T.; Sun, Duxin

    2014-01-01

    Purpose Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly( lactic-coglycolicacid) (PLGA). Methods BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). Results FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 minutes. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 hours. Conclusions The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs. PMID:24065591

  3. Preparation and the influencing factors of timozolomide liposomes.

    PubMed

    Kong, Bin; Sun, Yong; Li, Yongjian; Hu, Dejian

    2009-01-01

    To prepare timozolomide liposomes for administration through nasal mucous membrane, we studied the factors of the preparation of the liposomes. The timozolomide liposomes were prepared by the ammonium sulphate gradient method; electroscopy and laser particle analyzer were utilized to determine the conformation, size and distribution of timozolomide liposomes; high performance liquid chromatography (HPLC) was applied to determine the entrapping efficiency of timozolomide liposomes; then we studied the influences of the concentration of ammonium sulphate solution, temperature, and the drug-to-lipid ratio on the entrapping efficiency. The average size of timozolomide liposomes was 185 nm; the entrapping efficiency was 90.3%. The entrapping efficiency was enhanced with the increasing of the concentration of ammonium sulphate solution and the rising of temperature, and decreased with the increasing of the drug-to-lipid ratio. The timozolomide liposomes with high entrapping efficiency, small and even particle sizes could be prepared by the simple and convenient ammonium sulphate gradient method. The primary influencing factors on the entrapping efficiency of timozolomide liposomes were the concentration of ammonium sulphate solution, the temperature, and the drug-to-lipid ratio.

  4. The effects of intrathecal midazolam on sympathetic nervous system reflexes in man--a pilot study.

    PubMed Central

    Goodchild, C S; Noble, J

    1987-01-01

    Nine patients were given intrathecal injections of midazolam (dose 0.3-2 mg dissolved in 3 ml 5% dextrose). No changes in motor power or general sensation were produced. Resting heart rate and blood pressure were unchanged and normal valsalva manoeuvres were elicited 30 min post-injection. Cardiovascular responses were provoked at a light plane of anaesthesia by intubation of the trachea and manipulation of peritoneum and bowel but not by surgical incision of the skin. Intrathecal administration of midazolam relieved post-operative pain of somatic origin but not of visceral origin. It is concluded that intrathecal midazolam in the dosage used interrupts somatic nociceptive afferent pathways but not abdominal visceral nociceptive afferent pathways. PMID:3567043

  5. 6-mercaptopurine (6-MP) entrapped stealth liposomes for improvement of leukemic treatment without hepatotoxicity and nephrotoxicity.

    PubMed

    Umrethia, Manish; Ghosh, Pradip Kumar; Majithya, Rita; Murthy, R S R

    2007-03-01

    6-mercaptopurine (6-MP) is a purine analogue used in childhood leukemia. Because of the oral bioavailability of 6-MP is low and highly variable, the aim of this study was to develop a new parenteral formulation that can prolong the biological half-life of the drug, improve its therapeutic efficacy, and its associated reduce side effects. Conventional and stealth 6-MP liposomes were prepared by a thin film hydration technique followed by a high-pressure homogenization process and characterized for percent entrapment efficiency (%EE), particle size, and stability in human plasma. Pharmacokinetic, tissue distribution, and biochemical analysis were performed after intravenous (IV) administration of all formulations of 6-MP on rats. The conventional liposomes were found less stable than stealth liposomes in human plasma at 37 degrees C. Stealth liposomes exhibited high peak plasma concentration (C(max)), and long circulating capacity in blood and biological half-life. The uptake of stealth liposomes by the liver and spleen and accumulation in the kidney were significantly less than that of conventional liposomes and the free drug. Serum urea, creatinine, GOT (Glutamic Oxaloacetic Transaminase), and GPT (Glutamic Pyruvic Transaminase) increased significantly in rats given an IV injection of conventional liposomes and the free drug, but not in those administered with the same dose of stealth liposomes. Stealth liposomes may help to increase therapeutic efficacy of 6-MP and to reduce total amount of dose as well as frequency of the dose. It also may reduce the possibility of the risk of toxicity to the liver and kidney generally associated with free 6-MP.

  6. Liposomal Bupivacaine Injection Technique in Total Knee Arthroplasty.

    PubMed

    Meneghini, R Michael; Bagsby, Deren; Ireland, Philip H; Ziemba-Davis, Mary; Lovro, Luke R

    2017-01-01

    Liposomal bupivacaine has gained popularity for pain control after total knee arthroplasty (TKA), yet its true efficacy remains unproven. We compared the efficacy of two different periarticular injection (PAI) techniques for liposomal bupivacaine with a conventional PAI control group. This retrospective cohort study compared consecutive patients undergoing TKA with a manufacturer-recommended, optimized injection technique for liposomal bupivacaine, a traditional injection technique for liposomal bupivacaine, and a conventional PAI of ropivacaine, morphine, and epinephrine. The optimized technique utilized a smaller gauge needle and more injection sites. Self-reported pain scores, rescue opioids, and side effects were compared. There were 41 patients in the liposomal bupivacaine optimized injection group, 60 in the liposomal bupivacaine traditional injection group, and 184 in the conventional PAI control group. PAI liposomal bupivacaine delivered via manufacturer-recommended technique offered no benefit over PAI ropivacaine, morphine, and epinephrine. Mean pain scores and the proportions reporting no or mild pain, time to first opioid, and amount of opioids consumed were not better with PAI liposomal bupivacaine compared with PAI ropivacaine, morphine, and epinephrine. The use of the manufacturer-recommended technique for PAI of liposomal bupivacaine does not offer benefit over a conventional, less expensive PAI during TKA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Stability of four standardized preparations of methotrexate, cytarabine, and hydrocortisone for intrathecal use.

    PubMed

    Olmos-Jiménez, Raquel; Espuny-Miró, Alberto; Díaz-Carrasco, María Sacramento; Fernández-Varón, Emilio; Valderrey-Pulido, Manuel; Cárceles-Rodríguez, Carlos

    2016-10-01

    Intrathecal administration of methotrexate, cytarabine, and hydrocortisone is commonly used to treat and prevent central nervous system involvement in leukemias and lymphomas. The use of intrathecal solutions with pH and osmolarity values close to physiologic range of CSF (pH 7.31-7.37, osmolarity 281-306 mOsm/kg) and standardization of the methotrexate, cytarabine, and hydrocortisone doses in children and adults based on age is highly recommended. Stability studies of standardized intrathecal mixtures under these conditions have not yet been published. The purpose of this study was to evaluate the physical and chemical stabilities of four standardized mixtures of methotrexate, cytarabine, and hydrocortisone stored at 2-8℃ and 25℃ up to 7 days after preparation. Four different standardized intrathecal mixtures were prepared and stored at 2-8℃ and 25℃ and protected from light. Triplicate samples were taken at different times and precipitation, appearance, color, pH, and osmolarity were analyzed. Methotrexate, cytarabine, and hydrocortisone concentrations were measured using a modified high-performance liquid chromatography method. No variation greater than 10% of the initial concentration of methotrexate, cytarabine, and hydrocortisone was observed in any of the four standardized mixtures for the 7 days of study when stored at 2-8℃ and 25℃ and protected from light. The osmolarity of the four preparations was within the physiologic range of CSF for 7 days at both 2-8℃ and 25℃. The pH values close to the physiologic range of CSF were stable for 48 h at 25℃ and for 120 h at 2-8℃. Triple intrathecal standardized preparations of methotrexate, cytarabine, and hydrocortisone sodium phosphate are physically and chemically stable at 25℃ for 48 h and at 2-8℃ for 5 days. © The Author(s) 2015.

  8. Intrathecal Baclofen Therapy for the Treatment of Spasticity in Sjögren-Larsson Syndrome.

    PubMed

    Hidalgo, Eveline Teresa; Orillac, Cordelia; Hersh, Andrew; Harter, David H; Rizzo, William B; Weiner, Howard L

    2017-01-01

    Intrathecal baclofen therapy is widely accepted as a treatment option for patients with severe spasticity. The current treatment of spasticity in patients with Sjögren-Larsson syndrome is largely symptomatic, given that no effective causal therapy treatments are available. We report the outcome of 2 patients with Sjögren-Larsson syndrome who had pump implantation for intrathecal baclofen. We observed a positive response, with a decrease of spasticity, reflecting in the Modified Ashworth Scale, and parents and caregivers observed a functional improvement in both patients. One patient experienced skin irritation 15 months after surgery, necessitating pump repositioning. No infection occurred. Our report shows that intrathecal baclofen therapy can have a positive therapeutic effect on spasticity in patients with Sjögren-Larsson syndrome, and therefore may be a promising addition to current treatments.

  9. In silico study of liposome transport across biomembranes

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Zyktin, A. A.; Slepchenkov, M. M.

    2018-02-01

    At present, the liposomes are widely used as drug carriers in different areas of clinical medicine. One of them is the transport across the blood-brain barrier (BBB) into brain. This work is devoted to computational modeling of liposome transport across biomembrane. For this, we applied the MARTINI coarse-grained model. The liposome model is constructed from lipid (DPPC) and cholesterol (CHOL) molecules in a percentage ratio of 60/40. The diameter of the liposome is 28 nm. The equilibrium configuration of the liposome is achieved by minimizing its total energy. A series of numerical experiments was conducted in order to study the transport of the drug contained in the liposome across the cell membrane. All computer manipulations were carried out using software packages GROMACS and Kvazar at a temperature of 305-310 K. All the processes were simulated for 10-20 ns. The speed of the liposome ranged from 0.89 to 1.07 m/s. It should be noted that the selected speed range corresponds to the rate of human blood flow. Various cases of the angle of the incidence of the liposome on the membrane surface were also considered. Since the process of contact of the liposome with the membrane can be characterized as rolling in most cases, the angles were considered in the interval from 0 to 20 degrees. Based on the simulation results, we determined optimal pathways (from the point of view of energy) for liposome penetration across biomembrane.

  10. Liposomal nanomedicines: an emerging field.

    PubMed

    Fenske, David B; Chonn, Arcadio; Cullis, Pieter R

    2008-01-01

    Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA-containing therapeutic genes, antisense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (>6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is "leaky" and allows extravasation of particles with small diameters. Thus, LNs protect the drug during circulation, prevent it from reaching healthy tissues, and permit its accumulation at sites of disease. We will discuss recent advances in this field involving conventional anticancer drugs as well as gene-delivery, immunostimulatory, and gene-silencing applications involving the new genetic drugs. LNMs have the potential to offer new treatments in such areas as cancer therapy, vaccine development, and cholesterol management.

  11. Characteristic of interactions between intrathecal gabapentin and either clonidine or neostigmine in the formalin test.

    PubMed

    Yoon, Myung Ha; Choi, Jeong Il; Kwak, Sang Hyun

    2004-05-01

    Intrathecal gabapentin is effective for phase 2 of the formalin response but not for acute pain. Unlike gabapentin, intrathecal clonidine and neostigmine attenuate both acute pain and phase 2 of the formalin response. We evaluated gabapentin's interactions with either clonidine or neostigmine in the formalin test. Male Sprague-Dawley rats were used. For the formalin test, 50 microL of 5% formalin solution was injected into the hindpaw. The interaction of drugs was investigated by a fixed-dose analysis or an isobolographic analysis. Intrathecal gabapentin produced a suppression of the phase 2 flinching response, but not the phase 1 response, in the formalin test. Intrathecal clonidine and neostigmine resulted in a reduction of the pain behavior in both phases. A fixed-dose analysis in phase 1 showed that gabapentin potentiated the antinociceptive effect of clonidine and neostigmine. An isobolographic analysis in phase 2 revealed a synergistic interaction after intrathecal administration of gabapentin-clonidine or gabapentin-neostigmine mixture. We conclude that the combination of gabapentin with either clonidine or neostigmine at the level of the spinal cord could play a major role not only in acute pain, but also in phase 2 of the formalin response. We determined the pharmacological properties of gabapentin combined with either clonidine or neostigmine in the formalin test. Spinal gabapentin reinforced the effects of clonidine and neostigmine in the formalin test. The hitherto unreported action of gabapentin on acute nociceptive stimulus could be of considerable significance.

  12. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szebeni, Janos, E-mail: jszebeni2@gmail.com; Storm, Gert

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs.more » long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.« less

  13. Effects of Liposomes Charge on Extending Sciatic Nerve Blockade of N-ethyl Bromide of Lidocaine in Rats

    NASA Astrophysics Data System (ADS)

    Yin, Qinqin; Ke, Bowen; Chen, Xiaobing; Guan, Yikai; Feng, Ping; Chen, Guo; Kang, Yi; Zhang, Wensheng; Nie, Yu

    2016-12-01

    N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects.

  14. Effects of Liposomes Charge on Extending Sciatic Nerve Blockade of N-ethyl Bromide of Lidocaine in Rats

    PubMed Central

    Yin, Qinqin; Ke, Bowen; Chen, Xiaobing; Guan, Yikai; Feng, Ping; Chen, Guo; Kang, Yi; Zhang, Wensheng; Nie, Yu

    2016-01-01

    N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects. PMID:27924842

  15. The antinociceptive effects of Monechma ciliatum and changes in EEG waves following oral and intrathecal administration in rats

    NASA Astrophysics Data System (ADS)

    Meraiyebu, Ajibola B.; Adelaiye, Alexander B.; O, Odeh S.

    2010-02-01

    The research work was carried out to study the effect of Oral and Intrathecal Monechma Ciliatum on antinociception and EEG readings in Wistar Rats. Traditionally the extract is given to women in labour believed to reduce pain and ease parturition, though past works show that it has oesteogenic and oxytotic effects. The rats were divided into 5 major groups. Group 1 served as oral control group while groups 2 and 3 served as oral experimental groups and were treated with 500mg/kg and 1000mg/kg monechma ciliatum respectively. Group 4 served as intrathecal control group treated with intrathecal dextrose and group 5 received 1000mg/kg Monechma Ciliatrum intrathecally. The antinociceptive effect was analysed using a Von Frey's aesthesiometer. Monechma Ciliatum showed significant antinociceptive effect both orally and intrathecally, although it had a greater effect orally and during the first 15 minutes of intrathecal administration. EEG readings were also taken for all the groups and there was a decrease in amplitude and an increase in frequency for high dose (1000mg/ml) experimental groups and the mid brain electrodes produced a change from theta waves (3.5 - 7 waves per second) to alpha waves (7.5 - 13 waves per second) as seen in relaxed persons and caused decreased amplitudes and change in distribution seen in beta waves. Properties similarly accentuated by sedativehypnotic drugs.

  16. Safety of intrathecal autologous adipose-derived mesenchymal stromal cells in patients with ALS

    PubMed Central

    Madigan, Nicolas N.; Morris, Jonathan; Jentoft, Mark; Sorenson, Eric J.; Butler, Greg; Gastineau, Dennis; Dietz, Allan; Windebank, Anthony J.

    2016-01-01

    Objective: To determine the safety of intrathecal autologous adipose-derived mesenchymal stromal cell treatment for amyotrophic lateral sclerosis (ALS). Methods: Participants with ALS were enrolled and treated in this phase I dose-escalation safety trial, ranging from 1 × 107 (single dose) to 1 × 108 cells (2 monthly doses). After intrathecal treatments, participants underwent standardized follow-up, which included clinical examinations, revised ALS Functional Rating Scale (ALSFRS-R) questionnaire, blood and CSF sampling, and MRI of the neuroaxis. Results: Twenty-seven patients with ALS were enrolled and treated in this study. The safety profile was positive, with the most common side effects reported being temporary low back and radicular leg pain at the highest dose level. These clinical findings were associated with elevated CSF protein and nucleated cells with MRI of thickened lumbosacral nerve roots. Autopsies from 4 treated patients did not show evidence of tumor formation. Longitudinal ALSFRS-R questionnaires confirmed continued progression of disease in all treated patients. Conclusions: Intrathecal treatment of autologous adipose-derived mesenchymal stromal cells appears safe at the tested doses in ALS. These results warrant further exploration of efficacy in phase II trials. Classification of evidence: This phase I study provides Class IV evidence that in patient with ALS, intrathecal autologous adipose-derived mesenchymal stromal cell therapy is safe. PMID:27784774

  17. The use of intrathecal analgesia and contrast radiography as preoperative diagnostic methods for digital flexor tendon sheath pathology.

    PubMed

    Fiske-Jackson, A R; Barker, W H J; Eliashar, E; Foy, K; Smith, R K W

    2013-01-01

    The sensitivity of ultrasonography for the diagnosis of manica flexoria (MF) tears within the digital flexor tendon sheath (DFTS) is lower than for diagnosis of marginal tears of the deep digital flexor tendon (DDFT). Additional diagnostic tools would assist in appropriate decision making for either conservative or surgical management. To evaluate the improvement in lameness of horses with MF or DDFT tears following intrathecal analgesia and to assess the sensitivity and specificity of contrast radiography for the diagnosis of these tears. The case records of horses presented to a referral clinic over a 7-year period that underwent intrathecal diagnostic analgesia, or intrathecal analgesia and contrast radiography, of the DFTS with subsequent tenoscopy were examined. Fifty-three limbs had intrathecal diagnostic analgesia performed and 23 contrast tenograms were assessed in horses undergoing DFTS tenoscopy. Horses with DDFT tears were significantly more likely to respond positively to intrathecal diagnostic analgesia than those with MF tears (P = 0.02). Using contrast radiography, tears of the MF were predicted with an overall sensitivity of 96% and specificity of 80%; marginal tears of the DDFT were predicted with an overall sensitivity of 57% and specificity of 84%. The results of intrathecal analgesia of the DFTS in combination with contrast radiography have a high sensitivity for predicting MF tears. The sensitivity of contrast radiography for predicting tears of the DDFT is lower but the specificity remains high. Contrast radiography performed at the same time as intrathecal analgesia provides useful information regarding the presence of MF tears and DDFT tears, which can assist in the decision of whether to manage the lameness conservatively or with tenoscopic evaluation. © 2012 EVJ Ltd.

  18. Sustained Zero-Order Release of Intact Ultra-Stable Drug-Loaded Liposomes from an Implantable Nanochannel Delivery System

    PubMed Central

    Celia, Christian; Ferrati, Silvia; Bansal, Shyam; van de Ven, Anne L.; Ruozi, Barbara; Zabre, Erika; Hosali, Sharath; Paolino, Donatella; Sarpietro, Maria Grazia; Fine, Daniel; Fresta, Massimo; Ferrari, Mauro

    2014-01-01

    Metronomic chemotherapy supports the idea that long-term, sustained, constant administration of chemotherapeutics, currently not achievable, could be effective against numerous cancers. Particularly appealing are liposomal formulations, used to solubilize hydrophobic therapeutics and minimize side effects, while extending drug circulation time and enabling passive targeting. As liposome alone cannot survive in circulation beyond 48 hrs, sustaining their constant plasma level for many days is a challenge. To address this, we developed, as a proof of concept, an implantable nanochannel delivery system and ultra-stable PEGylated lapatinib loaded-liposomes, and we demonstrate the release of intact vesicles for over 18 days. Further, we investigate intravasation kinetics of subcutaneously delivered liposomes and verify their biological activity post nanochannel release on BT474 breast cancer cells. The key innovation of this work is the combination of two nanotechnologies to exploit the synergistic effect of liposomes, demonstrated as passive-targeting vectors and nanofluidics to maintain therapeutic constant plasma levels. In principle, this approach could maximize efficacy of metronomic treatments. PMID:23881575

  19. Bupivacaine administered intrathecally versus rectally in the management of intractable rectal cancer pain in palliative care

    PubMed Central

    Zaporowska-Stachowiak, Iwona; Kowalski, Grzegorz; Łuczak, Jacek; Kosicka, Katarzyna; Kotlinska-Lemieszek, Aleksandra; Sopata, Maciej; Główka, Franciszek

    2014-01-01

    Background Unacceptable adverse effects, contraindications to and/or ineffectiveness of World Health Organization step III “pain ladder” drugs causes needless suffering among a population of cancer patients. Successful management of severe cancer pain may require invasive treatment. However, a patient’s refusal of an invasive procedure necessitates that clinicians consider alternative options. Objective Intrathecal bupivacaine delivery as a viable treatment of intractable pain is well documented. There are no data on rectal bupivacaine use in cancer patients or in the treatment of cancer tenesmoid pain. This study aims to demonstrate that bupivacaine administered rectally could be a step in between the current treatment options for intractable cancer pain (conventional/conservative analgesia or invasive procedures), and to evaluate the effect of the mode of administration (intrathecal versus rectal) on the bupivacaine plasma concentration. Cases We present two Caucasian, elderly inpatients admitted to hospice due to intractable rectal/tenesmoid pain. The first case is a female with vulvar cancer, and malignant infiltration of the rectum/vagina. Bupivacaine was used intrathecally (0.25–0.5%, 1–2 mL every 6 hours). The second case is a female with ovarian cancer and malignant rectal infiltration. Bupivacaine was adminstered rectally (0.05–0.1%, 100 mL every 4.5–11 hours). Methods Total bupivacaine plasma concentrations were determined using the high-performance liquid chromatography-ultraviolet method. Results Effective pain control was achieved with intrathecal bupivacaine (0.077–0.154 mg·kg−1) and bupivacaine in enema (1.820 mg·kg−1). Intrathecal bupivacaine (0.5%, 2 mL) caused a drop in blood pressure; other side effects were absent in both cases. Total plasma bupivacaine concentrations following intrathecal and rectal bupivacaine application did not exceed 317.2 ng·mL−1 and 235.7 ng·mL−1, respectively. Bupivacaine elimination was

  20. The protein corona of circulating PEGylated liposomes.

    PubMed

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2016-02-01

    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Structural properties of liposomes from digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Di Maio, Isabelle L.; Carl, Daniel; Langehanenberg, Patrik; Valenzuela, Stella M.; Battle, Andrew R.; Al Khazaaly, Sabah; Killingsworth, Murray; Kemper, Bjorn; von Bally, Gert; Martin, Donald K.

    2006-01-01

    We have constructed liposomes from L alpha Phosphatidylcholine (PC) lipids, which are biomimetic lipids similar to those present in the membranes of mammalian cells. We propose an advance in the use of liposomes, such as for drug delivery, to incorporate into the liposomal membranes transport proteins that have been extracted from the lipid membranes of mammalian cells. In this paper, we describe the usage of a novel optical microscope to characterize the nanomechanical properties of these liposomes. We have applied the technique of digital holographic microscopy, using an instrument recently developed at the University of Münster, Germany. This system enabled us to measure quantitatively the structural changes in liposomes. We have investigated the deformations of these biomimetic lipids comprising these liposomes by applying osmotic stresses, in order to gain insight into the membrane environment prior to incorporation of cloned membrane transport proteins. This control of the nanomechanical properties is important in the stresses transmitted to mechanosensitive ion channels that we have incorporated into the liposomal membranes. These liposomes provide transporting vesicles that respond to mechanical stresses, such as those that occur during implantation.

  2. Arraying of intact liposomes into chemically functionalized microwells.

    PubMed

    Kalyankar, Nikhil D; Sharma, Manoj K; Vaidya, Shyam V; Calhoun, David; Maldarelli, Charles; Couzis, Alexander; Gilchrist, Lane

    2006-06-06

    Here, we describe a protocol to bind individual, intact phospholipid bilayer liposomes, which are on the order of 1 microm in diameter, in microwells etched in a regular array on a silicon oxide substrate. The diameter of the wells is on the order of the liposome diameter, so only one liposome is located in each well. The background of the silicon oxide surface is functionalized with a PEG oligomer using the contact printing of a PEG silane to present a surface that resists the adsorption of proteins, lipid material, and liposomes. The interiors of the wells are functionalized with an aminosilane to facilitate the conjugation of biotin, which is then bound to Neutravidin. The avidin-coated well interiors bind the liposomes whose surfaces contain biotinylated lipids. The specific binding of the liposomes to the surface using the biotin-avidin linkage, together with the resistant nature of the background and the physical confinement of the wells, allows the liposomes to remain intact and to not unravel, rupture, and fuse onto the surface. We demonstrate this intact arraying using confocal laser scanning microscopy of fluorophores specifically tagging the microwells, the lipid bilayer, and the aqueous interior of the liposome.

  3. Fusogenic activity of PEGylated pH-sensitive liposomes.

    PubMed

    Vanić, Zeljka; Barnert, Sabine; Süss, Regine; Schubert, Rolf

    2012-06-01

    The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG₂₀₀₀ was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG₁₁₀₀ was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG₂₀₀₀ or sterol-PEG₁₁₀₀ into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG₁₁₀₀ in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.

  4. External beam radiotherapy synergizes 188Re-liposome against human esophageal cancer xenograft and modulates 188Re-liposome pharmacokinetics

    PubMed Central

    Chang, Chih-Hsien; Liu, Shin-Yi; Chi, Chih-Wen; Yu, Hsiang-Lin; Chang, Tsui-Jung; Tsai, Tung-Hu; Lee, Te-Wei; Chen, Yu-Jen

    2015-01-01

    External beam radiotherapy (EBRT) treats gross tumors and local microscopic diseases. Radionuclide therapy by radioisotopes can eradicate tumors systemically. Rhenium 188 (188Re)-liposome, a nanoparticle undergoing clinical trials, emits gamma rays for imaging validation and beta rays for therapy, with biodistribution profiles preferential to tumors. We designed a combinatory treatment and examined its effects on human esophageal cancer xenografts, a malignancy with potential treatment resistance and poor prognosis. Human esophageal cancer cell lines BE-3 (adenocarcinoma) and CE81T/VGH (squamous cell carcinoma) were implanted and compared. The radiochemical purity of 188Re-liposome exceeded 95%. Molecular imaging by NanoSPECT/CT showed that BE-3, but not CE81T/VGH, xenografts could uptake the 188Re-liposome. The combination of EBRT and 188Re-liposome inhibited tumor regrowth greater than each treatment alone, as the tumor growth inhibition rate was 30% with EBRT, 25% with 188Re-liposome, and 53% with the combination treatment at 21 days postinjection. Combinatory treatment had no additive adverse effects and significant biological toxicities on white blood cell counts, body weight, or liver and renal functions. EBRT significantly enhanced the excretion of 188Re-liposome into feces and urine. In conclusion, the combination of EBRT with 188Re-liposome might be a potential treatment modality for esophageal cancer. PMID:26056445

  5. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    NASA Astrophysics Data System (ADS)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  6. Ursolic acid incorporation does not prevent the formation of a non-lamellar phase in pH-sensitive and long-circulating liposomes.

    PubMed

    Lopes, Sávia C A; Novais, Marcus V M; Ferreira, Diêgo S; Braga, Fernão C; Magalhães-Paniago, Rogério; Malachias, Ângelo; Oliveira, Mônica C

    2014-12-23

    Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low water solubility, which limits its biological applications. In this context, our research group has proposed the incorporation of UA in long-circulating and pH-sensitive liposomes (SpHL-UA).These liposomes, composed of dioleylphosphatidylethanolamine (DOPE), cholesteryl hemisuccinate (CHEMS), and distearoylphosphatidylethanolamine-polyethylene glycol2000 (DSPE-PEG2000), were shown to be very promising carriers for UA. Considering that the release of UA from SpHL-UA and its antitumor activity depend upon the occurrence of the lamellar to non-lamellar phase transition of DOPE, in the present work, the interactions of UA with the components of the liposomes were evaluated, aiming to clarify their role in the structural organization of DOPE. The study was carried out by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) under low hydration conditions. DSC studies revealed that DOPE phase transition temperatures did not shift significantly upon UA addition. On the other hand, in SAXS studies, a different pattern of DOPE phase organization was observed in the presence of UA, with the occurrence of the cubic phase Im3m at 20 °C and the cubic phase Pn3m at 60 °C. These findings suggest that UA interacts with the lipids and changes their self-assembly. However, these interactions between the lipids and UA were unable to eliminate the lamellar to non-lamellar phase transition, which is essential for the cytoplasmic delivery of UA molecules from SpHL-UA.

  7. Safety of intrathecal administration of cytosine arabinoside and methotrexate in dogs and cats.

    PubMed

    Genoni, S; Palus, V; Eminaga, S; Cherubini, G B

    2016-09-01

    The objective of the study was to retrospectively evaluate the short-term safety of intrathecal administration of cytosine arabinoside alone or in combination with methotrexate in dogs and cats. One hundred and twelve dogs and eight cats admitted between September 2008 and December 2013, diagnosed with suspected inflammatory (meningoencephalomyelitis of unknown aetiology) or neoplastic disease affecting brain or spinal cord and treated with an intrathecal administration of cytosine arabinoside alone or in combination with methotrexate were included in the study. Recorded information regarding possible adverse events during administration while recovering from anaesthesia and during hospitalization period were evaluated. The results showed that one patient developed generalized tonic-clonic seizure activity after administration of cytosine arabinoside and methotrexate during recovery from anaesthesia, however responded to intravenous administration of diazepam. On the base of our results we can conclude that intrathecal administration of cytosine arabinoside alone or in combination with methotrexate is a safe procedure in dogs and cats. © 2014 John Wiley & Sons Ltd.

  8. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes.

    PubMed

    Qhattal, Hussaini Syed Sha; Hye, Tanvirul; Alali, Amer; Liu, Xinli

    2014-06-24

    Hyaluronan-grafted liposomes (HA-liposomes) preferentially target CD44-overexpressing tumor cells in vitro via receptor-mediated endocytosis. We investigated the pharmacokinetics and biodistribution of HA-liposomes with various sizes of HA (MW 5-8, 50-60, and 175-350 kDa) in mice. Incorporation of negatively charged HA on the liposome surface compromised its blood circulation time, which led to decreased tumor accumulation in CD44+ human breast cancer MDA-MB-231 xenografts compared to PEGylated liposomes (PEG-5000). Clearance of HA-liposomes was HA polymer length-dependent; high MW (175-350 kDa, highest ligand binding affinity) HA-liposomes displayed faster clearance compared to low MW (5-8, 50-60 kDa) HA-liposomes or PEGylated liposomes. Surface HA ligand density can also affect clearance of HA-liposomes. Thus, HA is not an effective stealth coating material. When dual coating of PEG and HA was used, the PEG-HA-liposomes displayed similar blood circulation time and tumor accumulation to that of the PEGylated liposomes; however, the PEG-HA-liposomes displayed better cellular internalization capability in vivo. Tumor histology showed that PEG-HA-liposomes had a more direct association with CD44+ cancer cells, while PEGylated liposomes located predominantly in the tumor periphery, with less association with CD44+ cells. Flow cytometry analysis of ex vivo tumor cells showed that PEG-HA-liposomes had significantly higher tumor cell internalization compared to PEGylated liposomes. This study demonstrates that a long blood circulation time is critical for active tumor targeting. Furthermore, the use of the tumor-targeting ligand HA does not increase total tumor accumulation of actively targeted liposomes in solid tumors; however, it can enhance intracellular delivery.

  9. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome.

    PubMed

    Guo, Huangying; Kim, Jin-Chul

    2015-10-15

    The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. General and programmable synthesis of hybrid liposome/metal nanoparticles

    PubMed Central

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P.; Choi, Jeong-Woo; Kang, Taewook

    2016-01-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications. PMID:28028544

  11. General and programmable synthesis of hybrid liposome/metal nanoparticles.

    PubMed

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P; Choi, Jeong-Woo; Kang, Taewook

    2016-12-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications.

  12. Intrathecal magnesium sulfate does not reduce the ED50 of intrathecal hyperbaric bupivacaine for cesarean delivery in healthy parturients: a prospective, double blinded, randomized dose-response trial using the sequential allocation method.

    PubMed

    Xiao, Fei; Xu, Wenping; Feng, Ying; Fu, Feng; Zhang, Xiaomin; Zhang, Yinfa; Wang, Lizhong; Chen, Xinzhong

    2017-01-17

    Addition of intrathecal magnesium sulfate to local anesthetics has been reported to potentiate spinal anesthesia and prolong analgesia in parturients. The current study was to determine whether intrathecal magnesium sulfate would reduce the dose of hyperbaric bupivacaine in spinal anesthesia with bupivacaine and sufentanil for cesarean delivery. Sixty healthy parturients undergoing scheduled cesarean delivery were randomly assigned to receive spinal anesthesia with 0.5% hyperbaric bupivacaine and 5 μg sufentanil with either 0.9% sodium chloride (Control group) or 50% magnesium sulfate (50 mg) (Magnesium group). Effective anesthesia was defined as a bilateral T 5 sensory block level achieved within 10 min of intrathecal drug administration and no additional epidural anesthetic was required during surgery. Characteristic of spinal anesthesia and the incidence of side effects were observed. The ED 50 for both groups was calculated using the Dixon and Massey formula. There was no significant difference in the ED 50 of bupivacaine between the Magnesium group and the Control group (4.9 mg vs 4.7 mg) (P = 0.53). The duration of spinal anesthesia (183 min vs 148 min, P < 0.001) was longer, the consumption of fentanyl during the first 24 h postoperatively (343 μg vs 550 μg, P < 0.001) was lower in the Magnesium group than that in the Control group. Intrathecal magnesium sulfate (50 mg) did not reduce the dose requirement of intrathecal bupivacaine, but can extend the duration of spinal anesthesia with no obvious additional side effects. This study was registered with Chinese Clinical Trial Registry (ChiCTR) on 15 Jul. 2014 and was given a trial ID number ChiCTR-TRC- 14004954 .

  13. The pharmacokinetics of, and humoral responses to, antigen delivered by microencapsulated liposomes.

    PubMed

    Cohen, S; Bernstein, H; Hewes, C; Chow, M; Langer, R

    1991-12-01

    The feasibility of creating a s.c. depot for sustained protein delivery with the goal of enhancing antigen immunogenicity was investigated. The depot was designed as antigen-laden liposomes of hydrogenated egg phosphatidylcholine and cholesterol (1:1 molar ratio) encapsulated in alginate-poly(L-lysine) microcapsules and evaluated using iodinated bovine serum albumin (BSA) as a model antigen. The in vivo release behavior of the liposomes and microencapsulated liposomes (MELs) was evaluated from the BSA serum concentration profiles after s.c. injection into rats and the pharmacokinetic parameters of 125I-labeled BSA appearance after s.c. or i.v. injections of BSA in saline. Maximal BSA concentrations were detected 11 h after s.c. injection in all rats. The BSA serum concentrations decreased rapidly in rats injected with BSA in saline or Freund's adjuvant and less rapidly in rats injected with BSA in liposomes or MELs. Four to 5 weeks after injection, BSA-associated radioactivity was detected only in sera of rats injected with BSA in liposomes or MELs. Fifty days after injection, 50% of the originally injected BSA was recovered form the s.c. sites of rats injected with BSA in MELs; no radioactivity was recovered from the other three groups of rats. The antigen-reactive antibody levels induced in rats immunized with BSA in MELs were 2- to 3-fold higher than those obtained in rats immunized with BSA in liposomes, saline, or Freund's adjuvant. More significantly, high antibody levels were maintained for more than 150 days after a single injection of BSA in MELs, suggesting that MELs can serve as a long-term single-dose immunization vehicle.

  14. Switching long acting antipsychotic medications to aripiprazole long acting once-a-month: expert consensus by a panel of Italian and Spanish psychiatrists.

    PubMed

    Fagiolini, Andrea; Alfonsi, Emilia; Amodeo, Giovanni; Cenci, Mario; Di Lella, Michele; Farinella, Francesco; Ferraiuolo, Fabrizio; Fraguas, David; Loparco, Natale; Gutierrez-Rojas, Luis; Mignone, Maria Laura; Pataracchia, Giuseppe; Pillai, Gianluca; Russo, Felicia; Sanchez-Gistau, Vanessa; Spinogatti, Franco; Toscano, Marco; Villari, Vincenzo; De Filippis, Sergio

    2016-01-01

    Aripiprazole long acting once-monthly (AOM) is a long acting atypical antipsychotic with proven efficacy in schizophrenia and with a pharmacological and a side effect profile that is different from other antipsychotics. These and other characteristics make AOM a possible alternative in patients requiring a change in long acting antipsychotic treatment due to issues such as lack of efficacy or persistent side effects. Both clinical and pharmacological factors should be considered when switching antipsychotics, and specific guidelines for long acting antipsychotic switching that address all these factors are needed. A panel of Italian and Spanish experts in psychiatry met to discuss the strategies for the switch to AOM in patients with schizophrenia. Real life clinical experiences were shared and the clinical strategies to improve the likelihood of success were discussed. Due to its specific pharmacological and tolerability profile, AOM represents a suitable alternative for patients with schizophrenia requiring a switch to a new LAI treatment because of lack of efficacy or persistent side effects from another LAI. Possible strategies for the switch to AOM are presented in this expert consensus paper in an attempt to provide guidance throughout the entire switching process.

  15. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery.

    PubMed

    Chono, Sumio; Fukuchi, Rie; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-07-20

    The pulmonary insulin delivery characteristics of liposomes were examined. Aerosolized liposomes containing insulin were administered into rat lungs and the enhancing effect on insulin delivery was evaluated by changes of plasma glucose levels. Liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhanced pulmonary insulin delivery in rats, however, liposomes with dilauroyl, dimyristoyl, distearoyl or dioleoyl phosphatidylcholine did not. Liposomes with DPPC also enhanced the in vitro permeation of FITC dextran (Mw 4400, FD-4) through the calu-3 cell monolayer by reducing the transepithelial electrical resistance and did not harm lung tissues in rats. These findings suggest that liposomes with DPPC enhance pulmonary insulin delivery by opening the epithelial cell space in the pulmonary mucosa not mucosal cell damage. Liposomes with DPPC could be useful as a pulmonary delivery system for peptide and protein drugs.

  16. Diagnostic significance of intrathecally produced herpes simplex and varizella-zoster virus-specific antibodies in central nervous system infections.

    PubMed

    Schultze, Detlev; Weder, Bruno; Cassinotti, Pascal; Vitek, Lucie; Krausse, Konrad; Fierz, Walter

    2004-11-27

    The optimal strategy for the diagnosis of herpes simplex virus (HSV) and varizella-zoster virus (VZV) disease of the central nervous system is the detection of viral DNA by polymerase chain reaction assay (PCR) in cerebrospinal fluid (CSF) and the examination of intrathecal production of specific antibodies. However, in acute neurological disease caused by either HSV or VZV, dual intrathecal synthesis of HSV-1, 2- as well as VZV-specific antibodies may be detectable and thus can hamper accurate aetiological diagnosis. This paper illustrates such equivocal findings in two case reports, investigates their frequency and discusses the possible reasons. Consecutive CSF/serum pairs of two patients with central nervous system (CNS) disease were tested by HSV-1-, HSV-2-, and VZV-specific PCR and by different serological assays for detection of neurotropic viruses and bacteria. Additionally, the results of microbiological investigations of 1'155 CSF/serum samples were retrospectively analyzed for coincident intrathecal antibody synthesis against HSV-1, 2 and VZV. Although only HSV-1 and VZV-specific DNA was detectable in the CSF of two patients with encephalitis and chronic meningitis, respectively, increasing intrathecal antibody production against both virus species could be demonstrated. Retrospective analysis of 1155 CSF/serum pairs revealed 55 (4.8%) pairs with evidence for intrathecally produced antibodies against either HSV-1, 2 (30/55) or VZV (14/55). Eleven of these 55 (20%) pairs showed intrathecal antibody-production against both virus species. Patients with CNS infection with HSV and VZV can be diagnosed by detecting intrathecally produced virus-specific antibodies, in addition to virus-specific PCR. However, in an appreciable proportion of patients a correct diagnosis is hampered by coincidentally detected antibodies in CSF against both virus species. Possible reasons for these equivocal findings are given.

  17. Liposomal nanoparticles as a drug delivery vehicle against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Dhule, Santosh Subhashrao

    The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-gamma-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded gamma-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. The second part of this study examines the anti-tumor potential of curcumin and C6 ceramide (C6) against osteosarcoma cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with systems with curcumin alone. Interestingly, C6-curcumin liposomes were found to be less toxic on untransformed human cells in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G 2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. Using pegylated liposomes to increase the plasma half-life and tagging

  18. Pharmacokinetics and disposition of various drug loaded liposomes.

    PubMed

    Qian, Shuai; Li, Chenrui; Zuo, Zhong

    2012-05-01

    Due to great efforts in past 45 years, several liposomal products including two liposomal vaccine products have been commercialized and many more potential products are now under clinical trial stage. Although liposome has significantly reduced the toxicity of the drugs with improved or maintained the efficacy, its further development has been limited by its instabilities during preparation and storage, incompatibility with certain drugs, relative high cost of production and quality control as well as unspecified drug release time and sites in vivo. In vivo behaviors of liposomal drugs highly depend on their physiochemical properties including lipid composition, particle size, surface charge, surface modifications and the administrated dose as well as the route of administration. Based on the literature reports from the past two decades, the current review provided an updated summary of the key factors in liposomal preparations for clinical usage and its impact on the alternation of pharmacokinetic and disposition behaviors of drugs encapsulated in the liposome formulations. Clinical applications of liposomal preparation in anti-tumor agents, anti-infective agents as well as the macromolecules have been highlighted.

  19. Evaluation for the interaction between intrathecal melatonin and clonidine or neostigmine on formalin-induced nociception.

    PubMed

    Yoon, Myung Ha; Park, Heon Chang; Kim, Woong Mo; Lee, Hyung Gon; Kim, Yeo Ok; Huang, Lan Ji

    2008-12-19

    We examined the nature of pharmacological interaction after coadministration of melatonin with clonidine or neostigmine on formalin-induced nociception at the spinal level. Further, the role of melatonin receptor subtypes in melatonin-induced antinociception was clarified. Catheters were inserted into the intrathecal space of male Sprague-Dawley rats. Pain was assessed using the formalin test (induced by a subcutaneous injection of 50 microl of a 5% formalin solution to the hindpaw). Isobolographic analysis was used for the evaluation of drug interaction between melatonin and clonidine or neostigmine. Non-selective MT1/MT2 receptors antagonist (luzindole), MT2 receptor antagonist (4-P-PDOT), and MT3 receptor/alpha-1 adrenoceptor antagonist (prazosin) were intrathecally given to verify the involvement of the melatonin receptor subtypes in the antinociception of melatonin. Furthermore, the effect of intrathecal MT3 receptor ligand (GR 135531) was observed. Intrathecal melatonin, clonidine, and neostigmine dose-dependently suppressed the flinching response during phase 1 and phase 2 in the formalin test. Isobolographic analysis showed additivity between melatonin and clonidine or neostigmine in both phases. The antinociceptive effect of melatonin was antagonized by luzindole, 4-P-PDOT, and prazosin in the spinal cord. Intrathecal GR 135531 was ineffective against the formalin-induced flinching response. These results suggest that melatonin interacts additively with clonidine and neostigmine in the formalin-induced nociception at the spinal level. Furthermore, the antinociception of melatonin is mediated through the MT2 receptor, but not the MT3 receptor. However, it seems that alpha-1 adrenoceptor plays in the effect of melatonin.

  20. Antimycobacterial activity of lecithin-cholesterol liposomes in the presence of phospholipase A2.

    PubMed

    Kondo, E; Kanai, K

    1978-06-01

    Tubercle bacilli were preincubated with lecithin-cholesterol liposomes to be subsequently exposed to phospholipase A2. After further incubation in the environment of acidic buffer, viable units in the final mixture were enumerated by inoculating the serial dilutions of an aliquot onto Kirchner agar medium containing horse serum in 5%. Another aliquot was used for lipid analyses to confirm hydrolysis of lecithin. In addition to this bactericidal type of experiments, bacteriostatic tests were also conducted with Kirchner semi-solid agar medium, into which liposome-treated bacilli were inoculated with the enzyme at a time. Various natural and synthetic lecithins different in constituent fatty acids were employed. The results indicated that toxic fatty acids released from lecithin acted to kill the bacilli or to inhibit their growth.

  1. Cabotegravir long acting injection protects macaques against intravenous challenge with SIVmac251.

    PubMed

    Andrews, Chasity D; Bernard, Leslie St; Poon, Amanda Yee; Mohri, Hiroshi; Gettie, Natanya; Spreen, William R; Gettie, Agegnehu; Russell-Lodrigue, Kasi; Blanchard, James; Hong, Zhi; Ho, David D; Markowitz, Martin

    2017-02-20

    We evaluated the effectiveness of cabotegravir (CAB; GSK1265744 or GSK744) long acting as preexposure prophylaxis (PrEP) against intravenous simian immunodeficiency virus (SIV) challenge in a model that mimics blood transfusions based on the per-act probability of infection. CAB long acting is an integrase strand transfer inhibitor formulated as a 200 mg/ml injectable nanoparticle suspension that is an effective PrEP agent against rectal and vaginal simian/human immunodeficiency virus transmission in macaques. Three groups of rhesus macaques (n = 8 per group) were injected intramuscularly with CAB long acting and challenged intravenously with 17 animal infectious dose 50% SIVmac251 on week 2. Group 1 was injected with 50 mg/kg on week 0 and 4 to evaluate the protective efficacy of the CAB long-acting dose used in macaque studies mimicking sexual transmission. Group 2 was injected with 50 mg/kg on week 0 to evaluate the necessity of the second injection of CAB long acting for protection against intravenous challenge. Group 3 was injected with 25 mg/kg on week 0 and 50 mg/kg on week 4 to correlate CAB plasma concentrations at the time of challenge with protection. Five additional macaques remained untreated as controls. CAB long acting was highly protective with 21 of the 24 CAB long-acting-treated macaques remaining aviremic, resulting in 88% protection. The plasma CAB concentration at the time of virus challenge appeared to be more important for protection than sustaining therapeutic plasma concentrations with the second CAB long acting injection. These results support the clinical investigation of CAB long acting as PrEP in people who inject drugs.

  2. The application of EDTA in drug delivery systems: doxorubicin liposomes loaded via NH4EDTA gradient

    PubMed Central

    Song, Yanzhi; Huang, Zhenjun; Song, Yang; Tian, Qingjing; Liu, Xinrong; She, Zhennan; Jiao, Jiao; Lu, Eliza; Deng, Yihui

    2014-01-01

    The applications of ethylenediaminetetraacetic acid (EDTA) have been expanded from the treatment of heavy metal poisoning to chelation therapies for atherosclerosis, heart disease, and cancers, in which EDTA reduces morbidity and mortality by chelating toxic metal ions. In this study, EDTA was used in a drug delivery system by adopting an NH4EDTA gradient method to load doxorubicin into liposomes with the goal of increasing therapeutic effects and decreasing drug-related cytotoxicity. The particle size of the optimum NH4EDTA gradient liposomes was 79.4±1.87 nm, and the entrapment efficiency was 95.54%±0.59%. In vitro studies revealed that liposomes prepared using an NH4EDTA gradient possessed long-term stability and delayed drug release. The in vivo studies also showed the superiority of the new doxorubicin formulation. Compared with an equivalent drug dose (5 mg/kg) prepared by (NH4)2SO4 gradient, NH4EDTA gradient liposomes showed no significant differences in tumor inhibition ratio, but cardiotoxicity and liposome-related immune organ damage were lower, and no drug-related deaths were observed. These results show that use of the NH4EDTA gradient method to load doxorubicin into liposomes could significantly reduce drug toxicity without influencing antitumor activity. PMID:25120359

  3. Liposome Technology for Industrial Purposes

    PubMed Central

    Wagner, Andreas; Vorauer-Uhl, Karola

    2011-01-01

    Liposomes, spherical vesicles consisting of one or more phospholipid bilayers, were first described in the mid 60s by Bangham and coworkers. Since then, liposomes have made their way to the market. Today, numerous lab scale but only a few large-scale techniques are available. However, a lot of these methods have serious limitations in terms of entrapment of sensitive molecules due to their exposure to mechanical and/or chemical stress. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability. An additional point of view was taken to regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents. PMID:21490754

  4. Intrathecal resiniferatoxin in a dog model: Efficacy in bone cancer pain

    PubMed Central

    Brown, Dorothy Cimino; Agnello, Kimberly; Iadarola, Michael J.

    2015-01-01

    Resiniferatoxin (RTX) is the most potent amongst all known endogenous and synthetic agonists for the transient receptor potential vanilloid 1 (TRPV1) receptor, which is a calcium permeable non-selective cation channel, expressed on the peripheral and central terminals of small diameter sensory neurons. [11,32] Prolonged calcium influx induced by RTX causes cytotoxicity and death of only those sensory neurons that express the TRPV1 ion channel leading to selective targeting and permanent deletion of the TRPV1-expressing C-fiber neuronal cell bodies in the dorsal root ganglia. [10,17] The goal of this project was to provide pre-clinical efficacy data, that intrathecal RTX could provide effective pain relief and improve function in dogs with bone cancer without significant long-term side effects. In a single blind, controlled study, 72 companion dogs with bone cancer pain were randomized to standard of care analgesic therapy alone (control, n=36) or 1.2 mcg/kg intrathecal RTX in addition to standard of care analgesic therapy (treated, n=36). Significantly more dogs in the control group (78%) required unblinding and adjustment in analgesic protocol or euthanasia within 6 weeks of randomization, than dogs that were treated with RTX (50%; p<0.03); and overall, dogs in the control group required unblinding significantly sooner than dogs that had been treated with RTX (p<0.02). The analgesic effect was documented in these dogs without any evidence of development of deafferentation pain syndrome that can be seen with neurolytic therapies. PMID:25659068

  5. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release.

    PubMed

    Lajunen, Tatu; Kontturi, Leena-Stiina; Viitala, Lauri; Manna, Moutusi; Cramariuc, Oana; Róg, Tomasz; Bunker, Alex; Laaksonen, Timo; Viitala, Tapani; Murtomäki, Lasse; Urtti, Arto

    2016-06-06

    Light-triggered drug delivery systems enable site-specific and time-controlled drug release. In previous work, we have achieved this with liposomes containing gold nanoparticles in the aqueous core. Gold nanoparticles absorb near-infrared light and release the energy as heat that increases the permeability of the liposomal bilayer, thus releasing the contents of the liposome. In this work, we replaced the gold nanoparticles with the clinically approved imaging agent indocyanine green (ICG). The ICG liposomes were stable at storage conditions (4-22 °C) and at body temperature, and fast near-infrared (IR) light-triggered drug release was achieved with optimized phospholipid composition and a 1:50 ICG-to-lipid molar ratio. Encapsulated small molecular calcein and FITC-dextran (up to 20 kDa) were completely released from the liposomes after light exposure for 15 s. Location of ICG in the PEG layer of the liposomes was simulated with molecular dynamics. ICG has important benefits as a light-triggering agent in liposomes: fast content release, improved stability, improved possibility of liposomal size control, regulatory approval to use in humans, and the possibility of imaging the in vivo location of the liposomes based on the fluorescence of ICG. Near-infrared light used as a triggering mechanism has good tissue penetration and safety. Thus, ICG liposomes are an attractive option for light-controlled and efficient delivery of small and large drug molecules.

  6. Intrathecal Bupivacaine Monotherapy with a Retrograde Catheter for the Management of Complex Regional Pain Syndrome of the Lower Extremity.

    PubMed

    McRoberts, W Porter; Apostol, Catalina; Haleem, Abdul

    2016-01-01

    Complex regional pain syndrome (CRPS) presents a therapeutic challenge due to its many presentations and multifaceted pathophysiology. There is no approved treatment algorithm and clinical interventions are often applied empirically. In cases of CRPS where symptoms are localized to an extremity, a targeted treatment is indicated. We describe the use of intrathecal bupivacaine monotherapy, delivered through a retrograde catheter, in the treatment of CRPS affecting the lower extremity. The patient, a 57-year-old woman with a history of failed foot surgery, was seen in our office after 2 years of ineffective treatments with local blocks and neurolytic procedures. We advanced therapy to moderately invasive procedures with an emphasis on neuromodulation. A combined central and peripheral stimulation technique that initially provided 75% pain relief, failed to provide lasting analgesia. We proceeded with an intrathecal pump implant. Based on the results of dorsal root ganglion (DRG) mapping, L5-S1 was identified as the optimal target for therapy and a retrograde catheter was placed at this level. Various intrathecal medications were tested individually. An intrathecal morphine trial was ineffective (visual analog scale [VAS] 7), while intrathecal clonidine provided excellent pain relief (VAS 0) that was limited by severe side effects. Bupivacaine provided 100% analgesia with tolerable side effects (lower extremity weakness and minor bladder incontinence) and was selected for intrathecal infusion. After 14 months, bupivacaine treatment continued to control pain exacerbations. We conclude that CRPS patients benefit from early identification of the predominant underlying symptoms and a targeted treatment with moderately invasive techniques when less invasive techniques fail. Intrathecal bupivacaine, bupivacaine monotherapy, retrograde catheter, complex regional pain syndrome (CRPS), dual stimulation, dosal root ganglion (DRG) testing.

  7. Possible delayed respiratory depression following intrathecal injection of morphine and bupivacaine in an alpaca.

    PubMed

    Martínez, Miguel; Murison, Pamela J; Murrell, Jo

    2014-01-01

    To describe general anesthesia and successful treatment of an alpaca, which developed respiratory arrest 2 hours after intrathecal injection of morphine and bupivacaine. A 10-day-old female alpaca weighing 7.3 kg was presented to our hospital with a fractured right tibia. The cria was anesthetized to repair the fracture with a dynamic compression plate. Anesthesia was induced with IV propofol and maintained with sevoflurane in 100% oxygen. Prior to the start of surgery the alpaca received an unintended intrathecal injection of 0.6 mL of a solution of 0.5 mg morphine (0.068 mg/kg) and 1.5 mg bupivacaine (0.2 mg/kg), after an attempted lumbo-sacral epidural. The alpaca developed respiratory arrest 120 minutes after the intrathecal injection was administered. Adequate hemoglobin-oxygen saturation was maintained despite minimal intermittent manual ventilation, but marked hypercapnia developed (PaCO2 of 17.3 KPa [130 mm Hg]). Delayed respiratory depression resulting from cephalad migration of intrathecal morphine was suspected. Ventilation was supported until the end of surgery when sevoflurane was discontinued. The trachea remained intubated, 100% oxygen was supplied, and ventilation was supported at 2-4 breaths/min for the next 60 minutes, but no attempts to breathe spontaneously were detected. Intravenous naloxone (0.3 mg [0.04 mg/kg]) was administered slowly to effect until adequate spontaneous ventilation and full consciousness returned. The anesthetic recovery of the alpaca was rapid and uneventful after the opioid antagonist was given. Delayed respiratory depression is a potential complication after intrathecal administration of morphine. Careful dose-adjustment may reduce the risk, and close monitoring will result in early detection and treatment of this complication. © Veterinary Emergency and Critical Care Society 2014.

  8. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    PubMed

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  9. Application of Various Types of Liposomes in Drug Delivery Systems

    PubMed Central

    Alavi, Mehran; Karimi, Naser; Safaei, Mohsen

    2017-01-01

    Liposomes, due to their various forms, require further exploration. These structures can deliver both hydrophilic and hydrophobic drugs for cancer, antibacterial, antifungal, immunomodulation, diagnostics, ophtalmica, vaccines, enzymes and genetic elements. Preparation of liposomes results in different properties for these systems. In addition, based on preparation methods, liposomes types can be unilamellar, multilamellar and giant unilamellar; however, there are many factors and difficulties that affect the development of liposome drug delivery structure. In the present review, we discuss some problems that impact drug delivery by liposomes. In addition, we discuss a new generation of liposomes, which is utilized for decreasing the limitation of the conventional liposomes. PMID:28507932

  10. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine.

    PubMed

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-12-01

    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high

  11. Inhibition of HIV Virus by Neutralizing Vhh Attached to Dual Functional Liposomes Encapsulating Dapivirine

    NASA Astrophysics Data System (ADS)

    Wang, Scarlet Xiaoyan; Michiels, Johan; Ariën, Kevin K.; New, Roger; Vanham, Guido; Roitt, Ivan

    2016-07-01

    Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high

  12. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs

    PubMed Central

    Fouladi, Farnaz; Steffen, Kristine J.; Mallik, Sanku

    2017-01-01

    Liposomes are nanocarriers that deliver the payloads at the target site, leading to therapeutic drug concentrations at the diseased site and reduced toxic effects in healthy tissues. Several approaches have been used to enhance the ability of the nanocarrier to target the specific tissues, including ligand-targeted liposomes and stimuli-responsive liposomes. Ligand-targeted liposomes exhibit higher uptake by the target tissue due to the targeting ligand attached to the surface, while, the stimuli-responsive liposomes do not release their cargo unless they expose to an endogenous or exogenous stimulant at the target site. In this review, we mainly focus on the liposomes that are responsive to pathologically increased levels of enzymes at the target site. Enzyme-responsive liposomes release their cargo upon contact with the enzyme through several destabilization mechanisms: a) structural perturbation in the lipid bilayer, b) removal of a shielding polymer from the surface and increased cellular uptake, c) cleavage of a lipopeptide or lipopolymer incorporated in the bilayer, and d) activation of a prodrug in the liposomes. PMID:28201868

  13. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs.

    PubMed

    Fouladi, Farnaz; Steffen, Kristine J; Mallik, Sanku

    2017-04-19

    Liposomes are nanocarriers that deliver the payloads at the target site, leading to therapeutic drug concentrations at the diseased site and reduced toxic effects in healthy tissues. Several approaches have been used to enhance the ability of the nanocarrier to target the specific tissues, including ligand-targeted liposomes and stimuli-responsive liposomes. Ligand-targeted liposomes exhibit higher uptake by the target tissue due to the targeting ligand attached to the surface, while the stimuli-responsive liposomes do not release their cargo unless they expose to an endogenous or exogenous stimulant at the target site. In this review, we mainly focus on the liposomes that are responsive to pathologically increased levels of enzymes at the target site. Enzyme-responsive liposomes release their cargo upon contact with the enzyme through several destabilization mechanisms: (1) structural perturbation in the lipid bilayer, (2) removal of a shielding polymer from the surface and increased cellular uptake, (3) cleavage of a lipopeptide or lipopolymer incorporated in the bilayer, and (4) activation of a prodrug in the liposomes.

  14. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery.

    PubMed

    Dai, Min; Wu, Cong; Fang, Hong-Ming; Li, Li; Yan, Jia-Bao; Zeng, Dan-Lin; Zou, Tao

    2017-06-01

    We prepared and characterised thermo-responsive magnetic liposomes, which were designed to combine features of magnetic targeting and thermo-responsive control release for hyperthermia-triggered local drug delivery. The particle size and zeta-potential of the thermo-responsive magnetic ammonium bicarbonate (MagABC) liposomes were about 210 nm and -14 mV, respectively. The MagABC liposomes showed encapsulation efficiencies of about 15% and 82% for magnetic nanoparticles (mean crystallite size 12 nm) and doxorubicin (DOX), respectively. The morphology of the MagABC liposomes was visualised using transmission electron microscope (TEM). The MagABC liposomes showed desired thermo-responsive release. The MagABC liposomes, when physically targeted to tumour cells in culture by a permanent magnetic field yielded a substantial increase in intracellular accumulation of DOX as compared to non-magnetic ammonium bicarbonate (ABC) liposomes. This resulted in a parallel increase in cytotoxicity for DOX loaded MagABC liposomes over DOX loaded ABC liposomes in tumour cells.

  15. Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications.

    PubMed

    Rodrigues, Ana Rita O; Gomes, I T; Almeida, Bernardo G; Araújo, J P; Castanheira, Elisabete M S; Coutinho, Paulo J G

    2015-07-21

    Nickel ferrite nanoparticles with superparamagnetic behavior at room temperature were synthesized using a coprecipitation method. These magnetic nanoparticles were either covered with a lipid bilayer, forming dry magnetic liposomes (DMLs), or entrapped in liposomes, originating aqueous magnetoliposomes (AMLs). A new and promising method for the synthesis of DMLs is described. The presence of the lipid bilayer in DMLs was confirmed by FRET (Förster Resonance Energy Transfer) measurements between the fluorescent-labeled lipids NBD-C12-HPC (NBD acting as a donor) included in the second lipid layer and rhodamine B-DOPE (acceptor) in the first lipid layer. An average donor-acceptor distance of 3 nm was estimated. Assays of the non-specific interactions of magnetoliposomes with biological membranes (modeled using giant unilamellar vesicles, GUVs) were performed. Membrane fusion between both aqueous and dry magnetoliposomes and GUVs was confirmed by FRET, which is an important result regarding applications of these systems both as hyperthermia agents and antitumor drug nanocarriers.

  16. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells.

    PubMed

    Lossius, Andreas; Johansen, Jorunn N; Vartdal, Frode; Robins, Harlan; Jūratė Šaltytė, Benth; Holmøy, Trygve; Olweus, Johanna

    2014-11-01

    Epstein-Barr virus (EBV) has long been suggested as a pathogen in multiple sclerosis (MS). Here, we used high-throughput sequencing to determine the diversity, compartmentalization, persistence, and EBV-reactivity of the T-cell receptor (TCR) repertoires in MS. TCR-β genes were sequenced in paired samples of cerebrospinal fluid (CSF) and blood from patients with MS and controls with other inflammatory neurological diseases. The TCR repertoires were highly diverse in both compartments and patient groups. Expanded T-cell clones, represented by TCR-β sequences >0.1%, were of different identity in CSF and blood of MS patients, and persisted for more than a year. Reference TCR-β libraries generated from peripheral blood T cells reactive against autologous EBV-transformed B cells were highly enriched for public EBV-specific sequences and were used to quantify EBV-reactive TCR-β sequences in CSF. TCR-β sequences of EBV-reactive CD8+ T cells, including several public EBV-specific sequences, were intrathecally enriched in MS patients only, whereas those of EBV-reactive CD4+ T cells were also enriched in CSF of controls. These data provide evidence for a clonally diverse, yet compartmentalized and persistent, intrathecal T-cell response in MS. The presented strategy links TCR sequence to intrathecal T-cell specificity, demonstrating enrichment of EBV-reactive CD8+ T cells in MS. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  18. "Smart" liposomal nanocontainers in biology and medicine.

    PubMed

    Tarahovsky, Y S

    2010-07-01

    The perspectives of using liposomes for delivery of drugs to desired parts of the human body have been intensively investigated for more than 30 years. During this time many inventions have been suggested and different kinds of liposomal devices developed, and a number of them have reached the stages of preclinical or clinical trials. The latest techniques can be used to develop biocompatible nano-sized liposomal containers having some abilities of artificial intellect, such as the presence of sensory and responsive units. However, only a few have been clinically approved. Further improvements in this area depend on our knowledge of the interactions of drugs with the lipid bilayer of liposomes. Further studies on liposomal transport through the human body, their targeting of cells requiring therapeutic treatment, and finally, the development of techniques for controlled drug delivery to desired acceptors on cell surfaces or in cytoplasm are still required.

  19. In vivo distribution and antitumor activity of heparin-stabilized doxorubicin-loaded liposomes.

    PubMed

    Han, Hee Dong; Lee, Aeri; Song, Chung Kil; Hwang, Taewon; Seong, Hasoo; Lee, Chong Ock; Shin, Byung Cheol

    2006-04-26

    The purpose of this study was to investigate the effect of heparin conjugation to the surface of doxorubicin (DOX)-loaded liposomes on the circulation time, biodistribution and antitumor activity after intravenous injection in murine B16F10 melanoma tumor-bearing mice. The heparin-conjugated liposomes (heparin-liposomes) were prepared by fixation of the negatively charged heparin to the positively charged liposomes. The existence of heparin on the liposomal surface was confirmed by measuring the changes in the particle size, zeta potential and heparin amount of the liposomes. The stability of the heparin-liposomes in serum was higher than that of the control liposomes, due to the heparin-liposomes being better protected from the adsorption of serum proteins. The DOX-loaded heparin-liposomes showed high drug levels for up to 64 h after the intravenous injection and the half-life of DOX was approximately 8.4- or 1.5-fold higher than that of the control liposomes or polyethyleneglycol-fixed liposomes (PEG-liposomes), respectively. The heparin-liposomes accumulated to a greater extent in the tumor than the control or PEG-liposomes as a result of their lower uptake by the reticuloendothelial system cells in the liver and spleen. In addition, the DOX-loaded heparin-liposomes retarded the growth of the tumor effectively compared with the control or PEG-liposomes. These results indicate the promising potential of heparin-liposomes as a new sterically stabilized liposomal delivery system for the enhancement of the therapeutic efficacy of chemotherapeutic agents.

  20. Characterisation of gene delivery using liposomal bubbles and ultrasound

    NASA Astrophysics Data System (ADS)

    Koshima, Risa; Suzuki, Ryo; Oda, Yusuke; Hirata, Keiichi; Nomura, Tetsuya; Negishi, Yoichi; Utoguchi, Naoki; Kudo, Nobuki; Maruyama, Kazuo

    2011-09-01

    The combination of nano/microbubbles and ultrasound is a novel technique for a non-viral gene deliver. We have previously developed novel ultrasound sensitive liposomes (Bubble liposomes) which contain the ultrasound imaging gas perfluoropropane. In this study, Bubble liposomes were compared with cationic lipid (CL)-DNA complexes as potential gene delivery carriers into tumors in vivo. The delivery of genes by bubble liposomes depended on the intensity of the applied ultrasound. The transfection efficiency plateaued at 0.7 W/cm2 ultrasound intensity. Bubble liposomes efficiently transferred genes into cultured cells even when the cells were exposed to ultrasound for only 1 s. In addition, bubble liposomes were able to introduce the luciferase gene more effectively than CL-DNA complexes into mouse ascites tumor cells. We conclude that the combination of Bubble liposomes and ultrasound is a good method for gene transfer in vivo.

  1. Liposomal bupivacaine and clinical outcomes.

    PubMed

    Tong, Yi Cai Isaac; Kaye, Alan David; Urman, Richard D

    2014-03-01

    In the multimodal approach to the management of postoperative pain, local infiltration and regional blocks have been increasingly utilized for pain control. One of the limitations of local anesthetics in the postoperative setting is its relatively short duration of action. Multivesicular liposomes containing bupivacaine have been increasingly utilized for their increased duration of action. Compared with bupivacaine HCl, local infiltration of liposomal bupivacaine has shown to have an increase in duration of action and causes delay in peak plasma concentration. In this article, we attempt to review the clinical literature surrounding liposomal bupivacaine and its evolving role in perioperative analgesia. This new bupivacaine formation may have promising implications in postoperative pain control, resulting in increased patient satisfaction and a decrease in both hospital stay and opioid-induced adverse events (AEs). Although more studies are needed, the preliminary clinical trials suggest that liposomal bupivacaine has predictable pharmacokinetics, a similar side effect profile compared with bupivacaine HCl, and is effective in providing increased postoperative pain control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes

    DOEpatents

    Rahman, Yueh Erh

    1977-11-10

    A method is provided for transferring a polyaminopolycarboxylic acid chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes, which liposomes will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. The chelating agent is encapsulated within liposomes by drying a lipid mixture to form a thin film and wetting the lipid film with a solution containing the chelating agent. Mixing then results in the formation of a suspension of liposomes encapsulating the chelating agent, which liposomes can then be separated.

  3. Delivery systems for biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Biopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g. high molecular size, susceptibility to enzymatic activity), these products present some limitations for administration and usually parenteral routes are the only option. To avoid these limitations, different colloidal carriers (e.g. liposomes, micelles, microemulsions and dendrimers) have been proposed to improve biopharmaceuticals delivery. Liposomes are promising drug delivery systems, despite some limitations have been reported (e.g. in vivo failure, poor long-term stability and low transfection efficiency), and only a limited number of formulations have reached the market. Micelles and microemulsions require more studies to exclude some of the observed drawbacks and guarantee their potential for use in clinic. According to their peculiar structures, dendrimers have been showing good results for nucleic acids delivery and a great development of these systems during next years is expected. This is the Part II of two review articles, which provides the state of the art of biopharmaceuticals delivery systems. Part II deals with liposomes, micelles, microemulsions and dendrimers.

  4. Effects of Intrathecal SNC80, a Delta Receptor Ligand, on Nociceptive Threshold and Dorsal Horn Substance P Release

    PubMed Central

    Kouchek, Milad; Takasusuki, Toshifumi; Terashima, Tetsuji; Yaksh, Tony L.

    2013-01-01

    Delta-opioid receptors (DOR) are present in the superficial dorsal horn and are believed to regulate the release of small afferent transmitters as evidenced by the effects of spinally delivered delta-opioid preferring peptides. Here we examined the effects of intrathecal SNC80 [(+)-4-[α(R)-α-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-(methoxybenzyl)-N,N-diethylbenzamide], a selective nonpeptidic DOR agonist, in three preclinical pain models, acute thermal escape, intraplantar carrageenan-tactile allodynia, and intraplantar formalin flinches, and on the evoked release of substance P (SP) from small primary afferents. Rats with chronic intrathecal catheters received intrathecal vehicle or SNC80 (100 or 200 μg). Intrathecal SNC80 did not change acute thermal latencies or carrageenan-induced thermal hyperalgesia. However, SNC80 attenuated carrageenan-induced tactile allodynia and significantly reduced both phase 1 and phase 2 formalin-induced paw flinches, as assessed by an automatic flinch counting device. These effects were abolished by naltrindole (3 mg/kg i.p.), a selective DOR antagonist, but not CTOP (10 µg i.t.), a selective MOR antagonist. Furthermore, intrathecal SNC80 (200 μg) blocked formalin-induced substance P release otherwise evoked in the ispilateral superficial dorsal horn as measured by NK1 receptor internalization. In conclusion, intrathecal SNC80 alleviated pain hypersensitivity after peripheral inflammation in a fashion paralleling its ability to block peptide transmitter release from small peptidergic afferents, which by its pharmacology appears to represent an effect mediated by a spinal DOR. PMID:23978562

  5. Modification of liposomal concentration in liposome/adenoviral complexes allows significant protection of adenoviral vectors from neutralising antibody, in vitro.

    PubMed

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel J; Kalle, Wouter H J

    2005-06-01

    Adenoviral vectors have been commonly used in gene therapy protocols, however the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced which limits further administration. This study examines the efficacy of complexing liposomes to adenovirus for the protection of the adenovirus from neutralising antibodies in an in vitro setting. Dimethyldioctadecylammonium bromide (DDAB)-dioleoyl-l-phosphatidylethanolamine (DOPE) liposomes were bound at varying concentrations to adenovirus to form AL complexes and tested these complexes' ability to prevent adenoviral neutralisation. It is shown that by increasing the concentration of liposomes in the adenoviral-liposome (AL) complexes we can increase the level of immuno-shielding afforded the adenovirus. It is also shown that the increase in liposomal concentration may lead to drawbacks such as increased cytotoxicity and reductions in expression levels.

  6. Multifunctional liposomes for enhanced anti-cancer therapy

    NASA Astrophysics Data System (ADS)

    Falcao, Claudio Borges

    2011-12-01

    Macromolecular drugs have great promises for cancer treatment, such as the pro-apoptotic peptide D-(KLAKLAK)2 and the bcl-2 antisense oligodeoxynucleotide G3139. However, these macromolecules require efficient drug carriers, like liposomes, to deliver them inside cells. Also, if these macromolecules can be combined in a single liposome, the cancer cell killing will be greater than using just one. With this possibility in mind, cationic liposomes (CLs) were elaborated to encapsulate both macromolecules and deliver them inside cells. Later, surface modification of CLs was investigated through the addition of polyethylene glycol (PEG) to obtain long-circulating liposomes. CLs were prepared through charge alternation among D-(KLAKLAK)2 , G3139 and DOTAP. These liposomes were characterized with particle size and zeta-potential measurements, antisense entrapment and peptide loading efficiency. The in vitro effects of CL formulations were tested with B16(F10) cells through viability studies, uptake assay and detection of apoptosis. CL formulations were also applied in vivo in B16(F10) tumor-bearing mice through intratumoral injections, and tumor growth inhibition and detection of apoptosis were evaluated. Next, the mechanism of action of the CL formulations was investigated by Western blotting. Later, PEG was incorporated at increasing amounts to the liposomes to determine which concentration can better prevent interactions between PEG-cationic liposomes (PCL) and B16(F10) cells. Next, pH-cleavable PEG was prepared and then added to the liposomes in the same amount that PEG in PCL could decrease interaction with cells. Finally, cell viability studies were performed with CL, PCL and pH-sensitive PCL (pH-PCL) formulations after pre-incubation at pH 7.4 or at pH 5.0. Positively charged CL particles were obtained after encapsulation of negatively charged D-(KLAKLAK)2/G3139 complexes. In vitro , CLs containing D-(KLAKLAK)2/G3139 complexes could reduce B16(F10) cell viability

  7. Intrathecal Pump Exposure to Electromagnetic Interference: A Report of Device Interrogation following Multiple ECT Sessions.

    PubMed

    Bicket, Mark C; Hanna, George M

    2016-02-01

    Intrathecal drug delivery systems represent an increasingly common treatment modality for patients with a variety of conditions, including chronic pain and spasticity. Pumps rely on electronic programming to properly control and administer highly concentrated medications. Electromagnetic interference (EMI) is a known exposure that may cause a potential patient safety issue stemming from direct patient injury, pump damage, or changes to pump operation or flow rate. The objective of our case report was to describe an approach to evaluating a patient with a pump prior to and following exposure to EMI from electroconvulsive therapy (ECT), as well as to document findings from device interrogations associated with this event. Case report. Academic university-based pain management center. We present the case of a patient with an intrathecal pump who underwent multiple exposures to EMI in the form of 42 ECT sessions. Interrogation of the intrathecal drug delivery system revealed no safety issues following ECT sessions. At no time were error messages, unintentional changes in event logs, unintentional changes in pump settings, or evidence of pump stall or over-infusion noted. Communication with multiple entities (patient, family, consulting physicians, and device manufacturer) and maintaining vigilance through device interrogation both before and after EMI exposure are appropriate safeguards to mitigate the risk and detect potential adverse events of EMI with intrathecal drug delivery systems. Given the infrequent reports of device exposure to ECT, best practices may be derived from experience with EMI exposure from magnetic resonance imaging (MRI). Although routine EMI exposure to intrathecal drug delivery systems should be avoided, we describe one patient with repeated exposure to ECT without apparent complication.

  8. Liposome-encapsulated actinomycin for cancer chemotherapy

    DOEpatents

    Rahman, Yueh-Erh; Cerny, Elizabeth A.

    1976-01-01

    An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.

  9. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain.

    PubMed

    Eide, Per Kristian; Ringstad, Geir

    2015-11-01

    Recently, the "glymphatic system" of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain.

  10. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain

    PubMed Central

    Ringstad, Geir

    2015-01-01

    Recently, the “glymphatic system” of the brain has been discovered in rodents, which is a paravascular, transparenchymal route for clearance of excess brain metabolites and distribution of compounds in the cerebrospinal fluid. It has already been demonstrated that intrathecally administered gadolinium (Gd) contrast medium distributes along this route in rats, but so far not in humans. A 27-year-old woman underwent magnetic resonance imaging (MRI) with intrathecal administration of gadobutrol, which distributed throughout her entire brain after 1 and 4.5 h. MRI with intrathecal Gd may become a tool to study glymphatic function in the human brain. PMID:26634147

  11. Optimization and characterization of liposome formulation by mixture design.

    PubMed

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  12. Liposomal curcumin and its application in cancer

    PubMed Central

    Lee, Robert J; Zhao, Ling

    2017-01-01

    Curcumin (CUR) is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy. PMID:28860764

  13. Liposomal curcumin and its application in cancer.

    PubMed

    Feng, Ting; Wei, Yumeng; Lee, Robert J; Zhao, Ling

    2017-01-01

    Curcumin (CUR) is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy.

  14. Measured density and calculated baricity of custom-compounded drugs for chronic intrathecal infusion.

    PubMed

    Hejtmanek, Michael R; Harvey, Tracy D; Bernards, Christopher M

    2011-01-01

    To minimize the frequency that intrathecal pumps require refilling, drugs are custom compounded at very high concentrations. Unfortunately, the baricity of these custom solutions is unknown, which is problematic, given baricity's importance in determining the spread of intrathecally administered drugs. Consequently, we measured the density and calculated the baricity of clinically relevant concentrations of multiple drugs used for intrathecal infusion. Morphine, clonidine, bupivacaine, and baclofen were weighed to within 0.0001 g and diluted in volumetric flasks to produce solutions of known concentrations (morphine 1, 10, 25, and 50 mg/mL; clonidine 0.05, 0.5, 1, and 3 mg/mL; bupivacaine 2.5, 5, 10, and 20 mg/mL; baclofen 1, 1.5, 2, and 4 mg/mL). The densities of the solutions were measured at 37°C using the mechanical oscillation method. A "best-fit" curve was calculated for plots of concentration versus density for each drug. All prepared solutions of clonidine and baclofen were hypobaric. Higher concentrations of morphine and bupivacaine were hyperbaric, whereas lower concentrations were hypobaric. The relationship between concentration and density is linear for morphine (r > 0.99) and bupivacaine (r > 0.99) and logarithmic for baclofen (r = 0.96) and clonidine (r = 0.98). This is the first study to examine the relationship between concentration and density for custom drug concentrations commonly used in implanted intrathecal pumps. We calculated an equation that defines the relationship between concentration and density for each drug. Using these equations, clinicians can calculate the density of any solution made from the drugs studied here.

  15. Long-acting reversible contraceptive acceptability and unintended pregnancy among women presenting for short-acting methods: a randomized patient preference trial.

    PubMed

    Hubacher, David; Spector, Hannah; Monteith, Charles; Chen, Pai-Lien; Hart, Catherine

    2017-02-01

    Measures of contraceptive effectiveness combine technology and user-related factors. Observational studies show higher effectiveness of long-acting reversible contraception compared with short-acting reversible contraception. Women who choose long-acting reversible contraception may differ in key ways from women who choose short-acting reversible contraception, and it may be these differences that are responsible for the high effectiveness of long-acting reversible contraception. Wider use of long-acting reversible contraception is recommended, but scientific evidence of acceptability and successful use is lacking in a population that typically opts for short-acting methods. The objective of the study was to reduce bias in measuring contraceptive effectiveness and better isolate the independent role that long-acting reversible contraception has in preventing unintended pregnancy relative to short-acting reversible contraception. We conducted a partially randomized patient preference trial and recruited women aged 18-29 years who were seeking a short-acting method (pills or injectable). Participants who agreed to randomization were assigned to 1 of 2 categories: long-acting reversible contraception or short-acting reversible contraception. Women who declined randomization but agreed to follow-up in the observational cohort chose their preferred method. Under randomization, participants chose a specific method in the category and received it for free, whereas participants in the preference cohort paid for the contraception in their usual fashion. Participants were followed up prospectively to measure primary outcomes of method continuation and unintended pregnancy at 12 months. Kaplan-Meier techniques were used to estimate method continuation probabilities. Intent-to-treat principles were applied after method initiation for comparing incidence of unintended pregnancy. We also measured acceptability in terms of level of happiness with the products. Of the 916

  16. Best Practices for Intrathecal Baclofen Therapy: Dosing and Long-Term Management.

    PubMed

    Boster, Aaron L; Adair, Roy L; Gooch, Judith L; Nelson, Mary Elizabeth S; Toomer, Andrea; Urquidez, Joe; Saulino, Michael

    2016-08-01

    Intrathecal baclofen (ITB) therapy aims to reduce spasticity and provide functional control. An expert panel consulted on best practices. Pump fill and drug delivery can be started intraoperatively, with monitoring for at least eight hours. Initiate with the 500 mcg/mL concentration. The starting daily dose should be twice the effective bolus screening dose, or the screening dose if the patient had a prolonged response (greater than eight hours) or negative reactions. Oral antispasmodics can be weaned, one drug at a time beginning with oral baclofen after ITB begins. Assessment should occur within 24 hours of a dose change. For adults, daily dose increases may be 5% to 15% once every 24 hours for cerebral-origin spasticity and 10% to 30% once every 24 hours for spinal-origin spasticity. Daily dose increases can be 5% to 15% once every 24 hours for children. Inpatients should be assessed at least every 24 hours and receive rehabilitation. Step dosing can be used for outpatients who cannot return daily. Dosing options include simple continuous dosing, variable 24-hour flex dosing, or regularly scheduled boluses. Patients/caregivers should understand the care plan, responsibilities, and possible side-effects. Low-reservoir alarm dates and refill schedules should be written down, along with emergency contact information. A higher concentration at refill can extend refill intervals, and a bridge bolus must be programmed. Time changes may affect flex dosing. Pump replacement should be scheduled at least three months in advance. ITB dosing is multistep and individualized. © 2016 International Neuromodulation Society.

  17. Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer

    PubMed Central

    Ghaghada, Ketan B.; Sato, Amy F.; Starosolski, Zbigniew A.; Berg, John; Vail, David M.

    2016-01-01

    Objectives Companion dogs with naturally occurring cancer serve as an important large animal model in translational research because they share strong similarities with human cancers. In this study, we investigated a long circulating liposomal-iodine contrast agent (Liposomal-I) for computed tomography (CT) imaging of solid tumors in companion dogs with naturally occurring cancer. Materials and Methods The institutional animal ethics committees approved the study and written informed consent was obtained from all owners. Thirteen dogs (mean age 10.1 years) with a variety of masses including primary and metastatic liver tumors, sarcomas, mammary carcinoma and lung tumors, were enrolled in the study. CT imaging was performed pre-contrast and at 15 minutes and 24 hours after intravenous administration of Liposomal-I (275 mg/kg iodine dose). Conventional contrast-enhanced CT imaging was performed in a subset of dogs, 90 minutes prior to administration of Liposomal-I. Histologic or cytologic diagnosis was obtained for each dog prior to admission into the study. Results Liposomal-I resulted in significant (p < 0.05) enhancement and uniform opacification of the vascular compartment. Non-renal, reticulo-endothelial systemic clearance of the contrast agent was demonstrated. Liposomal-I enabled visualization of primary and metastatic liver tumors. Sub-cm sized liver lesions grossly appeared as hypo-enhanced compared to the surrounding normal parenchyma with improved lesion conspicuity in the post-24 hour scan. Large liver tumors (> 1 cm) demonstrated a heterogeneous pattern of intra-tumoral signal with visibly higher signal enhancement at the post-24 hour time point. Extra-hepatic, extra-splenic tumors, including histiocytic sarcoma, anaplastic sarcoma, mammary carcinoma and lung tumors, were visualized with a heterogeneous enhancement pattern in the post-24 hour scan. Conclusions The long circulating liposomal-iodine contrast agent enabled prolonged visualization of small

  18. Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer.

    PubMed

    Ghaghada, Ketan B; Sato, Amy F; Starosolski, Zbigniew A; Berg, John; Vail, David M

    2016-01-01

    Companion dogs with naturally occurring cancer serve as an important large animal model in translational research because they share strong similarities with human cancers. In this study, we investigated a long circulating liposomal-iodine contrast agent (Liposomal-I) for computed tomography (CT) imaging of solid tumors in companion dogs with naturally occurring cancer. The institutional animal ethics committees approved the study and written informed consent was obtained from all owners. Thirteen dogs (mean age 10.1 years) with a variety of masses including primary and metastatic liver tumors, sarcomas, mammary carcinoma and lung tumors, were enrolled in the study. CT imaging was performed pre-contrast and at 15 minutes and 24 hours after intravenous administration of Liposomal-I (275 mg/kg iodine dose). Conventional contrast-enhanced CT imaging was performed in a subset of dogs, 90 minutes prior to administration of Liposomal-I. Histologic or cytologic diagnosis was obtained for each dog prior to admission into the study. Liposomal-I resulted in significant (p < 0.05) enhancement and uniform opacification of the vascular compartment. Non-renal, reticulo-endothelial systemic clearance of the contrast agent was demonstrated. Liposomal-I enabled visualization of primary and metastatic liver tumors. Sub-cm sized liver lesions grossly appeared as hypo-enhanced compared to the surrounding normal parenchyma with improved lesion conspicuity in the post-24 hour scan. Large liver tumors (> 1 cm) demonstrated a heterogeneous pattern of intra-tumoral signal with visibly higher signal enhancement at the post-24 hour time point. Extra-hepatic, extra-splenic tumors, including histiocytic sarcoma, anaplastic sarcoma, mammary carcinoma and lung tumors, were visualized with a heterogeneous enhancement pattern in the post-24 hour scan. The long circulating liposomal-iodine contrast agent enabled prolonged visualization of small and large tumors in companion dogs with naturally

  19. Benefits of using intrathecal buprenorphine.

    PubMed

    Rabiee, Seyed Mozaffar; Alijanpour, Ebrahim; Jabbari, Ali; Rostami, Sara

    2014-01-01

    General anesthesia draws attention to the most commonly used modalities for post cesarean delivery pain relief in systemic administration of opioids, while the administration of small dose of intrathecal opioid during spinal anesthesia can be a possible alternative. The aim of this study was to evaluate the effects of buprenorphine on cesarean section prescribed intrathecally. This double blind randomized clinical trial study was conducted in patients for cesarean section under spinal anesthesia. The patients were randomly divided into case and control groups. Case group (208 patients) received 65-70 mg of 5% lidocaine plus 0.2 ml of buprenorphine while the same amount of 5% lidocaine diluted with 0.2 ml of normal saline was given to 234 cases in the control group. Hemodynamic changes and neonatal APGAR scores (Appearance, Pulse, Grimace, Activity, Respiration) were recorded. Pain score was recorded according to the visual analog scale. This study was registered in the Iranian Registry of clinical Trials; IRCT2013022112552N1. The mean age of case and control groups was 24.4±5.38 and 26.84±5.42 years, respectively. Systolic blood pressure was not significantly different until the 45th minute but diastolic blood pressure showed a significant difference at the 15th and the 60th minutes (P<0.001). Heart rate changes were significantly different between cases and controls at the initial 5th, 15th and after 60th minutes (P<0.001). Pain-free period was significantly different between two groups (1.25 h versus 18.73 h) (P<0.001). The results show that prescription of intratechal buprenorphine prolongs the duration of analgesia without any significant considerable side effects.

  20. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy

    PubMed Central

    Ta, Terence; Porter, Tyrone M.

    2016-01-01

    Liposomes are a promising class of nanomedicine with the potential to provide site-specific chemotherapy, thus improving the quality of cancer patient care. First-generation liposomes have emerged as one of the first nanomedicines used clinically for localized delivery of chemotherapy. Second-generation liposomes, i.e. stimuli-responsive liposomes, have the potential to not only provide site-specific chemotherapy, but also triggered drug release and thus greater spatial and temporal control of therapy. Temperature-sensitive liposomes are an especially attractive option, as tumors can be heated in a controlled and predictable manner with external energy sources. Traditional thermosensitive liposomes are composed of lipids that undergo a gel-to-liquid phase transition at several degrees above physiological temperature. More recently, temperature-sensitization of liposomes has been demonstrated with the use of lysolipids and synthetic temperature-sensitive polymers. The design, drug release behavior, and clinical potential of various temperature-sensitive liposomes, as well as the various heating modalities used to trigger release, are discussed in this review. PMID:23583706

  1. Comparison of Enhancement of Analgesic Effect of Intrathecal Neostigmine by Intrathecal Clonidine and Transdermal Nitroglycerin Patch on Bupivacaine Spinal Anesthesia.

    PubMed

    Mammen, Mathew V; Tripathi, Manoj; Chandola, Harish C; Tyagi, Amit; Bais, Prateek Singh; Sanjeev, Om Prakash

    2017-01-01

    Relief of pain is very important goal intraoperatively and postoperatively. Neostigmine has been used successfully intrathecally with other agents such as clonidine and opioids for pain relief. This study aims to compare and evaluate the efficacy and safety of combining intrathecal (IT) neostigmine with IT clonidine and transdermal nitroglycerin (tNTG) patch for the relief of pain in patients after surgery. This was a randomized, prospective, and comparative study. In this study, recruited patients were randomly allocated into three groups. Groups I, II, and III received intrathecally 25 μg of neostigmine + 15 mg hyperbaric 0.5% bupivacaine, 25 μg of neostigmine + 25 μg clonidine + 15 mg hyperbaric 0.5% bupivacaine, and 25 μg of neostigmine + tNTG patch (3 cm × 5 cm, 5 mg/24 h) +15 mg hyperbaric 0.5% bupivacaine, respectively. Heart rate, mean arterial pressure, analgesic properties, and complications were assessed and compared among groups. Mean and standard deviation were calculated. Test of analysis between two groups was done by t -test and among three groups by ANOVA, then P value was calculated. Duration of analgesia was significantly longer in Group III in comparison to Group II (7.142 ± 1.81 vs. 4.408 ± 0.813 h) and was significantly longer in Group II in comparison to Group I (4.408 ± 0.813 vs. 2.583 ± 0.493 h). Analgesic requirement was significantly less in Group III in comparison to Group II (1.9 ± 0.76 vs. 2.5 ± 0.51) and was significantly less in Group II in comparison to Group I (2.5 ± 0.51 vs. 3.1 ± 0.48). Sedation score was found significantly high in Group II than other groups. Both IT clonidine and tNTG patch with bupivacaine + neostigmine spinal anesthesia were found effective in pain control. Results were found better with tNTG patch.

  2. Overcoming cellular and tissue barriers to improve liposomal drug delivery

    NASA Astrophysics Data System (ADS)

    Kohli, Aditya G.

    Forty years of liposome research have demonstrated that the anti-tumor efficacy of liposomal therapies is, in part, driven by three parameters: 1) liposome formulation and lipid biophysics, 2) accumulation and distribution in the tumor, and 3) release of the payload at the site of interest. This thesis outlines three studies that improve on each of these delivery steps. In the first study, we engineer a novel class of zwitterlipids with an inverted headgroup architecture that have remarkable biophysical properties and may be useful for drug delivery applications. After intravenous administration, liposomes accumulate in the tumor by the enhanced permeability and retention effect. However, the tumor stroma often limits liposome efficacy by preventing distribution into the tumor. In the second study, we demonstrate that depletion of hyaluronan in the tumor stroma improves the distribution and efficacy of DoxilRTM in murine 4T1 tumors. Once a liposome has distributed to the therapeutic site, it must release its payload over the correct timescale. Few facile methods exist to quantify the release of liposome therapeutics in vivo. In the third study, we outline and validate a simple, robust, and quantitative method for tracking the rate and extent of release of liposome contents in vivo. This tool should facilitate a better understanding of the pharmacodynamics of liposome-encapsulated drugs in animals. This work highlights aspects of liposome behavior that have prevented successful clinical translation and proposes alternative approaches to improve liposome drug delivery.

  3. Accidental dural puncture, postdural puncture headache, intrathecal catheters, and epidural blood patch: revisiting the old nemesis.

    PubMed

    Kaddoum, Roland; Motlani, Faisal; Kaddoum, Romeo N; Srirajakalidindi, Arvi; Gupta, Deepak; Soskin, Vitaly

    2014-08-01

    One of the controversial management options for accidental dural puncture in pregnant patients is the conversion of labor epidural analgesia to continuous spinal analgesia by threading the epidural catheter intrathecally. No clear consensus exists on how to best prevent severe headache from occurring after accidental dural puncture. To investigate whether the intrathecal placement of an epidural catheter following accidental dural puncture impacts the incidence of postdural puncture headache (PDPH) and the subsequent need for an epidural blood patch in parturients. A retrospective chart review of accidental dural puncture was performed at Hutzel Women's Hospital in Detroit, MI, USA for the years 2002-2010. Documented cases of accidental dural punctures (N = 238) were distributed into two groups based on their management: an intrathecal catheter (ITC) group in which the epidural catheter was inserted intrathecally and a non-intrathecal catheter (non-ITC) group that received the epidural catheter inserted at different levels of lumbar interspaces. The incidence of PDPH as well as the necessity for epidural blood patch was analyzed using two-tailed Fisher's exact test. In the non-ITC group, 99 (54 %) parturients developed PDPH in comparison to 20 (37 %) in the ITC [odds ratio (OR), 1.98; 95 % confidence interval (CI), 1.06-3.69; P = 0.03]. Fifty-seven (31 %) of 182 patients in the non-ITC group required an epidural blood patch (EBP) (data for 2 patients of 184 were missing). In contrast, 7 (13 %) of parturients in the ITC group required an EBP. The incidence of EBP was calculated in parturients who actually developed headache to be 57 of 99 (57 %) in the non-ITC group versus 7 of 20 (35 %) in the ITC group (OR, 2.52; 95 % CI, 0.92-6.68; P = 0.07). The insertion of an intrathecal catheter following accidental dural puncture decreases the incidence of PDPH but not the need for epidural blood patch in parturients.

  4. Skin whitening effect of linoleic acid is enhanced by liposomal formulations.

    PubMed

    Shigeta, Yasutami; Imanaka, Hiromichi; Ando, Hideya; Ryu, Atsuko; Oku, Naoto; Baba, Naomichi; Makino, Taketoshi

    2004-04-01

    Linoleic acid (LA) is known to have a whitening effect on hyperpigmented skin, and is encapsulated in liposomes for topical application because of its low solubility in aqueous solution, although the effect of liposomalization of LA on the whitening activity has not been evaluated. In the present study, we evaluated the effect of liposomalization on the whitening activity of LA by using LA in ethanol, hydrogel containing LA, and hydrogel containing liposomal LA towards the UV-stimulated hyperpigmented dorsal skin of brownish guinea pigs. The whitening effect was far greater for hydrogel containing liposomal LA (0.1% w/w as a final concentration of LA) than for free LA in ethanol or hydrogel containing LA. Next, the whitening effect of LA was examined with UV-stimulated hyperpigmented human upper arm skin by using a hydrogel containing liposomal LA (0.1% LA) and non-liposomal LA (3.0, 10.0% LA). Liposomal LA (0.1%) showed a whitening effect comparable to 10.0% non-liposomal LA and was far more effective than 3.0% non-liposomal LA. These results indicate that liposomal formulations are favorable for the transdermal application of LA.

  5. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Li, Dong; Ghali, Lucy; Xia, Ruidong; Munoz, Leonardo P.; Garelick, Hemda; Bell, Celia; Wen, Xuesong

    2016-02-01

    Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status.

  6. Simultaneous measurement of liposome extravasation and content release in tumors.

    PubMed

    Wu, N Z; Braun, R D; Gaber, M H; Lin, G M; Ong, E T; Shan, S; Papahadjopoulos, D; Dewhirst, M W

    1997-03-01

    The success of liposome-based drug delivery systems for tumor targeting relies on maximum extravasation of liposomes into tumor interstitium, as well as optimal release of contents from the liposomes once within the tumor Liposome extravasation and content release are two separate processes that can be individually or jointly manipulated so a method is needed to monitor these two processes independently and simultaneously. In this report, we describe a method to measure liposome extravasation and content release in tumor tissues growing in a rat skinfold window chamber preparation. Mixtures of liposomes containing either doxorubicin or calcein, both of which are fluorescent, and liposomes surface-labeled with rhodamine were injected intravenously. Fluorescent, light intensities in a tumor region in two fluorescent channels were measured using an image-processing system. Light intensities of plasma from blood samples were also measured using this system. These measurements were used to calculate the amounts of liposomes and released contents in both plasma and tumor interstitium. The calculations were based on the fact that the liposome surface labels and contents emit fluorescent light at different wavelengths and when encapsulated, the contents fluorescence is self-quenched. The model included equations to account for fluorescent light "cross-contamination" by the two fluorochromes as well as equations relating the measured fluorescent light intensities to the amounts of liposomes and released contents. This method was applied to three situations in which liposome extravasation and content release were manipulated in different, predictable ways. Our results indicate that this method can perform simultaneous independent and quantitative measurements of liposome extravasation and content release. This method can potentially be used to study drug delivery of other carrier systems in vivo.

  7. First-in-Man Intrathecal Application of Neurite Growth-Promoting Anti-Nogo-A Antibodies in Acute Spinal Cord Injury.

    PubMed

    Kucher, Klaus; Johns, Donald; Maier, Doris; Abel, Rainer; Badke, Andreas; Baron, Hagen; Thietje, Roland; Casha, Steven; Meindl, Renate; Gomez-Mancilla, Baltazar; Pfister, Christian; Rupp, Rüdiger; Weidner, Norbert; Mir, Anis; Schwab, Martin E; Curt, Armin

    2018-05-01

    Neutralization of central nervous system neurite growth inhibitory factors, for example, Nogo-A, is a promising approach to improving recovery following spinal cord injury (SCI). In animal SCI models, intrathecal delivery of anti-Nogo-A antibodies promoted regenerative neurite growth and functional recovery. This first-in-man study assessed the feasibility, safety, tolerability, pharmacokinetics, and preliminary efficacy of the human anti-Nogo-A antibody ATI355 following intrathecal administration in patients with acute, complete traumatic paraplegia and tetraplegia. Patients (N = 52) started treatment 4 to 60 days postinjury. Four consecutive dose-escalation cohorts received 5 to 30 mg/2.5 mL/day continuous intrathecal ATI355 infusion over 24 hours to 28 days. Following pharmacokinetic evaluation, 2 further cohorts received a bolus regimen (6 intrathecal injections of 22.5 and 45 mg/3 mL, respectively, over 4 weeks). ATI355 was well tolerated up to 1-year follow-up. All patients experienced ≥1 adverse events (AEs). The 581 reported AEs were mostly mild and to be expected following acute SCI. Fifteen patients reported 16 serious AEs, none related to ATI355; one bacterial meningitis case was considered related to intrathecal administration. ATI355 serum levels showed dose-dependency, and intersubject cerebrospinal fluid levels were highly variable after infusion and bolus injection. In 1 paraplegic patient, motor scores improved by 8 points. In tetraplegic patients, mean total motor scores increased, with 3/19 gaining >10 points, and 1/19 27 points at Week 48. Conversion from complete to incomplete SCI occurred in 7/19 patients with tetraplegia. ATI335 was well tolerated in humans; efficacy trials using intrathecal antibody administration may be considered in acute SCI.

  8. Development and characterization of multilamellar liposomes containing pyridostigmine.

    PubMed

    Souza, Ana Carolina Moreira; Grabe-Guimarães, Andrea; Souza, Jacqueline; Botacim, Wallace Entringer; Almeida, Tamara Marine; Frézard, Fréderic Jean Georges; Silva Barcellos, Neila Márcia

    2014-06-01

    Pyridostigmine has cardioprotective activity in both free and liposomal forms. This study aimed to develop and characterize liposomal formulations of pyridostigmine. For this, a spectrophotometric ultraviolet (UV) analytical method, at 270 nm, was developed and validated to quantify liposomal pyridostigmine. The method was linear in ranges from 0.02 to 0.09 mg/mL. The accuracy of this method was determined intra- and inter-day; the results of coefficient of variation were of 1.73-2.72% and 0.32-2.32%, respectively. The accuracy ranged between 99.45% and 101.12%. The method has not changed by influence of liposomal matrix and demonstrated being able to quantify pyridostigmine in liposomes. Two liposomal multilamellar formulations were developed: a constituted by dystearoyl-phosphatidylcholine (DSPC) and cholesterol (CHOL) other by dioleil-phosphatidylcholine (DOPC) and CHOL. The encapsulation efficiency was determined as 23.4% and 15.4%, respectively. Analyses of size and release of pyridostigmine from the formulations were made and the results showed that the formulations are viable for future studies in vivo.

  9. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    PubMed

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Interaction of dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin

    NASA Astrophysics Data System (ADS)

    Mady, Mohsen M.; Elshemey, Wael M.

    2011-06-01

    Insulin, a peptide that has been used for decades in the treatment of diabetes, has well-defined properties and delivery requirements. Liposomes, which are lipid bilayer vesicles, have gained increasing attention as drug carriers which reduce the toxicity and increase the pharmacological activity of various drugs. The molecular interaction between (uncharged lipid) dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin has been characterized by using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The characteristic protein absorption band peaks, Amide I (at about 1660 cm-1) and Amide II band (at about 1546 cm-1) are potentially reduced in the liposome insulin complex. Wide-angle x-ray scattering measurements showed that the association of insulin with DPPC lipid of liposomes still maintains the characteristic DPPC diffraction peaks with almost no change in relative intensities or change in peak positions. The absence of any shift in protein peak positions after insulin being associated with DPPC liposomes indicates that insulin is successfully forming complex with DPPC liposomes with possibly no pronounced alterations in the structure of insulin molecule.

  11. Imaging the urinary pathways in mice by liposomal indocyanine green.

    PubMed

    Portnoy, Emma; Nizri, Eran; Golenser, Jacob; Shmuel, Miriam; Magdassi, Shlomo; Eyal, Sara

    2015-07-01

    Intraoperative ureter identification can assist in the prevention of ureteral injury and consequently improve surgery outcomes. Our aim was to take advantage of the altered pharmacokinetics of liposomal indocyanine green (ICG), the only FDA-approved near-infrared (NIR) dye, for imaging of ureters during surgeries. ICG was passively adsorbed to liposomes. NIR whole mice body and isolated tissue imaging were used to study liposomal ICG properties vs. free ICG. In vivo, the urinary bladder could be clearly observed in most of the liposome-treated mice. Liposomal encapsulation of ICG enhanced ureteral emission up to 1.9 fold compared to free ICG (P<0.01). Increase in liposomal micropolarity and microviscosity and differential scanning calorimetry supported ICG localization within the liposomal bilayer. Our findings suggest that liposomal ICG could be utilized for ureteral imaging intra-operatively, thus potentially improving surgical outcomes. Iatrogenic ureteral injury is a serious complication of abdominal surgery and intra-operative recognition of the ureters is usually the best method of injury prevention. In this article, the authors developed liposomal indocyanine green, which could be excreted via the urinary system and investigated its in-vivo use in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

    PubMed Central

    Banerjee, Jayati; Hanson, Andrea J.; Gadam, Bhushan; Elegbede, Adekunle I.; Tobwala, Shakila; Ganguly, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2011-01-01

    Liposomes have been widely used as a drug delivery vehicle and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately-formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes. PMID:19601658

  13. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes

    NASA Astrophysics Data System (ADS)

    Yuan, Jiani; Zhou, Xuanxuan; Cao, Wei; Bi, Linlin; Zhang, Yifang; Yang, Qian; Wang, Siwang

    2017-11-01

    Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

  14. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery.

    PubMed

    Thamphiwatana, Soracha; Fu, Victoria; Zhu, Jingying; Lu, Diannan; Gao, Weiwei; Zhang, Liangfang

    2013-10-01

    We report a novel pH-responsive gold nanoparticle-stabilized liposome system for gastric antimicrobial delivery. By adsorbing small chitosan-modified gold nanoparticles (diameter ~10 nm) onto the outer surface of negatively charged phospholipid liposomes (diameter ~75 nm), we show that at gastric pH the liposomes have excellent stability with limited fusion ability and negligible cargo releases. However, when the stabilized liposomes are present in an environment with neutral pH, the gold stabilizers detach from the liposomes, resulting in free liposomes that can actively fuse with bacterial membranes. Using Helicobacter pylori as a model bacterium and doxycycline as a model antibiotic, we demonstrate such pH-responsive fusion activity and drug release profile of the nanoparticle-stabilized liposomes. Particularly, at neutral pH the gold nanoparticles detach, and thus the doxycycline-loaded liposomes rapidly fuse with bacteria and cause superior bactericidal efficacy as compared to the free doxycycline counterpart. Our results suggest that the reported liposome system holds a substantial potential for gastric drug delivery; it remains inactive (stable) in the stomach lumen but actively interacts with bacteria once it reaches the mucus layer of the stomach where the bacteria may reside.

  15. Audit of intrathecal drug delivery for patients with difficult-to-control cancer pain shows a sustained reduction in pain severity scores over a 6-month period.

    PubMed

    Mitchell, Alison; McGhie, Jonathan; Owen, Margaret; McGinn, Gordon

    2015-06-01

    Intrathecal drug delivery is known to be effective in alleviating cancer pain in patients for whom the conventional World Health Organization approach has proved insufficient. A multidisciplinary interventional cancer pain service was established in the West of Scotland in 2008 with the aim of providing a safe and effective intrathecal drug delivery service for patients with difficult-to-control cancer pain. The aim of the intrathecal drug delivery service is to improve pain scores as evaluated by pain scores before and after insertion of an intrathecal drug delivery device. Pain is monitored before and after intrathecal drug delivery implantation using the Brief Pain Inventory. Following implantation, pumps are refilled fortnightly and repeat Brief Pain Inventory assessments are undertaken. This prospective case series analyses change in Brief Pain Inventory domains for patients who had an intrathecal drug delivery implanted using a paired sample t-test. Data are presented from 2008-2013 for 22 patients receiving an intrathecal drug delivery system who experienced an immediate improvement in their pain that was both clinically and statistically significant. One week after insertion, the average pain score on the Brief Pain Inventory fell from 6.8 (pre-intrathecal drug delivery) to 3.0 (post-intrathecal drug delivery). Improvement in pain scores was sustained over a 6-month period. Evaluation of results of this case series shows that with the appropriate use of intrathecal drug delivery systems, patients with difficult-to-control cancer pain can benefit from effective pain relief for many months. © The Author(s) 2015.

  16. Targeting of asialofetuin sugar chain-bearing liposomes to liver lysosomes.

    PubMed

    Banno, Y; Ohki, K; Nozawa, Y

    1983-10-01

    Specific direction of liposomes bearing an asialofetuin sugar chain (AFSC) to liver parenchymal cells was examined both in vivo and in vitro. The AFSC-bearing liposomes were preferentially recovered in the liver within several minutes after an intravenous injection into mice and were found to be predominantly localized in mitochondrial-lysosomal fraction. The massive distribution of the AFSC-liposomes in this fraction was also confirmed by using a lysosomal protease inhibitor, E-64-d. In isolated rat hepatocytes, the uptake of AFSC-liposomes was increased 2-3-fold as compared with the control liposomes without AFSC. Thus liposomes bearing AFSC would be useful to target enzymes to liver lysosomes.

  17. pH-Triggered Echogenicity and Contents Release from Liposomes

    PubMed Central

    2015-01-01

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%). PMID:25271780

  18. pH-triggered echogenicity and contents release from liposomes.

    PubMed

    Nahire, Rahul; Hossain, Rayat; Patel, Rupa; Paul, Shirshendu; Meghnani, Varsha; Ambre, Avinash H; Gange, Kara N; Katti, Kalpana S; Leclerc, Estelle; Srivastava, D K; Sarkar, Kausik; Mallik, Sanku

    2014-11-03

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%).

  19. Hydrophobic drug concentration affects the acoustic susceptibility of liposomes.

    PubMed

    Nguyen, An T; Lewin, Peter A; Wrenn, Steven P

    2015-04-01

    The purpose of this study was to investigate the effect of encapsulated hydrophobic drug concentration on ultrasound-mediated leakage from liposomes. Studies have shown that membrane modifications affect the acoustic susceptibility of liposomes, likely because of changes in membrane packing. An advantage of liposome as drug carrier is its ability to encapsulate drugs of different chemistries. However, incorporation of hydrophobic molecules into the bilayer may cause changes in membrane packing, thereby affecting the release kinetics. Liposomes containing calcein and varying concentrations of papaverine, a hydrophobic drug, were exposed to 20 kHz, 2.2 Wcm(-2) ultrasound. Papaverine concentration was observed to affect calcein leakage although the effects varied widely based on liposome phase. For example, incorporation of 0.5mg/mL papaverine into Ld liposomes increased the leakage of hydrophilic encapsulants by 3× within the first minute (p=0.004) whereas the same amount of papaverine increased leakage by only 1.5× (p<0.0001). Papaverine was also encapsulated into echogenic liposomes and its concentration did not significantly affect calcein release rates, suggesting that burst release from echogenic liposomes is predictable regardless of encapsulants chemistry and concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. In vivo monitoring of liposomal release in tumours following ultrasound stimulation.

    PubMed

    Evjen, Tove J; Hagtvet, Eirik; Moussatov, Alexei; Røgnvaldsson, Sibylla; Mestas, Jean-Louis; Fowler, R Andrew; Lafon, Cyril; Nilssen, Esben A

    2013-08-01

    Dioeleoylphosphatidylethanolamine (DOPE)-based liposomes were recently reported as a new class of liposomes for ultrasound (US)-mediated drug delivery. The liposomes showed both high stability and in vitro US-mediated drug release (sonosensitivity). In the current study, in vivo proof-of-principle of US triggered release in tumoured mice was demonstrated using optical imaging. Confocal non-thermal US was used to deliver cavitation to tumours in a well-controlled manner. To detect in vivo release, the near infrared fluorochrome Al (III) Phthalocyanine Chloride Tetrasulphonic acid (AlPcS₄) was encapsulated into both DOPE-based liposomes and control liposomes based on hydrogenated soy phosphatidylcholine (HSPC). Encapsulation causes concentration dependent quenching of fluorescence that is recovered upon AlPcS₄ release from the liposomes. Exposure of tumours to US resulted in a significant increase in fluorescence in mice administered with DOPE-based liposomes, but no change in the mice treated with HSPC-based liposomes. Thus, DOPE-based liposomes showed superior sonosensitivity compared to HSPC-based liposomes in vivo. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Effect of ionic liquids on the interaction between liposomes and common wastewater pollutants investigated by capillary electrophoresis.

    PubMed

    Ruokonen, Suvi-Katriina; Duša, Filip; Lokajová, Jana; Kilpeläinen, Ilkka; King, Alistair W T; Wiedmer, Susanne K

    2015-07-31

    The effect of three phosphonium and imidazolium ionic liquids (ILs) on the interaction between liposomes and common pharmaceuticals found in wastewaters was studied. The liposomes comprised zwitterionic phosphatidyl choline and negatively charged phosphatidyl glycerol. A set of common cationic, anionic, and neutral compounds with varying chemical composition and unique structures were included in the study. The electrophoretic mobilities of the analytes were determined using conventional capillary electrophoresis (CE), using CE under reversed electroosmotic flow mobility conditions, and in the presence of ILs in the background electrolyte (BGE) solution by electrokinetic chromatography (EKC). In order to evaluate the impact of ILs on the interaction between the compounds and the liposomes, EKC was performed with liposome dispersions, with and without ILs. The retention factors of the compounds were calculated using BGEs including liposome dispersions with and without ILs. Two phosphonium based ILs, namely tributyl(tetradecyl)phosphonium chloride ([P14444]Cl) and octyltributylphosphonium chloride ([P8444]Cl), were chosen due to their long alkyl chains and their low aggregation concentrations. Another IL, i.e. 1-ethyl-3-methylimidazolium acetate ([emim][OAc]), was chosen based on our previous study, which suggests that it has a minimal or even nonexistent effect on liposomes at the used concentrations. The results indicate that the studied ILs have an effect on the interactions between wastewater compounds and liposomes, but the effect is highly dependent on the concentration of the IL and on the IL alkyl chain lengths. Most of the ILs hindered the interactions between the liposomes and the compounds, indicating strong interaction between ILs and liposomes. In addition, the nature of the studied compounds themselves affected the interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Copper-64 Labeled Liposomes for Imaging Bone Marrow

    PubMed Central

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [18F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64Cu incorporation into liposomes. Results PET imaging and biodistribution studies with 64Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69 %ID/g for 90 nm liposomes and 7.01 ± 0.92 %ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48 %ID/g in tumor and 14.22 ± 8.07 %ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49 %ID/g and 2.23 ± 1.00 %ID/g. Conclusion Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents. PMID:27694056

  3. Liposomal temozolomide drug delivery using convection enhanced delivery.

    PubMed

    Nordling-David, Mirjam M; Yaffe, Roni; Guez, David; Meirow, Hadar; Last, David; Grad, Etty; Salomon, Sharona; Sharabi, Shirley; Levi-Kalisman, Yael; Golomb, Gershon; Mardor, Yael

    2017-09-10

    Even though some progress in diagnosis and treatment has been made over the years, there is still no definitive treatment available for Glioblastoma multiforme (GBM). Convection-enhanced delivery (CED), a continuous infusion-mediated pressure gradient via intracranial catheters, studied in clinical trials, enables in situ drug concentrations several orders of magnitude greater than those achieved by systemic administration. We hypothesized that the currently limited efficacy of CED could be enhanced by a liposomal formulation, thus achieving enhanced drug localization to the tumor site with minimal toxicity. We hereby describe a novel approach for treating GBM by CED of liposomes containing the known chemotherapeutic agent, temozolomide (TMZ). A new technique for encapsulating TMZ in hydrophilic (PEGylated) liposomes, characterized by nano-size (121nm), low polydispersity index (<0.13) and with near-neutral charge (-ʒ,0.2mV), has been developed. Co-infusion of PEGylated Gd-DTPA liposomes and TMZ-liposomes by CED in GBM bearing rats, resulted in enhanced tumor detection with longer residence time than free Gd-DTPA. Treatment of GBM-bearing rats with either TMZ solution or TMZ-liposomes resulted in greater tumor inhibition and significantly higher survival. However, the longer survival and smaller tumor volumes exhibited by TMZ liposomal treatment in comparison to TMZ in solution were insignificant (p<0.053); and only significantly lower edema volumes were observed. Thus, there are no clear-cut advantages to use a liposomal delivery system of TMZ via CED over a drug solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of intrathecal ketorolac on human experimental pain

    PubMed Central

    Eisenach, James C.; Curry, Regina; Tong, Chuanyao; Houle, Timothy T.; Yaksh, Tony L.

    2010-01-01

    Background Nonsteroidal antiinflammatory drugs, the most commonly used analgesics, reduce pain by inhibiting cyclooxygenase at peripheral sites of inflammation, but potentially also by inhibiting cyclooxygenase in the central nervous system, especially the spinal cord. Animal studies suggest that products of cyclooxygenase in the spinal cord do not alter pain responses to acute noxious stimuli, but reduce pain and sensitization following peripheral inflammation. We used spinal injection of small doses of the cyclooxygenase inhibitor, ketorolac, to survey the role of spinal cyclooxygenase in human experimental pain and hypersensitivity states. Methods Following regulatory agency approval and informed consent, we examined the effect of 2.0 mg intrathecal ketorolac in 41 healthy volunteers to acute noxious thermal stimuli in normal skin and to mechanical stimuli in skin sensitized by topical capsaicin or ultraviolet burn. We also examined the effect of intravenous ketorolac, Results Intrathecal ketorolac reduced hypersensitivity when it was induced by a combination of ultraviolet burn plus intermittent heat and, according to one of two analytical strategies, when it was induced by ultraviolet burn alone. Conclusions These data suggest a more limited role for spinal cord cyclooxygenase in human pain states than predicted by studies in animals. PMID:20395821

  5. Formulation, antileukemia mechanism, pharmacokinetics, and biodistribution of a novel liposomal emodin

    PubMed Central

    Wang, Tiechuang; Yin, Xiaodong; Lu, Yaping; Shan, Weiguang; Xiong, Subin

    2012-01-01

    Emodin is a multifunctional Chinese traditional medicine with poor water solubility. D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) is a pegylated vitamin E derivate. In this study, a novel liposomal-emodin-conjugating TPGS was formulated and compared with methoxypolyethyleneglycol 2000-derivatized distearoyl-phosphatidylethanolamine (mPEG2000–DSPE) liposomal emodin. TPGS improved the encapsulation efficiency and stability of emodin egg phosphatidylcholine/cholesterol liposomes. A high encapsulation efficiency of 95.2% ± 3.0%, particle size of 121.1 ± 44.9 nm, spherical ultrastructure, and sustained in vitro release of TPGS liposomal emodin were observed; these were similar to mPEG2000–DSPE liposomes. Only the zeta potential of −13.1 ± 2.7 mV was significantly different to that for mPEG2000–DSPE liposomes. Compared to mPEG2000–DSPE liposomes, TPGS liposomes improved the cytotoxicity of emodin on leukemia cells by regulating the protein levels of myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein, which was further enhanced by transferrin. TPGS liposomes prolonged the circulation time of emodin in the blood, with the area under the concentration–time curve (AUC) 1.7 times larger than for free emodin and 0.91 times larger than for mPEG2000–DSPE liposomes. In addition, TPGS liposomes showed higher AUC for emodin in the lung and kidney than for mPEG2000–DSPE liposomes, and both liposomes elevated the amount of emodin in the heart. Overall, TPGS is a pegylated agent that could potentially be used to compose a stable liposomal emodin with enhanced therapeutics. PMID:22661889

  6. Liposomal-Encapsulated Stroma-Free Hemoglobin as a Potential Blood Substitute.

    DTIC Science & Technology

    1980-01-02

    circulating life-time even further. If all liposomes are taken up by RE cells, then when 14C- inulin is administered i.v. encapsulated in liposomes one should...of inulin would result only when liposomes become leaky or decompose before being taken up by cells. If liposomes are not maximally stable, then after...some time any liposome which had not been taken-up by RE cells would have decomposed and the released inulin excreted. We have used these facts to

  7. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    PubMed

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Ondansetron or droperidol for prophylaxis of nausea and vomiting after intrathecal morphine.

    PubMed

    Peixoto, A J; Celich, M F; Zardo, L; Peixoto Filho, A J

    2006-08-01

    There is a controversy regarding the best drug for prevention of nausea and vomiting in patients receiving intrathecal morphine. The aim of this study was to examine efficacy and tolerability of droperidol compared with ondansetron for the prevention of morphine-induced nausea and vomiting. In a randomized, placebo-controlled trial, 120 women undergoing Caesarean section under spinal anaesthesia with intrathecal morphine 0.1 mg received intravenous ondansetron 4 mg (n = 40), droperidol 1.25 mg (n = 40) or saline (n = 40) immediately after umbilical-cord clamping. Nausea and vomiting were graded according to intensity at 1, 2, 4, 6, 12 and 24 h. Nausea or vomiting occurred in 14 patients (35%) in the placebo group, 4 (10%) in the ondansetron group and 10 (25%) in the droperidol group; the difference between ondansetron and placebo was statistically significant (P = 0.007). Eleven of the 14 placebo patients (27.5%) vomited, compared with none of the 4 ondansetron patients (vs. placebo, P = 0.0004) and 5 of the droperidol patients (vs. placebo, P = 0.18). Three of the 14 placebo patients (7.5%) were nauseous, compared with 4 (10%) receiving ondansetron and 5 (12.5%) receiving droperidol. Ondansetron was effective in reducing the incidence of nausea and vomiting in patients receiving intrathecal morphine for Caesarean section.

  9. Intrathecal transplantation of neuroblastoma cells decreases heat hyperalgesia and cold allodynia in a rat model of neuropathic pain.

    PubMed

    De la Calle, J L; Mena, M A; González-Escalada, J R; Paíno, C L

    2002-11-30

    Intrathecal grafting of cells as biological pumps to deliver monoamines, endorphins, and/or trophic factors, has been shown to be effective in treating chronic pain both in experimental animals and in clinical trials. We have tested whether intrathecal implantation of neuroblastoma cells reduces heat hyperalgesia and cold allodynia in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Behavioral tests and cerebrospinal fluid (CSF) collection were performed before CCI, 1 week later (after which, vehicle or NB69 cells were intrathecally injected) and at 4, 7, and 14 days post-injection. Both CSF sampling and injection of the cells were performed by direct lumbar puncture. Intrathecal grafting of 4 x 10(6) NB69 neuroblastoma cells reduced to basal levels the nociceptive response to heat in nerve-injured hindpaws, while the response of control limbs remained unchanged. Similarly, the allodynic response to cold elicited by acetone evaporation decreased in the animals implanted with NB69 cells. An increase in the concentrations of dopamine and serotonin metabolites of around 150% was observed in the CSF of animals that received grafts of NB69 cells. These data suggest that the monoamines released by NB69 cells in the intrathecal space produce analgesia to neuropathic pain in rats. Copyright 2002 Elsevier Science Inc.

  10. Rupture Pathway of Phosphatidylcholine Liposomes on Silicon Dioxide

    PubMed Central

    Reimhult, Erik; Kasemo, Bengt; Höök, Fredrik

    2009-01-01

    We have investigated the pathway by which unilamellar POPC liposomes upon adsorption undergo rupture and form a supported lipid bilayer (SLB) on a SiO2 surface. Biotinylated lipids were selectively incorporated in the outer monolayer of POPC liposomes to create liposomes with asymmetric lipid compositions in the outer and inner leaflets. The specific binding of neutravidin and anti-biotin to SLBs formed by liposome fusion, prior to and after equilibrated flip-flop between the upper and lower monolayers in the SLB, were then investigated. It was concluded that the lipids in the outer monolayer of the vesicle predominantly end up on the SLB side facing the SiO2 substrate, as demonstrated by having maximum 30–40% of lipids in the liposome outer monolayer orienting towards the bulk after forming the SLB. PMID:19468333

  11. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer.

    PubMed

    Ninomiya, Kazuaki; Kawabata, Shinya; Tashita, Hiroyuki; Shimizu, Nobuaki

    2014-01-01

    Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm(2) for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm(2) for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio=1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Intrathecal morphine for postoperative analgesia in patients with idiopathic scoliosis undergoing posterior spinal fusion.

    PubMed

    Tripi, Paul A; Poe-Kochert, Connie; Potzman, Jennifer; Son-Hing, Jochen P; Thompson, George H

    2008-09-15

    A retrospective study of postoperative pain management with intrathecal morphine. Identify the dosing regimen of intrathecal morphine that safely and effectively provides postoperative analgesia with minimal complications in patients with idiopathic scoliosis undergoing posterior spinal fusion (PSF) and segmental spinal instrumentation (SSI). Postoperative pain after surgery for idiopathic scoliosis is a concern. Intrathecal morphine has been used to decrease pain. However, the most appropriate dose has not been determined. We retrospectively analyzed 407 consecutive patients with idiopathic scoliosis who underwent PSF and SSI at our institution from 1992 through 2006. Patients were divided into 3 groups based on the intrathecal morphine dose: no dose (n = 68); moderate dose of 9 to 19 microg/kg, mean 14 microg/kg (n = 293); and high dose of 20 microg/kg or greater, mean 24 microg/kg (n = 46). Data included demographics, Wong-Baker visual analog scale postoperative pain scores, postoperative intravenous morphine requirements, time to first rescue dose of intravenous morphine, and postoperative complications of pruritus, nausea/vomiting, respiratory depression, and pediatric intensive care unit (PICU) admission. The demographics of the 3 study groups showed no statistical differences. The mean Wong-Baker visual analog scale pain score in the post anesthesia care unit was 5.2, 0.5, and 0.2, and the mean time to first morphine rescue was 6.6, 16.7, and 22.9 hours, respectively. In the first 48 postoperative hours, respiratory depression occurred in 1 (1.5%), 8 (2.7%), and 7 (15.2%) patients, whereas PICU admission occurred in 0 (0%), 6 (2%), and 8 (17.4%) patients, respectively. The majority of PICU admissions were the result of respiratory depression. Frequency of pruritus and nausea/vomiting was similar in all 3 groups. Intrathecal morphine in the moderate dose range of 9 to 19 microg/kg (mean 14 microg/kg), provides safe and effective postoperative analgesia in the

  13. LPS-induced knee-joint reactive arthritis and spinal cord glial activation were reduced after intrathecal thalidomide injection in rats.

    PubMed

    Bressan, Elisângela; Mitkovski, Mišo; Tonussi, Carlos Rogério

    2010-10-09

    Thalidomide is thought to prevent TNF-α production, and such mechanism could be useful in a spinally delivered drug approach for the control of peripheral inflammation. This study aimed to evaluate the effect of intrathecal thalidomide, in comparison with that of intraperitoneal treatment, on articular incapacitation, edema, synovial leukocyte content, and spinal cord glial activation in a model of Escherichia coli lipopolysaccharide (LPS)-induced reactive arthritis in rats. LPS (30ng) was injected into a knee-joint previously primed with carrageenan (300μg). Systemic (30 and 100mg/kg; intraperitoneal, i.p.) and intrathecal (10 and 100μg; i.t.) thalidomide were given 1h or 20min before LPS injection, respectively. Articular incapacitation and edema were evaluated hourly. After 6h, synovial fluid and lumbar spinal cords were collected for subsequent evaluations of cell migration and expression of CD11b/c and GFAP markers, respectively. Systemic (30 and 100mg/kg) or intrathecal (10 and 100μg) thalidomide reduced articular incapacitation, edema, and polymorphonuclear migration. In addition, i.p. and i.t. thalidomide reduced the expression of CD11b/c and GFAP markers in the lumbar spinal cord. These results suggest that thalidomide can also produce peripheral anti-inflammatory effects through action in the spinal cord that may involve glia inhibition. This study provides new evidence that the direct spinal delivery of immunomodulators may be an alternative for the treatment of arthritic diseases, which require long systemic treatment with drugs associated with undesirable side effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Methods for using redox liposome biosensors

    DOEpatents

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  15. Long-acting beta 2-agonists in chronic obstructive pulmonary disease.

    PubMed

    Llewellyn-Jones, Carol

    2002-01-01

    Until recently, the use of long-acting beta 2-agonists in chronic obstructive pulmonary disease has been understated. There is now evidence that they may offer benefits beyond bronchodilation. This article reviews the management of chronic obstructive pulmonary disease and looks at the place of long-acting beta 2-agonists as a first-line treatment option.

  16. Recent advances in COPD disease management with fixed-dose long-acting combination therapies.

    PubMed

    Bateman, Eric D; Mahler, Donald A; Vogelmeier, Claus F; Wedzicha, Jadwiga A; Patalano, Francesco; Banerji, Donald

    2014-06-01

    Combinations of two long-acting bronchodilators and long-acting bronchodilators with inhaled corticosteroids (ICS) are recommended therapies in the management of chronic obstructive pulmonary disease (COPD). Three fixed-dose combination products have recently been approved for the treatment of COPD (the long-acting β2-agonist plus long-acting muscarinic antagonist [LABA/LAMA] combinations glycopyrronium/indacaterol [QVA149] and umeclidinium/vilanterol, and the LABA/ICS fluticasone furoate/vilanterol), with others currently in late-stage development. LABA/LAMA and LABA/ICS combination therapies demonstrate positive effects on both lung function and patient-reported outcomes, with significant improvements observed with LABA/LAMA combinations compared with placebo, each component alone and other comparators in current use. No new safety concerns have been observed with combinations of long-acting bronchodilators. Combinations of two long-acting bronchodilators represent a new and convenient treatment option in COPD. This review summarizes published efficacy and safety data from clinical trials of both LABA/LAMA and novel LABA/ICS combinations in patients with COPD.

  17. Formulation and in vitro characterization of protein-loaded liposomes

    NASA Astrophysics Data System (ADS)

    Kuzimski, Lauren

    Background/Objective: Protein-based drugs are increasingly used to treat a variety of conditions including cancer and cardio-vascular disease. Due to the immune system's innate ability to degrade the foreign particles quickly, protein-based treatments are generally short-lived. To address this limitation, the objective of the study was to: 1) develop protein-loaded liposomes; 2) characterize size, stability, encapsulation efficiency and rate of protein release; and 3) determine intracellular uptake and distribution; and 4) protein structural changes. Method: Liposomes were loaded with a fluorescent-albumin using freeze-thaw (F/T) methodology. Albumin encapsulation and release were quantified by fluorescence spectroscopic techniques. Flow cytometry was used to determine liposome uptake by macrophages. Epifluorescence microscopy was used to determine cellular distribution of liposomes. Stability was determined using dynamic light scattering by measuring liposome size over one month period. Protein structure was determined using circular dichroism (CD). Result: Encapsulation of albumin in liposome was ˜90% and was dependent on F/T rates, with fifteen cycles yielding the highest encapsulation efficacy (p < 0.05). Albumin-loaded liposomes demonstrated consistent size (<300nm). Release of encapsulated albumin in physiological buffer at 25°C was ˜60% in 72 h. Fluorescence imaging suggested an endosomal route of cellular entry for the FITC-albumin liposome with maximum uptake rates in immune cells (30% at 2hour incubation). CD suggested protein structure is minimally impacted by freeze-thaw methodology. Conclusion: Using F/T as a loading method, we were able to successfully achieve a protein-loaded liposome that was under 300nm, had encapsulation of ˜90%. Synthesized liposomes demonstrated a burst release of encapsulate protein (60%) at 72 hours. Cellular trafficking confirmed endosomal uptake, and minimal protein damage was noticed in CD.

  18. Enduring prevention and transient reduction of postoperative pain by intrathecal resolvin D1

    PubMed Central

    Huang, Liang; Wang, Chi-Fei; Serhan, Charles N.; Strichartz, Gary

    2013-01-01

    Postoperative pain slows surgical recovery, impacting the return of normal function for weeks, months, or longer. Here we report the antihyperalgesic actions of a new compound, resolvin D1 (RvD1), known to reduce inflammation and to suppress pain after peripheral nerve injury, on the acute pain occurring after paw incision and the prolonged pain after skin-muscle retraction. Injection of RvD1 (20–40 ng) into the L5–L6 intrathecal space 30 minutes before surgery reduces the postincisional primary mechanical hypersensitivity, lowering the peak change by approximately 70% (with 40 ng) and reducing the area under the curve (AUC) for the entire 10-day postincisional course by approximately 60%. Intrathecal injection of RvD1 on postoperative day (POD) 1 reduces the hyperalgesia to the same level as that from preoperative injection within a few hours, an effect that persists for the remaining PODs. Tactile allodynia and hyperalgesia following the skin/muscle incision retraction procedure, measured at the maximum values 12 to 14 days, is totally prevented by intrathecal RvD1 (40 ng) given at POD 2. However, delaying the injection until POD 9 or POD 17 results in RvD1 causing only transient and incomplete reversal of hyperalgesia, lasting for <1 day. These findings demonstrate the potent, effective reduction of postoperative pain by intrathecal RvD1 given before or shortly after surgery. The much more limited effect of this compound on retraction-induced pain, when given 1 to 2 weeks later, suggests that the receptors or pathways for resolvins are more important in the early than the later stages of postoperative pain. PMID:21255928

  19. Presence of electrostatically adsorbed polysaccharides improves spray drying of liposomes.

    PubMed

    Karadag, Ayse; Özçelik, Beraat; Sramek, Martin; Gibis, Monika; Kohlus, Reinhard; Weiss, Jochen

    2013-02-01

    Spray drying of liposomes with conventional wall materials such as maltodextrins often yields nonfunctional powders, that is, liposomes break down during drying and rehydration. Electrostatically coating the surface of liposomes with a charged polymer prior to spray drying may help solve this problem. Anionic lecithin liposomes (approximately 400 nm) were coated with lower (approximately 500 kDa, LMW-C) or higher (approximately 900 kDa, HMW-C) molecular weight cationic chitosan using the layer-by-layer depositing method. Low (DE20, LMW-MD) or high molecular weight (DE2, HMW-MD) maltodextrin was added as wall material to facilitate spray drying. If surfaces of liposomes (1%) were completely covered with chitosan (0.4%), no bridging or depletion flocculation would occur, and mean particle diameters would be approximately 500 nm. If maltodextrins (20%) were added to uncoated liposomes, extensive liposomal breakdown would occur making the system unsuitable for spray drying. No such aggregation or breakdown was observed when maltodextrin was added to chitosan-coated liposomes. Size changed little or even decreased slightly depending on the molecular weight of maltodextrin added. Scanning electron microscopy images of powders containing chitosan-coated liposomes revealed that their morphologies depended on the type of maltodextrin added. Powders prepared with LMW-MD contained mostly spherical particles while HMW-MD powders contained particles with concavities and dents. Upon redispersion, coated liposomes yielded back dispersions with particle size distributions similar to the original ones, except for LMW-C coated samples that had been spray dried with HMW-MD which yielded aggregates (approximately 30 μm). Results show that coating of liposomes with an absorbing polymer allows them to be spray dried with conventional maltodextrin wall materials. Liposomes have attracted considerable attention in the food and agricultural, biomedical industries for the delivery of

  20. Liposomal Drug Product Development and Quality: Current US Experience and Perspective.

    PubMed

    Kapoor, Mamta; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Research in the area of liposomes has grown substantially in the past few decades. Liposomes are lipid bilayer structures that can incorporate drug substances to modify the drug's pharmacokinetic profile thereby improving drug delivery. The agency has received over 400 liposomal drug product submissions (excluding combination therapies), and there are currently eight approved liposomal drug products on the US market. In order to identify the pain points in development and manufacturing of liposomal drug products, a retrospective analysis was performed from a quality perspective on submissions for new and generic liposomal drug products. General analysis on liposomal drug product submissions was also performed. Results indicated that 96% of the submissions were Investigational New Drug (IND) applications, 3% were New Drug Applications (NDAs), and the remaining 1% was Abbreviated New Drug Applications (ANDAs). Doxorubicin hydrochloride was the most commonly used drug substance incorporated into the liposomes (31%). The majority of the liposomal products were administered via intravenous route (84%) with cancer (various types) being the most common indication (63%). From a quality perspective, major challenges during the development of liposomal drug products included identification and (appropriate) characterization of critical quality attributes of liposomal drug products and suitable control strategies during product development. By focusing on these areas, a faster and more efficient development of liposomal drug products may be achieved. Additionally, in this way, the drug review process for such products can be streamlined.

  1. Intrathecal Baclofen Therapy in a Child With Severe Scoliosis: Report of 2 Cases.

    PubMed

    Sasaki, Natsu; Ogiwara, Hideki

    2016-08-01

    Scoliosis is commonly found in children with cerebral palsy. Many patients with cerebral palsy and scoliosis undergo intrathecal baclofen (ITB) pump placement. The authors report 2 cases with cerebral palsy and severe scoliosis treated with intrathecal baclofen. The case of a 7-year-old boy with shunted hydrocephalus required surgical revision of the intrathecal catheter, while the other patient without shunt did not require revision. In the patient with shunted hydrocephalus, after the initial placement of baclofen pump and catheter at Th3 level, spasticity of lower extremities did not improve. The Indium(111) diethylenetriamine pentaacetic acid (In(111) DTPA) scintigraphy with injection of In(111) DTPA through the pump did not demonstrate distribution of the tracer to the lumbosacral area. Conversely, by direct injection of In(111) DTPA through lumbar puncture, the tracer distributed in the whole spinal canal. Replacement of the tip of the catheter caudal to the curve of the scoliosis improved the symptom. The authors suggest that, in patients with severe scoliosis and shunted hydrocephalus, it may be necessary to place the tip of the catheter caudal to the curve of the scoliosis for correction of spasticity of lower extremities. © 2016 International Neuromodulation Society.

  2. Models of health behaviour predict intention to use long-acting reversible contraception

    PubMed Central

    Roderique-Davies, Gareth; McKnight, Christine; John, Bev; Faulkner, Susan; Lancastle, Deborah

    2016-01-01

    The aim of this study was to investigate women’s intention to use long-acting reversible contraception using two established models of health behaviour: the theory of planned behaviour and the health belief model. A questionnaire was completed by a convenience sample of 128 women attending a community sexual health clinic. The independent variables were constructs of theory of planned behaviour (attitude, subjective norm and perceived behavioural control) and health belief model (perceived susceptibility, perceived severity, perceived benefits, perceived barriers, health motivation and cues to action). The dependent variable was intention to use long-acting reversible contraception. The theory of planned behaviour and the health belief model accounted for 75% of the variance in intention to use. Perceived behavioural control, perceived barriers and health motivation predict the use of long-acting reversible contraception. Public health information for women considering using long-acting reversible contraception should be based around addressing the perceived barriers and promoting long-acting reversible contraception as a reliable contraceptive method. PMID:27864572

  3. Optimization of gatifloxacin liposomal hydrogel for enhanced transcorneal permeation.

    PubMed

    Hosny, Khaled Mohamed

    2010-03-01

    The aim of this study was to prepare and characterize a topically effective prolonged-release ophthalmic gatifloxacin liposomal hydrogel formulation. Reverse-phase evaporation was used for the preparation of liposomes consisting of phosphatidylcholine (PC) and cholesterol (CH). The effect of PC:CH molar ratio on the percentage of drug encapsulated was investigated. The effect of additives, such as stearylamine (SA) or dicetyl phosphate (DP), as positive and negative charge inducers, respectively, was studied. Morphology, mean size, encapsulation efficiency, and in vitro release of gatifloxacin from liposomes were evaluated. For hydrogel preparation, carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency was found at the 5:3 PC:CH molar ratio; by increasing CH content above this limit, the encapsulation efficiency decreased. Positively charged liposomes showed superior entrapment efficiency over other liposomes. Hydrogel-containing liposomes with lipid content PC, CH, and SA in a molar ratio of 5:3:1, respectively, showed best release and transcorneal permeation. These results suggest that the encapsulation of gatifloxacin into liposomes prolonged the in vitro release, depending on composition of the vesicles. In addition, the polymer hydrogel used in the preparation ensured steady, prolonged transcorneal permeation. In conclusion, gatifloxacin liposomal hydrogel is a suitable delivery system for the improvement of the ocular bioavailability of gatifloxacin.

  4. Intrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation

    PubMed Central

    2011-01-01

    Background Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. Methods Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1) sham (Group S), which underwent removal of the L6 transverse process; (2) ligated (Group L), which underwent left L5 spinal nerve ligation (SNL); and (3) pretreated (Group P), which underwent L5 SNL and was pretreated with intrathecal 2% lidocaine (50 μl). Neuropathic pain was assessed based on behavioral responses to thermal and mechanical stimuli. Expression of sodium channels (Nav1.3 and Nav1.8) in injured dorsal root ganglia and microglial proliferation/activation in the spinal cord were measured on post-operative days 3 (POD3) and 7 (POD7). Results Group L presented abnormal behavioral responses indicative of mechanical allodynia and thermal hyperalgesia, exhibited up-regulation of Nav1.3 and down-regulation of Nav1.8, and showed increased microglial activation. Compared with ligation only, pretreatment with intrathecal lidocaine before nerve injury (Group P), as measured on POD3, palliated both mechanical allodynia (p < 0.01) and thermal hyperalgesia (p < 0.001), attenuated Nav1.3 up-regulation (p = 0.003), and mitigated spinal microglial activation (p = 0.026) by inhibiting phosphorylation (activation) of p38 MAP kinase (p = 0.034). p38 activation was also suppressed on POD7 (p = 0.002). Conclusions Intrathecal lidocaine prior to SNL blunts the response to noxious stimuli by attenuating Nav1.3 up-regulation and suppressing activation of spinal microglia. Although its effects are limited to 3 days, intrathecal lidocaine pretreatment can alleviate acute SNL-induced neuropathic pain. PMID:21676267

  5. Liposomal Formulations in Clinical Use: An Updated Review

    PubMed Central

    Bulbake, Upendra; Doppalapudi, Sindhu; Kommineni, Nagavendra; Khan, Wahid

    2017-01-01

    Liposomes are the first nano drug delivery systems that have been successfully translated into real-time clinical applications. These closed bilayer phospholipid vesicles have witnessed many technical advances in recent years since their first development in 1965. Delivery of therapeutics by liposomes alters their biodistribution profile, which further enhances the therapeutic index of various drugs. Extensive research is being carried out using these nano drug delivery systems in diverse areas including the delivery of anti-cancer, anti-fungal, anti-inflammatory drugs and therapeutic genes. The significant contribution of liposomes as drug delivery systems in the healthcare sector is known by many clinical products, e.g., Doxil®, Ambisome®, DepoDur™, etc. This review provides a detailed update on liposomal technologies e.g., DepoFoam™ Technology, Stealth technology, etc., the formulation aspects of clinically used products and ongoing clinical trials on liposomes. PMID:28346375

  6. Liposomes with polyribonucleotides as model of precellular systems

    NASA Technical Reports Server (NTRS)

    Baeza, Isabel; Ibanez, Miguel; Santiago, Carlos; Lazcano, Antonio; Arguello, Carlos

    1987-01-01

    Three types of liposomes were prepared under anoxic conditions: from dipalmitoyl phosphatidyl choline (DPPC), from egg yolk phosphatidyl choline (PC), and from PC with cholesterol (PC:Chol). These were used for encapsulation of poly(U) and poly(C). It was found that 36 to 70 percent of the available liposome lipids and 2 to 5 percent of the polyribonucleotides could be entrapped. An enhanced encapsulation of poly(U) and poly(C) by all three types of liposomes was observed in the presence of 0.001 to 0.01 M Zn(2+), with the effect being greatest with DPPC. The presence of 1.0 M urea inhibited the formation of PC liposomes.

  7. Antinociceptive effect of intrathecal microencapsulated human pheochromocytoma cell in a rat model of bone cancer pain.

    PubMed

    Li, Xiao; Li, Guoqi; Wu, Shaoling; Zhang, Baiyu; Wan, Qing; Yu, Ding; Zhou, Ruijun; Ma, Chao

    2014-07-08

    Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l) lysine-alginate (APA) microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  8. Review of Intrathecal Baclofen Therapy for Spastic and Rigidity Disorders

    ERIC Educational Resources Information Center

    Obringer, S. John; Coffey, Kenneth M.

    2002-01-01

    Intrathecal baclofen therapy, a treatment for cerebral palsy and other spastic and rigidity disorders, is showing promise as an effective intervention. This article synthesizes both the medical and rehabilitation conceptual literature to update educators and related service providers as to the efficacy of this intervention. Implications for…

  9. Abdominal girth and vertebral column length aid in predicting intrathecal hyperbaric bupivacaine dose for elective cesarean section

    PubMed Central

    Wei, Chang-Na; Zhou, Qing-He; Wang, Li-Zhong

    2017-01-01

    Abstract Currently, there is no consensus on how to determine the optimal dose of intrathecal bupivacaine for an individual undergoing an elective cesarean section. In this study, we developed a regression equation between intrathecal 0.5% hyperbaric bupivacaine volume and abdominal girth and vertebral column length, to determine a suitable block level (T5) for elective cesarean section patients. In phase I, we analyzed 374 parturients undergoing an elective cesarean section that received a suitable dose of intrathecal 0.5% hyperbaric bupivacaine after a combined spinal-epidural (CSE) was performed at the L3/4 interspace. Parturients with T5 blockade to pinprick were selected for establishing the regression equation between 0.5% hyperbaric bupivacaine volume and vertebral column length and abdominal girth. Six parturient and neonatal variables, intrathecal 0.5% hyperbaric bupivacaine volume, and spinal anesthesia spread were recorded. Bivariate line correlation analyses, multiple line regression analyses, and 2-tailed t tests or chi-square test were performed, as appropriate. In phase II, another 200 parturients with CSE for elective cesarean section were enrolled to verify the accuracy of the regression equation. In phase I, a total of 143 parturients were selected to establish the following regression equation: YT5 = 0.074X1 − 0.022X2 − 0.017 (YT5 = 0.5% hyperbaric bupivacaine volume for T5 block level; X1 = vertebral column length; and X2 = abdominal girth). In phase II, a total of 189 participants were enrolled in the study to verify the accuracy of the regression equation, and 155 parturients with T5 blockade were deemed eligible, which accounted for 82.01% of all participants. This study evaluated parturients with T5 blockade to pinprick after a CSE for elective cesarean section to establish a regression equation between parturient vertebral column length and abdominal girth and 0.5% hyperbaric intrathecal bupivacaine volume. This equation

  10. Abdominal girth and vertebral column length aid in predicting intrathecal hyperbaric bupivacaine dose for elective cesarean section.

    PubMed

    Wei, Chang-Na; Zhou, Qing-He; Wang, Li-Zhong

    2017-08-01

    Currently, there is no consensus on how to determine the optimal dose of intrathecal bupivacaine for an individual undergoing an elective cesarean section. In this study, we developed a regression equation between intrathecal 0.5% hyperbaric bupivacaine volume and abdominal girth and vertebral column length, to determine a suitable block level (T5) for elective cesarean section patients.In phase I, we analyzed 374 parturients undergoing an elective cesarean section that received a suitable dose of intrathecal 0.5% hyperbaric bupivacaine after a combined spinal-epidural (CSE) was performed at the L3/4 interspace. Parturients with T5 blockade to pinprick were selected for establishing the regression equation between 0.5% hyperbaric bupivacaine volume and vertebral column length and abdominal girth. Six parturient and neonatal variables, intrathecal 0.5% hyperbaric bupivacaine volume, and spinal anesthesia spread were recorded. Bivariate line correlation analyses, multiple line regression analyses, and 2-tailed t tests or chi-square test were performed, as appropriate. In phase II, another 200 parturients with CSE for elective cesarean section were enrolled to verify the accuracy of the regression equation.In phase I, a total of 143 parturients were selected to establish the following regression equation: YT5 = 0.074X1 - 0.022X2 - 0.017 (YT5 = 0.5% hyperbaric bupivacaine volume for T5 block level; X1 = vertebral column length; and X2 = abdominal girth). In phase II, a total of 189 participants were enrolled in the study to verify the accuracy of the regression equation, and 155 parturients with T5 blockade were deemed eligible, which accounted for 82.01% of all participants.This study evaluated parturients with T5 blockade to pinprick after a CSE for elective cesarean section to establish a regression equation between parturient vertebral column length and abdominal girth and 0.5% hyperbaric intrathecal bupivacaine volume. This equation can accurately

  11. Plasmon resonant liposomes for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  12. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin.

    PubMed

    Jin, Hong-Hao; Lu, Qun; Jiang, Jian-Guo

    2016-03-01

    Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    PubMed Central

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  14. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects.

    PubMed

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2017-01-01

    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin α v β 3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer.

  15. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects

    PubMed Central

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2017-01-01

    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin αvβ3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer. PMID:28331317

  16. Giant liposomes as delivery system for ecophysiological studies in copepods.

    PubMed

    Buttino, Isabella; De Rosa, Giuseppe; Carotenuto, Ylenia; Ianora, Adrianna; Fontana, Angelo; Quaglia, Fabiana; La Rotonda, Maria Immacolata; Miralto, Antonio

    2006-03-01

    Giant liposomes are proposed as a potential delivery system in marine copepods, the dominant constituent of the zooplankton. Liposomes were prepared in the same size range as the food ingested by copepods (mean diameter of about 7 microm). The encapsulation of a hydrophilic and high molecular mass fluorescent compound, fluorescein isothiocyanate-dextran (FitcDx), within the liposomes provided a means of verifying copepod ingestion when viewed with the confocal laser-scanning microscope. Females of the calanoid copepod Temora stylifera were fed with FitcDx-encapsulated liposomes alone or mixed with the dinoflagellate alga Prorocentrum minimum. Control copepods were incubated with the P. minimum diet alone. Egg production rates, percentage egg-hatching success and number of faecal pellets produced were evaluated after 24 h and 48 h of feeding. Epifluorescence of copepod gut and faecal pellets indicated that the liposomes were actively ingested by T. stylifera in both experimental food conditions, with or without the dinoflagellate diet. Ingestion rates calculated using 3H-labelled liposomes indicated that females ingested more liposomes when P. minimum was added to the solution (16% vs 7.6% of uptake). When liposomes were supplied together with the algal diet, egg production rate, egg-hatching success and faecal pellet production were as high as those observed for the control diet. By contrary, egg production and hatching success were very low with a diet of liposomes alone and faecal pellet production was similar to that recorded in starved females. This results suggest that liposomes alone did not add any nutritive value to the diet, making them a good candidate as inert carriers to study the nutrient requirements or biological activity of different compounds. In particular, such liposomes are proposed as carriers for diatom-derived polyunsaturated aldehydes, which are known to impair copepod embryo viability. Other potential applications of liposomes as a delivery

  17. Microfabrication of three-dimensional filters for liposome extrusion

    NASA Astrophysics Data System (ADS)

    Baldacchini, Tommaso; Nuñez, Vicente; LaFratta, Christopher N.; Grech, Joseph S.; Vullev, Valentine I.; Zadoyan, Ruben

    2015-03-01

    Liposomes play a relevant role in the biomedical field of drug delivery. The ability of these lipid vesicles to encapsulate and transport a variety of bioactive molecules has fostered their use in several therapeutic applications, from cancer treatments to the administration of drugs with antiviral activities. Size and uniformity are key parameters to take into consideration when preparing liposomes; these factors greatly influence their effectiveness in both in vitro and in vivo experiments. A popular technique employed to achieve the optimal liposome dimension (around 100 nm in diameter) and uniform size distribution is repetitive extrusion through a polycarbonate filter. We investigated two femtosecond laser direct writing techniques for the fabrication of three-dimensional filters within a microfluidics chip for liposomes extrusion. The miniaturization of the extrusion process in a microfluidic system is the first step toward a complete solution for lab-on-a-chip preparation of liposomes from vesicles self-assembly to optical characterization.

  18. Adhesion of liposomes: a quartz crystal microbalance study

    NASA Astrophysics Data System (ADS)

    Lüthgens, Eike; Herrig, Alexander; Kastl, Katja; Steinem, Claudia; Reiss, Björn; Wegener, Joachim; Pignataro, Bruno; Janshoff, Andreas

    2003-11-01

    Three different systems are presented, exploring the adhesion of liposomes mediated by electrostatic and lipid-protein interactions as well as molecular recognition of ligand receptor pairs. Liposomes are frequently used to gain insight into the complicated processes involving adhesion and subsequent events such as fusion and fission mainly triggered by specific proteins. We combined liposome technology with the quartz crystal microbalance (QCM) technique as a powerful tool to study the hidden interface between the membrane and functionalized surface. Electrostatic attraction and molecular recognition were employed to bind liposomes to the functionalized quartz crystal. The QCM was used to distinguish between adsorption of vesicles and rupture due to strong adhesive forces. Intact vesicles display viscoelastic behaviour, while planar lipid bilayers as a result of vesicle rupture can be modelled by a thin rigid film. Furthermore, the adhesion of cells was modelled successfully by receptor bearing liposomes. Scanning force microscopy was used to confirm the results obtained by QCM measurements.

  19. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    PubMed

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Long-acting insulins alter milk composition and metabolism of lactating dairy cows.

    PubMed

    Winkelman, L A; Overton, T R

    2013-01-01

    This study investigated the effect of 2 different types of long-acting insulin on milk production, milk composition, and metabolism in lactating dairy cows. Multiparous cows (n=30) averaging 88 d in milk were assigned to one of 3 treatments in a completely randomized design. Treatments consisted of control (C), Humulin-N (H; Eli Lilly and Company, Indianapolis, IN), and insulin glargine (L). The H and L treatments were administered twice daily at 12-h intervals via subcutaneous injection for 10d. Cows were milked twice daily, and milk composition was determined every other day. Mammary biopsies were conducted on d 11, and mammary proteins extracted from the biopsies were analyzed by Western blot for components of insulin and mammalian target of rapamycin signaling pathways. Treatment had no effect on dry matter intake or milk yield. Treatment with both forms of long-acting insulin increased milk protein content and tended to increase milk protein yield over the 10-d treatment period. Analysis of milk N fractions from samples collected on d 10 of treatment suggested that cows administered L tended to have higher yields of milk protein fractions than cows administered H. Milk fat content and yield tended to be increased for cows administered long-acting insulins. Lactose content and yields were decreased by treatment with long-acting insulins. Administration of long-acting insulins, particularly L, tended to shift milk fatty acid composition toward increased short- and medium-chain fatty acids and decreased long-chain fatty acids. Plasma concentrations of glucose and urea N were lower for cows administered long-acting insulins; interactions of treatment and sampling time were indicative of more pronounced effects of L than H on these metabolites. Concentrations of nonesterified fatty acids and insulin were increased in cows administered long-acting insulins. Decreased concentrations of urea N in both plasma and milk suggested more efficient use of N in cows

  1. Body distributioin of RGD-mediated liposome in brain-targeting drug delivery.

    PubMed

    Qin, Jing; Chen, DaWei; Hu, Haiyang; Qiao, MingXi; Zhao, XiuLi; Chen, Baoyu

    2007-09-01

    RGD conjugation liposomes (RGD-liposomes) were evaluated for brain-targeting drug delivery. The flow cytometric in vitro study demonstrated that RGD-liposomes could bind to monocytes and neutrophils effectively. Ferulic acid (4-hydroxy-3-methoxycinnamic, FA) was loaded into liposomes. Rats were subjected to intrastriatal microinjections of 100 units of human recombinant IL-1beta to produce brain inflammation and caudal vein injection of three formulations (FA solution, FA liposome and RGD-coated FA liposome). Animals were sacrificed 15, 30, 60 and 120 min after administration to study the body distribution of the FA in the three formulations. HPLC was used to determine the concentration of FA in vivo with salicylic acid as internal standard. The results of body distribution indicated that RGD-coated liposomes could be mediated into the brain with a 6-fold FA concentration compared to FA solution and 3-fold in comparison to uncoated liposome. Brain targeted delivery was achieved and a reduction in dosage might be allowed.

  2. Transcutaneous drug delivery by liposomes using fractional laser technology.

    PubMed

    Fujimoto, Takahiro; Wang, Jian; Baba, Kazuki; Oki, Yuka; Hiruta, Yuki; Ito, Masayuki; Ito, Shinobu; Kanazawa, Hideko

    2017-07-01

    Transdermal delivery of hydrophilic peptides remains a challenge due to their poor cellular uptake and transdermal penetration. We hypothesize that combination of a CO 2 fractional laser to enhance percutaneous absorption and liposomes as transdermal carriers would improve skin penetration of hydrophilic drugs. NA. Liposomes were prepared using membrane fusion lipid dioleoylphosphatidylethanolamine, and used to deliver 5-carboxyfluorescein (CF) and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) as model hydrophilic peptide drugs. Liposome size was estimated by dynamic light scattering. Liposome uptake into murine macrophage cells and penetration or permeation into Yucatan micropig skin after irradiation by CO 2 fractional laser at varying energy levels (laser power and exposure duration) were investigated using Franz cell and fluorescence microscopy. Oxidative damage to the irradiated mouse skin was assessed by electron spin resonance. Size of CF and OVA-FITC encapsulated liposomes was 324 ± 75 nm. Cellular uptake of OVA-FITC delivered by liposomes was 10-fold higher (1,370 relative fluorescence units, RFU) than delivered in solution form (130 RFU). Fractional laser irradiation increased skin permeation rate of CF liposomes (0-10%) and OVA-FITC liposomes (4-40%) in a dose-dependent manner. Although peeling off the stratum corneum facilitated CF liposome penetration at low energy levels (2.69-3.29 J/cm 2 ; 10-20 W for 500 μs), drug permeation was similar (7-8%) in peeled or untreated skin at higher laser energy levels (6.06 J/cm 2 ; 20 W for 1,500 μs). FITC penetrated deeper in the skin after laser irradiation. However, OH, O2-, and VC reactive oxygen species were generated upon irradiation of the skin with a fractional CO 2 laser. Increasing laser power and irradiation, time increased liposome uptake by cells and penetration of peptide drugs across the skin in a dose-dependent manner. High-energy CO 2 fractional laser overcomes the

  3. Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity.

    PubMed

    Leite, Elaine A; Souza, Cristina M; Carvalho-Júnior, Alvaro D; Coelho, Luiz G V; Lana, Angela M Q; Cassali, Geovanni D; Oliveira, Mônica C

    2012-01-01

    Cisplatin (CDDP) is one of the most effective and potent anticancer drugs used as first-line chemotherapy against several solid tumors. However, the severe side effects and its tendency to provoke chemoresistance often limit CDDP therapy. To avoid these inconveniences, the present study's research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). The present study aimed to evaluate the antitumor effect and toxicity of SpHL-CDDP, as compared with that of free CDDP, and long-circulating and non- pH-sensitive liposomes containing CDDP (NSpHL-CDDP), after their intravenous administration in solid Ehrlich tumor-bearing mice. Antitumor activity was evaluated by analysis of tumor volume and growth inhibition ratio, serum vascular endothelial growth factor (VEGF) levels, and histomorphometric and immunohistochemical studies. Body weight variation and the histological examination of bone marrow and kidneys were used as toxicity indicators. A significant reduction in the tumor volume and a higher tumor growth inhibition ratio was observed after SpHL-CDDP treatment, compared with free CDDP and NSpHL-CDDP treatments. In addition, complete remission of the tumor was detected in 18.2% of the mice treated with SpHL- CDDP (16 mg/kg). As such, the administration of SpHL-CDDP, as compared with free CDDP and NSpHL-CDDP, led to a decrease in the area of necrosis and in the percentage of positive CDC 47 tumor cells. A significant reduction in the VEGF serum level was also observed after SpHL-CDDP treatment, as compared with free-CDDP treatment. SpHL-CDDP administered in a two-fold higher dose than that of free CDDP presented a loss in body weight and changes in the hematopoietic tissue morphology, which proved to be similar to that of free CDDP. No changes could be verified in the renal tissue after any formulations containing CDDP had been administered. These findings showed that SpHL-CDDP allowed for the administration of higher doses of CDDP

  4. Atmospheric-pressure guided streamers for liposomal membrane disruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterizationmore » including gas temperature calculation.« less

  5. Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system.

    PubMed

    Vaz, G C; Bahia, A P C O; de Figueiredo Müller-Ribeiro, F C; Xavier, C H; Patel, K P; Santos, R A S; Moreira, F A; Frézard, F; Fontes, M A P

    2015-01-29

    Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. Two days after liposome-entrapped GABA was injected intracerebroventricularly (ICV), Wistar rats were submitted to the following evaluations: (1) changes in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) to ICV injection of bicuculline methiodide (BMI) in anesthetized rats; (2) changes in cardiovascular reactivity to air jet stress in conscious rats; and (3) anxiety-like behavior in conscious rats. GABA and saline-containing pegylated liposomes were prepared with a mean diameter of 200 nm. Rats with implanted cannulas targeted to lateral cerebral ventricle (n = 5-8/group) received either GABA solution (GS), empty liposomes (EL) or GABA-containing liposomes (GL). Following (48 h) central microinjection (2 μL, 0.09 M and 99 g/L) of liposomes, animals were submitted to the different protocols. Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P < 0.05), blunted tachycardia in the stress trial (ΔHR: GS 115 ± 14, EL 117 ± 10, GL 74 ± 9 bpm; P<0.05) and spent more time in the open arms of elevated plus maze (EL 6 ± 2 vs. GL 18 ± 5%; P = 0.028) compared with GS and EL groups. These results indicate that liposome-entrapped GABA can be a potential tool for exploring the chronic effects of GABA in specific regions and pathways of the central nervous system. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Drug delivery in cancer using liposomes.

    PubMed

    Dass, Crispin R

    2008-01-01

    There are various types of liposomes used for cancer therapy, but these can all be placed into three distinct categories based on the surface charge of vesicles: neutral, anionic and cationic. This chapter describes the more rigorous and easy methods used for liposome manufacture, with references, to aid the reader in preparing these formulations in-house.

  7. [Intrathecal methotrexate in breast cancer meningeal carcinomatosis - Experience with a new administration schedule].

    PubMed

    Cochereau, Delphine; Da Costa, Sabrina; Le Maignan, Christine; Gauthier, Hélène; Cochereau, Jérôme; Espié, Marc; Giacchetti, Sylvie; Teixeira, Luis

    2016-05-01

    Methotrexate represents the standard intrathecal treatment of breast cancer meningeal carcinomatosis. However, its optimal schedule remains undefined. The aim of the present study was to evaluate results obtained with the methotrexate schedule used in Saint-Louis hospital (Paris). Patients followed in Saint-Louis hospital for breast cancer and who received intrathecal methotrexate were included in this retrospective monocentric study. Intrathecal treatment received contained methotrexate 12 mg/day (days: 1-5) and then 15 mg/week until progression or toxicity. Between 2003 and 2015, 41 patients were included. Primitive tumours were RH+/HER2-, HER2+ and triple-negative in respectively 66%, 14%, 5% and 15% of patients, 22% of them had meningeal carcinomatosis as metastatic disease initial manifestation. Objective response rate was 54%, median overall survival was 4.0 mois [CI 95%: 3-7.3] and 1-year survival rate was 15.2% (11.4%, 50% et 0% in RH+/HER2-, HER2+ and triple-negative subgroups; HR=0.45 [0.21-0.97] between HER2+ and RH+/HER2-). In univariate analysis, prognostic factors were brain involvement (p=0.049), initial cerebrospinal fluid protein level (p=0.0002) and concomitant systemic treatment received (p=0.049). This intrathecal methotrexate schedule demonstrates a similar median overall survival as the one obtained with a dose-dense schedule and an improved quality of life. Nevertheless, as the objective response and 1-year survival rates are slightly inferior, a dose-dense schedule remains still preferred in HER2+ patients or in those harboring a mainly meningeal progression. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  8. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach.

    PubMed

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom-liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when

  9. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach

    PubMed Central

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom–liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when

  10. Pitfalls in chronobiology: a suggested analysis using intrathecal bupivacaine analgesia as an example.

    PubMed

    Shafer, Steven L; Lemmer, Bjoern; Boselli, Emmanuel; Boiste, Fabienne; Bouvet, Lionel; Allaouchiche, Bernard; Chassard, Dominique

    2010-10-01

    The duration of analgesia from epidural administration of local anesthetics to parturients has been shown to follow a rhythmic pattern according to the time of drug administration. We studied whether there was a similar pattern after intrathecal administration of bupivacaine in parturients. In the course of the analysis, we came to believe that some data points coincident with provider shift changes were influenced by nonbiological, health care system factors, thus incorrectly suggesting a periodic signal in duration of labor analgesia. We developed graphical and analytical tools to help assess the influence of individual points on the chronobiological analysis. Women with singleton term pregnancies in vertex presentation, cervical dilation 3 to 5 cm, pain score >50 mm (of 100 mm), and requesting labor analgesia were enrolled in this study. Patients received 2.5 mg of intrathecal bupivacaine in 2 mL using a combined spinal-epidural technique. Analgesia duration was the time from intrathecal injection until the first request for additional analgesia. The duration of analgesia was analyzed by visual inspection of the data, application of smoothing functions (Supersmoother; LOWESS and LOESS [locally weighted scatterplot smoothing functions]), analysis of variance, Cosinor (Chronos-Fit), Excel, and NONMEM (nonlinear mixed effect modeling). Confidence intervals (CIs) were determined by bootstrap analysis (1000 replications with replacement) using PLT Tools. Eighty-two women were included in the study. Examination of the raw data using 3 smoothing functions revealed a bimodal pattern, with a peak at approximately 0630 and a subsequent peak in the afternoon or evening, depending on the smoother. Analysis of variance did not identify any statistically significant difference between the duration of analgesia when intrathecal injection was given from midnight to 0600 compared with the duration of analgesia after intrathecal injection at other times. Chronos-Fit, Excel, and

  11. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications

    PubMed Central

    Xing, Hang; Hwang, Kevin; Lu, Yi

    2016-01-01

    Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. The ability of liposomes to encapsulate a wide variety of diagnostic and therapeutic agents has led to significant interest in utilizing liposomes as nanocarriers for theranostic applications. In this review, we highlight recent progress in developing liposomes as nanocarriers for a) diagnostic applications to detect proteins, DNA, and small molecule targets using fluorescence, magnetic resonance, ultrasound, and nuclear imaging; b) therapeutic applications based on small molecule-based therapy, gene therapy and immunotherapy; and c) theranostic applications for simultaneous detection and treatment of heavy metal toxicity and cancers. In addition, we summarize recent studies towards understanding of interactions between liposomes and biological components. Finally, perspectives on future directions in advancing the field for clinical translations are also discussed. PMID:27375783

  12. The Effect of the Time of Injection of Intrathecal Analgesia on the Length of Early and Advanced Labor

    DTIC Science & Technology

    2000-01-03

    drug combinations. Intrathecal Analgesia 36 Future Studies Recommendations for future studies include a prospective randomized clinical trial to examine...second stages of labor because of the variations in client population and in clinical practice. Friedman (1978) Intrathecal Analgesia 7 however, does...that the administration of morphine into the subarchnoid space of rats produced potent analgesia (Wang, 1977). These effects were then clinically applied

  13. Liposomes as potential carrier system for targeted delivery of polyene antibiotics.

    PubMed

    Naik, Suresh R; Desai, Sandhya K; Shah, Priyank D; Wala, Santosh M

    2013-09-01

    The development of new therapeutic modalities involves the use of drug carrier, such as liposomes, which can modify pharmacokinetic and bio-distribution of drug profile. Polyene antibiotics incorporation into liposomes improves its availability at the site, bio-distribution and therapeutic index mainly through the engulfment of liposomes by circulating monocytes/macrophages and transportation to the site of infection. Polyene antibiotics (AmB, SJA-95, HA-1-92) and other antibiotics (streptomycin, tobramycin, quinolones, anti-tubercular and anti-cancer drugs), liposomal preparations are described with possible advantages from therapeutic efficacy and toxicity point of view. The polyene macrolide antibiotics liposomal preparations proved to be more effective in the treatment of systemic mycosis. The AmB-cyclodextrin derivatives inclusion complex is a major breakthrough in liposomal preparation which can be converted into aqueous phase of liposome. Liposomal drug incorporated preparation has been one of the important areas of research for developing the existing polyene antibiotics into useful chemotherapeutic agents in clinical medicine. In recent past other antibiotics have also been incorporated into liposomes using wide variety of materials, phosphatidylethanolamine derivatives (pegylated liposomes, enzyme sensitive conjugates, fluidosomes of anti-cancer drugs and poly lactic/glycolic acid microspheres for anti-tuberculosis drugs). In addition, attempts were also made to extend the receptor mediated drug targeting and to review some relevant patents.

  14. Novel liposomal technology applied in esophageal cancer treatment

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hsieh, Yei-San; Yang, Pei-wen; Huang, Leaf; Hsu, Yih-Chih

    2018-02-01

    Cisplatin (CDDP) has been commonly used as a chemotherapeutic drug, mainly used for the treatment of malignant epithelial cell tumors. We have developed a new method based on innovative lipid calcium phosphate, which encapsulated hydrophobic drugs to form liposomal nanoparticles. Esophageal cancer xenograft model was used to investigate the efficacy of liposomal nanoparticles. and it showed good therapeutic efficacy with lower side effects. Liposomal nanoparticles exhibited a better therapeutic effect than that of conventional CDDP.

  15. Increased Liposome Extravasation in Selected Tissues: Effect of Substance P

    NASA Astrophysics Data System (ADS)

    Rosenecker, Joseph; Zhang, Weiming; Hong, Keelung; Lausier, James; Geppetti, Pierangelo; Yoshihara, Shigemi; Papahadjopoulos, Demetrios; Nadel, Jay A.

    1996-07-01

    We have used a pharmacologic mediator to open intercellular connections in selected vessels to allow liposomes to escape from the blood stream and to extravasate into tissues that have appropriate receptors. We have examined the effects of substance P (SP), a peptide known to increase vascular permeability in selected tissues, such as trachea, esophagus, and urinary bladder in rats. We used quantitative fluorescence analysis of tissues to measure two fluorescent markers, one attached to the lipid (rhodamine-phosphatidylethanolamine) and another, doxorubicin (an antitumor drug), encapsulated within the aqueous interior. We have also examined the deposition of liposomes microscopically by the use of encapsulated colloidal gold and silver enhancement. Analysis of the biochemical and morphological observations indicate the following: (i) Injection of SP produces a striking increase in both liposome labels, but only in tissues that possess receptors for SP in postcapillary venules; (ii) liposome material in these tissues has extravasated and is found extracellularly near a variety of cells beyond the endothelial layer over the first few hours; (iii) 24 h following injection of liposomes and SP, liposome material is found in these tissues, localized intracellularly in both endothelial cells and macrophages. We propose that appropriate application of tissue-specific mediators can result in liposome extravasation deep within tissues that normally do not take up significant amounts of liposomes from the blood. Such liposomes are able to carry a variety of pharmacological agents that can be released locally within selected target tissues for therapeutic purposes.

  16. The Role of Liposomal Bupivacaine in Value-Based Care.

    PubMed

    Iorio, Richard

    Multimodal pain control strategies are crucial in reducing opioid use and delivering effective pain management to facilitate improved surgical outcomes. The utility of liposomal bupivacaine in enabling effective pain control in multimodal strategies has been demonstrated in several studies, but others have found the value of liposomal bupivacaine in such approaches to be insignificant. At New York University Langone Medical Center, liposomal bupivacaine injection and femoral nerve block were compared in their delivery of efficacious and cost-effective multimodal analgesia among patients undergoing total joint arthroplasty (TJA). Retrospective analysis revealed that including liposomal bupivacaine in a multimodal pain control protocol for TJA resulted in improved quality and efficiency metrics, decreased narcotic use, and faster mobilization, all relative to femoral nerve block, and without a significant increase in admission costs. In addition, liposomal bupivacaine use was associated with elimination of the need for patient-controlled analgesia in TJA. Thus, at Langone Medical Center, the introduction of liposomal bupivacaine to TJA has been instrumental in achieving adequate pain control, delivering high-level quality of care, and controlling costs.

  17. pHLIP®-Mediated Delivery of PEGylated Liposomes to Cancer Cells

    PubMed Central

    Yao, Lan; Daniels, Jennifer; Wijesinghe, Dayanjali; Andreev, Oleg A.; Reshetnyak, Yana K.

    2013-01-01

    We develop a method for pH-dependent fusion between liposomes and cellular membranes using pHLIP® (pH Low Insertion Peptide), which inserts into lipid bilayer of membrane only at low pH. Previously we establish the molecular mechanism of peptide action and show that pHLIP can target acidic diseased tissue. Here we investigate how coating of PEGylated liposomes with pHLIP might affect liposomal uptake by cells. The presence of pHLIP on the surface of PEGylated-liposomes enhanced membrane fusion and lipid exchange in a pH dependent fashion, leading to increase of cellular uptake and payload release, and inhibition of cell proliferation by liposomes containing ceramide. A novel type of pH-sensitive, “fusogenic” pHLIP-liposomes was developed, which could be used to selectively deliver various diagnostic and therapeutic agents to acidic diseased cells. PMID:23416366

  18. Anaphylaxis to pegylated liposomal Doxorubicin: a case report.

    PubMed

    Sharma, L R; Subedi, A; Shah, B K

    2014-08-01

    Liposomal doxorubicin is used for the treatment of various cancers like epithelial ovarian cancers, multiple myeloma and sarcomas. We report the first case of anaphylaxis to pegylated liposomal doxorubicin.

  19. Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy

    PubMed Central

    Goins, Beth; Phillips, William T.; Bao, Ande

    2016-01-01

    Introduction A major limitation of current liposomal cancer therapies is the inability of liposome therapeutics to penetrate throughout the entire tumor mass. This inhomogeneous distribution of liposome therapeutics within the tumor has been linked to treatment failure and drug resistance. Both liposome particle transport properties and tumor microenvironment characteristics contribute to this challenge in cancer therapy. This limitation is relevant to both intravenously and intratumorally administered liposome therapeutics. Areas covered Strategies to improve the intratumoral distribution of liposome therapeutics are described. Combination therapies of intravenous liposome therapeutics with pharmacologic agents modulating abnormal tumor vasculature, interstitial fluid pressure, extracellular matrix components, and tumor associated macrophages are discussed. Combination therapies using external stimuli (hyperthermia, radiofrequency ablation, magnetic field, radiation, and ultrasound) with intravenous liposome therapeutics are discussed. Intratumoral convection-enhanced delivery (CED) of liposomal therapeutics is reviewed. Expert opinion Optimization of the combination therapies and drug delivery protocols are necessary. Further research should be conducted in appropriate cancer types with consideration of physiochemical features of liposomes and their timing sequence. More investigation of the role of tumor associated macrophages in intratumoral distribution is warranted. Intratumoral infusion of liposomes using CED is a promising approach to improve their distribution within the tumor mass. PMID:26981891

  20. Liposomal bupivacaine: an innovative nonopioid local analgesic for the management of postsurgical pain.

    PubMed

    Candiotti, Keith

    2012-09-01

    Local anesthetics are a cornerstone of multimodal pain control strategies in the surgical setting as they have a long history of use and an established safety profile. Although effective, their duration of action is relatively short, which usually leads to the use of other agents, such as opioids, for effective postsurgical pain control in most patients. A medical need exists to extend the duration of analgesia with local anesthetics to help reduce the reliance on opioids in the postsurgical setting. Liposomal bupivacaine uses a product delivery platform to release bupivacaine slowly over 96 hours after infiltration at the surgical site. Liposomal bupivacaine was compared with placebo in two pivotal, multicenter, randomized, double-blind, parallel-group trials in 189 adults undergoing soft-tissue surgery (hemorrhoidectomy) and 193 adults undergoing orthopedic surgery (bunionectomy). Among patients undergoing hemorrhoidectomy, liposomal bupivacaine significantly reduced cumulative pain scores for up to 72 hours (primary end point) as measured by the area under the curve of pain scores on the numeric rating scale (p<0.0001), reduced overall opioid consumption (p ≤ 0.0006), increased the proportion of patients who did not receive opioids (p<0.0008), delayed time to first opioid by more than 13 hours (p<0.0001), and was associated with significantly higher rates of patient satisfaction (p=0.0007) compared with placebo. Similarly, in patients undergoing bunionectomy, liposomal bupivacaine significantly reduced total consumption of rescue opioids (p=0.0077) and cumulative pain scores as measured by the area under the curve of pain scores on the numeric rating scale (p=0.0005) during the first 24 postsurgical hours (primary end point) relative to placebo. Furthermore, liposomal bupivacaine also significantly delayed the time to first use of opioid rescue (p<0.0001) and increased the proportion of patients requiring no rescue opioid treatment (p ≤ 0.0404) compared with

  1. Chemical meningitis related to intra-CSF liposomal cytarabine.

    PubMed

    Durand, Bénédicte; Zairi, Fahed; Boulanger, Thomas; Bonneterre, Jacques; Mortier, Laurent; Le Rhun, Emilie

    2017-10-01

    Therapeutic options of leptomeningeal metastases include intra-cerebrospinal fluid (CSF) chemotherapy. Among intra-CSF agents, liposomal cytarabine has advantages but can induce specific toxicities. A BRAF-V600E-mutated melanoma leptomeningeal metastases patient, treated by dabrafenib and liposomal cytarabine, presented after the first injection of liposomal cytarabine with hyperthermia and headaches. Despite sterile CSF/blood analyses, extended intravenous antibiotics were given and the second injection was delayed. The diagnosis of chemical meningitis was finally made. Dose reduction and appropriate symptomatic treatment permitted the administration of 15 injections of liposomal cytarabine combined with dabrafenib. A confirmation of the diagnosis of chemical meningitis is essential in order (1) not to delay intra-CSF or systemic chemotherapy or (2) to limit the administration of unnecessary but potentially toxic antibiotics.

  2. pH-Sensitive Liposomes: Possible Clinical Implications

    NASA Astrophysics Data System (ADS)

    Yatvin, M. B.; Kreutz, W.; Horwitz, B. A.; Shinitzky, M.

    1980-12-01

    When pH-sensitive molecules are incorporated into liposomes, drugs can be specifically released from these vesicles by a change of pH in the ambient serum. Liposomes containing the pH-sensitive lipid palmitoyl homocysteine (PHC) were constructed so that the greatest pH differential (6.0 to 7.4) of drug release was obtained near physiological temperature. Such liposomes could be useful clinically if they enable drugs to be targeted to areas of the body in which pH is less than physiological, such as primary tumors and metastases or sites of inflammation and infection.

  3. Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue

    PubMed Central

    Joshi, Shailendra; Singh-Moon, Rajinder P.; Wang, Mei; Chaudhuri, Durba B.; Holcomb, Mark; Straubinger, Ninfa L.; Bruce, Jeffrey N.; Bigio, Irving J.; Straubinger, Robert M.

    2014-01-01

    Object Transient cerebral hypoperfusion (TCH) has empirically been used to assist intraarterial (IA) drug delivery to brain tumors. Transient (< 3 min) reduction of cerebral blood flow (CBF) occurs during many neuro- and cardiovascular interventions and has recently been used to better target IA drugs to brain tumors. In the present experiments, we assessed whether the effectiveness of IA delivery of cationic liposomes could be improved by TCH. Methods Cationic liposomes composed of 1:1 DOTAP:PC (dioleoyl-trimethylammonium-propane:phosphatidylcholine) were administered to three groups of Sprague Dawley rats. In the first group, we tested the effect of blood flow reduction on IA delivery of cationic liposomes. In the second group, we compared TCH-assisted IA liposomal delivery vs. intravenous (IV) administration of the same dose. In the third group, we assessed retention of cationic liposomes in brain four hours after TCH assisted delivery. The liposomes contained a near infrared dye, DilC18(7), whose concentration could be measured in vivo by diffuse reflectance spectroscopy. Results IA injections of cationic liposomes during TCH increased their delivery approximately four-fold compared to injections during normal blood flow. Optical pharmacokinetic measurements revealed that relative to IV injections, IA injection of cationic liposomes during TCH produced tissue concentrations that were 100-fold greater. The cationic liposomes were retained in the brain tissue four hours after a single IA injection. There was no gross impairment of neurological functions in surviving animals. Conclusions Transient reduction in CBF significantly increased IA delivery of cationic liposomes in the brain. High concentrations of liposomes could be delivered to brain tissue after IA injections with concurrent TCH while none could be detected after IV injection. IA-TCH injections were well tolerated and cationic liposomes were retained for at least 4 hours after IA administration. These

  4. Prolonged cardioprotective effect of pyridostigmine encapsulated in liposomes.

    PubMed

    Vidal, Alessandra Teixeira; Guimarães, Homero Nogueira; de Paula, Danielle Cristiane Correa; Frezard, Frederic; Silva-Barcellos, Neila Márcia; Grabe-Guimarães, Andrea

    2010-01-02

    The purpose of the present work was to investigate the ability of pyridostigmine encapsulated in long-circulating liposomes, to protect against ECG (electrocardiogram) alterations induced by sympathetic stimulation in rats. The encapsulation of pyridostigmine was carried out by freeze-thaw and extrusion. Blood pressure and ECG (limb lead II) were monitored in anaesthetized male Wistar rats. The formulation containing pyridostigmine was intravenously administrated in 0.1, 0.3 and 1.0mg/kg doses, and sympathetic stimulation was conducted by administration of 1 or 3 microg of noradrenaline (NA) after 1, 2, 4 or 6h. The obtained cardiovascular parameters were compared to animals that received intravenous injection of pyridostigmine in free form or saline. After saline, NA induced a significant increase in QT interval (22.3% after 3.0 microg). Previous administration of free pyridostigmine significantly prevented the increase of QT interval after sympathetic stimulation and the most prominent effect was observed after 1h for the dose of 0.3mg/kg (6.8% after 3.0 microg of NA) and was no longer observed after 2h of the treatment. On the other hand, the maximum effect of pyridostigmine in liposomal formulation preventing QT interval increase was observed 2h after treatment (9.7% after 3.0 microg of NA) and was still present until 6h when 1mg/kg was previous administrated. The results of the present study, beyond to confirm the cardioprotective action of pyridostigmine, suggest that liposomal pyridostigmine may be a potential therapeutic alternative to prevent cardiovascular disturbances resulting from sympathetic hyperactivity.

  5. Light-Activated Content Release from Liposomes

    PubMed Central

    Leung, Sarah J.; Romanowski, Marek

    2012-01-01

    Successful integration of diagnostic and therapeutic actions at the level of individual cells requires new materials that combine biological compatibility with functional versatility. This review focuses on the development of liposome-based functional materials, where payload release is activated by light. Methods of sensitizing liposomes to light have progressed from the use of organic molecular moieties to the use of metallic plasmon resonant structures. This development has facilitated application of near infrared light for activation, which is preferred for its deep penetration and low phototoxicity in biological tissues. Presented mechanisms of light-activated liposomal content release enable precise in vitro manipulation of minute amounts of reagents, but their use in clinical diagnostic and therapeutic applications will require demonstration of safety and efficacy. PMID:23139729

  6. Anaphylaxis to Pegylated Liposomal Doxorubicin: A Case Report

    PubMed Central

    Sharma, LR; Subedi, A; Shah, BK

    2014-01-01

    Liposomal doxorubicin is used for the treatment of various cancers like epithelial ovarian cancers, multiple myeloma and sarcomas. We report the first case of anaphylaxis to pegylated liposomal doxorubicin. PMID:25429486

  7. In vivo and in vitro evaluation of octyl methoxycinnamate liposomes.

    PubMed

    Mota, Aline de Carvalho Varjão; de Freitas, Zaida Maria Faria; Ricci Júnior, Eduardo; Dellamora-Ortiz, Gisela Maria; Santos-Oliveira, Ralph; Ozzetti, Rafael Antonio; Vergnanini, André Luiz; Ribeiro, Vanessa Lira; Silva, Ronald Santos; dos Santos, Elisabete Pereira

    2013-01-01

    Solar radiation causes damage to human skin, and photoprotection is the main way to prevent these harmful effects. The development of sunscreen formulations containing nanosystems is of great interest in the pharmaceutical and cosmetic industries because of the many potential benefits. This study aimed to develop and evaluate an octyl methoxycinnamate (OMC) liposomal nanosystem (liposome/OMC) to obtain a sunscreen formulation with improved safety and efficacy by retaining OMC for longer on the stratum corneum. The liposome/OMC nanostructure obtained was tested for enzymatic hydrolysis with lipase from Rhizomucor miehei and biodistribution with liposomes labeled with technetium-99m. The liposome/OMC formulation was then incorporated in a gel formulation and tested for ocular irritation using the hen's egg test-chorio-allantoic membrane (HET-CAM) assay, in vitro and in vivo sun protection factor, in vitro release profile, skin biometrics, and in vivo tape stripping. The liposome/OMC nanosystem was not hydrolyzed from R. miehei by lipase. In the biodistribution assay, the liposome/OMC formulation labeled with technetium-99m had mainly deposited in the skin, while for OMC the main organ was the liver, showing that the liposome had higher affinity for the skin than OMC. The liposome/OMC formulation was classified as nonirritating in the HET-CAM test, indicating good histocompatibility. The formulation containing liposome/OMC had a higher in vivo solar photoprotection factor, but did not show increased water resistance. Inclusion in liposomes was able to slow down the release of OMC from the formulation, with a lower steady-state flux (3.9 ± 0.33 μg/cm(2)/hour) compared with the conventional formulation (6.3 ± 1.21 μg/cm(2)/hour). The stripping method showed increased uptake of OMC in the stratum corneum, giving an amount of 22.64 ± 7.55 μg/cm(2) of OMC, which was higher than the amount found for the conventional formulation (14.57 ± 2.30 μg/cm(2)). These results

  8. Preparation and characterization of liposomal formulations of neurotensin-degrading enzyme inhibitors.

    PubMed

    van Rooy, Inge; Wu, Shin-Ying; Storm, Gert; Hennink, Wim E; Dinter-Heidorn, Heike; Schiffelers, Raymond M; Mastrobattista, Enrico

    2011-09-20

    Neurotensin-degrading enzyme (NTDE) inhibitors hold great potential for treating psychotic disorders. However, brain uptake of such compounds in vivo is generally low due to the presence of the blood-brain barrier. In this study, liposomal formulations of two NTDE inhibitors, named compound 1 (C1) and compound 2 (C2) were prepared. Association of these compounds with the liposomal bilayer, subsequent liposomal stability, and compound release in the presence of albumin was studied. Entrapment of the compounds in the liposomal bilayer showed the solubilizing properties of the liposomes. Size and polydispersity index of the compound-entrapped liposomes did not change over 1 month, showing colloidal stability of the liposomal drug formulations. The amount of compounds associated with the liposomes decreased within one day. After this, the association remained stable at 4°C. For C1, association remained stable at 37°C in HEPES buffered saline, and the compound was gradually released in the presence of bovine serum albumin. For C2, the release was rapid in both HBS and BSA at 37°C. In conclusion, the formulation of NTDE inhibitors C1 and C2 in liposomes has been demonstrated and holds promise to deliver NTDE inhibitors in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Complete response in HER2+ leptomeningeal carcinomatosis from breast cancer with intrathecal trastuzumab.

    PubMed

    Oliveira, Mafalda; Braga, Sofia; Passos-Coelho, José Luís; Fonseca, Ricardo; Oliveira, João

    2011-06-01

    Trastuzumab, a monoclonal antibody against the HER2 receptor, is a major breakthrough in the treatment of HER2+ breast cancer. However, its high molecular weight precludes it from crossing the intact blood-brain barrier, making the central nervous system a sanctuary to HER2+ breast cancer metastases. We prospectively assessed functional outcome and toxicity of administering trastuzumab directly into the cerebrospinal fluid of a patient with leptomeningeal carcinomatosis (LC) and brain metastases from HER2+ breast cancer that had already been treated with other intrathecal chemotherapy, with no benefit. Upon signed informed consent, weekly lumbar puncture with administration of trastuzumab 25 mg was begun to a 44 year-old women with metastatic breast cancer (lymph node, bone, lung, and liver involvement) previously treated with tamoxifen, letrozole, anthracyclines, taxanes, capecitabine, intravenous trastuzumab, and lapatinib. She received 67 weekly administrations of intrathecal trastuzumab with marked clinical improvement and no adverse events. She survived 27 months after LC diagnosis. A complete leptomeningeal response, with no evidence of leptomeningeal metastasis at necropsy, was achieved. We believe that intrathecal trastuzumab administration should be prospectively evaluated to confirm clinical activity and optimize dose, schedule, and duration of treatment.

  10. Biophysical aspects of using liposomes as delivery vehicles.

    PubMed

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  11. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dexmedetomidine versus midazolam as adjuvants to intrathecal bupivacaine: A clinical comparison.

    PubMed

    Shukla, Usha; Prabhakar, Tallamraju; Malhotra, Kiran; Srivastava, Dheeraj

    2016-01-01

    Trials are being carried out to identify an adjuvant to intrathecal bupivacaine that preferably potentiates postoperative analgesia. This prospective, randomized, double-blind study was aimed to compare the onset and duration of sensory and motor block, postoperative analgesia and adverse effects of dexmedetomidine or midazolam given with 0.5% hyperbaric bupivacaine for spinal anesthesia. A total of 80 patients, scheduled for vaginal hysterectomies, were randomly allocated to Group D (n = 40) to receive intrathecally 3.0 mL 0.5% hyperbaric bupivacaine +5 ug dexmedetomidine in 0.5 mL of normal saline; and Group M (n = 40) to receive 3 mL of 0.5% hyperbaric bupivacaine +2 mg midazolam in 0.4 mL (5 mg/mL) +0.1 mL normal saline. The onset, duration of sensory and motor block, time to first postoperative analgesia and side effects were noted. Power and Sample size (PS) version 3.0.0.34 was used for power and sample size calculation. Statistical analysis was performed using Microsoft (MS) Office Excel software with the Student's t-test and Chi-square test (level of significance P = 0.05). Duration of sensory, motor blockade and time to the first requirement of analgesia were significantly higher in Group D. Postoperative visual analog scale was significantly less in Group D than Group M. Both groups were similar with respect to sedation, hemodynamic variables and side-effects. Intrathecal dexmedetomidine was better adjuvant than midazolam as it produces significantly longer duration of sensory block, reduced doses of postoperative analgesic agents with comparable side-effects.

  13. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    PubMed

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  14. Absence of histological changes after the administration of a continuous intrathecal clonidine in Wistar rats.

    PubMed

    Guevara-López, Uriah; Aldrete, J Antonio; Covarrubias-Gómez, Alfredo; Hernández-Pando, Rogelio E; López-Muñoz, Francisco J

    2009-01-01

    The administration of epidural and spinal clonidine has demonstrated an antinociceptive effect in animals and humans. For that reason, its spinal administration has been proposed as an adjuvant in chronic pain management. However, there is limited information about its possible neurotoxic effect after its continuous neuraxial administration. Twelve male Wistar rats were randomly divided into two groups. Using an osmotic mini-pump a continuous infusion of intrathecal clonidine, (21.4 micrograms/day, Group A) or saline solution (Group B), was administered for 14 consecutive days. For evaluating the neurological damage a neuropathological analysis of the spinal cord was performed by light microscopy. Neurohistopathologic examination of the spinal cord specimens failed to show evidence of neurotoxic damage in either group. These findings showed that continuous intrathecal administration of clonidine did not produce evidence of histological neurotoxicity; therefore it is possible that continuous administration of intrathecal clonidine might be a safe option for treatment of chronic intractable pain; however, further investigations are necessary for evaluating diverse doses and periods of time, and to define its possible behavioral effects.

  15. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks.

    PubMed

    Gaber, M H; Wu, N Z; Hong, K; Huang, S K; Dewhirst, M W; Papahadjopoulos, D

    1996-12-01

    The purpose of this study was to determine whether hyperthermic exposure would accelerate drug release from thermosensitive sterically stabilized liposomes and enhance their extravasation in tumor tissues. In vivo fluorescence video microscopy was used to measure the extravasation of liposomes, as well as release of their contents, in a rat skin flap window chamber containing a vascularized mammary adenocarcinoma under defined thermal conditions (34 degrees, 42 degrees, and 45 degrees C). Images of tissue areas containing multiple blood vessels were recorded via a SIT camera immediately before, and for up to 2 h after i.v. injection of two liposome populations with identical lipid composition: one liposome preparation was surface labeled with Rhodamine-PE (Rh-PE) and the other contained either Doxorubicin (Dox) or calcein at self-quenching concentrations. The light intensity of the entire tissue area was measured at 34 degrees C (the physiological temperature of the skin) for 1 h, and at 42 degrees or 45 degrees C for a second hour. These measurements were then used to calculate the fluorescent light intensity arising from each tracer (liposome surface label and the released contents) inside the vessel and in the interstitial region. The calculated intensity of Rh-PE for the thermosensitive liposomes in the interstitial space (which represents the amount of extravasated liposomes) was low during the first hour, while temperature was maintained at 34 degrees C and increased to 47 times its level before heating, when the tumor was heated at 42 degrees or 45 degrees C for 1 h. The calculated intensity of the liposome contents (Dox) in the interstitial space was negligible at 34 degrees C, and increased by 38- and 76-fold, when the tumor was heated at 42 degrees and 45 degrees C for 1 h, respectively. Similar values were obtained when calcein was encapsulated in liposomes instead of Dox. A similar increase in liposome extravasation was seen with nonthermosensitive

  16. The Effect of the Time of Injection of Intrathecal Analgesia on the Length of Early and Advanced Labor

    DTIC Science & Technology

    1999-10-01

    Recommendations for future studies include a prospective randomized clinical trial to examine the effect of the timing of intrathecal narcotic...population and in clinical practice. Friedman (1978) Intrathecal Analgesia 7 however, does provide averages and upper statistical limits for the first and...morphine into the subarchnoid space of rats produced potent analgesia (Wang, 1977). These effects were then clinically applied in man for the relief of

  17. Acoustical properties of individual liposome-loaded microbubbles.

    PubMed

    Luan, Ying; Faez, Telli; Gelderblom, Erik; Skachkov, Ilya; Geers, Bart; Lentacker, Ine; van der Steen, Ton; Versluis, Michel; de Jong, Nico

    2012-12-01

    A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.8 MHz and acoustic pressures ranging from 5-100 kPa. The experimental data showed nearly the same shell elasticity for the loaded and unloaded bubbles, but the shell viscosity was higher for loaded bubbles compared with unloaded bubbles. For loaded bubbles, a higher pressure threshold for the bubble vibrations was noticed. In addition, an "expansion-only" behavior was observed for up to 69% of the investigated loaded bubbles, which mostly occurred at low acoustic pressures (≤30 kPa). Finally, fluorescence imaging showed heterogeneity of liposome distributions of the loaded bubbles. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Long-acting antiviral agents for HIV treatment

    PubMed Central

    Margolis, David A.; Boffito, Marta

    2015-01-01

    Purpose of review Long-acting antiretroviral (ARV) agents are currently under development for the treatment of chronic HIV infection. This review focuses on data recently produced on injectable ARVs for patients living with HIV/AIDS and on the patients’ perspectives on the use of these agents. Recent findings Crystalline nanoparticle formulations of the nonnucleoside reverse transcriptase inhibitor rilpivirine (TMC278) and of the HIV-1 integrase strand transfer inhibitor cabotegravir (GSK1265744) have progressed into phase II clinical trials as injectable maintenance therapy for patients living with HIV/AIDS with an undetectable viral load. Summary Phase II studies evaluating the coadministration of rilpivirine and cabotegravir intramuscularly to HIV-infected individuals with an undetectable viral load are currently underway. Rilpivirine and cabotegravir are characterized by different mechanisms of action against HIV and a favorable drug interaction profile, providing a rationale for coadministration. The high potency and low daily dosing requirements of oral cabotegravir and rilpivirine facilitate long-acting formulation development. Intramuscular dosing is preceded by an oral lead-in phase to assess safety and tolerability in individual participants. In addition to assessing the safety of injectable therapies in ongoing studies, it will be important to evaluate whether differences in drug adherence between injectable and oral therapies lead to different virologic outcomes, including rates of virologic failure and the emergence of resistance. Long-acting formulations may be associated with challenges, such as the management of adverse effects with persistent drug concentrations and the risk of virologic resistance, as drug concentrations decline following discontinuation. PMID:26049949

  19. An in vitro model to test relative antioxidant potential: Ultraviolet-induced lipid peroxidation in liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelle, E.; Maes, D.; Padulo, G.A.

    1990-12-01

    Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipidmore » peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation.« less

  20. Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system.

    PubMed

    Feng, Linglin; Zhang, Lei; Liu, Min; Yan, Zhiqiang; Wang, Chenyu; Gu, Bing; Liu, Yu; Wei, Gang; Zhong, Gaoren; Lu, Weiyue

    2010-04-01

    Our aim was to develop a novel liposomal drug delivery system containing dextrans to reduce undesirable retention of antineoplastic agents and thus alleviate local tissue damage. At the cell level, diethylaminoethyl-dextran (DEAE-Dx) showed the strongest inhibiting effect on liposome uptake by macrophages among tested dextrans. The distribution of radiolabeled liposomes mixed with dextrans in injection site and draining lymph node was investigated in rats after subcutaneous injection. DEAE-Dx substantially reduced the undesired local retention and promoted the draining of liposome into lymphatics, which was further confirmed by confocal microscopy images revealing the substantial prevention of rhodamine B-labelled liposome sequestration by macrophages in normal lymph node in rats. Pharmacokinetic data indicated the accelerated drainage of liposome through lymphatics back to systemic circulation by mixing with DEAE-Dx. In the toxicological study in rabbits, DEAE-Dx alleviated the local tissue damage caused by liposomal doxorubicin. In conclusion, dextrans, particularly DEAE-Dx, could efficiently enhanced liposomes drainage into lymphatics, which proves themselves as promising adjuvants for lymphatic-targeted liposomal drug delivery system.

  1. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial.

    PubMed

    Kwon, Brian K; Curt, Armin; Belanger, Lise M; Bernardo, Arlene; Chan, Donna; Markez, John A; Gorelik, Stephen; Slobogean, Gerard P; Umedaly, Hamed; Giffin, Mitch; Nikolakis, Michael A; Street, John; Boyd, Michael C; Paquette, Scott; Fisher, Charles G; Dvorak, Marcel F

    2009-03-01

    Ischemia is an important factor in the pathophysiology of secondary damage after traumatic spinal cord injury (SCI) and, in the setting of thoracoabdominal aortic aneurysm repair, can be the primary cause of paralysis. Lowering the intrathecal pressure (ITP) by draining CSF is routinely done in thoracoabdominal aortic aneurysm surgery but has not been evaluated in the setting of acute traumatic SCI. Additionally, while much attention is directed toward maintaining an adequate mean arterial blood pressure (MABP) in the acute postinjury phase, little is known about what is happening to the ITP during this period when spinal cord perfusion pressure (MABP - ITP) is important. The objectives of this study were to: 1) evaluate the safety and feasibility of draining CSF to lower ITP after acute traumatic SCI; 2) evaluate changes in ITP before and after surgical decompression; and 3) measure neurological recovery in relation to the drainage of CSF. Twenty-two patients seen within 48 hours of injury were prospectively randomized to a drainage or no-drainage treatment group. In all cases a lumbar intrathecal catheter was inserted for 72 hours. Acute complications of headache/nausea/vomiting, meningitis, or neurological deterioration were carefully monitored. Acute Spinal Cord Injury motor scores were documented at baseline and at 6 months postinjury. On insertion of the catheter, mean ITP was 13.8 +/- 1.3 mm Hg (+/- SD), and it increased to a mean peak of 21.7 +/- 1.5 mm Hg intraoperatively. The difference between the starting ITP on catheter insertion and the observed peak intrathecal pressure after decompression was, on average, an increase of 7.9 +/- 1.6 mm Hg (p < 0.0001, paired t-test). During the postoperative period, the peak recorded ITP in the patients randomized to the no-drainage group was 30.6 +/- 2.3 mm Hg, which was significantly higher than the peak intraoperative ITP (p = 0.0098). During the same period, the peak recorded ITP in patients randomized to receive

  2. Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy.

    PubMed

    Yuba, Eiji; Tajima, Naoki; Yoshizaki, Yuta; Harada, Atsushi; Hayashi, Hiroshi; Kono, Kenji

    2014-03-01

    pH-Sensitive dextran derivatives having 3-methylglutarylated residues (MGlu-Dex) were prepared by reacting dextran with 3-methyl-glutaric anhydride. MGlu-Dex changed the protonation state and their characteristics from hydrophilic to hydrophobic in neutral and acidic pH regions. Surface modification of egg yolk phosphatidylcholine liposomes with MGlu-Dex produced highly pH-sensitive liposomes that were stable at neutral pH but which were destabilized strongly in the weakly acidic pH region. MGlu-Dex-modified liposomes were taken up efficiently by dendritic cells and delivered entrapped ovalbumin (OVA) molecules into the cytosol. When MGlu-Dex-modified liposomes loaded with OVA were administered subcutaneously to mice, the antigen-specific humoral and cellular immunity was induced more effectively than the unmodified liposomes loaded with OVA. Furthermore, administration of MGlu-Dex-modified liposomes loaded with OVA to mice bearing E.G7-OVA tumor significantly suppressed tumor growth and extended the mice survival. Results suggest that MGlu-Dex-modified liposomes are promising for the production of safe and potent antigen delivery systems that contribute to the establishment of efficient cancer immunotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Liposome production by microfluidics: potential and limiting factors.

    PubMed

    Carugo, Dario; Bottaro, Elisabetta; Owen, Joshua; Stride, Eleanor; Nastruzzi, Claudio

    2016-05-19

    This paper provides an analysis of microfluidic techniques for the production of nanoscale lipid-based vesicular systems. In particular we focus on the key issues associated with the microfluidic production of liposomes. These include, but are not limited to, the role of lipid formulation, lipid concentration, residual amount of solvent, production method (including microchannel architecture), and drug loading in determining liposome characteristics. Furthermore, we propose microfluidic architectures for the mass production of liposomes with a view to potential industrial translation of this technology.

  4. Incidental intrathecal injection of meglumine diatrizoate.

    PubMed

    Masjedi, Mansour; Khosravi, Abbas; Sabetian, Golnar; Rahmanian, Mohammad Reza

    2014-05-01

    Myelograghy is a process of instilling contrast medium to the subarachnoid space for evaluating the spinal column by radiography. There are various contrast solutions for different radiographic studies but not all of them are suitable for spinal column evaluation. Our patient was a 60-year-old man who developed severe pain, tonic clonic convulsions and cardiopulmonary arrest after intrathecal injection of 14 mL of meglumine diatrizoate during an elective myelography procedure. Many of these cases would die or suffer from permanent sequelae if appropriate treatment is not received. Our subject recovered completely without any sequelae after receiving appropriate treatment in a multidisciplinary intensive care unit.

  5. Chondrotoxicity of Liposomal Bupivacaine in Articular Chondrocytes: Preliminary Findings.

    PubMed

    Shaw, K Aaron; Johnson, Peter C; Zumbrun, Steve; Chuang, Augustine H; Cameron, Craig D

    2017-03-01

    The chondrotoxicity of local anesthetics has been previously recognized. Recent introduction of a liposomal formulation of bupivacaine has been found to significantly improve postoperative pain control but its effect on chondrocyte viability has yet to be investigated with this new formulation. We sought to assess the in vitro chondrotoxicity of liposomal bupivacaine. Chondrocytes were isolated from articular cartilage from fresh stifle joints and grown in culture medium. Cultured chondrocyte-derived cells (CDCs) were treated with 0.9% normal saline solution, 0.5%, 0.25%, and 0.13% bupivacaine and ropivacaine, 1.3% liposomal bupivacaine for 1 hour. Following treatment, cells were washed and incubated in media for 23 hours. The CDCs were then harvested and viability was assessed by flow cytometry using SYTOX green dead cell stain. Treated CDCs demonstrated a dose-response effect for chondrocyte viability when treated with bupivacaine, ropivacaine, and liposomal bupivacaine. Liposomal bupivacaine demonstrated the highest chondrocyte viability following treatment. Ropivacaine demonstrated higher chondrocyte viability than bupivacaine. Following 1 hour of treatment, liposomal bupivacaine demonstrated the highest chondrocyte viability. Chondrocyte viability was inversely proportional to anesthetic concentration. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  6. Syntheses and characterization of liposome-incorporated adamantyl aminoguanidines.

    PubMed

    Šekutor, Marina; Štimac, Adela; Mlinarić-Majerski, Kata; Frkanec, Ruža

    2014-08-21

    A series of mono and bis-aminoguanidinium adamantane derivatives has been synthesized and incorporated into liposomes. They combine two biomedically significant molecules, the adamantane moiety and the guanidinium group. The adamantane moiety possesses the membrane compatible features while the cationic guanidinium subunit was recognized as a favourable structural feature for binding to complementary molecules comprising phosphate groups. The liposome formulations of adamantyl aminoguanidines were characterized and it was shown that the entrapment efficiency of the examined compounds is significant. In addition, it was demonstrated that liposomes with incorporated adamantyl aminoguanidines effectively recognized the complementary liposomes via the phosphate group. These results indicate that adamantane derivatives bearing guanidinium groups might be versatile tools for biomedical application, from studies of molecular recognition processes to usage in drug formulation and cell targeting.

  7. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  8. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  9. Intrabilayer 64Cu Labeling of Photoactivatable, Doxorubicin-Loaded Stealth Liposomes.

    PubMed

    Luo, Dandan; Goel, Shreya; Liu, Hai-Jun; Carter, Kevin A; Jiang, Dawei; Geng, Jumin; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Wei-Chiao; Shao, Shuai; Fang, Chao; Cai, Weibo; Lovell, Jonathan F

    2017-12-26

    Doxorubicin (Dox)-loaded stealth liposomes (similar to those in clinical use) can incorporate small amounts of porphyrin-phospholipid (PoP) to enable chemophototherapy (CPT). PoP is also an intrinsic and intrabilayer 64 Cu chelator, although how radiolabeling impacts drug delivery has not yet been assessed. Here, we show that 64 Cu can radiolabel the stable bilayer of preformed Dox-loaded PoP liposomes with inclusion of 1% ethanol without inducing drug leakage. Dox-PoP liposomes labeled with intrabilayer copper behaved nearly identically to unlabeled ones in vitro and in vivo with respect to physical parameters, pharmacokinetics, and CPT efficacy. Positron emission tomography and near-infrared fluorescence imaging visualized orthotopic mammary tumors in mice with passive liposome accumulation following administration. A single CPT treatment with 665 nm light (200 J/cm 2 ) strongly inhibited primary tumor growth. Liposomes accumulated in lung metastases, based on NIR imaging. These results establish the feasibility of CPT interventions guided by intrinsic multimodal imaging of Dox-loaded stealth PoP liposomes.

  10. Insight into the Tribological Behavior of Liposomes in Artificial Joints.

    PubMed

    Duan, Yiqin; Liu, Yuhong; Zhang, Caixia; Chen, Zhe; Wen, Shizhu

    2016-10-10

    Liposomes are widely used in drug delivery and gene therapy, and their new role as boundary lubricant in natural/artificial joints has been found in recent years. In this study, the tribological properties of liposomes on titanium alloy (Ti6Al4 V)/UHMWPE interface were studied by a ball-on-disc tribometer. The efficient reduction of friction coefficient and wear on both surfaces under various velocities and loads is found. A multilayer structure of physically adsorbed liposomes on Ti6Al4 V surface was also observed by atomic force microscope (AFM). Except for the hydration mechanism by phosphatidylcholine (PC) groups, the well-performed tribological properties by liposomes is also attributed to the existence of adsorbed liposome layers on both surfaces, which could reduce asperities contact and show great bearing capacity. This work enriches the research on liposomes for lubrication improvement on artificial surface and shows their value in clinical application.

  11. Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation

    PubMed Central

    Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.

    2014-01-01

    Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823

  12. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    PubMed

    Smith, Cartney E; Kong, Hyunjoon

    2014-04-08

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads.

  13. Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener

    PubMed Central

    2015-01-01

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  14. Fluorogenic pH-sensitive polydiacetylene (PDA) liposomes as a drug carrier.

    PubMed

    Won, Sang Ho; Lee, Jong Uk; Sim, Sang Jun

    2013-06-01

    A crucial issue for current liposomal carriers in clinical applications is the sustained-release property of the encapsulated drugs. We have developed novel fluorogenic pH-sensitive polymerized liposomes composed of polydiacetylene (PDA) lipids and other types of lipids. Unilamellar liposomes containing 10,12-pentacosadiynoic acid (PCDA), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and N-palmitoyl homocysteine (PHC) were loaded with ampicillin. These liposomes fused to each other rapidly when the medium pH was lowered from 7 to 4. The polymerized liposomes were characterized in terms of particle size distribution. The liposome size increased approximately 20-fold from 110.0 +/- 19.3 nm to 2046.7 +/- 487.4 nm as the pH was lowered. Cross-linking of the diacetylene lipids prevents drug leakage and the encapsulated drug can be instantaneously released at acidic pH condition. The ampicillin was nearly completely released (74.4 +/- 3.9%) from liposomes within 4 h under acidic pH conditions and the released amounts of ampicillin were analyzed by HPLC. Finally, the therapeutic effect was observed by the appearance of plaques on a lawn of E. coli, and fluorescent images of the PDA liposomes were taken from the plaques for drug release monitoring. As a result, this research demonstrates that such novel pH-sensitive polymerized liposomes have great prospects as a drug carrier.

  15. Sonographic evaluation of epidural and intrathecal injections in cats.

    PubMed

    Otero, Pablo E; Verdier, Natali; Zaccagnini, Andrea S; Fuensalida, Santiago E; Sclocco, Matias; Portela, Diego A; Waxman, Samanta

    2016-11-01

    To describe the ultrasonographic anatomy of the caudal lumbar spine in cats and to detect ultrasound (US) signs associated with epidural or intrathecal injection. Prospective, clinical study. Twenty-six client-owned cats. Transverse (position 1) and parasagittal (position 2) two-dimensional US scanning was performed over the caudal lumbar spine in all cats. Midline distances between the identified structures were measured. Cats assigned to epidural injection (group E, n = 16) were administered a bupivacaine-morphine combination confirmed by electrical stimulation. Cats assigned to intrathecal injection (group I, n = 10) were administered a morphine-iohexol combination injected at the lumbosacral level and confirmed by lateral radiography. The total volume injected (0.3 mL kg -1 ) was divided into two equal aliquots that were injected without needle repositioning, with the US probe in positions 1 and 2, respectively. The presence or absence of a burst of color [color flow Doppler test (CFDT)], dural sac collapse and epidural space enlargement were registered during and after both injections. US scanning allowed measurement of the distances between the highly visible structures inside the spinal canal. CFDT was positive for all animals in group E. In group I, intrathecal injection was confirmed in only two animals, for which the CFDT was negative; seven cats inadvertently and simultaneously were administered an epidural injection and showed a positive CFDT during the second aliquot injection, and the remaining animal was administered epidural anesthesia and was excluded from the CFDT data analysis. Dural sac collapse and epidural space enlargement were present in all animals in which an epidural injection was confirmed. US examination allowed an anatomical description of the caudal lumbar spine and real-time confirmation of epidural injection by observation of a positive CFDT, dural sac collapse and epidural space enlargement. © 2016 Association of Veterinary

  16. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting.

    PubMed

    Hsu, Ching-Yun; Yang, Shih-Chun; Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You

    2017-01-01

    Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5-125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions.

  17. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting

    PubMed Central

    Sung, Calvin T; Weng, Yi-Han; Fang, Jia-You

    2017-01-01

    Pathogens usually invade hair follicles when skin infection occurs. The accumulated bacteria in follicles are difficult to eradicate. The present study aimed to assess the cutaneous and follicular delivery of chloramphenicol (Cm)-loaded liposomes and the antibacterial activity of these liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Skin permeation was conducted by in vitro Franz diffusion cell. The anti-MRSA potential was checked using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), a well diffusion test, and intracellular MRSA killing. The classic, dimyristoylphosphatidylcholine (DMPC), and deoxycholic acid (DA) liposomes had a vesicle size of 98, 132, and 239 nm, respectively. The incorporation of DMPC or DA into the liposomes increased the bilayer fluidity. The malleable vesicles containing DMPC and DA showed increased follicular Cm uptake over the control solution by 1.5- and 2-fold, respectively. The MIC and MBC of DA liposomes loaded with Cm were 62.5 and 62.5–125 μg/mL, comparable to free Cm. An inhibition zone about 2-fold higher was achieved by DA liposomes as compared to the free control at a Cm dose of 0.5 mg/mL. DA liposomes also augmented antibacterial activity on keratinocyte-infected MRSA. The deformable liposomes had good biocompatibility against keratinocytes and neutrophils (viability >80%). In vivo administration demonstrated that DA liposomes caused negligible toxicity on the skin, based on physiological examination and histology. These data suggest the potential application of malleable liposomes for follicular targeting and the treatment of MRSA-infected dermatologic conditions. PMID:29184410

  18. Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport

    PubMed Central

    Li, Tianshu; Takeoka, Shinji

    2014-01-01

    With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) – 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG5000-DSPE]/maleimide [M]-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%–45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport. PMID:24940060

  19. Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport.

    PubMed

    Li, Tianshu; Takeoka, Shinji

    2014-01-01

    With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) - 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG₅₀₀₀-DSPE]/maleimide [M]-PEG₅₀₀₀-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG₅₀₀₀-DSPE/PEG₅₀₀₀-Glu2C₁₈ at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%-45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport.

  20. Liposomal Drug Delivery System for Cancer Therapy: Advancement and Patents.

    PubMed

    Jha, Sheetal; Sharma, Pramod K; Malviya, Rishabha

    2016-01-01

    In this review article, authors reviewed about the liposomes which are amongst various drug delivering systems for the delivery of the therapeutic agents at the target site. Advances in liposomal drug delivery systems for the cancer therapy have enhanced the therapeutic levels of the anticancer moieties. Liposomes show promising action on the tumor by incorporating less amount of drug at the target site, with minimum toxic effect and maximum therapeutic effect and thereby enhancing the bioavailability. Liposome-based drug delivery systems provide the potential to elevate the effect of drug concentration in tumor cells. Manuscript briefly describes the role of liposomes in cancer therapy and various patents based on the same. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. pH-sensitive liposomes for drug delivery in cancer treatment.

    PubMed

    Ferreira, Diego Dos Santos; Lopes, Sávia Caldeira de Araújo; Franco, Marina Santiago; Oliveira, Mônica Cristina

    2013-09-01

    In recent years, liposomes have been employed with growing success as pharmaceutical carriers for antineoplastic drugs. One specific strategy used to enhance in vivo liposome-mediated drug delivery is the improvement of intracytoplasmic delivery. In this context, pH-sensitive liposomes (pHSLip) have been designed to explore the endosomal acidification process, which may lead to a destabilization of the liposomes, followed by a release of their contents into the cell cytoplasm. This review considers the current status of pHSLip development and its applicability in cancer treatment, focusing on the mechanisms of pH sensitivity and liposomal composition of pHSLip. The final section will discuss the application of these formulations in both in vitro and in vivo studies of antitumor efficacy.

  2. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats☆

    PubMed Central

    Gradauer, K.; Barthelmes, J.; Vonach, C.; Almer, G.; Mangge, H.; Teubl, B.; Roblegg, E.; Dünnhaupt, S.; Fröhlich, E.; Bernkop-Schnürch, A.; Prassl, R.

    2013-01-01

    The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan–thioglycolic acid (CS–TGA) or an S-protected version of the same polymer (CS–TGA–MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately − 40 mV to a maximum value of about + 44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS–TGA–MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS–TGA-coated liposomes or CS–TGA–MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24 h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6 h, was achieved for CS–TGA–MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS–TGA–MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin. PMID:24140721

  3. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats.

    PubMed

    Gradauer, K; Barthelmes, J; Vonach, C; Almer, G; Mangge, H; Teubl, B; Roblegg, E; Dünnhaupt, S; Fröhlich, E; Bernkop-Schnürch, A; Prassl, R

    2013-12-28

    The aim of the present study was the in vivo evaluation of thiomer-coated liposomes for an oral application of peptides. For this purpose, salmon calcitonin was chosen as a model drug and encapsulated within liposomes. Subsequently, the drug loaded liposomes were coated with either chitosan-thioglycolic acid (CS-TGA) or an S-protected version of the same polymer (CS-TGA-MNA), leading to an increase in the particle size of about 500 nm and an increase in the zeta potential from approximately -40 mV to a maximum value of about +44 mV, depending on the polymer. Coated liposomes were demonstrated to effectively penetrate the intestinal mucus layer where they came in close contact with the underlying epithelium. To investigate the permeation enhancing properties of the coated liposomes ex vivo, we monitored the transport of fluoresceinisothiocyanate-labeled salmon calcitonin (FITC-sCT) through rat small intestine. Liposomes coated with CS-TGA-MNA showed the highest effect, leading to a 3.8-fold increase in the uptake of FITC-sCT versus the buffer control. In vivo evaluation of the different formulations was carried out by the oral application of 40 μg of sCT per rat, either encapsulated within uncoated liposomes, CS-TGA-coated liposomes or CS-TGA-MNA-coated liposomes, or given as a solution serving as negative control. The blood calcium level was monitored over a time period of 24h. The highest reduction in the blood calcium level, to a minimum of 65% of the initial value after 6h, was achieved for CS-TGA-MNA-coated liposomes. Comparing the areas above curves (AAC) of the blood calcium levels, CS-TGA-MNA-coated liposomes led to an 8.2-fold increase compared to the free sCT solution if applied orally in the same concentration. According to these results, liposomes coated with S-protected thiomers have demonstrated to be highly valuable carriers for enhancing the oral bioavailability of salmon calcitonin. © 2013. Published by Elsevier B.V. All rights reserved.

  4. Liposome production by microfluidics: potential and limiting factors

    PubMed Central

    Carugo, Dario; Bottaro, Elisabetta; Owen, Joshua; Stride, Eleanor; Nastruzzi, Claudio

    2016-01-01

    This paper provides an analysis of microfluidic techniques for the production of nanoscale lipid-based vesicular systems. In particular we focus on the key issues associated with the microfluidic production of liposomes. These include, but are not limited to, the role of lipid formulation, lipid concentration, residual amount of solvent, production method (including microchannel architecture), and drug loading in determining liposome characteristics. Furthermore, we propose microfluidic architectures for the mass production of liposomes with a view to potential industrial translation of this technology. PMID:27194474

  5. Application of liposomes in drug development — focus on gastroenterological targets

    PubMed Central

    Zhang, Jian-Xin; Wang, Kun; Mao, Zheng-Fa; Fan, Xin; Jiang, De-Li; Chen, Min; Cui, Lei; Sun, Kang; Dang, Sheng-Chun

    2013-01-01

    Over the past decade, liposomes became a focal point in developing drug delivery systems. New liposomes, with novel lipid molecules or conjugates, and new formulations opened possibilities for safely and efficiently treating many diseases including cancers. New types of liposomes can prolong circulation time or specifically deliver drugs to therapeutic targets. This article concentrates on current developments in liposome based drug delivery systems for treating diseases of the gastrointestinal tract. We will review different types and uses of liposomes in the development of therapeutics for gastrointestinal diseases including inflammatory bowel diseases and colorectal cancer. PMID:23630417

  6. Intrathecal clonidine and bupivacaine have synergistic analgesia for acute thermally or inflammatory-induced pain in rats.

    PubMed

    Nishiyama, Tomoki; Hanaoka, Kazuo

    2004-04-01

    We investigated the interaction between spinally administered bupivacaine and clonidine using an animal model of acute and inflammatory pain. Rats implanted with lumbar intrathecal catheters were injected intrathecally with saline (control), bupivacaine (1 to 100 microg), or clonidine (0.1 to 3 microg) and tested for their responses to thermal stimulation to the tail (tail flick test) and subcutaneous formalin injection into the hindpaw (formalin test). The effects of the combination of bupivacaine and clonidine on both stimuli were tested by isobolographic analysis. General behavior and motor function were examined as side effects. The 50% effective doses of bupivacaine and clonidine were significantly smaller when combined compared with each single drug in both the tail flick test (2.82 and 0.11 microg versus 7.1 and 0.29 microg, respectively) and phase 1 (0.24 and 0.009 microg versus 5.7 and 0.15 microg) and phase 2 (0.31 and 0.012 microg versus 3.2 and 0.16 microg) of the formalin test. Side effects were decreased by the combination. These results suggest a favorable combination of intrathecal bupivacaine and clonidine in the management of acute and inflammatory pain. The analgesic interaction between intrathecally administered bupivacaine and clonidine was examined during acute thermal and inflammatory-induced pain in rats. The analgesia produced by the combination of these two drugs was synergistic in both acute thermal and inflammatory induced pain, with a decrease in behavioral side effects.

  7. Comparison of Linear and Hyperbranched Polyether Lipids for Liposome Shielding by 18F-Radiolabeling and Positron Emission Tomography.

    PubMed

    Wagener, Karolin; Worm, Matthias; Pektor, Stefanie; Schinnerer, Meike; Thiermann, Raphael; Miederer, Matthias; Frey, Holger; Rösch, Frank

    2018-04-27

    Multifunctional and highly biocompatible polyether structures play a key role in shielding liposomes from degradation in the bloodstream, providing also multiple functional groups for further attachment of targeting moieties. In this work hyperbranched polyglycerol ( hbPG) bearing lipids with long alkyl chain anchor are evaluated with respect to steric stabilization of liposomes. The branched polyether lipids possess a hydrophobic bis(hexadecyl)glycerol membrane anchor for the liposomal membrane. hbPG was chosen as a multifunctional alternative to PEG, enabling the eventual linkage of multiple targeting vectors. Different hbPG lipids ( M n = 2900 and 5200 g mol -1 ) were examined. A linear bis(hexadecyl)glycerol-PEG lipid ( M n = 3000 g mol -1 ) was investigated as well, comparing hbPG and PEG with respect to shielding properties. Radiolabeling of the polymers was carried out using 1-azido-2-(2-(2-[ 18 F]fluoroethoxy)ethoxy)ethane ([ 18 F]F-TEG-N) 3 via copper-catalyzed alkyne-azide cycloaddition with excellent radiochemical yields exceeding 95%. Liposomes were prepared by the thin-film hydration method followed by repeated extrusion. Use of a custom automatic extrusion device gave access to reproducible sizes of the liposomes (hydrodynamic radius of 60-94 nm). The in vivo fate of the bis(hexadecyl)glycerol polyethers and their corresponding assembled liposome structures were evaluated via noninvasive small animal positron emission tomography (PET) imaging and biodistribution studies (1 h after injection and 4 h after injection) in mice. Whereas the main uptake of the nonliposomal polyether lipids was observed in the kidneys and in the bladder after 1 h due to rapid renal clearance, in contrast, the corresponding liposomes showed uptake in the blood pool as well as in organs with good blood supply, that is, heart and lung over the whole observation period of 4 h. The in vivo behavior of all three liposomal formulations was comparable, albeit with remarkable

  8. Targeted drug delivery and enhanced intracellular release using functionalized liposomes

    NASA Astrophysics Data System (ADS)

    Garg, Ashish

    The ability to target cancer cells using an appropriate drug delivery system can significantly reduce the associated side effects from cancer therapies and can help in improving the overall quality of life, post cancer survival. Integrin alpha5beta1 is expressed on several types of cancer cells, including colon cancer and plays an important role in tumor growth and metastasis. Thus, the ability to target the integrin alpha 5beta1 using an appropriate drug delivery nano-vector can significantly help in inhibiting tumor growth and reducing tumor metastasis. The work in this thesis focuses on designing and optimizing, functionalized stealth liposomes (liposomes covered with polyethylene glycol (PEG)) that specifically target the integrin alpha5beta1. The PEG provides a steric barrier allowing the liposomes to circulate in the blood for longer duration and the functionalizing moiety, PR_b peptide specifically recognizes and binds to integrin alpha5beta1 expressing cells. The work demonstrates that by optimizing the amount of PEG and PR_b on the liposomal interface, nano-vectors can be engineered that bind to CT26.WT colon cancer cells in a specific manner and internalize through alpha 5beta1-mediated endocytosis. To further improve the efficacy of the system, PR_b functionalized pH-sensitive stealth liposomes that exhibit triggered release under mild acidic conditions present in endocytotic vesicles were designed. The study showed that PR_b functionalized pH-sensitive stealth liposomes, undergo destabilization under mildly acidic conditions and incorporation of the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b functionalized pH-sensitive stealth liposomes bind to CT26.WT colon carcinoma cells that express integrin alpha5beta 1, undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. PR_b-targeted pH-sensitive stealth liposomes encapsulating 5

  9. Influence of liposome charge on the association of liposomes with Kupffer cells in vitro. Effects of divalent cations and competition with latex particles.

    PubMed

    Dijkstra, J; van Galen, M; Scherphof, G

    1985-03-14

    We studied the interaction of large unilamellar liposomes carrying different surface charges with rat Kupffer cells in maintenance culture. In addition to 14C-labeled phosphatidylcholine, all liposome preparations contained either 3H-labeled inulin or 125I-labeled bovine serum albumin as a non-degradable or a degradable aqueous space marker, respectively. With vesicles carrying no net charge, intracellular processing of internalized liposomes caused nearly complete release of protein label into the medium in acid-soluble form, while phospholipid label was predominantly retained by the cells, only about one third being released. The presence of the lysosomotropic agent, ammonia, inhibited the release of both labels from the cells. At 4 degrees C, the association and degradation of the vesicles were strongly reduced. These results are very similar to what we reported on negatively charged liposomes (Dijkstra, J., Van Galen, W.J.M., Hulstaert, C.E., Kalicharan, D., Roerdink, F.H. and Scherphof, G.L. (1984) Exp. Cell Res. 150, 161-176). The interaction of both types of vesicles apparently proceeds by adsorption to the cell surface followed by virtually complete internalization by endocytosis. Similar experiments with positively charged vesicles indicated that only about half of the liposomes were taken up by the endocytic route, the other half remaining adsorbed to the cell-surface. Attachment of all types of liposomes to the cells was strongly dependent on the presence of divalent cations; Ca2+ appeared to be required for optimal binding. Neutral liposomes only slightly competed with the uptake of negatively charged vesicles, both at 4 degrees and 37 degrees C, whereas negatively charged small unilamellar vesicles and negatively charged latex beads were found to compete very effectively with the large negatively charged liposomes. Neutral vesicles competed effectively for uptake with positively charged ones. These results suggest that neutral and positively charged

  10. In vitro and in vivo evaluation of novel NGR-modified liposomes containing brucine.

    PubMed

    Li, Shu; Wang, Xi-Peng

    2017-01-01

    In this study, a novel NGR (Asn-Gly-Arg) peptide-modified liposomal brucine was prepared by using spray-drying method. The surface morphology of the liposomes, encapsulation efficiency and particle size were investigated. The data showed that the addition of NGR did not produce any significant influence on brucine liposomes in terms of particle size or zeta potential. In addition, after 3 months of storage, no dramatic change such as visible aggregation, drug content changes or precipitation in the appearance of NGR-brucine liposomes occurred. The in vitro release results indicated that the release of brucine from NGR liposomes was similar to that of liposomes, demonstrating that the NGR modification did not affect brucine release. The in vitro drug-release kinetic model of NGR-brucine liposomes fitted well with the Weibull's equation. In vivo, NGR-brucine liposomes could significantly extend the bioavailability of brucine; however, there was no significant difference observed in the pharmacokinetic parameters between liposomes and NGR liposomes after intravenous administration. Antitumor activity results showed that NGR-modified liposomes exhibited less toxicity and much higher efficacy in HepG2-bearing mice compared with non-modified liposomes. The enhanced antitumor activity might have occurred because brucine was specifically recognized by NGR receptor on the surface of tumor cells, which enhanced the intracellular uptake of drugs.

  11. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes

    PubMed Central

    Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P

    2010-01-01

    The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was encapsulated in nanosize liposomes. Rapid evaporation method was used for the preparation of albendazole-encapsulated conventional and PEGylated liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (6:4) and PC:CH: polyethylene glycol (PEG) (5:4:1), respectively. In this study, PEGylated and conventional liposomes containing albendazole were prepared and their characteristics, such as particle size, encapsulation efficiency, and in vitro drug release were investigated. The drug encapsulation efficiency of PEGylated and conventional liposomes was 81% and 72%, respectively. The biophysical characterization of both conventional and PEG-coated liposomes were done by transmission electron microscopy and UV-vis spectrophotometry. Efforts were made to study in vitro release of albendazole. The drug release rate showed decrease in albendazole release in descending order: free albendazole, albendazole-loaded conventional liposomes, and least with albendazole-loaded PEG-liposomes. Biologically relevant vesicles were prepared and in vitro release of liposome-entrapped albendazole was determined. PMID:20309396

  12. Preparation of liposomes containing zedoary turmeric oil using freeze-drying of liposomes via TBA/water cosolvent systems and evaluation of the bioavailability of the oil.

    PubMed

    Yang, Zhiwen; Yu, Songlin; Fu, Dahua

    2010-02-01

    The purpose of this study was to enhance the absorption of zedoary turmeric oil (ZTO) in vivo and develop new formulations of a water-insoluble oily drug. This study described a method for preparing ZTO liposomes, which involved freeze-drying (FD) of liposomes with TBA/water cosolvent systems. The TBA/water cosolvent systems were used to investigate a feasible method of liposomes manufacture; the two factors, sugar/lipid mass ratio and TBA content (concentration), of the preparation process were evaluated in this study. The results showed that the addition of TBA content could significantly enhance the sublimation of ice resulting in short FD cycles time, and reduce the entrapment efficiency of liposomes. In addition, the residual TBA solvents levels were determined to be less than 0.37% under all optimum formulations and processing conditions. Several physical properties of liposomes were examined by H-600 transmission electron microscope (TEM) and zetamaster analyser system. The results revealed that the liposomes were smooth and spherical with an average particle size of 457 +/- 7.8 nm and the zeta potential was more than 3.65 Mv. The bioavailability of the liposomes was evaluated in rabbits, compared with the conventional self-emulsifying formulation for oral administration. Compared with the conventional self-emulsifying formulation, the plasma concentration-time profiles with improved sustained-release characteristics were achieved after oral administration of the liposomes with a bioavailability of 257.7% (a good strategy for improving the bioavailability of an oily drug). In conclusion, the present experimental findings clearly demonstrated the usefulness of ZTO liposome vesicles in improving therapeutic efficacy by enhancing oral bioavailability. Our study offered an alternative method for designing sustained-release preparations of oily drugs.

  13. Physicochemical properties and antioxidant activity of gamma-oryzanol-loaded liposome formulations for topical use.

    PubMed

    Viriyaroj, Amornrat; Ngawhirunpat, Tanasait; Sukma, Monrudee; Akkaramongkolporn, Prasert; Ruktanonchai, Uracha; Opanasopit, Praneet

    2009-01-01

    The objective of this study is to prepare the gamma-oryzanol-loaded liposomes and investigate their physicochemical properties and antioxidant activity intended for cosmetic applications. Liposomes, Composing phosphatidylCholine (PC) and Cholesterol (Chol), CHAPS or sodium taurocholate (NaTC) were prepared by sonication method. Gamma-oryzanol-loaded liposomes were prepared by using 3, 5 and 10% gamma-oryzanol as an initial concentration. The formulation factors in a particular type and composition of lipid and initial drug loading on the physicochemical properties (i.e., particle size, zeta potential, entrapment efficiency, drug release) and antioxidant activity were studied. The particle sizes of bare liposomes were in nanometer range. The gamma-oryzanol-loaded liposomes in formulations of PC/CHAPS and PC/NaTC liposomes were smaller than PC/Chol liposomes. The incorporation efficiency of 10% gamma-oryzanol-loaded PC/Chol liposomes was less than gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes allowing higher in vitro release rate due to higher free gamma-oryzanol in buffer solution. The antioxidant activity of gamma-oryzanol-loaded liposomes was not different from pure gamma-oryzanol. Both gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes were showed to enhance the antioxidant activity in NHF cells. gamma-oryzanol-loaded PC/Chol liposomes demonstrated the lowest cytotoxicity in NHF cells. It was conceivably concluded that liposomes prepared in this study are suitable for gamma-oryzanol incorporation without loss of antioxidant activity.

  14. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C.more » The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.« less

  15. Preparation and characterization of clove essential oil-loaded liposomes.

    PubMed

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène

    2015-07-01

    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Intrathecal catheterization and solvents interfere with cortical somatosensory evoked potentials used in assessing nociception in awake rats.

    PubMed

    Shi, Lin; Lebrun, Philippe; Camu, Frederic; Zizi, Martin

    2004-07-01

    We assessed the objective measurement of central sensitization processes in the awake rat after subcutaneous formalin with cortical somatosensory evoked potentials (CSEPs). Cranial extradural electrodes and intrathecal catheters were implanted in adult male Wistar rats. After 7 days of recovery, CSEPs were induced by electrical stimuli at the tail and recorded before/after the injection of 50 microL of 2% formalin into the hindpaw of rats for 1 h. The drug and tested vehicles were delivered intrathecally 5 min before the injection of formalin. The peak-to-peak amplitude of the P1-N1 (the early positive-negative sequence pair of CSEPs) and the baseline-to-peak amplitude of the N2 (the late negative component of CSEPs) were analyzed. We found that the amplitudes of both signals increased (154.3% +/- 10.9% and 168.7% +/- 9.8%, respectively) from 10 min after formalin injection to the end of the 60-min test period. Pretreatment with intrathecal ketorolac dose-dependently prevented the increases induced by formalin in both measured variables. Moreover, the increases in P1-N1 and N2 were markedly attenuated either by intrathecal polyethylene-10 tubing or by the solvents used for injection, thus indicating the need for distinguishing an impaired nociceptive signal from antinociception when the effects of drugs are evaluated.

  17. Liposomes physically coated with peptides: preparation and characterization.

    PubMed

    Su, Cuicui; Xia, Yuqiong; Sun, Jianbo; Wang, Nan; Zhu, Lin; Chen, Tao; Huang, Yanyi; Liang, Dehai

    2014-06-03

    Physically coating liposomes with peptides of desirable functions is an economic, versatile, and less time-consuming approach to prepare drug delivery vehicles. In this work, we designed three peptides-Ac-WWKKKGGNNN-NH2 (W2K3), Ac-WWRRRGGNNN-NH2(W2R3), Ac-WWGGGGGNNN-NH2(W2G3)-and studied their coating ability on negatively charged liposomes. It was found that the coating was mainly driven by the electrostatic interaction between the peptides' cationic side groups and the acidic lipids, which also mediated the "anchoring " of Trp residuals in the interfacial region of lipid bilayers. At the same conditions, the amount of the coated W2R3 was more than that of W2K3, but the stability of the liposome coated with W2R3 was deteriorated. This was caused by the delocalized charge of the guanidinium group of arginine. The coating of the peptide rendered the liposome pH-responsive behavior but did not prominently change the phase transition temperature. The liposome coated with peptides displayed appropriate pH/temperature dual responsive characteristics and was able to release the content in a controlled manner.

  18. Optimization of liposomal topotecan for use in treating neuroblastoma.

    PubMed

    Chernov, Lina; Deyell, Rebecca J; Anantha, Malathi; Dos Santos, Nancy; Gilabert-Oriol, Roger; Bally, Marcel B

    2017-06-01

    The purpose of this work was to develop an optimized liposomal formulation of topotecan for use in the treatment of patients with neuroblastoma. Drug exposure time studies were used to determine that topotecan (Hycamtin) exhibited great cytotoxic activity against SK-N-SH, IMR-32 and LAN-1 neuroblastoma human cell lines. Sphingomyelin (SM)/cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/Chol liposomes were prepared using extrusion methods and then loaded with topotecan by pH gradient and copper-drug complexation. In vitro studies showed that SM/Chol liposomes retained topotecan significantly better than DSPC/Chol liposomes. Decreasing the drug-to-lipid ratio engendered significant increases in drug retention. Dose-range finding studies on NRG mice indicated that an optimized SM/Chol liposomal formulation of topotecan prepared with a final drug-to-lipid ratio of 0.025 (mol: mol) was better tolerated than the previously described DSPC/Chol topotecan formulation. Pharmacokinetic studies showed that the optimized SM/Chol liposomal topotecan exhibited a 10-fold increase in plasma half-life and a 1000-fold increase in AUC 0-24 h when compared with Hycamtin administered at equivalent doses (5 mg/kg). In contrast to the great extension in exposure time, SM/Chol liposomal topotecan increased the life span of mice with established LAN-1 neuroblastoma tumors only modestly in a subcutaneous and systemic model. The extension in exposure time may still not be sufficient and the formulation may require further optimization. In the future, liposomal topotecan will be assessed in combination with high-dose radiotherapy such as 131 I-metaiodobenzylguanidine, and immunotherapy treatment modalities currently used in neuroblastoma therapy. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  19. Development of a DNA-liposome complex for gene delivery applications.

    PubMed

    Rasoulianboroujeni, M; Kupgan, G; Moghadam, F; Tahriri, M; Boughdachi, A; Khoshkenar, P; Ambrose, J J; Kiaie, N; Vashaee, D; Ramsey, J D; Tayebi, L

    2017-06-01

    The association structures formed by cationic liposomes and DNA (Deoxyribonucleic acid)-liposome have been effectively utilized as gene carriers in transfection assays. In this research study, cationic liposomes were prepared using a modified lipid film hydration method consisting of a lyophilization step for gene delivery applications. The obtained results demonstrated that the mean particle size had no significant change while the polydispersity (PDI) increased after lyophilization. The mean particle size slightly reduced after lyophilization (520±12nm to 464±25nm) while the PDI increased after lyophilization (0.094±0.017 to 0.220±0.004). In addition. The mean particle size of vesicles increases when DNA is incorporated to the liposomes (673±27nm). According to the Scanning Electron Microscopy (SEM) and transmission electron microscopy (TEM) images, the spherical shape of liposomes confirmed their successful preservation and reconstitution from the powder. It was found that liposomal formulation has enhanced transfection considerably compared to the naked DNA as negative control. Finally, liposomal formulation in this research had a better function than Lipofectamine® 2000 as a commercialized product because the cellular activity (cellular protein) was higher in the prepared lipoplex than Lipofectamine® 2000. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inhalational System for Etoposide Liposomes: Formulation Development and In Vitro Deposition

    PubMed Central

    Parmar, J. J.; Singh, D. J.; Lohade, A. A.; Hegde, Darshana D.; Soni, P. S.; Samad, A.; Menon, Mala D.

    2011-01-01

    Etoposide is a semisynthetic compound, widely used in treatment of non small cell lung cancer. However, frequent dosing and adverse effects remain a major concern in the use of etoposide. Liposomal systems for pulmonary drug delivery have been particularly attractive because of their compatibility with lung surfactant components. In the present investigation, pulmonary liposomal delivery system of etoposide was prepared by film hydration method. Various parameters were optimized with respect to entrapment efficiency as well as particle size of etoposide liposomes. For better shelf life of etoposide liposomes, freeze drying using trehalose as cryoprotectant was carried out. The liposomes were characterized for entrapment efficiency, particle size, surface topography, and in vitro drug release was carried out in simulated lung fluid at 37° at pH 7.4. The respirable or fine particle fraction was determined by using twin stage impinger. The stability study of freeze dried as well as aqueous liposomal systems was carried out at 2-8° and at ambient temperature (28±4°). The freeze dried liposomes showed better fine particle fraction and drug content over the period of six months at ambient as well as at 2-8° storage condition compared to aqueous dispersion of liposomes. PMID:23112400

  1. Inhalational system for Etoposide liposomes: formulation development and in vitro deposition.

    PubMed

    Parmar, J J; Singh, D J; Lohade, A A; Hegde, Darshana D; Soni, P S; Samad, A; Menon, Mala D

    2011-11-01

    Etoposide is a semisynthetic compound, widely used in treatment of non small cell lung cancer. However, frequent dosing and adverse effects remain a major concern in the use of etoposide. Liposomal systems for pulmonary drug delivery have been particularly attractive because of their compatibility with lung surfactant components. In the present investigation, pulmonary liposomal delivery system of etoposide was prepared by film hydration method. Various parameters were optimized with respect to entrapment efficiency as well as particle size of etoposide liposomes. For better shelf life of etoposide liposomes, freeze drying using trehalose as cryoprotectant was carried out. The liposomes were characterized for entrapment efficiency, particle size, surface topography, and in vitro drug release was carried out in simulated lung fluid at 37° at pH 7.4. The respirable or fine particle fraction was determined by using twin stage impinger. The stability study of freeze dried as well as aqueous liposomal systems was carried out at 2-8° and at ambient temperature (28±4°). The freeze dried liposomes showed better fine particle fraction and drug content over the period of six months at ambient as well as at 2-8° storage condition compared to aqueous dispersion of liposomes.

  2. Direct intrathecal drug delivery in mice for detecting in vivo effects of cGMP on pain processing.

    PubMed

    Lu, Ruirui; Schmidtko, Achim

    2013-01-01

    Intrathecal delivery of drugs is an important method in pain research in order to investigate pain-relevant effects in the spinal cord in vivo. Here, we describe a method of intrathecal drug delivery by direct lumbar puncture in mice. The procedure does not require surgery, is rapidly performed, and does not produce neurological deficits. If cGMP analogs are injected, a state of transient hindpaw hypersensitivity can be induced which is quantifiable by measurement of hindpaw withdrawal latency in response to mechanical stimulation.

  3. Biophysical characterization of V3-lipopeptide liposomes influencing HIV-1 infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizos, Apostolos K.; Baritaki, Stavroula; Department of Virology, Medical School, University of Crete, Heraklion, Crete

    2007-04-20

    The V3-loop of the HIV-1 gp120 alters host cell immune function and modulates infectivity. We investigated biophysical parameters of liposome constructs with embedded lipopeptides from the principle neutralizing domain of the V3-loop and their influence on viral infectivity. Dynamic light scattering measurements showed liposome supramolecular structures with hydrodynamic radius of the order of 900 and 1300 nm for plain and V3-lipopeptide liposomes. Electron paramagnetic resonance measurements showed almost identical local microenvironment. The difference in liposome hydrodynamic radius was attributed to the fluctuating ionic environment of the V3-lipopeptide liposomes. In vitro HIV-1 infectivity assays showed that plain liposomes reduced virus productionmore » in all cell cultures, probably due to the hydrophobic nature of the aggregates. Liposomes carrying V3-lipopeptides with different cationic potentials restored and even enhanced infectivity (p < 0.05). These results highlight the need for elucidation of the involvement of lipid bilayers as dynamic components in supramolecular structures and in HIV-1 fusion mechanisms.« less

  4. Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.

    PubMed

    Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès

    2015-01-01

    Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.

  5. Liposomal preparations of muramyl glycopeptides as immunomodulators and adjuvants.

    PubMed

    Turánek, Jaroslav; Ledvina, Miroslav; Kasná, Andrea; Vacek, Antonín; Hríbalova, Vera; Krejcí, Josef; Miller, Andrew D

    2006-04-12

    The need for safe and structurally defined immunomodulators and adjuvants is increasing in connection with the recently observed marked increase in the prevalence of pathological conditions characterized by immunodeficiency. Important groups of such compounds are muramyl glycopeptides, analogs of muramyl dipeptide (MDP), glucosaminyl-muramyl dipeptide (GMDP), and desmuramylpeptides. We have designed and synthesized new types of analogs with changes in both the sugar and the peptide parts of the molecule that show a high immunostimulating and adjuvant activity and suppressed adverse side effects. The introduction of lipophilic residues has also improved their incorporation into liposomes, which represent a suitable drug carrier. The proliposome-liposome method is based on the conversion of the initial proliposome preparation into liposome dispersion by dilution with the aqueous phase. The description of a home-made stirred thermostated cell and its link-up with a liquid delivery system for a rapid and automated preparation of multilamellar liposomes at strictly controlled conditions (sterility, temperature, dilution rate and schedule) is presented. The cell has been designed for laboratory-scale preparation of liposomes (300-1000 mg of phospholipid per run) in a procedure taking less than 90 min. The method can be readily scaled up. Examples of adjuvant and immunostimulatory effect of liposomal preparation in mice model will be presented.

  6. Extended acute toxicity study of (188) Re-liposome in rats.

    PubMed

    Chi-Mou, Liu; Chia-Che, Tsai; Chia-Yu, Yu; Wan-Chi, Lee; Chung-Li, Ho; Tsui-Jung, Chang; Chih-Hsien, Chang; Te-Wei, Lee

    2013-09-01

    Liposomes can selectively target cancer sites and carry payloads, thereby improving diagnostic and therapeutic effectiveness as well as reducing toxicity. To evaluate therapeutic strategies, it is essential to use animal models reflecting important safety aspects before clinical application. As our previous study found that a high dosage (185 of MBq) of (188) Re-N,N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine-labeled pegylated liposomes ((188) Re-liposome) induced a decrease in white blood cell (WBC) count in Sprague-Dawley rats 7 days postinjection, the objective of the present study was to investigate extended acute radiotoxicity of (188) Re-liposome. Rats were administered via intravenous (i.v.) injection with (188) Re-liposome (185, 55.5 and 18.5 MBq), normal saline as a blank control or non-radioactive liposome as a vehicle control. Mortality, clinical signs, food consumption, body weights, urinary, biochemical and hematological analyzes were examined. In addition, gross necropsy and histopathological examinations were also performed at the end of the follow-up period. None of the rats died and no clinical sign was observed during the 28-day study period. Only male rats receiving (188) Re-liposome at a high dosage (185 MBq) displayed a slight weight loss compared with the control rats. In both male and female rats, the WBC counts of both high-dose and medium-dose (55.5 MBq) groups reduced significantly 7 days postinjection, but recovered to the normal range on Study Day 29. There was no significant difference in urinary analyzes, biochemical parameters and histopathological assessments between the (188) Re-liposome-treated and control groups. The information generated from the present study on extended acute toxicity of (188) Re-liposome will serve as a safety reference for radiopharmaceuticals in early-phase clinical trials. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Regulation of Spinal Substance P Release by Intrathecal Calcium Channel Blockade

    PubMed Central

    Takasusuki, Toshifumi; Yaksh, Tony L.

    2012-01-01

    Background We investigated the role of different voltage sensitive calcium channels expressed at presynaptic afferent terminals in substance P release and on nociceptive behavior evoked by intraplantar formalin by examining the effects of intrathecally delivered N- (ziconotide), T- (mibefradil) and L-type voltage sensitive calcium channels blockers (diltiazem and verapamil). Methods Rats received intrathecal pretreatment with saline or doses of morphine, ziconotide, mibefradil, diltiazem or verapamil. The effect of these injections upon flinching evoked by intraplantar formalin (5%, 50μl) was quantified. To assess substance P release, the incidence of neurokinin 1 receptor internalization in the ipsilateral and contralateral lamina I was determined in immunofluorescent stained tissues. Results Intrathecal morphine (20μg), ziconotide (0.3, 0.6 and 1μg), mibefradil (100μg, but not 50μg), diltiazem (500μg, but not 300μg) and verapamil (200μg, but not 50 and 100μg) reduced paw flinching in phase 2 as compared to vehicle control (P < 0.05), with no effect upon phase 1. Ziconotide (0.3, 0.6 and 1μg) and morphine (20μg) significantly inhibited neurokinin 1 receptor internalization (P < 0.05), but mibefradil, diltiazem and verapamil at the highest doses had no effect. Conclusion These results emphasize the role in vivo of N-, but not T- and L-type voltage sensitive calcium channels in mediating the stimulus evoked substance P release from small primary afferents and suggest that T- and L-type voltage sensitive calcium channels blockers exert antihyperalgesic effects by an action on other populations of afferents or mechanisms involving post synaptic excitability. PMID:21577088

  8. Fusogenic pH sensitive liposomal formulation for rapamycin: improvement of antiproliferative effect.

    PubMed

    Ghanbarzadeh, Saeed; Khorrami, Arash; Mohamed Khosroshahi, Leila; Arami, Sanam

    2014-07-01

    Liposomes are increasingly employed to deliver chemotherapeutic agents, antisense oligonucleotides, and genes to various therapeutic targets. The present investigation evaluates the ability of fusogenic pH-sensitive liposomes of rapamycin in increasing its antiproliferative effect on human breast adenocarcinoma (MCF-7) cell line. Cholesterol (Chol) and dipalmitoylphosphatidylcholine (DPPC) (DPPC:Chol, 7:3) were used to prepare conventional rapamycin liposomes by a modified ethanol injection method. Dioleoylphosphatidylethanolamine (DOPE) was used to produce fusogenic and pH-sensitive properties in liposomes simultaneously (DPPC:Chol:DOPE, 7:3:4.2). The prepared liposomes were characterized by their size, zeta potential, encapsulation efficiency percent (EE%), and chemical stability during 6 months. The antiproliferative effects of both types of rapamycin liposomes (10, 25, and 50 nmol/L) with optimized formulations were assessed on MCF-7 cells, as cancerous cells, and human umbilical vein endothelial cells (HUVEC), as healthy cells, employing the diphenyltetrazolium bromide (MTT) assay for 72 h. The particle size, zeta potential, and EE% of the liposomes were 165 ± 12.3 and 178 ± 15.4 nm, -39.6 ± 1.3, and -41.2 ± 2.1 mV as well as 76.9 ± 2.6 and 76.9 ± 2.6% in conventional and fusogenic pH-sensitive liposomes, respectively. Physicochemical stability results indicated that both liposome types were relatively stable at 4 °C than 25 °C. In vitro antiproliferative evaluation showed that fusogenic pH-sensitive liposomes had better antiproliferative effects on MCF-7 cells compared to the conventional liposomes. Conversely, fusogenic pH-sensitive liposomes had less cytotoxicity on HUVEC cell line.

  9. Postoperative Pain Management After Primary Total Knee Arthroplasty: The Value of Liposomal Bupivacaine.

    PubMed

    Sporer, Scott M; Rogers, Thea

    2016-11-01

    Multimodal pain protocols have been proposed to achieve improved long-acting postoperative analgesia. Controlling postoperative pain after joint arthroplasty is especially important as it relates to patient satisfaction and outcomes. The purpose of this study was to compare the postoperative pain, time to ambulation, and overall narcotic usage between patients who received either a femoral nerve block with a periarticular bupivacaine injection or a periarticular bupivacaine and extended-release liposomal bupivacaine injection after primary total knee arthroplasty. A total of 597 consecutive primary total knee arthroplasties performed between September 1, 2012 and August 31, 2014 received preoperative celecoxib, oxycodone, and transdermal scopolamine. Intraoperatively, patients either received a single-dose bupivacaine femoral nerve block along with 30-mL 0.25% bupivacaine periarticular injection (group A) or a 60-mL periarticular injection alone (20-mL liposomal bupivacaine, 30-mL 0.25% bupivacaine, and 10-mL saline; group B). The postoperative pain scores, narcotic usage, and time to ambulation were retrospectively collected from the electronic medical record. These outcomes were compared between treatment groups. There were 325 patients in group A compared with 272 in group B during the time frame. There was no difference among age, gender, race, and body mass index between the groups. Group B demonstrated a decreased need for breakthrough pain medication (16.9% vs 36.3% P < .001), decreased pain 12 hours postoperatively (3.2 vs 3.6 P < .003), and an earlier time to ambulation (29.5 hours vs 32.2 hours, P < .017). There was no difference in hospital length of stay (2.8 vs 2.6 days, P = .123). On controlling for demographic factors, patients in group B were able to ambulate 2.3 hours earlier than those in group A (coefficient = -2.3, P = .049). Liposomal bupivacaine resulted in a decrease need for breakthrough pain medication, improved pain scores at 12

  10. Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate.

    PubMed

    Refai, Hanan; Hassan, Doaa; Abdelmonem, Rehab

    2017-11-01

    Vaginal administration of sildenafil citrate has shown recently to develop efficiently the uterine lining with subsequent successful embryo implantation following in vitro fertilization. The aim of the present study was to develop sildenafil-loaded liposomes coated with bioadhesive polymers for enhanced vaginal retention and improved drug permeation. Three liposomal formulae were prepared by thin-film method using different phospholipid:cholesterol ratios. The optimal liposomal formulation was coated with bioadhesive polymers (chitosan and HPMC). A marked increase in liposomal size and zeta potential was observed for all coated liposomal formulations. HPMC-coated liposomes showed the greater bioadhesion and higher entrapment efficiency than chitosan-coated formulae. The in vitro release studies showed prolonged release of sildenafil from coated liposomes as compared to uncoated liposomes and sildenafil solution. Ex vivo permeation study revealed the enhanced permeation of coated relative to uncoated liposomes. Chitosan-coated formula demonstrated highest drug permeation and was thus selected for further investigations. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) confirmed the successful coating of the liposomes by chitosan. Histopathological in vivo testing proved the efficacy of chitosan-coated liposomes to improve blood flow to the vaginal endometrium and to increase endometrial thickness. Chitosan-coated liposomes can be considered as potential novel drug delivery system intended for the vaginal administration of sildenafil, which would prolong system's retention at the vaginal site and enhance the permeation of sildenafil to uterine blood circulation.

  11. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy.

    PubMed

    Saengkrit, Nattika; Saesoo, Somsak; Srinuanchai, Wanwisa; Phunpee, Sarunya; Ruktanonchai, Uracha Rungsardthong

    2014-02-01

    The delivery of curcumin has been explored in the form of liposomal nanoparticles to treat various cancer cells. Since curcumin is water insoluble and an effective delivery route is through encapsulation in liposomes, which were modified with three components of DDAB, cholesterol and non-ionic surfactant. The purpose of this study was to establish a critical role of DDAB in liposomes containing curcumin at cellular response against two types of cell lines (HeLa and SiHa). Here, we demonstrate that DDAB is a potent inducer of cell uptake and cell death in both cell lines. The enhanced cell uptake was found on DDAB-containing liposome, but not on DDAB-free liposome. However, the cytotoxicity of DDAB-containing liposomes was high and needs to be optimized. The cytotoxicity of liposomal curcumin was more pronounced than free curcumin in both cells, suggesting the benefits of using nanocarrier. In addition, the anticancer efficiency and apoptosis effect of the liposomal curcumin formulations with DDAB was higher than those of DDAB-free liposomes. Therefore curcumin loaded liposomes indicate significant potential as delivery vehicles for the treatment of cervical cancers. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Surface functionalization of liposomes with proteins and carbohydrates for use in anti-cancer applications

    NASA Astrophysics Data System (ADS)

    Platt, Virginia M.

    Liposomes can be used to exploit the altered biology of cancer thereby increasing delivery of liposome-associated anti-cancer drugs. In this dissertation, I explore methods that utilize the unique cancer expression of the polymeric glycosaminoglycan hyaluronan (HA) and the HA receptor CD44 to target liposomes to tumors, using liposomes functionalized with proteins or oligosaccharides on their surface. To make it easier to prepare protein-functionalized liposomes, a non-covalent protein/liposome association method based upon metal chelation/his 6 interaction was devised and characterized. I evaluated non-covalent attachment of the prodrug converting enzyme yeast cytosine deaminase, the far-red fluorescent protein mKate, two antigens ovalbumin and the membrane proximal region of an HIV GAG and hyaluronidase, a HA-degrading enzyme. In Chapter 2, I describe the synthesis of hyaluronan-oligosaccharide (HA-O) lipid conjugates and their incorporation into liposomes to target CD44-overexpressing cancer cells. HA-O ligands of defined-length, up to 10 monosaccharides, were attached to lipids via various linkers by reductive amination. The HA-lipids were easily incorporated into liposomes but did not mediate binding of liposomes to CD44 overexpressing cells. In Chapter 3, I evaluate the capacity of tris-NTA-Ni-lipids incorporated within a liposome bilayer to associate with his6-tagged proteins. Tris-NTA-lipids of differing structures and avidities were used to associate yeast cytosine deaminase and mKate to the surface of liposomes. Two tris-NTA-lipids and a mono-NTA lipid associated his-tagged proteins to a 1:1 molar ratio in solution. The proteins remained active while associated with the liposome surface. When challenged in vitro with fetal calf serum, tris-NTA-containing liposomes retained his-tagged proteins longer than mono-NTA. However, the tris-NTA/his6 interaction was found to be in a dynamic state; free yeast cytosine deaminase rapidly competed with pre-bound m

  13. The effects of intrathecal administration of betamethasone over the dogs' spinal cord and meninges.

    PubMed

    Barros, Guilherme Antonio Moreira de; Marques, Mariângela Esther Alencar; Ganem, Eliana Marisa

    2007-01-01

    To determinate the potential clinical and histological changes due the injection of betamethasone, when administered into the canine intrathecal space. Twenty one animals were included in a random and blind manner in the study. After general anesthesia, intrathecal puncture was performed and 1 ml of the random solution was injected. The G1 dogs received 0.9% saline solution, the G2 dogs received 1.75 mg betamethasone and the G3 dogs received 3.5 mg of betamethasone. The animals were clinically evaluated for 21 days and then sacrificed. The lumbar and sacral portions of the spinal cord were removed for light microscopy histological analyses. No clinical changes were observed in any of the animals included in this study. No histological changes were observed in G1 animals. Inflammatory infiltration was observed in two dogs, one in G2, another in G3. Hemorrhage and necrosis were also seen in the G2 dog which inflammatory infiltration was detected. In other two dogs, one from G2 and another from G3, there was discreet fibrosis and thickness of the arachnoid layer which was focal in one and diffuse in the other. Intrathecal administration of betamethasone caused histological changes in the spinal cord and meninges in some of the dogs involved in this study.

  14. Anti-listeria effects of chitosan-coated nisin-silica liposome on Cheddar cheese.

    PubMed

    Cui, H Y; Wu, J; Li, C Z; Lin, L

    2016-11-01

    Listeria monocytogenes poses an increasing challenge to cheese production. To minimize the risk of bacterial contamination, a chitosan-coated nisin-silica liposome was engineered for the present study. We investigated the characteristics of nisin-silica liposomes and the anti-listeria effects of a chitosan-coated nisin-silica liposome on Cheddar cheese. The encapsulation efficiency of nisin in a liposome was sharply increased after it was adsorbed on a silica particle surface. Chitosan-coated nisin-silica liposomes displayed sustained antibacterial activity against L. monocytogenes, without affecting the sensory properties of the cheese. Chitosan-coated nisin-silica liposomes could be a promising active antimicrobial for cheese preservation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay.

    PubMed

    Mao, Li; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Xiang, Yun

    2011-06-15

    An innovatory ECL immunoassay strategy was proposed to detect the newly developing heart failure biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP). Firstly, this strategy used small molecules encapsulated liposome as immune label to construct a sandwich immune sensing platform for NT-proBNP. Then the ECL aptasensor was prepared to collect and detect the small molecules released from the liposome. Finally, based on the ECL signal changes caused by the small molecules, the ECL signal indirectly reflected the level of NT-proBNP antigen. In this experiment, the cocaine was chosen as the proper small molecule that can act as signal-enhancer to enhance the ECL of Ru(bpy)(3)(2+). The cocaine-encapsulated liposomes were successfully characterized by TEM. The quantificational calculation proved the ∼5.3×10(3) cocaine molecules per liposome enough to perform the assignment of signal amplification. The cocaine-binding ECL aptasensor further promoted the work aimed at amplifying signal. The performance of NT-proBNP assay by the proposed strategy exhibited high sensitivity and high specificities with a linear relationship over 0.01-500 ng mL(-1) range, and a detection limit down to 0.77 pg mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Duration of motor block with intrathecal ropivacaine versus bupivacaine for caesarean section: a meta-analysis.

    PubMed

    Malhotra, R; Johnstone, C; Halpern, S; Hunter, J; Banerjee, A

    2016-08-01

    Bupivacaine is a commonly used local anaesthetic for spinal anaesthesia for caesarean section, but may produce prolonged motor block, delaying discharge from the post-anaesthesia care unit. Ropivacaine may have a shorter time to recovery of motor function compared with bupivacaine. We performed a meta-analysis to assess the time difference in duration of motor block with intrathecal ropivacaine compared with bupivacaine for caesarean section. We searched MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials databases for randomised controlled trials comparing ropivacaine with bupivacaine in parturients undergoing elective caesarean section under spinal anaesthesia. The primary outcome was the duration of motor block. Secondary outcomes included the time to onset of sensory block, need for conversion to general anaesthesia and the incidence of hypotension. Thirteen trials comprising 743 spinal anaesthetics were included. Intrathecal ropivacaine resulted in a reduced duration of motor block, regressing 35.7min earlier compared with intrathecal bupivacaine (P<0.00001). There was no difference in the time to onset of sensory block (P=0.25) or the incidence of hypotension (P=0.10). Limited data suggested no difference in the rate of conversion to general anaesthesia, but an earlier request for postoperative analgesia with ropivacaine. Compared with bupivacaine, intrathecal ropivacaine is associated with more rapid recovery of motor block despite similar sensory properties and no increased rate of conversion to general anaesthesia. This may be useful in centres in which recovery of motor block is a criterion for discharge from the post-anaesthesia care unit. However, small numbers of trials and significant heterogeneity limit the interpretation of our results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.

    PubMed

    Carita, Amanda C; Eloy, Josimar O; Chorilli, Marlus; Lee, Robert J; Leonardi, Gislaine Ricci

    2018-02-13

    The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Dual-coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel

    2017-11-01

    Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome

  19. Placing and shaping liposomes with reconfigurable DNA nanocages

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang

    2017-07-01

    The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

  20. Placing and shaping liposomes with reconfigurable DNA nanocages.

    PubMed

    Zhang, Zhao; Yang, Yang; Pincet, Frederic; Llaguno, Marc C; Lin, Chenxiang

    2017-06-23

    The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

  1. Liposomes self-assembled from electrosprayed composite microparticles

    NASA Astrophysics Data System (ADS)

    Yu, Deng-Guang; Yang, Jun-He; Wang, Xia; Tian, Feng

    2012-03-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way.

  2. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    PubMed

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of <3% and estimate the remaining medication volume with an accuracy of >98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Liposomal lipid and plasmid DNA delivery to B16/BL6 tumors after intraperitoneal administration of cationic liposome DNA aggregates.

    PubMed

    Reimer, D L; Kong, S; Monck, M; Wyles, J; Tam, P; Wasan, E K; Bally, M B

    1999-05-01

    The transfer of plasmid expression vectors to cells is essential for transfection after administration of lipid-based DNA formulations (lipoplexes). A murine i.p. B16/BL6 tumor model was used to characterize DNA delivery, liposomal lipid delivery, and gene transfer after regional (i.p.) administration of free plasmid DNA and DNA lipoplexes. DNA lipoplexes were prepared using cationic dioleoyldimethylammonium chloride/dioleoylphosphatidylethanolamine (50:50 mol ratio) liposomes mixed with plasmid DNA (1 microgram DNA/10 nmol lipid). The plasmid used contained the chloramphenicol acetyltransferase gene and chloramphenicol acetyltransferase expression (mU/g tumor) was measured to estimate transfection efficiency. Tumor-associated DNA and liposomal lipid levels were measured to estimate the efficiency of lipid-mediated DNA delivery to tumors. Plasmid DNA delivery was estimated using [3H]-labeled plasmid as a tracer, dot blot analysis, and/or Southern analysis. Liposomal lipid delivery was estimated using [14C]-dioleoylphosphatidylethanolamine as a liposomal lipid marker. Gene expression in the B16/BL6 tumors was highly variable, with values ranging from greater than 2,000 mU/g tumor to less than 100 mU/g tumor. There was a tendency to observe enhanced transfection in small (<250 mg) tumors. Approximately 18% of the injected dose of DNA was associated with these small tumors 2 h after i.p. administration. Southern analysis of extracted tumor DNA indicated that plasmid DNA associated with tumors was intact 24 h after administration. DNA and associated liposomal lipid are efficiently bound to tumors after regional administration; however, it is unclear whether delivery is sufficient to abet internalization and appropriate subcellular localization of the expression vector.

  4. Liposomes composed of unsaturated lipids for membrane modification of human erythrocytes.

    PubMed

    Stoll, Christoph; Holovati, Jelena L; Acker, Jason P; Wolkers, Willem F

    2011-01-01

    Previous studies have shown that certain saturated lipids protect red blood cells (RBCs) during hypothermic storage but provide little protection during freezing or freeze-drying, whereas various unsaturated lipids destabilize RBCs during hypothermic storage but protect during freezing and freeze-drying. The protective effect of liposomes has been attributed to membrane modifications. We have previously shown that cholesterol exchange and lipid transfer between liposomes composed of saturated lipids and RBCs critically depends on the length of the lipid acyl chains. In this study the effect of unsaturated lipids with differences in their number of unsaturated bonds (18:0/18:1, 18:1/18:1, 18:2/18:2) on RBC membrane properties has been studied. RBCs were incubated in the presence of liposomes and both the liposomal and RBC fraction were analyzed by Fourier transform infrared spectroscopy (FTIR) after incubation. The liposomes caused an increase in RBC membrane conformational disorder at suprazero temperatures. The fluidizing effect of the liposomes on the RBC membranes, however, was found to be similar for the different lipids irrespective of their unsaturation level. The gel to liquid crystalline phase transition temperature of the liposomes increased after incubation with RBCs. RBC membrane fluidity increased linearly during the first 8 hours of incubation in the presence of liposomes. The increase in RBC membrane fluidity was found to be temperature dependent and displayed Arrhenius behaviour between 20 and 40°C, with an activation energy of 88 kJ mol⁻¹. Taken together, liposomes composed of unsaturated lipids increase RBC membrane conformational disorder, which could explain their cryoprotective action.

  5. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.

    PubMed

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-06-18

    It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.

  6. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B1.

    PubMed

    Lin, Youxiu; Zhou, Qian; Zeng, Yongyi; Tang, Dianping

    2018-06-02

    The authors describe a photoelectrochemical (PEC) immunoassay for determination of aflatoxin B 1 (AFB 1 ) in foodstuff. The competitive immunoreaction is carried out on a microplate coated with a capture antibody against AFB 1 using AFB 1 -bovine serum albumin (BSA)-liposome-coated mesoporous silica nanoparticles (MSN) loaded with L-cysteine as a support. The photocurrent is produced by a photoactive material consisting of cerium-doped Bi 2 MoO 6 . Initially, L-cysteine acting as the electron donor is gated in the pores by interaction between mesoporous silica and liposome. Thereafter, AFB 1 -BSA conjugates are covalently bound to the liposomes. Upon introduction of the analyte (AFB 1 ), the labeled AFB 1 -BSA complex competes with the analyte for the antibody deposited on the microplate. Accompanying with the immunocomplex, the liposomes on the MSNs are lysed upon addition of Triton X-100. This results in the opening of the pores and in a release of L-cysteine. Free cysteine then induces the electron-hole scavenger of the photoactive nanosheets to increase the photocurrent. The photocurrent (relative to background signal) increases with increasing AFB 1 concentration. Under optimum conditions, the photoactive nanosheets display good photoelectrochemical responses, and allow the detection of AFB 1 at a concentration as low as 0.1 pg·mL -1 within a linear response in the 0.3 pg·mL -1 to 10 ng·mL -1 concentration range. Accuracy was evaluated by analyzing naturally contaminated and spiked peanut samples by using a commercial AFB 1 ELISA kit as the reference, and well-matching results were obtained. Graphical abstract Schematic presentation of a photoelectrochemical immunoassay for AFB 1 . It is based on the use of Ce-doped Bi 2 MoO 6 nanosheets and of liposome-coated mesoporous silica nanoparticles loaded with L-cysteine.

  7. Postoperative analgesia and antiemetic efficacy after intrathecal neostigmine in patients undergoing abdominal hysterectomy during spinal anesthesia.

    PubMed

    Lauretti, G R; Mattos, A L; Gomes, J M; Pereira, N L

    1997-01-01

    Postoperative analgesia and antiemetic efficacy after intrathecal neostigmine were investigated in a randomized, double-blind, placebo-controlled trial of 100 patients undergoing abdominal hysterectomy. The patients were assigned to one of five groups (n = 20), and received intravenous prior to the spinal block the antiemetic test drug (except propofol) and 0.05 mg/kg midazolam. The control group (group C), the neostigmine group (group N), and the propofol group (group P) received saline as the test drug. The droperidol group (group D) received 0.5 mg intravenous droperidol, and the metoclopramide group (group M) 10 mg intravenous metoclopramide. Group P was single-blinded and had an intravenous continuous propofol infusion (2-4 mg/kg/h) turned on 10 minutes after the spinal injection. The intrathecal drugs administered were 20 mg hyperbaric bupivacaine (0.5%) associated with either 100 microg neostigmine or saline (for group C). Nausea, emetic episodes, and the need for rescue medication were recorded for the first 24 hours postoperative and scored by the Visual Analog Scale (VAS). Time-to-first-rescue medication and rescue medications in 24 hours were similar among the groups (P = .2917 and P = .8780, respectively). Intrathecal 100 microg neostigmine was associated with a high incidence of nausea and vomiting perioperative, leading to a high consumption of antiemetics (P < .002). None of the antiemetic test drugs were effective in preventing nausea and vomiting after 100 microg neostigmine. Intrathecal neostigmine (100 microg) was ineffective for postoperative analgesia after abdominal hysterectomy due to side effects of nausea and vomiting.

  8. A randomized clinical trial of intrathecal magnesium sulfate versus midazolam with epidural administration of 0.75% ropivacaine for patients with preeclampsia scheduled for elective cesarean section.

    PubMed

    Paleti, Sophia; Prasad, P Krishna; Lakshmi, B Sowbhagya

    2018-01-01

    Magnesium sulfate and midazolam have been used as adjuvants to local anesthetics via intrathecal and epidural routes to augment the quality of block and prolong postoperative analgesia. This study compares addition of intrathecal magnesium sulfate versus intrathecal midazolam to epidurally administered isobaric ropivacaine as a part of combined spinal epidural technique in pre-eclamptic parturients undergoing elective cesarean section. After institutional ethics committee approval and written informed consent, 50 pre-eclamptic parturients were randomly allocated to one of the two groups of 25 each to either receive intrathecal magnesium sulfate (50 mg) or intrathecal midazolam (1 mg) in combination with epidural ropivacaine (0.75%; 14-16 ml). The onset and duration of sensory and motor blockade, duration of postoperative analgesia, postoperative visual analogue scores for pain, and perioperative side effects were noted. Data were analyzed statistically using Graphpad.com software. Onset times to sensory and motor blockade were faster in midazolam than in magnesium group ( P < 0.01). Duration of sensory and motor blockade, and time to first request of analgesia were significantly longer in the magnesium group compared to the midazolam group ( P < 0.01). The fetal outcomes according to APGAR scores were comparable in both the groups, the median APGAR score at 1 minute was 8 and at 5 minutes was 10 in both the groups. Intrathecal magnesium with epidural ropivacaine significantly prolonged postoperative analgesia compared to intrathecal midazolam without any complications. Perioperative hemodynamics were comparable in both groups.

  9. Characterization of drug release from liposomal formulations in ocular fluid.

    PubMed

    Jafari, M R; Jones, A B; Hikal, A H; Williamson, J S; Wyandt, C M

    1998-01-01

    The successful application of liposomes in topical ophthalmic drug delivery requires knowledge of vesicle stabilization in the presence of tear fluid. The release of procaine hydrochloride (PCH) from large unilamellar liposomes in the presence of simulated tear fluid was studied in vitro as a function of bilayer lipid content and tear protein composition. Reverse-phase evaporation vesicles were prepared from egg phosphatidylcholine, stearylamine or dicetyl phosphate, and cholesterol. The relationship between lipid composition and encapsulation efficiency, vesicle size, drug leakage upon storage at 4 degrees C, and the release of PCH-loaded liposomes was studied. The encapsulation efficiency was found to be dependent upon the lipid composition used in the liposome preparation. In particular, phosphatidylcholine vesicles containing cholesterol and/or charged lipids had a lower entrapment efficiency than liposomes prepared with phosphatidylcholine alone. However, the drug release rate was reduced significantly by inclusion of cholesterol and/or charged lipids in the liposomes. The release kinetics of the entrapped agent seemed to be a biphasic process and the drug-release in both simulated tear fluid (STF) and pH 7.4 phosphate buffered saline (PBS) solutions followed pseudo first-order kinetics in the early stage of the release profile. The drug-release appeared to be diffusion and/or partition controlled. Drug release from liposomes into STF, pH 7.4 PBS, and five different modified tear formulations was also evaluated. While serum-induced leakage is attributed to high-density lipoprotein-mediated destabilization, it was determined that lactoferrin might be the protein component in tear fluid that has the primary influence on the liposome-entrapped drug release rate. Five local anesthetics, benoxinate, proparacaine, procaine, tetracaine, and benzocaine were entrapped in liposomal vesicles by a reverse-phase evaporation (REV) technique. The release of these

  10. Micro and nano liposome vesicles containing curcumin for a drug delivery system

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Anh; Duoc Tang, Quan; Chanh Tin Doan, Duc; Chien Dang, Mau

    2016-09-01

    Micro and nano liposome vesicles were prepared using a lipid film hydration method and a sonication method. Phospholipid, cholesterol and curcumin were used to form micro and nano liposomes containing curcumin. The size, structure and properties of the liposomes were characterized by using optical microscopy, transmission electron microscopy, and UV-vis and Raman spectroscopy. It was found that the size of the liposomes was dependent on their composition and the preparation method. The hydration method created micro multilamellars, whereas nano unilamellars were formed using the sonication method. By adding cholesterol, the vesicles of the liposome could be stabilized and stored at 4 °C for up to 9 months. The liposome vesicles containing curcumin with good biocompatibility and biodegradability could be used for drug delivery applications.

  11. Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents

    PubMed Central

    Zhang, Qimei; Morgan, Stephen P.; O’Shea, Paul; Mather, Melissa L.

    2016-01-01

    A new imaging contrast agent is reported that provides an increased fluorescent signal upon application of ultrasound (US). Liposomes containing lipids labelled with pyrene were optically excited and the excimer fluorescence emission intensity was detected in the absence and presence of an ultrasound field using an acousto-fluorescence setup. The acousto-fluorescence dynamics of liposomes containing lipids with pyrene labelled on the fatty acid tail group (PyPC) and the head group (PyPE) were compared. An increase in excimer emission intensity following exposure to US was observed for both cases studied. The increased intensity and time constants were found to be different for the PyPC and PyPE systems, and dependent on the applied US pressure and exposure time. The greatest change in fluorescence intensity (130%) and smallest rise time constant (0.33 s) are achieved through the use of PyPC labelled liposomes. The mechanism underlying the observed increase of the excimer emission intensity in PyPC labelled liposomes is proposed to arise from the “wagging” of acyl chains which involves fast response and requires lower US pressure. This is accompanied by increased lipid lateral diffusivity at higher ultrasound pressures, a mechanism that is also active in the PyPE labelled liposomes. PMID:27467748

  12. Organelle-mimicking liposome dissociates G-quadruplexes and facilitates transcription

    PubMed Central

    Pramanik, Smritimoy; Tateishi-Karimata, Hisae; Sugimoto, Naoki

    2014-01-01

    Important biological reactions involving nucleic acids occur near the surface of membranes such as the nuclear membrane (NM) and rough endoplasmic reticulum (ER); however, the interactions between biomembranes and nucleic acids are poorly understood. We report here that transcription was facilitated in solution with liposomes, which mimic a biomembrane surface, relative to the reaction in a homogeneous aqueous solution when the template was able to form a G-quadruplex. The G-quadruplex is known to be an inhibitor of transcription, but the stability of the G-quadruplex was decreased at the liposome surface because of unfavourable enthalpy. The destabilization of the G-quadruplex was greater at the surface of NM- and ER-mimicking liposomes than at the surfaces of liposomes designed to mimic other organelles. Thermodynamic analyses revealed that the G-rich oligonucleotides adopted an extended structure at the liposome surface, whereas in solution the compact G-quadruplex was formed. Our data suggest that changes in structure and stability of nucleic acids regulate biological reactions at membrane surfaces. PMID:25336617

  13. Pirfenidone-loaded liposomes for lung targeting: preparation and in vitro/in vivo evaluation

    PubMed Central

    Meng, Hui; Xu, Yong

    2015-01-01

    Background The purpose of this study was to develop novel pirfenidone (PFD)-loaded liposomes for targeting to the lung. Methods The liposomes were prepared by the film hydration method, and their in vitro/vivo characteristics were evaluated. Results The PFD liposomes appeared visually as green to yellowish suspensions and were spherical in shape. The particle size was 582.3±21.6 nm and the entrapment efficiency was relatively high (87.2%±5.7%). The liposomes showed typical sustained and prolonged drug-release behavior in vitro and fitted well with the Weibull distribution equation. The relatively slower time taken to reach a minimal plasma PFD concentration in vivo suggests that PFD liposomes have a sustained-release profile, which is consistent with the results of the in vitro release study. The PFD liposomes showed the largest area under the curve for the lung. The high distribution of PFD achieved in the lungs using this liposomal formulation may be explained by physical entrapment of the liposomes in the vascular network of the lung. Histopathological results indicated that liposomal PFD could alleviate pathological injury in lung tissue. Conclusion This liposomal formulation can enable sustained release of PFD and increase targeting to the lung. PMID:26185416

  14. Novel vaginal drug delivery system: deformable propylene glycol liposomes-in-hydrogel.

    PubMed

    Vanić, Željka; Hurler, Julia; Ferderber, Kristina; Golja Gašparović, Petra; Škalko-Basnet, Nataša; Filipović-Grčić, Jelena

    2014-03-01

    Deformable propylene glycol-containing liposomes (DPGLs) incorporating metronidazole or clotrimazole were prepared and evaluated as an efficient drug delivery system to improve the treatment of vaginal microbial infections. The liposome formulations were optimized based on sufficient trapping efficiencies for both drugs and membrane elasticity as a prerequisite for successful permeability and therapy. An appropriate viscosity for vaginal administration was achieved by incorporating the liposomes into Carbopol hydrogel. DPGLs were able to penetrate through the hydrogel network more rapidly than conventional liposomes. In vitro studies of drug release from the liposomal hydrogel under conditions simulating human treatment confirmed sustained and diffusion-based drug release. Characterization of the rheological and textural properties of the DPGL-containing liposomal hydrogels demonstrated that the incorporation of DPGLs alone had no significant influence on mechanical properties of hydrogels compared to controls. These results support the great potential of DPGL-in-hydrogel as an efficient delivery system for the controlled and sustained release of antimicrobial drugs in the vagina.

  15. Liposomes assembled from a dual drug-tailed phospholipid for cancer therapy.

    PubMed

    Fang, Shuo; Niu, Yuge; Zhu, Wenjun; Zhang, Yemin; Yu, Liangli; Li, Xinsong

    2015-05-01

    We report a novel dual drug-tailed phospholipid which can form liposomes as a combination of prodrug and drug carrier. An amphiphilic dual chlorambucil-tailed phospholipid (DCTP) was synthesized by a straightforward esterification. With two chlorambucil molecules as hydrophobic tails and one glycerophosphatidylcholine molecule as a hydrophilic head, the DCTP, a phospholipid prodrug, undergoes assembly to form a liposome without any additives by the thin lipid film technique. The DCTP liposomes, as an effective carrier of chlorambucil, exhibited a very high loading capacity and excellent stability. The liposomes had higher cytotoxic effects to cancer cell lines than free DCTP and chlorambucil. The in vivo antitumor activity assessment indicated that the DCTP liposomes could inhibit the tumor growth effectively. This novel strategy of dual drug-tailed phospholipid liposomes may be also applicable to other hydrophobic anticancer drugs which have great potential in cancer therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    PubMed Central

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  17. Development of a Rapidly Dissolvable Oral Pediatric Formulation for Mefloquine Using Liposomes.

    PubMed

    Tang, Wei-Lun; Tang, Wei-Hsin; Chen, Weihsu Claire; Diako, Charles; Ross, Carolyn F; Li, Shyh-Dar

    2017-06-05

    Mefloquine (Mef), a poorly soluble and highly bitter drug, has been used for malaria prophylaxis and treatment. The dosage form for Mef is mostly available as adult tablets, and thus children under the age of 5 suffer from poor medication adherence. We have developed a stable, rapidly dissolvable, and palatable pediatric formulation for Mef using liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol with a mean diameter of ∼110 nm. Mef was actively loaded into the liposomes via an ammonium sulfate gradient using the solvent-assisted loading technology (SALT) developed in our lab. Complete loading of Mef inside the liposomal core was achieved at a high drug-to-lipid ratio (D/L) of 0.1-0.2 (w/w), and the final drug content in the formulation was ∼8 mg/mL, well above the solubility of Mef (<0.6 mg/mL in simulated fluids). The strong bitterness of Mef was masked by the liposomal encapsulation as measured by an electronic tongue. Incubating the Mef-liposomes (Mef-Lipo) in the simulated gastric fluid (pH 1.2) and the simulated intestinal fluid containing 3 mM sodium taurocholate (pH 6.8) induced changes in liposome size and the polydispersity, resulting in drug release (∼40% in 2 h). However, no drug release from the Mef-Lipo was measured in the bile salt-free intestinal fluid or simulated saliva (0% in 3 h). These data suggest that drug release from the Mef-Lipo was mediated by a low pH and the presence of a surfactant. Pancreatic lipase did not degrade DSPC in the Mef-Lipo after 8 h of incubation nor induce Mef release from the liposomes, indicating that lipid digestion played a minor role for drug release from the Mef-Lipo. In order to improve long-term room temperature storage, the Mef-Lipo was lyophilized to obtain a solid formulation, which was completely dissolvable in water in 10 s and displayed similar in vitro profiles of release as the liquid form. The lyophilized Mef-Lipo was stable at room temperature for >3 months. In

  18. Comparative dosimetric evaluation of nanotargeted (188)Re-(DXR)-liposome for internal radiotherapy.

    PubMed

    Chang, Chih-Hsien; Stabin, Michael G; Chang, Ya-Jen; Chen, Liang-Cheng; Chen, Min-Hua; Chang, Tsui-Jung; Lee, Te-Wei; Ting, Gann

    2008-12-01

    A dosimetric analysis was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) and radiochemotherapeutic drugs [(188)Re-doxorubicin (DXR)-liposomes] in internal radiotherapy for colon carcinoma, as evaluated in mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), (188)Re-liposome, and (188)Re-DXR-liposome were obtained for the estimation of absorbed doses in tumors and normal organs. Two colon carcinoma mouse models were employed: subcutaneous growing solid tumor and malignant ascites pervading tumor models. Radiation-dose estimates for normal tissues and tumors were calculated by using the OLINDA/EXM program. An evaluation of a recommended maximum administered activity (MAA) for the nanotargeted drugs was also made. Mean absorbed doses derived from (188)Re-liposome and (188)Re-DXR-liposome in normal tissues were generally similar to those from (188)Re-BMEDA in intraperitoneal and intravenous administration. Tissue-absorbed dose in the liver was 0.24-0.40 and 0.17-0.26 (mGy/MBq) and in red marrow was 0.033-0.050 and 0.038-0.046 (mGy/MBq), respectively, for (188)Re-liposome and (188)Re-DXR-liposome. Tumor-absorbed doses for the nanotargeted (188)Re-liposome and (188)Re-DXR-liposome were higher than those of (188)Re-BMEDA for both routes of administration (4-26-fold). Dose to red marrow defined the recommended MAA. Our results suggest that radionuclide and chemoradiotherapeutic passive targeting delivery, using nanoliposomes as the carrier, is feasible and promising in systemic-targeted radionuclide therapy.

  19. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    NASA Astrophysics Data System (ADS)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  20. Bioreactor droplets from liposome-stabilized all-aqueous emulsions.

    PubMed

    Dewey, Daniel C; Strulson, Christopher A; Cacace, David N; Bevilacqua, Philip C; Keating, Christine D

    2014-08-20

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  1. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-11-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  2. Accelerated healing of skin burns by anti-Gal/alpha-gal liposomes interaction.

    PubMed

    Galili, Uri; Wigglesworth, Kim; Abdel-Motal, Ussama M

    2010-03-01

    Topical application of alpha-gal liposomes on burns results in rapid local recruitment of neutrophils and macrophages. Recruited macrophages are pivotal for healing of burns because they secrete cytokines/growth factors that induce epidermis regeneration and tissue repair. alpha-Gal liposomes have glycolipids with alpha-gal epitopes (Galalpha1-3Galbeta1-4GlcNAc-R) which bind anti-Gal, the most abundant natural antibody in humans constituting approximately 1% of immunoglobulins. Interaction of alpha-gal liposomes with anti-Gal within the fluid film formed on burns, activates complement and generates chemotactic complement cleavage peptides which effectively recruit neutrophils and macrophages. Anti-Gal IgG coating alpha-gal liposomes further binds to Fcgamma receptors on macrophages and activates them to secrete cytokines/growth factors. Efficacy of alpha-gal liposomes treatment in accelerating burn healing is demonstrated in the experimental model of alpha1,3galactosyltransferase knockout mice. These mice are the only available nonprimate mammals that can produce anti-Gal in titers similar to those in humans. Pairs of burns in mice were covered either with a spot bandage coated with 10mg alpha-gal liposomes, or with a control spot bandage coated with saline. On Day 3 post-treatment, the alpha-gal liposomes treated burns contained approximately 5-fold as many neutrophils as control burns, whereas macrophages were found only in alpha-gal liposomes treated burns. On Day 6, 50-100% of the surface area of alpha-gal liposomes treated burns were covered with regenerating epidermis (re-epithelialization), whereas almost no epidermis was found in control burns. The extensive recruitment of macrophages by anti-Gal/alpha-gal liposomes interaction was further demonstrated in vivo with polyvinyl alcohol (PVA) sponge discs containing alpha-gal liposomes, implanted subcutaneously. Since anti-Gal is abundant in all humans, it is suggested that treatment with alpha-gal liposomes

  3. Interactions of liposome carriers with infectious fungal hyphae reveals the role of β-glucans.

    PubMed

    Chavan, Neelam L; Young, Joseph K; Drezek, Rebekah A; Lewis, Russell; Bikram, Malavosklish

    2012-09-04

    Relatively little is known about how liposomal formulations modulate drug delivery to fungal pathogens. We compared patterns of hyphal cell wall binding for empty rhodmine-labeled liposomes and the clinically available amphotericin B-containing liposomal formulation (AmBisome) in Aspergillus fumigatus and Candida albicans. Following 0.5 h of coincubation with A. fumigatus , empty liposomes concentrated primarily in fungal septae along at the surface of the cell wall, suggesting that liposome uptake is concentrated in areas of the cell wall where linear glucan is exposed on the cell surface, which was confirmed by aniline blue staining. Consistent with this hypothesis, pretreatment of liposomes with soluble linear glucan (laminarin) decreased liposome binding in both Aspergillus and Candida fungal hyphae, while growth of Aspergillus hyphae in the presence of an agent that increases fungal cell wall surface exposure of linear β-glucans without cell death (caspofungin) increased liposome uptake throughout the Aspergillus fungal cell wall. Increasing the polyethylene glycol (PEG) concentration in liposomes from 0 to 30% significantly increased fungal uptake of liposomes that was only modestly attenuated when fungal cells were incubated in serum concentrations ranging from 10 to 100%. The presence of β-glucans on the fungal hyphae cell walls of Aspergillus fumigatus is one of the factors responsible for mediating the binding of liposome carriers to the hyphae and could explain possible synergy reported between liposomal amphotericin B and echinocanins.

  4. Current trends in the use of liposomes for tumor targeting

    PubMed Central

    Deshpande, Pranali P; Biswas, Swati; Torchilin, Vladimir P

    2013-01-01

    The use of liposomes for drug delivery began early in the history of pharmaceutical nanocarriers. These nanosized, lipid bilayered vesicles have become popular as drug delivery systems owing to their efficiency, biocompatibility, nonimmunogenicity, enhanced solubility of chemotherapeutic agents and their ability to encapsulate a wide array of drugs. Passive and ligand-mediated active targeting promote tumor specificity with diminished adverse off-target effects. The current field of liposomes focuses on both clinical and diagnostic applications. Recent efforts have concentrated on the development of multifunctional liposomes that target cells and cellular organelles with a single delivery system. This review discusses the recent advances in liposome research in tumor targeting. PMID:23914966

  5. 6-mercaptopurine and daunorubicin double drug liposomes-preparation, drug-drug interaction and characterization.

    PubMed

    Agrawal, Vineet; Paul, Manash K; Mukhopadhyay, Anup K

    2005-01-01

    This article addresses and investigates the dual incorporation of daunorubicin (DR) and 6-mercaptopurine (6-MP) in liposomes for better chemotherapy. These drugs are potential candidates for interaction due to the quinone (H acceptor) and hydroxyl (H donor) groups on DR and 6-MP, respectively. Interactions between the two drugs in solution were monitored by UV/Vis and fluorescence spectroscopy. Interaction between the two drugs inside the liposomes was evaluated by HPLC (for 6-MP) and by fluorescence spectroscopy (for daunorubicin) after phospholipase-mediated liposome lysis. Our results provide evidence for the lack of interaction between the two drugs in solution and in liposomes. The entrapment efficiencies of 6-MP in the neutral Phosphatidyl choline (PC):Cholesterol (Chol):: 2:1 and anionic PC:Chol:Cardiolipin (CL) :: 4:5:1 single and double drug liposomes were found to be 0.4% and 1.5% (on average), respectively. The entrapment efficiencies of DR in the neutral and anionic double drug liposomes were found to be 55% and 31%, respectively. The corresponding entrapment of daunorubicin in the single drug liposomes was found to be 62% on average. Our thin layer chromatography (TLC) and transmission electron microscopy (TEM) results suggest stability of lipid and liposomes, thus pointing plausible existence of double drug liposomes. Cytotoxicity experiments were performed by using both single drug and double drug liposomes. By comparing the results of phase contrast and fluorescence microscopy, it was observed that the double drug liposomes were internalized in the jurkat and Hut78 (highly resistant cell line) leukemia cells as viewed by the fluorescence of daunorubicin. The cytotoxicity was dose dependent and had shown a synergistic effect when double drug liposome was used.

  6. Evaluation of Antitumor Activity of Long-Circulating and pH-Sensitive Liposomes Containing Ursolic Acid in Animal Models of Breast Tumor and Gliosarcoma.

    PubMed

    Rocha, Talita Guieiro Ribeiro; Lopes, Sávia Caldeira de Araújo; Cassali, Geovani Dantas; Ferreira, Ênio; Veloso, Emerson Soares; Leite, Elaine Amaral; Braga, Fernão Castro; Ferreira, Lucas Antônio Miranda; Balvay, Daniel; Garofalakis, Anikitos; Oliveira, Mônica Cristina; Tavitian, Bertrand

    2016-12-01

    Background Ursolic acid (UA) is a triterpene found in different plant species, possessing antitumor activity, which may be a result of its antiangiogenic effect. However, UA has low water solubility, which limits its use because the bioavailability is impaired. To overcome this inconvenience, we developed long-circulating and pH-sensitive liposomes containing ursolic acid (SpHL-UA). We investigated the antiangiogenic effect of free UA and SpHL-UA in murine brain cancer and human breast tumor models by means of determination of the relative tumor volume, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and histopathological analysis. Methods The animals were treated with dimethyl sulfoxide in 0.9% (w/v) NaCl, free UA, long-circulating and pH-sensitive liposomes without drug (SpHL), or SpHL-UA. The animals were submitted to each treatment by intraperitoneal injection for 5 days. The dose of free UA or SpHL-UA was equal to 23 mg/kg. Results Tumor growth inhibition was not observed in human breast tumor-bearing animals. For murine gliosarcoma-bearing animals, a slight tumor growth inhibition was observed in the groups treated with free UA or SpHL-UA (9% and 15%, respectively). No significant change in any of the parameters evaluated by DCE-MRI for both experimental models could be observed. Nevertheless, the evaluation of the mean values of magnetic resonance parameters of human breast tumor-bearing animals showed evidence of a possible antiangiogenic effect induced by SpHL-UA. Histopathological analysis did not present significant change for any treatment. Conclusion SpHL-UA did not show antiangiogenic activity in a gliosarcoma model and seemed to induce an antiangiogenic effect in the human breast tumor model. © The Author(s) 2016.

  7. Evaluation of Antitumor Activity of Long-Circulating and pH-Sensitive Liposomes Containing Ursolic Acid in Animal Models of Breast Tumor and Gliosarcoma

    PubMed Central

    Rocha, Talita Guieiro Ribeiro; Lopes, Sávia Caldeira de Araújo; Cassali, Geovani Dantas; Ferreira, Ênio; Veloso, Emerson Soares; Leite, Elaine Amaral; Braga, Fernão Castro; Ferreira, Lucas Antônio Miranda; Balvay, Daniel; Garofalakis, Anikitos; Oliveira, Mônica Cristina; Tavitian, Bertrand

    2016-01-01

    Background. Ursolic acid (UA) is a triterpene found in different plant species, possessing antitumor activity, which may be a result of its antiangiogenic effect. However, UA has low water solubility, which limits its use because the bioavailability is impaired. To overcome this inconvenience, we developed long-circulating and pH-sensitive liposomes containing ursolic acid (SpHL-UA). We investigated the antiangiogenic effect of free UA and SpHL-UA in murine brain cancer and human breast tumor models by means of determination of the relative tumor volume, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and histopathological analysis. Methods. The animals were treated with dimethyl sulfoxide in 0.9% (w/v) NaCl, free UA, long-circulating and pH-sensitive liposomes without drug (SpHL), or SpHL-UA. The animals were submitted to each treatment by intraperitoneal injection for 5 days. The dose of free UA or SpHL-UA was equal to 23 mg/kg. Results. Tumor growth inhibition was not observed in human breast tumor–bearing animals. For murine gliosarcoma-bearing animals, a slight tumor growth inhibition was observed in the groups treated with free UA or SpHL-UA (9% and 15%, respectively). No significant change in any of the parameters evaluated by DCE-MRI for both experimental models could be observed. Nevertheless, the evaluation of the mean values of magnetic resonance parameters of human breast tumor–bearing animals showed evidence of a possible antiangiogenic effect induced by SpHL-UA. Histopathological analysis did not present significant change for any treatment. Conclusion. SpHL-UA did not show antiangiogenic activity in a gliosarcoma model and seemed to induce an antiangiogenic effect in the human breast tumor model. PMID:27130721

  8. A Phase of Liposomes with Entangled Tubular Vesicles

    NASA Astrophysics Data System (ADS)

    Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.

    1994-11-01

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.

  9. Safety and efficacy of intrathecal ziconotide in the management of severe chronic pain

    PubMed Central

    Smith, Howard S; Deer, Timothy R

    2009-01-01

    Ziconotide is a conopeptide intrathecal (IT) analgesic which is approved by the US Food and Drug Administration (FDA) for the management of severe chronic pain. It is a synthetic equivalent of a naturally occurring conopeptide found in the venom of the fish-eating marine cone snail and provides analgesia via binding to N-type voltage-sensitive calcium channels in the spinal cord. As ziconotide is a peptide, it is expected to be completely degraded by endopeptidases and exopeptidases (Phase I hydrolytic enzymes) widely located throughout the body, and not by other Phase I biotransformation processes (including the cytochrome P450 system) or by Phase II conjugation reactions. Thus, IT administration, low plasma ziconotide concentrations, and metabolism by ubiquitous peptidases make metabolic interactions of other drugs with ziconotide unlikely. Side effects of ziconotide which tend to occur more commonly at higher doses may include: nausea, vomiting, confusion, postural hypotension, abnormal gait, urinary retention, nystagmus/amblyopia, drowsiness/somnolence (reduced level of consciousness), dizziness or lightheadedness, weakness, visual problems (eg, double vision), elevation of serum creatine kinase, or vestibular side effects. Initially, when ziconotide was first administered to human subjects, titration schedules were overly aggressive and led to an abundance of adverse effects. Subsequently, clinicians have gained appreciation for ziconotide’s relatively narrow therapeutic window. With appropriate usage multiple studies have shown ziconotide to be a safe and effective intrathecal analgesic alone or in combination with other intrathecal analgesics. PMID:19707262

  10. Intrathecal infusions for intractable cancer pain: A qualitative study of the impact on a case series of patients and caregivers

    PubMed Central

    Hawley, Philippa; Beddard-Huber, Elizabeth; Grose, Cameron; McDonald, William; Lobb, Daphne; Malysh, Louise

    2009-01-01

    BACKGROUND: The need for intrathecal infusion in a palliative care setting is infrequent. Despite established efficacy, safety and cost effectiveness, this is considered an ‘extraordinary measure’ in Canada. Patients requiring this approach are not typical palliative care patients, having shorter and more uncertain life expectancies. OBJECTIVES: The present study is a qualitative exploration of the impact of intrathecal pump implantation on cancer patients, and also the impact of the intervention on the staff caring for those patients. METHODS: Palliative care unit patients who received an implanted intrathecal pump or dome catheter for intractable cancer pain participated in multiple semistructured interviews. Doctors and nurses caring for each patient were also interviewed. Interviews were recorded and analyzed for themes. The study terminated when saturation was reached. RESULTS: Six patients participated, with up to three interviews each. Twenty-four staff interviews took place. Patients’ hopes and expectations were not always fully met, but the infusions had a profound positive effect on quality of life. Patients expressed anxiety about dependence on the device, and also on a few highly skilled individuals. Staff interviews revealed a significant impact on the ‘culture’ of the palliative care unit. Clear communication of the rationale for infusion was very important, as was regular education about infusion management. CONCLUSIONS: Implanted intrathecal infusion devices are a necessary part of a tertiary level cancer pain management service for the unfortunate minority with intractable pain. Practical recommendations for care are made for palliative care programs contemplating offering intrathecal infusions. PMID:19862372

  11. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes.

    PubMed

    Derycke, Annelies S L; De Witte, Peter A M

    2002-01-01

    Over the last few decades, photodynamic therapy evolved to a promising new treating modality for cancer. The photosensitizers used, induce light sensitivity to a normal light insensitive chemical or physical process. Third generation photosensitizers are derivatives of second generation photosensitizers introduced into or attached to chemical devices. This modification increases the biological specificity to deliver photosensitizers to a defined cell type. The aim of this study was to improve the specificity of hypericin for tumor cells using transferrin-conjugated PEG-liposomes. Transferrin was used as tumor-seeking molecule, since many tumor cells, among which HeLa cells, overexpress transferrin receptors on their surface. Hypericin, a potent second generation photosensitizer, was integrated in the lipid bilayers of the liposomes. The antiproliferative effect of the targeted PEG-liposomes was determined and compared with the results of non-targeted PEG-liposomes and free hypericin. Additionally, the intracellular accumulation assay was performed. All manipulations were done on HeLa cells. To interpret the results, the data were supplemented by findings concerning embedding stability. Targeting hypericin by transferrin-conjugated PEG-liposomes did not significantly favour the photocytotoxicity and the intracellular accumulation of hypericin, in comparison with non-targeted PEG-liposomes or free hypericin. Embedding stability experiments showed only limited stable embedding. Despite of their proven efficiency as a targeting carrier system, transferrin-conjugated PEG-liposomes seem less effective in targeting hypericin to tumor cells due to the amount of hypericin leaking out of the PEG-liposomes.

  12. Liposomal formulations of glucagon-like peptide-1: improved bioavailability and anti-diabetic effect.

    PubMed

    Hanato, Junko; Kuriyama, Kazuki; Mizumoto, Takahiro; Debari, Kazuhiro; Hatanaka, Junya; Onoue, Satomi; Yamada, Shizuo

    2009-12-01

    Glucagon-like peptide-1 (GLP-1), an incretin hormone, is recognized to be potent drug candidate for treatment of diabetes, however its clinical application has been highly limited, because of rapid enzymatic degradation by dipeptidyl-peptidase IV. To protect GLP-1 from enzymatic degradation and improve pharmacological effects, liposomal formulations of GLP-1 were prepared using three types of lyophilized empty liposomes such as anionic, neutral and cationic liposomes. Electron microscopic and dynamic light scattering experiments indicated the uniform size distribution of GLP-1-loaded liposomes with mean diameter of 130-210 nm, and inclusion of GLP-1 did not affect the dispersibility and morphology of each liposome. Of all liposomal formulations tested, anionic liposomal formulation exhibited the highest encapsulation efficiency of GLP-1 (ca. 80%). In intraperitoneal glucose tolerance testing in rats, marked improvement of hypoglycemic effects were observed in anionic liposomal formulation of GLP-1 (100 nmol/kg) with 1.7-fold higher increase of insulin secretion, as compared to GLP-1 solution. In pharmacokinetic studies, intravenous administration of anionic liposomal formulation of GLP-1 (100 nmol/kg) resulted in 3.6-fold higher elevation of serum GLP-1 level as compared to GLP-1 injection. Upon these findings, anionic liposomal formulation of GLP-1 would provide the improved pharmacokinetics and insulinotropic action, possibly leading to efficacious anti-diabetic medication.

  13. Nocturnal Hypoglycemia: Answering the Challenge With Long-acting Insulin Analogs

    PubMed Central

    Brunton, Stephen A.

    2007-01-01

    Background Nocturnal hypoglycemia may be the most common type of hypoglycemia in individuals with diabetes using insulin and is particularly worrisome because it often goes undetected and may lead to unconsciousness and even death in severe cases. Objectives The prevalence, causes, and consequences of nocturnal hypoglycemia as well as detection and prevention strategies are reviewed, including the use of long-acting insulin analogs, which offer more physiologic and predictable time-action profiles than traditional human basal insulin. Data Sources A total of 307 publications (151 PubMed; 104 Adis; 52 BIOSIS) were reviewed. Review Methods Relevant trials were found by searching for “(detemir OR glargine) AND nocturnal AND (hypoglycemia OR hypoglycaemia) AND diabetes.” To capture trials that may not have specified “nocturnal” in the title or abstract text but still reported nocturnal hypoglycemia data, a supplemental search of PubMed using “(detemir OR glargine) AND (nocturnal OR hypoglycemia OR hypoglycaemia) AND diabetes” was undertaken. Results A review of these trials found that patients with type 1 and type 2 diabetes mellitus have a lower risk for nocturnal hypoglycemia when receiving long-acting insulin analogs (insulin detemir or insulin glargine), provided that glycemic control is comparable to that provided by traditional human basal insulin. Long-acting insulin analogs may be the best option to provide basal insulin coverage in patients who do not choose or require continuous subcutaneous insulin infusion. Conclusions Randomized clinical trials suggest that the long-acting insulin analogs are associated with a lower risk for nocturnal hypoglycemia than neutral protamine Hagedorn without sacrificing glycemic control. PMID:17955093

  14. A rational design for the nanoencapsulation of poisonous animal venoms in liposomes prepared with natural phospholipids.

    PubMed

    da Costa, Maria Helena Bueno; Sant'Anna, Osvaldo A; Quintilio, Wagner; Schwendener, Reto Albert; de Araujo, Pedro Soares

    2012-11-01

    Liposomes have been used since the 1970's to encapsulate drugs envisaging enhancement in efficacy and therapeutic index, avoidance of side effects and increase in the encapsulated agent stability. The major problem when encapsulating snake venoms is the liposomal membrane instability caused by venom phospholipases. Here the results obtained encapsulating Crotalus durissimus terrificus and a pool of Bothropic venoms within liposomes (LC and LB, respectively) used to produce anti-venom sera are presented. The strategy was to modify the immunization protocol to enhance antibody production and to minimize toxic effects by encapsulating inactivated venoms within stabilized liposomes. Chemically modified venoms were solubilized in a buffer containing an inhibitor and a chelating agent. The structures of the venoms were analyzed by UV, CD spectroscopy and ELISA. In spite of the differences in the helical content between natural and modified venoms, they were recognized by horse anti-sera. To maintain long-term stability, mannitol was used as a cryoprotectant. The encapsulation efficiencies were 59 % (LB) and 99 % (LC), as followed by filtration on Sephacryl S1000. Light scattering measurements led us to conclude that both, LB (119 ±47 nm) and LC (147±56 nm) were stable for 22 days at 4 °C, even after lyophilization. Genetically selected mice and mixed breed horses were immunized with these formulations. The animals did not show clinical symptoms of venom toxicity. Both, LB and LC enhanced by at least 30 % the antibody titers 25 days after injection and total IgG titers remained high 91 days after immunization. The liposomal formulation clearly exhibited adjuvant properties.

  15. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Development, characterization and in vivo evaluation of benzocaine-loaded liposomes.

    PubMed

    Mura, Paola; Maestrelli, Francesca; González-Rodríguez, Maria Luisa; Michelacci, Ilaria; Ghelardini, Carla; Rabasco, Antonio M

    2007-08-01

    This study reports the development and in vivo evaluation of a liposomal formulation of the local anaesthetic benzocaine. Multi-lamellar (MLV) and small uni-lamellar (SUV) vesicles entrapping benzocaine were prepared using 50:50 w/w phosphatidylcholine-cholesterol as lipophilic phase and 50:50 v/v ethanol-water as hydrophilic phase. Liposome size, Zeta-potential, encapsulation efficiency and skin penetration properties were determined. Drug permeation from liposomal dispersions, as such or formulated in Carbopol gel, was evaluated through artificial lipophilic membranes and excised abdominal rat skin, whereas in vivo anaesthetic effect was tested on rabbits. Interestingly, addition of the drug into the hydrophilic phase, rather than into the lipophilic one, during liposome preparation enabled an improvement of the MLV's entrapment efficiency from 29.7% to 82.3%. On the other hand, sonication conditions to obtain SUV influenced size and polydispersity index of the vesicles and reduced the entrapment efficiency by about 30%. All liposomal-benzocaine formulations showed sustained release properties and a more intense anaesthetic effect than plain drug. Permeation experiments from drug solutions in gel containing the same amount of ethanol as in the liposomal formulations made it possible to exclude a possible enhancer effect of this solvent, at least when not used in liposomal formulations. MLV with the drug added into the hydrophilic phase gave the most effective formulation, showing a permeability coefficient value 2.5 times higher than that of the plain drug and allowing a significant improvement (P<0.01) not only of intensity but also of duration of anaesthetic effect of benzocaine. These results suggest that a suitably developed liposomal formulation of benzocaine can be of actual value for improving its clinical effectiveness in topical anaesthesia.

  17. Herbal liposome for the topical delivery of ketoconazole for the effective treatment of seborrheic dermatitis

    NASA Astrophysics Data System (ADS)

    Dave, Vivek; Sharma, Swati; Yadav, Renu Bala; Agarwal, Udita

    2017-11-01

    The aim of the present study was to develop liposomal gel containing ketoconazole and neem extract for the treatment of seborrheic dermatitis in an effectual means. Azoles derivatives that are commonly used to prevent superficial fungal infections include triazole category like itraconazole. These drugs are available in the form of oral dosage that required a long period of time for treatment. Ketoconazole is available in the form of gel but is not used with any herbal extract. Neem ( Azadirachta indica) leaves show a good anti-bacterial and anti-fungal activity and have great potential as a bioactive compound. The thin film hydration method was used to design an herbal liposomal preparation. The formulation was further subjected to their characterization as particle size, zeta potential, entrapment efficiency, % cumulative drug release, and anti-fungal activity and it was also characterized by the mean of their physicochemical properties such as FTIR, SEM, DSC, TGA, and AFM. The results show that the formulation of liposomes with neem extract F12 were found to be optimum on the basis of entrapment efficiency in the range 88.9 ± 0.7%, with a desired mean particle size distribution of 141.6 nm and zeta potential - 45 mV. The anti-fungal activity of liposomal formulation F12 was carried out against Aspergillus niger and Candida tropicalis by measuring the inhibition zone 8.9 and 10.2 mm, respectively. Stability of optimized formulation was best seen at refrigerated condition. Overall, these results indicated that developed liposomal gel of ketoconazole with neem extract could have great potential for seborrheic dermatitis and showed synergetic effect for the treatment.

  18. Deltoid Injections of Risperidone Long-acting Injectable in Patients with Schizophrenia

    PubMed Central

    Quiroz, Jorge A.; Rusch, Sarah; Thyssen, An; Kushner, Stuart

    2011-01-01

    Background Risperidone long-acting injectable was previously approved for treatment of schizophrenia as biweekly injections in the gluteal muscle only. We present data on local injection-site tolerability and safety of risperidone long-acting injectable and comparability of systemic exposure of deltoid versus gluteal injections. Methods Risperidone long-acting injectable was administered in an open-label, single-dose, two-way crossover study, with patients randomized to receive either 25mg gluteal/37.5mg deltoid crossover in two treatment periods or 50mg gluteal/50mg deltoid injections crossover; each treatment period was separated by an 85-day observation period (Study 1) and an open-label, multiple-dose study (4 sequential 37.5mg or 50mg deltoid injections every 2 weeks) (Study 2). The pharmacokinetic results from both the studies have already been published. Results In Study 1 (n=170), the majority of patients had no local injection-site findings, based on investigator and patient-rated evaluations. In Study 2 (n=53), seven of the 51 patients who received at least two deltoid injections discontinued (primary endpoint). However, none of the discontinuations were due to injection-site related reasons. The 90-percent upper confidence limit of the true proportion of injection-site issue withdrawals was 5.7 percent. No moderate or severe injection-site reactions were reported. Conclusion Intramuscular injections via the deltoid and gluteal sites are equivalent routes of administration of risperidone long-acting injectable with respect to local injection-site tolerability. The overall safety and tolerability profile of risperidone long-acting injectable was comparable when administered as an intramuscular injection in the deltoid (37.5mg and 50mg) and gluteal (25mg and 50mg) sites. PMID:21779538

  19. Uptake of long-acting reversible contraceptive devices in Western region of The Gambia.

    PubMed

    Anyanwu, Matthew; Alida, Bom Wekye Ndam

    2017-06-01

    The contraceptive method has become an essential factor in the life of most women of reproductive age group; although it varies in different stages of their life course. The use of long acting reversible methods (LARC) is proposed as a strategy to reverse undesirable maternal health consequences in developing countries. To determine the uptake of long-acting reversible contraceptive in The Gambia. A community based cross-sectional study of women attending family planning clinic were studied using intervieweradministered questionnaire which included information on socio-demographic factors, reproductive health and contraceptive use of the participants. About 89 % of study participants used long acting reversible contraceptive methods. Of the three commonly available long acting reversible contraceptive methods, Depo Provera was the most commonly used method; 78 of 141 (55.32%); followed by implants (43.3%) and intrauterine contraceptive (1.42%). Being housewives, with 3-4 living children and having secondary level education were associated with high uptake of LARC. The uptake of long acting reversible contraceptive was high; with Depo Provera as the most commonly used contraceptive method in The Gambia. There seemed to be an increase in the uptake of implants; with intrauterine contraceptive device being the least commonly used method.

  20. Liposomal Encapsulation Enzymes: From Medical Applications to Kinetic Characteristics.

    PubMed

    Jahadi, M; Khosravi-Darani, K

    2017-01-01

    Liposomes and nanoliposomes as small vesicles composed of phospholipid bilayer (entrapping one or more hydrophilic or lipophilic components) have recently found several potential applications in medicine and food industry. These vesicles may protect the core materials from moisture, heat and other extreme conditions. They may also provide controlled release of various bioactive agents, including food ingredients at the right place and time. Potential applications of enzyme-loaded liposomes are in the medical or biomedical field, particularly for the enzymereplacement therapy, as well as cheese industry for production of functional foods with improved health beneficial impacts on the consumer. Encapsulation process has a recondite impact on enzymes. In fact, liposome preparation techniques may alter the pH and temperature optima, affinity of the enzyme to substrate (Km), and maximum rate of reaction (Vmax). In addition, in this paper, the impact of process variables on the kinetic characteristics of enzymes encapsulated in liposomes was investigated. Also, the effects of enzyme entrapment in liposomes, prepared by different methods, on the catalytic efficiency of enzyme, as well as its kinetic properties and stability compared to native (free) enzymes has been reviewed.