Science.gov

Sample records for intrinsic ellipticity correlation

  1. SELF-CALIBRATION OF GRAVITATIONAL SHEAR-GALAXY INTRINSIC ELLIPTICITY CORRELATION IN WEAK LENSING SURVEYS

    SciTech Connect

    Zhang Pengjie

    2010-09-10

    The galaxy intrinsic alignment is a severe challenge to precision cosmic shear measurement. We propose self-calibrating the induced gravitational shear-galaxy intrinsic ellipticity correlation (the GI correlation) in weak lensing surveys with photometric redshift measurements. (1) We propose a method to extract the intrinsic ellipticity-galaxy density cross-correlation (I-g) from the galaxy ellipticity-density measurement in the same redshift bin. (2) We also find a generic scaling relation to convert the extracted I-g correlation to the necessary GI correlation. We perform a concept study under simplified conditions and demonstrate its capability to significantly reduce GI contamination. We discuss the impact of various complexities on the two key ingredients of the self-calibration technique, namely the method for extracting the I-g correlation and the scaling relation between the I-g and the GI correlation. We expect that none of them will likely be able to completely invalidate the proposed self-calibration technique.

  2. The Gravitational Shear-Intrinsic Ellipticity Correlation Functions of Luminous Red Galaxies in Observation and in the ΛCDM Model

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Jing, Y. P.

    2009-03-01

    We examine whether the gravitational shear-intrinsic ellipticity (GI) correlation function of the luminous red galaxies (LRGs) can be modeled with the distribution function of a misalignment angle advocated recently by Okumura et al. For this purpose, we have accurately measured the GI correlation for the LRGs in the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS), which confirms the results of Hirata et al. who used the DR4 data. By comparing the GI correlation functions in the simulation and in the observation, we find that the GI correlation can be modeled in the current ΛCDM model if the misalignment follows a Gaussian distribution with a zero mean and a typical misalignment angle σθ = 34.9+1.9 -2.1 degrees. We also find a correlation between the axis ratios and intrinsic alignments of LRGs. This effect should be taken into account in theoretical modeling of the GI and intrinsic ellipticity-ellipticity correlations for weak lensing surveys.

  3. Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana

    2016-11-01

    We study the shapes and intrinsic alignments of discs and elliptical galaxies in the MassiveBlack-II (MBII) and Illustris cosmological hydrodynamic simulations, with volumes of (100 h-1 Mpc)3 and (75 h-1 Mpc)3, respectively. We find that simulated disc galaxies are more oblate in shape and more misaligned with the shape of their host dark matter subhalo when compared with ellipticals. The disc major axis is found to be oriented towards the location of nearby elliptical galaxies. We also find that the discs are thinner in MBII and misalignments with dark matter halo orientations are smaller in both discs and ellipticals when compared with Illustris. As a result, the intrinsic alignment correlation functions at fixed mass have a higher amplitude in MBII than in Illustris. Finally, at scales above ˜0.1 h-1 Mpc, the intrinsic alignment two-point correlation functions for disc galaxies in both simulations are consistent with a null detection, unlike those for ellipticals. Despite significant differences in the treatments of hydrodynamics and baryonic physics in the simulations, we find that the wδ + correlation function scales similarly with transverse separation. However, the less massive galaxies show different scale dependence in the ellipticity-direction correlation. This result indicates that, while hydrodynamic simulations are a promising tool to study intrinsic alignments, further study is needed to understand the impact of differences in the implementations of hydrodynamics and baryonic feedback.

  4. A theoretical estimate of intrinsic ellipticity bispectra induced by angular momenta alignments

    NASA Astrophysics Data System (ADS)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2014-12-01

    Intrinsically aligned galaxy shapes are one of the most important systematics in cosmic shear measurements. So far, theoretical studies of intrinsic alignments almost exclusively focus on their statistics at the two-point level. Results from numerical simulations, however, suggest that third-order measures might be even stronger affected. We therefore investigate the (angular) bispectrum of intrinsic alignments. In our fully analytical study, we describe intrinsic galaxy ellipticities by a physical alignment model, which makes use of tidal torque theory. We derive expressions for the various combinations of intrinsic and gravitationally induced ellipticities, i.e. III-, GII- and GGI-alignments, and compare our results to the shear bispectrum, the GGG-term. The latter is computed using hyperextended perturbation theory. Considering equilateral and squeezed configurations, we find that for a Euclid-like survey intrinsic alignments (III-alignments) start to dominate on angular scales smaller than 20 and 13 arcmin, respectively. This sensitivity to the configuration-space geometry may allow us to exploit the cosmological information contained in both the intrinsic and gravitationally induced ellipticity field. On smallest scales (ℓ ˜ 3000), III-alignments exceed the lensing signal by at least one order of magnitude. The amplitude of the GGI-alignments is the weakest. It stays below that of the shear field on all angular scales irrespective of the wavevector configuration.

  5. Intrinsic alignment contamination to CMB lensing-galaxy weak lensing correlations from tidal torquing

    NASA Astrophysics Data System (ADS)

    Larsen, Patricia; Challinor, Anthony

    2016-10-01

    Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for galaxies at the redshifts typically used in cosmic shear analyses. For spiral galaxies, it is thought that tidal torquing is significant in determining alignments resulting in zero correlation between the intrinsic ellipticity and the gravitational potential in linear theory. Here, we calculate the leading-order correction to this result in the tidal-torque model from non-linear evolution, using second-order perturbation theory, and relate this to the contamination from intrinsic alignments to the recently measured cross-correlation between galaxy ellipticities and the cosmic microwave background (CMB) lensing potential. On the scales relevant for CMB lensing observations, the squeezed limit of the gravitational bispectrum dominates the correlation. Physically, the large-scale mode that sources CMB lensing modulates the small-scale power and hence the intrinsic ellipticity, due to non-linear evolution. We find that the angular cross-correlation from tidal torquing has a very similar scale dependence as in the linear alignment model, believed to be appropriate for elliptical galaxies. The amplitude of the cross-correlation is predicted to depend strongly on the formation redshift, being smaller for galaxies that formed at higher redshift when the bispectrum of the gravitational potential was smaller. Finally, we make simple forecasts for constraints on intrinsic alignments from the correlation of forthcoming cosmic shear measurements with current CMB lensing measurements. We note that cosmic variance can be significantly reduced in measurements of the difference in the intrinsic alignments for elliptical and spiral galaxies if these types can be separated (e.g. using colour).

  6. Properties of Ellipticity Correlation with Atmospheric Structure from Gemini South

    SciTech Connect

    Asztalos, S J; Treadway, T; de Vries, W H; Rosenberg, L J; Burke, D; Claver, C; Saha, A; Puxley, P

    2006-12-21

    Cosmic shear holds great promise for a precision independent measurement of {Omega}{sub m}, the mass density of the universe relative to the critical density. The signal is expected to be weak, so a thorough understanding of systematic effects is crucial. An important systematic effect is the atmosphere: shear power introduced by the atmosphere is larger than the expected signal. Algorithms exist to extract the cosmic shear from the atmospheric component, though a measure of their success applied to a range of seeing conditions is lacking. To gain insight into atmospheric shear, Gemini South imaging in conjunction with ground condition and satellite wind data were obtained. We find that under good seeing conditions Point-Spread-Function (PSF) correlations persist well beyond the separation typical of high-latitude stars. Under these conditions, ellipticity residuals based on a simple PSF interpolation can be reduced to within a factor of a few of the shot-noise induced ellipticity floor. We also find that the ellipticity residuals are highly correlated with wind direction. Finally, we correct stellar shapes using a more sophisticated procedure and generate shear statistics from stars. Under all seeing conditions in our data set the residual correlations lie everywhere below the target signal level. For good seeing we find that the systematic error attributable to atmospheric turbulence is comparable in magnitude to the statistical error (shape noise) over angular scales relevant to present lensing surveys.

  7. Properties of Ellipticity Correlation with Atmospheric Structure From Gemini South

    SciTech Connect

    Asztalos, Stephen J.; de Vries, W.H.; Rosenberg, L.J; Treadway, T.; Burke, D.; Claver, C.; Saha, A.; Puxley, P.; /Gemini Observ., La Serena

    2007-01-17

    Cosmic shear holds great promise for a precision independent measurement of {Omega}{sub m}, the mass density of the universe relative to the critical density. The signal is expected to be weak, so a thorough understanding of systematic effects is crucial. An important systematic effect is the atmosphere: shear power introduced by the atmosphere is larger than the expected signal. Algorithms exist to extract the cosmic shear from the atmospheric component, though a measure of their success applied to a range of seeing conditions is lacking. To gain insight into atmospheric shear, Gemini South imaging in conjunction with ground condition and satellite wind data were obtained. We find that under good seeing conditions Point-Spread-Function (PSF) correlations persist well beyond the separation typical of high-latitude stars. Under these conditions, ellipticity residuals based on a simple PSF interpolation can be reduced to within a factor of a few of the shot-noise induced ellipticity floor. We also find that the ellipticity residuals are highly correlated with wind direction. Finally, we correct stellar shapes using a more sophisticated procedure and generate shear statistics from stars. Under all seeing conditions in our data set the residual correlations lie everywhere below the target signal level. For good seeing we find that the systematic error attributable to atmospheric turbulence is comparable in magnitude to the statistical error (shape noise) over angular scales relevant to present lensing surveys.

  8. Correlation functions and cumulants in elliptic flow analysis

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Tuchin, Kirill L.

    2003-04-01

    We consider various methods of flow analysis in heavy ion collisions and compare experimental data on corresponding observables to the predictions of our saturation model proposed earlier [Nucl. Phys. A 708 (2002) 413]. We demonstrate that, due to the nature of the standard flow analysis, azimuthal distribution of particles with respect to reaction plane determined from the second order harmonics should always be proportional to cos2( φ- ΨR) independent of the physical origin of particle correlations (flow or non-flow). The amplitude of this distribution is always physical and proportional to v2. Two-particle correlations analysis is, therefore, a more reliable way of extracting the shape of physical azimuthal anisotropy. We demonstrate that two-particle correlation functions generated in our minijet model of particle production [Nucl. Phys. A 708 (2002) 413] are in good agreement with the data reported by PHENIX. We discuss the role of non-flow correlations in the cumulant flow analysis and demonstrate using a simple example that if the flow is weak, higher order cumulants analysis does not significantly reduce the contribution of non-flow correlations to elliptic flow observable v2 in RHIC data.

  9. Characterizing the intrinsic correlations of scale-free networks

    NASA Astrophysics Data System (ADS)

    de Brito, J. B.; Sampaio Filho, C. I. N.; Moreira, A. A.; Andrade, J. S.

    2016-08-01

    When studying topological or dynamical properties of random scale-free networks, it is tacitly assumed that degree-degree correlations are not present. However, simple constraints, such as the absence of multiple edges and self-loops, can give rise to intrinsic correlations in these structures. In the same way that Fermionic correlations in thermodynamic systems are relevant only in the limit of low temperature, the intrinsic correlations in scale-free networks are relevant only when the extreme values for the degrees grow faster than the square root of the network size. In this situation, these correlations can significantly affect the dependence of the average degree of the nearest neighbors of a given vertex on this vertices degree. Here, we introduce an analytical approach that is capable to predict the functional form of this property. Moreover, our results indicate that random scale-free network models are not self-averaging, that is, the second moment of their degree distribution may vary orders of magnitude among different realizations. Finally, we argue that the intrinsic correlations investigated here may have profound impact on the critical properties of random scale-free networks.

  10. Intrinsic quantum correlations of weak coherent states for quantum communication

    SciTech Connect

    Sua Yongmeng; Scanlon, Erin; Beaulieu, Travis; Bollen, Viktor; Lee, Kim Fook

    2011-03-15

    Intrinsic quantum correlations of weak coherent states are observed between two parties through a novel detection scheme, which can be used as a supplement to the existence decoy-state Bennett-Brassard 1984 protocol and the differential phase-shift quantum key distribution (DPS-QKD) protocol. In a proof-of-principle experiment, we generate bipartite correlations of weak coherent states using weak local oscillator fields in two spatially separated balanced homodyne detections. We employ a nonlinearity of postmeasurement method to obtain the bipartite correlations from two single-field interferences at individual homodyne measurements. This scheme is then used to demonstrate bits correlations between two parties over a distance of 10 km through a transmission fiber. We believe that the scheme can add another physical layer of security to these protocols for quantum key distribution.

  11. Elliptic model for space-time correlations in turbulent shear flows.

    PubMed

    He, Guo-Wei; Zhang, Jin-Bai

    2006-05-01

    An elliptic model for space-time correlations in turbulent shear flows is proposed based on a second order approximation to the iso-correlation contours, while Taylor's hypothesis implies a first-order approximation. It is shown that the space-time correlations are mainly determined by their space correlations and the convection and sweeping velocities. This model accommodates two extreme cases: Taylor's hypothesis at vanishing sweeping velocity and the sweeping hypothesis at vanishing convection velocity. The result is supported by the data from the direct numerical simulation of turbulent channel flows.

  12. Clique topology reveals intrinsic geometric structure in neural correlations

    PubMed Central

    Giusti, Chad; Pastalkova, Eva; Curto, Carina; Itskov, Vladimir

    2015-01-01

    Detecting meaningful structure in neural activity and connectivity data is challenging in the presence of hidden nonlinearities, where traditional eigenvalue-based methods may be misleading. We introduce a novel approach to matrix analysis, called clique topology, that extracts features of the data invariant under nonlinear monotone transformations. These features can be used to detect both random and geometric structure, and depend only on the relative ordering of matrix entries. We then analyzed the activity of pyramidal neurons in rat hippocampus, recorded while the animal was exploring a 2D environment, and confirmed that our method is able to detect geometric organization using only the intrinsic pattern of neural correlations. Remarkably, we found similar results during nonspatial behaviors such as wheel running and rapid eye movement (REM) sleep. This suggests that the geometric structure of correlations is shaped by the underlying hippocampal circuits and is not merely a consequence of position coding. We propose that clique topology is a powerful new tool for matrix analysis in biological settings, where the relationship of observed quantities to more meaningful variables is often nonlinear and unknown. PMID:26487684

  13. Clique topology reveals intrinsic geometric structure in neural correlations.

    PubMed

    Giusti, Chad; Pastalkova, Eva; Curto, Carina; Itskov, Vladimir

    2015-11-01

    Detecting meaningful structure in neural activity and connectivity data is challenging in the presence of hidden nonlinearities, where traditional eigenvalue-based methods may be misleading. We introduce a novel approach to matrix analysis, called clique topology, that extracts features of the data invariant under nonlinear monotone transformations. These features can be used to detect both random and geometric structure, and depend only on the relative ordering of matrix entries. We then analyzed the activity of pyramidal neurons in rat hippocampus, recorded while the animal was exploring a 2D environment, and confirmed that our method is able to detect geometric organization using only the intrinsic pattern of neural correlations. Remarkably, we found similar results during nonspatial behaviors such as wheel running and rapid eye movement (REM) sleep. This suggests that the geometric structure of correlations is shaped by the underlying hippocampal circuits and is not merely a consequence of position coding. We propose that clique topology is a powerful new tool for matrix analysis in biological settings, where the relationship of observed quantities to more meaningful variables is often nonlinear and unknown.

  14. Modelling the impact of intrinsic size and luminosity correlations on magnification estimation

    NASA Astrophysics Data System (ADS)

    Ciarlariello, Sandro; Crittenden, Robert

    2016-08-01

    Spatial correlations of the observed sizes and luminosities of galaxies can be used to estimate the magnification that arises through weak gravitational lensing. However, the intrinsic properties of galaxies can be similarly correlated through local physical effects, and these present a possible contamination to the weak lensing estimation. In an earlier paper (Ciarlariello et al. 2015) we modelled the intrinsic size correlations using the halo model, assuming the galaxy sizes reflect the mass in the associated halo. Here we extend this work to consider galaxy magnitudes and show that these may be even more affected by intrinsic correlations than galaxy sizes, making this a bigger systematic for measurements of the weak lensing signal. We also quantify how these intrinsic correlations are affected by sample selection criteria based on sizes and magnitudes.

  15. Modelling the impact of intrinsic size and luminosity correlations on magnification estimation

    NASA Astrophysics Data System (ADS)

    Ciarlariello, Sandro; Crittenden, Robert

    2016-11-01

    Spatial correlations of the observed sizes and luminosities of galaxies can be used to estimate the magnification that arises through weak gravitational lensing. However, the intrinsic properties of galaxies can be similarly correlated through local physical effects, and these present a possible contamination to the weak lensing estimation. In an earlier paper we modelled the intrinsic size correlations using the halo model, assuming the galaxy sizes reflect the mass in the associated halo. Here we extend this work to consider galaxy magnitudes and show that these may be even more affected by intrinsic correlations than galaxy sizes, making this a bigger systematic for measurements of the weak lensing signal. We also quantify how these intrinsic correlations are affected by sample selection criteria based on sizes and magnitudes.

  16. Opposing Effects of Intrinsic Conductance and Correlated Synaptic Input on Vm-Fluctuations during Network Activity

    PubMed Central

    Kolind, Jens; Hounsgaard, Jørn; Berg, Rune W.

    2012-01-01

    Neurons often receive massive concurrent bombardment of synaptic inhibition and excitation during functional network activity. This increases membrane conductance and causes fluctuations in membrane potential (Vm) and spike timing. The conductance increase is commonly attributed to synaptic conductance, but also includes the intrinsic conductances recruited during network activity. These two sources of conductance have contrasting dynamic properties at sub-threshold membrane potentials. Synaptic transmitter gated conductance changes abruptly and briefly with each presynaptic action potential. If the spikes arrive at random times the changes in synaptic conductance are therefore stochastic and rapid during intense network activity. In comparison, sub-threshold intrinsic conductances vary smoothly in time. In the present study this discrepancy is investigated using two conductance-based models: a (1) compartment model and a (2) compartment with realistic slow intrinsic conductances. We examine the effects of varying the relative contributions of non-fluctuating intrinsic conductance with fluctuating concurrent inhibitory and excitatory synaptic conductance. For given levels of correlation in the synaptic input we find that the magnitude of the membrane fluctuations uniquely determines the relative contribution of synaptic and intrinsic conductance. We also quantify how Vm-fluctuations vary with synaptic correlations for fixed ratios of synaptic and intrinsic conductance. Interestingly, the levels of Vm -fluctuations and conductance observed experimentally during functional network activity leave little room for intrinsic conductance to contribute. Even without intrinsic conductances the variance in Vm -fluctuations can only be explained by a high degree of correlated firing among presynaptic neurons. PMID:22783184

  17. Ellipticities of Elliptical Galaxies in Different Environments

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between ‑21 and ‑22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  18. An analysis of the intrinsic cross-correlations between API and meteorological elements using DPCCA

    NASA Astrophysics Data System (ADS)

    Shen, Chen-hua; Li, Cao-ling

    2016-03-01

    In order to reveal the intrinsic cross-correlations between air pollution index (API) records and synchronously meteorological elements data, the detrended partial cross-correlation (DPCC) coefficients are analyzed using a detrended partial cross-correlation analysis (DPCCA). DPCC coefficients for different spatial locations and seasons are calculated and compared. The results show that DPCCA can uncover intrinsic cross-correlations between API and meteorological elements, and most of their interactional mechanisms can be explained. DPCC coefficients are either positive or negative, and vary with spatial locations and seasons, with consistently interactional mechanisms. More remarkable, we find that detrended cross-correlation analysis can present the cross-correlations between the fluctuations in two nonstationary time series, but this cross-correlation does not always fully reflect the interactional mechanism for the original time series. Despite this, DPCCA is recommended as a comparatively reliable method for revealing intrinsic cross-correlations between API and meteorological elements, and it can also be useful for our understanding of their interactional mechanisms.

  19. Correlation between Intrinsic Patellofemoral Pain Syndrome in Young Adults and Lower Extremity Biomechanics

    PubMed Central

    Kwon, Ohjeoung; Yun, Mijung; Lee, Wanhee

    2014-01-01

    [Purpose] The purpose of this study was to evaluate the correlation between intrinsic patellofemoral pain syndrome (PFPS) in young adults and lower extremity biomechanics. [Subjects] This experiment was carried out with sixty (24 men and 32 women), who are normal university students as subjects. [Methods] All subjects underwent 3 clinical evaluations. For distinguishing the intrinsic PFPS from controls, we used the Modified Functional Index Questionnaire (MFIQ), Clarke’s test and the Eccentric step test. Based on the results of the tests, subjects who were classified as positive for 2 more tests were allocated to the bilateral or unilateral intrinsic PFPS group (n=14), and the others were allocated to the control group (n=42). These two groups were tested for hamstring tightness, foot overpronation, and static Q-angle and dynamic Q-angle. These are the four lower extremity biomechanic, cited as risk factors of patellofemoral pain syndrome. [Results] The over pronation, static Q-angle and the dynamic Q-angle were not significantly different between the two groups. However, the hamstring tightness of the PFPS group was significantly greater than that of the controls. [Conclusion] We examined individuals for intrinsic patellofemoral pain syndrome in young adults and lower extremity biomechanics. We found a strong correlation between intrinsic PFPS and hamstring tightness. PMID:25140074

  20. Numerical simulation of ultracold plasmas: how rapid intrinsic heating limits the development of correlation.

    PubMed

    Kuzmin, S G; O'Neil, T M

    2002-02-11

    In recent experiments, ultracold plasmas were produced by photoionizing small clouds of laser-cooled atoms. It has been suggested that the low initial temperature of these novel plasmas leads directly to strong correlation and order. In contrast, we argue that rapid intrinsic heating raises the electron temperature to the point where strong correlation cannot develop. The argument is corroborated by a molecular-dynamics simulation of the early-time plasma evolution.

  1. Effect of interjunction coupling on superconducting current and charge correlations in intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.

    2009-07-01

    Charge formations on superconducting layers and creation of the longitudinal plasma wave in the stack of intrinsic Josephson junctions change crucially the superconducting current through the stack. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers allows us to predict the additional features in the current-voltage characteristics. The charge autocorrelation functions clearly demonstrate the difference between harmonic and chaotic behavior in the breakpoint region. Use of the correlation functions gives us a powerful method for the analysis of the current-voltage characteristics of coupled Josephson junctions.

  2. The intrinsic error thresholds of the surface code with correlated errors

    NASA Astrophysics Data System (ADS)

    Jouzdani, Pejman; Mucciolo, Eduardo; Novais, Eduardo

    2014-03-01

    We study how the resilience of the surface code to decoherence is affected by the presence of a bosonic bath. The surface code experiences an effective dynamics due to the coupling to a bosonic bath that correlates the qubits of the code. The range of the effective induced qubit-qubit interaction depends on parameters related to the bath correlation functions. We show hat different ranges set different intrinsic bounds on the fidelity of the code. These bounds appear to be independent of the stochastic error probabilities frequently studied in the literature and to be merely a consequence of the induced dynamics by the bath. We introduce a new definition of stabilizers based on logical operators that allows us to efficiently implement a Metropolis algorithm to determine the intrinsic upper bounds to the error threshold. Supported by the ONR and the NSF grant CCF 1117241.

  3. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    NASA Astrophysics Data System (ADS)

    Moon, Kevin R.; Li, Jimmy J.; Delouille, Véronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O.

    2016-01-01

    Context. The flare productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. Aims: We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. Methods: We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from magnetogram to analyze separately the core part of an active region from its surrounding part. Results: We find relationships between the complexity of an active region as measured by its Mount Wilson classification and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. Conclusions: Intrinsic dimension has the potential to distinguish simple from complex active regions. These results also pave the way for patch-based dictionary learning with a view toward automatic clustering of active regions.

  4. Systematic differences between the field and cluster elliptical galaxies

    NASA Technical Reports Server (NTRS)

    De Carvalho, R. R.; Djorgovski, S.

    1992-01-01

    Multivariate statistical techniques and fundamental plane fits are used here to study possible systematic differences between field ellipticals (FEs) and cluster ellipticals (CEs). The FEs show more intrinsic scatter in their properties, especially when stellar population variables are included. Pairwise correlations for the two samples are different; the correlations are systematically better for the cluster sample, meaning that ellipticals in the two samples populate their fundamental planes in different ways. Bivariate correlations are different for the two samples, implying that they have different fundamental planes. This is especially true for the correlations which include the population variables Mg2 and (B-V), which are sensitive both to the enrichment history and the storm formation history.

  5. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    SciTech Connect

    Liu, Z. Q. Zhang, Z. F.

    2013-12-28

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels.

  6. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    NASA Astrophysics Data System (ADS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-12-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels.

  7. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite

    NASA Astrophysics Data System (ADS)

    Han, Tian-Heng; Norman, M. R.; Wen, J.-J.; Rodriguez-Rivera, Jose A.; Helton, Joel S.; Broholm, Collin; Lee, Young S.

    2016-08-01

    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu3(OD) 6Cl2 (herbertsmithite) reveals antiferromagnetic correlations between impurity spins for energy transfers ℏ ω <0.8 meV (˜J /20 ). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2 ), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit below the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ˜0.7 meV ) in the kagome layers, similar to that recently observed by NMR. The ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.

  8. Correlating Flavivirus virulence and levels of intrinsic disorder in shell proteins: protective roles vs. immune evasion.

    PubMed

    Goh, Gerard Kian-Meng; Dunker, A Keith; Uversky, Vladimir N

    2016-05-24

    Computational analyses revealed correlations between the intrinsic disorder propensity of shell proteins and case fatality rates (CFRs) among Flaviviruses and within at least two Flavivirus species, such as tick-borne encephalitis virus (TBEV) and dengue virus (DENV). The shell proteins analyzed in this study are capsid (C) and membrane (PrM, Pr, and M) proteins. The highest correlations can be found when regression analyses were conducted using Pr (Flavivirus: r(2) = 0.78, p < 0.01) or M (Flavivirus: r(2) = 0.91, p < 0.01) as an independent variable with C and CFR as co-explanatory and dependent variables, respectively. Interestingly, while predicted intrinsic disorder levels (PIDs) of both C and M are positively correlated with the virulence, the PIDs of Pr and CFR are negatively correlated. This is likely due to the fact that the Pr portion of PrM plays various roles in protecting the virion from damage, whereas M and C are assisted by greater potential in binding promiscuity as a result of greater disorder. The C protein of yellow fever virus (YFV), which is the most virulent virus in the sample, has the highest PID levels, whereas the second most virulent TBEV FE subtype has the second highest PID score due to its C protein, and the least virulent West Nile virus (WNV) has the least disordered C protein. This knowledge can be used while working on the development and identification of attenuated strains for vaccine. Curiously, unlike Flaviviruses, a disordered outer shell was described for hepatitis C virus (HCV), human immunodeficiency virus (HIV), and human simplex virus 2 (HSV-2), which currently have no effective vaccine.

  9. Correlation of microstructure, intrinsic magnetization switching properties, and recording performance in exchange-coupled composite media

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kumar; Roddick, Eric; Mardinly, John; Acharya, B. Ramamurthy

    2011-04-01

    The analytical model for the intrinsic coercive squareness parameter, Sint* was applied to hard-soft stacked exchange-coupled composite media, and correlations with the microstructure and switching were studied. Thickening the hard magnetic layer in the composite stack led to a decrease in Sint*, as did thickening the NiW seed layers. However, this decrease was masked by thermal effects at the normal magnetometry time-scales of measurement. Upon thickening the soft layer in the composite stack, Sint* increased sharply at first and then only slightly. In contrast, the extent of incoherent switching, estimated from the peak value of the minor loop slope, increased slowly at first, and then sharply. The changes in Sint* and switching are correlated to the microstructure, particularly, grain size effects for the NiW series and growth effects for the hard-soft composite media series. Media signal-to-noise ratio at low recording frequencies, and adjacent track interference also show correlations with Sint*.

  10. Behavioral Correlates of Primates Conservation Status: Intrinsic Vulnerability to Anthropogenic Threats.

    PubMed

    Lootvoet, Amélie Christelle; Philippon, Justine; Bessa-Gomes, Carmen

    2015-01-01

    Behavioral traits are likely to influence species vulnerability to anthropogenic threats and in consequence, their risk of extinction. Several studies have addressed this question and have highlighted a correlation between reproductive strategies and different viability proxies, such as introduction success and local extinction risk. Yet, very few studies have investigated the effective impact of social behaviour, and evidence regarding global extinction risk remains scant. Here we examined the effects of three main behavioral factors: the group size, the social and reproductive system, and the strength of sexual selection on global extinction risk. Using Primates as biological model, we performed comparative analysis on 93 species. The conservation status as described by the IUCN Red List was considered as a proxy for extinction risk. In addition, we added previously identified intrinsic factors of vulnerability to extinction, and a measure of the strength of the human impact for each species, described by the human footprint. Our analysis highlighted a significant effect of two of the three studied behavioral traits, group size and social and reproductive system. Extinction risk is negatively correlated with mean group size, which may be due to an Allee effect resulting from the difficulties for solitary and monogamous species to find a partner at low densities. Our results also indicate that species with a flexible mating system are less vulnerable. Taking into account these behavioral variables is thus of high importance when establishing conservation plans, particularly when assessing species relative vulnerability. PMID:26444966

  11. Behavioral Correlates of Primates Conservation Status: Intrinsic Vulnerability to Anthropogenic Threats

    PubMed Central

    Lootvoet, Amélie Christelle; Philippon, Justine; Bessa-Gomes, Carmen

    2015-01-01

    Behavioral traits are likely to influence species vulnerability to anthropogenic threats and in consequence, their risk of extinction. Several studies have addressed this question and have highlighted a correlation between reproductive strategies and different viability proxies, such as introduction success and local extinction risk. Yet, very few studies have investigated the effective impact of social behaviour, and evidence regarding global extinction risk remains scant. Here we examined the effects of three main behavioral factors: the group size, the social and reproductive system, and the strength of sexual selection on global extinction risk. Using Primates as biological model, we performed comparative analysis on 93 species. The conservation status as described by the IUCN Red List was considered as a proxy for extinction risk. In addition, we added previously identified intrinsic factors of vulnerability to extinction, and a measure of the strength of the human impact for each species, described by the human footprint. Our analysis highlighted a significant effect of two of the three studied behavioral traits, group size and social and reproductive system. Extinction risk is negatively correlated with mean group size, which may be due to an Allee effect resulting from the difficulties for solitary and monogamous species to find a partner at low densities. Our results also indicate that species with a flexible mating system are less vulnerable. Taking into account these behavioral variables is thus of high importance when establishing conservation plans, particularly when assessing species relative vulnerability. PMID:26444966

  12. Behavioral Correlates of Primates Conservation Status: Intrinsic Vulnerability to Anthropogenic Threats.

    PubMed

    Lootvoet, Amélie Christelle; Philippon, Justine; Bessa-Gomes, Carmen

    2015-01-01

    Behavioral traits are likely to influence species vulnerability to anthropogenic threats and in consequence, their risk of extinction. Several studies have addressed this question and have highlighted a correlation between reproductive strategies and different viability proxies, such as introduction success and local extinction risk. Yet, very few studies have investigated the effective impact of social behaviour, and evidence regarding global extinction risk remains scant. Here we examined the effects of three main behavioral factors: the group size, the social and reproductive system, and the strength of sexual selection on global extinction risk. Using Primates as biological model, we performed comparative analysis on 93 species. The conservation status as described by the IUCN Red List was considered as a proxy for extinction risk. In addition, we added previously identified intrinsic factors of vulnerability to extinction, and a measure of the strength of the human impact for each species, described by the human footprint. Our analysis highlighted a significant effect of two of the three studied behavioral traits, group size and social and reproductive system. Extinction risk is negatively correlated with mean group size, which may be due to an Allee effect resulting from the difficulties for solitary and monogamous species to find a partner at low densities. Our results also indicate that species with a flexible mating system are less vulnerable. Taking into account these behavioral variables is thus of high importance when establishing conservation plans, particularly when assessing species relative vulnerability.

  13. Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking

    SciTech Connect

    Peter Schweitzer, Mark Strikman, Christian Weiss

    2013-01-01

    The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions on a distance scale rho ~ 0.3 fm, much smaller than the typical hadronic size R ~ 1 fm. These short-distance interactions influence the intrinsic transverse momentum distributions of partons and their correlations at a low normalization point. We study this phenomenon in an effective description of the low-energy dynamics in terms of chiral constituent quark degrees of freedom, which refers to the large-N_c limit of QCD. The nucleon is obtained as a system of constituent quarks and antiquarks moving in a self-consistent classical chiral field (relativistic mean-field approximation, or chiral quark-soliton model). The calculated transverse momentum distributions of constituent quarks and antiquarks are matched with QCD quarks, antiquarks and gluons at the chiral symmetry--breaking scale rho^{-2}. We find that the transverse momentum distribution of valence quarks is localized at p_T^2 ~ R^{-2} and roughly of Gaussian shape. The distribution of unpolarized sea quarks exhibits a would-be power-like tail ~1/p_T^2 extending up to the chiral symmetry-breaking scale. Similar behavior is observed in the flavor-nonsinglet polarized sea. The high-momentum tails are the result of short-range correlations between sea quarks in the nucleon's light-cone wave function, which are analogous to short-range NN correlations in nuclei. We show that the nucleon's light-cone wave function contains correlated pairs of transverse size rho << R with scalar-isoscalar (Sigma) and pseudoscalar-isovector (Pi) quantum numbers, whose internal wave functions have a distinctive spin structure and become identical at p_T^2 ~ rho^{-2} (restoration of chiral symmetry). These features are model-independent and represent an effect of dynamical chiral symmetry breaking on the nucleon's partonic structure. Our results have numerous implications for the transverse momentum distributions of particles produced in hard

  14. Direct correlation of consecutive C'-N groups in proteins: a method for the assignment of intrinsically disordered proteins.

    PubMed

    Pantoja-Uceda, David; Santoro, Jorge

    2013-09-01

    Two novel 3D (13)C-detected experiments, hNcocaNCO and hnCOcaNCO, are proposed to facilitate the resonance assignment of intrinsically disordered proteins. The experiments correlate the (15)N and (13)C' chemical shifts of two consecutive amide moieties without involving other nuclei, thus taking advantage of the good dispersion shown by the (15)N-(13)C' correlations, even for proteins that lack a well defined tertiary structure. The new pulse sequences were successfully tested using Nupr1, an intrinsically disordered protein of 93 residues.

  15. Intrinsic and extrinsic religiousness: genetic and environmental influences and personality correlates.

    PubMed

    Bouchard, T J; McGue, M; Lykken, D; Tellegen, A

    1999-06-01

    This report presents findings for the Intrinsic (IR) and Extrinsic (ER) religiousness scales from the Minnesota Study of Twins Reared Apart. The scales were shown to be internally consistent, sufficiently distinct from the scales of the California Psychological Inventory and the Multidimensional Personality Questionnaire and unrelated to a number of measures of response style to justify treating them as distinct traits. The I scales also showed considerable evidence of construct validity in its correlations with religious fundamentalism and authoritarianism as assessed by the MMPI and Altemeyer's Right-Wing Authoritarianism scale. Data on IR and ER from 35 pairs of monozygotic twins reared apart (MZA) and 37 pairs of dizygotic twins reared apart (DZA) were fitted to a biometric model and demonstrated significant heritability (0.43 and 0.39), with a model containing genetic plus environmental factors fitting significantly better than a model containing only an environmental component. Twin similarity could not be explained by placement on a self-reported measure of family Moral Religious Emphasis as measured by the Family Environment Scale.

  16. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  17. DETERMINATION OF THE INTRINSIC LUMINOSITY TIME CORRELATION IN THE X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect

    Dainotti, Maria Giovanna; Petrosian, Vahe'; Singal, Jack; Ostrowski, Michal E-mail: vahep@stanford.edu E-mail: dainotti@oa.uj.edu.pl

    2013-09-10

    Gamma-ray bursts (GRBs), which have been observed up to redshifts z Almost-Equal-To 9.5, can be good probes of the early universe and have the potential to test cosmological models. Dainotti's analysis of GRB Swift afterglow light curves with known redshifts and a definite X-ray plateau shows an anti-correlation between the rest-frame time when the plateau ends (the plateau end time) and the calculated luminosity at that time (or approximately an anti-correlation between plateau duration and luminosity). Here, we present an update of this correlation with a larger data sample of 101 GRBs with good light curves. Since some of this correlation could result from the redshift dependences of these intrinsic parameters, namely, their cosmological evolution, we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic and describe how we recover it and how this can be used to constrain physical models of the plateau emission, the origin of which is still unknown. The present result could help to clarify the debated nature of the plateau emission.

  18. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability

    NASA Astrophysics Data System (ADS)

    Debernardi, Laura; de Luca, Domenico Antonio; Lasagna, Manuela

    2008-08-01

    This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 - concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 - concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually

  19. Elliptical concentrators.

    PubMed

    Garcia-Botella, Angel; Fernandez-Balbuena, Antonio Alvarez; Bernabeu, Eusebio

    2006-10-10

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used to produce optical devices, including the use of reflective and refractive components or inverse engineering techniques. However, many of these optical components are based on translational symmetries, rotational symmetries, or free-form surfaces. We study a new family of nonimaging concentrators called elliptical concentrators. This new family of concentrators provides new capabilities and can have different configurations, either homofocal or nonhomofocal. Translational and rotational concentrators can be considered as particular cases of elliptical concentrators. PMID:17068595

  20. Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Maimaitiyiming-Tusun; Parouke-Paerhati; Ahmad-Abliz

    2015-09-01

    The influence of intrinsic decoherence on various correlations and dense coding in a model which consists of two identical superconducting charge qubits coupled by a fixed capacitor is investigated. The results show that, despite the intrinsic decoherence, the correlations as well as the dense coding channel capacity can be effectively increased via the combination of system parameters, i.e., the mutual coupling energy between the two charge qubits is larger than the Josephson energy of the qubit. The bigger the difference between them is, the better the effect is. Project supported by the Project to Develop Outstanding Young Scientific Talents of China (Grant No. 2013711019), the Natural Science Foundation of Xinjiang Province, China (Grant No. 2012211A052), the Foundation for Key Program of Ministry of Education of China (Grant No. 212193), and the Innovative Foundation for Graduate Students Granted by the Key Subjects of Theoretical Physics of Xinjiang Province, China (Grant No. LLWLL201301).

  1. The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation

    PubMed Central

    Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin

    2014-01-01

    Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn. PMID:25278834

  2. The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation.

    PubMed

    Albrecht, Konstanze; Abeler, Johannes; Weber, Bernd; Falk, Armin

    2014-01-01

    Apart from everyday duties, such as doing the laundry or cleaning the house, there are tasks we do for pleasure and enjoyment. We do such tasks, like solving crossword puzzles or reading novels, without any external pressure or force; instead, we are intrinsically motivated: we do the tasks because we enjoy doing them. Previous studies suggest that external rewards, i.e., rewards from the outside, affect the intrinsic motivation to engage in a task: while performance-based monetary rewards are perceived as controlling and induce a business-contract framing, verbal rewards praising one's competence can enhance the perceived self-determination. Accordingly, the former have been shown to decrease intrinsic motivation, whereas the latter have been shown to increase intrinsic motivation. The present study investigated the neural processes underlying the effects of monetary and verbal rewards on intrinsic motivation in a group of 64 subjects applying functional magnetic resonance imaging (fMRI). We found that, when participants received positive performance feedback, activation in the anterior striatum and midbrain was affected by the nature of the reward; compared to a non-rewarded control group, activation was higher while monetary rewards were administered. However, we did not find a decrease in activation after reward withdrawal. In contrast, we found an increase in activation for verbal rewards: after verbal rewards had been withdrawn, participants showed a higher activation in the aforementioned brain areas when they received success compared to failure feedback. We further found that, while participants worked on the task, activation in the lateral prefrontal cortex was enhanced after the verbal rewards were administered and withdrawn. PMID:25278834

  3. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins

    PubMed Central

    Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J.; Weik, Martin

    2015-01-01

    Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity. PMID:25774711

  4. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins.

    PubMed

    Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J; Weik, Martin

    2015-01-01

    Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.

  5. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J.; Weik, Martin

    2015-03-01

    Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.

  6. Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties

    NASA Technical Reports Server (NTRS)

    Braley, R. C.; Ford, W. F.; Becker, R. L.; Patterson, M. R.

    1972-01-01

    The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used.

  7. Evolution of Intrinsic Scatter in the SFR-Stellar Mass Correlation at 0.5

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Gawiser, Eric J.; Acquaviva, Viviana; Rafelski, Marc; Teplitz, Harry I.; UVUDF Team, CANDELS Team

    2016-01-01

    We present observations of intrinsic scatter in the Star Formation Rate (SFR) - Stellar Mass (M*) correlation in the redshift range 0.5 < z < 3.0 and in the mass range 10^7 < M* < 10^11 Msun. We utilize photometry from the Hubble Ultradeep Field from the UDF12 and UVUDF campaigns and CANDELS/GOODS-S. By utilizing the exceptionally deep UDF photometry (e.g. F160W 29.9 AB, 5 sigma depth) and fitting the corresponding SEDs, we extend the SFR-M* correlation by a factor of 10-100X lower in M*. We detect galaxies down to M* approx 10^7 Msun, comparable to dwarf galaxies in the local universe. We find that the intrinsic scatter is relatively constant across the mass range, and in conflict with theoretical predictions, we do not find evidence for markedly increased scatter at low mass. We find a moderate increase in total and intrinsic scatter with time across the epoch of peak cosmic star formation. These findings are consistent with gradual assembly of stellar mass in galaxies as low as 10^7 Msun and star formation that is increasingly stochastic with cosmic time.

  8. Actinidia DRM1--an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit.

    PubMed

    Wood, Marion; Rae, Georgina M; Wu, Rong-Mei; Walton, Eric F; Xue, Bin; Hellens, Roger P; Uversky, Vladimir N

    2013-01-01

    Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia.

  9. Line-of-Sight Velocity Distributions of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Bender, R.; Saglia, R. P.; Gerhard, O. E.

    1994-08-01

    The line-of-sight velocity distributions (LOSVDs) have been measured to > R_e_/2 along the major axes of 44 elliptical galaxies (more than 80 per cent of all ellipticals north of δ = -10^deg^ and brighter than B_T_ = 12.0), together with stellar rotational velocity and velocity dispersion profiles. For 19 of these 44 objects, minor axis profiles are also given. Monte Carlo simulations have been used to estimate errors. LOSVDs are found to deviate from Gaussians by no more than ~10 per cent. If rotation is present, LOSVDs are asymmetric with the prograde wings being always steeper than the retrograde wings. The degree of asymmetry (measured by the H_3_ Gauss-Hermite coefficient) correlates with ν/σ. Round and boxy ellipticals have lower asymmetries than flat and discy ones. On the whole, both types must have intrinsically asymmetric velocity distributions. Symmetric deviations (measured by the H_4_ Gauss-Hermite coefficient) are generally smaller than asymmetric ones. On the basis of the observed LOSVD shapes, the validity of two- integral models can be ruled out for most of the non-discy objects observed here (discy ellipticals require detailed modelling before similar conclusions can be drawn). Discy ellipticals have H_3_ and H_4_ major and minor axis profiles which appear consistent with a bulge+disc superposition. The observed H_4_ profile in M87 argues for radially anisotropic spherical or oblate models. Velocity dispersion profiles show significant individuality, but typically become flat outside R_e_/4. Major and minor axis slopes are mostly correlated one to one. We confirm that, with increasing luminosity, ellipticals become more anisotropic and that discy ellipticals have more rotational support. The Fundamental Plane of elliptical galaxies is tighter if total kinetic energy is used instead of central velocity dispersion. Both the small scatter about the Fundamental Plane and the homogenous and systematic properties of the LOSVDs imply that only a small

  10. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence.

    PubMed

    Stoddart, C A; Scott, F W

    1989-01-01

    Cats infected with virulent feline coronavirus strains develop feline infectious peritonitis, an invariably fatal, immunologically mediated disease; avirulent strains cause either clinically inapparent infection or mild enteritis. Four virulent coronavirus isolates and five avirulent isolates were assessed by immunofluorescence and virus titration for their ability to infect and replicate in feline peritoneal macrophages in vitro. The avirulent coronaviruses infected fewer macrophages, produced lower virus titers, were less able to sustain viral replication, and spread less efficiently to other susceptible macrophages than the virulent coronaviruses. Thus, the intrinsic resistance of feline macrophages may play a pivotal role in the outcome of coronavirus infection in vivo.

  11. Molecular gas in elliptical galaxies with dust lanes

    NASA Technical Reports Server (NTRS)

    Wang, Zhong; Kenney, Jeffrey D. P.; Ishizuki, Sumio

    1992-01-01

    We have searched for CO(1-0) line emission in eight dust lane elliptical and lenticular galaxies using the Nobeyama 45 m telescope. Five of the eight galaxies, including the well-studied elliptical NGC 1052, have CO emission at above the 5-sigma level, with inferred molecular gas masses ranging from 10 exp 8 to a few times 10 exp 9 solar masses. Our selection criterion differs from previous surveys in that it does not depend on the FIR fluxes, and thus is less sensitive to the sizes and distances of the host galaxies or to the degree to which dust is heated. The relatively high detection rate of CO in these ellipticals suggests a close correlation between molecular mass and cold dust. Compared with previously studied samples of FIR selected early-type galaxies, our sample has on average four times more CO emission per unit FIR (40-120 microns) luminosity. If the intrinsic gas-to-dust ratio of these galaxies as similar to that of the Milky Way, then only about 5 percent of the dust mass in dust lane ellipticals radiates substantially at 60 and 100 microns, and the remaining dust must be colder than about 30 K.

  12. Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization

    PubMed Central

    Burton, Shawn D.; Ermentrout, G. Bard

    2012-01-01

    Synchronous neural oscillations are found throughout the brain and are thought to contribute to neural coding and the propagation of activity. Several proposed mechanisms of synchronization have gained support through combined theoretical and experimental investigation, including mechanisms based on coupling and correlated input. Here, we ask how correlation-induced synchrony is affected by physiological heterogeneity across neurons. To address this question, we examined cell-to-cell differences in phase-response curves (PRCs), which characterize the response of periodically firing neurons to weak perturbations. Using acute slice electrophysiology, we measured PRCs across a single class of principal neurons capable of sensory-evoked oscillations in vivo: the olfactory bulb mitral cells (MCs). Periodically firing MCs displayed a broad range of PRCs, each of which was well fit by a simple three-parameter model. MCs also displayed differences in firing rate-current relationships and in preferred firing rate ranges. Both the observed PRC heterogeneity and moderate firing rate differences (∼10 Hz) separately reduced the maximum correlation-induced synchrony between MCs by up to 25–30%. Simulations further demonstrated that these components of heterogeneity alone were sufficient to account for the difference in synchronization among heterogeneous vs. homogeneous populations in vitro. Within this simulation framework, independent modulation of specific PRC features additionally revealed which aspects of PRC heterogeneity most strongly impact correlation-induced synchronization. Finally, we demonstrated good agreement of novel mathematical theory with our experimental and simulation results, providing a theoretical basis for the influence of heterogeneity on correlation-induced neural synchronization. PMID:22815400

  13. In-vivo imaging of stimulus-evoked intrinsic optical signals correlated with retinal activation in anesthetized frog

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Zhang, Qiu-Xiang; Li, Yang-Guo

    2011-09-01

    Intrinsic optical signal imaging (IOS) promises a noninvasive method for high resolution examination of retinal function. Using freshly isolated animal retinas, we have conducted a series of experiments to test fast IOSs which have time courses comparable to electrophysiological kinetics. In this article, we demonstrate the feasibility of in vivo imaging of fast IOSs correlated with retinal activation in anesthetized frog (Rana Pipiens). A rapid (68,000 lines/s) line-scan confocal ophthalmoscope was constructed to achieve high-speed (200 frames/s) near infared (NIR) recording of fast IOSs. By rejecting out-of-focus background light, the line-scan confocal imager provided enough resolution to differentiate individual photoreceptors in vivo. With visible light stimulation, NIR confocal images disclosed transient IOSs with time courses comparable to retinal ERG kinetics. High-resolution IOS images revealed both positive (increasing) and negative (decreasing) light responses, with sub-cellular complexity, in the activated retina.

  14. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass.

    PubMed

    Zhu, F; Nguyen, H K; Song, S X; Aji, Daisman P B; Hirata, A; Wang, H; Nakajima, K; Chen, M W

    2016-01-01

    β-relaxation has long been attributed to localized motion of constituent molecules or atoms confined to isolated regions in glasses. However, direct experimental evidence to support this spatially heterogeneous scenario is still missing. Here we report the evolution of nanoscale structural heterogeneity in a metallic glass during β-relaxation by utilizing amplitude-modulation dynamic atomic force microscopy. The successive degeneration of heterogeneity during β-relaxation can be well described by the Kohlrausch-Williams-Watts equation. The characteristic relaxation time and activation energy of the heterogeneity evolution are in accord with those of excess enthalpy release by β-relaxation. Our study correlates β-relaxation with nanoscale spatial heterogeneity and provides direct evidence on the structural origins of β-relaxation in metallic glasses. PMID:27158084

  15. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Nguyen, H. K.; Song, S. X.; Aji, Daisman P. B.; Hirata, A.; Wang, H.; Nakajima, K.; Chen, M. W.

    2016-05-01

    β-relaxation has long been attributed to localized motion of constituent molecules or atoms confined to isolated regions in glasses. However, direct experimental evidence to support this spatially heterogeneous scenario is still missing. Here we report the evolution of nanoscale structural heterogeneity in a metallic glass during β-relaxation by utilizing amplitude-modulation dynamic atomic force microscopy. The successive degeneration of heterogeneity during β-relaxation can be well described by the Kohlrausch-Williams-Watts equation. The characteristic relaxation time and activation energy of the heterogeneity evolution are in accord with those of excess enthalpy release by β-relaxation. Our study correlates β-relaxation with nanoscale spatial heterogeneity and provides direct evidence on the structural origins of β-relaxation in metallic glasses.

  16. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass

    PubMed Central

    Zhu, F.; Nguyen, H. K.; Song, S. X.; Aji, Daisman P. B.; Hirata, A.; Wang, H.; Nakajima, K.; Chen, M. W.

    2016-01-01

    β-relaxation has long been attributed to localized motion of constituent molecules or atoms confined to isolated regions in glasses. However, direct experimental evidence to support this spatially heterogeneous scenario is still missing. Here we report the evolution of nanoscale structural heterogeneity in a metallic glass during β-relaxation by utilizing amplitude-modulation dynamic atomic force microscopy. The successive degeneration of heterogeneity during β-relaxation can be well described by the Kohlrausch–Williams–Watts equation. The characteristic relaxation time and activation energy of the heterogeneity evolution are in accord with those of excess enthalpy release by β-relaxation. Our study correlates β-relaxation with nanoscale spatial heterogeneity and provides direct evidence on the structural origins of β-relaxation in metallic glasses. PMID:27158084

  17. Correlation between the durations of refractory period and intrinsic optical signal of retinal spreading depression during temperature variations.

    PubMed

    Weimer, Marc S; Hanke, Wolfgang

    2005-02-01

    Spreading depression (SD) is a neurophysiological phenomenon which occurs in the grey substance of the central nervous system. SD is characterised by a wave-like spread of depressed neuronal activity, by large ion shifts between intra- and extracellular space, by cellular depolarization, and by altered optical properties of the tissue giving rise to an intrinsic optical signal (IOS). In the shadow of SD further waves are difficult to trigger and such waves spread at lower velocity than usual. In this paper we examine the temperature dependence of the duration of this recovery (refractory) period and the temperature dependence of the duration of the IOS in the chicken retina. It is shown that these SD accompanying events are strongly dependent on temperature and that they are likely to depend on the metabolic rate in the tissue. The observed correlation of the duration of the IOS with the duration of the refractory period suggests that the IOS is a good indicator for the duration of the tissue recovery. Such a correlation would be of great value to the experimentalist who must know about the duration of the refractory period: while the latter is laborious to determine, recording the IOS is convenient.

  18. Correlating optical damage threshold with intrinsic defect populations in fused silica as a function of heat treatment temperature

    SciTech Connect

    Shen, N.; Matthews, M. J.; Elhadj, S.; Miller, P. E.; Nelson, A. J.; Hamilton, J.

    2013-04-03

    Here, chemical vapor deposition (CVD) is used for the production of fused silica optics in high-power laser applications. However, relatively little is known about the ultraviolet laser damage threshold of CVD films and how they relate to intrinsic defects produced during deposition. We present here a study relating structural and electronic defects in CVD films to 355 nm pulsed-laser damage threshold as a function of post-deposition annealing temperature (THT). Plasma-enhanced CVD based on SiH4/N2O under oxygen-rich conditions was used to deposit 1.5, 3.1 and 6.4 µm thick films on etched SiO2 substrates. Rapid annealing was performed using a scanned CO2 laser beam up to THT ~ 2100 K. The films were then characterized using x-ray photoemission spectroscopy, Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. A gradual transition in the damage threshold of annealed films was observed for THT values up to 1600 K, correlating with a decrease in non-bridging silanol and oxygen deficient centres. An additional sharp transition in damage threshold also occurs at ~1850 K indicating substrate annealing. Based on our results, a mechanism for damage-related defect annealing is proposed, and the potential of using high-THT CVD SiO2 to mitigate optical damage is also discussed.

  19. A UNIFORM CORRELATION BETWEEN SYNCHROTRON LUMINOSITY AND DOPPLER FACTOR IN GAMMA-RAY BURSTS AND BLAZARS: A HINT OF SIMILAR INTRINSIC LUMINOSITIES?

    SciTech Connect

    Wu Qingwen; Zou Yuanchuan; Wang Dingxiong; Cao Xinwu; Chen Liang E-mail: zouyc@hust.edu.cn E-mail: cxw@shao.ac.cn

    2011-10-10

    We compile 23 gamma-ray bursts (GRBs) and 21 blazars with estimated Doppler factors, and the Doppler factors of GRBs are estimated from their Lorentz factors by assuming their jet viewing angles {theta} {yields} 0{sup 0}. Using the conventional assumption that the prompt emission of GRBs is dominated by the synchrotron radiation, we calculate the synchrotron luminosity of GRBs from their total isotropic energy and burst duration. Intriguingly, we discover a uniform correlation between the synchrotron luminosity and Doppler factor, L{sub syn}{proportional_to}D{sup 3.1}, for GRBs and blazars, which suggests that they may share some similar jet physics. One possible reason is that GRBs and blazars have, more or less, similar intrinsic synchrotron luminosities and both of them are strongly enhanced by the beaming effect. After Doppler and redshift correction, we find that the intrinsic peak energy of the GRBs ranges from 0.1 to 3 keV with a typical value of 1 keV. We further correct the beaming effect for the observed luminosity of GRBs and find that a positive correlation exists between the intrinsic synchrotron luminosity and peak energy for GRBs, which is similar to that of blazars. Our results suggest that both the intrinsic positive correlation and the beaming effect may be responsible for the observed tight correlation between the isotropic energy and the peak energy in GRBs (the so-called Amati relation).

  20. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII

    PubMed Central

    Kišonaitė, Miglė; Zubrienė, Asta; Čapkauskaitė, Edita; Smirnov, Alexey; Smirnovienė, Joana; Kairys, Visvaldas; Michailovienė, Vilma; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2014-01-01

    The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation. PMID:25493428

  1. Study of the dependence between the simultaneous wind speed and the global solar radiation measurements using the Time dependent Intrinsic Correlation method

    NASA Astrophysics Data System (ADS)

    Schmitt, F. G.; Calif, R.; Huang, Y.

    2014-12-01

    Wind and global solar radiation are complex atmospheric processes exhibiting nonstationary and nonlinear properties, involving with a high level intermittency degree on a broad range of spatial and temporal scales. It has been shown recently that the wind speed and the solar global radiation had intermittent and multiscaling statistics on mesoscales range.The emergence of electricity production units combining renewable wind and solar energy generation, need the understanding of the dependence between these two processes. The interest is to develop strategic tools in order to smooth the aggregate power output of this kind of electricity production unit.In this study, we study their multi-scale dynamics and we investigate possible correlations at different scales using a new methodology called Time Dependent Intrinsic Correlation (TDIC) based on the EMD (Emiprical Mode Decomposition) method. For that, the Time Dependent Intrinsic Correlation method is applied to simultaneous wind and global solar radiation measurements. The two time series are collected with a sampling time t=1h during five years at Guadeloupean Archipelago (French West Indies) located at 16°15'N latitude and 60°30'W longitude. After decomposition of both times series in fast and slow fluctuations with the EMD method, the Hilbert spectra are estimated for the both time series. The time evolution and the scale dependence of their correlation are determined at different time scales and for different intrinsic modes functions.

  2. Rotation and conversion of transmission mode based on a rotatable elliptical core ring resonator

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Liu, Yun-Feng; Li, Shu-Jing; He, Xing-Dao

    2016-06-01

    A compact plasmonic waveguide system consisting of a rotating elliptical core ring (ECR) coupled two metal-insulator-metal (MIM) waveguides is proposed. Influences of the eccentricity and rotation angle of the elliptical core on the transmission characteristics are studied in detail, by using Finite-Difference Time-Domain (FDTD) method. Compared with circular core in ring resonator, the elliptical core will lead to the asymmetric field distributions of intrinsic mode. Based on this, a 1×2 splitter is designed, in which the beam-splitting ratio can be adjusted by changing the eccentricity of the elliptical core. In addition, we find that the intrinsic mode of ECR rotate with elliptical core and gradually convert to its orthogonal mode. Separation of the pair orthogonal modes increases with growth of the eccentricity of the elliptical core. And, the higher order intrinsic mode corresponds to the shorter rotation angle of mode conversion.

  3. Correlation between morphology, chemical environment, and ferromagnetism in the intrinsic-vacancy dilute magnetic semiconductor Cr-doped Ga2Se3/Si(001)

    NASA Astrophysics Data System (ADS)

    Yitamben, E. N.; Lovejoy, T. C.; Pakhomov, A. B.; Heald, S. M.; Negusse, E.; Arena, D.; Ohuchi, F. S.; Olmstead, M. A.

    2011-01-01

    Chromium-doped gallium sesquiselenide, Cr:Ga2Se3, is a member of a new class of dilute magnetic semiconductors exploiting intrinsic vacancies in the host material. The correlation among room-temperature ferromagnetism, surface morphology, electronic structure, chromium concentration, and local chemical and structural environments in Cr:Ga2Se3 films grown epitaxially on silicon is investigated with magnetometry, scanning tunneling microscopy, photoemission spectroscopy, and x-ray absorption spectroscopy. Inclusion of a few percent chromium in Ga2Se3 results in laminar, semiconducting films that are ferromagnetic at room temperature with a magnetic moment ⩾4μB/Cr. The intrinsic-vacancy structure of defected-zinc-blende β-Ga2Se3 enables Cr incorporation in a locally octahedral site without disrupting long-range order, determined by x-ray absorption spectroscopy, as well as strong overlap between Cr 3d states and the Se 4p states lining the intrinsic-vacancy rows, observed with photoemission. The highest magnetic moment per Cr is observed near the solubility limit of roughly one Cr per three vacancies. At higher Cr concentrations, islanded, metallic films result, with a magnetic moment that depends strongly on surface morphology. The effective valence is Cr3+ in laminar films, with introduction of Cr0 upon islanding. A mechanism is proposed for laminar films whereby ordered intrinsic vacancies mediate ferromagnetism.

  4. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  5. Planar elliptic growth

    SciTech Connect

    Mineev, Mark

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  6. A Correlation between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; Oates, S. R.; de Pasquale, M.; Kocevski, D.

    2016-07-01

    We present a correlation between the average temporal decay ({α }{{X},{avg},\\gt 200{{s}}}) and early-time luminosity ({L}{{X},200{{s}}}) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the γ-ray trigger. The luminosity-average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  7. The elliptic anomaly

    NASA Technical Reports Server (NTRS)

    Janin, G.; Bond, V. R.

    1980-01-01

    An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate anomaly (an anomaly intermediate between the eccentric and the true anomaly) is suggested for optimum performances. A particular case of an intermediate anomaly (the elliptic anomaly) is defined, and its relation with the other anomalies is developed.

  8. Exposing the non-collectivity in elliptic flow

    SciTech Connect

    Liao, Jinfeng; Koch, Volker

    2009-02-13

    We show that backward-forward elliptic asymmetry correlations provide an experimentally accessible observable which distinguishes between collective and non-collective contributions to the observed elliptic asymmetry v2 in relativistic heavy ion collisions. The measurement of this observable will reveal the momentum scale at which collective expansion seizes and where the elliptic asymmetry is dominated by (semi)-hard processes. In addition, the knowledge of the actual magnitude of the collective component of the elliptic asymmetry will be essential for the extraction of the viscosity of the matter created in these collisions.

  9. High-Resolution fMRI Maps of Cortical Activation in Nonhuman Primates: Correlation with Intrinsic Signal Optical Images

    PubMed Central

    Roe, Anna W.; Chen, Li Min

    2009-01-01

    One of the most widely used functional brain mapping tools is blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and multiunit electrophysiology and intrinsic signal optical imaging have revealed submillimeter resolution of sensory topography and cortical columnar activations. However, they are limited either by spatial scale (electrophysiology characterizes only local groups of neurons) or by the inability to monitor deep structures in the brain (i.e., cortical regions buried in sulci or subcortical structures). A method that could monitor all regions of the brain at high spatial resolution would be ideal. This capacity would open the doors to investigating, for example, how networks of cerebral cortical columns relate to or produce behavior. In this article we demonstrate that, without benefit of contrast agents, at a magnetic field strength of 9.4 tesla, BOLD fMRI can reveal millimeter-sized topographic maps of digit representation in the somatosensory cortex of the anesthetized squirrel monkey. Furthermore, by mapping the “funneling illusion,” it is possible to detect even submillimeter shifts in activation in the cortex. Our data suggest that at high magnetic field strength, the positive BOLD signal can be used to reveal high spatial resolution maps of brain activity, a finding that weakens previous notions about the ultimate spatial specificity of the positive BOLD signal. PMID:18172338

  10. Multilevel filtering elliptic preconditioners

    NASA Technical Reports Server (NTRS)

    Kuo, C. C. Jay; Chan, Tony F.; Tong, Charles

    1989-01-01

    A class of preconditioners is presented for elliptic problems built on ideas borrowed from the digital filtering theory and implemented on a multilevel grid structure. They are designed to be both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows the use of filter design techniques for constructing elliptic preconditioners and also provides an alternative framework for understanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess the convergence behavior of the new methods and to compare them with other preconditioners of multilevel type, including the usual multigrid method as preconditioner, the hierarchical basis method and a recent method proposed by Bramble-Pasciak-Xu.

  11. Intrinsic alignments of BOSS LOWZ galaxies - II. Impact of shape measurement methods

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel

    2016-04-01

    Measurements of intrinsic alignments of galaxy shapes with the large-scale density field, and the inferred intrinsic alignments model parameters, are sensitive to the shape measurement methods used. In this paper, we measure the intrinsic alignments of the Sloan Digital Sky Survey-III (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS) low redshift (LOWZ) galaxies using three different shape measurement methods (re-Gaussianization, isophotal, and de Vaucouleurs), identifying a variation in the inferred intrinsic alignments amplitude at the 40 per cent level between these methods, independent of the galaxy luminosity or other properties. We also carry out a suite of systematics tests on the shapes and their two-point correlation functions, identifying a pronounced contribution from additive point spread function systematics in the de Vaucouleurs shapes. Since different methods measure galaxy shapes at different effective radii, the trends we identify in the intrinsic alignments amplitude are consistent with the interpretation that the outer regions of galaxy shapes are more responsive to tidal fields, resulting in isophote twisting and stronger alignments for isophotal shapes. We observe environment dependence of ellipticity, with brightest galaxies in groups being rounder on average compared to satellite and field galaxies. We also study the anisotropy in intrinsic alignments measurements introduced by projected shapes, finding effects consistent with predictions of the non-linear alignment model and hydrodynamic simulations. The large variations seen using the different shape measurement methods have important implications for intrinsic alignments forecasting and mitigation with future surveys.

  12. Elliptical flexure hinges

    NASA Astrophysics Data System (ADS)

    Smith, Stuart T.; Badami, Vivek G.; Dale, Jami S.; Xu, Ying

    1997-03-01

    This paper presents closed form equations based on a modification of those originally derived by Paros and Weisbord in 1965, for the mechanical compliance of a simple monolithic flexure hinge of elliptic cross section, the geometry of which is determined by the ratio ɛ of the major and minor axes. It is shown that these equations converge at ɛ=1 to the Paros and Weisbord equations for a hinge of circular section and at ɛ ⇒∞ to the equations predicted from simple beam bending theory for the compliance of a cantilever beam. These equations are then assessed by comparison with results from finite element analysis over a range of geometries typical of many hinge designs. Based on the finite element analysis, stress concentration factors for the elliptical hinge are also presented. As a further verification of these equations, a number of elliptical hinges were manufactured on a CNC milling machine. Experimental data were produced by applying a bending moment using dead weight loading and measuring subsequent angular deflections with a laser interferometer. In general, it was found that predictions for the compliance of elliptical hinges are likely to be within 12% for a range of geometries with the ratio βx(=t/2ax) between 0.06 and 0.2 and for values of ɛ between 1 and 10.

  13. Quantification of Valleys of Randomly Textured Substrates as a Function of Opening Angle: Correlation to the Defect Density in Intrinsic nc-Si:H.

    PubMed

    Kim, Do Yun; Hänni, Simon; Schüttauf, Jan-Willem; van Swaaij, René A C M M; Zeman, Miro

    2016-08-17

    Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Voc and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130° (ρ<130). This ρ<130 is subsequently compared with the solar-cell performance and the defect density of i-nc-Si:H (ρdefect), which is obtained by fitting external photovoltaic parameters from experimental results and simulations. We confirm that when ρ<130 increases the Voc and FF significantly drops. It is also observed that ρdefect increases following a power law dependence of ρ<130. This result is attributed to more frequently formed defective regions for substrates having higher ρ<130.

  14. Quantification of Valleys of Randomly Textured Substrates as a Function of Opening Angle: Correlation to the Defect Density in Intrinsic nc-Si:H.

    PubMed

    Kim, Do Yun; Hänni, Simon; Schüttauf, Jan-Willem; van Swaaij, René A C M M; Zeman, Miro

    2016-08-17

    Optical and electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells are strongly influenced by the morphology of underlying substrates. By texturing the substrates, the photogenerated current of nc-Si:H solar cells can increase due to enhanced light scattering. These textured substrates are, however, often incompatible with defect-less nc-Si:H growth resulting in lower Voc and FF. In this study we investigate the correlation between the substrate morphology, the nc-Si:H solar-cell performance, and the defect density in the intrinsic layer of the solar cells (i-nc-Si:H). Statistical surface parameters representing the substrate morphology do not show a strong correlation with the solar-cell parameters. Thus, we first quantify the line density of potentially defective valleys of randomly textured ZnO substrates where the opening angle is smaller than 130° (ρ<130). This ρ<130 is subsequently compared with the solar-cell performance and the defect density of i-nc-Si:H (ρdefect), which is obtained by fitting external photovoltaic parameters from experimental results and simulations. We confirm that when ρ<130 increases the Voc and FF significantly drops. It is also observed that ρdefect increases following a power law dependence of ρ<130. This result is attributed to more frequently formed defective regions for substrates having higher ρ<130. PMID:27463965

  15. Cooperative transients in inter-atomic correlation in the presence of an externally applied coherent field - Relation to intrinsic mirrorless optical bistability

    NASA Astrophysics Data System (ADS)

    Bowden, C. M.; Sung, C. C.

    1982-08-01

    The model presented earlier (Bowden and Sung, 1979), which predicts the circumstances under which intrinsic mirrorless optical bistability (OB) can occur due to atomic pair correlation in a small volume, is outlined and the results presented. These results, which predict a first-order phase transition in steady state for an externally driven collection of a large number of atoms far removed from thermodynamic equilibrium, form the motivation for a detailed microscopic examination of the dynamical behavior of atomic pair correlation in the presence of externally applied coherent radiation. A model is presented and results are discussed for the transient dynamic evolution of two two-level atoms separated from each other by a distance r in the presence of an externally applied coherent radiation field. The results predict collective radiation reaction, frequency shifts, relaxation in terms of the atomic separation r (assumed much larger than single atom dimensions), the externally applied field intensity and spacial uniformity of the field with respect to the inter-atomic volume.

  16. How the cosmic web induces intrinsic alignments of galaxies

    NASA Astrophysics Data System (ADS)

    Codis, S.; Dubois, Y.; Pichon, C.; Devriendt, J.; Slyz, A.

    2016-10-01

    Intrinsic alignments are believed to be a major source of systematics for future generation of weak gravitational lensing surveys like Euclid or LSST. Direct measurements of the alignment of the projected light distribution of galaxies in wide field imaging data seem to agree on a contamination at a level of a few per cent of the shear correlation functions, although the amplitude of the effect depends on the population of galaxies considered. Given this dependency, it is difficult to use dark matter-only simulations as the sole resource to predict and control intrinsic alignments. We report here estimates on the level of intrinsic alignment in the cosmological hydrodynamical simulation Horizon-AGN that could be a major source of systematic errors in weak gravitational lensing measurements. In particular, assuming that the spin of galaxies is a good proxy for their ellipticity, we show how those spins are spatially correlated and how they couple to the tidal field in which they are embedded. We will also present theoretical calculations that illustrate and qualitatively explain the observed signals.

  17. Elliptic scattering equations

    NASA Astrophysics Data System (ADS)

    Cardona, Carlos; Gomez, Humberto

    2016-06-01

    Recently the CHY approach has been extended to one loop level using elliptic functions and modular forms over a Jacobian variety. Due to the difficulty in manipulating these kind of functions, we propose an alternative prescription that is totally algebraic. This new proposal is based on an elliptic algebraic curve embedded in a mathbb{C}{P}^2 space. We show that for the simplest integrand, namely the n - gon, our proposal indeed reproduces the expected result. By using the recently formulated Λ-algorithm, we found a novel recurrence relation expansion in terms of tree level off-shell amplitudes. Our results connect nicely with recent results on the one-loop formulation of the scattering equations. In addition, this new proposal can be easily stretched out to hyperelliptic curves in order to compute higher genus.

  18. Evaluation on intrinsic quality of licorice influenced by environmental factors by using FTIR combined with 2D-IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Ying-qun; Yu, Hua; Zhang, Yan-ling; Sun, Su-qin; Chen, Shi-lin; Zhao, Run-huai; Zhou, Qun; Noda, Isao

    2010-06-01

    To evaluate the intrinsic quality of licorice influenced by environmental factors, the spectral comparison of licorice from two typical ecological habitats was conducted by using FTIR and 2D-IR correlation spectroscopy. There were differences in the peak intensities of 1155, 1076 and 1048 cm -1 of FTIR profiles. The difference was amplified by the second derivative spectrum for the peak intensities at 1370, 1365 and 1317 cm -1 and the peak shape in 958-920 cm -1 and 1050-988 cm -1. The synchronous 2D-IR spectra within the range of 860-1300 cm -1 were classified into type I and type II and their frequency in the two groups was noticeably different. Although the chemical compounds of licorice samples from two areas were generally similar, the contents of starch, calcium oxalate, and some chemical compounds containing alcohol hydroxyl group were different, indicating the influence of precipitation and temperature. This study demonstrates that the systematical analysis of FTIR, the second derivative spectrum and 2D-IR can effectively determine the differences in licorice samples from different ecological habitats.

  19. Effect of flow fluctuations and nonflow on elliptic flow methods

    SciTech Connect

    Ollitrault, Jean-Yves; Poskanzer, Arthur M.; Voloshin, Sergei A.

    2009-04-16

    We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v_2,PP elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v_2,RP in the reaction plane. Thus, the 20percent spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.

  20. Elliptical Orbit Performance Computer Program

    NASA Technical Reports Server (NTRS)

    Myler, T.

    1984-01-01

    Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.

  1. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  2. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  3. Modulated Elliptical Slot

    NASA Technical Reports Server (NTRS)

    Abou-Khousa, M. A.

    2009-01-01

    A novel modulated slot design has been proposed and tested. The proposed slot is aimed to replace the inefficient small dipoles used in conventional MST-based imaging systems. The developed slot is very attractive as MST array element due to its small size and high efficiency/modulation depth. In fact, the developed slot has been successfully used to implement the first prototype of a microwave camera operating at 24 GHZ. It is also being used in the design of the second generation of the camera. Finally, the designed elliptical slot can be used as an electronically controlled waveguide iris for many other purposes (for instance in constructing waveguide reflective phase shifters and multiplexers/switches).

  4. Intrinsic alignment of simulated galaxies in the cosmic web: implications for weak lensing surveys

    NASA Astrophysics Data System (ADS)

    Codis, S.; Gavazzi, R.; Dubois, Y.; Pichon, C.; Benabed, K.; Desjacques, V.; Pogosyan, D.; Devriendt, J.; Slyz, A.

    2015-04-01

    The intrinsic alignment of galaxy shapes (by means of their angular momentum) and their cross-correlation with the surrounding dark matter tidal field are investigated using the 160 000, z = 1.2 synthetic galaxies extracted from the high-resolution cosmological hydrodynamical simulation HORIZON-AGN. One- and two-point statistics of the spin of the stellar component are measured as a function of mass and colour. For the low-mass galaxies, this spin is locally aligned with the tidal field `filamentary' direction while, for the high-mass galaxies, it is perpendicular to both filaments and walls. The bluest galaxies of our synthetic catalogue are more strongly correlated with the surrounding tidal field than the reddest galaxies, and this correlation extends up to ˜10 h- 1 Mpc comoving distance. We also report a correlation of the projected ellipticities of blue, intermediate-mass galaxies on a similar scale at a level of 10-4 which could be a concern for cosmic shear measurements. We do not report any measurable intrinsic alignments of the reddest galaxies of our sample. This work is a first step towards the use of very realistic catalogue of synthetic galaxies to evaluate the contamination of weak lensing measurement by the intrinsic galactic alignments.

  5. Fully flooded elastohydrodynamic lubricated elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1980-01-01

    Emphasis is on fully flooded, elastohydrodynamic lubricated, elliptical contacts. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. A brief description of the relevant equations used in the elastohydrodynamic lubrication of elliptical contacts is given. The most important practical aspect of the elastohydrodynamic theory is the determination of the minimum film thickness within the contact. The maintenance of a fluid film of adequate magnitude is an essential feature of the correct operation of lubricated machine elements. The results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and the dimensionless speed, load, and materials parameters. Film thickness equations are developed for materials of high elastic modulus, such as metal, and for materials of low elastic modulus, such as rubber. In addition to the film thickness equations that are developed, plots of pressure and film thickness are presented. These theoretical solutions for film thickness have all the essential features of previously reported experimental observations based on optical interferometry. Correlation between theory and experiments is also presented.

  6. The Stellar Halos of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' × 107''), allowing us to achieve remarkably high signal-to-noise ratios of ~20-70 pixel-1 in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions σ* > 150 km s-1, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by ~50%, and only a weak correlation between σ* and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are ~ an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 Re , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high α-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  7. Event-by-event elliptic flow fluctuations from PHOBOS.

    SciTech Connect

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Physics; BNL; Inst. of Nuclear Physics; Massachusetts Inst. of Tech.; National Central Univ.; Univ. of Maryland; Univ. of Rochester

    2009-04-01

    Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in Au + Au collisions at {radical}s{sub NN} = 200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.

  8. Bounding the elliptic Mahler measure

    NASA Astrophysics Data System (ADS)

    Pinner, Christopher

    1998-11-01

    We give a simple inequality relating the elliptic Mahler measure of a polynomial to the traditional Mahler measure (via the length of the polynomial). These bounds are essentially sharp. We also give the corresponding result for polynomials in several variables.

  9. Degenerating the elliptic Schlesinger system

    NASA Astrophysics Data System (ADS)

    Aminov, G. A.; Artamonov, S. B.

    2013-01-01

    We study various ways of degenerating the Schlesinger system on the elliptic curve with R marked points. We construct a limit procedure based on an infinite shift of the elliptic curve parameter and on shifts of the marked points. We show that using this procedure allows obtaining a nonautonomous Hamiltonian system describing the Toda chain with additional spin sl(N, ℂ) degrees of freedom.

  10. Extremely Isolated Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Marcum, P.; Fanelli, M.; Aars, C.

    2006-06-01

    Isolated galaxies provide a means of assessing the evolution of galactic systems. Extremely isolated galaxies define a zero-interaction baseline for comparative studies of galaxy evolution. We present results of a search for isolated elliptical galaxies (IEGs). We utilize the optical imaging data produced by the Sloan Digital Sky Survey (SDSS) to identify candidate galaxies from Release 1-4 of the SDSS. Candidate IEGs meet strict isolation criteria: Any IEG must be separated by at least 2.5 Mpc from any neighboring non-dwarf galaxy having a MV fainter than -16.5 mag. The candidate isolated systems have no non-dwarf neighbors within a distance such that we can insure that the IEGs have never interacted with another existing galaxy since formation.In order to increase the signal-to-noise ratio, we have used the SDSS images in the u,g,r filters to create combined sets of images for each IEG. The stacked images permit a more robust determination of the morphology of the candidate galaxies. Verification that these are spheroidal systems is achieved through a bulge/disk decomposition technique using standard surface photometry. Our preliminary sample of 51 isolated systems defines a complete volume-limited population of extremely isolated early-type galaxies within a distance of 72Mpc

  11. Image Ellipticity from Atmospheric Aberrations

    SciTech Connect

    de Vries, W H; Olivier, S S; Asztalos, S J; Rosenberg, L J; Baker, K L

    2007-03-06

    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1/{radical}N). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.

  12. Decoupling antennas in printed technology using elliptical metasurface cloaks

    NASA Astrophysics Data System (ADS)

    M. Bernety, Hossein; Yakovlev, Alexander B.

    2016-01-01

    In this paper, we extend the idea of reducing the electromagnetic interactions between transmitting radiators to the case of widely used planar antennas in printed technology based on the concept of mantle cloaking. Here, we show that how lightweight elliptical metasurface cloaks can be engineered to restore the intrinsic properties of printed antennas with strip inclusions. In order to present the novel approach, we consider two microstrip-fed monopole antennas resonating at slightly different frequencies cloaked by confocal elliptical metasurfaces formed by arrays of sub-wavelength periodic elements, partially embedded in the substrate. The presence of the metasurfaces leads to the drastic suppression of mutual near-field and far-field couplings between the antennas, and thus, their radiation patterns are restored as if they were isolated. Moreover, it is worth noting that this approach is not limited to printed radiators and can be applied to other planar structures as well.

  13. Eccentricity and elliptic flow in pp collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Avsar, E.; Hatta, Y.; Flensburg, C.; Ollitrault, J.-Y.; Ueda, T.

    2011-12-01

    High-multiplicity proton-proton collisions at the LHC may exhibit collective phenomena such as elliptic flow. We study this issue using DIPSY, a brand-new Monte Carlo event generator which features almost-NLO BFKL dynamics and describes the transverse shape of the proton including all fluctuations. We predict the eccentricity of the collision as a function of the multiplicity and estimate the magnitude of elliptic flow. We suggest that flow can be signaled by a sign change in the four-particle azimuthal correlation.

  14. Energy and the Elliptical Orbit

    NASA Astrophysics Data System (ADS)

    Nettles, Bill

    2009-03-01

    In the January 2007 issue of The Physics Teacher, Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and important. This paper presents an exercise which uses an energy/angular momentum conservation model for elliptical orbits. This exercise can be done easily by an individual student and on regular notebook-sized paper.

  15. Correlation between near infrared-visible absorption, intrinsic local and global sheet resistance of poly(3,4-ethylenedioxy-thiophene) poly(styrene sulfonate) thin films

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix; Engmann, Sebastian; Presselt, Martin; Hoppe, Harald; Shokhovets, Sviatoslav; Gobsch, Gerhard

    2012-04-01

    The ordinary dielectric function of poly(3,4-ethylenedioxy-thiophene) poly(styrene sulfonate) (PEDOT:PSS) thin films was measured using a combination of spectroscopic ellipsometry and photothermal deflection spectroscopy. This method combination allows for a highly sensitive optical characterization of thin films. Hence, even the detection of weak sub-bandgap and intra-band absorptions is enabled. These intraband transitions of free charge carriers were modeled using a Drude-type oscillator to derive an intrinsic resistances for PEDOT:PSS. These optically derived resistances were compared with those determined by a 4-probe measurement setup for two different types of PEDOT:PSS and for varied annealing temperatures. Good agreement between optical and electrical measurements could be obtained for annealing temperatures smaller than 180∘C. Therefore, we conclude that the proposed combination of our two optical methods is well suited to determine electrical resistances of organic layers.

  16. The intrinsic shape of galaxies in SDSS/Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Rodríguez, Silvio; Padilla, Nelson D.

    2013-09-01

    By modelling the axis ratio distribution of Sloan Digital Sky Survey (SDSS) Data Release 8 galaxies, we find the intrinsic 3D shapes of spirals and ellipticals. We use morphological information from the Galaxy Zoo project and assume a non-parametric distribution intrinsic of shapes, while taking into account dust extinction. We measure the dust extinction of the full sample of spiral galaxies and find a smaller value than previous estimations, with an edge-on extinction of E_0 = 0.284^{+0.015}_{-0.026} in the SDSS r band. We also find that the distribution of minor to major axis ratio has a mean value of 0.267 ± 0.009, slightly larger than previous estimates mainly due to the lower extinction used; the same affects the circularity of galactic discs, which are found to be less round in shape than in previous studies, with a mean ellipticity of 0.215 ± 0.013. For elliptical galaxies, we find that the minor to major axis ratio, with a mean value of 0.584 ± 0.006, is larger than previous estimations due to the removal of spiral interlopers present in samples with morphological information from photometric profiles. These interlopers are removed when selecting ellipticals using Galaxy Zoo data. We find that the intrinsic shapes of galaxies and their dust extinction vary with absolute magnitude, colour and physical size. We find that bright elliptical galaxies are more spherical than faint ones, a trend that is also present with galaxy size, and that there is no dependence of elliptical galaxy shape with colour. For spiral galaxies, we find that the reddest ones have higher dust extinction as expected, due to the fact that this reddening is mainly due to dust. We also find that the thickness of discs increases with luminosity and size, and that brighter, smaller and redder galaxies have less round discs.

  17. Energy and the Elliptical Orbit

    ERIC Educational Resources Information Center

    Nettles, Bill

    2009-01-01

    In the January 2007 issue of "The Physics Teacher," Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and…

  18. Fourier Series and Elliptic Functions

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2003-01-01

    Non-linear second-order differential equations whose solutions are the elliptic functions "sn"("t, k"), "cn"("t, k") and "dn"("t, k") are investigated. Using "Mathematica", high precision numerical solutions are generated. From these data, Fourier coefficients are determined yielding approximate formulas for these non-elementary functions that are…

  19. The ESS elliptical cavity cryomodules

    SciTech Connect

    Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Renard, Bertrand; Olivier, Gilles; Thermeau, Jean-Pierre

    2014-01-29

    The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today’s leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.

  20. Elliptic curves and primality proving

    NASA Astrophysics Data System (ADS)

    Atkin, A. O. L.; Morain, F.

    1993-07-01

    The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. Problema, numeros primos a compositis dignoscendi, hosque in factores suos primos resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et geometrarum tum veterum tum recentiorum industriam ac sagacitatem occupavisse, tam notum est, ut de hac re copiose loqui superfluum foret.

  1. Liouville Theory and Elliptic Genera

    NASA Astrophysics Data System (ADS)

    Taormina, A.

    The structure and modular properties of N = 4 superconformal characters are reviewed and exploited, in an attempt to construct elliptic genera-like functions by decompactifying K_3. The construction is tested against expressions obtained in the context of strings propagating in background ALE spaces of type A_{N-1}, using the underlying superconformal theory N = 2 minimal ⊗ N = 2 Liouville.

  2. The Cores of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Zeilinger, W. W.

    High spatial resolution observations impose stricter constraints on theories on the presence of dark objects in galactic nuclei. Observational evidence suggests that central massive black holes are a common phenomenon in dynamically hot stellar systems such as ellipticals and bulges of spirals.

  3. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  4. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  5. Ellipticity of Rayleigh waves and crustal structure in northern Italy

    NASA Astrophysics Data System (ADS)

    Berbellini, Andrea; Morelli, Andrea; Ferreira, Ana M. G.

    2016-04-01

    Horizontal-to-vertical amplitude ratio of elliptically-polarised ground motion of Rayleigh waves depends on the local crustal structure. Its measurement therefore adds another, seldom used, tool to image shallow earth structure. Frequency-dependent sensitivity kernels are dominated by shear-wave velocity and are rather shallow, so they are a convenient tool to model sedimentary layers that nicely complement surface wave studies. We perform extensive measurements, in the period range between 10 and 110 s, on traces from about 500 globally-distributed earthquakes, occurred in years 2008 ÷ 2014, recorded by 95 stations in northern Italy - - a region including the wide basin of the Po Plain and encircling Alps and northern Apennines. The observations are well correlated with known strucure: high ellipticity correlates well with low seismic velocity (such as in the Po Plain), and low ellipticity corresponds to fast seismic velocity in hard rock environments in correspondence of Alps and Apennines. Comparison between observations and predicted ellipticity from a reference crustal model of the region (Molinari et al., 2015) shows substantial fit. Sensitivity to vS is quite non linear, but inversion is possible and may provide very useful complementary information to, e.g., surface wave phase or group velocity or receiver functions.

  6. Elliptic integrals: Symmetry and symbolic integration

    SciTech Connect

    Carlson, B.C. |

    1997-12-31

    Computation of elliptic integrals, whether numerical or symbolic, has been aided by the contributions of Italian mathematicians. Tricomi had a strong interest in iterative algorithms for computing elliptic integrals and other special functions, and his writings on elliptic functions and elliptic integrals have taught these subjects to many modern readers (including the author). The theory of elliptic integrals began with Fagnano`s duplication theorem, a generalization of which is now used iteratively for numerical computation in major software libraries. One of Lauricella`s multivariate hypergeometric functions has been found to contain all elliptic integrals as special cases and has led to the introduction of symmetric canonical forms. These forms provide major economies in new integral tables and offer a significant advantage also for symbolic integration of elliptic integrals. Although partly expository the present paper includes some new proofs and proposes a new procedure for symbolic integration.

  7. Intrinsic anion oxidation potentials.

    PubMed

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  8. Geometric intrinsic symmetries

    SciTech Connect

    Gozdz, A. Szulerecka, A.; Pedrak, A.

    2013-08-15

    The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.

  9. Cold dust in elliptical galaxies.

    NASA Astrophysics Data System (ADS)

    Wiklind, T.; Henkel, C.

    1995-05-01

    We have observed the λ1250 µm flux in 8 elliptical galaxies using the MPIfR 7-channel bolometer system attachet to the IRAM 30-m telescope. Five of the galaxies are detected at more than 3σ, two are tentatively detected and for one we obtained an upper limit. For two of the detected galaxies, the CO(2-1) line makes a significant contribution to the measured λ1250 µm flux. A comparison of the λ1250 µm fluxes, corrected for the CO(2-1) line contribution, with IRAS 60 and 100µm data shows that there is a colt dust component (Td~<20K) in two of the ellipticals. The other galaxies have λ1250 µm fluxes consistent with a one-temperature component, with Td typically between 20-30K.

  10. Elastohydrodynamic lubrication of elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1982-01-01

    Fully flooded, elastohydrodynamically lubricated, elliptical contacts are discussed. The relevant equations used in the elastohydrodynamic lubrication (EHL) of elliptical contacts are briefly described. Film thickness equations are developed for materials of high elastic modulus, such as metal, and for materials of low elastic modulus, such as rubber. In addition to the film thickness equations that are developed, plots of pressure and film thickness are presented. A theoretical study of the influence of lubricant starvation on film thickness and pressure in hard and soft elliptical elastohydrodynamic contacts is presented. From the results for both hard and soft EHL contacts a simple and important dimensionless inlet boundary distance is specified. It is also found that the film thickness for a starved condition can be written in dimensionless terms as a function of the inlet distance parameter and the film thickness for a fully flooded condition. contour plots of pressure and film thickness in and around the contact are shown for fully flooded and starved conditions. The theoretical findings are compared directly with results obtained experimentally.

  11. The correlation between the temperature dependence of the CRSS and the formation of superlattice-intrinsic stacking faults in the nickel-base superalloy PWA 1480. [critical resolved shear stress

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    The PWA 1480 nickel-base superalloy is known to exhibit a unique minimum in the critical resolved shear stress (CRSS) at about 400 C. This paper reports an observation of a deformation mechanism whose temperature dependence correlates exactly with the reduction in the CRSS. It was found that, after monotonic or cyclic deformation of PWA 1480 at 20 C, the deformation substructures typically contain high density of superlattice-intrinsic stacking faults (S-ISFs) within the gamma-prime precipitates. As the temperature of deformation is increased, the density of S-ISFs is reduced, until finally no faults are observed after deformation in the range from 400 to 705 C. The reduction in the fault density corresponds exactly to the reduction in the CRSS, and the temperature at which the fault density is zero corresponds with the minimum in the CRRS. Two possible mechanisms related to the presence of the S-ISFs in the alloy are considered.

  12. On the distribution of galaxy ellipticity in clusters

    NASA Astrophysics Data System (ADS)

    D'Eugenio, F.; Houghton, R. C. W.; Davies, R. L.; Dalla Bontà, E.

    2015-07-01

    We study the distribution of projected ellipticity n(ɛ) for galaxies in a sample of 20 rich (Richness ≥ 2) nearby (z < 0.1) clusters of galaxies. We find no evidence of differences in n(ɛ), although the nearest cluster in the sample (the Coma Cluster) is the largest outlier (P(same) < 0.05). We then study n(ɛ) within the clusters, and find that ɛ increases with projected cluster-centric radius R (hereafter the ɛ-R relation). This trend is preserved at fixed magnitude, showing that this relation exists over and above the trend of more luminous galaxies to be both rounder and more common in the centres of clusters. The ɛ-R relation is particularly strong in the subsample of intrinsically flattened galaxies (ɛ > 0.4), therefore it is not a consequence of the increasing fraction of round slow rotator galaxies near cluster centers. Furthermore, the ɛ-R relation persists for just smooth flattened galaxies and for galaxies with de Vaucouleurs-like light profiles, suggesting that the variation of the spiral fraction with radius is not the underlying cause of the trend. We interpret our findings in light of the classification of early type galaxies (ETGs) as fast and slow rotators. We conclude that the observed trend of decreasing ɛ towards the centres of clusters is evidence for physical effects in clusters causing fast rotator ETGs to have a lower average intrinsic ellipticity near the centres of rich clusters.

  13. Dynamics of cellular and extracellular cAmp in Anabaena flos-aquae (cyanophyta): intrinsic culture variability and correlation with metabolic variables

    SciTech Connect

    Francko, D.A.; Wetzel, R.G.

    1981-01-01

    The production and extracellular release of cyclic adenosine 3':5'-monophosphate (cAMP) by the blue-green alga Anabaena flos-aquae (Lyngb.) Breb. varied greatly within and between active growth phase and stationary phase and under differing nutrient regimes. Enhanced cellular cAMP production was found in actively growing Anabaena inoculated into media deficient in nitrate or phosphate, or into fresh media containing non-limiting nutrient concentrations. In stationary phase Anabaena, but not actively growing cells, the concentrations of intracellular cAMP present in cells grown under a variety of nutrient regimes could be significantly correlated to (/sup 14/C)-bicarbonate uptake by an exponential relationship.

  14. Dynamics of cellular and extracellular cAMP in Anabaena flos-aquae (Cyanophyta): intrinsic culture variability and correlation with metabolic variables

    SciTech Connect

    Francko, D.A.; Wetzel, R.G.

    1981-06-01

    The production and extracellular release of cyclic adenosine 3':5'-monophosphate (cAMP) by the blue-green alga Anabaena flos-aquae (Lyngb.) Breb. varied greatly within and between active growth phase and stationary phase and under differing nutrient regimes. Enhanced cellular cAMP production was found in actively growing Anaebaena inoculated into media deficient in nitrate or phosphate, or into fresh media containing non-limiting nutrient concentrations. In stationary phase Anabaena, but not actively growing cells, the concentrations of intracellular cAMP present in cells grown under a variety of nutrient regimes could be significantly correlated to (/sup 14/C)-bicarbonate uptake by an exponential relationship.

  15. Lytic Gene Expression Is Frequent in HSV-1 Latent Infection and Correlates with the Engagement of a Cell-Intrinsic Transcriptional Response

    PubMed Central

    Ma, Joel Z.; Russell, Tiffany A.; Spelman, Tim

    2014-01-01

    Herpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that this state is not entirely quiescent. Alternatively, these findings can be interpreted as signs of a low, but constant level of abortive reactivation punctuating otherwise silent latency. Using single cell analysis of transcription in mouse dorsal root ganglia, we reveal that HSV-1 latency is highly dynamic in the majority of neurons. Specifically, transcription from areas of the HSV genome associated with at least one viral lytic gene occurs in nearly two thirds of latently-infected neurons and more than half of these have RNA from more than one lytic gene locus. Further, bioinformatics analyses of host transcription showed that progressive appearance of these lytic transcripts correlated with alterations in expression of cellular genes. These data show for the first time that transcription consistent with lytic gene expression is a frequent event, taking place in the majority of HSV latently-infected neurons. Furthermore, this transcription is of biological significance in that it influences host gene expression. We suggest that the maintenance of HSV latency involves an active host response to frequent viral activity. PMID:25058429

  16. Commutative Families of the Elliptic Macdonald Operator

    NASA Astrophysics Data System (ADS)

    Saito, Yosuke

    2014-03-01

    In the paper [J. Math. Phys. 50 (2009), 095215, 42 pages], Feigin, Hashizume, Hoshino, Shiraishi, and Yanagida constructed two families of commuting operators which contain the Macdonald operator (commutative families of the Macdonald operator). They used the Ding-Iohara-Miki algebra and the trigonometric Feigin-Odesskii algebra. In the previous paper [arXiv:1301.4912], the present author constructed the elliptic Ding-Iohara-Miki algebra and the free field realization of the elliptic Macdonald operator. In this paper, we show that by using the elliptic Ding-Iohara-Miki algebra and the elliptic Feigin-Odesskii algebra, we can construct commutative families of the elliptic Macdonald operator. In Appendix, we will show a relation between the elliptic Macdonald operator and its kernel function by the free field realization.

  17. Do elliptical galaxies have thick disks?

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Wright, A. E.

    1990-01-01

    The authors discuss new evidence which supports the existence of thick disks in elliptical/SO galaxies. Numerical simulations of weak interactions with thick disk systems produce shell structures very similar in appearance to those observed in many shell galaxies. The authors think this model presents a more plausible explanation for the formation of shell structures in elliptical/SO galaxies than does the merger model and, if correct, supports the existence of thick disks in elliptical/SO galaxies.

  18. Dark matter in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  19. A relation between the dark mass of elliptical galaxies and their shape

    NASA Astrophysics Data System (ADS)

    Deur, A.

    2014-02-01

    We have studied a large number of elliptical galaxies and found a correlation between their dark matter content and the ellipticity of their visible shape. The galaxies were strictly selected so that only typical medium-size elliptical galaxies were considered. Galaxies with unusual characteristics were rejected to minimize point-to-point data scatter and avoid systematic biases. Data from six different techniques of extracting the galactic dark matter content were used to avoid methodological biases. A thorough investigation of the interrelation between attributes of elliptical galaxies was carried out to assess whether the correlation originates from an observational bias, but no such origin could be identified. At face value, the correlation found implies that at equal luminosities, rounder medium-size elliptical galaxies appear to contain less dark matter than flatter elliptical galaxies, e.g. the rounder galaxies are on average four times less massive than the flatter ones. This is puzzling in the context of the conventional model of cosmological structure formation.

  20. Isolated elliptical galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Lacerna, I.; Hernández-Toledo, H. M.; Avila-Reese, V.; Abonza-Sane, J.; del Olmo, A.

    2016-04-01

    Context. We have studied a sample of 89 very isolated, elliptical galaxies at z < 0.08 and compared their properties with elliptical galaxies located in a high-density environment such as the Coma supercluster. Aims: Our aim is to probe the role of environment on the morphological transformation and quenching of elliptical galaxies as a function of mass. In addition, we elucidate the nature of a particular set of blue and star-forming isolated ellipticals identified here. Methods: We studied physical properties of ellipticals, such as color, specific star formation rate, galaxy size, and stellar age, as a function of stellar mass and environment based on SDSS data. We analyzed the blue and star-forming isolated ellipticals in more detail, through photometric characterization using GALFIT, and infer their star formation history using STARLIGHT. Results: Among the isolated ellipticals ≈20% are blue, ≲8% are star forming, and ≈10% are recently quenched, while among the Coma ellipticals ≈8% are blue and just ≲1% are star forming or recently quenched. There are four isolated galaxies (≈4.5%) that are blue and star forming at the same time. These galaxies, with masses between 7 × 109 and 2 × 1010 h-2 M⊙, are also the youngest galaxies with light-weighted stellar ages ≲1 Gyr and exhibit bluer colors toward the galaxy center. Around 30-60% of their present-day luminosity, but only <5% of their present-day mass, is due to star formation in the last 1 Gyr. Conclusions: The processes of morphological transformation and quenching seem to be in general independent of environment since most of elliptical galaxies are "red and dead", although the transition to the red sequence should be faster for isolated ellipticals. In some cases, the isolated environment seems to propitiate the rejuvenation of ellipticals by recent (<1 Gyr) cold gas accretion.

  1. Matrix factorizations and elliptic fibrations

    NASA Astrophysics Data System (ADS)

    Omer, Harun

    2016-09-01

    I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU (5) fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.

  2. Subsuns, Bottlinger's rings, and elliptical halos.

    PubMed

    Lynch, D K; Gedzelman, S D; Fraser, A B

    1994-07-20

    Subsuns, Bottlinger's rings, and elliptical halos are simulated by the use of a Monte Carlo model; reflection of sunlight from almost horizontal ice crystals is assumed. Subsuns are circular or elliptical spots seen at the specular reflection point when one flies over cirrus or cirrostratus clouds. Bottlinger's rings are rare, almost elliptical rings centered about the subsun. Elliptical halos are small rings of light centered around the Sun or the Moon that rarely occur with other halo phenomena. Subsuns and Bottlinger's rings can be explained by reflection from a single crystal, whereas elliptical halos require reflection from two separate crystals. All three phenomena are colorless and vertically elongated with an eccentricity that increases with increasing solar zenith angle. For several cases of Bottlinger's rings the simulations are compared with density scans of photographs. Clouds that consist of large swinging or gyrating plates and dendritic crystals, which form near -15 °C, seem the most likely ca didates to produce the rings and elliptical halos. Meteorological evidence is presented that supports these conditions for elliptical halos. Simulations suggest that the most distinct elliptical halos may be produced by hybrid clouds that contain both horizontal and gyrating crystals.

  3. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  4. Intrinsic Analysis Training Manual.

    ERIC Educational Resources Information Center

    Gow, Doris T.

    This manual is for the training of linking agents between Education R&D and schools and for training teachers in the process of intrinsic analysis of curriculum materials. Intrinsic analysis means analysis of the instruction or process through examination of the materials, or artifacts, including teacher and student materials, developer's…

  5. Thermopile detector of light ellipticity

    PubMed Central

    Lu, Feng; Lee, Jongwon; Jiang, Aiting; Jung, Seungyong; Belkin, Mikhail A.

    2016-01-01

    Polarimetric imaging is widely used in applications from material analysis to biomedical diagnostics, vision and astronomy. The degree of circular polarization, or light ellipticity, is associated with the S3 Stokes parameter which is defined as the difference in the intensities of the left- and right-circularly polarized components of light. Traditional way of determining this parameter relies on using several external optical elements, such as polarizers and wave plates, along with conventional photodetectors, and performing at least two measurements to distinguish left- and right-circularly polarized light components. Here we theoretically propose and experimentally demonstrate a thermopile photodetector element that provides bipolar voltage output directly proportional to the S3 Stokes parameter of the incident light. PMID:27703152

  6. Elliptic functions and maximal unitarity

    NASA Astrophysics Data System (ADS)

    Søgaard, Mads; Zhang, Yang

    2015-04-01

    Scattering amplitudes at loop level can be reduced to a basis of linearly independent Feynman integrals. The integral coefficients are extracted from generalized unitarity cuts which define algebraic varieties. The topology of an algebraic variety characterizes the difficulty of applying maximal cuts. In this work, we analyze a novel class of integrals of which the maximal cuts give rise to an algebraic variety with irrational irreducible components. As a phenomenologically relevant example, we examine the two-loop planar double-box contribution with internal massive lines. We derive unique projectors for all four master integrals in terms of multivariate residues along with Weierstrass' elliptic functions. We also show how to generate the leading-topology part of otherwise infeasible integration-by-parts identities analytically from exact meromorphic differential forms.

  7. Starved elastohydrodynamic lubricated elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1980-01-01

    A theoretical study of the influence of lubricant starvation on film thickness and pressure in hard and soft elliptical elastohydrodynamic contacts is presented. From the results for both hard and soft EHL contacts a simple and important dimensionless inlet boundary distance is specified. This inlet boundary defines whether a fully flooded or a starved condition exists in the contact. Furthermore it is found that the film thickness for a starved condition could be written in dimensionless terms as a function of the inlet distance parameter and the film thickness for a fully flooded condition. Contour plots of pressure and film thickness in and around the contact are shown for fully flooded and starved conditions. The theoretical findings are compared directly with results obtained experimentally.

  8. Elliptical orbit performance computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program which generates and plots elliptical orbit performance capability of space boosters for presentation purposes is described. Orbital performance capability of space boosters is typically presented as payload weight as a function of perigee and apogee altitudes. The parameters are derived from a parametric computer simulation of the booster flight which yields the payload weight as a function of velocity and altitude at insertion. The process of converting from velocity and altitude to apogee and perigee altitude and plotting the results as a function of payload weight is mechanized with the ELOPE program. The program theory, user instruction, input/output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  9. Thermopile detector of light ellipticity

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Lee, Jongwon; Jiang, Aiting; Jung, Seungyong; Belkin, Mikhail A.

    2016-10-01

    Polarimetric imaging is widely used in applications from material analysis to biomedical diagnostics, vision and astronomy. The degree of circular polarization, or light ellipticity, is associated with the S3 Stokes parameter which is defined as the difference in the intensities of the left- and right-circularly polarized components of light. Traditional way of determining this parameter relies on using several external optical elements, such as polarizers and wave plates, along with conventional photodetectors, and performing at least two measurements to distinguish left- and right-circularly polarized light components. Here we theoretically propose and experimentally demonstrate a thermopile photodetector element that provides bipolar voltage output directly proportional to the S3 Stokes parameter of the incident light.

  10. Environmental effects on the dwarf elliptical galaxies in the Virgo cluster

    SciTech Connect

    Ichikawa, S.; Okamura, S.; Kodaira, K.; Wakamatsu, K.

    1988-07-01

    Published observational data on 98 Virgo-cluster dwarf ellipticals are compiled and analyzed statistically, applying the Kolmogorov-Smirnov test to evaluate the significance of correlations between several photometric parameters and the environmental parameters (1) projected distance from the cluster center, (2) distance from the nearest bright galaxy, and (3) local number density. The results are presented in extensive graphs and discussed in detail, and it is shown that galaxy brightness and diameter are not correlated with (2) or (3), but well correlated with (1), both being greater within 5 deg of the center than beyond that distance. These findings are found to support theoretical models in which dwarf ellipticals either have progenitors with very similar characteristics or form by internally driven mass loss from more massive elliptical systems; models based on ram-pressure stripping or tidal interactions appear to be ruled out. 53 references.

  11. An experimental analysis of elliptical adhesive contact

    NASA Astrophysics Data System (ADS)

    Sümer, Bilsay; Onal, Cagdas D.; Aksak, Burak; Sitti, Metin

    2010-06-01

    The elliptical adhesive contact is studied experimentally utilizing two hemicylinders of elastomeric poly(dimethylsiloxane) (PDMS). Experimental results are compared with the recent approximate Johnson-Kendall-Roberts (JKR) theory for elliptical contacts, and the deviation of the experiments from this theory is discussed in detail. To do this, the cylinders are placed with different skew angles with respect to each other in order to emulate the effect of orientation. The maximum adhesion force and the size of the contact zone are determined experimentally under the action of surface energy. The difference of the maximum adhesion force between experiments and theory is found to increase as the contact area goes from mildly elliptical to slim elliptical contact. Similarly, it is observed that the contact area can be approximated to have elliptical geometry for a wide range of skew angles while a deviation is observed for slim elliptical contacts. Moreover, the reduction in the contact area is observed to be nonself-similar during detachment from an elliptical shape to a circular one.

  12. The intrinsic shape of NGC 3379

    NASA Technical Reports Server (NTRS)

    Statler, Thomas S.

    1994-01-01

    Photometric and kinematic data from the literature are combined with new dynamical models to derive the intrinsic shape of the 'standard' elliptical galaxy NGC 3379. The parameters that are best constrained are the dynamical triaxiality T (essentially the triaxiality of the total mass distribution) and the short-to long axis ratio of the light distribution c(sub L). The inferred shape is given by a Bayesian probability distribution in the (T, c(sub L) plane. Assuming a uniform prior, the most probable shape is oblate with a flattening of c(sub L) = 87. The distribution is strongly non-Gaussian, however, and the expectation values, (T) = .31 (c(sub L) = .75, imply a flatter and more triaxial figure. The 68% highest posterior density region allows more triaxial shapes as long as they are fairly round, or flatter shapes as long as they are nearly oblate. These results are essentially unchanged if the galaxy is assumed to rotate about its short axis, or if it is modeled as an S0 with a negligible-mass disk rather than as an elliptical. The suggestion of Capaccioli et al. (ApJ, 371, 535 (1991)) that NGC 3379 is a rather flat, triaxial S0 galaxy is found to be improbable at the 98% level; this conclusion is largely independent of the bulge-to-disk ratio or the relative rotation speeds of the two components.

  13. Elliptic Functions with Disconnected Julia Sets

    NASA Astrophysics Data System (ADS)

    Koss, Lorelei

    2016-06-01

    In this paper, we investigate elliptic functions of the form fΛ = 1/(1 + (℘Λ)2), where ℘Λ is the Weierstrass elliptic function on a real rhombic lattice. We show that a typical function in this family has a superattracting fixed point at the origin and five other equivalence classes of critical points. We investigate conditions on the lattice which guarantee that fΛ has a double toral band, and we show that this family contains the first known examples of elliptic functions for which the Julia set is disconnected but not Cantor.

  14. Microwave gas breakdown in elliptical waveguides

    SciTech Connect

    Koufogiannis, I. D.; Sorolla, E. Mattes, M.

    2014-01-15

    This paper analyzes the microwave gas discharge within elliptical waveguides excited by the fundamental mode. The Rayleigh-Ritz method has been applied to solve the continuity equation. The eigenvalue problem defined by the breakdown condition has been solved and the effective diffusion length of the elliptical waveguide has been calculated, what is used to find the corona threshold. This paper extends the microwave breakdown model developed for circular waveguides and shows the better corona withstanding capabilities of elliptical waveguides. The corona breakdown electric field threshold obtained with the variational method has been compared with the one calculated with the Finite Elements Method, showing excellent agreement.

  15. Radial Motions in Disk Stars: Ellipticity or Secular Flows?

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; González-Fernández, C.

    2016-06-01

    Average stellar orbits of the Galactic disk may have some small intrinsic ellipticity which breaks the exact axisymmetry and there may also be some migration of stars inwards or outwards. Both phenomena can be detected through kinematic analyses. We use the red clump stars selected spectroscopically from the APO Galactic Evolution Experiment, with known distances and radial velocities, to measure the radial component of the Galactocentric velocities within 5 kpc < R < 16 kpc, | b| \\lt 5^\\circ , and within 20° from the Sun–Galactic center line. The average Galactocentric radial velocity is VR = (1.48 ± 0.35)[R(kpc) ‑ (8.8 ± 2.7)] km s‑1 outwards in the explored range, with a higher contribution from stars below the Galactic plane. Two possible explanations can be given for this result: (i) the mean orbit of the disk stars is intrinsically elliptical with a Galactocentric radial gradient of eccentricity around 0.01 kpc‑1 or (ii) there is a net secular expansion of the disk, in which stars within R ≈ 9–11 kpc are migrating to the region R ≳ 11 kpc at the rate of ∼2 M⊙ yr‑1, and stars with R ≲ 9 kpc are falling toward the center of the Galaxy. This migration ratio would be unattainable for a long time and should decelerate, otherwise the Galaxy would fade away in around 1 Gyr. At present, both hypotheses are speculative and one would need data on the Galactocentric radial velocities for other azimuths different to the center or anticenter in order to confirm one of the scenarios.

  16. Radial Motions in Disk Stars: Ellipticity or Secular Flows?

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; González-Fernández, C.

    2016-06-01

    Average stellar orbits of the Galactic disk may have some small intrinsic ellipticity which breaks the exact axisymmetry and there may also be some migration of stars inwards or outwards. Both phenomena can be detected through kinematic analyses. We use the red clump stars selected spectroscopically from the APO Galactic Evolution Experiment, with known distances and radial velocities, to measure the radial component of the Galactocentric velocities within 5 kpc < R < 16 kpc, | b| \\lt 5^\\circ , and within 20° from the Sun-Galactic center line. The average Galactocentric radial velocity is VR = (1.48 ± 0.35)[R(kpc) - (8.8 ± 2.7)] km s-1 outwards in the explored range, with a higher contribution from stars below the Galactic plane. Two possible explanations can be given for this result: (i) the mean orbit of the disk stars is intrinsically elliptical with a Galactocentric radial gradient of eccentricity around 0.01 kpc-1 or (ii) there is a net secular expansion of the disk, in which stars within R ≈ 9-11 kpc are migrating to the region R ≳ 11 kpc at the rate of ˜2 M⊙ yr-1, and stars with R ≲ 9 kpc are falling toward the center of the Galaxy. This migration ratio would be unattainable for a long time and should decelerate, otherwise the Galaxy would fade away in around 1 Gyr. At present, both hypotheses are speculative and one would need data on the Galactocentric radial velocities for other azimuths different to the center or anticenter in order to confirm one of the scenarios.

  17. Transition on elliptic cones at Mach 8

    NASA Astrophysics Data System (ADS)

    Huntley, Mark Bradford

    2000-10-01

    Flow visualizations of boundary layer transition on two sharp-nosed elliptic cones at Mach 8 are presented. The elliptic cone is a relevant three-dimensional flow field since it represents a generic hypersonic lifting vehicle shape. Experiments utilize carbon dioxide enhanced Filtered Rayleigh scattering to produce planar single-shot and motion picture images. CO2 is injected into the flow upstream of the tunnel stagnation chamber and subsequently condenses into nanoscale clusters during the nozzle expansion process. The clusters sublimate as they enter the hot boundary layer, and Rayleigh images capture the interface that exists between the regions of condensed (freestream) and sublimated (boundary layer) carbon dioxide. Boundary layers ranging from laminar to late-transitional in character are imaged using streamwise, spanwise, and planform laser sheet orientations. Characteristics of observed instabilities are quantified using pdf profiles, power spectrum analysis, and autocorrelation results derived from single-shot images. A new MHz-rate imaging system is also used to produce motion pictures images and volumetric reconstructions of the boundary layer. The pressure gradient and associated crossflow from the major axis to the minor axis of the cone causes increased growth and subsequent early transition of the centerline boundary layer. The convection velocity and temporal evolution of structures appearing on both the centerline and off-axis regions is studied using cross correlation procedures. Volumetric image sets of the centerline reveal hairpin structures characteristic of the early stages of subsonic turbulent spot formation. In the off-axis regions, planform single-shot images reveal a pattern of finger-like crests in the boundary layer. At higher Reynolds numbers the breakdown of these crests involves the formation of a series of chain-like structures. The behavior appears qualitatively similar to visualizations of crossflow vortex breakdown in

  18. Ellipticity of Rayleigh waves in basin and hard-rock sites in Northern Italy

    NASA Astrophysics Data System (ADS)

    Berbellini, Andrea; Morelli, Andrea; Ferreira, Ana M. G.

    2016-07-01

    We measure ellipticity of teleseismic Rayleigh waves at 95 seismic stations in Northern Italy, for wave period between 10 and 110 s, using an automatic technique and a large volume of high-quality seismic recordings from over 500 global earthquakes that occurred in 2008-2014. Northern Italy includes a wide range of crustal structures, from the wide and deep Po Plain sedimentary basin to outcropping sedimentary and crystalline rocks in the Northern Apennines and Alps. It thus provides an excellent case for studying the influence of shallow earth structure on polarization of surface waves. The ellipticity measurements show excellent spatial correlation with geological features in the region, such as high ellipticity associated with regions of low seismic velocity in the Po Plain and low ellipticity values in faster, hard rock regions in the Alps and Apennine mountains. Moreover, the observed ellipticity values also relate to the thickness of the basement, as highlighted by observed differences beneath the Alps and the Apennines. Comparison between observations and predicted ellipticity from a reference crustal model of the region show substantial fit, particularly for T ˜ 38 s data. Discrepancy for shorter wave period suggests that slight modifications of the model are needed, and that the ellipticity measurements could help to better constrain the shallow crustal structure of the region. Predictions for the Po Plain are larger than the observations by a factor of four or more and transition from retrograde to prograde Rayleigh wave motion at the surface for periods of T ˜ 10-13 s is predicted for seismic stations in the plain. Analysis of corresponding real data indicates a possible detection of teleseismic prograde particle motion, but the weak teleseismic earthquake signals are mixed with ambient noise signals at the predicted, short, transition periods. Detection of the period of polarity inversion from the joint analysis of earthquake and ambient noise

  19. The noise from supersonic elliptic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Bhat, Thonse R. S.

    1992-01-01

    This paper presents calculations of the noise radiated by a supersonic elliptic jet. The large scale structures in the jet, that are the predominant source of noise in the downstream direction, are modeled as instability waves. The evolution of the instability waves is determined by a local, linear, inviscid analysis. An expression is derived for the acoustic field outside the jet and the far field directivity associated with each instability wave. Calculations are performed for a Mach 1.5 elliptic jet with aspect ratio 2:1 and a Mach 2.0 elliptic jet with aspect ratio 2:1 and a Mach 2.0 elliptic jet with aspect ratio 3:1. The mean flow development is taken from experimental results. Comparisons are made with far field acoustic measurements.

  20. Elliptic and parabolic equations for measures

    NASA Astrophysics Data System (ADS)

    Bogachev, Vladimir I.; Krylov, Nikolai V.; Röckner, Michael

    2009-12-01

    This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L^p-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.

  1. Elastohydrodynamic lubrication of elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1981-01-01

    The determination of the minimum film thickness within contact is considered for both fully flooded and starved conditions. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. The fully flooded results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and the dimensionless speed, load, and materials parameters. These results are applied to materials of high elastic modulus (hard EHL), such as metal, and to materials of low elastic modulus(soft EHL), such as rubber. In addition to the film thickness equations that are developed, contour plots of pressure and film thickness are given which show the essential features of elastohydrodynamically lubricated conjunctions. The crescent shaped region of minimum film thickness, with its side lobes in which the separation between the solids is a minimum, clearly emerges in the numerical solutions. In addition to the 3 presented for the fully flooded results, 15 more cases are used for hard EHL contacts and 18 cases are used for soft EHL contacts in a theoretical study of the influence of lubricant starvation on film thickness and pressure. From the starved results for both hard and soft EHL contacts, a simple and important dimensionless inlet boundary distance is specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Contour plots of pressure and film thickness in and around the contact are shown for conditions.

  2. Elliptical instability in the planetary fluid cores

    NASA Astrophysics Data System (ADS)

    Moradi, Ali

    Elliptical instability may be excited in any rotating flow with elliptically deformed streamlines. Investigating this instability in containers with spheroidal or ellipsoidal boundaries is of geophysical and astrophysical interest as many stars and planets are either rotating ellipsoidal fluid bodies or have substantial fluid cores which are either ellipsoidal, in the absence of a solid inner core, or ellipsoidal shells such as the Earth's fluid core; elliptical instability may be excited in these bodies as a result of the gravitational pull of a secondary body such as a moon or a large asteroid orbiting these bodies. In this thesis, the nonlinear evolution of elliptical instability in an inviscid incompressible rotating triaxial ellipsoid is numerically studied using the least-square finite element method. After validating the method by reproducing some known results, it is applied to other configurations in order to investigate some open questions on this subject, namely, the effects of the oblateness of the ellipsoid and the frequency ratio of the orbital speed of the secondary body on the evolution of the elliptical instability. We have found that if the parameters of the system, i.e. the flattening ratio and the frequency ratio of the background rotation, are in the range of the spin-over instability, a repetitive three-dimensional rigorous motion is maintained indefinitely; otherwise, instability may be excited initially, once the streamlines become elliptical, for certain ranges of the system parameters; however, as time elapses the motion becomes two dimensional with small displacement amplitudes in x- and y- directions.

  3. Lipschitz Regularity for Elliptic Equations with Random Coefficients

    NASA Astrophysics Data System (ADS)

    Armstrong, Scott N.; Mourrat, Jean-Christophe

    2016-01-01

    We develop a higher regularity theory for general quasilinear elliptic equations and systems in divergence form with random coefficients. The main result is a large-scale L ∞-type estimate for the gradient of a solution. The estimate is proved with optimal stochastic integrability under a one-parameter family of mixing assumptions, allowing for very weak mixing with non-integrable correlations to very strong mixing (for example finite range of dependence). We also prove a quenched L 2 estimate for the error in homogenization of Dirichlet problems. The approach is based on subadditive arguments which rely on a variational formulation of general quasilinear divergence-form equations.

  4. Rayleigh-wave ellipticity and shallow structure in sedimentary basins: the Po Plain (northern Italy)

    NASA Astrophysics Data System (ADS)

    Berbellini, A.; Morelli, A.; Ferreira, A. M. G.

    2015-12-01

    The amplitude ratio between horizontal and vertical components of Rayleigh waves (also known as ellipticity) is in principle uniquely sensitive to local earth structure beneath each recording station. Rayleigh wave ellipticity is mostly influenced by the shallowest layers, so it can be effectively used to infer the structure of the uppermost crust, with particular relevance for sedimentary environments. We implement an automatic method to measure Rayleigh wave ellipticity, and extensively apply it to teleseismic records from the northern part of Italy, for a period range between 10s and 130s. As expected, no appreciable correlation with epicenter distance or azimuth can be seen, but rather a strong correlation with local structure: generally high horizontal to vertical amplitude ratios are seen in sedimentary settings, with respect to Alpine and Apenninic crystalline-rock terrains. We verify that shortest usable period may be limited by very low shear-wave velocity in shallow sediments, when the assumed retrograde elliptical particle motion polarisation for the fundamental mode breaks off. The highly non-linear sensitivity of frequency-dependent ellipticity curves can then be inverted using a direct search method to infer shear wave velocity profiles below stations. By comparing our results with local a priori geological information we show that robust information can indeed be retrieved.

  5. Intrinsic Patterns of Human Activity

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Ivanov, Plamen Ch.; Chen, Zhi; Hilton, Michael; Stanley, H. Eugene; Shea, Steven

    2003-03-01

    Activity is one of the defining features of life. Control of human activity is complex, being influenced by many factors both extrinsic and intrinsic to the body. The most obvious extrinsic factors that affect activity are the daily schedule of planned events, such as work and recreation, as well as reactions to unforeseen or random events. These extrinsic factors may account for the apparently random fluctuations in human motion observed over short time scales. The most obvious intrinsic factors are the body clocks including the circadian pacemaker that influences our sleep/wake cycle and ultradian oscillators with shorter time scales [2, 3]. These intrinsic rhythms may account for the underlying regularity in average activity level over longer periods of up to 24 h. Here we ask if the known extrinsic and intrinsic factors fully account for all complex features observed in recordings of human activity. To this end, we measure activity over two weeks from forearm motion in subjects undergoing their regular daily routine. Utilizing concepts from statistical physics, we demonstrate that during wakefulness human activity possesses previously unrecognized complex dynamic patterns. These patterns of activity are characterized by robust fractal and nonlinear dynamics including a universal probability distribution and long-range power-law correlations that are stable over a wide range of time scales (from minutes to hours). Surprisingly, we find that these dynamic patterns are unaffected by changes in the average activity level that occur within individual subjects throughout the day and on different days of the week, and between subjects. Moreover, we find that these patterns persist when the same subjects undergo time-isolation laboratory experiments designed to account for the phase of the circadian pacemaker, and control the known extrinsic factors by restricting behaviors and manipulating scheduled events including the sleep/wake cycle. We attribute these newly

  6. DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. II. 'CUSP' ELLIPTICALS

    SciTech Connect

    Hopkins, Philip F.; Cox, Thomas J.; Dutta, Suvendra N.; Hernquist, Lars; Kormendy, John; Lauer, Tod R.

    2009-03-15

    We study the origin and properties of 'extra' or 'excess' central light in the surface brightness profiles of cusp or power-law elliptical galaxies. Dissipational mergers give rise to two-component profiles: an outer profile established by violent relaxation acting on stars already present in the progenitor galaxies prior to the final stages of the merger, and an inner stellar population comprising the extra light, formed in a compact central starburst. By combining a large set of hydrodynamical simulations with data that span a broad range of profiles at various masses, we show that observed cusp ellipticals appear consistent with the predicted 'extra light' structure, and we use our simulations to motivate a two-component description of the observations that allows us to examine how the properties and mass of this component scale with, e.g., the mass, gas content, and other properties of the galaxies. We show how to robustly separate the physically meaningful extra light and outer, violently relaxed profile, and demonstrate that the observed cusps and 'extra light' are reliable tracers of the degree of dissipation in the spheroid-forming merger. We show that the typical degree of dissipation is a strong function of stellar mass, roughly tracing the observed gas fractions of disks of the same mass over the redshift range z {approx} 0-2. We demonstrate a correlation between the strength of this component and effective radius at fixed mass, in the sense that systems with more dissipation are more compact, sufficient to explain the discrepancy in the maximum phase-space and mass densities of ellipticals and their progenitor spirals. We show that the outer shape of the light profile in simulated and observed systems (when fit to properly account for the central light) does not depend on mass, with a mean outer Sersic index {approx}2.5. We also explore how this relates to, e.g., the shapes, kinematic properties, and stellar population gradients of ellipticals. Extra

  7. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta

    2015-04-01

    The intrinsic alignment of galaxies with the large-scale density field is an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg+) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensor but that luminosity versus mass weighting has only negligible effects. Both ED and wg+ correlations increase in amplitude with subhalo mass (in the range of 1010-6.0 × 1014 h-1 M⊙), with a weak redshift dependence (from z = 1 to 0.06) at fixed mass. At z ˜ 0.3, we predict a wg+ that is in reasonable agreement with Sloan Digital Sky Survey luminous red galaxy measurements and that decreases in amplitude by a factor of ˜5-18 for galaxies in the Large Synoptic Survey Telescope survey. We also compared the intrinsic alignments of centrals and satellites, with clear detection of satellite radial alignments within their host haloes. Finally, we show that wg+ (using subhaloes as tracers of density) and wδ+ (using dark matter density) predictions from the simulations agree with that of non-linear alignment (NLA) models at scales where the two-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The one-halo term induces a scale-dependent bias at small scales which is not modelled in the NLA model.

  8. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics

    DOE PAGESBeta

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta

    2015-03-11

    The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensormore » but that luminosity versus mass weighting has only negligible effects. Both ED and wg₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M⊙), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a wg₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that wg₊ (using subhalos as tracers of density and wδ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.« less

  9. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics

    SciTech Connect

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta

    2015-03-11

    The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensor but that luminosity versus mass weighting has only negligible effects. Both ED and wgcorrelations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a wg₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that wg₊ (using subhalos as tracers of density and wδ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.

  10. Role of intrinsic width in fragment momentum distributions in heavy ion collisions.

    PubMed

    Tripathi, R K; Townsend, L W; Khan, F

    1994-04-01

    It is demonstrated that the intrinsic widths incorporating correlations in conjunction with dynamical contributions give better agreement with experiments for collisions in the energy range of 200A MeV to 2A GeV than using only intrinsic widths without correlations. The sensitivity of the intrinsic width decreases with increasing projectile mass. A simple recipe for calculating intrinsic width with correlations is presented.

  11. Predicting Intrinsic Motivation

    ERIC Educational Resources Information Center

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the extent to…

  12. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  13. Vortex dynamics in thin elliptic ferromagnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Wysin, G. M.

    2015-10-01

    Vortex gyrotropic motion in thin ferromagnetic nanodisks of elliptical shape is described here for a pure vortex state and for a situation with thermal fluctuations. The system is analyzed using numerical simulations of the Landau-Lifshitz-Gilbert (LLG) equations, including the demagnetization field calculated with a Green's function approach for thin film problems. At finite temperature the thermalized dynamics is found using a second order Heun algorithm for a magnetic Langevin equation based on the LLG equations. The vortex state is stable only within a limited range of ellipticity, outside of which a quasi-single-domain becomes the preferred minimum energy state. A vortex is found to move in an elliptical potential, whose force constants along the principal axes are determined numerically. The eccentricity of vortex motion is directly related to the force constants. Elliptical vortex motion is produced spontaneously by thermal fluctuations. The vortex position and velocity distributions in thermal equilibrium are Boltzmann distributions. The results show that vortex motion in elliptical disks can be described by a Thiele equation.

  14. Birefringence Variation With High Pressure And Temperature In Elliptical Core Single Mode Fiber.

    NASA Astrophysics Data System (ADS)

    Domanski, Andrzej W.; Bock, Wojtek J.

    1990-01-01

    High - birefringent optical fiber with elliptical core was placed inside a high pressure and temperature controlled measuring chamber equipped with special fiber optic leadthrough system. The experiments were carried out in University of Quebec at Hull Optoelectronics Laboratory by using Harwood DWT-35 dead weight tester as a pressure standard up to 100MPa. Linearly polarised light was injected into fiber. Then changes in polarisation state of light passed through the fiber in term of hydrostatic pressure and temperature variation were filvestigated. Birefringence variations were determined by measurements of changes in beat length ofthe siagle mode elliptical core fiber. The fiber was prepared in laboratories of Maria Curie University at Lublin. Based on the results obtained we could determined hydrostatic pressure of compensation of intrinsic stress i.e. ,the pressure for which birefringence is diminished to zero.

  15. Metallicity and the level of the ultraviolet rising branch in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Faber, S. M.

    1986-01-01

    This final report concerns a project to study the systematics of the ultraviolet flux level in elliptical galaxies. Prior to the inception of this work, the systematic behavior of the ultraviolet flux level was basically unknown and ultraviolet fluxes were observed to vary greatly from galaxy to galaxy. There was a suggestion, however, that there might be a dependence of ultraviolet flux on galaxy metallicity, but the correlation was based on just six galaxies. IUE spectra of elliptical galaxies have been reanalyzed and placed on a consistent, homogenous flux system. The major conclusion is a confirmation of the original hypothesis: galaxies with stronger Mg2 lines show enhanced ultraviolet flux.

  16. The Advanced Light Source elliptically polarizing undulator

    SciTech Connect

    Marks, S.; Cortopassi, C.; DeVries, J.

    1997-05-01

    An elliptically polarizing undulator (EPU) for the Advanced Light Source (ALS) has been designed and is currently under construction. The magnetic design is a moveable quadrant pure permanent magnet structure featuring adjustable magnets to correct phase errors and on-axis field integrals. The device is designed with a 5.0 cm period and will produce variably polarized light of any ellipticity, including pure circular and linear. The spectral range at 1.9 GeV for typical elliptical polarization with a degree of circular polarization greater than 0.8 will be from 100 eV to 1,500 eV, using the first, third, and fifth harmonics. The device will be switchable between left and right circular modes at a frequency of up to 0.1 Hz. The 1.95 m long overall length will allow two such devices in a single ALS straight sector.

  17. Trait Intrinsic and Extrinsic Motivations, Academic Performance, and Creativity in Hong Kong College Students.

    ERIC Educational Resources Information Center

    Moneta, Giovanni B.; Siu, Christy M. Y.

    2002-01-01

    Examines the effects of trait intrinsic and extrinsic motivations, measured by the Work Preference Inventory, on creativity and academic performance. In an experimental creative writing task, intrinsic motivation correlated with creativity. In a follow-up study, intrinsic motivation correlated negatively with year-1 GPA, whereas extrinsic…

  18. Spontaneous motion of an elliptic camphor particle

    NASA Astrophysics Data System (ADS)

    Kitahata, Hiroyuki; Iida, Keita; Nagayama, Masaharu

    2013-01-01

    The coupling between deformation and motion in a self-propelled system has attracted broader interest. In the present study, we consider an elliptic camphor particle for investigating the effect of particle shape on spontaneous motion. It is concluded that the symmetric spatial distribution of camphor molecules at the water surface becomes unstable first in the direction of a short axis, which induces the camphor disk motion in this direction. Experimental results also support the theoretical analysis. From the present results, we suggest that when an elliptic particle supplies surface-active molecules to the water surface, the particle can exhibit translational motion only in the short-axis direction.

  19. Elliptic flow from collision geometry and rescattering

    SciTech Connect

    Boeggild, H.; Hansen, Ole; Humanic, T. J.

    2009-04-15

    Calculations of elliptic flow based on two initial state models of Au+Au collisions at {radical}(s)=200 GeV/n coupled with a hadronic rescattering calculation are presented. The two initial state models used are a thermal model and a partonic model. Results from these calculations are compared with experiments and it is found that both initial state models give satisfactory representations of elliptic flow measurements, provided that the rescattering is started early enough in the collision process. It is also found that the present hadronic model studies do not show the jet suppression observed experimentally.

  20. Elliptic pfaffians and solvable lattice models

    NASA Astrophysics Data System (ADS)

    Rosengren, Hjalmar

    2016-08-01

    We introduce and study twelve multivariable theta functions defined by pfaffians with elliptic function entries. We show that, when the crossing parameter is a cubic root of unity, the domain wall partition function for the eight-vertex-solid-on-solid model can be written as a sum of two of these pfaffians. As a limit case, we express the domain wall partition function for the three-colour model as a sum of two Hankel determinants. We also show that certain solutions of the TQ-equation for the supersymmetric eight-vertex model can be expressed in terms of elliptic pfaffians.

  1. Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition

    NASA Technical Reports Server (NTRS)

    Smart, M. K.

    1998-01-01

    A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.

  2. A new method for the identification of non-Gaussian line profiles in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Van Der Marel, Roeland P.; Franx, Marijn

    1993-01-01

    A new parameterization for the line profiles of elliptical galaxies, the Gauss-Hermite series, is proposed. This approach expands the line profile as a sum of orthogonal functions which minimizes the correlations between the errors in the parameters of the fit. This method also make use of the fact that Gaussians provide good low-order fits to observed line profiles. The method yields measurements of the line strength, mean radial velocity, and the velocity dispersion as well as two extra parameters, h3 and h4, that measure asymmetric and symmetric deviations of the line profiles from a Gaussian, respectively. The new method was used to derive profiles for three elliptical galaxies which all have asymmetric line profiles on the major axis with symmetric deviations from a Gaussian. Results confirm that elliptical galaxies have complex structures due to their complex formation history.

  3. Direct Detections of Young Stars in Nearby Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ford, H. Alyson; Bregman, Joel N.

    2013-06-01

    Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical "red and dead" NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 × 10-5 M ⊙ yr-1. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) × 10-4 M ⊙ yr-1), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 102 and 104 M ⊙. The specific star formation rates of ~10-16 yr-1 (at the present day) or ~10-14 yr-1 (when averaging over the past Gyr) imply that a fraction 10-8 of the stellar mass is younger than 100 Myr and 10-5 is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 11583.

  4. DIRECT DETECTIONS OF YOUNG STARS IN NEARBY ELLIPTICAL GALAXIES

    SciTech Connect

    Ford, H. Alyson; Bregman, Joel N.

    2013-06-20

    Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical ''red and dead'' NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1}), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 10{sup 2} and 10{sup 4} M{sub Sun }. The specific star formation rates of {approx}10{sup -16} yr{sup -1} (at the present day) or {approx}10{sup -14} yr{sup -1} (when averaging over the past Gyr) imply that a fraction 10{sup -8} of the stellar mass is younger than 100 Myr and 10{sup -5} is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect.

  5. Motivational climate and intrinsic motivation of young basketball players.

    PubMed

    Goudas, M

    1998-02-01

    The present study examined the relationship between motivational climate with intrinsic motivation for athletes with high and low perceived competence. It was predicted that for highly competent athletes a motivational climate of high mastery and high performance would be associated with enhanced intrinsic motivation whereas for athletes of low competence perceptions of a motivational climate of high mastery would be associated with higher intrinsic motivation. Analysis for 100 male basketball players showed that there was no significant interaction between perceived competence and perceptions of motivational climate. Scores for perceptions of a task-involving climate were significantly correlated with intrinsic motivation.

  6. Circular and Elliptic Submerged Impinging Water Jets

    NASA Astrophysics Data System (ADS)

    Claudey, Eric; Benedicto, Olivier; Ravier, Emmanuel; Gutmark, Ephraim

    1999-11-01

    Experiments and CFD have been performed to study circular and elliptic jets in a submerged water jet facility. The tests included discharge coefficient measurement to evaluate pressure losses encountered in noncircular nozzles compared to circular ones. Three-dimensional pressure mappings on the impingement surface and PIV measurement of the jet mean and turbulent velocity have been performed at different compound impingement angles relative to the impingement surface and at different stand-off distances. The objective was to investigate the effect of the non-circular geometry on the flow field and on the impact region. The tests were performed in a close loop system in which the water was pumped through the nozzles into a clear Plexiglas tank. The Reynolds numbers were typically in the range of 250000. Discharge coefficients of the elliptic nozzle was somewhat lower than that of the circular jet but spreading rate and turbulence level were higher. Pressure mapping showed that the nozzle exit geometry had an effect on the pressure distribution in the impact region and that high-pressure zones were generated at specific impact points. PIV measurements showed that for a same total exit area, the elliptic jets affected a surface area that is 8the equivalent circular. The turbulence level in the elliptic jet tripled due to the nozzle design. Results of the CFD model were in good agreement with the experimental data.

  7. Nomenclature of polarized light - Elliptical polarization

    NASA Technical Reports Server (NTRS)

    Clarke, D.

    1974-01-01

    Alternative handedness and sign conventions for relating the orientation of elliptical polarization are discussed. The discussion proceeds under two headings: (1) snapshot picture, where the emphasis for the convention is contained in the concept of handedness; and (2) angular momentum consideration, where the emphasis for the convention is strongly associated with mathematical convention and the sign of the fourth Stokes parameter.

  8. ELLIPTIC FLOW, INITIAL ECCENTRICITY AND ELLIPTIC FLOW FLUCTUATIONS IN HEAVY ION COLLISIONS AT RHIC.

    SciTech Connect

    NOUICER,R.; ALVER, B.; BACK, B.B.; BAKER, M.D.; BALLINTIJN, M.; BARTON, D.S.; ET AL.

    2007-02-19

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  9. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    NASA Astrophysics Data System (ADS)

    Djidel, S.; Bouamar, M.; Khedrouche, D.

    2016-04-01

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  10. Differential Spectral Synthesis of Low-Luminosity Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Lewis Alexander

    In this thesis, a study of the spectral variations in the integrated light of eight low-luminosity elliptical galaxies is presented. The unique opportunity provided by low-luminosity elliptical galaxies to study integrated spectra at high line definition is the motivation behind the observational approach for this study. A long wavelength baseline is sacrificed in favor of working at high resolution (~2 Å FWHM) with a large variety of narrow absorption features in a smaller wave-length window. A new spectral library has been developed with this approach in mind. The library consists of spectra of 684 stars all observed with the Coudé Feed Telescope and Spectrograph at the Kitt Peak National Observatory, covering the spectral ranges 3820-4500 Å and 4780-5450 Å and at a spectral resolution of ~2 Å FWHM. The coverage of the library is complete for spectral types A-K and luminosity classes I-V, in the range -2.5 <= FeH; <= +0.5, while the O, B, and M stars are near solar. The empirical investigation of the galaxy spectra in reference to the stellar sequences of the spectral library yields several key results. (1) There is a spread in the mean spectral types of the low-luminosity ellliptical galaxies. (2) The galaxies are similar in evolved star content, Fe line strengths, and their evolved star light is dominated by solar type giants. (3) Five of the eight galaxies are shown to contain less than a 5% hot star contribution, which is inconsistent with the prediction of ~10% from the simple model of chemical evolution (Worthey, Dorman, and Jones 1996). (4) From variations in the balance of dwarf and giant light in the galaxy spectra it is claimed that there is a spread in the mean stellar ages of the low-luminosity elliptical galaxies. These results are interpreted in the context of the evolutionary synthesis models of Worthey (1994). The main result from the comparison of the galaxies and models is that the low-luminosity elliptical galaxies show a large spread in

  11. Disrupted Intrinsic Local Synchronization in Poststroke Aphasia.

    PubMed

    Yang, Mi; Li, Jiao; Yao, Dezhong; Chen, Huafu

    2016-03-01

    Evidence has accumulated from the task-related and task-free (i.e., resting state) studies that alternations of intrinsic neural networks exist in poststroke aphasia (PSA) patients. However, information is lacking on the changes in the local synchronization of spontaneous functional magnetic resonance imaging blood-oxygen level-dependent fluctuations in PSA at rest. We investigated the altered intrinsic local synchronization using regional homogeneity (ReHo) on PSA (n = 17) and age- and sex-matched healthy controls (HCs) (n = 20). We examined the correlations between the abnormal ReHo values and the aphasia severity and language performance in PSA. Compared with HCs, the PSA patients exhibited decreased intrinsic local synchronization in the right lingual gyrus, the left calcarine, the left cuneus, the left superior frontal gyrus (SFG), and the left medial of SFG. The local synchronization (ReHo value) in the left medial of SFG was positively correlated with aphasia severity (r = 0.55, P = 0.027) and the naming scores of Aphasia Battery of Chinese (r = 0.66, P = 0.005). This result is consistent with the important role of this value in language processing even in the resting state. The pathogenesis of PSA may be attributed to abnormal intrinsic local synchronous in multiple brain regions. PMID:26986152

  12. Disrupted Intrinsic Local Synchronization in Poststroke Aphasia

    PubMed Central

    Yang, Mi; Li, Jiao; Yao, Dezhong; Chen, Huafu

    2016-01-01

    Abstract Evidence has accumulated from the task-related and task-free (i.e., resting state) studies that alternations of intrinsic neural networks exist in poststroke aphasia (PSA) patients. However, information is lacking on the changes in the local synchronization of spontaneous functional magnetic resonance imaging blood–oxygen level-dependent fluctuations in PSA at rest. We investigated the altered intrinsic local synchronization using regional homogeneity (ReHo) on PSA (n = 17) and age- and sex-matched healthy controls (HCs) (n = 20). We examined the correlations between the abnormal ReHo values and the aphasia severity and language performance in PSA. Compared with HCs, the PSA patients exhibited decreased intrinsic local synchronization in the right lingual gyrus, the left calcarine, the left cuneus, the left superior frontal gyrus (SFG), and the left medial of SFG. The local synchronization (ReHo value) in the left medial of SFG was positively correlated with aphasia severity (r = 0.55, P = 0.027) and the naming scores of Aphasia Battery of Chinese (r = 0.66, P = 0.005). This result is consistent with the important role of this value in language processing even in the resting state. The pathogenesis of PSA may be attributed to abnormal intrinsic local synchronous in multiple brain regions. PMID:26986152

  13. Intrinsically Disordered Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-05-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.

  14. Intrinsically disordered energy landscapes.

    PubMed

    Chebaro, Yassmine; Ballard, Andrew J; Chakraborty, Debayan; Wales, David J

    2015-01-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such 'intrinsically disordered' landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an α-helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294

  15. Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation

    NASA Astrophysics Data System (ADS)

    Chisari, N.; Codis, S.; Laigle, C.; Dubois, Y.; Pichon, C.; Devriendt, J.; Slyz, A.; Miller, L.; Gavazzi, R.; Benabed, K.

    2015-12-01

    The intrinsic alignments of galaxies are recognized as a contaminant to weak gravitational lensing measurements. In this work, we study the alignment of galaxy shapes and spins at low redshift (z ˜ 0.5) in Horizon-AGN, an adaptive-mesh-refinement hydrodynamical cosmological simulation box of 100 h- 1 Mpc a side with AGN feedback implementation. We find that spheroidal galaxies in the simulation show a tendency to be aligned radially towards overdensities in the dark matter density field and other spheroidals. This trend is in agreement with observations, but the amplitude of the signal depends strongly on how shapes are measured and how galaxies are selected in the simulation. Disc galaxies show a tendency to be oriented tangentially around spheroidals in three dimensions. While this signal seems suppressed in projection, this does not guarantee that disc alignments can be safely ignored in future weak lensing surveys. The shape alignments of luminous galaxies in Horizon-AGN are in agreement with observations and other simulation works, but we find less alignment for lower luminosity populations. We also characterize the systematics of galaxy shapes in the simulation and show that they can be safely neglected when measuring the correlation of the density field and galaxy ellipticities.

  16. Mining the Suzaku Archive for Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Loewenstein, Michael

    Despite significant progress, our understanding of the formation and evolution of giant elliptical galaxies is incomplete. Many unresolved details about the star formation and assembly history, dissipation and feedback processes, and how these are connected in space and time relate to complex gasdynamical processes that are not directly observable, but that leave clues in the form of the level and pattern of heavy element enrichment in the hot ISM. The low background and relatively sharp spectral resolution of the Suzaku X-ray Observatory XIS CCD detectors enable one to derive a particularly extensive abundance pattern in the hot ISM out to large galactic radii for bright elliptical galaxies. These encode important clues to the chemical and dynamical history of elliptical galaxies. The Suzaku archive now includes data on many of the most suitable galaxies for these purposes. To date, these have been analyzed in a very heterogeneous manner -- some at an early stage in the mission using instrument calibration and analysis tools that have greatly evolved in the interim. Given the level of maturity of the data archive, analysis software, and calibration, the time is right to undertake a uniform analysis of this sample and interpret the results in the context of a coherent theoretical framework for the first time. We propose to (1) carefully and thoroughly analyze the available X-ray luminous elliptical galaxies in the Suzaku database, employing the techniques we have established in our previous work to measure hot ISM abundance patterns. Their interpretation requires careful deconstruction within the context of physical gasdynamical and chemical evolutionary models. Since we have developed models for elliptical galaxy chemical evolution specifically constructed to place constraints on the history and development of these systems based on hot ISM abundances, we are uniquely positioned to interpret -- as well as to analyze -- X-ray spectra of these objects. (2) We will

  17. Integrated Ultraviolet Spectra and Line Indices of M31 Globular Clusters and the Cores of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ponder, Jerry M.; Burstein, David; O'Connell, Robert W.; Rose, James A.; Frogel, Jay A.; Wu, Chi-Chao; Crenshaw, D. Michael; Rieke, Marcia J.; Tripicco, Michael

    1998-11-01

    We present observations of the integrated light of four M31 globular clusters (MIV, MII, K280, and K58) and of the cores of six elliptical galaxies (NGC 3605, 3608, 5018, 5831, 6127, and 7619) made with the Faint Object Spectrograph on the Hubble Space Telescope. The spectra cover the range 2200-4800 Å at a resolution of 8 Å with signal-to-noise ratio of more than 20 and flux accuracy of ~5%. To these data we add from the literature IUE observations of the dwarf elliptical galaxy M32, Galactic globular clusters, and Galactic stars. The stellar populations in these systems are analyzed with the aid of mid-UV and near-UV colors and absorption line strengths. Included in the measured indices is the key NH feature at 3360 Å. We compare these line index measures with the 2600 - 3000 colors of these stars and stellar populations. We find that the M31 globular clusters, Galactic globular clusters/Galactic stars, and elliptical galaxies represent three distinct stellar populations, based on their behavior in color-line strength correlations involving Mg II, NH, CN, and several UV metallic blends. In particular, the M31 globular cluster MIV, as metal-poor as the Galactic globular M92, shows a strong NH 3360 Å feature. Other line indices, including the 3096 Å blend that is dominated by lines of Mg I and Al I, show intrinsic differences as well. We also find that the broadband line indices often employed to measure stellar population differences in faint objects, such as the 4000 Å and the Mg 2800 breaks, are disappointingly insensitive to these stellar population differences. We find that the hot (T > 20,000 K) stellar component responsible for the ``UV upturn'' at shorter wavelengths can have an important influence on the mid-UV spectral range (2400-3200 Å) as well. The hot component can contribute over 50% of the flux at 2600 Å in some cases and affects both continuum colors and line strengths. Mid-UV spectra of galaxies must be corrected for this effect before

  18. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  19. Intrinsic Feature Motion Tracking

    SciTech Connect

    Goddard, Jr., James S.

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.

  20. Intrinsic Feature Motion Tracking

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over timemore » can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.« less

  1. Model dependence of elliptic flow differences

    NASA Astrophysics Data System (ADS)

    Cozma, M. D.

    2013-02-01

    An isospin dependent version of the QMD transport model is used to study the influence of the isovector part of the equation of state of nuclear matter on observables that can be measured in heavy-ion collisions at intermediate energy. The model dependence of neutron-proton elliptic flow difference is studied for AuAu collisions at an incident energy of 400 MeV per nucleon. It is found that the sensitivity to microscopical nucleon-nucleon cross-sections, momentum dependence of the optical potential, compressibility modulus of nuclear matter and width of nucleon wave function are moderate compared to the dependence on the stiffness of the isospin asymmetric part of the equation of state. It is concluded that neutron-proton elliptic flow difference is a suitable observable for setting constraints on the supra-saturation density dependence of symmetry energy.

  2. Modelling elliptically polarised free electron lasers

    NASA Astrophysics Data System (ADS)

    Henderson, J. R.; Campbell, L. T.; Freund, H. P.; McNeil, B. W. J.

    2016-06-01

    A model of a free electron laser (FEL) operating with an elliptically polarised undulator is presented. The equations describing the FEL interaction, including resonant harmonic radiation fields, are averaged over an undulator period and generate a generalised Bessel function scaling factor, similar to that of planar undulator FEL theory. Comparison between simulations of the averaged model with those of an unaveraged model show very good agreement in the linear regime. Two unexpected results were found. Firstly, an increased coupling to harmonics for elliptical rather than planar polarisarised undulators. Secondly, and thought to be unrelated to the undulator polarisation, a significantly different evolution between the averaged and unaveraged simulations of the harmonic radiation evolution approaching FEL saturation.

  3. The Invertible Double of Elliptic Operators

    NASA Astrophysics Data System (ADS)

    Booss-Bavnbek, Bernhelm; Lesch, Matthias

    2009-02-01

    First, we review the Dirac operator folklore about basic analytic and geometrical properties of operators of Dirac type on compact manifolds with smooth boundary and on closed partitioned manifolds and show how these properties depend on the construction of a canonical invertible double and are related to the concept of the Calderón projection. Then we summarize a recent construction of a canonical invertible double for general first order elliptic differential operators over smooth compact manifolds with boundary. We derive a natural formula for the Calderón projection which yields a generalization of the famous Cobordism Theorem. We provide a list of assumptions to obtain a continuous variation of the Calderón projection under smooth variation of the coefficients. That yields various new spectral flow theorems. Finally, we sketch a research program for confining, respectively closing, the last remaining gaps between the geometric Dirac operator type situation and the general linear elliptic case.

  4. Generalized Harnack Inequality for Nonhomogeneous Elliptic Equations

    NASA Astrophysics Data System (ADS)

    Julin, Vesa

    2015-05-01

    This paper is concerned with nonlinear elliptic equations in nondivergence form where F has a drift term which is not Lipschitz continuous. Under this condition the equations are nonhomogeneous and nonnegative solutions do not satisfy the classical Harnack inequality. This paper presents a new generalization of the Harnack inequality for such equations. As a corollary we obtain the optimal Harnack type of inequality for p( x)-harmonic functions which quantifies the strong minimum principle.

  5. Wiener criterion for X-elliptic operators

    NASA Astrophysics Data System (ADS)

    Tralli, Giulio; Uguzzoni, Francesco

    2015-12-01

    In this note we prove a Wiener criterion of regularity of boundary points for the Dirichlet problem related to X-elliptic operators in divergence form enjoying the doubling condition and the Poincaré inequality. As a step towards this result, we exhibit some other characterizations of regularity in terms of the capacitary potentials. Finally, we also show that a cone-type criterion holds true in our setting.

  6. MIB Galerkin method for elliptic interface problems.

    PubMed

    Xia, Kelin; Zhan, Meng; Wei, Guo-Wei

    2014-12-15

    Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm the

  7. A Jacobian elliptic single-field inflation

    NASA Astrophysics Data System (ADS)

    Villanueva, J. R.; Gallo, Emanuel

    2015-06-01

    In the scenario of single-field inflation, this field is described in terms of Jacobian elliptic functions. This approach provides, when constrained to particular cases, analytic solutions already known in the past, generalizing them to a bigger family of analytical solutions. The emergent cosmology is analyzed using the Hamilton-Jacobi approach and then the main results are contrasted with the recent measurements obtained from the Planck 2015 data.

  8. MIB Galerkin method for elliptic interface problems

    PubMed Central

    Xia, Kelin; Zhan, Meng; Wei, Guo-Wei

    2014-01-01

    Summary Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defined field in applied and computational mathematics and attracted much attention in the past decades. Despite of significant advances, challenges remain in the construction of high-order schemes for nonsmooth interfaces, i.e., interfaces with geometric singularities, such as tips, cusps and sharp edges. The challenge of geometric singularities is amplified when they are associated with low solution regularities, e.g., tip-geometry effects in many fields. The present work introduces a matched interface and boundary (MIB) Galerkin method for solving two-dimensional (2D) elliptic PDEs with complex interfaces, geometric singularities and low solution regularities. The Cartesian grid based triangular elements are employed to avoid the time consuming mesh generation procedure. Consequently, the interface cuts through elements. To ensure the continuity of classic basis functions across the interface, two sets of overlapping elements, called MIB elements, are defined near the interface. As a result, differentiation can be computed near the interface as if there is no interface. Interpolation functions are constructed on MIB element spaces to smoothly extend function values across the interface. A set of lowest order interface jump conditions is enforced on the interface, which in turn, determines the interpolation functions. The performance of the proposed MIB Galerkin finite element method is validated by numerical experiments with a wide range of interface geometries, geometric singularities, low regularity solutions and grid resolutions. Extensive numerical studies confirm

  9. Spectral methods for exterior elliptic problems

    NASA Technical Reports Server (NTRS)

    Canuto, C.; Hariharan, S. I.; Lustman, L.

    1984-01-01

    Spectral approximations for exterior elliptic problems in two dimensions are discussed. As in the conventional finite difference or finite element methods, the accuracy of the numerical solutions is limited by the order of the numerical farfield conditions. A spectral boundary treatment is introduced at infinity which is compatible with the infinite order interior spectral scheme. Computational results are presented to demonstrate the spectral accuracy attainable. Although a simple Laplace problem is examined, the analysis covers more complex and general cases.

  10. Exploring the correlation between the sequence composition of the nucleotide binding G5 loop of the FeoB GTPase domain (NFeoB) and intrinsic rate of GDP release.

    PubMed

    Guilfoyle, Amy P; Deshpande, Chandrika N; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika

    2014-01-01

    GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.

  11. The elliptic model for communication fluxes

    NASA Astrophysics Data System (ADS)

    Herrera-Yagüe, C.; Schneider, C. M.; Smoreda, Z.; Couronné, T.; Zufiria, P. J.; González, M. C.

    2014-04-01

    In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility.

  12. The Abundance Ratio Pattern in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Worthey, Guy

    1995-12-01

    Non-solar abundance ratios in elliptical galaxies are readily detectable in a qualitative sense. The elements Mg, Na, and N appear overabundant compared to Ca and Fe. There is a probable variation of (Sc + V)/Ti. Abundance ratio effects are the single most serious barrier to the estimation of mean stellar ages: even more serious than the 35% model-to-model uncertainty. Isochrone grids allowing for the variation of many individual elements (He, O, C, and N at least, in addition to overall Z and alpha elements) are needed to quantitatively estimate the overabundances and mean ages of ellipticals. The tolerances for relative shifts in isochrone temperatures are tight: about 7 K if we hope for 5% accurate ages. The abundance pattern in elliptical galaxies matches neither the disk, nor the halo, nor the bulge our own Galaxy, although the bulge appears to provide the best match. This research was funded by NASA through grant HF-1066.01-94A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. Elliptic Solvers for Adaptive Mesh Refinement Grids

    SciTech Connect

    Quinlan, D.J.; Dendy, J.E., Jr.; Shapira, Y.

    1999-06-03

    We are developing multigrid methods that will efficiently solve elliptic problems with anisotropic and discontinuous coefficients on adaptive grids. The final product will be a library that provides for the simplified solution of such problems. This library will directly benefit the efforts of other Laboratory groups. The focus of this work is research on serial and parallel elliptic algorithms and the inclusion of our black-box multigrid techniques into this new setting. The approach applies the Los Alamos object-oriented class libraries that greatly simplify the development of serial and parallel adaptive mesh refinement applications. In the final year of this LDRD, we focused on putting the software together; in particular we completed the final AMR++ library, we wrote tutorials and manuals, and we built example applications. We implemented the Fast Adaptive Composite Grid method as the principal elliptic solver. We presented results at the Overset Grid Conference and other more AMR specific conferences. We worked on optimization of serial and parallel performance and published several papers on the details of this work. Performance remains an important issue and is the subject of continuing research work.

  14. Fluxon Dynamics in Elliptic Annular Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto; Mygind, Jesper

    2016-04-01

    We analyze the dynamics of a magnetic flux quantum (current vortex) trapped in a current-biased long planar elliptic annular Josephson tunnel junction. The system is modeled by a perturbed sine-Gordon equation that determines the spatial and temporal behavior of the phase difference across the tunnel barrier separating the two superconducting electrodes. In the absence of an external magnetic field, the fluxon dynamics in an elliptic annulus does not differ from that of a circular annulus where the stationary fluxon speed merely is determined by the system losses. The interaction between the vortex magnetic moment and a spatially homogeneous in-plane magnetic field gives rise to a tunable periodic non-sinusoidal potential which is strongly dependent on the annulus aspect ratio. We study the escape of the vortex from a well in the tilted potential when the bias current exceeds the depinning current. The smallest depinning current as well as the lowest sensitivity of the annulus to the external field is achieved when the axes ratio is equal to √{2}. The presented extensive numerical results are in good agreement with the findings of the perturbative approach. We also probe the rectifying properties of an asymmetric potential implemented with an egg-shaped annulus formed by two semi-elliptic arcs.

  15. Origin of a bottom-heavy stellar initial mass function in elliptical galaxies

    SciTech Connect

    Bekki, Kenji

    2013-12-10

    We investigate the origin of a bottom-heavy stellar initial mass function (IMF) recently observed in elliptical galaxies by using chemical evolution models with a non-universal IMF. We adopt the variable Kroupa IMF with the three slopes (α{sub 1}, α{sub 2}, and α{sub 3}) dependent on metallicities ([Fe/H]) and densities (ρ{sub g}) of star-forming gas clouds and thereby search for the best IMF model that can reproduce (1) the observed steep IMF slope (α{sub 2} ∼ 3, i.e., bottom-heavy) for low stellar masses (m ≤ 1 M {sub ☉}) and (2) the correlation of α{sub 2} with chemical properties of elliptical galaxies in a self-consistent manner. We find that if the IMF slope α{sub 2} depends on both [Fe/H] and ρ{sub g}, then elliptical galaxies with higher [Mg/Fe] can have steeper α{sub 2} (∼3) in our models. We also find that the observed positive correlation of stellar mass-to-light ratios (M/L) with [Mg/Fe] in elliptical galaxies can be quantitatively reproduced in our models with α{sub 2}∝β[Fe/H] + γlog ρ{sub g}, where β ∼ 0.5 and γ ∼ 2. We discuss whether the IMF slopes for low-mass (α{sub 2}) and high-mass stars (α{sub 3}) need to vary independently from each other to explain a number of IMF-related observational results self-consistently. We also briefly discuss why α{sub 2} depends differently on [Fe/H] in dwarf and giant elliptical galaxies.

  16. Ellipticals with Kinematically Distinct Cores: WFPC2 Imaging of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Franx, Marijn; Illingworth, Garth D.; Carollo, C. M.

    1996-08-01

    New globular clusters may form in the merger of two galaxies. Perhaps the best examples of merger remnants are the set of ellipticals with kinematically distinct cores. Here we present Hubble Space Telescope (HST) Wide Field and Planetary Camera 2 (WFPC2) imaging of 14 kinematically distinct core ellipticals to examine their globular cluster systems. In particular, we probe the galaxy central regions, for which we might expect to see the strongest signatures of some formation and destruction processes. These data increase substantially the number of extragalactic globular cluster systems studied to date. We have developed a method for galaxy subtraction and selection of globular clusters which results in about 200 globulars per galaxy to a limiting magnitude of V ~ 25. Simulations of artificial globulars are described also. We find that the globular cluster luminosity, and color, vary only weakly, if at all, with galactocentric distance. The mean colors of globular clusters are constant with globular cluster magnitude. Several clear trends are also present. First, globular cluster colors are bluer (more metal poor by ~0.5 dex) than the underlying galaxy starlight at any given galactocentric distance. Second, we find a good correlation over roughly 10 magnitudes between the mean globular cluster metallicity and parent galaxy luminosity of the form Z is proportional to L^0.4^. This relationship includes dwarf ellipticals, spiral galaxy bulges, and giant ellipticals. Third, we find that globular cluster surface density distribution can be described by a core model, for which the core radius correlates with galaxy luminosity. Last, for the sample as a whole, the globular cluster systems are closely aligned with the galaxy major axis and are slightly rounder than the galaxy itself, although their are some notable exceptions. Our results favor scenarios in which ellipticals form from massive, gas rich progenitors at early epochs. Detailed simulations of the formation of

  17. Intrinsic Chevrolets at the SSC

    SciTech Connect

    Brodsky, S.J.; Collins, J.C.; Ellis, S.D.; Gunion, J.F.; Mueller, A.H.

    1984-01-01

    The possibility of the production at high energy of heavy quarks, supersymmetric particles and other large mass colored systems via the intrinsic twist-six components in the proton wave function is discussed. While the existing data do not rule out the possible relevance of intrinsic charm production at present energies, the extrapolation of such intrinsic contributions to very high masses and energies suggests that they will not play an important role at the SSC.

  18. THE DARK HALO-SPHEROID CONSPIRACY AND THE ORIGIN OF ELLIPTICAL GALAXIES

    SciTech Connect

    Remus, Rhea-Silvia; Burkert, Andreas; Dolag, Klaus; Johansson, Peter H.; Naab, Thorsten; Oser, Ludwig; Thomas, Jens

    2013-04-01

    Dynamical modeling and strong-lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., {rho}{sub tot}{proportional_to}r {sup {gamma}} with {gamma} Almost-Equal-To -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of {gamma} Almost-Equal-To -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved in the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward {gamma} {approx} -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of {gamma} {approx} -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.

  19. Qutrit teleportation under intrinsic decoherence

    NASA Astrophysics Data System (ADS)

    Jafarpour, Mojtaba; Naderi, Negar

    2016-08-01

    We study qutrit teleportation and its fidelity in the presence and absence of intrinsic decoherence through a qutrit channel. The channel consists of a Heisenberg chain with xyz interaction model and the intrinsic decoherence is implemented through the Milburn model. It is shown that while the fidelity diminishes due to intrinsic decoherence, it may be enhanced if the channel is initially in an entangled state. It is also observed that, for stronger intrinsic decoherence, the initial entanglement of the channel is more effective in enhancing of fidelity.

  20. Cloaking of single and multiple elliptical cylinders and strips with confocal elliptical nanostructured graphene metasurface.

    PubMed

    Bernety, Hossein M; Yakovlev, Alexander B

    2015-05-13

    In this paper, we present a novel analytical approach for cloaking of dielectric and metallic elliptical cylinders with a graphene monolayer and a nanostructured graphene metasurface at low-terahertz frequencies. The analytical approach is based on the solution of the electromagnetic scattering problem in terms of elliptical waves represented by the radial and angular even and odd Mathieu functions, with the use of sheet impedance boundary conditions at the metasurface. It is shown that scattering cancellation occurs for all incident and observation angles. A special case concerns cloaking of a 2D metallic strip represented by a degenerated ellipse, wherein the focal points of the cloak metasurface correspond to the edges of the strip. The analytical approach has been extended in order to cloak a cluster of elliptical objects for different cases of closely spaced, merging, and overlapping configurations. The results obtained by our analytical approach are validated with full-wave numerical simulations. PMID:25894518

  1. Cloaking of single and multiple elliptical cylinders and strips with confocal elliptical nanostructured graphene metasurface

    NASA Astrophysics Data System (ADS)

    Bernety, Hossein M.; Yakovlev, Alexander B.

    2015-05-01

    In this paper, we present a novel analytical approach for cloaking of dielectric and metallic elliptical cylinders with a graphene monolayer and a nanostructured graphene metasurface at low-terahertz frequencies. The analytical approach is based on the solution of the electromagnetic scattering problem in terms of elliptical waves represented by the radial and angular even and odd Mathieu functions, with the use of sheet impedance boundary conditions at the metasurface. It is shown that scattering cancellation occurs for all incident and observation angles. A special case concerns cloaking of a 2D metallic strip represented by a degenerated ellipse, wherein the focal points of the cloak metasurface correspond to the edges of the strip. The analytical approach has been extended in order to cloak a cluster of elliptical objects for different cases of closely spaced, merging, and overlapping configurations. The results obtained by our analytical approach are validated with full-wave numerical simulations.

  2. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  3. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  4. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  5. Properties of Dwarf Ellipticals in Low-Density Environments

    NASA Astrophysics Data System (ADS)

    Sur, Debnil; Guhathakurta, P.; Toloba, E.

    2013-01-01

    Dwarf elliptical galaxies have been studied only in dense cluster environments, where they are the most common type of object. While this suggests that their location affects their formation and evolution, the role of distance is not fully understood. Thus, to investigate the physical processes that shape these galaxies, we have conducted a study of dwarf elliptical galaxies (dEs) in low-density environments to compare their properties with those in clusters. Catalogs of such objects have not been created; thus, we have developed a novel objective method to find new dEs through comparing photometric properties with those of galaxies in the Virgo Cluster Catalog. This method utilizes optical colors, surface brightness and ellipticity, and it confirms smoothness through visual classification. In this last step, we found a very low contamination rate, which suggests the procedure’s utility in finding dEs. Through the NSA Sloan Atlas, we have analyzed the spectrophotometric properties of the dE candidates as a function of distance to the nearest massive galaxy, which we refer to as their host. We have found that these dEs are younger and more actively forming stars than dEs in denser regions. This is consistent with a transformation scenario in which low luminosity spiral galaxies are affected by the environment and transformed into quiescent galaxies. This low density regime contains objects in an intermediate state between the spiral galaxy and the classical dE in Virgo, where no star formation is ongoing. The correlation of the studied properties with the distance to the host galaxy provides new evidence that the dEs are created by a process called ram-pressure stripping: the interstellar medium of a host galaxy removes the gas of a smaller star-forming galaxy and provokes its quenching. We are currently analysing Keck/DEIMOS spectroscopy of some of the dE candidates from our catalog to explore in more detail their connection to cluster dEs. Possible similarities

  6. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  7. Elliptic multiple zeta values and one-loop superstring amplitudes

    NASA Astrophysics Data System (ADS)

    Broedel, Johannes; Mafra, Carlos R.; Matthes, Nils; Schlotterer, Oliver

    2015-07-01

    We investigate iterated integrals on an elliptic curve, which are a natural genus-one generalization of multiple polylogarithms. These iterated integrals coincide with the multiple elliptic polylogarithms introduced by Brown and Levin when constrained to the real line. At unit argument they reduce to an elliptic analogue of multiple zeta values, whose network of relations we start to explore. A simple and natural application of this framework are one-loop scattering amplitudes in open superstring theory. In particular, elliptic multiple zeta values are a suitable language to express their low energy limit. Similar to the techniques available at tree-level, our formalism allows to completely automatize the calculation.

  8. Classification of isomonodromy problems on elliptic curves

    NASA Astrophysics Data System (ADS)

    Levin, A. M.; Olshanetsky, M. A.; Zotov, A. V.

    2014-02-01

    This paper describes isomonodromy problems in terms of flat G-bundles over punctured elliptic curves \\Sigma_\\tau and connections with regular singularities at marked points. The bundles are classified by their characteristic classes, which are elements of the second cohomology group H^2(\\Sigma_\\tau,{\\mathscr Z}(G)), where {\\mathscr Z}(G) is the centre of G. For any complex simple Lie group G and any characteristic class the moduli space of flat connections is defined, and for them the monodromy-preserving deformation equations are given in Hamiltonian form together with the corresponding Lax representation. In particular, they include the Painlevé VI equation, its multicomponent generalizations, and the elliptic Schlesinger equations. The general construction is described for punctured complex curves of arbitrary genus. The Drinfeld-Simpson (double coset) description of the moduli space of Higgs bundles is generalized to the case of the space of flat connections. This local description makes it possible to establish the Symplectic Hecke Correspondence for a wide class of monodromy-preserving problems classified by the characteristic classes of the underlying bundles. In particular, the Painlevé VI equation can be described in terms of \\operatorname{SL}(2,{ C})-bundles. Since {\\mathscr Z}(\\operatorname{SL}(2,{ C}))={ Z}_2, the Painlevé VI equation has two representations related by the Hecke transformation: 1) as the well-known elliptic form of the Painlevé VI equation (for trivial bundles); 2) as the non-autonomous Zhukovsky-Volterra gyrostat (for non-trivial bundles). Bibliography: 123 titles.

  9. Vibration and buckling of super elliptical plates

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Wang, L.; Liew, K. M.

    1994-03-01

    This paper is concerned with the vibration and buckling of a new class of plates, the periphery shape of which is defined by a super elliptical function. Such a plate shape has practical applications, as the advantageous curved corners help to diffuse stress concentrations. The loading considered for the buckling problem is that of in-plane uniform pressure along the periphery. Accurate frequency and buckling factors are tabulated for such plates with either simply supported or clamped edges. The solutions are obtained using the pb - 2 Rayleigh-Ritz method.

  10. Evolution of Hot Gas in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  11. Dynamical friction in pairs of elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Prugniel, Philippe; Combes, Francoise

    1990-01-01

    The authors present numerical experiments on dynamical friction in pairs of elliptical galaxies of unequal mass. They confirm that the self-gravity of the response is not important and show the drastic effect of the deformability of the companion which reduces the decay time by more than a factor of 2. Almost the same amount of orbital energy is dissipated within the satellite as within the large galaxy. Finally, the authors discuss the importance of distant encounters for the dynamical evolution of systems of galaxies.

  12. Liouville field, modular forms and elliptic genera

    NASA Astrophysics Data System (ADS)

    Eguchi, Tohru; Sugawara, Yuji; Taormina, Anne

    2007-03-01

    When we describe non-compact or singular Calabi-Yau manifolds by CFT, continuous as well as discrete representations appear in the theory. These representations mix in an intricate way under the modular transformations. In this article, we propose a method of combining discrete and continuous representations so that the resulting combinations have a simpler modular behavior and can be used as conformal blocks of the theory. We compute elliptic genera of ALE spaces and obtain results which agree with those suggested from the decompactification of K3 surface. Consistency of our approach is assured by some remarkable identity of theta functions whose proof, by D. Zagier, is included in an appendix.

  13. THE COOL INTERSTELLAR MEDIUM IN ELLIPTICAL GALAXIES. II. GAS CONTENT IN THE VOLUME-LIMITED SAMPLE AND RESULTS FROM THE COMBINED ELLIPTICAL AND LENTICULAR SURVEYS

    SciTech Connect

    Welch, Gary A.; Sage, Leslie J.; Young, Lisa M. E-mail: lsage@astro.umd.ed

    2010-12-10

    We report new observations of atomic and molecular gas in a volume-limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low-luminosity E and S0 galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not true for atomic gas. We speculate that both the active galactic nucleus feedback and merger paradigms might offer explanations for differences in detection rates, and might also point toward an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally, we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early-type galaxies. Atomic gas comprises a greater fraction of the cool interstellar medium in more gas-rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.

  14. Intrinsic Negative Mass from Nonlinearity

    NASA Astrophysics Data System (ADS)

    Di Mei, F.; Caramazza, P.; Pierangeli, D.; Di Domenico, G.; Ilan, H.; Agranat, A. J.; Di Porto, P.; DelRe, E.

    2016-04-01

    We propose and provide experimental evidence of a mechanism able to support negative intrinsic effective mass. The idea is to use a shape-sensitive nonlinearity to change the sign of the mass in the leading linear propagation equation. Intrinsic negative-mass dynamics is reported for light beams in a ferroelectric crystal substrate, where the diffusive photorefractive nonlinearity leads to a negative-mass Schrödinger equation. The signature of inverted dynamics is the observation of beams repelled from strongly guiding integrated waveguides irrespective of wavelength and intensity and suggests shape-sensitive nonlinearity as a basic mechanism leading to intrinsic negative mass.

  15. Variational elliptic solver for atmospheric applications

    SciTech Connect

    Smolarkiewicz, P.K.; Margolin, L.G.

    1994-03-01

    We discuss a conjugate gradient type method -- the conjugate residual -- suitable for solving linear elliptic equations that result from discretization of complex atmospheric dynamical problems. Rotation and irregular boundaries typically lead to nonself-adjoint elliptic operators whose matrix representation on the grid is definite but not symmetric. On the other hand, most established methods for solving large sparse matrix equations depend on the symmetry and definiteness of the matrix. Furthermore, the explicit construction of the matrix can be both difficult and computationally expensive. An attractive feature of conjugate gradient methods in general is that they do not require any knowledge of the matrix; and in particular, convergence of conjugate residual algorithms do not rely on symmetry for definite operators. We begin by reviewing some basic concepts of variational algorithms from the perspective of a physical analogy to the damped wave equation, which is a simple alternative to the traditional abstract framework of the Krylov subspace methods. We derive two conjugate residual schemes from variational principles, and prove that either definiteness or symmetry ensures their convergence. We discuss issues related to computational efficiency and illustrate our theoretical considerations with a test problem of the potential flow of a Boussinesq fluid flow past a steep, three-dimensional obstacle.

  16. Thermodynamics of Inozemtsev's elliptic spin chain

    NASA Astrophysics Data System (ADS)

    Klabbers, Rob

    2016-06-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  17. Anisotropic elliptic PDEs for feature classification.

    PubMed

    Wang, Shengfa; Hou, Tingbo; Li, Shuai; Su, Zhixun; Qin, Hong

    2013-10-01

    The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor. Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method's originality is highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and high performance of our method. PMID:23929843

  18. The Ellipticities of Cluster Early-type Galaxies from z ~ 1 to z ~ 0: No Evolution in the Overall Distribution of Bulge-to-Disk Ratios

    NASA Astrophysics Data System (ADS)

    Holden, B. P.; Franx, M.; Illingworth, G. D.; Postman, M.; van der Wel, A.; Kelson, D. D.; Blakeslee, J. P.; Ford, H.; Demarco, R.; Mei, S.

    2009-03-01

    ellipticity at z>0.3, suggesting that rounder S0s are being assigned as ellipticals. Taking the ellipticity measurements and assuming, as in all previous studies, that the intrinsic ellipticity distribution of both elliptical and S0 galaxies remains constant, then we conclude from the lack of evolution in the observed early-type ellipticity distribution that the relative fractions of ellipticals and S0s do not evolve from z ~ 1 to z = 0 for a red-sequence selected samples of galaxies in the cores of clusters of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. An investigation into the vector ellipticity of extremely low frequency magnetic fields from appliances in UK homes

    NASA Astrophysics Data System (ADS)

    Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.

    2005-07-01

    Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.

  20. Energy, entropy and mass scaling relations for elliptical galaxies. Towards a physical understanding of their photometric properties

    NASA Astrophysics Data System (ADS)

    Márquez, I.; Lima Neto, G. B.; Capelato, H.; Durret, F.; Lanzoni, B.; Gerbal, D.

    2001-12-01

    In the present paper, we show that elliptical galaxies (Es) obey a scaling relation between potential energy and mass. Since they are relaxed systems in a post violent-relaxation stage, they are quasi-equilibrium gravitational systems and therefore they also have a quasi-constant specific entropy. Assuming that light traces mass, these two laws imply that in the space defined by the three Sérsic law parameters (intensity Sigma0 , scale a and shape nu ), elliptical galaxies are distributed on two intersecting 2-manifolds: the Entropic Surface and the Energy-Mass Surface. Using a sample of 132 galaxies belonging to three nearby clusters, we have verified that ellipticals indeed follow these laws. This also implies that they are distributed along the intersection line (the Energy-Entropy line), thus they constitute a one-parameter family. These two physical laws (separately or combined), allow to find the theoretical origin of several observed photometrical relations, such as the correlation between absolute magnitude and effective surface brightness, and the fact that ellipticals are located on a surface in the [log Reff, -2.5 log Sigma0, log nu ] space. The fact that elliptical galaxies are a one-parameter family has important implications for cosmology and galaxy formation and evolution models. Moreover, the Energy-Entropy line could be used as a distance indicator.

  1. Quantitative morphology of E-S0 galaxies IV. Ellipticals and lenticulars as a single population

    NASA Astrophysics Data System (ADS)

    Michard, R.

    1994-08-01

    The geometrical properties of E and S0 galaxies have been intercompared using the data collected in Paper III (Michard & Marchal 1994) for 108 RSA objects in a complete, luminosity and distance limited, sample. As the apparent flattening (largely an effect of projection along the line of sight), is a determining factor in the segregation between E and S0 objects, the working hypothesis has been made that an important bias is introduced in the recognition of the two classes. It is perhaps as well to assume that galaxies of both Hubble types belong, but for a small(?) minority, to a common population of objects with similar structures. This hypothesis receives strong support from the frequency-diagrams of the ellipticity ɛ_max_, measured near its maximum or at the isophote of surface brightness V=21.5. The diagram for S0's alone cannot be generated by the random projection of any objects: it is clearly biased by the shift to the E type of many S0's of moderate inclination and relatively modest disk. This limits the significance of the same diagrams for E galaxies. The noted bias is much reduced if S0's and disky E's are considered together. Because of the strong outwards decrease of the ellipticities in disky E's and in the S0's with non-thin envelopes (thick disks and spheroidal haloes), the frequency diagrams of the ellipticities measured at the classical B=25, or at V=25, do not show the bias noted above for S0's. The lack of round E's requires the spheroidal components to be faintly triaxial, as recently emphasized by other authors. Our hypothesis is also supported by the overlap of E and S0 galaxies in ad hoc classification schemes of ellipticity profiles and envelope geometry, and in such correlation diagrams as: - the ellipticity in the envelope, i.e. near μ(V)= 25, against the intermediate maximum ellipticity - the extremum of the Carter's coefficient e_4_ (or a_4_ or c_4_ in other similar works) against the maximum ellipticity - the disk extent, as far as

  2. Elliptical Orbit [arrow right] 1/r[superscript 2] Force

    ERIC Educational Resources Information Center

    Prentis, Jeffrey; Fulton, Bryan; Hesse, Carol; Mazzino, Laura

    2007-01-01

    Newton's proof of the connection between elliptical orbits and inverse-square forces ranks among the "top ten" calculations in the history of science. This time-honored calculation is a highlight in an upper-level mechanics course. It would be worthwhile if students in introductory physics could prove the relation "elliptical orbit" [arrow right]…

  3. Effect of the earth's ellipticity on the lunar tidal potential

    NASA Technical Reports Server (NTRS)

    Dahlen, F. A.

    1993-01-01

    The earth's orbital acceleration about the moon is influenced by its ellipticity. In this paper it shown that the ellipticity affects tidal gravity by contributing directly to the lunar tide-generating potential (in addition to effecting the elastic-gravitational response of the solid earth and oceans to this potential).

  4. The Stability of Orthotropic Elliptic Cylinders in Pure Bending

    NASA Technical Reports Server (NTRS)

    Heck, O S

    1937-01-01

    The theoretical critical bending stress of elliptic cylindrical shells is determined on the assumption of infinite shell length and absence of local instability phenomena. The results of the tests on isotropic elliptic cylindrical shells stressed in bending are compared with the theoretical results. The practical applicability of the theory is discussed.

  5. Stability of simply supported and clamped elliptical plates

    NASA Astrophysics Data System (ADS)

    Rao, A. V.; Rao, B. N.; Prasad, K. L.

    1992-12-01

    Formulas are developed for estimating the elastic stability of an elliptical plate under compressive forces uniformly distributed around the edge of the plate. Then, a Cartesian coordinate system is used to perform the stability analysis of simply supported and clamped elliptical plates by following the Rayleigh-Ritz technique with a three-term deflection function.

  6. Redshift and luminosity evolution of the intrinsic alignments of galaxies in Horizon-AGN

    NASA Astrophysics Data System (ADS)

    Chisari, N.; Laigle, C.; Codis, S.; Dubois, Y.; Devriendt, J.; Miller, L.; Benabed, K.; Slyz, A.; Gavazzi, R.; Pichon, C.

    2016-09-01

    Intrinsic galaxy shape and angular momentum alignments can arise in cosmological large-scale structure due to tidal interactions or galaxy formation processes. Cosmological hydrodynamical simulations have recently come of age as a tool to study these alignments and their contamination to weak gravitational lensing. We probe the redshift and luminosity evolution of intrinsic alignments in Horizon-AGN between z = 0 and 3 for galaxies with an r-band absolute magnitude of Mr ≤ -20. Alignments transition from being radial at low redshifts and high luminosities, dominated by the contribution of ellipticals, to being tangential at high redshift and low luminosities, where discs dominate the signal. This cannot be explained by the evolution of the fraction of ellipticals and discs alone: intrinsic evolution in the amplitude of alignments is necessary. The alignment amplitude of elliptical galaxies alone is smaller in amplitude by a factor of ≃2, but has similar luminosity and redshift evolution as in current observations and in the non-linear tidal alignment model at projected separations of ≳1 Mpc. Alignments of discs are null in projection and consistent with current low-redshift observations. The combination of the two populations yields an overall amplitude a factor of ≃4 lower than observed alignments of luminous red galaxies with a steeper luminosity dependence. The restriction on accurate galaxy shapes implies that the galaxy population in the simulation is complete only to Mr ≤ -20. Higher resolution simulations will be necessary to avoid extrapolation of the intrinsic alignment predictions to the range of luminosities probed by future surveys.

  7. Learning intrinsic excitability in medium spiny neurons

    PubMed Central

    Scheler, Gabriele

    2014-01-01

    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction. PMID:25520776

  8. Dynamic susceptibility of onion in ferromagnetic elliptical nanoring

    NASA Astrophysics Data System (ADS)

    Mu, Congpu; Song, Jiefang; Xu, Jianghong; Wen, Fusheng

    2016-06-01

    Micromagnetic simulation was performed to investigate the equilibrium state and dynamic susceptibility spectra of magnetic elliptical nanoring. There are two equilibrium states (onion and vortex) obtained in elliptical nanoring. The onion state can be used to record information in MRAM. And it is important to investigate the dynamic susceptibility spectra of onion state, which is closely related to writing and reading speed of magnetic memory devices. Those results show that two or three resonance peaks are found under different thickness of elliptical nanoring with onion state, respectively. The low resonance frequency of two resonance peaks is increasing with the arm width of the elliptical ring, but is decreasing with the thickness. However, the high frequency of two resonance peaks is decreasing with the arm width of the elliptical ring.

  9. Ellipticity of near-threshold harmonics from stretched molecules.

    PubMed

    Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-11-30

    We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses. PMID:26698731

  10. Far-infrared mapping of dusty elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Lees, Joanna F.; Harper, D. A.; Rupen, Michael P.; Knapp, G. R.

    1994-01-01

    Preliminary results from a program to map the thermal far-infrared emission from cool dust in elliptical galaxies using the Yerkes 60-Channel Camera on the Kuiper Airborne Observatory (KAO) are presented. The 160 micron emission from the elliptical NGC 6542 is apparently extended over the optical galaxy whereas the 100 micron emission is unresolved. This implies a dust temperature gradient consistent with that expected for dust with Galactic properties exposed to the general interstellar radiation field of the elliptical galaxy. Observations of the elliptical NGC 5666 and the NGC 7463/4/5 compact group (consisting of the elliptical NGC 7464, the S0 NGC 7465, and the spiral NGC 7463) are also discussed.

  11. TESTING YUKAWA-LIKE POTENTIALS FROM f(R)-GRAVITY IN ELLIPTICAL GALAXIES

    SciTech Connect

    Napolitano, N. R.; Capozziello, S.; Capaccioli, M.; Romanowsky, A. J.

    2012-04-01

    We present the first analysis of extended stellar kinematics of elliptical galaxies where a Yukawa-like correction to the Newtonian gravitational potential derived from f(R)-gravity is considered as an alternative to dark matter. In this framework, we model long-slit data and planetary nebula data out to 7 R{sub eff} of three galaxies with either decreasing or flat dispersion profiles. We use the corrected Newtonian potential in a dispersion-kurtosis Jeans analysis to account for the mass-anisotropy degeneracy. We find that these modified potentials are able to fit nicely all three elliptical galaxies and the anisotropy distribution is consistent with that estimated if a dark halo is considered. The parameter which measures the 'strength' of the Yukawa-like correction is, on average, smaller than the one found previously in spiral galaxies and correlates both with the scale length of the Yukawa-like term and the orbital anisotropy.

  12. Testing Yukawa-like Potentials from f(R)-gravity in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Napolitano, N. R.; Capozziello, S.; Romanowsky, A. J.; Capaccioli, M.; Tortora, C.

    2012-04-01

    We present the first analysis of extended stellar kinematics of elliptical galaxies where a Yukawa-like correction to the Newtonian gravitational potential derived from f(R)-gravity is considered as an alternative to dark matter. In this framework, we model long-slit data and planetary nebula data out to 7 R eff of three galaxies with either decreasing or flat dispersion profiles. We use the corrected Newtonian potential in a dispersion-kurtosis Jeans analysis to account for the mass-anisotropy degeneracy. We find that these modified potentials are able to fit nicely all three elliptical galaxies and the anisotropy distribution is consistent with that estimated if a dark halo is considered. The parameter which measures the "strength" of the Yukawa-like correction is, on average, smaller than the one found previously in spiral galaxies and correlates both with the scale length of the Yukawa-like term and the orbital anisotropy.

  13. The ATLAS 3D project - XXIV. The intrinsic shape distribution of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Weijmans, Anne-Marie; de Zeeuw, P. T.; Emsellem, Eric; Krajnović, Davor; Lablanche, Pierre-Yves; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Verdoes Kleijn, Gijs; Young, Lisa M.

    2014-11-01

    We use the ATLAS3D sample to perform a study of the intrinsic shapes of early-type galaxies, taking advantage of the available combined photometric and kinematic data. Based on our ellipticity measurements from the Sloan Digital Sky Survey Data Release 7, and additional imaging from the Isaac Newton Telescope, we first invert the shape distribution of fast and slow rotators under the assumption of axisymmetry. The so-obtained intrinsic shape distribution for the fast rotators can be described with a Gaussian with a mean flattening of q = 0.25 and standard deviation σq = 0.14, and an additional tail towards rounder shapes. The slow rotators are much rounder, and are well described with a Gaussian with mean q = 0.63 and σq = 0.09. We then checked that our results were consistent when applying a different and independent method to obtain intrinsic shape distributions, by fitting the observed ellipticity distributions directly using Gaussian parametrizations for the intrinsic axis ratios. Although both fast and slow rotators are identified as early-type galaxies in morphological studies, and in many previous shape studies are therefore grouped together, their shape distributions are significantly different, hinting at different formation scenarios. The intrinsic shape distribution of the fast rotators shows similarities with the spiral galaxy population. Including the observed kinematic misalignment in our intrinsic shape study shows that the fast rotators are predominantly axisymmetric, with only very little room for triaxiality. For the slow rotators though there are very strong indications that they are (mildly) triaxial.

  14. Second-generation Stellar Disks in Dense Star Clusters and Cluster Ellipticities

    NASA Astrophysics Data System (ADS)

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.

    2016-05-01

    Globular clusters (GCs) and nuclear star clusters (NSCs) are typically composed of several stellar populations, characterized by different chemical compositions. Different populations show different ages in NSCs, but not necessarily in GCs. The youngest populations in NSCs appear to reside in disk-like structures as observed in our Galaxy and in M31. Gas infall followed by formation of second-generation (SG) stars in GCs may similarly form disk-like structures in the clusters nuclei. Here we explore this possibility and follow the long-term evolution of stellar disks embedded in GCs, and study their effects on the evolution of the clusters. We study disks with different masses by means of detailed N-body simulations and explore their morphological and kinematic signatures on the GC structures. We find that as a SG disk relaxes, the old, first-generation stellar population flattens and becomes more radially anisotropic, making the GC structure become more elliptical. The SG stellar population is characterized by a lower velocity dispersion and a higher rotational velocity compared with the primordial older population. The strength of these kinematic signatures depends both on the relaxation time of the system and on the fractional mass of the SG disk. We therefore conclude that SG populations formed in flattened configurations will give rise to two systematic trends: (1) a positive correlation between GC ellipticity and fraction of SG population and (2) a positive correlation between GC relaxation time and ellipticity. Therefore, GC ellipticities and rotation could be related to the formation of SG stars and their initial configuration.

  15. VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.

    2011-12-01

    To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II {lambda}6355 and Ca II H and K are related to the B - V color at peak brightness. We find that the maximum-light velocity of Si II {lambda}6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II {lambda}6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II {lambda}6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia-even after removing a linear trend with velocity-indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

  16. Velocity Evolution and the Intrinsic Color of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.

    2011-12-01

    To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II λ6355 and Ca II H&K are related to the B - V color at peak brightness. We find that the maximum-light velocity of Si II λ6355 and Ca II H&K and the maximum-light pseudo-equivalent width of Si II λ6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II λ6355 measurements. Ca II H&K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia—even after removing a linear trend with velocity—indicating that lower-velocity SNe Ia are more "standard crayons." Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

  17. Theoretical results for starved elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    Eighteen cases were used in the theoretical study of the influence of lubricant starvation on film thickness and pressure in elliptical elastohydrodynamic conjunctions. From the results a simple and important critical dimensionless inlet boundary distance at which lubricant starvation becomes significant was specified. This inlet boundary distance defines whether a fully flooded or a starved condition exists in the contact. Furthermore, it was found that the film thickness for a starved condition is written in dimensionless terms as a function of the inlet distance parameter and the film thickness for a fully flooded condition. Contour plots of pressure and film thickness in and around the contact are shown for fully flooded and starved conditions.

  18. Free vibrations of laminated composite elliptic plates

    NASA Technical Reports Server (NTRS)

    Andersen, C. M.; Noor, A. K.

    1976-01-01

    The free vibrations are studied of laminated anisotropic elliptic plates with clamped edges. The analytical formulation is based on a Mindlin-Reissner type plate theory with the effects of transverse shear deformation, rotary inertia, and bending-extensional coupling included. The frequencies and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's principle. A computerized symbolic integration approach is used to develop analytic expressions for the stiffness and mass coefficients and is shown to be particularly useful in evaluating the derivatives of the eigenvalues with respect to certain geometric and material parameters. Numerical results are presented for the case of angle-ply composite plates with skew-symmetric lamination.

  19. Splitting of Forced Elliptic Jets and Flames

    NASA Technical Reports Server (NTRS)

    Hertzberg, J.; Carlton, J.; Schwieterman, M.; Davis, E.; Bradley, E.; Linne, M.

    1997-01-01

    The objective of this work is to understand the fluid dynamics in the interaction of large scale, three-dimensional vortex structures and transitional diffusion flames in a microgravity environment. The vortex structures are used to provide a known perturbation of the type used in passive and active shear layer control techniques. 'Passive techniques' refers to manipulation of the system geometry to influence the three dimensional dynamics of vortex structures, and 'active' refers to any technique which adds energy (acoustic or kinetic) to the flow to influence the shear layer vortex dynamics. In this work the passive forcing is provided by an elliptic jet cross-section, and the active forcing is incorporated by perturbing the jet velocity using a loudspeaker in the plenum section.

  20. Mobile communications from highly elliptic orbits - ARCHIMEDES

    NASA Astrophysics Data System (ADS)

    Stuart, John

    1992-03-01

    ARCHIMEDES is an ongoing telecommunications program of the European Space Agency which considers the use of Highly Elliptic Orbits (HEO) to provide land mobile voice communications in Europe. To date feasibility studies have been completed which indicate the technical and economic viability of such a project. By using HEO orbits a line of sight path between the mobile user and satellite can be maintained even at northerly latitudes where signal fade and blockage will disrupt transmissions to and from a geostationary satellite. British Aerospace has led all the key studies to date and has most recently been concerned with the extension of the service from land mobile voice communications to include Satellite Sound Broadcast (SSB). This paper presents the main conclusions of the feasibility studies comparing the performance which could be achieved with a GEO alternative.

  1. Magnetic elliptical polarization of Schumann resonances

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours.

  2. Nonlinear, dispersive, elliptically polarized Alfven wavaes

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.

    1988-01-01

    The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.

  3. Spectral multigrid methods for elliptic equations

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1981-01-01

    An alternative approach which employs multigrid concepts in the iterative solution of spectral equations was examined. Spectral multigrid methods are described for self adjoint elliptic equations with either periodic or Dirichlet boundary conditions. For realistic fluid calculations the relevant boundary conditions are periodic in at least one (angular) coordinate and Dirichlet (or Neumann) in the remaining coordinates. Spectral methods are always effective for flows in strictly rectangular geometries since corners generally introduce singularities into the solution. If the boundary is smooth, then mapping techniques are used to transform the problem into one with a combination of periodic and Dirichlet boundary conditions. It is suggested that spectral multigrid methods in these geometries can be devised by combining the techniques.

  4. Ultrasonic guided waves in elliptical annular cylinders.

    PubMed

    Rajagopal, Prabhu; Pattanayak, Roson Kumar

    2015-09-01

    This paper studies the influence of cross-section ovalness or ellipticity on lower order axisymmetric guided wave modes in thin pipes. The second longitudinal mode L(0,2) and the fundamental torsional mode T(0,1) are studied, as these are of interest to current pipe inspection. The semi-analytical finite element (FE) method is mainly used, with three-dimensional FE simulations for visualization and cross-validation of results. The studies reveal that even a small degree of ovalness can affect mode shapes and velocities. The effect is more pronounced on the L(0,2) mode than on T(0,1) and this may be important for practical inspection applications. PMID:26428836

  5. Ultrasonic guided waves in elliptical annular cylinders.

    PubMed

    Rajagopal, Prabhu; Pattanayak, Roson Kumar

    2015-09-01

    This paper studies the influence of cross-section ovalness or ellipticity on lower order axisymmetric guided wave modes in thin pipes. The second longitudinal mode L(0,2) and the fundamental torsional mode T(0,1) are studied, as these are of interest to current pipe inspection. The semi-analytical finite element (FE) method is mainly used, with three-dimensional FE simulations for visualization and cross-validation of results. The studies reveal that even a small degree of ovalness can affect mode shapes and velocities. The effect is more pronounced on the L(0,2) mode than on T(0,1) and this may be important for practical inspection applications.

  6. Winding light beams along elliptical helical trajectories

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhui; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-07-01

    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We developed a superposition caustic method capable of winding light beams along nonconvex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implemented the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of nonconvex trajectories, thereby opening up a route of manipulating light beams for fundamental research and practical applications.

  7. Products of Independent Elliptic Random Matrices

    NASA Astrophysics Data System (ADS)

    O'Rourke, Sean; Renfrew, David; Soshnikov, Alexander; Vu, Van

    2015-07-01

    For fixed , we study the product of independent elliptic random matrices as tends to infinity. Our main result shows that the empirical spectral distribution of the product converges, with probability , to the -th power of the circular law, regardless of the joint distribution of the mirror entries in each matrix. This leads to a new kind of universality phenomenon: the limit law for the product of independent random matrices is independent of the limit laws for the individual matrices themselves. Our result also generalizes earlier results of Götze-Tikhomirov (On the asymptotic spectrum of products of independent random matrices, available at http://arxiv.org/abs/1012.2710) and O'Rourke-Soshnikov (J Probab 16(81):2219-2245, 2011) concerning the product of independent iid random matrices.

  8. Interior models of Mercury with equatorial ellipticity

    NASA Astrophysics Data System (ADS)

    Dumberry, M.

    2012-09-01

    The combination of planetary rotation observations and gravity field measurements by the MESSENGER spacecraft can be used to constrain the internal structure of Mercury. A recently published model suggests a mean mantle density of ρm = 3650 ± 225 kg m-3, substantially larger than that expected of a silicate mantle (3300 kg m-3) and possibly hinting at the presence of an FeS-rich layer at the base of the mantle. Here, we show that a large ρm is only required if the core-mantle boundary (CMB) of the planet is assumed axially-symmetric. An equatorial ellipticity of CMB of the order of 2 · 10-5 allows to satisfy gravity and rotation constraints with a mean mantle density typical of silicate material. Possible origin of such topography include past mantle convection, aspherical planetary shrinking, remnant tidal deformation, or a combination thereof.

  9. The outer haloes of massive, elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Das, Payel; Gerhard, Ortwin; de Lorenzi, Flavio; McNeil, Emily; Churazov, Eugene; Coccato, Lodovico

    2010-11-01

    The outer haloes of massive elliptical galaxies are dark-matter dominated regions where stellar orbits have longer dynamical timescales than the central regions and therefore better preserve their formation history. Dynamical models out to large radii suffer from a degeneracy between mass and orbital structure, as the outer kinematics are unable to resolve higher moments of the line-of-sight velocity distribution. We mitigate this degeneracy for a sample of quiescent, massive, nearby ellipticals by determining their mass distributions independently using a non-parametric method on X-ray observations of the surrounding hot interstellar medium. We then create dynamical models using photometric and kinematic constraints consisting of integral-eld, long-slit and planetary nebulae (PNe) data extending to ~50 kpc. The rst two galaxies of our sample, NGC 5846 and NGC 1399, were found to have very shallow pro jected light distributions with a power law index of ~1.5 and a dark matter content of 70-80% at 50 kpc. Spherical Jeans models of the data show that, in the outer haloes of both galaxies, the pro jected velocity dispersions are almost inde- pendent of the anisotropy and that the PNe prefer the lower end of the range of mass distributions consistent with the X-ray data. Using the N-body code NMAGIC, we cre- ated axisymmetric models of NGC 5846 using the individual PNe radial velocities in a likelihood method and found them to be more constraining than the binned velocity dispersions. Characterising the orbital structure in terms of spherically averaged proles of the velocity dispersions we nd σψ > σr > σθ.

  10. Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

    SciTech Connect

    Ku, S; Dimond, P H; Dif-Pradalier, G; Kwon, J M; Sarazin, Y; Hahm, T S; Garbet, X; Chang, C S; Latu, G; Yoon, E S; Ghendrih, Ph; Yi, S; Strugarek, A; Solomon, W

    2012-02-23

    Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity

  11. Intrinsic structure in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.

    2015-10-01

    Saturn's rings are the most prominent in our Solar system and one example of granular matter in space. Dominated by tides and inelastic collisions the system is highly flattened being almost 300000km wide while only tens of meters thick. Individual particles are composed of primarily water ice and range from microns to few tens of meters in size. Apparent patterns comprise ringlets, gaps, kinematic wakes, propellers, bending waves, and the winding spiral arms of density waves. These large-scale structures are perturbations foremost created by external as well as embedded moons. Observations made by the Cassini spacecraft currently in orbit around Saturn show these structures in unprecedented detail. But high-resolution measurements reveal the presence of small-scale structures throughout the system. These include self-gravity wakes (50-100m), overstable waves (100-300m), subkm structure at the A and B ring edges, "straw" and "ropy" structures (1-3km), and the C ring "ghosts". Most of these had not been anticipated and are found in perturbed regions, driven by resonances with external moons, where the system undergoes periodic phases of compression and relaxation that correlate with the presence of structure. High velocity dispersion and the presence of large clumps imply structure formation on time scales as short as one orbit (about 10 hours). The presence of these intrinsic structures is seemingly the response to varying local conditions such as internal density, optical depth, underlying particle size distribution, granular temperature, and distance from the central planet. Their abundance provides evidence for an active and dynamic ring system where aggregation and fragmentation are ongoing on orbital timescales. Thus a kinetic description of the rings may be more appropriate than the fluid one. I will present Cassini Ultraviolet Spectrometer (UVIS) High Speed Photometer (HSP) occultations, Voyager 1 and 2 Imaging Science Subsystem (ISS), and high

  12. Investigation on computation of elliptical microwave plasma cavity

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoli; Liu, Hua; Zhang, Kai

    2008-12-01

    In recent years, the advance of the elliptical resonant cavity and focus cavity is known by many people. There are homogeneous and multipatternal virtues in the focus dimensional microwave field of the elliptical resonant cavity. It is very suitable for applying the low power microwave biological effect equipment. However, when designing the elliptical resonant cavity may meet the problems of complex and huge computation need to be solved. This paper proposed the simple way of approximate processing the Mathieu function. It can greatly simplify the difficulty and decrease the scale of computation. This method can satisfy the requirements of research and development within project permitted precision.

  13. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  14. Global variational approach to elliptic transport barriers in three dimensions.

    PubMed

    Oettinger, David; Blazevski, Daniel; Haller, George

    2016-03-01

    We introduce an approach to identify elliptic transport barriers in three-dimensional, time-aperiodic flows. Obtained as Lagrangian Coherent Structures (LCSs), the barriers are tubular non-filamenting surfaces that form and bound coherent material vortices. This extends a previous theory of elliptic LCSs as uniformly stretching material surfaces from two-dimensional to three-dimensional flows. Specifically, we obtain explicit expressions for the normals of pointwise (near-) uniformly stretching material surfaces over a finite time interval. We use this approach to visualize elliptic LCSs in steady and time-aperiodic ABC-type flows. PMID:27036192

  15. Single optical tweezers based on elliptical core fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Li; Chen, Yunhao; Liu, Zhihai; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2016-04-01

    We propose and demonstrate a new single optical tweezers based on an elliptical core fiber, which can realize the trapped yeast cell rotation with a precise and simple control. Due to the elliptical shape of the fiber core, the LP11 mode beam can propagate stably. When we rotate the fiber tip, the LP11 mode beam will also rotate along with the fiber tip, which helps to realize the trapped micro-particle rotation. By using this method, we can easily realize the rotation of the trapped yeast cells, the rotating angle of the yeast cell is same as the elliptical core fiber tip.

  16. Global variational approach to elliptic transport barriers in three dimensions

    NASA Astrophysics Data System (ADS)

    Oettinger, David; Blazevski, Daniel; Haller, George

    2016-03-01

    We introduce an approach to identify elliptic transport barriers in three-dimensional, time-aperiodic flows. Obtained as Lagrangian Coherent Structures (LCSs), the barriers are tubular non-filamenting surfaces that form and bound coherent material vortices. This extends a previous theory of elliptic LCSs as uniformly stretching material surfaces from two-dimensional to three-dimensional flows. Specifically, we obtain explicit expressions for the normals of pointwise (near-) uniformly stretching material surfaces over a finite time interval. We use this approach to visualize elliptic LCSs in steady and time-aperiodic ABC-type flows.

  17. New Elliptic Solutions of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Chicherin, D.; Derkachov, S. E.; Spiridonov, V. P.

    2016-07-01

    We consider finite-dimensional reductions of an integral operator with the elliptic hypergeometric kernel describing the most general known solution of the Yang-Baxter equation with a rank 1 symmetry algebra. The reduced R-operators reproduce at their bottom the standard Baxter's R-matrix for the 8-vertex model and Sklyanin's L-operator. The general formula has a remarkably compact form and yields new elliptic solutions of the Yang-Baxter equation based on the finite-dimensional representations of the elliptic modular double. The same result is also derived using the fusion formalism.

  18. The intrinsic two-dimensional size of Sagittarius A*

    SciTech Connect

    Bower, Geoffrey C.; Markoff, Sera; Brunthaler, Andreas; Falcke, Heino; Law, Casey; Maitra, Dipankar; Clavel, M.; Goldwurm, A.; Morris, M. R.; Witzel, Gunther; Meyer, Leo; Ghez, A. M.

    2014-07-20

    We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array observations at a wavelength of 7 mm. The intrinsic source is modeled as an elliptical Gaussian with major-axis size 35.4 × 12.6 R{sub S} in position angle 95° east of north. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95°. We also place a maximum peak-to-peak change of 15% in the intrinsic major-axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports the conclusion that NIR and X-ray flares are primarily due to electron excitation and not to an enhanced accretion rate onto the black hole.

  19. The relation of mothers' controlling vocalizations to children's intrinsic motivation.

    PubMed

    Deci, E L; Driver, R E; Hotchkiss, L; Robbins, R J; Wilson, I M

    1993-04-01

    Twenty-six mother-child dyads played together in a laboratory setting. Play sessions were surreptitiously videotaped (with mothers' permission), and each maternal vocalization was transcribed and coded, first into 1 of 24 categories and then ipso facto into one of three supercategories--namely, controlling, autonomy supportive, and neutral. The degree of mothers' controllingness was calculated as the percentage of vocalizations coded as controlling. This index was correlated with the intrinsic motivation of their 6- or 7-year-old children, as assessed primarily by the free-choice behavioral measure and secondarily by a child self-report measure of interest and liking for the task. Both correlations were significantly negative, thereby suggesting that the robust laboratory findings of a negative relation between controlling contexts and individuals' intrinsic motivation are directly generalizable to the domain of parenting. Results are discussed in terms of the processes that undermine intrinsic motivation and the means through which parental controllingness is communicated.

  20. Tracing the Formation and Evolution of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Davari, Roozbeh

    Massive galaxies at higher redshift, z > 2, show different characteristics than their local counterparts. They are compact and most likely have a disk. Understanding the evolutionary path of these massive galaxies can give us some clues on how the universe has been behaving in the last 10 billion years. How well can we measure the bulge and disk properties of these systems? We perform two sets of comprehensive simulations in order to systematically quantify the effects of non-homology in structures and the methods employed. For the first set of simulations, by accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z ≈ 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. For the second set of simulations, we employ empirical scaling relations to produce realistic-looking two-component local galaxies with a uniform and wide range of bulge-to-total ratios (B/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at z ≈ 2. This provides the first set of simulations for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/T . We can measure B/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/T ≥ 0.2. The disk component, by contrast, can be measured with little difficulty. Next, we trace back the evolution of local massive galaxies but performing detailed morphological analysis: namely, single Swrsic fitting and bulge+disk decomposition. CANDELS images and catalogues offer an ideal dataset for this study. We

  1. Intrinsic Motivation in Physical Education

    ERIC Educational Resources Information Center

    Davies, Benjamin; Nambiar, Nathan; Hemphill, Caroline; Devietti, Elizabeth; Massengale, Alexandra; McCredie, Patrick

    2015-01-01

    This article describes ways in which educators can use Harter's perceived competence motivation theory, the achievement goal theory, and self-determination theory to develop students' intrinsic motivation to maintain physical fitness, as demonstrated by the Sound Body Sound Mind curriculum and proven effective by the 2013 University of…

  2. Elliptic Solvers with Adaptive Mesh Refinement on Complex Geometries

    SciTech Connect

    Phillip, B.

    2000-07-24

    Adaptive Mesh Refinement (AMR) is a numerical technique for locally tailoring the resolution computational grids. Multilevel algorithms for solving elliptic problems on adaptive grids include the Fast Adaptive Composite grid method (FAC) and its parallel variants (AFAC and AFACx). Theory that confirms the independence of the convergence rates of FAC and AFAC on the number of refinement levels exists under certain ellipticity and approximation property conditions. Similar theory needs to be developed for AFACx. The effectiveness of multigrid-based elliptic solvers such as FAC, AFAC, and AFACx on adaptively refined overlapping grids is not clearly understood. Finally, a non-trivial eye model problem will be solved by combining the power of using overlapping grids for complex moving geometries, AMR, and multilevel elliptic solvers.

  3. Stable equilibria of elliptic roly-poly toys

    NASA Astrophysics Data System (ADS)

    Hong, Seok-In

    2016-11-01

    As an instructive (gravitational potential) energy approach, we show that the elliptic roly-poly has a richer and more useful profile (including the tilted configuration) of stable equilibria than conventional spherical or cylindrical roly-polys.

  4. Iterative methods for elliptic finite element equations on general meshes

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.; Choudhury, Shenaz

    1986-01-01

    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.

  5. Toric elliptic fibrations and F-theory compactifications

    NASA Astrophysics Data System (ADS)

    Braun, Volker

    2013-01-01

    The 102,581 flat toric elliptic fibrations over {{{P}}^2} are identified among the Calabi-Yau hypersurfaces that arise from the 473,800,776 reflexive 4-dimensional polytopes. In order to analyze their elliptic fibration structure, we describe the precise relation between the lattice polytope and the elliptic fibration. The fiber-divisor-graph is introduced as a way to visualize the embedding of the Kodaira fibers in the ambient toric fiber. In particular in the case of non-split discriminant components, this description is far more accurate than previous studies. The discriminant locus and Kodaira fibers of all 102,581 elliptic fibrations are computed. The maximal gauge group is SU(27), which would naively be in contradiction with 6-dimensional anomaly cancellation.

  6. 21. AN IMAGE OF THE FIRST LARGE, ELLIPTICAL RING ARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. AN IMAGE OF THE FIRST LARGE, ELLIPTICAL RING ARCH ON THE WEST END OF THE BRIDGE. THE PARKWAY PASSES BENEATH A MINOR ARCH BEYOND. - Main Street Bridge, Spanning East Fork Whitewater River, Richmond, Wayne County, IN

  7. Elliptical dichroism: operating principle of planar chiral metamaterials.

    PubMed

    Zhukovsky, Sergei V; Novitsky, Andrey V; Galynsky, Vladimir M

    2009-07-01

    We employ a homogenization technique based on the Lorentz electronic theory to show that planar chiral structures (PCSs) can be described by an effective dielectric tensor similar to that of biaxial elliptically dichroic crystals. Such a crystal is shown to behave like a PCS insofar as it exhibits its characteristic optical properties, namely, corotating elliptical polarization eigenstates and asymmetric, direction-dependent transmission for left- or right-handed incident wave polarization.

  8. Scatter of elastic waves by a thin flat elliptical inhomogeneity

    NASA Technical Reports Server (NTRS)

    Fu, L. S.

    1983-01-01

    Elastodynamic fields of a single, flat, elliptical inhomogeneity embedded in an infinite elastic medium subjected to plane time harmonic waves are studied. Scattered displacement amplitudes and stress intensities are obtained in series form for an incident wave in an arbitrary direction. The cases of a penny shaped crack and an elliptical crack are given as examples. The analysis is valid for alpha a up to about two, where alpha is longitudinal wave number and a is a typical geometric parameter.

  9. Bifurcations in elliptical, asymmetric non-neutral plasmas

    NASA Astrophysics Data System (ADS)

    Fajans, Joel; Gilson, Erik

    1999-11-01

    When subjected to a stationary, l=2 potential perturbation on the wall, a pure electron plasma will deform into an elliptical shape. At first, the plasma's ellipticity is proportional to the strength of the potential perturbation. Once the perturbation is increased beyond a critical value, the plasma equilibrium bifurcates into two off-axis states. This bifurcation has been observed experimentally and will be described in this poster. (see http://socrates.berkeley.edu/ fajans/EquilStab/EllipseBifurcation.avi)

  10. Analysis of elliptical and circular microstrip antennas using moment method

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1985-01-01

    A method of calculating the input impedance of either a circular or a slightly elliptical microstrip antenna excited by a coaxial probe is presented. Using the reaction integral equation and the exact dyadic Green's function, the finite substrate thickness is taken into account in the formulation. Good agreement with experimental results for an elliptical patch is obtained and a design procedure for a circularly polarized antenna is presented.

  11. Banana orbits in elliptic tokamaks with hole currents

    NASA Astrophysics Data System (ADS)

    Martin, P.; Castro, E.; Puerta, J.

    2015-03-01

    Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.

  12. Beam-beam deflection and signature curves for elliptic beams

    SciTech Connect

    Ziemann, V.

    1990-10-22

    In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.

  13. Elliptical dichroism: operating principle of planar chiral metamaterials.

    PubMed

    Zhukovsky, Sergei V; Novitsky, Andrey V; Galynsky, Vladimir M

    2009-07-01

    We employ a homogenization technique based on the Lorentz electronic theory to show that planar chiral structures (PCSs) can be described by an effective dielectric tensor similar to that of biaxial elliptically dichroic crystals. Such a crystal is shown to behave like a PCS insofar as it exhibits its characteristic optical properties, namely, corotating elliptical polarization eigenstates and asymmetric, direction-dependent transmission for left- or right-handed incident wave polarization. PMID:19571975

  14. Plane-wave expansion of elliptic cylindrical functions

    NASA Astrophysics Data System (ADS)

    Santini, Carlo; Frezza, Fabrizio; Tedeschi, Nicola

    2015-08-01

    Elliptic Cylindrical Waves (ECW), defined as the product of an angular Mathieu function by its corresponding radial Mathieu function, occur in the solution of scattering problems involving two-dimensional structures with elliptic cross sections. In this paper, we explicitly derive the expansion of ECW, along a plane surface, in terms of homogeneous and evanescent plane waves, showing the accuracy of the numerical implementation of the formulas and discussing possible applications of the result.

  15. Remarks of Elliptic Curves Derived from Ant Colony Routing

    NASA Astrophysics Data System (ADS)

    Jung, Sangsu; Kim, Daeyeoul; Singh, Dhananjay

    2011-09-01

    We deal with an ant colony based routing model for wireless multi-hop networks. Our model adopts an elliptic curve equation, which is beneficial to design pheromone dynamics for load balancing and packet delivery robustness. Due to the attribute of an elliptic curve equation, our model prevents the over-utilization of a specific node, distinctively from conventional ant colony based schemes. Numerical simulations exhibit the characteristics of our model with respect to various parameters.

  16. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  17. Formation and Evolution of Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor

    2006-11-01

    This thesis presents observational studies of evolution of dwarf elliptical galaxies. dE's are numerically dominant population in clusters of galaxies, but their origin and evolution is a matter of debate. Several scenarios of gas removal from dE's exist: galactic winds, ram pressure stripping, gravitaional harassment. We present new method to estimate stellar population parameters and internal kinematics, based on fitting observed spectra in the pixel space by PEGASE.HR synthetic populations. We apply this technique to 3D-spectroscopic observations of dE galaxies in the Virgo cluster and nearby groups and multiobject spectroscopy of several dozens of dE's in the Abell 496 cluster. We present discovery of young nuclei in bright dE galaxies in the Virgo cluster. Based on the analysis of observational data we conclude that: (1) there is an evolutionary connection between dE's and dIrr's, (2) the most probable scenario of gas removal is ram pressure stripping by the intergalactic medium.

  18. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  19. STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES

    SciTech Connect

    Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf E-mail: dbfisher@astro.as.utexas.edu E-mail: bender@usm.uni-muenchen.de

    2009-05-15

    New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sersic log I {proportional_to} r {sup 1/n} functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes M{sub VT} {<=} -21.66 have cuspy cores-'missing light'-at small radii. Cores are well known and naturally scoured by binary black holes (BHs) formed in dissipationless ('dry') mergers. All 17 ellipticals with -21.54 {<=} M{sub VT} {<=} -15.53 do not have cores. We find a new distinct component in these galaxies: all coreless ellipticals in our sample have extra light at the center above the inward extrapolation of the outer Sersic profile. In large ellipticals, the excess light is spatially resolved and resembles the central components predicted in numerical simulations of mergers of galaxies that contain gas. In the simulations, the gas dissipates, falls toward the center, undergoes a starburst, and builds a compact stellar component that, as in our observations, is distinct from the Sersic-function main body of the elliptical. But ellipticals with extra light also contain supermassive BHs. We suggest that the starburst has swamped core scouring by binary BHs. That is, we interpret extra light components as a signature of formation in dissipative ('wet') mergers. Besides extra light, we find three new aspects to the ('E-E') dichotomy into two types of elliptical galaxies. Core galaxies are known to be slowly rotating, to have relatively anisotropic velocity distributions, and to have boxy isophotes. We show that they have

  20. Elliptic Relaxation of a Tensor Representation for the Redistribution Terms in a Reynolds Stress Turbulence Model

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Gatski, T. B.

    2002-01-01

    A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.

  1. Effect of opposed eccentricity on free convective heat transfer through elliptical annulus enclosures in blunt and slender orientations

    NASA Astrophysics Data System (ADS)

    Eid, E. I.; Abdel-Halim, M.; Easa, A. S.

    2015-02-01

    This paper presents an experimental investigation for the effect of opposed lateral and vertical eccentricities on free convective heat transfer through elliptical annulus enclosures in blunt and slender orientations. Three test specimens of elliptical cylinders having an equal radius ratio and an equal length were prepared. The surface area of the inner cylinder is the same for each specimen as well as the area of the outer cylinder. Different elliptical ratios of 0.662, 0.866 and 0.968 were investigated. Experimental tests were done by maintaining constant heat flux on the inner cylinder and the outer one was exposed to approximately constant temperature of the closed laboratory. Both annuals ends of the annular elliptical cylinders were closed by cork to form the annular enclosure space. The experimental tests monitored Rayleigh number (1.642 × 103 ≤ Ra* ≤ 3.849 × 106). The effects of both opposed vertical and lateral eccentricities for both blunt and slender orientations were investigated. The experimental results were fitted by correlations. Considerable agreement was found in the comparison among the results of present and previous works. Opposed eccentricity enhances free convective heat transfer by about 40 % from concentric. Slender orientation results in more enhancements in free convection than blunt one.

  2. Formation, evolution and properties of isolated field elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Niemi, Sami-Matias; Heinämäki, Pekka; Nurmi, Pasi; Saar, Enn

    2010-06-01

    We study the properties, evolution and formation mechanisms of isolated field elliptical (IfE) galaxies. We create a `mock' catalogue of IfE galaxies from the Millennium Simulation Galaxy Catalogue, and trace their merging histories. The formation, identity and assembly redshifts of simulated isolated and non-isolated elliptical galaxies are studied and compared. Observational and numerical data are used to compare age, mass and the colour-magnitude relation. Our results, based on simulation data, show that almost 7 per cent of all elliptical galaxies brighter than -19mag in B band can be classified as IfE galaxies. Results also show that isolated elliptical galaxies have a rather flat luminosity function; a number density of ~3 × 10-6h3Mpc-3mag-1, throughout their B-band magnitudes. IfE galaxies show bluer colours than non-isolated elliptical galaxies and they appear younger, in a statistical sense, according to their mass-weighted age. IfE galaxies also form and assemble at lower redshifts compared to non-isolated elliptical galaxies. About 46 per cent of IfE galaxies have undergone at least one major merging event in their formation history, while the same fraction is only ~33 per cent for non-isolated ellipticals. Almost all (~98 per cent) isolated elliptical galaxies show merging activity during their evolution, pointing towards the importance of mergers in the formation of IfE galaxies. The mean time of the last major merging is at z ~ 0.6 or 6Gyr ago for isolated ellipticals, while non-isolated ellipticals experience their last major merging significantly earlier at z ~ 1.1 or 8Gyr ago. After inspecting merger trees of simulated IfE galaxies, we conclude that three different, yet typical, formation mechanisms can be identified: solitude, coupling and cannibalism. Our results also predict a previously unobserved population of blue, dim and light galaxies that fulfil observational criteria to be classified as IfE galaxies. This separate population comprises

  3. What is intrinsic atopic dermatitis?

    PubMed

    Roguedas-Contios, Anne-Marie; Misery, Laurent

    2011-12-01

    Many authors favor a distinction between the extrinsic and intrinsic forms of atopic dermatitis. In this review, the controversy is discussed and several definitions are presented. After reviewing many papers on this topic, it is our opinion that it is useful to separate the intrinsic and extrinsic forms of atopic dermatitis or atopic eczema and atopiform dermatitis because the pathophysiology appears to be different between them. However, these terms require concrete definition and clarification of the distinction between these two concepts. This debate is a new step in the history of atopic dermatitis. It is possible that a single patient could suffer from one form and then from another but genetic differences suggest that two types could really exist.

  4. An elliptic parameterisation of the Zamolodchikov model

    NASA Astrophysics Data System (ADS)

    Bazhanov, Vladimir V.; Mangazeev, Vladimir V.; Okada, Yuichiro; Sergeev, Sergey M.

    2013-06-01

    The Zamolodchikov model describes an exact relativistic factorized scattering theory of straight strings in (2+1)-dimensional space-time. It also defines an integrable 3D lattice model of statistical mechanics and quantum field theory. The three-string S-matrix satisfies the tetrahedron equation which is a 3D analog of the Yang-Baxter equation. Each S-matrix depends on three dihedral angles formed by three intersecting planes, whereas the tetrahedron equation contains five independent spectral parameters, associated with angles of an Euclidean tetrahedron. The vertex weights are given by rather complicated expressions involving square roots of trigonometric function of the spectral parameters, which is quite unusual from the point of view of 2D solvable lattice models. In this paper we consider a particular four-parameter specialisation of the tetrahedron equation when one of its vertices goes to infinity and the tetrahedron itself degenerates into an infinite prism. We show that in this limit all the vertex weights in the tetrahedron equation can be represented as meromorphic functions on an elliptic curve. Moreover we show that a special reduction of the tetrahedron equation in this case leads precisely to an example of the tetrahedral Zamolodchikov algebra, previously constructed by Korepanov. This algebra plays important role for a "layered" construction of the Shastry's R-matrix and the 2D S-matrix appearing in the problem of the ADS/CFT correspondence for N=4 SUSY Yang-Mills theory in four dimensions. Possible applications of our results in this field are briefly discussed.

  5. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  6. Decoherence: Intrinsic, Extrinsic, and Environmental

    NASA Astrophysics Data System (ADS)

    Stamp, Philip

    2012-02-01

    Environmental decoherence times have been difficult to predict in solid-state systems. In spin systems, environmental decoherence is predicted to arise from nuclear spins, spin-phonon interactions, and long-range dipolar interactions [1]. Recent experiments have confirmed these predictions quantitatively in crystals of Fe8 molecules [2]. Coherent spin dynamics was observed over macroscopic volumes, with a decoherence Q-factor Qφ= 1.5 x10^6 (the upper predicted limit in this system being Qφ= 6 x10^7). Decoherence from dipolar interactions is particularly complex, and depends on the shape and the quantum state of the system. No extrinsic ``noise'' decoherence was observed. The generalization to quantum dot and superconducting qubit systems is also discussed. We then discuss searches for ``intrinsic'' decoherence [3,4], coming from non-linear corrections to quantum mechanics. Particular attention is paid to condensed matter tests of such intrinsic decoherence, in hybrid spin/optomechanical systems, and to ways of distinguishing intrinsic decoherence from environmental and extrinsic decoherence sources. [4pt] [1] Morello, A. Stamp, P. C. E. & Tupitsyn, Phys. Rev. Lett. 97, 207206 (2006).[0pt] [2] S. Takahashi et al., Nature 476, 76 (2011).[0pt] [3] Stamp, P. C. E., Stud. Hist. Phil. Mod. Phys. 37, 467 (2006). [0pt] [4] Stamp, P.C.E., Phil. Trans. Roy. Soc. A (to be published)

  7. Troponins, intrinsic disorder, and cardiomyopathy.

    PubMed

    Na, Insung; Kong, Min J; Straight, Shelby; Pinto, Jose R; Uversky, Vladimir N

    2016-08-01

    Cardiac troponin is a dynamic complex of troponin C, troponin I, and troponin T (TnC, TnI, and TnT, respectively) found in the myocyte thin filament where it plays an essential role in cardiac muscle contraction. Mutations in troponin subunits are found in inherited cardiomyopathies, such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The highly dynamic nature of human cardiac troponin and presence of numerous flexible linkers in its subunits suggest that understanding of structural and functional properties of this important complex can benefit from the consideration of the protein intrinsic disorder phenomenon. We show here that mutations causing decrease in the disorder score in TnI and TnT are significantly more abundant in HCM and DCM than mutations leading to the increase in the disorder score. Identification and annotation of intrinsically disordered regions in each of the troponin subunits conducted in this study can help in better understanding of the roles of intrinsic disorder in regulation of interactomes and posttranslational modifications of these proteins. These observations suggest that disease-causing mutations leading to a decrease in the local flexibility of troponins can trigger a whole plethora of functional changes in the heart. PMID:27074551

  8. Intrinsic Frequency and the Single Wave Biopsy

    PubMed Central

    Petrasek, Danny; Pahlevan, Niema M.; Tavallali, Peyman; Rinderknecht, Derek G.; Gharib, Morteza

    2015-01-01

    Insulin resistance is the hallmark of classical type II diabetes. In addition, insulin resistance plays a central role in metabolic syndrome, which astonishingly affects 1 out of 3 adults in North America. The insulin resistance state can precede the manifestation of diabetes and hypertension by years. Insulin resistance is correlated with a low-grade inflammatory condition, thought to be induced by obesity as well as other conditions. Currently, the methods to measure and monitor insulin resistance, such as the homeostatic model assessment and the euglycemic insulin clamp, can be impractical, expensive, and invasive. Abundant evidence exists that relates increased pulse pressure, pulse wave velocity (PWV), and vascular dysfunction with insulin resistance. We introduce a potential method of assessing insulin resistance that relies on a novel signal-processing algorithm, the intrinsic frequency method (IFM). The method requires a single pulse pressure wave, thus the term “ wave biopsy.” PMID:26183600

  9. Jacobi elliptic functions: A review of nonlinear oscillatory application problems

    NASA Astrophysics Data System (ADS)

    Kovacic, Ivana; Cveticanin, Livija; Zukovic, Miodrag; Rakaric, Zvonko

    2016-10-01

    This review paper is concerned with the applications of Jacobi elliptic functions to nonlinear oscillators whose restoring force has a monomial or binomial form that involves cubic and/or quadratic nonlinearity. First, geometric interpretations of three basic Jacobi elliptic functions are given and their characteristics are discussed. It is shown then how their different forms can be utilized to express exact solutions for the response of certain free conservative oscillators. These forms are subsequently used as a starting point for a presentation of different quantitative techniques for obtaining an approximate response for free perturbed nonlinear oscillators. An illustrative example is provided. Further, two types of externally forced nonlinear oscillators are reviewed: (i) those that are excited by elliptic-type excitations with different exact and approximate solutions; (ii) those that are damped and excited by harmonic excitations, but their approximate response is expressed in terms of Jacobi elliptic functions. Characteristics of the steady-state response are discussed and certain qualitative differences with respect to the classical Duffing oscillator excited harmonically are pointed out. Parametric oscillations of the oscillators excited by an elliptic-type forcing are considered as well, and the differences with respect to the stability chart of the classical Mathieu equation are emphasized. The adjustment of the Melnikov method to derive the general condition for the onset of homoclinic bifurcations in a system parametrically excited by an elliptic-type forcing is provided and compared with those corresponding to harmonic excitations. Advantages and disadvantages of the use of Jacobi elliptic functions in nonlinear oscillatory application problems are discussed and some suggestions for future work are given.

  10. Elliptic Cones Alone and with Wings at Supersonic Speed

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H

    1958-01-01

    To help fill the gap in the knowledge of aerodynamics of shapes intermediate between bodies of revolution and flat triangular wings, force and moment characteristics for elliptic cones have been experimentally determined for Mach numbers of 1.97 and 2.94. Elliptic cones having cross-sectional axis ratios from 1 through 6 and with lengths and base areas equal to circular cones of fineness ratios 3.67 and 5 have been studied for angles of bank of 0 degree and 90 degrees. Elliptic and circular cones in combination with triangular wings of aspect ratios 1 and 1.5 also have been considered. The angle-of-attack range was from 0 degree to about 16 degrees, and the Reynolds number was 8 x 10(6), based on model length. In addition to the forces and moments at angle of attack, pressure distributions for elliptic cones at zero angle of attack have been determined. The results of this investigation indicate that there are distinct aerodynamic advantages to the use of elliptic cones.

  11. Acoustic scattering by multiple elliptical cylinders using collocation multipole method

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Ming

    2012-05-01

    This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical-cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.

  12. Elliptic interface problem solved using the mixed finite element method

    NASA Astrophysics Data System (ADS)

    Wang, Shuqiang

    2007-05-01

    The elliptic boundary value/interface problem is very important in many applications, for example, in incompressible flow and MHD. Many methods are used to solve these problems in a complex domain, including the finite volume method, the finite element method and the boundary element method. For a complex computational domain, the better choice of the partition of the computational domain is to use an unstructured grid. However, it is not a straight forward task to implement a mesh generation program. Such a program requires extra computing time and resources (such as computer memory). Thus people like to use a structured mesh if possible, especially a cartesian mesh. Popular methods using structured cartesian grids for the elliptic boundary value/interface problem include the immersed boundary method, the immersed interface method, the ghost fluid method, and the embedded boundary method. This thesis solves the elliptic problem using several versions of the mixed nite element method on an unstructured mesh. The results are compared for speed and accuracy to the embedded boundary method. A ghost fluid method for elliptic boundary value/interface problems is also investigated. Finally, a simple test of the 2D Rayleigh-Taylor instability is performed using the FronTier-Lite package. Key Words. Elliptic Boundary Value, Interface, Mesh Generation, Quadtree, Octree, Front Tracking.

  13. Applications of Elliptically Polarized, Few-Cycle Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Starace, Anthony F.

    2016-05-01

    Use of elliptically-polarized light opens the possibility of investigating effects that are not accessible with linearly-polarized pulses. This talk presents two new physical effects that are predicted for ionization of the helium atom by few-cycle, elliptically polarized attosecond pulses. For double ionization of He by an intense elliptically polarized attosecond pulse, we predict a nonlinear dichroic effect (i.e., the difference of the two-electron angular distributions in the polarization plane for opposite helicities of the ionizing pulse) that is sensitive to the carrier-envelope phase, ellipticity, peak intensity I, and temporal duration of the pulse. For single ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses we predict that the photoelectron momentum distributions in the polarization plane have helical vortex structures that are exquisitely sensitive to the time-delay between the pulses, their relative phase, and their handedness. Both of these effects manifest the ability to control the angular distributions of the ionized electrons by means of the attosecond pulse parameters. Our predictions are obtained numerically by solving the six-dimensional two-electron time-dependent Schrödinger equation for the case of elliptically polarized attosecond pulses. They are interpreted analytically by means of perturbation theory analyses of the two ionization processes. This work is supported in part by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Award No. DE-FG03-96ER14646.

  14. Cosmological information in the intrinsic alignments of luminous red galaxies

    SciTech Connect

    Chisari, Nora Elisa; Dvorkin, Cora E-mail: cdvorkin@ias.edu

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  15. Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell

    NASA Astrophysics Data System (ADS)

    Tiwari, Ishant; Phogat, Richa; Parmananda, P.; Ocampo-Espindola, J. L.; Rivera, M.

    2016-08-01

    In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V0) in the cell is chosen such that the anodic current (I ) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal.

  16. Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell.

    PubMed

    Tiwari, Ishant; Phogat, Richa; Parmananda, P; Ocampo-Espindola, J L; Rivera, M

    2016-08-01

    In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V_{0}) in the cell is chosen such that the anodic current (I) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal. PMID:27627301

  17. Intrinsic motivation and amotivation in first episode and prolonged psychosis.

    PubMed

    Luther, Lauren; Lysaker, Paul H; Firmin, Ruth L; Breier, Alan; Vohs, Jenifer L

    2015-12-01

    The deleterious functional implications of motivation deficits in psychosis have generated interest in examining dimensions of the construct. However, there remains a paucity of data regarding whether dimensions of motivation differ over the course of psychosis. Therefore, this study examined two motivation dimensions, trait-like intrinsic motivation, and the negative symptom of amotivation, and tested the impact of illness phase on the 1) levels of these dimensions and 2) relationship between these dimensions. Participants with first episode psychosis (FEP; n=40) and prolonged psychosis (n=66) completed clinician-rated measures of intrinsic motivation and amotivation. Analyses revealed that when controlling for group differences in gender and education, the FEP group had significantly more intrinsic motivation and lower amotivation than the prolonged psychosis group. Moreover, intrinsic motivation was negatively correlated with amotivation in both FEP and prolonged psychosis, but the magnitude of the relationship did not statistically differ between groups. These findings suggest that motivation deficits are more severe later in the course of psychosis and that low intrinsic motivation may be partially independent of amotivation in both first episode and prolonged psychosis. Clinically, these results highlight the importance of targeting motivation in early intervention services.

  18. Nuclear Filtering of Intrinsic Charm

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-11-12

    Nuclei are transparent for a heavy intrinsic charm (IC) component of the beam hadrons, what leads to an enhanced nuclear dependence of open charm production at large Feynman x{sub F}. Indeed, such an effect is supported by data from the SELEX experiment published recently [1]. Our calculations reproduce well the data, providing strong support for the presence of IC in hadrons in amount less than 1%. Moreover, we performed an analysis of nuclear effects in J/{Psi} production and found at large x{sub F} a similar, albeit weaker effect, which does not contradict data.

  19. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.

    PubMed

    McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O

    2011-12-01

    Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is present in NGC 4889, the brightest galaxy in the Coma cluster (at a distance of 103 megaparsecs). These two black holes are significantly more massive than predicted by linearly extrapolating the widely used correlations between black-hole mass and the stellar velocity dispersion or bulge luminosity of the host galaxy. Although these correlations remain useful for predicting black-hole masses in less massive elliptical galaxies, our measurements suggest that different evolutionary processes influence the growth of the largest galaxies and their black holes.

  20. Neutral hydrogen in elliptical galaxies with nuclear radio sources and optical emission lines

    SciTech Connect

    Dressel, L.L.; Bania, T.M.; Oconnell, R.W.

    1982-01-01

    An H I detection survey of eleven elliptical galaxies with powerful nuclear radio sources was conducted, using the 305 m antenna of Arecibo Observatory, to test the hypothesis that large H I mass is conductive to the formation of nuclear radio sources in elliptical galaxies. The H I was detected in emission in UGC 09114 and was possibly detected in absorption in UGC 06671. Observations of the remaining galaxies were not sensitive enough to support or refute the hypothesis. Data was combined from other H I surveys and spectroscopic surveys to search for correlations of H I mass with other galactic properties and environmental conditions. Strong correlations of (O II) lambda 3727 emission with H I content and with nuclear radio power were found. The latter two properties may simply indicate, respectively, whether a significant amount of gas is available to be ionized and whether energy is provided by nuclear activity for ionization. No dependence of H I content on optical luminosity or on degree of isolation from other galaxies was found.

  1. Elliptic jets, part 2. Dynamics of coherent structures: Pairing

    NASA Technical Reports Server (NTRS)

    Husain, Hyder S.; Hussain, Fazle

    1992-01-01

    The dynamics of the jet column mode of vortex pairing in the near field of an elliptic jet was investigated. Hot-wire measurements and flow visualization were used to examine the details of the pairing mechanism of nonplanar vortical elliptic structures and its effect on such turbulence measures as coherent velocities, incoherent turbulence intensities, incoherent and coherent Reynolds, stresses, turbulence production, and mass entrainment. It was found that pairing of elliptic vortices in the jet column does not occur uniformly around the entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane. In the initial minor-axis plane, the trailing vortex rushes through the leading vortex without pairing and then breaks down violently, producing considerably greater entrainment and mixing than in circular or plane jets.

  2. Dynamical properties of the soft-wall elliptical billiard.

    PubMed

    Kroetz, Tiago; Oliveira, Hércules A; Portela, Jefferson S E; Viana, Ricardo L

    2016-08-01

    Physical systems such as optical traps and microwave cavities are realistically modeled by billiards with soft walls. In order to investigate the influence of the wall softness on the billiard dynamics, we study numerically a smooth two-dimensional potential well that has the elliptical (hard-wall) billiard as a limiting case. Considering two parameters, the eccentricity of the elliptical equipotential curves and the wall hardness, which defines the steepness of the well, we show that (1) whereas the hard-wall limit is integrable and thus completely regular, the soft wall elliptical billiard exhibits chaos, (2) the chaotic fraction of the phase space depends nonmonotonically on the hardness of the wall, and (3) the effect of the hardness on the dynamics depends strongly on the eccentricity of the billiard. We further show that the limaçon billiard can exhibit enhanced chaos induced by wall softness, which suggests that our findings generalize to quasi-integrable systems. PMID:27627309

  3. Dynamical properties of the soft-wall elliptical billiard

    NASA Astrophysics Data System (ADS)

    Kroetz, Tiago; Oliveira, Hércules A.; Portela, Jefferson S. E.; Viana, Ricardo L.

    2016-08-01

    Physical systems such as optical traps and microwave cavities are realistically modeled by billiards with soft walls. In order to investigate the influence of the wall softness on the billiard dynamics, we study numerically a smooth two-dimensional potential well that has the elliptical (hard-wall) billiard as a limiting case. Considering two parameters, the eccentricity of the elliptical equipotential curves and the wall hardness, which defines the steepness of the well, we show that (1) whereas the hard-wall limit is integrable and thus completely regular, the soft wall elliptical billiard exhibits chaos, (2) the chaotic fraction of the phase space depends nonmonotonically on the hardness of the wall, and (3) the effect of the hardness on the dynamics depends strongly on the eccentricity of the billiard. We further show that the limaçon billiard can exhibit enhanced chaos induced by wall softness, which suggests that our findings generalize to quasi-integrable systems.

  4. Cluster flight control for fractionated spacecraft on an elliptic orbit

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin

    2016-08-01

    This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.

  5. Magnetohydrodynamics equilibrium of a self-confined elliptical plasma ball

    SciTech Connect

    Wu, H. P. O. Box 8730, Beijing 100080 and Institute of Mechanics, Academia Sinica, Beijing, People's Republic of China ); Oakes, M.E. )

    1991-08-01

    A variational principle is applied to the problem of magnetohydrodynamics (MHD) equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The principle is appropriate for an approximate solution of partial differential equations with arbitrary boundary shape. The method reduces the partial differential equation to a series of ordinary differential equations and is especially valuable for treating boundaries with nonlinear deformations. The calculations conclude that the pressure distribution and the poloidal current are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated ball lightning.

  6. Calderón's method on an elliptical domain.

    PubMed

    Muller, P A; Isaacson, D; Newell, J C; Saulnier, G J

    2013-06-01

    One possible application for electrical impedance tomography is in medical imaging where lung and heart function may be monitored. One drawback of current algorithms is that they are implemented for use in a circular domain, but a human thorax is more elliptical than circular. In this paper, a reconstruction algorithm based on the work of Calderón (1980 Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro) pp 65-75) on the inverse conductivity problem is derived for an elliptical domain. It is explained how this reconstruction algorithm uses a transformed Dirichlet-to-Neumann map. Experimental results from an elliptical tank are given to show how correct domain modelling reduces the artefacts produced by this version of Calderón's reconstruction algorithm.

  7. Interpreting Central Surface Brightness and Color Profiles in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Silva, David R.; Wise, Michael W.

    1996-01-01

    Hubble Space Telescope imagery has revealed dust features in the central regions of many (50%--80%) nearby bright elliptical galaxies. If these features are an indication of an underlying smooth diffuse dust distribution, then the interpretation of central surface brightness and color profiles in elliptical galaxies becomes significantly more difficult. In this Letter, diagnostics for constraining the presence of such an underlying central dust distribution are presented. We show that easily detectable central color gradients and flattened central surface brightness profiles can be induced by even small amounts of smoothly distributed dust (~100 M⊙). Conversely, combinations of flat surface brightness profiles and flat color gradients or steep surface brightness profiles and steep color gradients are unlikely to be caused by dust. Taken as a whole, these results provide a simple observational tautology for constraining the existence of smooth diffuse dust distributions in the central regions of elliptical galaxies.

  8. Ball bearing lubrication: The elastohydrodynamics of elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    The history of ball bearings is examined, taking into account rollers and the wheel in the early civilizations, the development of early forms of rolling-element bearings in the classical civilizations, the Middle Ages, the Industrial Revolution, the emergence of the precision ball bearing, scientific studies of contact mechanics and rolling friction, and the past fifty years. An introduction to ball bearings is presented, and aspects of ball bearing mechanics are explored. Basic characteristics of lubrication are considered along with lubrication equations, the lubrication of rigid ellipsoidal solids, and elastohydrodynamic lubrication theory. Attention is given to the theoretical results for fully flooded elliptical hydrodynamic contacts, the theoretical results for starved elliptical contacts, experimental investigations, the elastohydrodynamics of elliptical contacts for materials of low elastic modulus, the film thickness for different regimes of fluid-film lubrication, and applications.

  9. Evolution of a barotropic shear layer into elliptical vortices.

    PubMed

    Guha, Anirban; Rahmani, Mona; Lawrence, Gregory A

    2013-01-01

    When a barotropic shear layer becomes unstable, it produces the well-known Kelvin-Helmholtz instability (KHI). The nonlinear manifestation of the KHI is usually in the form of spiral billows. However, a piecewise linear shear layer produces a different type of KHI characterized by elliptical vortices of constant vorticity connected via thin braids. Using direct numerical simulation and contour dynamics, we show that the interaction between two counterpropagating vorticity waves is solely responsible for this KHI formation. We investigate the oscillation of the vorticity wave amplitude, the rotation and nutation of the elliptical vortex, and straining of the braids. Our analysis also provides a possible explanation for the formation and evolution of elliptical vortices appearing in geophysical and astrophysical flows, e.g., meddies, stratospheric polar vortices, Jovian vortices, Neptune's Great Dark Spot, and coherent vortices in the wind belts of Uranus. PMID:23410439

  10. Improved linac dose distributions for radiosurgery with elliptically shaped fields.

    PubMed

    Serago, C F; Lewin, A A; Houdek, P V; Gonzalez-Arias, S; Abitbol, A A; Marcial-Vega, V A; Pisciotti, V; Schwade, J G

    1991-10-01

    Stereotactic radiosurgery techniques for a linear accelerator typically use circular radiation fields to produce an essentially spherical radiation distribution with a steep dose gradient. Target volumes are frequently irregular in shape, and circular distributions may irradiate normal tissues to high dose as well as the target volume. Improvements to the dose distribution have been made using multiple target points and optimizing the dose per arc to the target. A retrospective review of 20 radiosurgery patients has suggested that the use of elliptically shaped fields may further improve the match of the radiation distribution to the intended target volume. This hypothesis has been verified with film measurements of the radiation distribution obtained using elliptical radiation beam in a head phantom. Reductions of 40% of the high dose volume have been obtained with elliptical fields compared to circular fields without compromising the dose to the target volume. PMID:1938531

  11. Evolution of a barotropic shear layer into elliptical vortices.

    PubMed

    Guha, Anirban; Rahmani, Mona; Lawrence, Gregory A

    2013-01-01

    When a barotropic shear layer becomes unstable, it produces the well-known Kelvin-Helmholtz instability (KHI). The nonlinear manifestation of the KHI is usually in the form of spiral billows. However, a piecewise linear shear layer produces a different type of KHI characterized by elliptical vortices of constant vorticity connected via thin braids. Using direct numerical simulation and contour dynamics, we show that the interaction between two counterpropagating vorticity waves is solely responsible for this KHI formation. We investigate the oscillation of the vorticity wave amplitude, the rotation and nutation of the elliptical vortex, and straining of the braids. Our analysis also provides a possible explanation for the formation and evolution of elliptical vortices appearing in geophysical and astrophysical flows, e.g., meddies, stratospheric polar vortices, Jovian vortices, Neptune's Great Dark Spot, and coherent vortices in the wind belts of Uranus.

  12. Precession and circularization of elliptical space-tether motion

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.; Grosserode, Patrick

    1993-01-01

    In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.

  13. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    SciTech Connect

    Alver, B.; Ballintijn, M.; Busza, W.; Decowski, M. P.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Vale, C.; Nieuwenhuizen, G. J. van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.

    2007-06-15

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  14. Magnetic field induced by elliptical instability in a rotating spheroid

    NASA Astrophysics Data System (ADS)

    Lacaze, L.; Herreman, W.; Le Bars, M.; Le Dizès, S.; Le Gal, P.

    2006-10-01

    The tidal or the elliptical instability of the rotating fluid flows is generated by the resonant interaction of the inertial waves. In a slightly elliptically deformed rotating sphere, the most unstable linear mode is called the spin-over mode, and is a solid body rotation versus an axis aligned with the maximum strain direction. In the non-viscous case, this instability corresponds to the median moment of the inertial instability of the solid rotating bodies. This analogy is furthermore illustrated by an elliptical top experiment, which shows the expected inviscid heteroclinic behaviour. In geophysics, the elliptical instability may appear in the molten liquid cores of the rotating planets, which are slightly deformed by the tidal gravitational effects of the close bodies. It may then participate in the general outer core dynamics and possibly the geodynamo process. In this context, Kerswell and Malkus (Kerswell, R.R. and Malkus, W.V.R., Tidal instability as the source for Io's magnetic signature. Geophys. Res. Lett., 1998, 25, 603 606) showed that the puzzling magnetic field of the Jovian satellite Io may indeed be induced by the elliptically unstable motions of its liquid core that deflect the Jupiter's magnetic field. Our magnetohydrodynamics (MHD) experiment is a toy-experiment of this geophysical situation and demonstrates for the first time the possibility of an induction of a magnetic field by the flow motions due to the elliptical instability. A full analytical calculation of the magnetic dipole induced by the spin-over is presented. Finally, exponential growths of this induced magnetic field in a slightly deformed rotating sphere filled with galinstan liquid metal are measured for different rotating rates. Their growth rates compare well with the theoretical predictions in the limit of a vanishing Lorentz force.

  15. Evolution of an elliptic vortex ring in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2016-03-01

    The evolution of a viscous elliptic vortex ring in an initially quiescent fluid or a linear shear flow is numerically simulated using a lattice Boltzmann method. A wide range of parameters are considered, namely, aspect ratios (AR) (1 ≤ AR ≤ 8), core radius to ring radius ratios (σ0) (0.1 ≤ σ0 ≤ 0.3), Reynolds number (Re) (500 ≤ Re ≤ 3000), and shear rate (K) (0 ≤ K ≤ 0.12). The study aims to fill the gap in the current knowledge of the dynamics of an elliptic vortex ring in a viscous fluid and also to address the issue of whether an elliptic ring undergoes vortex stretching and compression during axis-switching. In a quiescent fluid, results show that for fixed Re and σ0, there exists a critical aspect ratio (ARc), below which an elliptic ring undergoes oscillatory deformation with the period that increases with increasing AR. Above ARc, the vortex ring breaks up into two or three sub-rings after the first half-cycle of oscillation. While higher Reynolds number enhances vortex ring breakup, larger core size has the opposite effect. Contrary to an inviscid theory, an elliptic ring does undergo vortex stretching and compression during oscillatory deformation. In the presence of a linear shear flow, the vortex ring undergoes not only oscillatory deformation and stretching but also tilting as it propagates downstream. The tilting angle increases with the shear rate K and is responsible for inducing a "tail" that consists of a counter-rotating vortex pair (CVP) near the upstream end of the initial major axis after the first half-cycle of oscillation. For a high shear rate, the CVP wraps around the ring and transforms its topological structure from a simple elliptic geometry to a complicated structure that eventually leads to the generation of turbulence.

  16. Implementation of Elliptic Curve Cryptography in Binary Field

    NASA Astrophysics Data System (ADS)

    Susantio, D. R.; Muchtadi-Alamsyah, I.

    2016-04-01

    Currently, there is a steadily increasing demand of information security, caused by a surge in information flow. There are many ways to create a secure information channel, one of which is to use cryptography. In this paper, we discuss the implementation of elliptic curves over the binary field for cryptography. We use the simplified version of the ECIES (Elliptic Curve Integrated Encryption Scheme). The ECIES encrypts a plaintext by masking the original message using specified points on the curve. The encryption process is done by separating the plaintext into blocks. Each block is then separately encrypted using the encryption scheme.

  17. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    DOE PAGESBeta

    Liu, Chian; Conley, R.; Qian, J.; Kewish, C. M.; Liu, W.; Assoufid, L.; Macrander, A. T.; Ice, G. E.; Tischler, J. Z.

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now, precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si-, Au-, and Pt-coated KB mirrors under prolonged synchrotron X-ray radiation and low-temperature vacuum annealing will be discussed in terms of film stress relaxation and Si plastic deformation.

  18. Study of medium beta elliptical cavities for CADS

    NASA Astrophysics Data System (ADS)

    Wen, Liangjian; Zhang, Shenghu; Li, Yongming; Wang, Ruoxu; Guo, Hao; Zhang, Cong; Jia, Huan; Jiang, Tiancai; Li, Chunlong; He, Yuan

    2016-02-01

    The China Accelerator-Driven Sub-critical System (CADS) is a high intensity proton facility to dispose of nuclear waste and generate electric power. CADS is based on a 1.5 GeV, 10 mA CW superconducting (SC) linac as a driver. The high energy section of the linac is composed of two families of SC elliptical cavities which are designed with geometrical beta 0.63 and 0.82. In this paper, the 650 MHz β=0.63 SC elliptical cavity is studied, including cavity optimization, multipacting, high order modes (HOMs) and generator RF power calculation. Supported by National Natural Science Foundation of China (91426303)

  19. Two confirmed compact elliptical galaxies in the Antlia cluster

    NASA Astrophysics Data System (ADS)

    Smith Castelli, A. V.; Faifer, F. R.; Bassino, L. P.; Romero, G. A.; Cellone, S. A.; Richtler, T.

    We confirm the existence of two compact elliptical (cE) galaxies in the cen- tral region of the Antlia cluster through MAGELLAN-MIKE and GEMINI- GMOS spectra. Only about a dozen galaxies of this rare type are known today up to a distance of 100 Mpc. With this finding, Antlia becomes the nearest galaxy cluster harbouring more than one cE galaxy among its galaxy population. One of these galaxies shows evidence of interaction with one of the giant ellipticals that dominate the central region of the cluster.

  20. On the Dirichlet problem for a nonlinear elliptic equation

    NASA Astrophysics Data System (ADS)

    Egorov, Yu V.

    2015-04-01

    We prove the existence of an infinite set of solutions to the Dirichlet problem for a nonlinear elliptic equation of the second order. Such a problem for a nonlinear elliptic equation with Laplace operator was studied earlier by Krasnosel'skii, Bahri, Berestycki, Lions, Rabinowitz, Struwe and others. We study the spectrum of this problem and prove the weak convergence to 0 of the sequence of normed eigenfunctions. Moreover, we obtain some estimates for the 'Fourier coefficients' of functions in W^1p,0(Ω). This allows us to improve the preceding results. Bibliography: 8 titles.

  1. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    SciTech Connect

    Liu, Chian; Conley, R.; Qian, J.; Kewish, C. M.; Liu, W.; Assoufid, L.; Macrander, A. T.; Ice, G. E.; Tischler, J. Z.

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si, Au-, and Pt-coated KB mirrors under prolonged synchrotron x-ray radiation and low-temperature vacuum annealing will be discussed in terms of film-stress relaxation and Si plastic deformation.

  2. Homogeneous turbulence subjected to mean flow with elliptic streamlines

    NASA Technical Reports Server (NTRS)

    Blaisdell, G. A.; Shariff, K.

    1994-01-01

    Direct numerical simulations are performed for homogeneous turbulence with a mean flow having elliptic streamlines. This flow combines the effects of rotation and strain on the turbulence. Qualitative comparisons are made with linear theory for cases with high Rossby number. The nonlinear transfer process is monitored using a generalized skewness. In general, rotation turns off the nonlinear cascade; however, for moderate ellipticities and rotation rates the nonlinear cascade is turned off and then reestablished. Turbulence statistics of interest in turbulence modeling are calculated, including full Reynolds stress budgets.

  3. Elliptical flux vortices in YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hickman, H.; Dekker, A. J.; Chen, T. M.

    1991-01-01

    The most energetically favorable vortex in YBa2Cu3O7 forms perpendicular to an anisotropic plane. This vortex is elliptical in shape and is distinguished by an effective interchange of London penetration depths from one axis of the ellipse to another. By generalizing qualitatively from the isotropic to the anisotropic case, we suggest that the flux flow resistivity for the vortex that forms perpendicular to an anistropic plane should have a preferred direction. Similar reasoning indicates that the Kosterlitz-Thouless transition temperature for a vortex mediated transition should be lower if the vortex is elliptical in shape.

  4. The postbuckling analysis of laminated circular plate with elliptic delamination

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Changping; Fu, Yiming

    2011-01-01

    Based on the Von Karman plate theory, considering the effect of transverse shear deformation, and using the method of the dissociated three regions, the postbuckling governing equations for the axisymmetric laminated circular plates with elliptical delamination are derived. By using the orthogonal point collocation method, the governing equations, boundary conditions and continuity conditions are transformed into a group of nonlinear algebraically equation and the equations are solved with the alternative method. In the numerical examples, the effects of various elliptical in shape, delamination depth and different material properties on buckling and postbuckling of the laminated circular plates are discussed and the numerical results are compared with available data.

  5. Elliptic flow in Au+Au collisions at RHIC.

    SciTech Connect

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; George, N.; Wuosmaa, A.; Physics; Massachusetts Inst. of Tech.; BNL; Univ. of Illinois at Chicago

    2005-01-01

    Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.

  6. Is The Intrinsic Spin Hall Effect Measurable?

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoyang

    2005-03-01

    Despite of the large intrinsic spin Hall conductivity in a spin- orbit coupled material predicted theoretically, we show that the intrinsic spin Hall effect in any diffusive sample is not measurable via conventional transport methods, thus the research on the intrinsic spin Hall effect is limited at the pure theoretical content. After generally defining the intrinsic and extrinsic transport coefficients, we show that the intrinsic magnetization Hall current, which is the sum of the intrinsic spin and intrinsic orbit-angular-momentum Hall currents, is identically zero. More importantly, we demonstrate that the equation of motion for the spin density does not depend on the intrinsic spin Hall current, therefore the transverse spin accumulation is solely determined by the extrinsic spin Hall current. The zero intrinsic magnetization Hall current and the independence of the spin accumulation on the intrinsic spin Hall effect lead us to conclude that the intrinsic spin Hall effect can not be assessed by conventional spin transport experiments based on the measurement of the magnetization current and the spin accumulation at the edge of the sample.

  7. Influence of the elliptical and circular orifices on the local heat transfer distribution of a flat plate impinged by under-expanded jets

    NASA Astrophysics Data System (ADS)

    Vinze, Ravish; Limeye, M. D.; Prabhu, S. V.

    2016-09-01

    Experimental study is carried out to explore the influence of nozzle profile on heat transfer for underexpanded impinging jets. Circular and elliptical orifices are used to generate underexpanded jets for underexpantion ratio ranging from 1.25 to 2.67. The supply pressure maintained in the present study ranges from 2.36 to 5.08 times the ambient pressure. IR thermal imaging camera is used to measure surface temperature of thin foil at different nozzle to plate distances. Shadowgraph and pressure distribution are used to understand the flow structure and distribution of circular and elliptical nozzle. It is observed that plate shock and pressure distribution over the plate have significant influence on the local heat transfer. The performance of the circular orifice is far better at lower z/d. The axis switching is observed for an elliptical orifice. Correlation for local heat transfer predicts Nusselt number comparable within 15 % of experimental results.

  8. Optics ellipticity performance of an unobscured off-axis space telescope.

    PubMed

    Zeng, Fei; Zhang, Xin; Zhang, Jianping; Shi, Guangwei; Wu, Hongbo

    2014-10-20

    With the development of astronomy, more and more attention is paid to the survey of dark matter. Dark matter cannot be seen directly but can be detected by weak gravitational lensing measurement. Ellipticity is an important parameter used to define the shape of a galaxy. Galaxy ellipticity changes with weak gravitational lensing and nonideal optics. With our design of an unobscured off-axis telescope, we implement the simulation and calculation of optics ellipticity. With an accurate model of optics PSF, the characteristic of ellipticity is modeled and analyzed. It is shown that with good optical design, the full field ellipticity can be quite small. The spatial ellipticity change can be modeled by cubic interpolation with very high accuracy. We also modeled the ellipticity variance with time and analyzed the tolerance. It is shown that the unobscured off-axis telescope has good ellipticity performance and fulfills the requirement of dark matter survey.

  9. Intrinsic rotation with gyrokinetic models

    SciTech Connect

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Ivan

    2012-05-15

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  10. Towards a cladistics of double Yangians and elliptic algebras*

    NASA Astrophysics Data System (ADS)

    Arnaudon, D.; Avan, J.; Frappat, L.; Ragoucy, E.; Rossi, M.

    2000-09-01

    A self-contained description of algebraic structures, obtained by combinations of various limit procedures applied to vertex and face sl(2) elliptic quantum affine algebras, is given. New double Yangian structures of dynamical type are defined. Connections between these structures are established. A number of them take the form of twist-like actions. These are conjectured to be evaluations of universal twists.

  11. Adaptive control and orbit determination for elliptical rendezvous

    NASA Astrophysics Data System (ADS)

    Xu, Lijia; Hu, Yong; Jiang, Tiantian

    2016-10-01

    In this paper, we study the control and orbit determination problems for elliptical rendezvous. Autonomous rendezvous is achieved by the proposed adaptive control based on the measurements of relative position and velocity between the chaser and target spacecraft. Moreover, the target orbital elements can be estimated during the rendezvous process. Finally, the effectiveness of the method is illustrated by simulations.

  12. Elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide.

    PubMed

    Zhang, Li; Xiong, Qiulin; Li, Xiaopeng; Ma, Junxian

    2015-08-10

    We researched an elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide and evaluated its mode characteristics using the finite element method software COMSOL. The waveguide consists of three parts: an elliptic cylindrical silicon nanowire, a silver film layer, and a silica covering layer between them. All of the components are surrounded by air. After optimizing the geometrical parameters of the waveguide, we can achieve the waveguide's strong field confinement (ranging from λ2/270 to λ2/27) and long propagation distances (119-485 μm). In order to further understand the impact of the waveguide's architecture on its performance, we also studied the ridge hybrid waveguide. The results show that the ridge waveguide has moderate local field confinement ranging from λ2/190 to λ2/20 and its maximum propagation distance is about 340 μm. We compared the elliptic cylindrical and ridge nanowire hybrid waveguides with the cylindrical hybrid waveguide that we studied before. The elliptic cylindrical waveguide achieves a better trade-off between reasonable mode confinement and maximum propagation length in the three waveguides. The researched hybrid surface plasmon polaritons waveguides are useful to construct devices such as a directional coupler and may find potential applications in photonic integrated circuits or other novel SPP devices.

  13. On the elliptic restricted three-body problem.

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1972-01-01

    This article describes the most important features of the elliptic restricted three-body problem. The methods of numerical integration with recurrent power series are developed for both the equations of motion and the variational equations. The conditions for the existence of periodic orbits and families of periodic orbits are also outlined in detail, and finally illustrated with a family of symmetric periodic orbits.

  14. Elastohydrodynamics of elliptical contacts for materials of low elastic modulus

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    The influence of the ellipticity parameter k and the dimensionless speed U, load W, and materials G parameters on minimum film thickness for materials of low elastic modulus was investigated. The ellipticity parameter was varied from 1 (a ball-on-plane configuration) to 12 (a configuration approaching a line contact); U and W were each varied by one order of magnitude. Seventeen cases were used to generate the minimum- and central-film-thickness relations. The influence of lubricant starvation on minimum film thickness in starved elliptical, elastohydrodynamic configurations was also investigated for materials of low elastic modulus. Lubricant starvation was studied simply by moving the inlet boundary closer to the center of the conjunction in the numerical solutions. Contour plots of pressure and film thickness in and around the contact were presented for both fully flooded and starved lubrication conditions. It is evident from these figures that the inlet pressure contours become less circular and closer to the edge of the Hertzian contact zone and that the film thickness decreases substantially as the serverity of starvation increases. The results presented reveal the essential features of both fully flooded and starved, elliptical, elastohydrodynamic conjunctions for materials of low elastic modulus.

  15. Listening to Elliptic Speech: Pay Attention to Stressed Vowels.

    ERIC Educational Resources Information Center

    Bond, Z. S.

    University students were the subjects of three experiments designed to determine the usefulness of elliptic speech in investigating the perception of the phonological structure of continuous speech. Five naturally spoken and five synthesized paragraphs were recorded in two different randomizations of phonological distortions and at two different…

  16. Elliptical polarization of Saturn Kilometric Radiation observed from high latitudes

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Cecconi, B.; Lamy, L.; Ye, S.-Y.; Taubenschuss, U.; Macher, W.; Zarka, P.; Kurth, W. S.; Gurnett, D. A.

    2009-08-01

    The high-inclination orbits of the Cassini spacecraft from autumn 2006 until spring 2007 allowed the Cassini/RPWS (Radio and Plasma Wave Science) instrument to observe Saturn Kilometric Radiation (SKR) from latitudes up to 60° for the first time. This has revealed a surprising new property of SKR: above ˜30° in observational latitude, a significant amount of SKR is strongly elliptically polarized, in marked contrast to previous observations from low latitudes, which showed only circular polarization. There are transitional latitudes where the elliptical polarization occurs in “patches” in the time-frequency spectrograms next to regions of still completely circularly polarized SKR. From ˜45° to 60° in northern latitude, it is found that most of the SKR is elliptically polarized throughout its entire frequency range with an average degree of ˜0.7 in linear polarization. We demonstrate the ellipticity of SKR by using the concept of “apparent polarization” in case of two-antenna measurements, but also show three-antenna measurements from which the polarization can be unambiguously determined. Possible reasons for the variation of SKR polarization with the observer's latitude will be discussed.

  17. Micromagnetic simulation of hysteresis loop of elliptic permalloy nanorings

    NASA Astrophysics Data System (ADS)

    Mishra, Amaresh Chandra

    2016-09-01

    Magnetic hysteresis behavior of isotropic permalloy elliptic nanorings of outer semi-major axis length (aout) 100 nm and thickness (t) 20 nm were studied with respect to the variation of two parameters: outer semiminor axis length (bout) and the difference between outer and inner dimensions (r). The outer semiminor axis length (bout) varied from 90 nm to 20 nm which covers from nearly circular nanoring to elliptic nanoring of high aspect ratio. The value of r varied in steps of 10 nm. Micromagnetic simulation of in-plane hysteresis curve of these nanorings revealed that the remanent state of all of these elliptic rings are onion states if the magnetic field is applied along the longer side of the elliptic rings. If the magnetic field is applied along the shorter side, then the remanent states turn out to be vortex state. The hysteresis loss indicated by area of the hysteresis loop was found to be decreasing gradually with the increment of either r or bout. On the other hand, the remanent magnetization increased with increment of r but decreased with the increment of bout. The changes were attributed to three parameters mainly: inner curvature, exchange energy and demagnetization energy. The changes in loop area were discussed in light of variation of these three parameters.

  18. The use of MACSYMA for solving elliptic boundary value problems

    NASA Technical Reports Server (NTRS)

    Thejll, Peter; Gilbert, Robert P.

    1990-01-01

    A boundary method is presented for the solution of elliptic boundary value problems. An approach based on the use of complete systems of solutions is emphasized. The discussion is limited to the Dirichlet problem, even though the present method can possibly be adapted to treat other boundary value problems.

  19. Elliptical galaxies kinematics within general relativity with renormalization group effects

    SciTech Connect

    Rodrigues, Davi C.

    2012-09-01

    The renormalization group framework can be applied to Quantum Field Theory on curved space-time, but there is no proof whether the beta-function of the gravitational coupling indeed goes to zero in the far infrared or not. In a recent paper [1] we have shown that the amount of dark matter inside spiral galaxies may be negligible if a small running of the General Relativity coupling G is present (δG/G{sub 0}∼<10{sup −7} across a galaxy). Here we extend the proposed model to elliptical galaxies and present a detailed analysis on the modeling of NGC 4494 (an ordinary elliptical) and NGC 4374 (a giant elliptical). In order to compare our results to a well known alternative model to the standard dark matter picture, we also evaluate NGC 4374 with MOND. In this galaxy MOND leads to a significative discrepancy with the observed velocity dispersion curve and has a significative tendency towards tangential anisotropy. On the other hand, the approach based on the renormalization group and general relativity (RGGR) could be applied with good results to these elliptical galaxies and is compatible with lower mass-to-light ratios (of about the Kroupa IMF type)

  20. The infrared emission from the elliptical galaxy NGC 1052

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Tokunaga, A. T.; Wynn-Williams, C. G.

    1982-01-01

    Multi-aperture IR photometry of the elliptical galaxy NGC 1052 shows that its IR excess is confined to a region smaller than 2 arc sec (300 pc) in diameter coincident with the visible nucleus. It is suggested that the emission in the 5-20 micron range arises from dust heated by the nonthermal source seen at other wavelengths.

  1. Massey products for elliptic curves of rank 1

    NASA Astrophysics Data System (ADS)

    Kim, Minhyong

    2010-07-01

    For an elliptic curve over {Q} of rank 1, integral j -invariant, and suitable finiteness in the Tate-Shafarevich group, we use the level-two Selmer variety and secondary cohomology products to find explicit analytic defining equations for global integral points inside the set of p -adic points.

  2. An experimental study on jets issuing from elliptic inclined nozzles

    NASA Astrophysics Data System (ADS)

    New, T. H.

    2009-06-01

    This paper reports on an experimental flow visualisation and digital particle image velocimetry investigation on forced jets exhausting from aspect ratio equal to three elliptic nozzles with exits inclined at 30° and 60°. Flow images show that shear layer instabilities and subsequent vortex roll-ups are formed parallel to the inclined nozzle exits at 30° incline and that rapid re-orientation of the vortex roll-ups occurs at 60° incline. Flow observations also show that strong axis-switching occurs in a non-inclined elliptic nozzle. However, 30° and 60° elliptic inclined nozzles produce significant distortions to and suppression of the axis-switching behaviour, respectively. As a result, flow stresses and turbulent kinetic energy distributions become increasingly asymmetric. Their coherency and magnitudes along the shorter nozzle lengths also vary significantly. This can be attributed to the dissimilar formations of vortex roll-ups and rib structures, as well as unequal mutual interactions between them as the incline-angle increases. Lastly, results also show that unlike circular inclined nozzles, elliptic inclined nozzles do not produce serpentine-shaped jet columns nor lead to significant lateral jet-spread at large incline-angles.

  3. Source identification problem for an elliptic-hyperbolic equation

    NASA Astrophysics Data System (ADS)

    Ashyralyev, Allaberen; Tetikoglu, Fatma Songul Ozesenli; Kahraman, Tulay

    2016-08-01

    In the present paper, a boundary value problem for the differential equation with parameter in a Hilbert space with self-adjoint definite operator is investigated. The well-posedness of this problem is presented. The stability inequalities for the solution of source identification problem for elliptic-hyperbolic equations are given.

  4. Elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide.

    PubMed

    Zhang, Li; Xiong, Qiulin; Li, Xiaopeng; Ma, Junxian

    2015-08-10

    We researched an elliptic cylindrical silicon nanowire hybrid surface plasmon polariton waveguide and evaluated its mode characteristics using the finite element method software COMSOL. The waveguide consists of three parts: an elliptic cylindrical silicon nanowire, a silver film layer, and a silica covering layer between them. All of the components are surrounded by air. After optimizing the geometrical parameters of the waveguide, we can achieve the waveguide's strong field confinement (ranging from λ2/270 to λ2/27) and long propagation distances (119-485 μm). In order to further understand the impact of the waveguide's architecture on its performance, we also studied the ridge hybrid waveguide. The results show that the ridge waveguide has moderate local field confinement ranging from λ2/190 to λ2/20 and its maximum propagation distance is about 340 μm. We compared the elliptic cylindrical and ridge nanowire hybrid waveguides with the cylindrical hybrid waveguide that we studied before. The elliptic cylindrical waveguide achieves a better trade-off between reasonable mode confinement and maximum propagation length in the three waveguides. The researched hybrid surface plasmon polaritons waveguides are useful to construct devices such as a directional coupler and may find potential applications in photonic integrated circuits or other novel SPP devices. PMID:26368373

  5. Spectroscopic ellipsometer based on direct measurement of polarization ellipticity

    SciTech Connect

    Watkins, Lionel R.

    2011-06-20

    A polarizer-sample-Wollaston prism analyzer ellipsometer is described in which the ellipsometric angles {psi} and {Delta} are determined by direct measurement of the elliptically polarized light reflected from the sample. With the Wollaston prism initially set to transmit p- and s-polarized light, the azimuthal angle P of the polarizer is adjusted until the two beams have equal intensity. This condition yields {psi}={+-}P and ensures that the reflected elliptically polarized light has an azimuthal angle of {+-}45 deg. and maximum ellipticity. Rotating the Wollaston prism through 45 deg. and adjusting the analyzer azimuth until the two beams again have equal intensity yields the ellipticity that allows {Delta} to be determined via a simple linear relationship. The errors produced by nonideal components are analyzed. We show that the polarizer dominates these errors but that for most practical purposes, the error in {psi} is negligible and the error in {Delta} may be corrected exactly. A native oxide layer on a silicon substrate was measured at a single wavelength and multiple angles of incidence and spectroscopically at a single angle of incidence. The best fit film thicknesses obtained were in excellent agreement with those determined using a traditional null ellipsometer.

  6. Stable Bundles on Non-Kähler Elliptic Surfaces

    NASA Astrophysics Data System (ADS)

    Brînzănescu, Vasile; Moraru, Ruxandra

    2005-03-01

    In this paper, we study the moduli spaces of stable rank-2 vector bundles on non-Kähler elliptic surfaces, thus giving a classification of these bundles; in the case of Hopf and Kodaira surfaces, these moduli spaces admit the structure of an algebraically completely integrable Hamiltonian system.

  7. A Primer on Elliptic Functions with Applications in Classical Mechanics

    ERIC Educational Resources Information Center

    Brizard, Alain J.

    2009-01-01

    The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the…

  8. Free vibration of simply supported and clamped elliptical plates

    NASA Astrophysics Data System (ADS)

    Prasad, K. L.; Rao, A. V.; Rao, B. N.

    1992-10-01

    An approximate formulation of a simply supported and clamped elliptical plate is described which is based on the Rayleigh-Ritz technique with a three-term deflection function. A comparison of the fundamental frequency parameters for the case under consideration is presented.

  9. The dynamical fingerprint of core scouring in massive elliptical galaxies

    SciTech Connect

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-02-10

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r{sub b} , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  10. Constructing massive blue elliptical galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim

    Over cosmic time, galaxy mass assembly has transitioned from low-mass, star-forming disk galaxies to massive, quiescent elliptical galaxies. The merger hypothesis for the formation of new elliptical galaxies provides one physical explanation to the observed buildup of this population, a key prediction of which is a brief phase of morphological transformation from highly-disturbed remnant to blue elliptical. We study 12 plausible new ellipticals with varying degrees of morphological peculiarities visually selected from a larger parent sample of nearby (0.01 ≤ z ≤ 0.04), massive (M* ≥ 10 10 M⊙ ), concentrated (Petrosian R90/R50 ≥ 2.6), and optically blue galaxies from the SDSS DR4 catalog. Using integral field spectroscopy, we construct two-dimensional spectra of the stellar populations and azimuthally bin them into concentric annuli to determine the relative ages of the stellar populations as a function of radius. Using this data and conclusions from simulations, we seek to distinguish post-mergers from galaxies undergoing other modes of mass assembly. We find that 1/3 of our sample is consistent with having undergone a recent, gas-rich major merger. Another 1/3 of our sample is consistent with having undergone a 'frosting' of recent star formation. The final 1/3 of our sample is either inconsistent with or inconclusive of having undergone a recent, gas-rich major merger.

  11. Reconfigurable Optical Spectra from Perturbations on Elliptical Whispering Gallery Resonances

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Elastic strain, electrical bias, and localized geometric deformations were applied to elliptical whispering-gallery-mode resonators fabricated with lithium niobate. The resultant perturbation of the mode spectrum is highly dependant on the modal indices, resulting in a discretely reconfigurable optical spectrum. Breaking of the spatial degeneracy of the whispering-gallery modes due to perturbation is also observed.

  12. Exploring Strange Nonchaotic Attractors through Jacobian Elliptic Functions

    ERIC Educational Resources Information Center

    Garcia-Hoz, A. Martinez; Chacon, R.

    2011-01-01

    We demonstrate the effectiveness of Jacobian elliptic functions (JEFs) for inquiring into the reshaping effect of quasiperiodic forces in nonlinear nonautonomous systems exhibiting strange nonchaotic attractors (SNAs). Specifically, we characterize analytically and numerically some reshaping-induced transitions starting from SNAs in the context of…

  13. Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems.

    PubMed

    Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei

    2015-01-01

    The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode. PMID:26427063

  14. Relationship between placental traits and maternal intrinsic factors in sheep.

    PubMed

    Ocak, S; Ogun, S; Onder, H

    2013-06-01

    The relationship between maternal intrinsic factors and placental traits was investigated on three Southern Mediterranean breed of sheep; Cukurova Assaf (CA), Cukurova (C) and Cukurova Meat Sheep (CMS). The effect of parity and birth type were also considered in the study as a potential influencing factor. Our hypothesis was to show that while differences in placental traits between breed, parity and birth type affected lamb condition and survivability, its correlation to maternal intrinsic behavioral factors may also be a strong indicator. The study found breed related differences of maternal behavioral factors and also showed significant correlation of these behavioral patterns to various placental traits. It confirmed earlier findings that parity played a major role in the refinement of these behavioral patterns. Significant differences in birth weight (P<0.05), placental weight (P<0.05), number of cotyledons (P<0.01) and cotyledon length (P<0.05) was seen between breeds. Cotyledon weight (P<0.05), width (P<0.01) and length (P<0.05) were found to differ by parity. Breed and parity interaction significantly influenced cotyledon quantity. While we detected breed specific differences in relation to maternal intrinsic factors we also noticed significant variance within breeds to these behavioral patterns when linked to placental traits. Further study is required on the correlation between placental traits and postnatal behavior on not just the ewes but also on their lambs. This could have a significant bearing on how producers manage and maximize lamb survivability.

  15. Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems

    PubMed Central

    Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei

    2015-01-01

    The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode. PMID:26427063

  16. Uniting old stellar systems: from globular clusters to giant ellipticals

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Lasky, Paul; Graham, Alister W.; Spitler, Lee

    2008-10-01

    Elliptical galaxies and globular clusters (GCs) have traditionally been regarded as physically distinct entities due to their discontinuous distribution in key scaling diagrams involving size, luminosity and velocity dispersion. Recently this distinctness has been challenged by the discovery of stellar systems with mass intermediate between those of GCs and dwarf ellipticals (such as ultracompact dwarfs and dwarf galaxy transition objects). Here we examine the relationship between the virial and stellar mass for a range of old stellar systems, from GCs to giant ellipticals, and including such intermediate-mass objects (IMOs). Improvements on previous work in this area include the use of (i) near-infrared magnitudes from the Two Micron All Sky Survey (2MASS), (ii) aperture corrections to velocity dispersions, (iii) homogeneous half-light radii and (iv) accounting for the effects of non-homology in galaxies. We find a virial-to-stellar mass relation that ranges from ~104Msolar systems (GCs) to ~1012Msolar systems (elliptical galaxies). The lack of measured velocity dispersions for dwarf ellipticals with -16 > MK > -18 (~108Msolar) currently inhibits our ability to determine how, or indeed if, these galaxies connect continuously with GCs in terms of their virial-to-stellar mass ratios. We find elliptical galaxies to have roughly equal fractions of dark and stellar matter within a virial radius; only in the most massive (greater than 1012Msolar) ellipticals does dark matter dominate the virial mass. Although the IMOs reveal slightly higher virial-to-stellar mass ratios than lower mass GCs, this may simply reflect our limited understanding of their initial mass function (and hence their stellar mass-to-light ratios) or structural properties. We argue that most of these IMOs have similar properties to massive GCs, i.e. IMOs are essentially massive star clusters. Only the dwarf spheroidal galaxies exhibit behaviour notably distinct from the other stellar systems examined

  17. Mechanically braked elliptical Wingate test: modification considerations, load optimization, and reliability.

    PubMed

    Ozkaya, Ozgur; Colakoglu, Muzaffer; Kuzucu, Erinc O; Yildiztepe, Engin

    2012-05-01

    The 30-second, all-out Wingate test evaluates anaerobic performance using an upper or lower body cycle ergometer (cycle Wingate test). A recent study showed that using a modified electromagnetically braked elliptical trainer for Wingate testing (EWT) leads to greater power outcomes because of larger muscle group recruitment. The main purpose of this study was to modify an elliptical trainer using an easily understandable mechanical brake system instead of an electromagnetically braked modification. Our secondary aim was to determine a proper test load for the EWT to reveal the most efficient anaerobic test outcomes such as peak power (PP), average power (AP), minimum power (MP), power drop (PD), and fatigue index ratio (FI%) and to evaluate the retest reliability of the selected test load. Delta lactate responses (ΔLa) were also analyzed to confirm all the anaerobic performance of the athletes. Thirty healthy and well-trained male university athletes were selected to participate in the study. By analysis of variance, an 18% body mass workload yielded significantly greater test outcomes (PP = 19.5 ± 2.4 W·kg, AP = 13.7 ± 1.7 W·kg, PD = 27.9 ± 5 W·s, FI% = 58.4 ± 3.3%, and ΔLa = 15.4 ± 1.7 mM) than the other (12-24% body mass) tested loads (p < 0.05). Test and retest results for relative PP, AP, MP, PD, FI%, and ΔLa were highly correlated (r = 0.97, 0.98, 0.94, 0.91, 0.81, and 0.95, respectively). In conclusion, it was found that the mechanically braked modification of an elliptical trainer successfully estimated anaerobic power and capacity. A workload of 18% body mass was optimal for measuring maximal and reliable anaerobic power outcomes. Anaerobic testing using an EWT may be more useful to athletes and coaches than traditional cycle ergometers because a greater proportion of muscle groups are worked during exercise on an elliptical trainer.

  18. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    SciTech Connect

    Vidal-Codina, F.; Nguyen, N.C.; Giles, M.B.; Peraire, J.

    2015-09-15

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basis approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.

  19. Elliptic flow of identified hadrons in Pb-Pb collisions at TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jacholkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil SVN, M.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhou, Zhuo; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.

    2015-06-01

    The elliptic flow coefficient ( v 2) of identified particles in Pb-Pb collisions at TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of |Δ η| > 0 .9 between the identified hadron under study and the reference particles. The v 2 is reported for π ±, K±, K{S/0}, , ϕ, , and in several collision centralities. In the low transverse momentum ( p T) region, p T < 3 GeV/ c, v 2( p T) exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for π ± and the combined K± and K{S/0} results, are described fairly well by hydrodynamic calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the v 2( p T) for , ϕ, and . For transverse momentum values larger than about 3 GeV/ c, particles tend to group according to their type, i.e. mesons and baryons. The present measurements exhibit deviations from the number of constituent quark (NCQ) scaling at the level of ±20% for p T > 3 GeV/ c. [Figure not available: see fulltext.

  20. Stellar populations in local group dwarf elliptical galaxies. I - NGC 147

    NASA Technical Reports Server (NTRS)

    Mould, J. R.; Kristian, J.; Da Costa, G. S.

    1983-01-01

    A color-magnitude diagram of NGC 147 to an I magnitude of 23 is presented. The stellar population in the outer parts of this elliptical galaxy resembles that of the globular clusters of the Milky Way. Quantitative comparison of the giant branch with those of globular clusters yields a mean metallicity of -1.2 + or - 0.2, making NGC 147 a part of the general correlation between mass and metallicity seen in ellipticals. The giant branch appears to be broad, which suggests a metallicity dispersion. The absence of asymptotic giant branch stars at luminosities above that of the red giant branch tip sets an upper limit of 10 percent for the fraction of stars in this NGC 147 field that have ages less than 12 Gyr. This result contrasts with the situation in some of the related, but less massive, dwarf spheroidal systems. If the choice is made to assume, rather than determine the stellar content of NGC 147, a distance of 630 + or - 50 kpc is derived, similar to that of M31.

  1. Intrinsic motivation in a competitive setting.

    PubMed

    Weinberg, R S

    1979-01-01

    The purpose of the present investigation was to determine the effects of success-failure and monetary reward on intrinsic motivation of males and females competing on a motor task. Results indicated a significant main effect for feedback with subjects exhibiting more intrinsic motivation after success than after failure. The Sex x Feedback interaction showed that males displayed more intrinsic motivation than females after success whereas females exhibited more intrinsic motivation than males after failure. Results are discussed in terms of Deci's cognitive evaluation theory and sex-role appropriate behaviors for males and females. Implications for competitive physical activity are drawn.

  2. Issues in Purchasing and Maintaining Intrinsic Standards

    SciTech Connect

    PETTIT,RICHARD B.; JAEGER,KLAUS; EHRLICH,CHARLES D.

    2000-09-12

    Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.

  3. Validity of arm-leg elliptical ergometer for VO2max analysis.

    PubMed

    Brown, Andrew B; Kueffner, Tannin E; OʼMahony, Erin C; Lockard, Michael M

    2015-06-01

    Maximal oxygen consumption ((Equation is included in full-text article.)) can be determined through multiple exercise modalities intended to elicit an individual's maximal aerobic exertion. Uphill treadmill running is considered the best modality for measuring (Equation is included in full-text article.). Previous studies have examined correlations between treadmill and elliptical ergometer tests as well as the cycle ergometer, but none of the studies use an arm-leg elliptical ergometer (ALE). The purpose of this study was to develop an ALE (Equation is included in full-text article.)testing protocol and determine whether ALE produces valid (Equation is included in full-text article.)values as compared with the treadmill. Twelve undergraduate students (mean age: 20.8 years) completed 2 (Equation is included in full-text article.)tests, 1 on a treadmill and 1 on ALE. (Equation is included in full-text article.)correlation between ALE and treadmill was examined, and paired t-tests were run for (Equation is included in full-text article.)and maximum heart rate (HRmax). A strong positive correlation was found between ALE and treadmill (Equation is included in full-text article.)values (r = 0.84; p < 0.001). There were no differences between (Equation is included in full-text article.)values; however, HRmax values were higher on the treadmill than ALE (p = 0.003). Although future research is needed to examine the observed differences in HRmax between the 2 testing modalities and gender differences in muscle recruitment patterns, the results of this study suggest that ALE is a valid modality for (Equation is included in full-text article.)testing. This will be particularly valuable as a clinical tool to assess (Equation is included in full-text article.)in populations requiring low-impact exercise.

  4. Intrinsic Localized Modes in Proteins

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2015-01-01

    Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321

  5. Intrinsically photosensitive retinal ganglion cells.

    PubMed

    Do, Michael Tri Hoang; Yau, King-Wai

    2010-10-01

    Life on earth is subject to alternating cycles of day and night imposed by the rotation of the earth. Consequently, living things have evolved photodetective systems to synchronize their physiology and behavior with the external light-dark cycle. This form of photodetection is unlike the familiar "image vision," in that the basic information is light or darkness over time, independent of spatial patterns. "Nonimage" vision is probably far more ancient than image vision and is widespread in living species. For mammals, it has long been assumed that the photoreceptors for nonimage vision are also the textbook rods and cones. However, recent years have witnessed the discovery of a small population of retinal ganglion cells in the mammalian eye that express a unique visual pigment called melanopsin. These ganglion cells are intrinsically photosensitive and drive a variety of nonimage visual functions. In addition to being photoreceptors themselves, they also constitute the major conduit for rod and cone signals to the brain for nonimage visual functions such as circadian photoentrainment and the pupillary light reflex. Here we review what is known about these novel mammalian photoreceptors. PMID:20959623

  6. Rapid identification of microorganisms by intrinsic fluorescence

    NASA Astrophysics Data System (ADS)

    Bhatta, Hemant; Goldys, Ewa M.; Learmonth, Robert

    2005-03-01

    Microbial contamination has serious consequences for the industries that use fermentation processes. Common contaminants such as faster growing lactic acid bacteria or wild yeast can rapidly outnumber inoculated culture yeast and produce undesirable end products. Our study focuses on a rapid method of identification of such contaminants based on autofluorescence spectroscopy of bacterial and yeast species. Lactic acid bacteria (Lac-tobacillus casei), and yeast (Saccharomyces cerevisiae) were cultured under controlled conditions and studied for variations in their autofluorescence. We observed spectral differences in the spectral range representative of tryptophan residues of proteins, with excitation at 290 nm and emission scanned in the 300 nm - 440 nm range. Excitation scans between 240 nm and 310 nm were also performed for the emission at 340 nm. Moreover, we observed clearly pronounced differences in the excitation and emission in the visible range, with 410 nm excitation. These results demonstrate that bacterial and yeast species can be differentiated using their intrinsic fluorescence both in UV and in the visible region. The comparative spectroscopic study of selected strains of Saccharomyces yeast showed clear differences between strains. Spectrally-resolved laser scanning microscopy was carried out to link the results obtained using ensembles of cells with spectral properties of individual cells. Strongly fluorescent subpopulation were observed for all yeast strains with excitation at 405 nm. The fluorescence spectra showed variations correlated with cell brightness. The presented results demonstrate that using autofluorescence, it is possible to differentiate between yeast and lactic acid bacteria and between different yeast species.

  7. Vibration and Noise Characteristics of Elliptical Gears due to Non-Uniform Rotation

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Nagamura, Kazuteru; Ikejo, Kiyotaka

    Elliptical gear is a typical non-circular gear, which transmits a variable-ratio rotation and power simultaneously. Due to the non-uniform rotation, the vibration and noise of elliptical gears demonstrate particular characteristics which should be paid attention to in practical application. In this paper, two elliptical gears, which are a single elliptical gear and a double elliptical gear, have been investigated to analyze the vibration and noise characteristics of elliptical gears. The corresponding circular gears for comparison are also investigated. General factors including the torque, the rotation speed, the gear vibration acceleration and the gear noise of the four test gears are measured by running test. The root mean square of the Circumferential Vibration Acceleration (CVA) and the sound pressure level of the noise of elliptical gears are obtained from the measured results and compared with those of circular gears to clarify the vibration and noise characteristics of elliptical gears. Furthermore, the frequency analysis of the CVA of elliptical gears is conducted by Fast Fourier Transform Algorithm (FFT) and compared with that of circular gears. The main vibration component of elliptical gear is uncovered according to the obtained frequency spectra. In addition, the Critical Rotation Speeds of Tooth Separation (CRSTS) of elliptical gear is obtained and its relation with load torque is unveiled.

  8. An electronic criterion for assessing intrinsic brittleness of metallic glasses

    SciTech Connect

    Wang, X. F.; Jones, T. E.; Wu, Y.; Lu, Z. P.; Halas, S.; Durakiewicz, T.; Eberhart, M. E.

    2014-07-14

    Bulk metallic glasses (BMGs) are characterized by a number of remarkable physical and mechanical properties. Unfortunately, these same materials are often intrinsically brittle, which limits their utility. Consequently, considerable effort has been expended searching for correlations between the phenomenologically complex mechanical properties of metallic glasses and more basic properties, such correlations might provide insight into the structure and bonding controlling the deformation properties of BMGs. While conducting such a search, we uncovered a weak correlation between a BMG’s work function and its susceptibility to brittle behavior. We argue that the basis for this correlation is a consequence of a component of the work function – the surface dipole – and a fundamental bond property related to the shape of the charge density at a bond critical point. Together these observations suggest that simple first principle calculations might be useful in the search for tougher BMGs.

  9. Diffusion of Hydration Water around Intrinsically Disordered Proteins.

    PubMed

    Rani, Pooja; Biswas, Parbati

    2015-10-22

    Hydration water dynamics around globular proteins have attracted considerable attention in the past decades. This work investigates the hydration water dynamics around partially/fully intrinsically disordered proteins and compares it to that of the globular proteins via molecular dynamics simulations. The translational diffusion of the hydration water is examined by evaluating the mean-square displacement and the velocity autocorrelation function, while the rotational diffusion is probed through the dipole-dipole time correlation function. The results reveal that the translational and rotational motions of water molecules at the surface of intrinsically disordered proteins/regions are less restricted as compared to those around globular proteins/ordered regions, which is reflected in their higher diffusion coefficient and lower orientational relaxation time. The restricted mobility of hydration water in the vicinity of the protein leads to a sublinear diffusion in a heterogeneous interface. A positive correlation between the mean number of hydrogen bonds and the diffusion coefficient of hydration water implies higher mobility of water molecules at the surface of disordered proteins, which is due to their higher number of hydrogen bonds. Enhanced hydration water mobility around disordered proteins/regions is also related to their higher hydration capacity, low hydrophobicity, and increased internal protein motions. Thus, we generalize that the intrinsically disordered proteins/regions are associated with higher hydration water mobility as compared to globular protein/ordered regions, which may help to elucidate their varied functional specificity.

  10. Intrinsic bioremediation of landfills interim report

    SciTech Connect

    Brigmon, R.L.; Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  11. Separating Scattering from Intrinsic Attenuation

    NASA Astrophysics Data System (ADS)

    van Wijk, K.; Scales, J. A.

    2003-12-01

    The subsurface appears disordered at all length-scales. Therefore, wave propatation at seismic or ultrasonic frequencies is subject to complicated scatterings. A pulse propagating in the subsurface loses energy at each scattering off an impedance contrast, but also decreases in amplitude as the impulse interacts with fluids in the rock. We call the latter non-elastic effect "intrinsic Q", while the former is "scattering Q". It is often the fluids in the rocks that are of interest, but conventional reflection and transmission of the incident pulse only cannot deceipher the individual components of Q due to scattering and fluid movement in the pore-space. We present an approach that can unravel these two mechanisms, allowing a separate estimate of absorption. This method treats the propagation of the average intensity in the framework of radiative transfer (RT); the arrival of (what is left of) the incident pulse is modeled as the coherent energy, whereas the later arriving multiply scattered events form the incoherent intensity. The coherent pulse decays exponentially due to a combination of scattering and absorption, and so does the incoherent intensity. However, multiple scattering can re-direct energy back to the receiver, supplying a gain-term at later times that makes up the incoherent intensity. Strictly speaking, one can invert for scattering and absorption from the intensity at late times only, often modeled with the late-time equivalent of RT, diffusion. However, we will show that fitting both early- and late-time signal with RT constrains absorption and scattering constants more rigorously. These ideas are illustrated by laboratory and sonic-logging measurements.

  12. Wireless OAM transmission system based on elliptical microstrip patch antenna.

    PubMed

    Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming

    2016-05-30

    The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application. PMID:27410080

  13. Sole Inversion Precomputation for Elliptic Curve Scalar Multiplications

    NASA Astrophysics Data System (ADS)

    Dahmen, Erik; Okeya, Katsuyuki

    This paper presents a new approach to precompute points [3]P, [5]P, ..., [2k-1]P, for some k ≥ 2 on an elliptic curve over \\mathbb{F}_p. Those points are required for the efficient evaluation of a scalar multiplication, the most important operation in elliptic curve cryptography. The proposed method precomputes the points in affine coordinates and needs only one single field inversion for the computation. The new method is superior to all known methods that also use one field inversion, if the required memory is taken into consideration. Compared to methods that require several field inversions for the precomputation, the proposed method is faster for a broad range of ratios of field inversions and field multiplications. The proposed method benefits especially from ratios as they occur on smart cards.

  14. Tailoring the magnetization reversal of elliptical dots using exchange bias.

    SciTech Connect

    Sort, J.; Buchanan, K. S.; Pearson, J. E.; Hoffmann, A.; Menendez, E.; Salazar-Alvarez, G.; Baro, M. D.; Miron, M.; Rodamcq, B.; Dieny, B.; ICREA; Univ. Autonoma of Barcelona; Insti. Catala de Nanotecnologia; SPINTEC

    2008-01-01

    Exchange bias effects have been studied in elliptical dots composed of ferromagnetic Ni{sub 80}Fe{sub 20}-antiferromagnetic Ir{sub 20}Mn{sub 80} bilayers. The magnetization reversal mechanisms and magnetic configurations have been investigated by magneto-optic Kerr effect and magnetic force microscopy. Although the obtained bias fields in these dots are relatively small, the magnetization reversal is found to be influenced by the ferromagnetic-antiferromagnetic coupling. Namely, for some off-axis angles of measurement, the magnetization reversal mechanism of the Ni{sub 80}Fe{sub 20}-Ir{sub 20}Mn{sub 80} ellipses depends on whether exchange bias is induced along the minor or major axis of the ellipses. Hence, exchange bias is shown to be an effective means for tailoring the magnetization reversal of elliptical dots after sample fabrication.

  15. Analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, J.

    1988-10-01

    We prove some new estimates for the convergence of multigrid algorithms applied to nonsymmetric and indefinite elliptic boundary value problems. We provide results for the so-called 'symmetric' multigrid schemes. We show that for the variable V-script-cycle and the W-script-cycle schemes, multigrid algorithms with any amount of smoothing on the finest grid converge at a rate that is independent of the number of levels or unknowns, provided that the initial grid is sufficiently fine. We show that the V-script-cycle algorithm also converges (under appropriate assumptions on the coarsest grid) but at a rate which may deteriorate as the number of levels increases. This deterioration for the V-script-cycle may occur even in the case of full elliptic regularity. Finally, the results of numerical experiments are given which illustrate the convergence behavior suggested by the theory.

  16. Propagation of light in a circular array of elliptical fibres

    NASA Astrophysics Data System (ADS)

    Alexeyev, C. N.; Milione, G.; Pogrebnaya, A. O.; Yavorsky, M. A.

    2016-02-01

    We have studied transformation of discrete light beams in circular arrays of elliptical fibres, in which the orientation of ellipses' axes linearly depends on the angular position of the fibre in the array and makes an half-integer number p of full rotations while tracing along its contour. We have derived analytical expressions for the spectra and supermodes that allow for evanescent coupling between the fibres in the next-neighbour approximation. We have studied the transformative properties of such an array and shown that it can generate cylindrical vector beams (CVBs) of TE and TM types. We have shown that the type of generated beam depends on the orientation of linear polarization of the incident beam. In this way, the circular array of strongly elliptical fibres enables polarization control over the type of the generated CVB. We have also shown that such arrays can change the topological charge of an incoming discrete optical vortex by the doubled array's index p.

  17. Dynamic separation of nanomagnet sublattices by orientation of elliptical elements

    NASA Astrophysics Data System (ADS)

    Yahagi, Y.; Berk, C. R.; Harteneck, B. D.; Cabrini, S. D.; Schmidt, H.

    2014-04-01

    We report the separation of the magnetization dynamics of densely packed nanomagnets depending on their orientation. The arrays consist of interleaved sublattices of identical nickel elliptical disks. By controlling the orientation of the elliptic disks relative to the external field in each sublattice, we simultaneously analyzed the magnetization dynamics in each sublattice using a time-resolved magnetooptic Kerr effect (TR-MOKE) microscopy system. The Fourier spectra showed clearly separated precession modes for sublattices with different orientations. The spectra were shown to be robust against the error in applied field orientation. The sublattice response can be tuned to a single collective frequency by choosing a symmetric field orientation. We analyzed the effect of the interelement coupling with various spacing between nanomagnets and found a relatively weak dependence on dipolar interactions in good agreement with micromagnetic simulations.

  18. Elliptic complexes over C∗-algebras of compact operators

    NASA Astrophysics Data System (ADS)

    Krýsl, Svatopluk

    2016-03-01

    For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.

  19. Is the Capsular Bag Perimeter Round or Elliptical?

    PubMed Central

    Amigó, Alfredo; Bonaque-González, Sergio

    2016-01-01

    Purpose: To report findings that could suggest an elliptical shape of the capsular bag. Methods: Five eyes of three patients with axial length greater than 24 mm underwent phacoemulsification cataract surgery with plate-haptic multifocal toric intraocular lens (IOL) implantation oriented in the vertical meridian. Results: In all cases, correct orientation of the IOLs was verified 30 minutes after surgery. After 24 hours, all eyes demonstrated unwanted rotation of the IOLs ranging from 15 to 45 degrees. The IOLs remained stable in the new position in all cases until adhesion of the capsular bag took place. Conclusion: These observations could suggest that the perimeter of the capsular bag has an elliptical shape. Therefore, the IOL tends to become fixated in a meridian of the capsular bag that best fits the diagonal diameter of the IOL. PMID:27413495

  20. Artist concept of Magellan spacecraft in elliptical orbit around Venus

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft is shown in elliptical orbit around Venus, collecting data (radar mapping), and then transmitting data back to Earth in this artist concept. When the spacecraft orbit is close to Venus the synthetic aperature radar (SAR) will image a swath between 9 and 15 nautical miles (10 and 17 statute miles), beginning at or near the north pole and continuing to the southern hemisphere. Subsequent swaths will slightly overlap and, during its primary mission, the spacecraft will map most of the planet. When the spacecraft moves into the part of its elliptical orbit farthest from Venus, the spacecraft high-gain antenna will be turned toward Earth and will send the data collected during the imaging to Earth. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the spacecraft and Hughes Air

  1. Artist concept of Magellan spacecraft in elliptical orbit around Venus

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Magellan spacecraft is shown in elliptical orbit around Venus, collecting data (radar mapping), and then transmitting data back to Earth in this artist concept. When the spacecraft orbit is close to Venus the synthetic aperature radar (SAR) will image a swath between 9 and 15 nautical miles (10 and 17 statute miles) (highlighted in image), beginning at or near the north pole and continuing to the southern hemisphere. Subsequent swaths will slightly overlap and, during its primary mission, the spacecraft will map most of the planet. When the spacecraft moves into the part of its elliptical orbit farthest from Venus, the spacecraft high-gain antenna will be turned toward Earth and will send the data collected during the imaging to Earth. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta is developing the sp

  2. Resonances and bifurcations in systems with elliptical equipotentials

    NASA Astrophysics Data System (ADS)

    Marchesiello, Antonella; Pucacco, Giuseppe

    2013-01-01

    We present a general analysis of the orbit structure of 2D potentials with self-similar elliptical equipotentials by applying the method of Lie transform normalization. We study the most relevant resonances and related bifurcations. We find that the 1:1 resonance is associated only with the appearance of the loops and leads to the destabilization of either one or the other normal modes, depending on the ellipticity of equipotentials. Inclined orbits are never present and may appear only when the equipotentials are heavily deformed. The 1:2 resonance determines the appearance of bananas and antibanana orbits: the first family is stable and always appears at a lower energy than the second, which is unstable. The bifurcation sequence also produces the variations in the stability character of the major-axis orbit and is modified only by very large deformations of the equipotentials. Higher order resonances appear at intermediate or higher energies and can be described with good accuracy.

  3. Fast ellipse detection by elliptical arcs extracting and grouping

    NASA Astrophysics Data System (ADS)

    Li, Yipeng; Zhao, Chunhui

    2015-03-01

    A novel and simple ellipse detection method is proposed in this paper. First, Canny operator is carried on the gray image to get edge image. Second, all the edge segments are obtained from edge image and output gradients of edge segments for further analysis. According to gradient direction, the edge segments are split into primitive lines and arcs. Then elliptical arcs are extracted from the results of splitting and an efficient grouping strategy is proposed to group elliptical arcs coming from the same ellipse as candidate ellipse. Finally, least-square fitting method is implemented to estimate the parameters of these candidate ellipses. Experiment results show that the proposed method is robust to noise and fast for real-time implementation.

  4. Classical description of strong-field double ionization by elliptical laser pulses

    NASA Astrophysics Data System (ADS)

    Zhou, Yueming; Zhang, Qingbin; Huang, Cheng; Lu, Peixiang

    2012-10-01

    Sequential double ionization of argon induced by elliptically polarized laser pulses at the over-the-barrier ionization regime is investigated with a fully classical model. We provide futher detail beyond that found in our previous paper [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.053004 109, 053004 (2012)] and show that all of the experimental observations, including the evolution of the ion momentum spectra as a function of laser intensity, the intensity-dependent ratio for the parallel and antiparallel electron emissions, and the release times of both electrons for various laser pulses, are excellently reproduced by our classical model. Our results indicate that the classical treatment is very valid and accurate in describing strong-field ionization, providing a simple and intuitive way to investigate the complex electron correlations in strong-field double and multiple ionizations.

  5. Near-infrared line-strengths in elliptical galaxies: evidence for initial mass function variations?

    NASA Astrophysics Data System (ADS)

    Cenarro, A. J.; Gorgas, J.; Vazdekis, A.; Cardiel, N.; Peletier, R. F.

    2003-02-01

    We present new relations between recently defined line-strength indices in the near-infrared (CaT*, CaT, PaT, MgI and sTiO) and central velocity dispersion (σ0) for a sample of 35 early-type galaxies, showing evidence for significant anti-correlations between CaII triplet indices (CaT* and CaT) and log σ0. These relations are interpreted in the light of our recent evolutionary synthesis model predictions, suggesting the existence of important Ca underabundances with respect to Fe and/or an increase of the dwarf to giant stars ratio along the mass sequence of elliptical galaxies.

  6. Mott scattering in an elliptically polarized laser field

    SciTech Connect

    Attaourti, Y.; Manaut, B.; Taj, S.

    2004-08-01

    We study Mott scattering in the presence of a strong elliptically polarized field. Using the first Born approximation and the Dirac-Volkov states for the electron, we obtain an analytic formula for the unpolarized differential cross section. This generalizes the results found for the linearly polarized field by Li et al. [ 67, 063409 (2003)] and for the circularly polarized field by Attaourti and Manaut [ 68, 067401 (2003)].

  7. A dearth of dark matter in ordinary elliptical galaxies.

    PubMed

    Romanowsky, Aaron J; Douglas, Nigel G; Arnaboldi, Magda; Kuijken, Konrad; Merrifield, Michael R; Napolitano, Nicola R; Capaccioli, Massimo; Freeman, Kenneth C

    2003-09-19

    The kinematics of the outer parts of three intermediate-luminosity elliptical galaxies were studied with the Planetary Nebula Spectrograph. The galaxies' velocity-dispersion profiles were found to decline with the radius, and dynamical modeling of the data indicates the presence of little if any dark matter in these galaxies' halos. This unexpected result conflicts with findings in other galaxy types and poses a challenge to current galaxy formation theories. PMID:12947033

  8. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Mould, Jeremy; Reynolds, Tristan; Readhead, Tony; Matthews, Keith; Floyd, David; Brown, Michael; Jannuzi, Buell; Atlee, David; Cotter, Garret; Ferrarese, Laura

    2012-11-15

    In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett {gamma}, and [Fe II]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource.

  9. Resonant phenomenon of elliptical cylinder flows in a subcritical regime

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Sheng; Yen, Ruey-Hor

    2011-11-01

    The resonant phenomena in the wake behind a transversely vibrating elliptical cylinder with different axis ratios from Ar = 0.01 to Ar = 2.0 in the subcritical regime is numerically investigated. Navier-Stokes equations are solved by a spectral element code with a triangular mesh. Reynolds numbers range from 15 to 60 and the Roshko numbers range from 0.5 to 8 for different elliptical cylinders. Both the velocity and pressure responses in the wake are measured and analyzed. The investigations of the drag coefficients and the wake streamlines indicate that the cylinder's axis ratio has a minor effect on the resonant frequency, Ron. However, the cylinder's axis ratio is found to have a prominent effect on the resonant amplitude; namely, the smaller the cylinder's axis ratio, the stronger the occurrence of resonant amplitude. The investigations of resonant responses of both the velocity and pressure and the probe locations may provide information for designing a flow meter based on pressure responses in the subcritical regime. It shows that the ratio of velocity and pressure responses poses a great linear relationship against the probe distance behind the vibrating cylinder. Moreover, a resonant method based on the different resonant frequencies at different probed locations in the subcritical regime to predict the critical conditions is examined and verified for different elliptical cylinders. Finally, based on the critical values found, a reduced Reynolds number and a reduced Roshko number are proposed to unify the different linear relationships resulting from different elliptical cylinder flows. The result indicates that the effect of axis ratio can be stripped off in the reduced plane, which may be applied to a more generalized cylinder shape.

  10. Two elliptic closed geodesics on positively curved Finsler spheres

    NASA Astrophysics Data System (ADS)

    Duan, Huagui

    2016-06-01

    In this paper, we prove that for every Finsler n-dimensional sphere (Sn , F) with reversibility λ and flag curvature K satisfying (λ/1+λ) 2 < K ≤ 1, either there exist infinitely many closed geodesics, or there exist at least two elliptic closed geodesics and each linearized Poincaré map has at least one eigenvalue of the form e √{ - 1 } θ with θ being an irrational multiple of π.

  11. Instability of a supersonic shock free elliptic jet

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Seiner, John M.; Ponton, Michael K.

    1990-01-01

    This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements.

  12. Elliptic surface grid generation on minimal and parmetrized surfaces

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.

    1995-01-01

    An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.

  13. Theoretical results for fully flooded, elliptical hydrodynamic contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of the ellipticity parameter and the dimensionless speed, load, and materials parameters on minimum film thickness was investigated. The ellipticity parameter was varied from 1 (a ball-on-plate configuration) to 8 (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of praffinic and naphthemic mineral oils were considered in obtaining the exponent in the dimensionless materials parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula H min = 3.63U to the 0.68 power G to the 0.49 power W to the -0.073 power 1-e to the 0.68K power). A simplified expression for the ellipticity parameter was found where k = 1.03 (r(y)/r(x)) to the 0.64 power. Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.

  14. Shape measurement biases from underfitting and ellipticity gradients

    SciTech Connect

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF) and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 103 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.

  15. Fast magnetohydrodynamic oscillations in an elliptical coronal arcade

    NASA Astrophysics Data System (ADS)

    Díaz, A. J.

    2006-09-01

    Aims.A model of a elliptically shaped coronal arcade with piecewise constant density is discussed to explore the effects of curvature on radially polarised fast modes. It is important to test whether the main results in the straight and cylindrical geometries can be extrapolated to these more complex equilibria. Methods: .An equilibrium model for a force-free, line-tied elliptical arcade is introduced and a partial differential equation is derived for the velocity perturbation of the fast modes, which is solved analytically. The properties of the modes are studied in terms of the dispersion relation, which depends on the eccentricity, the arcade width, and the density contrast. Results: .Modes mainly contained in the cavity below the arcade are also present, and have avoided crossings with the modes of the arcade. Even the fundamental mode becomes leaky due to curvature. Approximated relations are deduced for the frequency of the modes and the spatial structure is discussed, focusing on the different families through which a rich mode spectrum can be classified. Conclusions: .The different types of modes of the spectrum are described and its relevance to observations is discussed. The periods obtained in Cartesian geometry provide a reasonable approximation, but this geometry lacks some other key ingredients: the damping rates are different and some types of modes present in the elliptical geometry are not sustained in the straight slab.

  16. Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model

    NASA Astrophysics Data System (ADS)

    Zhua, Ningning; Jiaa, Yonghong; Luo, Lun

    2016-06-01

    The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.

  17. Major and minor axis kinematics of 22 ellipticals

    NASA Astrophysics Data System (ADS)

    Franx, Marijn; Illingworth, Garth; Heckman, Timothy

    1989-09-01

    Rotation curves and velocity dispersion profiles have been determined for the major and the minor axes of 22 elliptical galaxies. Rotation was detected in all but one galaxy, even though the sample was biased toward round ellipticals. Minor axis rotation larger than major axis rotation was measured in two galaxies, NGC 4406 and NGC 7507. Roughly 10 percent of ellipticals may show large minor axis velocities relative to those on the major axis. A simple model is used to derive a rotational axis from the observed minor and major axis velocities to a typical accuracy of 6 deg. The rotational and photometric minor axes aligned to better than 10 deg for 60 percent of the sample, implying that the direction of the angular momentum is related to the orientation of the figure of the galaxy. IC 1459 has a kinematically distinct core with its angular momentum opposite to the angular momentum of the outer parts, and NGC 4406 has a core with its angular momentum perpendicular to that of the outer parts.

  18. Coherent effects in the field of elliptically polarized light

    NASA Astrophysics Data System (ADS)

    Andreeva, Ch.; Biancalana, Valerio; Cartaleva, Stefka S.; Dancheva, Yordanka V.; Karaulanov, Todor S.; Mariotti, E.; Moi, L.; Nasyrov, K. A.

    2004-06-01

    In the present communication we report on the investigation of the effect of elliptically polarized laser light exciting the Fg=3 Cs D2 absorption line. Coherent resonances in Cs have been studied, obtained in Hanle configuration by scanning of magnetic field parallel to the light propagation direction. The resonances were investigated depending on the polarization of the irradiating light field. It has been observed that for linear polarization dark resonances in the fluorescence are registered, while for circularly polarized light, bright resonances are obtained, probably due to stray orthogonal magnetic field. For elliptical polarization a narrow peak appears superimposed on a broader dip. Theoretical description has been made, which shows that at elliptical polarization and orthogonal magnetic field in the case of weak light fields, a single peak in the excited state population is observed, while strong fields lead to the splitting of this peak into two peaks. The presence of both weak and strong light fields, probably due to reflection of the light beam on the cell walls, could lead to the experimentally observed fluorescence behaviour.

  19. Elliptically polarized terahertz radiation from a chiral oxide

    SciTech Connect

    Takeda, R.; Kida, N. Sotome, M.; Okamoto, H.

    2015-09-28

    Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses. Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.

  20. Lost and found dark matter in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Dekel, A.; Stoehr, F.; Mamon, G. A.; Cox, T. J.; Novak, G. S.; Primack, J. R.

    2005-09-01

    There is strong evidence that the mass of the Universe is dominated by dark matter, which exerts gravitational attraction but whose exact nature is unknown. In particular, all galaxies are believed to be embedded in massive haloes of dark matter. This view has recently been challenged by the observation of surprisingly low random stellar velocities in the outskirts of ordinary elliptical galaxies, which has been interpreted as indicating a lack of dark matter. Here we show that the low velocities are in fact compatible with galaxy formation in dark-matter haloes. Using numerical simulations of disk-galaxy mergers, we find that the stellar orbits in the outer regions of the resulting ellipticals are very elongated. These stars were torn by tidal forces from their original galaxies during the first close passage and put on outgoing trajectories. The elongated orbits, combined with the steeply falling density profile of the observed tracers, explain the observed low velocities even in the presence of large amounts of dark matter. Projection effects when viewing a triaxial elliptical can lead to even lower observed velocities along certain lines of sight.

  1. Anisotropic elliptic optical fibers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kang, Soon Ahm

    1991-01-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  2. Shape measurement biases from underfitting and ellipticity gradients

    DOE PAGESBeta

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF)more » and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 103 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.« less

  3. Hydrodynamical model for J/{psi} suppression and elliptic flow

    SciTech Connect

    Chaudhuri, A. K.

    2009-10-15

    In a hydrodynamic model, we have studied J/{psi} suppression and elliptic flow in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) energy {radical}(s)=200 GeV. At the initial time, J/{psi}'s are randomly distributed in the fluid. As the fluid evolves in time, the free-streaming J/{psi}'s are dissolved if the local fluid temperature exceeds a melting temperature T{sub J/{psi}}. Sequential melting of charmonium states ({chi}{sub c}, {psi}{sup '}, and J/{psi}), with melting temperatures T{sub {chi}{sub c}}=T{sub {psi}{sup '}}{approx_equal}1.2T{sub c} and T{sub J/{psi}}{approx_equal}2T{sub c} and a feed-down fraction F{approx_equal}0.3, is consistent with the PHENIX data on J/{psi} suppression and near-zero elliptic flow for J/{psi}'s. It is also shown that the model will require substantial regeneration of charmonium if the charmonium states dissolve at a temperature close to the critical temperatures, T{sub {chi}{sub c}}=T{sub {psi}{sup '}}{<=}T{sub c} and T{sub J/{psi}}{approx_equal}1.2T{sub c}. The regenerated charmonium will have positive elliptic flow.

  4. Extended ionized gas in elliptical galaxies. II. Velocity and monochromatic maps of 11 elliptical and lenticular galaxies

    NASA Astrophysics Data System (ADS)

    Plana, H.; Boulesteix, J.; Amram, Ph.; Carignan, C.; Mendes de Oliveira, C.

    1998-02-01

    For the last ten years faint ionized gas detection has been carried out for elliptical galaxies with success. The kinematics is essential to understand galaxy gas origin and fate. Here we present a sample of 11 elliptical and lenticular galaxies observed with the ``Cigale" scanning Perot-Fabry instrument. For each galaxy monochromatic and velocity map of ionized gas is presented. Geometrical properties such as viewing angles and axis ratios are also derived from observations. Double gaseous components are found in 3 galaxies of our sample, implying an external origin for at least part of the observed gas. % Based on observations collected with the S.A.O. 6 m telescope located in Nizhnij Arkhyz (Russia), the 3.6 m CFH telescope and the 3.6 m telescope at ESO.

  5. Algebraic description of intrinsic modes in nuclei

    SciTech Connect

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig.

  6. Elliptic flow of charged particles in Pb-Pb collisions at sqrt[S(NN)] = 2.76 TeV.

    PubMed

    Aamodt, K; Abelev, B; Quintana, A Abrahantes; Adamová, D; Adare, A M; Aggarwal, M M; Rinella, G Aglieri; Agocs, A G; Salazar, S Aguilar; Ahammed, Z; Masoodi, A Ahmad; Ahmad, N; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Molina, R Alfaro; Alici, A; Alkin, A; Aviña, E Almaráz; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Aystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Ferroli, R Baldini; Baldisseri, A; Baldit, A; Pedrosa, F Baltasar Dos Santos; Bán, J; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Beole, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Bergmann, C; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Bombonati, C; Book, J; Borel, H; Borissov, A; Bortolin, C; Bose, S; Bossú, F; Botje, M; Böttger, S; Boyer, B; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bugaiev, K; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Villar, E Calvo; Camerini, P; Canoa Roman, V; Romeo, G Cara; Carena, F; Carena, W; Carminati, F; Díaz, A Casanova; Caselle, M; Castellanos, J Castillo; Catanescu, V; Cavicchioli, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Barroso, V Chibante; Chinellato, D D; Chochula, P; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Coffin, J-P; Coli, S; Balbastre, G Conesa; del Valle, Z Conesa; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Morales, Y Corrales; Maldonado, I Cortés; Cortese, P; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; Erasmo, G D; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, A; Dash, S; De, S; Moregula, A De Azevedo; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; Debski, P R; Sanchez, E Del Castillo; Delagrange, H; Mercado, Y Delgado; Dellacasa, G; Deloff, A; Demanov, V; Dénes, E; Deppman, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dietel, T; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Majumdar, A K Dutta; Majumdar, M R Dutta; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Feofilov, G; Téllez, A Fernández; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Fini, R; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Fuchs, U; Furano, F; Furget, C; Girard, M Fusco; Gaardhøje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Ganti, M S; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gemme, R; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; Santos, H González; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Gotovac, S; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Gutierrez, C Guerra; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Harris, J W; Hartig, M; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernández, C; Corral, G Herrera; Herrmann, N; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Huber, S; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Jachołkowski, A; Jacobs, P M; Jancurová, L; Jangal, S; Janik, R; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanović, P; Jung, H; Jung, W; Jusko, A; Kalcher, S; Kaliňák, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kaplin, V; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, S H; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Klovning, A; Kluge, A; Knichel, M L; Koch, K; Köhler, M K; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornaś, E; Don, C Kottachchi Kankanamge; Kour, R; Kowalski, M; Kox, S; Meethaleveedu, G Koyithatta; Kozlov, K; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Kretz, M; Krivda, M; Krizek, F; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; La Rocca, P; Ladrón de Guevara, P; Lafage, V; Lara, C; Lardeux, A; Larsen, D T; Lazzeroni, C; Le Bornec, Y; Lea, R; Lee, K S; Lee, S C; Lefèvre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; Monzón, I León; Vargas, H León; Lévai, P; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Loizides, C; Loo, K K; Lopez, X; Noriega, M López; Torres, E López; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luparello, G; Luquin, L; Luzzi, C; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Mal'Kevich, D; Malaev, M; Cervantes, I Maldonado; Malinina, L; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Martashvili, I; Martinengo, P; Martínez, M I; Davalos, A Martínez; García, G Martínez; Martynov, Y; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Lorenzo, P Mendez; Menis, I; Pérez, J Mercado; Meres, M; Mereu, P; Miake, Y; Midori, J; Milano, L; Milosevic, J; Mischke, A; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, A K; Mohanty, B; Molnar, L; Zetina, L Montaño; Monteno, M; Montes, E; Morando, M; De Godoy, D A Moreira; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Müller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nicassio, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Obayashi, H; Ochirov, A; Oeschler, H; Oh, S K; Oleniacz, J; Oppedisano, C; Velasquez, A Ortiz; Ortona, G; Oskarsson, A; Ostrowski, P; Otterlund, I; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Jayarathna, S P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Pappalardo, G S; Park, W J; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Peresunko, D; Lara, C E Pérez; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Piyarathna, D B; Platt, R; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Rademakers, O; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Reyes, A Ramírez; Rammler, M; Raniwala, R; Raniwala, S; Räsänen, S S; Read, K F; Real, J; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Cahuantzi, M Rodríguez; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosinský, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Montero, A J Rubio; Rui, R; Rivetti, A; Rusanov, I; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safařík, K; Sahoo, R; Sahu, P K; Saini, J; Saiz, P; Sakai, S; Sakata, D; Salgado, C A; Samanta, T; Sambyal, S; Samsonov, V; Castro, X Sanchez; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Søgaard, C; Soloviev, A; Soltz, R; Son, H; Song, J; Song, M; Soos, C; Soramel, F; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stokkevag, C H; Stolpovskiy, M; Strmen, P; Suaide, A A P; Vásquez, M A Subieta; Sugitate, T; Suire, C; Sukhorukov, M; Sumbera, M; Susa, T; Swoboda, D; Symons, T J M; de Toledo, A Szanto; Szarka, I; Szostak, A; Tagridis, C; Takahashi, J; Takaki, J D Tapia; Tauro, A; Tavlet, M; Muñoz, G Tejeda; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Thomas, J H; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Tosello, F; Traczyk, T; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A J; Tveter, T S; Ulery, J; Ullaland, K; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vajzer, M; Vala, M; Palomo, L Valencia; Vallero, S; van der Kolk, N; van Leeuwen, M; Vande Vyvre, P; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernekohl, D C; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Baillie, O Villalobos; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Karampatsos, L Xaplanteris; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yokoyama, H; Yoo, I-K; Yu, W; Yuan, X; Yushmanov, I; Zabrodin, E; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zichichi, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M

    2010-12-17

    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at sqrt[S(NN)] =2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η|<0.8) and transverse momentum range 0.2

    elliptic flow signal v₂, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ± 0.002(stat) ± 0.003(syst) in the 40%-50% centrality class. The differential elliptic flow v₂ p t reaches a maximum of 0.2 near p t =3 GeV/c. Compared to RHIC Au-Au collisions at sqrt[S(NN)] 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase. PMID:21231580

  7. Elliptic Flow of Charged Particles in Pb-Pb Collisions at {radical}(s{sub NN})=2.76 TeV

    SciTech Connect

    Aamodt, K.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Klovning, A.; Larsen, D. T.; Lien, J.; Liu, L.; Loenne, P. I.; Nystrand, J.; Richter, M.; Roehrich, D.; Skjerdal, K.; Stokkevag, C. H.; Szostak, A.; Ullaland, K.; Ovrebekk, G.; Wagner, B.

    2010-12-17

    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at {radical}(s{sub NN})=2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|{eta}|<0.8) and transverse momentum range 0.2elliptic flow signal v{sub 2}, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087{+-}0.002(stat){+-}0.003(syst) in the 40%-50% centrality class. The differential elliptic flow v{sub 2}(p{sub t}) reaches a maximum of 0.2 near p{sub t}=3 GeV/c. Compared to RHIC Au-Au collisions at {radical}(s{sub NN})=200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.

  8. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  9. Limits on the possible intrinsic magnetic field of Venus

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Elphic, R. C.; Slavin, J. A.

    1980-01-01

    Magnetic field measurements obtained by the Pioneer Venus orbiter at low altitudes in the solar wind wake region are examined for possible surface-correlated features and any possible intrinsic magnetic moment. The field variations observed in the wake do not resemble those expected for a solar wind interaction with even a weak intrinsic magnetic field. Little orbit-to-orbit persistence of features is found in the magnetic records. The magnetic field measurements in the wake are averaged in 10 deg x 10 deg bins to minimize the effects of external field sources. In these 37 bins, the average fields appear to be randomly oriented and consistent with zero mean in the region mapped. Using these 37 averaged vector fields, a maximum intrinsic magnetic dipole moment is obtained of 4.3 + or - 2.0 x 10 to the 21st G cu cm, approximately an order of magnitude less than previous estimates. It is noted that a more conservative estimate of the probable error of the mean is 5.5 x 10 to the 21st G cu cm. The Pioneer Venus measurements are thus consistent with zero planetary moment. The present measurements are found to be far below estimates made on the basis of angular momentum, the so-called magnetic Bode's law, and far below the dynamo scaling law of Busse.

  10. The intrinsic resistome of bacterial pathogens

    PubMed Central

    Olivares, Jorge; Bernardini, Alejandra; Garcia-Leon, Guillermo; Corona, Fernando; B. Sanchez, Maria; Martinez, Jose L.

    2013-01-01

    Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice. PMID:23641241

  11. Refining the intrinsic chimera flap: a review.

    PubMed

    Agarwal, Jayant P; Agarwal, Shailesh; Adler, Neta; Gottlieb, Lawrence J

    2009-10-01

    Reconstruction of complex tissue deficiencies in which each missing component is in a different spatial relationship to each other can be particularly challenging, especially in patients with limited recipient vessels. The chimera flap design is uniquely suited to reconstruct these deformities. Chimera flaps have been previously defined in many ways with 2 main categories: prefabricated or intrinsic. Herein we attempt to clarify the definition of a true intrinsic chimeric flap and provide examples of how these constructs provide a method for reconstruction of complex defects. The versatility of the intrinsic chimera flap and its procurement from 7 different vascular systems is described. A clarification of the definition of a true intrinsic chimera flap is described. In addition, construction of flaps from the lateral femoral circumflex, deep circumflex iliac, inferior gluteal, peroneal, subscapular, thoracodorsal, and radial arterial systems is described to showcase the versatility of these chimera flaps. A true intrinsic chimera flap must consist of more than a single tissue type. Each of the tissue components receives its blood flow from separate vascular branches or perforators that are connected to a single vascular source. These vascular branches must be of appropriate length to allow for insetting with 3-dimensional spatial freedom. There are a multitude of sites from which true intrinsic chimera flaps may be harvested.

  12. Intrinsic Monitoring Using Behaviour Models in IPv6 Networks

    NASA Astrophysics Data System (ADS)

    Höfig, Edzard; Coşkun, Hakan

    In conventional networks, correlating path information to resource utilisation on the granularity of packets is a hard problem when using policy-based traffic handling schemes. We introduce a new approach termed ‘intrinsic monitoring’ which relies on the use of IPv6 extension headers in combination with formal behaviour models to gather resource information along a path. This allows a network monitoring system to delegate monitoring functionality to the network devices themselves, with the result of a drastic reduction in management traffic due to the increased autonomy of the monitoring system. As monitoring information travels in-band with the network traffic, path information remains perfectly accurate.

  13. DD correlations in photoproduction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; D'Almagne, B.; David, M.; di Ciaccio, L.; Dixon, J.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hofmokl, T.; Katsoufis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, T.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.

    1992-03-01

    Kinematic correlations between the charmed D and D mesons produced by a photon beam of mean energy 100 GeV/c have been measured by the NA14/2 experiment at CERN using a sample of almost background-free fully reconstructed DD events. The observed D and DD distributions are compared to the predictions of production models using different parameters for the charm fragmentation function and for the intrinsic transverse momentum of the partons.

  14. The demagnetizing energies of a uniformly magnetized cylinder with an elliptic cross-section

    NASA Astrophysics Data System (ADS)

    Goode, D. A.; Rowlands, G.

    2003-12-01

    Analytic expressions for the demagnetizing energies are obtained in the form of partial series, for long elliptic cylinders and for squat ones where the ellipticity of the cross-section is unrestrained. This leaves just a small range where the demagnetizing energies are not well defined. It is found that by replacing the elliptic cylinders with rectangular blocks, a good approximation to the demagnetizing energy may be made in this small range.

  15. Familiarization Effects of an Elliptical All-out Test and the Wingate Test Based on Mechanical Power Indices.

    PubMed

    Ozkaya, Ozgur

    2013-01-01

    The Wingate all-out test (WAT) is commonly used to estimate anaerobic capabilities of athletes by using an upper or lower body cycle ergometer, however, a new test modality called elliptical all-out test (EAT) which measures activated whole-body locomotor tasks has recently been proposed. The purpose of this study was to evaluate the familiarization effects of a 30-s EAT versus WAT. Twenty male trained athletes performed pre-familiarization (Trial- I), post-familiarization (Trial-II) and retest of Trial-II (Trial-III) sessions on both cycle ergometer and elliptical trainer. Peak power (PP), average power (AP), power drop (PD) and fatigue index ratio (FI%) were analyzed using student's t-test for paired samples and correlated by intra-class correlation coefficients (ICC). Moreover, an error detection procedure was administered using data attained from illogical interrelations among 5-s segments of 30-s tests. The main results showed that there were significant familiarization effects in all mechanical power outputs obtained from Trial-I and Trial-II in both EAT (ICC = 0.49-0.55) and WAT (ICC = 0.50-0.57) performances (p ≤ 0.01). Significant segmental disorders were detected in power production during Trial-I of EAT, however, none existed in any of test trails in the WAT (p ≤ 0.001). After familiarization sessions, reliability coefficients between Trial-II and Trial-III showed moderate to strong-level agreements for both EAT (ICC = 0.74-0.91) and the WAT (ICC=0.76-0.93). Our results suggested that prior to the performance tests, combination of a well designed familiarization session with one full all-out test administration is necessary to estimate the least moderately reliable and accurate test indices for both WAT and EAT. Key PointsA well designed familiarization session, and then, one additional all-out test administration, several days prior to main test, is suggested to estimate more accurate and reliable retest correlations for both cycling and elliptical

  16. Excess ellipticity of hot and cold spots in the WMAP data?

    SciTech Connect

    Berntsen, Eirik; Hansen, Frode K. E-mail: frodekh@astro.uio.no

    2013-12-10

    We investigate claims of excess ellipticity of hot and cold spots in the Wilkinson Microwave Anisotropy Probe (WMAP) data. Using the cosmic microwave background (CMB) data from 7 yr of observations by the WMAP satellite, we find, contrary to previous claims of a 10σ detection of excess ellipticity in the 3 yr data, that the ellipticity of hot and cold spots is perfectly consistent with simulated CMB maps based on the concordance cosmology. We further test for excess obliquity and excess skewness/kurtosis of ellipticity and obliquity and find the WMAP7 data consistent with Gaussian simulated maps.

  17. Examining the Necessity to Include Event-By-Event Fluctuations in Experimental Evaluations of Elliptical Flow

    SciTech Connect

    Andrade, R.; Grassi, F.; Hama, Y.; Kodama, T.; Socolowski, O. Jr.

    2006-11-17

    Elliptic flow at BNL RHIC is computed event by event with NeXSPheRIO. We show that when symmetry of the particle distribution in relation to the reaction plane is assumed, as usually done in the experimental extraction of elliptic flow, there is a disagreement between the true and reconstructed elliptic flows (15%-30% for {eta}=0, 30% for p{sub perpendicular}=0.5 GeV). We suggest a possible way to take into account the asymmetry and get good agreement between these elliptic flows.

  18. Multigrid lattice Boltzmann method for accelerated solution of elliptic equations

    NASA Astrophysics Data System (ADS)

    Patil, Dhiraj V.; Premnath, Kannan N.; Banerjee, Sanjoy

    2014-05-01

    A new solver for second-order elliptic partial differential equations (PDEs) based on the lattice Boltzmann method (LBM) and the multigrid (MG) technique is presented. Several benchmark elliptic equations are solved numerically with the inclusion of multiple grid-levels in two-dimensional domains at an optimal computational cost within the LB framework. The results are compared with the corresponding analytical solutions and numerical solutions obtained using the Stone's strongly implicit procedure. The classical PDEs considered in this article include the Laplace and Poisson equations with Dirichlet boundary conditions, with the latter involving both constant and variable coefficients. A detailed analysis of solution accuracy, convergence and computational efficiency of the proposed solver is given. It is observed that the use of a high-order stencil (for smoothing) improves convergence and accuracy for an equivalent number of smoothing sweeps. The effect of the type of scheduling cycle (V- or W-cycle) on the performance of the MG-LBM is analyzed. Next, a parallel algorithm for the MG-LBM solver is presented and then its parallel performance on a multi-core cluster is analyzed. Lastly, a practical example is provided wherein the proposed elliptic PDE solver is used to compute the electro-static potential encountered in an electro-chemical cell, which demonstrates the effectiveness of this new solver in complex coupled systems. Several orders of magnitude gains in convergence and parallel scaling for the canonical problems, and a factor of 5 reduction for the multiphysics problem are achieved using the MG-LBM.

  19. Orbital structure and mass distribution in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Kronawitter, Andi; Saglia, R. P.; Gerhard, Ortwin; Bender, Ralf

    2000-05-01

    We report on a homogeneous dynamical analysis of a sample of 21 round (17 E0/E1, 4 E2) elliptical galaxies. We present new kinematic data for eight of these galaxies and new photometry for one object. The remaining kinematic and photometric data and the required distance information are taken from the literature. The analysis uses non-parametric spherical models and takes into account line profile information as well as velocity dispersions. We present model fits to the kinematic data and the derived radial profiles of orbital anisotropy and B-band mass-to-light ratio, including confidence intervals. The circular velocity curves resulting from our model fits are all consistent with being flat outside R~ 0.3 R_e. Generally, the M/L ratio profiles show an outward increase, although models based on luminous matter are ruled out at 95% confidence only for three galaxies (NGC 2434, NGC 7507, NGC 7626). For NGC 1399, NGC 4472, NGC 4486, and NGC 4636, where X-ray observations are available, the mass profiles of the best fit models match the ones derived from the X-ray analysis. The best models for most galaxies are isotropic to slightly radially anisotropic, with typical beta <~0.3, in a few cases beta <~0 .5 at R_e/2. We discuss the generally small effects of flattening along the line-of-sight (the expected = 0.79 for this sample of luminous ellipticals) and of small embedded disks. Our results suggest that elliptical galaxies have surprisingly uniform dynamical properties.

  20. The Puzzlingly Large Ca II Triplet Absorption in Dwarf Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Michielsen, D.; De Rijcke, S.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.

    2003-11-01

    We present central CaT, PaT, and CaT* indices for a sample of 15 dwarf elliptical galaxies (dE's). Twelve of these have CaT*~7 Å and extend the negative correlation between the CaT* index and the central velocity dispersion σ, which was derived for bright elliptical galaxies (E's), down to 20 km s-1 < σ < 55 km s-1. For five dE's, we have independent age and metallicity estimates. Four of these have CaT*~7 Å, much higher than expected from their low metallicities (-1.5<[Z/H]<-0.5). The observed anticorrelation of CaT* as a function of σ or Z is in flagrant disagreement with theory. We discuss some of the amendments that have been proposed to bring the theoretical predictions into agreement with the observed CaT* values of bright E's and how they can be extended to incorporate the observed CaT* values of dE's as well. Moreover, three dE's in our sample have CaT*~5 Å, as would be expected for metal-poor stellar systems. Any theory for dE evolution will have to be able to explain the coexistence of low-CaT* and high-CaT* dE's at a given mean metallicity. This could be the first direct evidence that the dE population is not homogeneous and that different evolutionary paths led to morphologically and kinematically similar but chemically distinct objects. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Program 165.N 0115).

  1. Relationship between cognitive function and prevalence of decrease in intrinsic academic motivation in adolescents

    PubMed Central

    2011-01-01

    Background Decrease in intrinsic motivation is a common complaint among elementary and junior high school students, and is related to poor academic performance. Since grade-dependent development of cognitive functions also influences academic performance by these students, we examined whether cognitive functions are related to the prevalence of decrease in intrinsic academic motivation. Methods The study group consisted of 134 elementary school students from 4th to 6th grades and 133 junior high school students from 7th to 9th grades. Participants completed a questionnaire on intrinsic academic motivation. They also performed paper-and-pencil and computerized cognitive tests to measure abilities in motor processing, spatial construction, semantic fluency, immediate memory, short-term memory, delayed memory, spatial working memory, and selective, alternative, and divided attention. Results In multivariate logistic regression analyses adjusted for grade and gender, scores of none of the cognitive tests were correlated with the prevalence of decrease in intrinsic academic motivation in elementary school students. However, low digit span forward test score and score for comprehension of the story in the kana pick-out test were positively correlated with the prevalence of decrease in intrinsic academic motivation in junior high school students. Conclusions The present findings suggest that decrease in capacity for verbal memory is associated with the prevalence of decrease in intrinsic academic motivation among junior high school students. PMID:21235802

  2. Effective material properties of thermoelectric composites with elliptical fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ze

    2015-06-01

    In the present work, the effective material properties of thermoelectric composites with elliptical fibers are studied. Explicit solutions are derived by the conformal mapping function and Mori-Tanaka method. Numerical simulations are performed to present the behaviors of normalized effective material constants. From the results, it can be observed that both the effective electric and thermal conductivities can be reduced by increasing the filling ratio and a/ b. Such influences can also be found for the effective thermoelectric figure of merit. But they are different from those on the effective Seebeck and Peltier coefficients.

  3. Nonlinear Eigenvalue Problems in Elliptic Variational Inequalities: a local study

    SciTech Connect

    Conrad, F.; Brauner, C.; Issard-Roch, F.; Nicolaenko, B.

    1985-01-01

    The authors consider a class of Nonlinear Eigenvalue Problems (N.L.E.P.) associated with Elliptic Variational Inequalities (E.V.I.). First the authors introduce the main tools for a local study of branches of solutions; the authors extend the linearization process required in the case of equations. Next the authors prove the existence of arcs of solutions close to regular vs singular points, and determine their local behavior up to the first order. Finally, the authors discuss the connection between their regularity condition and some stability concept. 37 references, 6 figures.

  4. Chopper z-scan technique for elliptic Gaussian beams.

    PubMed

    Dávila-Pintle, J A; Reynoso-Lara, E; Bravo-García, Y E

    2016-09-01

    This paper reports an improvement to the chopper z-scan technique for elliptic Gaussian beams. This improvement results in a higher sensitivity by measuring the ratio of eclipsing time to rotating period (duty cycle) of a chopper that eclipses the beam along the main axis. It is shown that the z-scan curve of the major axis is compressed along the z-axis. This compression factor is equal to the ratio between the minor and major axes. It was found that the normalized peak-valley difference with respect to the linear value does not depend on the axis along which eclipsing occurs. PMID:27607713

  5. Chopper z-scan technique for elliptic Gaussian beams.

    PubMed

    Dávila-Pintle, J A; Reynoso-Lara, E; Bravo-García, Y E

    2016-09-01

    This paper reports an improvement to the chopper z-scan technique for elliptic Gaussian beams. This improvement results in a higher sensitivity by measuring the ratio of eclipsing time to rotating period (duty cycle) of a chopper that eclipses the beam along the main axis. It is shown that the z-scan curve of the major axis is compressed along the z-axis. This compression factor is equal to the ratio between the minor and major axes. It was found that the normalized peak-valley difference with respect to the linear value does not depend on the axis along which eclipsing occurs.

  6. Some fast elliptic solvers on parallel architectures and their complexities

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1989-01-01

    The discretization of separable elliptic partial differential equations leads to linear systems with special block tridiagonal matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconstant coefficients. A method was recently proposed to parallelize and vectorize BCR. In this paper, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational compelxity lower than that of parallel BCR.

  7. On an Elliptic Equation Arising from Composite Materials

    NASA Astrophysics Data System (ADS)

    Dong, Hongjie; Zhang, Hong

    2016-10-01

    In this paper, we derive an interior Schauder estimate for the divergence form elliptic equation D_i (a(x)D_iu) = D_i f_i in R^2,where {a(x)} and {f_i (x)} are piecewise Hölder continuous in a domain containing two touching balls as subdomains. When {f_i ≡ 0} and a is piecewise constant, we prove that u is piecewise smoothwith bounded derivatives.This completely answers a question raised by Li andVogelius (Arch Ration Mech Anal 153(2):91-151, 2000) in dimension 2.

  8. Some fast elliptic solvers on parallel architectures and their complexities

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    The discretization of separable elliptic partial differential equations leads to linear systems with special block triangular matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconsistant coefficients. A method was recently proposed to parallelize and vectorize BCR. Here, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches, including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational complexity lower than that of parallel BCR.

  9. The construction of preconditioners for elliptic problems by substructuring, IV

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1987-06-01

    We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on three dimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these precondictioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented. 16 refs., 2 tabs.

  10. The construction of preconditioners for elliptic problems by substructuring, IV

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1989-07-01

    We consider the problem of solving the algebraic system of equations which result from the discretization of elliptic boundary value problems defined on three-dimensional Euclidean space. We develop preconditioners for such systems based on substructuring (also known as domain decomposition). The resulting algorithms are well suited to emerging parallel computing architectures. We describe two techniques for developing these preconditioners. A theory for the analysis of the condition number for the resulting preconditioned system is given and the results of supporting numerical experiments are presented.

  11. Iterative method for elliptic problems on regions partitioned into substructures

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1986-04-01

    Some new preconditioners for discretizations of elliptic boundary problems are studied. With these preconditioners, the domain under consideration is broken into subdomains and preconditioners are defined which only require the solution of matrix problems on the subdomains. Analytic estimates are given which guarantee that under appropriate hypotheses, the preconditioned iterative procedure converges to the solution of the discrete equations with a rate per iteration that is independent of the number of unknowns. Numerical examples are presented which illustrate the theoretically predicted iterative convergence rates.

  12. Construction of preconditioners for elliptic problems by substructuring. II

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.

    1987-07-01

    We give a method for constructing preconditioners for the discrete systems arising in the approximation of solutions of elliptic boundary value problems. These preconditioners are based on domain decomposition techniques and lead to algorithms which are well suited for parallel computing environments. The method presented in this paper leads to a preconditioned system with condition number proportional to d/h where d is the subdomain size and h is the mesh size. These techniques are applied to singularly perturbed problems and problems in the three dimensions. The results of numerical experiments illustrating the performance of the method on problems in two and three dimensions are given.

  13. Iterative schemes for nonsymmetric and indefinite elliptic boundary value problems

    SciTech Connect

    Bramble, J.H.; Leyk, Z.; Pasciak, J.E.

    1993-01-01

    The purpose of this paper is twofold. The first is to describe some simple and robust iterative schemes for nonsymmetric and indefinite elliptic boundary value problems. The schemes are based in the Sobolev space H ([Omega]) and require minimal hypotheses. The second is to develop algorithms utilizing a coarse-grid approximation. This leads to iteration matrices whose eigenvalues lie in the right half of the complex plane. In fact, for symmetric indefinite problems, the iteration is reduced to a well-conditioned symmetric positive definite system which can be solved by conjugate gradient interation. Applications of the general theory as well as numerical examples are given. 20 refs., 8 tabs.

  14. Liouville properties and critical value of fully nonlinear elliptic operators

    NASA Astrophysics Data System (ADS)

    Bardi, Martino; Cesaroni, Annalisa

    2016-10-01

    We prove some Liouville properties for sub- and supersolutions of fully nonlinear degenerate elliptic equations in the whole space. Our assumptions allow the coefficients of the first order terms to be large at infinity, provided they have an appropriate sign, as in Ornstein-Uhlenbeck operators. We give two applications. The first is a stabilization property for large times of solutions to fully nonlinear parabolic equations. The second is the solvability of an ergodic Hamilton-Jacobi-Bellman equation that identifies a unique critical value of the operator.

  15. Cavity modes and their excitations in elliptical plasmonic patch nanoantennas.

    PubMed

    Chakrabarty, Ayan; Wang, Feng; Minkowski, Fred; Sun, Kai; Wei, Qi-Huo

    2012-05-21

    We present experimental and theoretical studies of two dimensional periodic arrays of elliptical plasmonic patch nanoantennas. Experimental and simulation results demonstrate that the azimuthal symmetry breaking of the metal patches leads to the occurrence of even and odd resonant cavity modes and the excitation geometries dependent on their modal symmetries. We show that the cavity modes can be described by the product of radial and angular Mathieu functions with excellent agreements with both simulations and experiments. The effects of the patch periodicity on the excitation of the surface plasmon and its coupling with the cavity modes are also discussed. PMID:22714147

  16. Using elliptical best fits to characterize dental shapes.

    PubMed

    Bauer, Catherine C; Bons, Paul D; Benazzi, Stefano; Harvati, Katerina

    2016-02-01

    A variety of geometric morphometric methods have recently been used to describe dental shape variation in human evolutionary studies. However, the applicability of these methods is limited when teeth are worn or are difficult to orient accurately. Here we show that elliptical best fits on outlines of dental tissues below the crown provide basic size- and orientation-free shape descriptors. Using the dm(2) and M(3) as examples, we demonstrate that these descriptors can be used for taxonomic purposes, such as distinguishing between Neanderthal and recent modern human teeth. We propose that this approach can be a useful alternative to existing methodology. PMID:26381860

  17. Some new addition formulae for Weierstrass elliptic functions

    PubMed Central

    Eilbeck, J. Chris; England, Matthew; Ônishi, Yoshihiro

    2014-01-01

    We present new addition formulae for the Weierstrass functions associated with a general elliptic curve. We prove the structure of the formulae in n-variables and give the explicit addition formulae for the 2- and 3-variable cases. These new results were inspired by new addition formulae found in the case of an equianharmonic curve, which we can now observe as a specialization of the results here. The new formulae, and the techniques used to find them, also follow the recent work for the generalization of Weierstrass functions to curves of higher genus. PMID:25383018

  18. A new CY elliptic fibration and tadpole cancellation

    NASA Astrophysics Data System (ADS)

    Cacciatori, Sergio L.; Cattaneo, Andrea; van Geemen, Bert

    2011-10-01

    Tadpole cancellation in Sen limits in F-theory was recently studied by Aluffi and Esole. We extend their results, generalizing the elliptic fibrations they used and obtaining a new case of universal tadpole cancellation, at least numerically. We could not find an actual Sen limit having the correct brane content, and we argue that such a limit may not exist. We also give a uniform description of the fibrations used by Aluffi and Esole as well as a new, simple, fibration which has non-Kodaira type fibers.

  19. Metallicity Gradients in the Halos of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Ma, Chung-Pei; Goulding, Andrew; McConnell, Nicholas J.; Blakeslee, John P.; Davis, Timothy; Thomas, Jens

    2016-08-01

    We discuss the stellar halos of massive elliptical galaxies, as revealed by our ambitious integral-field spectroscopic survey MASSIVE. We show that metallicity drops smoothly as a function of radius out to ~ 2.5 Re , while the [α/Fe] abundance ratios stay flat. The stars in the outskirts likely formed rapidly (to explain the high ratio of alpha to Fe) but in a relatively shallow potential (to explain the low metallicities). This is consistent with expectations for a two-phase growth of massive galaxies, in which the second phase involves accretion of small satellites. We also show some preliminary study of the gas content of these most MASSIVE galaxies.

  20. Incomplete block factorization preconditioning for indefinite elliptic problems

    SciTech Connect

    Guo, Chun-Hua

    1996-12-31

    The application of the finite difference method to approximate the solution of an indefinite elliptic problem produces a linear system whose coefficient matrix is block tridiagonal and symmetric indefinite. Such a linear system can be solved efficiently by a conjugate residual method, particularly when combined with a good preconditioner. We show that specific incomplete block factorization exists for the indefinite matrix if the mesh size is reasonably small. And this factorization can serve as an efficient preconditioner. Some efforts are made to estimate the eigenvalues of the preconditioned matrix. Numerical results are also given.

  1. Optical observation of supernova remnant in elliptical galaxy NGC 185

    NASA Astrophysics Data System (ADS)

    Vučetić, M.; Arbutina, B.; Pavlovic, M. Z.; Ciprijanovic, A.; Urosevic, D.; Petrov, N.; Onić, D.; Trcka, A.

    2016-06-01

    In this paper we discuss the previously known optical supernova remnant (SNR) in NGC 185 galaxy, a dwarf elliptical companion of the Andromeda galaxy, in order to gain more information about its properties and evolutionary status. To this end, we observed a central portion of NGC 185, through the narrowband Hα and [SII]} filters, on a 2m RCC-telescope at National astronomical observatory Rozhen, Bulgaria. Also, we performed MHD simulations using the Pluto code, for the case of low environmental density and high pressure, in order to discuss evolution of a SNR in a gas poor dwarf galaxy.

  2. On the Distance Function Between Two Keplerian Elliptic Orbits

    NASA Astrophysics Data System (ADS)

    Kholshevnikov, Konstantin V.; Vassiliev, Nikolay N.

    1999-10-01

    The problem of finding critical points of the distance function between two Keplerian elliptic orbits is reduced to the determination of all real roots of a trigonometric polynomial of degree 8. The coefficients of the polynomial are rational functions of orbital parameters. Using computer algebra methods we show that a polynomial of a smaller degree with such properties does not exist. This fact shows that our result cannot be improved and it allows us to construct an optimal algorithm to find the minimal distance between two Keplerian orbits.

  3. On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.

    PubMed

    Khusnutdinova, K R; Klein, C; Matveev, V B; Smirnov, A O

    2013-03-01

    There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the derived equation is a universal integrable model applicable to generic weakly nonlinear weakly dispersive waves. We also show that there exist nontrivial transformations between all three versions of the KP equation associated with the physical problem formulation, and use them to obtain new classes of approximate solutions for water waves.

  4. On the Intrinsic Diversity of Type II-Plateau Supernovae

    NASA Astrophysics Data System (ADS)

    Pejcha, Ondřej; Prieto, Jose L.

    2015-06-01

    Hydrogen-rich Type II-Plateau supernovae (SNe) exhibit correlations between the plateau luminosity {L}{pl}, the nickel mass {M}{Ni}, the explosion energy {E}{exp}, and the ejecta mass {M}{ej}. Using our global, self-consistent, multi-band model of nearby well-observed SNe, we find that the covariances of these quantities are strong and that the confidence ellipsoids are oriented in the direction of the correlations, which reduces their significance. By proper treatment of the covariance matrix of the model, we discover a significant intrinsic width to the correlations between {L}{pl}, {E}{exp} and {M}{Ni}, where the uncertainties due to the distance and the extinction dominate. For fixed {E}{exp}, the spread in {M}{Ni} is about 0.25 dex, which we attribute to the differences in the progenitor internal structure. We argue that the effects of incomplete γ-ray trapping are not important in our sample. Similarly, the physics of the Type II-Plateau SN light curves leads to inherently degenerate estimates of {E}{exp} and {M}{ej}, which makes their observed correlation weak. Ignoring the covariances of SN parameters or the intrinsic width of the correlations causes significant biases in the slopes of the fitted relations. Our results imply that Type II-Plateau SN explosions are not described by a single physical parameter or a simple one-dimensional trajectory through the parameter space, but instead reflect the diversity of the core and surface properties of their progenitors. We discuss the implications for the physics of the explosion mechanism and possible future observational constraints.

  5. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells.

    PubMed

    Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook

    2016-05-01

    Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation.

  6. Stripped Elliptical Galaxies as Probes of ICM Physics: I. Tails, Wakes, and Flow Patterns in and Around Stripped Ellipticals

    NASA Astrophysics Data System (ADS)

    Roediger, E.; Kraft, R. P.; Nulsen, P. E. J.; Forman, W. R.; Machacek, M.; Randall, S.; Jones, C.; Churazov, E.; Kokotanekova, R.

    2015-06-01

    Elliptical cluster galaxies are progressively stripped of their atmospheres due to their motion through the intracluster medium (ICM). Deep X-ray observations reveal the fine-structure of the galaxy’s remnant atmosphere and its gas tail and wake. This fine-structure depends on dynamic conditions (galaxy potential, initial gas contents, orbit through the host cluster), orbital stage (early infall, pre-/post-pericenter passage), and ICM plasma properties (thermal conductivity, viscosity, magnetic field structure). We aim to disentangle dynamic and plasma effects in order to use stripped ellipticals as probes of ICM plasma properties. This first paper of a series investigates the hydrodynamics of progressive gas stripping by means of inviscid hydrodynamical simulations. We distinguish a long-lasting initial relaxation phase and a quasi-steady stripping phase. During quasi-steady stripping, the ICM flow around the remnant atmosphere resembles the flow around solid bodies, including a “deadwater” region in the near wake. Gas is stripped from the remnant atmosphere predominantly at its sides via Kelvin-Helmholtz instabilities. The downstream atmosphere is largely shielded from the ICM wind and thus shaped into a tail. Observationally, both this “remnant tail” and the stripped gas in the wake can appear as a “tail”, but only in the wake can galactic gas mix with the ambient ICM. While the qualitative results are generic, the simulations presented here are tailored to the Virgo elliptical galaxy M89 (NGC 4552) for the most direct comparison to observations. Papers II and III of this series describe the effect of viscosity and compare to Chandra and XMM-Newton observations, respectively.

  7. STRIPPED ELLIPTICAL GALAXIES AS PROBES OF ICM PHYSICS. I. TAILS, WAKES, AND FLOW PATTERNS IN AND AROUND STRIPPED ELLIPTICALS

    SciTech Connect

    Roediger, E.; Kraft, R. P.; Nulsen, P. E. J.; Forman, W. R.; Machacek, M.; Randall, S.; Jones, C.; Kokotanekova, R.

    2015-06-10

    Elliptical cluster galaxies are progressively stripped of their atmospheres due to their motion through the intracluster medium (ICM). Deep X-ray observations reveal the fine-structure of the galaxy’s remnant atmosphere and its gas tail and wake. This fine-structure depends on dynamic conditions (galaxy potential, initial gas contents, orbit through the host cluster), orbital stage (early infall, pre-/post-pericenter passage), and ICM plasma properties (thermal conductivity, viscosity, magnetic field structure). We aim to disentangle dynamic and plasma effects in order to use stripped ellipticals as probes of ICM plasma properties. This first paper of a series investigates the hydrodynamics of progressive gas stripping by means of inviscid hydrodynamical simulations. We distinguish a long-lasting initial relaxation phase and a quasi-steady stripping phase. During quasi-steady stripping, the ICM flow around the remnant atmosphere resembles the flow around solid bodies, including a “deadwater” region in the near wake. Gas is stripped from the remnant atmosphere predominantly at its sides via Kelvin–Helmholtz instabilities. The downstream atmosphere is largely shielded from the ICM wind and thus shaped into a tail. Observationally, both this “remnant tail” and the stripped gas in the wake can appear as a “tail”, but only in the wake can galactic gas mix with the ambient ICM. While the qualitative results are generic, the simulations presented here are tailored to the Virgo elliptical galaxy M89 (NGC 4552) for the most direct comparison to observations. Papers II and III of this series describe the effect of viscosity and compare to Chandra and XMM-Newton observations, respectively.

  8. Feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities

    PubMed Central

    Rovniak, Liza S.; Denlinger, LeAnn; Duveneck, Ellen; Sciamanna, Christopher N.; Kong, Lan; Freivalds, Andris; Ray, Chester A.

    2013-01-01

    Objectives This study aimed to evaluate the feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities. A secondary aim was to evaluate if two accelerometers attached to the elliptical device could provide reliable and valid assessments of participants’ frequency and duration of elliptical device use. Design Physically inactive adults (n = 32, age range = 25–65) were recruited through local advertisements and selected using stratified random sampling based on sex, body mass index (BMI), and age. Methods Indirect calorimetry was used to assess participants’ energy expenditure while seated and while using the elliptical device at a self-selected intensity level. Participants also self-reported their interest in using the elliptical device during sedentary activities. Two Actigraph GT3X accelerometers were attached to the elliptical device to record time-use patterns. Results Participants expended a median of 179.1 kilocalories per hour while using the elliptical device (range = 108.2–269.0), or a median of 87.9 more kilocalories (range = 19.7–178.6) than they would expend per hour of sedentary sitting. Participants reported high interest in using the elliptical device during TV watching and computer work, but relatively low interest in using the device during office meetings. Women reported greater interest in using the elliptical device than men. The two accelerometers recorded identical time-use patterns on the elliptical device and demonstrated concurrent validity with time-stamped computer records. Conclusions Compact elliptical devices could increase energy expenditure during sedentary activities, and may provide proximal environmental cues for increasing energy expenditure across multiple life domains. PMID:24035273

  9. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    SciTech Connect

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  10. Intrinsic delay of permeable base transistor

    SciTech Connect

    Chen, Wenchao; Guo, Jing; So, Franky

    2014-07-28

    Permeable base transistors (PBTs) fabricated by vacuum deposition or solution process have the advantages of easy fabrication and low power operation and are a promising device structure for flexible electronics. Intrinsic delay of PBT, which characterizes the speed of the transistor, is investigated by solving the three-dimensional Poisson equation and drift-diffusion equation self-consistently using finite element method. Decreasing the emitter thickness lowers the intrinsic delay by improving on-current, and a thinner base is also preferred for low intrinsic delay because of fewer carriers in the base region at off-state. The intrinsic delay exponentially decreases as the emitter contact Schottky barrier height decreases, and it linearly depends on the carrier mobility. With an optimized emitter contact barrier height and device geometry, a sub-nano-second intrinsic delay can be achieved with a carrier mobility of ∼10 cm{sup 2}/V/s obtainable in solution processed indium gallium zinc oxide, which indicates the potential of solution processed PBTs for GHz operations.

  11. The Next Generation Virgo Cluster Survey. VII. The Intrinsic Shapes of Low-luminosity Galaxies in the Core of the Virgo Cluster, and a Comparison with the Local Group

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew

    2016-03-01

    We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 < Mg < -8 mag range, and we measure their apparent axis ratios, q, through Sérsic fits to their two-dimensional light distribution, which is well described by a constant ellipticity parameter. The resulting distribution of apparent axis ratios is then fit by families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with

  12. Elliptic flow in heavy-ion collisions at NICA energies

    NASA Astrophysics Data System (ADS)

    B. Ivanov, Yu.; Soldatov, A. A.

    2016-08-01

    The transverse-momentum-integrated elliptic flow of charged particles at midrapidity, v2 (charged), and that of identified hadrons from Au+Au collisions are analyzed in the range of incident energies relevant to the Nuclotron-based Ion Collider Facility (NICA). Simulations are performed within a three-fluid model employing three different equations of state (EoSs): a purely hadronic EoS and two versions of the EoS involving the deconfinement transition-a first-order phase transition and a smooth crossover one. The present simulations demonstrate low sensitivity of v2 (charged) to the EoS. All considered scenarios equally well reproduce recent STAR data on v2 (charged) for mid-central Au+Au collisions and properly describe its change of sign at the incident energy decrease below √{s_{NN}} ≈ 3.5 GeV. The predicted integrated elliptic flow of various species exhibits a stronger dependence on the EoS. A noticeable sensitivity to the EoS is found for anti-protons and, to a lesser extent, for K- mesons. Presently there are no experimental data that could verify these predictions. Future experiments at NICA could corroborate these findings.

  13. The density profile of the elliptical planetary nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    Soker, Noam; Zucker, Daniel B.; Balick, Bruce

    1992-01-01

    We present the three-dimensional density structure of the elliptical planetary nebula NGC 3242, deconvolved from its H-alpha image. Using the simplistic assumptions that each mass element preserves its original velocity, which is radial and depends only on latitude, we deduce from this density profile the variation of mass-loss rate from the progenitor of NGC 3242 with latitude and time. The resulting somewhat qualitative mass-loss geometry and history are used to constrain models for the formation of the elliptical structure of NGC 3242. We argue that a triple system, with a very close brown dwarf companion and a more massive distant tertiary star, is compatible with the morphology of NGC 3242. In this model the brown dwarf, of about 0.01 solar mass, shared a common envelope with the progenitor star, and spun up the envelope through deposition of angular momentum. The oblate rotating envelope blew an axisymmetrical wind. We suggest that the presence of a third star, with a mass of about 1 solar mass and an orbital period of about 4000 years, could have caused the large scale deviation from axial symmetry seen in the density structure.

  14. A heterogeneous stochastic FEM framework for elliptic PDEs

    SciTech Connect

    Hou, Thomas Y. Liu, Pengfei

    2015-01-15

    We introduce a new concept of sparsity for the stochastic elliptic operator −div(a(x,ω)∇(⋅)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage.

  15. Two high-velocity encounters of elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Balcells, Marc; Borne, Kirk D.; Hoessel, John G.

    1989-01-01

    This paper describes results obtained on a simulation of two high-velocity encounters of NGC 4782/4783 and NGC 2672/2673 binary elliptical galaxies which differ substantially in mass ratio (about 1 for the first pair, and about 10 for the second). CCD images and velocities obtained from digital spectra were used to constrain simulations of the galaxy collisions. The binary orbital elements, the orientation of the orbit in the sky, the time since pericenter, and the dynamical mass of the pair were derived. Results suggested that the dumb-bell galaxy NGC 4782/4783 is not a supermassive galaxy, as was claimed earlier on the basis of the high relative velocity and high central dispersion, but has a moderate mass to luminosity ratio M/L(B) of about 10. It was concluded that its trajectory changed from hyperbolic to elliptical as a result of energy lost during the collision. It was found that the NGC 2672/2673 also has a moderate M/L(B) of about 7.

  16. The case against bimodal star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gibson, B. K.

    1996-02-01

    We consider the present-day photometric and chemical properties of elliptical galaxies, adopting the bimodal star formation scenario of Elbaz, Arnaud & Vangioni-Flam. These models utilize an initial mass function (IMF) biased heavily toward massive stars during the early phases of galactic evolution, leading to early Type II supernovae-driven galactic winds. A subsequent lengthy, milder star formation phase with a normal IMF ensues, supposedly responsible for the stellar population observed today. Based upon chemical evolution arguments alone, this scenario has been invoked to explain the observed metal mass, and their abundance ratios, in the intracluster medium of galaxy clusters. Building upon the recent compilations of metallicity-dependent isochrones for simple stellar populations, we have constructed a coupled photometric and chemical evolution package for composite stellar populations in order to quantify the effects of such a model upon the photochemical properties of the resultant elliptical galaxies. We demonstrate that these predicted properties are incompatible with those observed at the current epoch.

  17. Development of an innovative device for ultrasonic elliptical vibration cutting.

    PubMed

    Zhou, Ming; Hu, Linhua

    2015-07-01

    An innovative ultrasonic elliptical vibration cutting (UEVC) device with 1st resonant mode of longitudinal vibration and 3rd resonant mode of bending vibration was proposed in this paper, which can deliver higher output power compared to previous UEVC devices. Using finite element method (FEM), resonance frequencies of the longitudinal and bending vibrations were tuned to be as close as possible in order to excite these two vibrations using two-phase driving voltages at a single frequency, while wave nodes of the longitudinal and bending vibrations were also adjusted to be as coincident as possible for mounting the device at a single fixed point. Based on the simulation analysis results a prototype device was fabricated, then its vibration characteristics were evaluated by an impedance analyzer and a laser displacement sensor. With two-phase sinusoidal driving voltages both of 480 V(p-p) at an ultrasonic frequency of 20.1 kHz, the developed prototype device achieved an elliptical vibration with a longitudinal amplitude of 8.9 μm and a bending amplitude of 11.3 μm. The performance of the developed UEVC device is assessed by the cutting tests of hardened steel using single crystal diamond tools. Experimental results indicate that compared to ordinary cutting process, the tool wear is reduced significantly by using the proposed device.

  18. Guiding mode in elliptical core microstructured polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Ren, Liyong; Li, Kang; Wang, Hanyi; Zhao, Wei; Wang, Lili; Miao, Runcai; Large, Maryanne C. J.; van Eijkelenborg, Martijn A.

    2007-04-01

    A kind of microstructured polymer optical fiber with elliptical core has been fabricated by adopting in-situ chemical polymerization technology and the secondary sleeving draw-stretching technique. Microscope photography demonstrates the clear hole-structure retained in the fiber. Though the holes distortion is visible, initial laser experiment indicates that light can be strongly confined in the elliptical core region, and the mode field is split obviously and presents the multi-mode characteristic. Numerical modeling is carried out for the real fiber with the measured parameters, including the external diameter of 150 microns, the average holes diameter of 3.3 microns, and the average hole spacing of 6.3 microns by using full-vector plane wave method. The guided mode fields of the numerical simulation are consistent with the experiment result. This fiber shows the strong multi-mode and weak birefringence in the visible and near-infrared band, and has possibility for achieving the fiber mode convertors, mode selective couplers and so on.

  19. Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-06-01

    An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.

  20. Experimental study of elliptical jet from sub to supercritical conditions

    SciTech Connect

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations were carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.

  1. Optimal impulsive trajectories for orbital rendezvous between elliptic orbits

    NASA Astrophysics Data System (ADS)

    Cheng, Ching-Wei

    1992-01-01

    This study uses and extends primer vector theory to obtain a minimum-fuel two or multiple impulse solution for co-planar and non co-planar elliptic-to-elliptic, time-fixed rendezvous. Lawden's conditions for an optimal impulsive trajectory and three additional methods to improve the non-optimal multiple impulse are introduced. To extend a 3-Impulse differential cost function provided by Jezewski and Rozendaal, the general differential cost function for an N-Impulse trajectory is developed. This approach defines the gradient vector for any set of boundary conditions. To determine the number of impulses, times, and locations for multiple-impulse optimal trajectories automatically, a computer program is developed. This software has been thoroughly tested in a wide variety of rendezvous situations. The singularity for a transfer angle of 180 degrees and the singular case of sin I = 0 are also accounted for in the program. Part of this work was accomplished using the Generalized Reduced Gradient method using its associated GRG2 computer code. The effects of inclination between the vehicle and target orbits, the initial positions of the vehicle and target, and the direction of the major axes are considered. Numerical results for several different orbit configurations are produced and discussed. The results are compared with the Hohmann/Hohmann type transfer and/or the optimal, finite, three-impulse transfer.

  2. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  3. Extrinsic and Intrinsic Defects in Congruent and Stoichiometric Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Malovichko, Galina; Grachev, Valentin

    2003-03-01

    Due to specific character of the phase diagram the crystals of Lithium Niobate (LN) grown by conventional Czochralski way are always Li-deficient, even if the melts have essential Li excess. Different dopants were used for desirable modification of crystal properties; however some observed discrepancies and partial irreproducibility of characteristics were not properly clarified. Essential progress in understanding of LN features was achieved after development of several ways enabling to obtain materials with [Li]/[Nb] ratio close to 1 (VTE treatment, double crucible growth, growth with potassium). Strong mutual dependence of subsystems of extrinsic (impurity) and intrinsic (nonstoichiometric) defects forms the talk topic. Spectra of EPR, NMR, ENDOR, HREM, optical and X-ray data have been analysed for crystals with different compositions, diverse modifiers and various probe impurities. Most of the results show clearly: 1) presence of correlated complexes of intrinsic defects in undoped samples; 2) correlated entering of impurities and charge compensating defects in doped crystals; 3) qualitative difference between structures of the impurity centers substituting for Li or Nb ions in conventional and stoichiometric materials. Crystals with the extremely low concentration of defects offer extraordinary informative opportunities (due to tremendous resolution enhancement), whereas materials of nonstoichiometric composition are especially suitable for tailoring material properties.

  4. Size Scaling of Intrinsic Rotation in DIII-D

    NASA Astrophysics Data System (ADS)

    Degrassie, J. S.; Solomon, W. M.

    2015-11-01

    Despite the richness in the variety of the profiles of intrinsic rotation in axisymmetric tokamaks, a common feature is a co-Ip directed toroidal velocity on the outboard midplane in the region of ρ ~ 0 . 8 in DIII-D. This feature showed a ``Rice scaling'' (RS) in DIII-D and led to similarity experiments with C-Mod. RS correlates toroidal velocity with W/Ip, where W is the total plasma kinetic energy and Ip the plasma current. Subsequent analysis from DIII-D shows a clear ρ * dimensionless scaling of this intrinsic velocity in DIII-D, where ρ * ~ √Ti / aB , multiplying the βq scaling indicative of RS. The DIII-D scaling is MA ~βN ρ * , where MA is the Alfvén ``Mach'' value and βN is normalized β. In machine parameters it is very similar to the theoretical ``Parra scaling,'' which emphasizes the correlation of toroidal velocity with ion temperature as seen experimentally, but in this DIII-D scaling having an additional critical dependence on √β . Published data from C-Mod and low power ICRF in JET also fit with this DIII-D scaling. The relation to the RS will be described. Work supported in part by US DOE under DE-FC02-04ER54698 & DE-AC02-09CH11466.

  5. Intrinsic common noise in a system of two coupled Brusselators

    NASA Astrophysics Data System (ADS)

    Nandi, Amitabha; Lindner, Benjamin

    2010-10-01

    We investigate effects of coupling two chemical subsystems through diffusion of chemical species. We consider the Langevin description of the actual microscopic dynamics and show that diffusive coupling gives rise to a common noise term along with the deterministic interaction. As a model example, we study two diffusively coupled Brusselator systems. By numerical Langevin simulations, we inspect the effect of the common noise term on the total correlation between the two Brusselators; we also verify the validity of the Langevin approach by comparison to simulations of the more accurate master equation. The intrinsic common noise has its strongest effect for the Brusselator dynamics operating at a stable fixed point far from the Hopf bifurcation; in this case, the common noise reduces the correlation of the Brusselators significantly. We also show that for specific parameter sets the covariance between the systems is maximized (or minimized) at a finite system size.

  6. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    ERIC Educational Resources Information Center

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  7. Some Improvements on Signed Window Algorithms for Scalar Multiplications in Elliptic Curve Cryptosystems

    NASA Technical Reports Server (NTRS)

    Vo, San C.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Scalar multiplication is an essential operation in elliptic curve cryptosystems because its implementation determines the speed and the memory storage requirements. This paper discusses some improvements on two popular signed window algorithms for implementing scalar multiplications of an elliptic curve point - Morain-Olivos's algorithm and Koyarna-Tsuruoka's algorithm.

  8. Lateral Migration and Rotational Motion of Elliptic Particles in Planar Poiseuille Flow

    NASA Technical Reports Server (NTRS)

    Qi, Dewei; Luo, Li-Shi; Aravamuthan, Raja; Strieder, William; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Simulations of elliptic particulate suspensions in the planar Poiseuille flow are performed by using the lattice Boltzmann equation. Effects of the multi-particle on the lateral migration and rotational motion of both neutrally and non-neutrally buoyant elliptic particles are investigated. Low and intermediate total particle volume fraction f(sub a) = 13%, 15%, and 40% are considered in this work.

  9. Lensing measurements of the ellipticity of luminous red galaxies dark matter haloes

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Jain, Bhuvnesh

    2016-04-01

    Lensing measurements of the shapes of dark matter haloes can provide tests of gravity theories and possible dark matter interactions. We measure the quadrupole weak lensing signal from the elliptical haloes of 70 000 Sloan Digital Sky Survey luminous red galaxies. We use a new estimator that nulls the spherical halo lensing signal, isolating the shear due to anisotropy in the dark matter distribution. One of the two Cartesian components of our estimator is insensitive to the primary systematic, a spurious alignment of lens and source ellipticities, allowing us to make robust measurements of halo ellipticity. Our best-fitting value for the ellipticity of the surface mass density is 0.24 ± 0.06, which translates to an axis ratio of 0.78. We rule out the hypothesis of no ellipticity at the 4σ confidence level, and ellipticity <0.12 (axis ratio >0.89) at the 2σ level. We discuss how our measurements of halo ellipticity are revised to higher values using estimates of the misalignment of mass and light from simulations. Finally, we apply the same techniques to a smaller sample of redMaPPer galaxy clusters and obtain a 3σ measurement of cluster ellipticity. We discuss how the improved signal-to-noise ratio properties of our estimator can enable studies of halo shapes for different galaxy populations with upcoming surveys.

  10. Short Foucault Pendulum: A Way to Eliminate the Precession Due to Ellipticity.

    ERIC Educational Resources Information Center

    Crane, H. Richard

    1981-01-01

    Discusses the problem of ellipticity in the motion of the ordinary Foucault pendulum and the error caused by it. Presents a simple method of slightly modifying the force-displacement relation in such a way that precession does not result from ellipticity. (Author/SK)

  11. On the index of noncommutative elliptic operators over C*-algebras

    SciTech Connect

    Savin, Anton Yu; Sternin, Boris Yu

    2010-05-11

    We consider noncommutative elliptic operators over C*-algebras, associated with a discrete group of isometries of a manifold. The main result of the paper is a formula expressing the Chern characters of the index (Connes invariants) in topological terms. As a corollary to this formula a simple proof of higher index formulae for noncommutative elliptic operators is obtained. Bibliography: 36 titles.

  12. A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass

    NASA Astrophysics Data System (ADS)

    Verolme, E. K.; Cappellari, M.; Copin, Y.; van der Marel, R. P.; Bacon, R.; Bureau, M.; Davies, R. L.; Miller, B. M.; de Zeeuw, P. T.

    2002-09-01

    We present dynamical models of the nearby compact elliptical galaxy M32, using high-quality kinematic measurements, obtained with the integral-field spectrograph SAURON mounted on the William Herschel Telescope on La Palma. We also include STIS data obtained previously by Joseph et al. We find a best-fitting black hole mass of M•= (2.5 +/- 0.5) × 106 Msolar and a stellar I-band mass-to-light ratio of (1.85 +/- 0.15) Msolar/Lsolar. For the first time, we are also able to constrain the inclination along which M32 is observed to 70°+/- 5°. Assuming that M32 is indeed axisymmetric, the averaged observed flattening of 0.73 then corresponds to an intrinsic flattening of 0.68 +/- 0.03. These tight constraints are mainly caused by the use of integral-field data. We show this quantitatively by comparing with models that are constrained by multiple slits only. We show the phase-space distribution and intrinsic velocity structure of the best-fitting model and investigate the effect of regularization on the orbit distribution.

  13. Intrinsic plasticity: an emerging player in addiction.

    PubMed

    Kourrich, Saïd; Calu, Donna J; Bonci, Antonello

    2015-03-01

    Exposure to drugs of abuse, such as cocaine, leads to plastic changes in the activity of brain circuits, and a prevailing view is that these changes play a part in drug addiction. Notably, there has been intense focus on drug-induced changes in synaptic excitability and much less attention on intrinsic excitability factors (that is, excitability factors that are remote from the synapse). Accumulating evidence now suggests that intrinsic factors such as K+ channels are not only altered by cocaine but may also contribute to the shaping of the addiction phenotype.

  14. Bootstrapped models for intrinsic random functions

    SciTech Connect

    Campbell, K.

    1988-08-01

    Use of intrinsic random function stochastic models as a basis for estimation in geostatistical work requires the identification of the generalized covariance function of the underlying process. The fact that this function has to be estimated from data introduces an additional source of error into predictions based on the model. This paper develops the sample reuse procedure called the bootstrap in the context of intrinsic random functions to obtain realistic estimates of these errors. Simulation results support the conclusion that bootstrap distributions of functionals of the process, as well as their kriging variance, provide a reasonable picture of variability introduced by imperfect estimation of the generalized covariance function.

  15. Bootstrapped models for intrinsic random functions

    SciTech Connect

    Campbell, K.

    1987-01-01

    The use of intrinsic random function stochastic models as a basis for estimation in geostatistical work requires the identification of the generalized covariance function of the underlying process, and the fact that this function has to be estimated from the data introduces an additional source of error into predictions based on the model. This paper develops the sample reuse procedure called the ''bootstrap'' in the context of intrinsic random functions to obtain realistic estimates of these errors. Simulation results support the conclusion that bootstrap distributions of functionals of the process, as well as of their ''kriging variance,'' provide a reasonable picture of the variability introduced by imperfect estimation of the generalized covariance function.

  16. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, i.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  17. Testing the modern merger hypothesis via the assembly of massive blue elliptical galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim; McIntosh, D. H.; Sánchez, S. F.; Tremonti, C.; Rudnick, G.

    2015-07-01

    The modern merger hypothesis offers a method of forming a new elliptical galaxy through merging two equal-mass, gas-rich disc galaxies fuelling a nuclear starburst followed by efficient quenching and dynamical stabilization. A key prediction of this scenario is a central concentration of young stars during the brief phase of morphological transformation from highly disturbed remnant to new elliptical galaxy. To test this aspect of the merger hypothesis, we use integral field spectroscopy to track the stellar Balmer absorption and 4000-Å break strength indices as a function of galactic radius for 12 massive (M* ≥ 1010 M⊙), nearby (z ≤ 0.03), visually-selected plausible new ellipticals with blue-cloud optical colours and varying degrees of morphological peculiarities. We find that these index values and their radial dependence correlate with specific morphological features such that the most disturbed galaxies have the smallest 4000-Å break strengths and the largest Balmer absorption values. Overall, two-thirds of our sample are inconsistent with the predictions of the modern merger hypothesis. Of these eight, half exhibit signatures consistent with recent minor merger interactions. The other half have star formation histories similar to local, quiescent early-type galaxies. Of the remaining four galaxies, three have the strong morphological disturbances and star-forming optical colours consistent with being remnants of recent, gas-rich major mergers, but exhibit a weak, central burst consistent with forming ˜5 per cent of their stars. The final galaxy possesses spectroscopic signatures of a strong, centrally concentrated starburst and quiescent core optical colours indicative of recent quenching (i.e. a post-starburst signature) as prescribed by the modern merger hypothesis.

  18. Characterization of a generalized elliptical phase retarder by using equivalent theorem of a linear phase retarder and a polarization rotator

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Jen; Chou, Chien

    2011-03-01

    An equivalence theory based on a unitary optical system of a generalized elliptical phase retarder was derived. Whereas the elliptical phase retarder can be treated as the combination of a linear phase retarder and a polarization rotator equivalently. Three fundamental parameters, including the elliptical phase retardation, the azimuth angle and the ellipticity angle of the fast elliptical eigen-polarization state were derived. All parameters of a generalized elliptical phase retarder can be determined from the analytical solution of the characteristic parameters of the optical components: linear phase retardation and fast axis angle of the equivalently linear phase retarder respectively, and polarization rotation angle of an equivalent polarization rotator. In this study, the experimental verification was demonstrated by testing a twisted nematic liquid crystal device (TNLCD) treated as a generalized elliptical phase retarder. A dual-frequency heterodyne ellipsometer was setup and the experimental result demonstrates the capability of the equivalent theory on elliptical birefringence measurement at high sensitivity by using heterodyne technique.

  19. Violent Relaxation, Dynamical Instabilities and the Formation of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Aguilar, L. A.

    1990-11-01

    RESUMEN: El problema de la formaci6n de galaxias elfpticas por medjo de colapso gravitacional sin disipaci6n de energfa es estudiado usando un gran numero de simulaciones numericas. Se muestra que este tipo de colapsos, partiendo de condiciones iniciales frfas donde la energfa cinetica inicial representa s6lo un 5%, 0 , de a potencial inicial, produce sistemas relajados de forma triaxial muy similares a las galaxias elfpticas reales en sus formas y perfiles de densidad en proyecci6i . La forina triaxial resulta de la acci6n de una inestabilidad dinamica que aparece en sistemas 'inicos dominados por movimientos radiales, mientras que el perfil de densidad final Cs debido al llamado relajamiento violento que tiende a producir una distribuci6n en espacio fase unica. Estos dos fen6menos tienden a borrar los detalles particulares sobre las condiciones iniciales y dan lugar a una evoluci6n convergente hacia sistemas realistas, esto innecesario el uso de condiciones iniciales especiales (excepto por Ia condici6i de que estas deben ser frfas). Las condiciones iniciales frfas producen los movimientos radiales y fluctuaciones de la energfa potencial requeridos por ambos fen6menos. ABSTRACT: The problem of formation of elliptical galaxies via dissipationless collapse is studied using a large set of numerical simulations. It is shown that dissipationless collapses from cold initial conditions, where the total initial kinetic energy is less than 5% ofthe initial potential energy, lead to relaxed triaxial systems ery similar to real elliptical galaxies ii projected shape and density profiles. The triaxial shape is due to the of a dynamical instability that appears on systems dominated by radial orbits, while final density profile is due to violent relaxation that tends to produce a unique distribution iii space. These two phenomena erase memory of the initial prodtice a convergent evolution toward realistic systems, thus making unnecessary use o[special initial conditions (other

  20. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  1. Electric Field Effect in Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Koyama, T.

    The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.

  2. TOPICAL REVIEW: Intrinsic Josephson junctions: recent developments

    NASA Astrophysics Data System (ADS)

    Yurgens, A. A.

    2000-08-01

    Some recent developments in the fabrication of intrinsic Josephson junctions (IJJ) and their application for studying high-temperature superconductors are discussed. The major advantages of IJJ and unsolved problems are outlined. The feasibility of three-terminal devices based on the stacked IJJ is briefly evaluated.

  3. Intrinsic and Extrinsic Motivation among Collegiate Instrumentalists

    ERIC Educational Resources Information Center

    Diaz, Frank M.

    2010-01-01

    The purpose of this study was to gather and compare information on measures of intrinsic and extrinsic motivation among instrumentalists enrolled in collegiate ensembles. A survey instrument was developed to gather information concerning demographic data and responses to questions on motivational preference. Participants were undergraduate and…

  4. Advancing polymers of intrinsic microporosity by mechanochemistry

    SciTech Connect

    Zhang, Pengfei; Jiang, Xueguang; Wan, Shun; Dai, Sheng

    2015-02-20

    Herein, we report a fast (15 min) and solvent-free mechanochemical approach to construct polymers of intrinsic microporosity (PIMs) with high molecular mass and low polydispersity by solid grinding. The enhanced reaction efficiency results from the instantaneous frictional heating and continuous exposure of active sites within those solid reactants.

  5. Intrinsic novobiocin resistance in Staphylococcus saprophyticus.

    PubMed

    Vickers, Anna A; Chopra, Ian; O'Neill, Alex J

    2007-12-01

    Intrinsic novobiocin resistance in Staphylococcus saprophyticus was associated with expression of a novobiocin-resistant form of the drug target protein (GyrB). Site-directed mutagenesis established that resistance depends upon the presence of two specific amino acid residues in GyrB: a glycine at position 85 and a lysine at position 140.

  6. Electroneutral intrinsic point defects in cadmium chalcogenides

    SciTech Connect

    Kharif, Ya.L.; Kudryashov, N.I.; Strunilina, T.A.

    1987-12-01

    Low-mobility electrically neutral intrinsic point defects were observed in cadmium chalcogenides. It was shown that the concentration of these defects is proportional to the cadmium vapor pressure to the 1/3 power at a constant temperature, and a mechanism for the formation of these defects were proposed.

  7. The Intrinsic Connectome of the Rat Amygdala

    PubMed Central

    Schmitt, Oliver; Eipert, Peter; Philipp, Konstanze; Kettlitz, Richard; Fuellen, Georg; Wree, Andreas

    2012-01-01

    The connectomes of nervous systems or parts there of are becoming important subjects of study as the amount of connectivity data increases. Because most tract-tracing studies are performed on the rat, we conducted a comprehensive analysis of the amygdala connectome of this species resulting in a meta-study. The data were imported into the neuroVIISAS system, where regions of the connectome are organized in a controlled ontology and network analysis can be performed. A weighted digraph represents the bilateral intrinsic (connections of regions of the amygdala) and extrinsic (connections of regions of the amygdala to non-amygdaloid regions) connectome of the amygdala. Its structure as well as its local and global network parameters depend on the arrangement of neuronal entities in the ontology. The intrinsic amygdala connectome is a small-world and scale-free network. The anterior cortical nucleus (72 in- and out-going edges), the posterior nucleus (45), and the anterior basomedial nucleus (44) are the nuclear regions that posses most in- and outdegrees. The posterior nucleus turns out to be the most important nucleus of the intrinsic amygdala network since its Shapley rate is minimal. Within the intrinsic amygdala, regions were determined that are essential for network integrity. These regions are important for behavioral (processing of emotions and motivation) and functional (memory) performances of the amygdala as reported in other studies. PMID:23248583

  8. Visual stimuli recruit intrinsically generated cortical ensembles.

    PubMed

    Miller, Jae-eun Kang; Ayzenshtat, Inbal; Carrillo-Reid, Luis; Yuste, Rafael

    2014-09-23

    The cortical microcircuit is built with recurrent excitatory connections, and it has long been suggested that the purpose of this design is to enable intrinsically driven reverberating activity. To understand the dynamics of neocortical intrinsic activity better, we performed two-photon calcium imaging of populations of neurons from the primary visual cortex of awake mice during visual stimulation and spontaneous activity. In both conditions, cortical activity is dominated by coactive groups of neurons, forming ensembles whose activation cannot be explained by the independent firing properties of their contributing neurons, considered in isolation. Moreover, individual neurons flexibly join multiple ensembles, vastly expanding the encoding potential of the circuit. Intriguingly, the same coactive ensembles can repeat spontaneously and in response to visual stimuli, indicating that stimulus-evoked responses arise from activating these intrinsic building blocks. Although the spatial properties of stimulus-driven and spontaneous ensembles are similar, spontaneous ensembles are active at random intervals, whereas visually evoked ensembles are time-locked to stimuli. We conclude that neuronal ensembles, built by the coactivation of flexible groups of neurons, are emergent functional units of cortical activity and propose that visual stimuli recruit intrinsically generated ensembles to represent visual attributes. PMID:25201983

  9. Organisational Learning and Employees' Intrinsic Motivation

    ERIC Educational Resources Information Center

    Remedios, Richard; Boreham, Nick

    2004-01-01

    This study examined the effects of organisational learning initiatives on employee motivation. Four initiatives consistent with theories of organisational learning were a priori ranked in terms of concepts that underpin intrinsic-motivation theory. Eighteen employees in a UK petrochemical company were interviewed to ascertain their experiences of…

  10. Intrinsic Motivation, Organizational Justice, and Creativity

    ERIC Educational Resources Information Center

    Hannam, Kalli; Narayan, Anupama

    2015-01-01

    For employees to generate creative ideas that are not only original, but also useful to their company, they must interact with their workplace environment to determine organizational needs. Therefore, it is important to consider aspects of the individual as well as their environment when studying creativity. Intrinsic motivation, a predictor of…

  11. Sex Differences, Positive Feedback and Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Deci, Edward L.; And Others

    The paper presents two experiments which test the "change in feelings of competence and self-determination" proposition of cognitive evaluation theory. This proposition states that when a person receives feedback about his performance on an intrinsically motivated activity this information will affect his sense of competence and…

  12. Effects of Reinforcemnt Programs on Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Sushinsky, Leonard W.

    Attribution Theory has led to predictions that the use of material reward may impair intrinsic motivation in the rewarded activity (decreased play effects). A review of the pertinent literature reveals, however, (a) that attribution research has failed to reliably demonstrate that decreased play effects occur in minimal-trial studies (b) that for…

  13. Simple intrinsic defects in InAs :

    SciTech Connect

    Schultz, Peter Andrew

    2013-03-01

    This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.

  14. Within-Year Changes in Children's Intrinsic and Extrinsic Motivational Orientations: Contextual Predictors and Academic Outcomes

    ERIC Educational Resources Information Center

    Corpus, Jennifer Henderlong; McClintic-Gilbert, Megan S.; Hayenga, Amynta O.

    2009-01-01

    The present study was designed to investigate the nature, timing, and correlates of motivational change among a large sample (N = 1051) of third- through eighth-grade students. Analyses of within-year changes in students' motivational orientations revealed that both intrinsic and extrinsic motivations decreased from fall to spring, with declines…

  15. COMPUTING INTRINSIC LY{alpha} FLUXES OF F5 V TO M5 V STARS

    SciTech Connect

    Linsky, Jeffrey L.; France, Kevin; Ayres, Tom

    2013-04-01

    The Ly{alpha} emission line dominates the far-ultraviolet spectra of late-type stars and is a major source for photodissociation of important molecules including H{sub 2}O, CH{sub 4}, and CO{sub 2} in exoplanet atmospheres. The incident flux in this line illuminating an exoplanet's atmosphere cannot be measured directly as neutral hydrogen in the interstellar medium (ISM) attenuates most of the flux reaching the Earth. Reconstruction of the intrinsic Ly{alpha} line has been accomplished for a limited number of nearby stars, but is not feasible for distant or faint host stars. We identify correlations connecting the intrinsic Ly{alpha} flux with the flux in other emission lines formed in the stellar chromosphere, and find that these correlations depend only gradually on the flux in the other lines. These correlations, which are based on Hubble Space Telescope spectra, reconstructed Ly{alpha} line fluxes, and irradiance spectra of the quiet and active Sun, are required for photochemical models of exoplanet atmospheres when intrinsic Ly{alpha} fluxes are not available. We find a tight correlation of the intrinsic Ly{alpha} flux with stellar X-ray flux for F5 V to K5 V stars, but much larger dispersion for M stars. We also show that knowledge of the stellar effective temperature and rotation rate can provide reasonably accurate estimates of the Ly{alpha} flux for G and K stars, and less accurate estimates for cooler stars.

  16. Multilevel methods for elliptic problems on unstructured grids

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Go, Susie; Zikatanov, Ludmil

    1997-01-01

    Multilevel methods on unstructured grids for elliptic problems are reviewed. The advantages of these techniques are the flexible approximation of the boundaries of complicated physical domains and the ability to adapt the grid to the resolution of fine scaled structures. Multilevel methods, which include multigrid methods and domain decomposition methods, depend on the correct splitting of appropriate finite element spaces. The standard splittings used in the structured grid case cannot be directly extended to unstructured grids due to their requirement for a hierarchical grid structure. Issues related to the application of multilevel methods to unstructured grids are discussed, including how the coarse spaces and transfer operators are defined and how different types of boundary conditions are treated. An obvious way to generate a coarse mesh is to regrid the physical domain several times. Several alternatives are proposed and discussed: node nested coarse spaces, agglomerated coarse spaces and algebraically generated coarse spaces.

  17. Optimal least-squares finite element method for elliptic problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1991-01-01

    An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.

  18. Magnetic flux studies in horizontally cooled elliptical superconducting cavities

    SciTech Connect

    Martinello, M. Checchin, M.; Grassellino, A. Crawford, A. C.; Melnychuk, O.; Romanenko, A.; Sergatskov, D. A.

    2015-07-28

    Previous studies on magnetic flux expulsion as a function of cooldown procedures for elliptical superconducting radio frequency (SRF) niobium cavities showed that when the cavity beam axis is placed parallel to the helium cooling flow and sufficiently large thermal gradients are achieved, all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper, we investigate flux trapping for the case of resonators positioned perpendicularly to the helium cooling flow, which is more representative of how SRF cavities are cooled in accelerators and for different directions of the applied magnetic field surrounding the resonator. We show that different field components have a different impact on the surface resistance, and several parameters have to be considered to fully understand the flux dynamics. A newly discovered phenomenon of concentration of flux lines at the cavity top leading to temperature rise at the cavity equator is presented.

  19. Elliptic CY3folds and non-perturbative modular transformation

    NASA Astrophysics Data System (ADS)

    Iqbal, Amer; Shabbir, Khurram

    2016-03-01

    We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections.

  20. Dust and ionized gas in active radio elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Forbes, D. A.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors present broad and narrow bandwidth imaging of three southern elliptical galaxies which have flat-spectrum active radio cores (NGC 1052, IC 1459 and NGC 6958). All three contain dust and extended low excitation optical line emission, particularly extensive in the case of NGC 1052 which has a large H alpha + (NII) luminosity. Both NGC 1052 and IC 1459 have a spiral morphology in emission-line images. All three display independent strong evidence that a merger or infall event has recently occurred, i.e., extensive and infalling HI gas in NGC 1052, a counter-rotating core in IC 1459 and Malin-Carter shells in NGC 6958. This infall event is the most likely origin for the emission-line gas and dust, and the authors are currently investigating possible excitation mechanisms (Sparks et al. 1990).