Science.gov

Sample records for intrinsic phase response

  1. Intrinsic response of polymer liquid crystals in photochemical phase transition

    SciTech Connect

    Ikeda, Tomiki; Sasaki, Takeo; Kim, Haengboo )

    1991-01-24

    Time-resolved measurements were performed on the photochemically induced isothermal phase transition of polymer liquid crystals (PLC) with mesogenic side chains of phenyl benzoate (PAPB3) and cyanobiphenyl (PACB3) under conditions wherein the photochemical reaction of the doped photoresponsive molecule (4-butyl-4-{prime}-methoxyazobenzene, BMAB) was completed within {approximately} 10 ns, and the subsequent phase transition of the matrix PLC from nematic (N) to isotropic (I) state was followed by time-resolved measurements of the birefringence of the system. Formation of a sufficient amount of the cis isomer of BMAB with a single pulse of a laser lowered the N-I phase transition temperature of the mixture, inducing the N-I phase transition of PLCs isothermally in a time range of {approximately} 200 ms. This time range is comparable to that of low molecular weight liquid crystals, indicating that suppression in mobility of mesogens in PLCs does not affect significantly the thermodynamically controlled process.

  2. The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons.

    PubMed

    Narayanan, Rishikesh; Johnston, Daniel

    2008-05-28

    The presence of phenomenological inductances in neuronal membrane has been known for more than one-half a century. Despite this, the dramatic contributions of such inductive elements to the amplitude and, especially, phase of neuronal impedance, and their roles in modulating temporal dynamics of neuronal responses have surprisingly remained unexplored. In this study, we demonstrate that the h channel contributes a location-dependent and plastic phenomenological inductive component to the input impedance of CA1 pyramidal neurons. Specifically, we show that the h channels introduce an apparent negative delay in the local voltage response of these neurons with respect to the injected current within the theta frequency range. The frequency range and the extent of this lead expand with increases in h current either through hyperpolarization, or with increasing distance of dendritic location from the soma. We also demonstrate that a spatially widespread increase in this inductive phase component accompanies long-term potentiation. Finally, using impedance analysis, we show that both location and activity dependence of intrinsic phase response are attributable not to changes in a capacitive or a leak component, but to changes in h-channel properties. Our results suggest that certain voltage-gated ion channels can differentially regulate internal time delays within neurons, thus providing them with an independent control mechanism in temporal coding of neuronal information. Our analyses and results also establish impedance as a powerful measure of intrinsic dynamics and excitability, given that it quantifies temporal relationships among signals and excitability as functions of input frequency.

  3. The h channel mediates location-dependence and plasticity of intrinsic phase response in rat hippocampal neurons

    PubMed Central

    Narayanan, Rishikesh; Johnston, Daniel

    2008-01-01

    The presence of phenomenological inductances in neuronal membrane has been known for more than half a century. In spite of this, the dramatic contributions of such inductive elements to the amplitude and, especially, phase of neuronal impedance, and their roles in modulating temporal dynamics of neuronal responses have surprisingly remained unexplored. In this study, we demonstrate that the h channel contributes a location-dependent and plastic phenomenological inductive component to the input impedance of CA1 pyramidal neurons. Specifically, we show that the h channels introduce an apparent negative delay in the local voltage response of these neurons with respect to the injected current within the theta frequency range. The frequency-range and the extent of this lead expand with increases in h current either through hyperpolarization, or with increasing distance of dendritic location from the soma. We also demonstrate that a spatially widespread increase in this inductive phase component accompanies long-term potentiation. Finally, employing impedance analysis, we show that both location- and activity-dependence of intrinsic phase response are not due to changes in a capacitive or a leak component, but due to changes in h channel properties. Our results suggest that certain voltage-gated ion channels can differentially regulate internal time delays within neurons, thus providing them with an independent control mechanism in temporal coding of neuronal information. Our analyses and results also establish impedance as a powerful measure of intrinsic dynamics and excitability, given that it quantifies excitability and temporal relationships among signals as functions of input frequency. PMID:18509046

  4. Adaptive Responses Limited by Intrinsic Noise.

    PubMed

    Shankar, Prabhat; Nishikawa, Masatoshi; Shibata, Tatsuo

    2015-01-01

    Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems.

  5. Adaptive Responses Limited by Intrinsic Noise

    PubMed Central

    Shankar, Prabhat; Nishikawa, Masatoshi; Shibata, Tatsuo

    2015-01-01

    Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems. PMID:26305221

  6. Active Nematics Are Intrinsically Phase Separated

    NASA Astrophysics Data System (ADS)

    Mishra, Shradha; Ramaswamy, Sriram

    2006-09-01

    Two-dimensional nonequilibrium nematic steady states, as found in agitated granular-rod monolayers or films of orientable amoeboid cells, were predicted [Europhys. Lett. 62, 196 (2003)EULEEJ0295-507510.1209/epl/i2003-00346-7] to have giant number fluctuations, with the standard deviation proportional to the mean. We show numerically that the steady state of such systems is macroscopically phase separated, yet dominated by fluctuations, as in the Das-Barma model [Phys. Rev. Lett. 85, 1602 (2000)PRLTAO0031-900710.1103/PhysRevLett.85.1602]. We suggest experimental tests of our findings in granular and living-cell systems.

  7. Intrinsic antiferromagnetic/insulating phase at manganite surfaces and interfaces.

    PubMed

    Valencia, S; Peña, L; Konstantinovic, Z; Balcells, Ll; Galceran, R; Schmitz, D; Sandiumenge, F; Casanove, M; Martínez, B

    2014-04-23

    In this work we investigate interfacial effects in bilayer systems integrated by La(2/3)Sr(1/3)MnO(3) (LSMO) thin films and different capping layers by means of surface-sensitive synchrotron radiation techniques and transport measurements. Our data reveal a complex scenario with a capping-dependent variation of the Mn oxidation state by the interface. However, irrespective of the capping material, an antiferromagnetic/insulating phase is also detected at the interface, which is likely to originate from a preferential occupancy of Mn 3d 3z(2)-r(2) e(g) orbitals. This phase, which extends approximately to two unit cells, is also observed in uncapped LSMO reference samples, thus pointing to an intrinsic interfacial phase separation phenomenon, probably promoted by the structural disruption and inversion symmetry breaking at the LSMO free surface/interface. These experimental observations strongly suggest that the structural disruption, with its intrinsic inversion symmetry breaking at the LSMO interfaces, plays a major role in the observed depressed magnetotransport properties in manganite-based magnetic tunneling junctions and explains the origin of the so-called dead layer.

  8. Intrinsic response of crystals to pure dilatation

    SciTech Connect

    Wang, Jinghan; Yip, S.; Phillpot, S.; Wolf, D.

    1991-12-31

    The response of an f.c.c. lattice with Lennard-Jones interaction under symmetric lattice extension has been studied by Monte Carlo simulation at several temperatures. The critical strain at which the crystal undergoes a structural change is found to be well predicted by the mechanical stability limit expressed in terms of either the elastic constants or the bulk modulus. At low temperature (reduced temperature T = 0.125), lattice decohesion is observed in the form of cleavage fracture, whereas at higher temperature (T = 0.3) the strained system deforms by cavitation with some degree of local plasticity. At still higher temperature (T = 0.5) the lattice undergoes homogeneous disordering with all the attendant characteristics of melting.

  9. Intrinsic response of crystals to pure dilatation

    SciTech Connect

    Wang, Jinghan; Yip, S. . Dept. of Nuclear Engineering); Phillpot, S.; Wolf, D. )

    1991-01-01

    The response of an f.c.c. lattice with Lennard-Jones interaction under symmetric lattice extension has been studied by Monte Carlo simulation at several temperatures. The critical strain at which the crystal undergoes a structural change is found to be well predicted by the mechanical stability limit expressed in terms of either the elastic constants or the bulk modulus. At low temperature (reduced temperature T = 0.125), lattice decohesion is observed in the form of cleavage fracture, whereas at higher temperature (T = 0.3) the strained system deforms by cavitation with some degree of local plasticity. At still higher temperature (T = 0.5) the lattice undergoes homogeneous disordering with all the attendant characteristics of melting.

  10. The intrinsic (gas-phase) acidities of bridgehead alcohols

    NASA Astrophysics Data System (ADS)

    Herrero, Rebeca; Dávalos, Juan Z.; Abboud, José-Luis M.; Alkorta, I.; Koppel, I.; Koppel, I. A.; Sonoda, T.; Mishima, M.

    2007-11-01

    The gas-phase acidities of 1-adamantanol and perfluoro1-adamantanol were determined by means of Fourier transform ion cyclotron resonance spectrometry (FT-ICR). The acidity of perfluoro1-adamantanol seems to be the highest ever reported for an alcohol. A computational study of these species and their anions at both the MP2/6-311 + G(d,p) and B3LYP/6-311 + G(d,p) levels was performed. Also studied were the tertiary alcohols (including their perfluorinated forms) derived from norbornane, bicyclo[2.2E2]octane and cubane. It was found that: (i) the intrinsic acidity of non-fluorinated bridgehead alcohols increases with the strain of the hydrocarbon framework and, (ii) perfluorination of these compounds strongly increases their acidity and, likely, significantly modifies their internal strain.

  11. Intrinsic fluctuations and driven response of insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Puckett, James G.; Dufresne, Eric R.; Ouellette, Nicholas T.

    2015-03-01

    Much of our understanding of collective behaviour in social animals comes from passive observations of animal groups. To understand the group dynamics fully, however, we must also characterize the response of animal aggregations to disturbances. Using three-dimensional particle tracking, we study both the intrinsic fluctuations of laboratory swarms of the non-biting midge Chironomus riparius and the response of the swarms to controlled external perturbations: the amplitude-modulated sound of male midge wingbeats. Although these perturbations have an insignificant effect on the behavior of individuals, we find that they can have a strong impact on the collective movement. Intriguingly, the response of the swarm is similar reminiscent to of that of a passive equilibrium system to an external driving force, with microscopic fluctuations underlying combining to produce a macroscopic linear response over a wide range of driving frequencies.

  12. Intrinsic Fluctuations and Driven Response of Insect Swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Puckett, James G.; Dufresne, Eric R.; Ouellette, Nicholas T.

    2015-09-01

    Animals of all sizes form groups, as acting together can convey advantages over acting alone; thus, collective animal behavior has been identified as a promising template for designing engineered systems. However, models and observations have focused predominantly on characterizing the overall group morphology, and often focus on highly ordered groups such as bird flocks. We instead study a disorganized aggregation (an insect mating swarm), and compare its natural fluctuations with the group-level response to an external stimulus. We quantify the swarm's frequency-dependent linear response and its spectrum of intrinsic fluctuations, and show that the ratio of these two quantities has a simple scaling with frequency. Our results provide a new way of comparing models of collective behavior with experimental data.

  13. Critical Evaluation of Ayurvedic Plants for Stimulating Intrinsic Antioxidant Response

    PubMed Central

    Shukla, Sunil Dutt; Bhatnagar, Maheep; Khurana, Sukant

    2012-01-01

    Oxidative damage caused by free radicals plays an important role in the causation and progression of many diseases, including aging. Free-radical damage is countered by many mechanisms, including both active antioxidant enzymatic activity in our body and passive antioxidants. Antioxidant response of our body can accommodate increased oxidative damage in diseased states to a level but beyond that level, additional antioxidants are required to combat the increased stress. Apart from the regular dietary sources of antioxidants, many traditional herbal medicines demonstrate a potential to boost antioxidant activity. Rasayana chikitsa that deals with rejuvenation and revitalization is a branch of the Indian traditional medical system of ayurveda. We review some select herbs described in rasayana chikitsa that have been assessed by modern means for stimulating intrinsic antioxidant responses in humans. A critical evaluation of rasayana chikitsa will likely provide urgently needed, actual stimulants of our physiological antioxidant responses and not just more passive antioxidants to add to an already large catalog. PMID:22855669

  14. Polymerase chain reaction with phase change as intrinsic thermal control

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei

    2013-04-01

    This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.

  15. Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles.

    PubMed

    Mangeri, John; Espinal, Yomery; Jokisaari, Andrea; Pamir Alpay, S; Nakhmanson, Serge; Heinonen, Olle

    2017-01-26

    Composite materials comprised of ferroelectric nanoparticles in a dielectric matrix are being actively investigated for a variety of functional properties attractive for a wide range of novel electronic and energy harvesting devices. However, the dependence of these functionalities on shapes, sizes, orientation and mutual arrangement of ferroelectric particles is currently not fully understood. In this study, we utilize a time-dependent Ginzburg-Landau approach combined with coupled-physics finite-element-method based simulations to elucidate the behavior of polarization in isolated spherical PbTiO3 or BaTiO3 nanoparticles embedded in a dielectric medium, including air. The equilibrium polarization topology is strongly affected by particle diameter, as well as the choice of inclusion and matrix materials, with monodomain, vortex-like and multidomain patterns emerging for various combinations of size and materials parameters. This leads to radically different polarization vs. electric field responses, resulting in highly tunable size-dependent dielectric properties that should be possible to observe experimentally. Our calculations show that there is a critical particle size below which ferroelectricity vanishes. For the PbTiO3 particle, this size is 2 and 3.4 nm, respectively, for high- and low-permittivity media. For the BaTiO3 particle, it is ∼3.6 nm regardless of the medium dielectric strength.

  16. Plastic Change along the Intact Crossed Pathway in Acute Phase of Cerebral Ischemia Revealed by Optical Intrinsic Signal Imaging

    PubMed Central

    Guo, Xiaoli; He, Yongzhi; Lu, Hongyang; Li, Yao; Su, Xin; Jiang, Ying; Tong, Shanbao

    2016-01-01

    The intact crossed pathway via which the contralesional hemisphere responds to the ipsilesional somatosensory input has shown to be affected by unilateral stroke. The aim of this study was to investigate the plasticity of the intact crossed pathway in response to different intensities of stimulation in a rodent photothrombotic stroke model. Using optical intrinsic signal imaging, an overall increase of the contralesional cortical response was observed in the acute phase (≤48 hours) after stroke. In particular, the contralesional hyperactivation is more prominent under weak stimulations, while a strong stimulation would even elicit a depressed response. The results suggest a distinct stimulation-response pattern along the intact crossed pathway after stroke. We speculate that the contralesional hyperactivation under weak stimulations was due to the reorganization for compensatory response to the weak ipsilateral somatosensory input. PMID:27144032

  17. Relations of perception of responsibility to intrinsic motivation and physical activity among Korean middle school students.

    PubMed

    Lee, Okseon; Kim, Younhee; Kim, Oung Jun

    2012-12-01

    To validate the Personal and Social Responsibility Questionnaire, the relations between perceived responsibility and intrinsic motivation were examined among Korean middle school students. The relations of change in stages of physical activity and students' perceived responsibility were also examined. Participants were 357 middle school students (160 boys, 197 girls) from three schools in the Seoul metropolitan area. Exploratory factor analysis supported a three-factor structure with effort and self-direction merged into one factor and the responsibilities of respect and caring for others constituted separate factors. Pearson correlations among factors showed perceptions of personal responsibility were associated with more intrinsic motivation toward physical education and a higher stage of physical activity. A moderate or low association between perceived social responsibility and intrinsic motivation implied a need to develop strategies for Korean students to use social responsibility for promoting physical activity.

  18. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    PubMed Central

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-01-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  19. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers.

    PubMed

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-11-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level.

  20. Slow Conductances Could Underlie Intrinsic Phase-Maintaining Properties of Isolated Lobster (Panulirus interruptus) Pyloric Neurons

    PubMed Central

    Hooper, Scott L.; Buchman, Einat; Weaver, Adam L.; Thuma, Jeffrey B.; Hobbs, Kevin H.

    2009-01-01

    The rhythmic pyloric network of the lobster stomatogastric system approximately maintains phase (that is, the burst durations and durations between the bursts of its neurons change proportionally) when network cycle period is altered by current injection into the network pacemaker (Hooper, 1997a,b). When isolated from the network and driven by rhythmic hyperpolarizing current pulses, the delay to firing after each pulse of at least one network neuron type (Pyloric, PY) varies in a phase-maintaining manner when cycle period is varied (Hooper, 1998). These variations require PY neurons to have intrinsic mechanisms that respond to changes in neuron activity on time scales at least as long as two seconds. Slowly activating and deactivating conductances could provide such a mechanism. We tested this possibility by building models containing various slow conductances. This work showed that such conductances could indeed support intrinsic phase-maintenance and we show here results for one such conductance, a slow potassium conductance. These conductances supported phase maintenance because their mean activation level changed, hence altering neuron post-inhibition firing delay, when the rhythmic input to the neuron changed. Switching the sign of the dependence of slow conductance activation and deactivation on membrane potential resulted in neuron delays switching to change in an anti-phase maintaining manner. These data suggest that slow conductances or similar slow processes such as changes in intracellular Ca2+ concentration could underlie phase maintenance in pyloric network neurons. PMID:19211890

  1. Force responses of strongly intrinsically curved DNA helices deviate from worm-like chain predictions

    NASA Astrophysics Data System (ADS)

    Tompitak, M.; Schiessel, H.; Barkema, G. T.

    2016-12-01

    DNA sequences with nontrivial intrinsic curvature are of interest for a range of biological and artificial DNA systems. We design both intrinsically strongly curved and intrinsically straight sequences. We find that such sequences with opposing curvatures can be designed even under constraints that would naively lead one to assume that those sequences would be highly similar in their mechanical properties. We then characterize the force response of those sequences and find that their force-extension curves deviate significantly in the low-force regime, and that the standard worm-like chain description is inadequate to describe the low-force response of the strongly bent sequences. We propose a modified description that takes the intrinsic curvature into account, making the DNA act, in the low-force regime, like a nanoscale helical spring. We find strongly improved agreement between the model and the simulated force-extension curves.

  2. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.

    PubMed

    Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  3. Effect of intrinsic motivation on affective responses during and after exercise: latent curve model analysis.

    PubMed

    Shin, Myoungjin; Kim, Inwoo; Kwon, Sungho

    2014-12-01

    Understanding the relationship between affect and exercise is helpful in predicting human behavior with respect to exercise participation. The goals of the present study were to investigate individual differences in affective response during and after exercise and to identify the role of intrinsic motivation in affective changes. 30 active male college students (M age = 21.4 yr.) who regularly participated in sports activities volunteered to answer a questionnaire measuring intrinsic motivation toward running activities and performed a 20-min. straight running protocol at heavy intensity (about 70% of VO2max). Participants' affective responses were measured every 5 min. from the beginning of the run to 10 min. after completing the run. Latent curve model analysis indicated that individuals experienced different changes in affective state during exercise, moderated by intrinsic motivation. Higher intrinsic motivation was associated with more positive affect during exercise. There were no significant individual differences in the positive tendency of the participants' affective responses after exercise over time. Intrinsic motivation seems to facilitate positive feelings during exercise and encourages participation in exercise.

  4. Diminished neural responses predict enhanced intrinsic motivation and sensitivity to external incentive.

    PubMed

    Marsden, Karen E; Ma, Wei Ji; Deci, Edward L; Ryan, Richard M; Chiu, Pearl H

    2015-06-01

    The duration and quality of human performance depend on both intrinsic motivation and external incentives. However, little is known about the neuroscientific basis of this interplay between internal and external motivators. Here, we used functional magnetic resonance imaging to examine the neural substrates of intrinsic motivation, operationalized as the free-choice time spent on a task when this was not required, and tested the neural and behavioral effects of external reward on intrinsic motivation. We found that increased duration of free-choice time was predicted by generally diminished neural responses in regions associated with cognitive and affective regulation. By comparison, the possibility of additional reward improved task accuracy, and specifically increased neural and behavioral responses following errors. Those individuals with the smallest neural responses associated with intrinsic motivation exhibited the greatest error-related neural enhancement under the external contingency of possible reward. Together, these data suggest that human performance is guided by a "tonic" and "phasic" relationship between the neural substrates of intrinsic motivation (tonic) and the impact of external incentives (phasic).

  5. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Rimmer, D. W.; Czeisler, C. A.

    2001-01-01

    The biological basis of preferences for morning or evening activity patterns ("early birds" and "night owls") has been hypothesized but has remained elusive. The authors reported that, compared with evening types, the circadian pacemaker of morning types was entrained to an earlier hour with respect to both clock time and wake time. The present study explores a chronobiological mechanism by which the biological clock of morning types may be set to an earlier hour. Intrinsic period, a fundamental property of the circadian system, was measured in a month-long inpatient study. A subset of participants also had their circadian phase assessed. Participants completed a morningness-eveningness questionnaire before study. Circadian period was correlated with morningness-eveningness, circadian phase, and wake time, demonstrating that a fundamental property of the circadian pacemaker is correlated with the behavioral trait of morningness-eveningness.

  6. Extrinsic and Intrinsic Responses to Environmental Change: Insights from Terrestrial Paleoecological Archives

    NASA Astrophysics Data System (ADS)

    Seddon, A. W. R.; Mackay, A. W.

    2015-12-01

    Current understanding of ecological behaviour indicates that systems can experience sudden and abrupt changes in state, driven either by a large external change in environmental conditions (extrinsically forced), or the result of a set local feedbacks and site-specific interactions (intrinsically mediated responses). Responses mediated by intrinsic processes are notoriously diffi- cult to predict, they can occur as slow environmental variables gradually erode the resilience of the system eventually resulting in threshold transitions between alternative stable states. Finding ways to identify, model and predict such complex ecosystem behavior has been identified as a priority research challenge for both ecology and paleoecology. The paleoecological record can play a role in understanding the processes behind abrupt ecological change because it enables the reconstruction of processes occurring over decadal-centennial timescales or longer. Therefore, paleoecological data can be used to identify the existence of ecological thresholds and to investigate the environmental processes that can lead to loss of resilience and abrupt transitions between alternate states. In addition, incidences of abrupt vegetation changes in the past can serve as palaeoecological model systems; analogues of abrupt dynamics which can be used to test theories surrounding ecological responses to climate change. Here, I present examples from a range of terrestrial ecosystems (Holocene environmental changes from a coastal lagoon in the Galapagos Islands; Northern European vegetation changes since the last deglaciation; the North American hemlock decline) demonstrating evidence of abrupt ecosystem change. For each system I present a set of statistical techniques tailored to distin- guish between extrinsic versus intrinsically mediated ecological responses. Examples are provided from both single sites (i.e. landscape scale) and multiple sites (regional-continental scale). These techniques provide a

  7. Complete Firing-Rate Response of Neurons with Complex Intrinsic Dynamics

    PubMed Central

    Puelma Touzel, Maximilian; Wolf, Fred

    2015-01-01

    The response of a neuronal population over a space of inputs depends on the intrinsic properties of its constituent neurons. Two main modes of single neuron dynamics–integration and resonance–have been distinguished. While resonator cell types exist in a variety of brain areas, few models incorporate this feature and fewer have investigated its effects. To understand better how a resonator’s frequency preference emerges from its intrinsic dynamics and contributes to its local area’s population firing rate dynamics, we analyze the dynamic gain of an analytically solvable two-degree of freedom neuron model. In the Fokker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice approach lifts the resetting of the voltage after a spike. This allows us to derive a complete expression for the dynamic gain of a resonator neuron model in terms of a cascade of filters on the input. We find six distinct response types and use them to fully characterize the routes to resonance across all values of the relevant timescales. We find that resonance arises primarily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the location of the resonant peak. We determine the parameter regions for the existence of an intrinsic frequency and for subthreshold and spiking resonance, finding all possible intersections of the three. The expressions and analysis presented here provide an account of how intrinsic neuron dynamics shape dynamic population response properties and can facilitate the construction of an exact theory of correlations and stability of population activity in networks containing populations of resonator neurons. PMID:26720924

  8. Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase

    NASA Astrophysics Data System (ADS)

    Zhang, S. X.; Kundaliya, D. C.; Yu, W.; Dhar, S.; Young, S. Y.; Salamanca-Riba, L. G.; Ogale, S. B.; Vispute, R. D.; Venkatesan, T.

    2007-07-01

    We report on the structural, electrical, and optical properties of 5% niobium doped TiO2 thin films grown on various substrates by pulsed laser deposition. The epitaxial anatase Nb:TiO2 film on LaAlO3 is shown to be an intrinsic transparent metal and its metallic property arises from Nb substitution into Ti site as evidenced by the Rutherford backscattering channeling result. In contrast, the rutile Nb:TiO2 thin films show insulating behaviors with 2-3 orders higher room temperature electrical resistivity and ˜30 times lower mobility. A blueshift in the optical absorption edge is observed in both phases, though of differing magnitude.

  9. Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; Hughes, Chris W.; Blundell, Jeffrey R.

    2015-01-01

    use ensemble runs of a three layer, quasi-geostrophic idealized Southern Ocean model to explore the roles of forced and intrinsic variability in response to a linear increase of wind stress imposed over a 30 year period. We find no increase of eastward circumpolar volume transport in response to the increased wind stress. A large part of the resulting time series can be explained by a response in which the eddy kinetic energy is linearly proportional to the wind stress with a possible time lag, but no statistically significant lag is found. However, this simple relationship is not the whole story: several intrinsic time scales also influence the response. We find an e-folding time scale for growth of small perturbations of 1-2 weeks. The energy budget for intrinsic variability at periods shorter than a year is dominated by exchange between kinetic and potential energy. At longer time scales, we find an intrinsic mode with period in the region of 15 years, which is dominated by changes in potential energy and frictional dissipation in a manner consistent with that seen by Hogg and Blundell (2006). A similar mode influences the response to changing wind stress. This influence, robust to perturbations, is different from the supposed linear relationship between wind stress and eddy kinetic energy, and persists for 5-10 years in this model, suggestive of a forced oscillatory mode with period of around 15 years. If present in the real ocean, such a mode would imply a degree of predictability of Southern Ocean dynamics on multiyear time scales.

  10. HSF transcription factor family, heat shock response, and protein intrinsic disorder.

    PubMed

    Westerheide, Sandy D; Raynes, Rachel; Powell, Chase; Xue, Bin; Uversky, Vladimir N

    2012-02-01

    Intrinsically disordered proteins are highly abundant in all kingdoms of life, and several protein functional classes, such as transcription factors, transcriptional regulators, hub and scaffold proteins, signaling proteins, and chaperones are especially enriched in intrinsic disorder. One of the unique cellular reactions to protein damaging stress is the so-called heat shock response that results in the upregulation of heat shock proteins including molecular chaperones. This molecular protective mechanism is conserved from prokaryotes to eukaryotes and allows an organism to respond to various proteotoxic stressors, such as heat shock, oxidative stress, exposure to heavy metals, and drugs. The heat shock response- related proteins can be expressed during normal conditions (e.g., during the cell growth and development) or can be induced by various pathological conditions, such as infection, inflammation, and protein conformation diseases. The initiation of the heat shock response is manifested by the activation of the heat shock transcription factors HSF 1, part of a family of related HSF transcription factors. This review analyzes the abundance and functional roles of intrinsic disorder in various heat shock transcription factors and clearly shows that the heat shock response requires HSF flexibility to be more efficient.

  11. Intrinsic variability in the human response to pain is assembled from multiple, dynamic brain processes.

    PubMed

    Mayhew, Stephen D; Hylands-White, Nicholas; Porcaro, Camillo; Derbyshire, Stuart W G; Bagshaw, Andrew P

    2013-07-15

    The stimulus-evoked response is the principle measure used to elucidate the timing and spatial location of human brain activity. Brain and behavioural responses to pain are influenced by multiple intrinsic and extrinsic factors and display considerable, natural trial-by-trial variability. However, because the neuronal sources of this variability are poorly understood the functional information it contains is under-exploited for understanding the relationship between brain function and behaviour. We recorded simultaneous EEG-fMRI during rest and noxious thermal stimulation to characterise the relationship between natural fluctuations in behavioural pain-ratings, the spatiotemporal dynamics of brain network responses and intrinsic connectivity. We demonstrate that fMRI response variability in the pain network is: dependent upon its resting-state functional connectivity; modulated by behaviour; and correlated with EEG evoked-potential amplitude. The pre-stimulus default-mode network (DMN) fMRI signal predicts the subsequent magnitude of pain ratings, evoked-potentials and pain network BOLD responses. Additionally, the power of the ongoing EEG alpha oscillation, an index of cortical excitability, modulates the DMN fMRI response to pain. The complex interaction between alpha-power, DMN activity and both the behavioural report of pain and the brain's response to pain demonstrates the neurobiological significance of trial-by-trial variability. Furthermore, we show that multiple, interconnected factors contribute to both the brain's response to stimulation and the psychophysiological emergence of the subjective experience of pain.

  12. Switching from Negative to Positive Photoconductivity toward Intrinsic Photoelectric Response in InAs Nanowire.

    PubMed

    Han, Yuxiang; Fu, Mengqi; Tang, Zhiqiang; Zheng, Xiao; Ji, Xianghai; Wang, Xiaoye; Lin, Weijian; Yang, Tao; Chen, Qing

    2017-01-25

    Negative photoconductivity (NPC) and positive photoconductivity (PPC) are observed in the same individual InAs nanowires grown by metal-organic chemical vapor deposition. NPC displays under weak light illumination due to photoexcitation scattering centers charged with hot carrier in the native oxide layer. PPC is observed under high light intensity. Through removing the native oxide layer and passivating the nanowire with HfO2, we eliminate the NPC effect and realize intrinsic photoelectric response in InAs nanowire.

  13. Characterizing and modeling the intrinsic light response of rat ganglion-cell photoreceptors.

    PubMed

    Walch, Olivia J; Zhang, L Samantha; Reifler, Aaron N; Dolikian, Michael E; Forger, Daniel B; Wong, Kwoon Y

    2015-11-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate both image-forming vision and non-image-forming visual responses such as pupillary constriction and circadian photoentrainment. Five types of ipRGCs, named M1-M5, have been discovered in rodents. To further investigate their photoresponse properties, we made multielectrode array spike recordings from rat ipRGCs, classified them into M1, M2/M4, and M3/M5 clusters, and measured their intrinsic, melanopsin-based responses to single and flickering light pulses. Results showed that ipRGC spiking can track flickers up to ∼0.2 Hz in frequency and that flicker intervals between 5 and 14 s evoke the most spikes. We also learned that melanopsin's integration time is intensity and cluster dependent. Using these data, we constructed a mathematical model for each cluster's intrinsic photoresponse. We found that the data for the M1 cluster are best fit by a model that assumes a large photoresponse, causing the cell to enter depolarization block. Our models also led us to hypothesize that the M2/M4 and M3/M5 clusters experience comparable photoexcitation but that the M3/M5 cascade decays significantly faster than the M2/M4 cascade, resulting in different response waveforms between these clusters. These mathematical models will help predict how each ipRGC cluster might respond to stimuli of any waveform and could inform the invention of lighting technologies that promote health through melanopsin stimulation.

  14. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    SciTech Connect

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  15. Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons.

    PubMed

    Rathour, Rahul Kumar; Narayanan, Rishikesh

    2012-11-15

    Voltage-gated ion channels play a critical role in regulating neuronal intrinsic response dynamics (IRD). Here, we computationally analysed the roles of the two inactivating subthreshold conductances (A and T), individually and in various combinations with the non-inactivating h conductance, in regulating several physiological IRD measurements in the theta frequency range. We found that the independent presence of a T conductance, unlike that of an h conductance, was unable to sustain an inductive phase lead in the theta frequency range, despite its ability to mediate theta frequency resonance. The A conductance, on the other hand, when expressed independently, acted in a manner similar to a leak conductance with reference to most IRD measurements. Next, analysing the impact of pair-wise coexpression of these channels, we found that the coexpression of the h and T conductances augmented the range of parameters over which they sustained resonance and inductive phase lead. Additionally, coexpression of the A conductance with the h or the T conductance elicited changes in IRD measurements that were similar to those obtained with the expression of a leak conductance with a resonating conductance. Finally, to understand the global sensitivity of IRD measurements to all parameters associated with models expressing all three channels, we generated 100,000 neuronal models, each built with a unique set of parametric values. We categorized valid models among these by matching their IRD measurements with experimental counterparts, and found that functionally similar models could be achieved even when underlying parameters displayed tremendous variability and exhibited weak pair-wise correlations. Our results suggest that the three prominent subthreshold conductances contribute differently to intrinsic excitability and to phase coding. We postulate that the differential expression and activity-dependent plasticity of these conductances contribute to robustness of subthreshold

  16. Iron, Glucose and Intrinsic Factors Alter Sphingolipid Composition as Yeast Cells Enter Stationary Phase

    PubMed Central

    Lester, Robert L.; Withers, Bradley R.; Schultz, Megan A.; Dickson, Robert C.

    2013-01-01

    Survival of Saccharomyces cerevisiae cells, like most microorganisms, requires switching from a rapidly dividing to a non-dividing or stationary state. To further understand how cells navigate this switch, we examined sphingolipids since they are key structural elements of membranes and also regulate signaling pathways vital for survival. During and after the switch to a non-dividing state there is a large increase in total free and sphingolipid-bound long chain-bases and an even larger increase in free and bound C20-long-chain bases, which are nearly undetectable in dividing cells. These changes are due to intrinsic factors including Orm1 and Orm2, ceramide synthase, Lcb4 kinase and the Tsc3 subunit of serine palmitoyltransferase as well as extrinsic factors including glucose and iron. Lowering the concentration of glucose, a form of calorie restriction, decreases the level of LCBs, which is consistent with the idea that reducing the level of some sphingolipids enhances lifespan. In contrast, iron deprivation increases LCB levels and decreases long term survival; however, these phenomena may not be related because iron deprivation disrupts many metabolic pathways. The correlation between increased LCBs and shorter lifespan is unsupported at this time. The physiological rise in LCBs that we observe may serve to modulate nutrient transporters and possibly other membrane phenomena that contribute to enhanced stress resistance and survival in stationary phase. PMID:23286903

  17. Striatal intrinsic reinforcement signals during recognition memory: relationship to response bias and dysregulation in schizophrenia.

    PubMed

    Wolf, Daniel H; Gerraty, Raphaelt; Satterthwaite, Theodore D; Loughead, James; Campellone, Timothy; Elliott, Mark A; Turetsky, Bruce I; Gur, Ruben C; Gur, Raquel E

    2011-01-01

    Ventral striatum (VS) is a critical brain region for reinforcement learning and motivation, and VS hypofunction is implicated in psychiatric disorders including schizophrenia. Providing rewards or performance feedback has been shown to activate VS. Intrinsically motivated subjects performing challenging cognitive tasks are likely to engage reinforcement circuitry even in the absence of external feedback or incentives. However, such intrinsic reinforcement responses have received little attention, have not been examined in relation to behavioral performance, and have not been evaluated for impairment in neuropsychiatric disorders such as schizophrenia. Here we used fMRI to examine a challenging "old" vs. "new" visual recognition task in healthy subjects and patients with schizophrenia. Targets were unique fractal stimuli previously presented as salient distractors in a visual oddball task, producing incidental memory encoding. Based on the prediction error theory of reinforcement learning, we hypothesized that correct target recognition would activate VS in controls, and that this activation would be greater in subjects with lower expectation of responding correctly as indexed by a more conservative response bias. We also predicted these effects would be reduced in patients with schizophrenia. Consistent with these predictions, controls activated VS and other reinforcement processing regions during correct recognition, with greater VS activation in those with a more conservative response bias. Patients did not show either effect, with significant group differences suggesting hyporesponsivity in patients to internally generated feedback. These findings highlight the importance of accounting for intrinsic motivation and reward when studying cognitive tasks, and add to growing evidence of reward circuit dysfunction in schizophrenia that may impact cognition and function.

  18. Simultaneous imaging of intrinsic optical signals and cerebral vessel responses during cortical spreading depression in rats

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Chen, Shangbin; Luo, Weihua; Luo, Qingming

    2003-12-01

    Cortical spreading depression (CSD) is an important disease model for migraine and cerebral ischemia. We investigated the spatio-temporal characteristics of the intrinsic optical signals (IOS) at 570 nm and the cerebral blood vessel responses during CSD simultaneously by optical reflectance imaging in vivo. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. A four-phasic IOS response was observed at pial arteries and parenchymal sites in all experimental animals and an initial slight pial arteries dilation (21.5%+/-13.6%) and constriction (-4.2%+/-3.5%) precedes the dramatic dilation (69.2%+/-26.1%) of pial arterioles was recorded. Our experimental results show a high correlation (r = 0.89+/-0.025) between the IOS response and the diameter changes of the cerebral blood vessels during CSD in rats.

  19. Phase I Study of Vandetanib During and After Radiotherapy in Children With Diffuse Intrinsic Pontine Glioma

    PubMed Central

    Broniscer, Alberto; Baker, Justin N.; Tagen, Michael; Onar-Thomas, Arzu; Gilbertson, Richard J.; Davidoff, Andrew M.; Panandiker, Atmaram Pai; Leung, Wing; Chin, Thomas K.; Stewart, Clinton F.; Kocak, Mehmet; Rowland, Christopher; Merchant, Thomas E.; Kaste, Sue C.; Gajjar, Amar

    2010-01-01

    Purpose To evaluate the safety, maximum-tolerated dose, pharmacokinetics, and pharmacodynamics of vandetanib, an oral vascular endothelial growth factor receptor 2 (VEGFR2) and epidermal growth factor receptor inhibitor, administered once daily during and after radiotherapy in children with newly diagnosed diffuse intrinsic pontine glioma. Patients and Methods Radiotherapy was administered as 1.8-Gy fractions (total cumulative dose of 54 Gy). Vandetanib was administered concurrently with radiotherapy for a maximum of 2 years. Dose-limiting toxicities (DLTs) were evaluated during the first 6 weeks of therapy. Pharmacokinetic studies were obtained for all patients. Plasma angiogenic factors and VEGFR2 phosphorylation in mononuclear cells were analyzed before and during therapy. Results Twenty-one patients were administered 50 (n = 3), 65 (n = 3), 85 (n = 3), 110 (n = 6), and 145 mg/m2 (n = 6) of vandetanib. Only one patient developed DLT (grade 3 diarrhea) at dosage level 5. An expanded cohort of patients were treated at dosage levels 4 (n = 10) and 5 (n = 4); two patients developed grade 4 hypertension and posterior reversible encephalopathy syndrome while also receiving high-dose dexamethasone. Despite significant interpatient variability, exposure to vandetanib increased with higher dosage levels. The bivariable analysis of vascular endothelial growth factor (VEGF) before and during therapy showed that patients with higher levels of VEGF before therapy had a longer progression-free survival (PFS; P = .022), whereas patients with increases in VEGF during treatment had a shorter PFS (P = .0015). VEGFR2 phosphorylation was inhibited on day 8 or 29 of therapy compared with baseline (P = .039). Conclusion The recommended phase II dose of vandetanib in children is 145 mg/m2 per day. Close monitoring and management of hypertension is required, particularly for patients receiving corticosteroids. PMID:20921456

  20. Resting state intrinsic EEG impacts on go stimulus-response processes.

    PubMed

    Karamacoska, Diana; Barry, Robert J; Steiner, Genevieve Z

    2017-03-04

    Neuropsychological research and practice rely on cognitive task performance measures as indicators of brain functioning. The neural activity underlying stimulus-response processes can be assessed with ERPs, but the relations between these cognitive processes and the brain's intrinsic resting state EEG activity are less understood. This study focused on the neurocognitive functioning of 20 healthy young adults in an equiprobable go/no-go task to map the ERP correlates of behavioral responses and examine contributions of the resting state intrinsic EEG to task-related outcomes. Continuous EEG was recorded during pretask eyes-closed (EC) and eyes-open (EO) conditions, and in the subsequent task. Delta, theta, alpha, and beta band amplitudes were assessed for the EC state and also for the reactive change to EO. Go/no-go ERPs were submitted to temporal principal components analysis, where the P2, N2, P3, and slow wave components of interest were extracted. The performance measure of reaction time (RT) variability was positively correlated with no-go and go errors, and also with go P2 amplitude, linking these to stimulus discrimination efforts involved in appropriate response selection. An N2c-P3b pairing was enhanced for shorter mean RTs, supporting their involvement in the decision to execute a response. A stepwise regression model identified EC midline delta as a predictor of P3b positivity, highlighting the relevance of delta in the neural mechanisms of attentional processes. These findings clarify the electrophysiology underlying decision-making processes in executive function, and provide a platform for further research assessing performance outcomes in larger samples and in developmental/clinical contexts.

  1. Theanine prevents doxorubicin-induced acute hepatotoxicity by reducing intrinsic apoptotic response.

    PubMed

    Nagai, Katsuhito; Oda, Ayano; Konishi, Hiroki

    2015-04-01

    Doxorubicin (DOX) is widely used as an antitumor agent with topoisomerase II inhibiting activity; however, its dosage and duration of administration have been strictly limited due to dose-related organ damage. The present study investigated whether theanine, an amino acid found in green tea leaves, could reduce DOX-induced acute hepatotoxicity and the apoptotic response in mice. Activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum, biomarkers of hepatic impairment, were markedly increased after the administration of 20 mg/kg DOX, whereas the degree of these elevations was significantly attenuated by 10 mg/kg theanine, which was consistent with histological hepatic images assessed by microscopic examination. The hepatic expression of Bax and Fas, representative intrinsic and extrinsic apoptotic molecules, respectively, was significantly increased by dosing with DOX. However, the elevation in the hepatic expression of Bax, but not Fas, was suppressed to control levels by theanine. The formation of cleaved caspase-3 protein in the group given DOX with theanine was significantly lower than that in the group treated with DOX alone. These results suggest that theanine can protect against acute hepatic damage induced by DOX, which is attributed to the suppression of intrinsic caspase-3-dependent apoptotic signaling.

  2. Harmonic Phase Response of Nonlinear Radar Targets

    DTIC Science & Technology

    2015-10-01

    ARL-TR-7513 ● OCT 2015 US Army Research Laboratory Harmonic Phase Response of Nonlinear Radar Targets by Sean F McGowan, Dr...Laboratory Harmonic Phase Response of Nonlinear Radar Targets by Sean F McGowan and Kelly D Sherbondy Sensors and Electron Devices Directorate...

  3. Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus.

    PubMed

    Acosta-Ramírez, Elizabeth; Pérez-Flores, Rebeca; Majeau, Nathalie; Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Ramírez-Saldaña, Maricela; Manjarrez-Orduño, Nataly; Cervantes-Barragán, Luisa; Santos-Argumedo, Leopoldo; Flores-Romo, Leopoldo; Becker, Ingeborg; Isibasi, Armando; Leclerc, Denis; López-Macías, Constantino

    2008-06-01

    Identifying the properties of a molecule involved in the efficient activation of the innate and adaptive immune responses that lead to long-lasting immunity is crucial for vaccine and adjuvant development. Here we show that the papaya mosaic virus (PapMV) is recognized by the immune system as a pathogen-associated molecular pattern (PAMP) and as an antigen in mice (Pamptigen). A single immunization of PapMV without added adjuvant efficiently induced both cellular and specific long-lasting antibody responses. PapMV also efficiently activated innate immune responses, as shown by the induction of lipid raft aggregation, secretion of pro-inflammatory cytokines, up-regulation of co-stimulatory molecules on dendritic cells and macrophages, and long-lasting adjuvant effects upon the specific antibody responses to model antigens. PapMV mixed with Salmonella enterica serovar Typhi (S. typhi) outer membrane protein C increased its protective capacity against challenge with S. typhi, revealing the intrinsic adjuvant properties of PapMV in the induction of immunity. Antigen-presenting cells loaded with PapMV efficiently induced antibody responses in vivo, which may link the innate and adaptive responses observed. PapMV recognition as a Pamptigen might be translated into long-lasting antibody responses and protection observed. These properties could be used in the development of new vaccine platforms.

  4. Measuring Students' Perceptions of Personal and Social Responsibility and the Relationship to Intrinsic Motivation in Urban Physical Education

    ERIC Educational Resources Information Center

    Li, Weidong; Wright, Paul M.; Rukavina, Paul Bernard; Pickering, Molly

    2008-01-01

    The purpose of the current study was to test the validity and reliability of a two-factor model of the Personal and Social Responsibility Questionnaire (PSRQ) and examine the relationships between perceptions of personal and social responsibility and intrinsic motivation in physical education. Participants were 253 middle school students who…

  5. Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus.

    PubMed

    Xie, R; Gittelman, J X; Li, N; Pollak, G D

    2008-06-12

    Response features of inferior colliculus (IC) neurons to both current injections and tone bursts were studied with in vivo whole cell recordings in awake Mexican free-tailed bats. Of 160 cells recorded, 95% displayed one of three general types of discharge patterns in response to the injection of positive current: 1) sustained discharges; 2) adapting discharges; and 3) onset-bursting discharges. Sustained neurons were the most common type (N=78), followed by onset-bursting (N=57). The least common type was adapting (N=17). In 90 neurons the profiles of synaptic and discharge activity evoked by tones of different frequencies at 50 dB SPL were recorded. Three major tone-evoked response profiles were obtained; 1) neurons dominated by excitation (N=32) in which tones evoked excitatory post-synaptic potentials (EPSPs) or EPSPs with discharges over a range of frequencies with little or no evidence of inhibitory post-synaptic potentials (IPSPs) evoked by frequencies that flanked the excitation; 2) neurons that had an excitatory frequency region in which discharges were evoked that was flanked by frequencies that evoked predominantly IPSPs (N=26); 3) neurons in which all frequencies evoked IPSPs with little or no depolarizations (N=32). The question we asked is whether IC cells that express a particular profile of PSPs and discharges to acoustic stimulation also have the same current-evoked response profile. We show that, with one exception, the intrinsic features of an IC neuron are not correlated with the pattern of its synaptic innervation; the two features are unrelated in the majority of IC cells. The exception is a subtype of inhibitory dominated cell where most frequencies evoked IPSPs to both the onset and to the offset of the tone bursts. In those cells injected current steps always evoked an onset-bursting response.

  6. Intrinsic disorder as a generalizable strategy for the rational design of highly responsive, allosterically cooperative receptors.

    PubMed

    Simon, Anna J; Vallée-Bélisle, Alexis; Ricci, Francesco; Plaxco, Kevin W

    2014-10-21

    Control over the sensitivity with which biomolecular receptors respond to small changes in the concentration of their target ligand is critical for the proper function of many cellular processes. Such control could likewise be of utility in artificial biotechnologies, such as biosensors, genetic logic gates, and "smart" materials, in which highly responsive behavior is of value. In nature, the control of molecular responsiveness is often achieved using "Hill-type" cooperativity, a mechanism in which sequential binding events on a multivalent receptor are coupled such that the first enhances the affinity of the next, producing a steep, higher-order dependence on target concentration. Here, we use an intrinsic-disorder-based mechanism that can be implemented without requiring detailed structural knowledge to rationally introduce this potentially useful property into several normally noncooperative biomolecules. To do so, we fabricate a tandem repeat of the receptor that is destabilized (unfolded) via the introduction of a long, unstructured loop. The first binding event requires the energetically unfavorable closing of this loop, reducing its affinity relative to that of the second binding event, which, in contrast occurs at a preformed site. Using this approach, we have rationally introduced cooperativity into three unrelated DNA aptamers, achieving in the best of these a Hill coefficient experimentally indistinguishable from the theoretically expected maximum. The extent of cooperativity and thus the steepness of the binding transition are, moreover, well modeled as simple functions of the energetic cost of binding-induced folding, speaking to the quantitative nature of this design strategy.

  7. Identification of intrinsic deep level defects responsible for electret behavior in TlGaSe2 layered semiconductor

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Uzun, Talip; Odrinsky, Andrei P.; Yakar, Emin; Aliyeva, Vafa B.; Babayev, Sardar S.; Mammadov, Tofig G.

    2016-02-01

    Unusual behavior of pyroelectric current signal polarity near the Curie point (Tc) was observed for TlGaSe2 a ferroelectric-semiconductor. It has been revealed that the polarity of the spontaneous polarization near Tc depends on the sample poling prehistory. In particular, applying an external electric field only in the temperature range of the paraelectric state during cooling regime in darkness brought to the depolarization current at Tc with the sign opposite to the external field polarity. Otherwise, if the sample was poled in the temperature interval of the incommensurate phase, pyroelectric current exhibits a peak at Tc with the polarity that is the same as for the external poling electric field. These observations indicate that internal electric field is present in the bulk and near-surface layer regions of the electrically poled single crystal TlGaSe2. Possible mechanisms and origins responsible for the internal electric fields in TlGaSe2 are discussed. It is shown that the formation of internal electric fields in TlGaSe2 is due to charging of intrinsic native defects during the poling process. Characteristics of electrically active intrinsic defects in TlGaSe2 were investigated by using of Photo-Induced Current Transient Spectroscopy (PICTS) technique. Six deep defect levels in the band gap of TlGaSe2 were determined, which were localized both in the bulk and on the surface of the sample and could be electrically charged. The correlation between polarization effects and PICTS results has been established. It was shown that native deep defects (A3-A6) localized in the bulk of crystal are responsible for hetero-charge formation and negative sign of the pyroelectric current peak observed around the Curie temperature after poling the sample in the temperature intervals well above Tc. It was also shown that the positive sign pyrocurrent observed near the Curie point is attributed to the homo-charge formed by native A2-trapping centers which are localized near

  8. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3

    PubMed Central

    Smith, Jarrett; Calidas, Deepika; Schmidt, Helen; Lu, Tu; Rasoloson, Dominique; Seydoux, Geraldine

    2016-01-01

    RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced phase separation of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and phase separates with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 phase separation in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 phase separation to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced phase separation of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time. DOI: http://dx.doi.org/10.7554/eLife.21337.001 PMID:27914198

  9. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.

    PubMed

    Liu, Shaolin; Shipley, Michael T

    2008-10-08

    The initial synapse in the olfactory system is from olfactory nerve (ON) terminals to postsynaptic targets in olfactory bulb glomeruli. Recent studies have disclosed multiple presynaptic factors that regulate this important linkage, but less is known about the contribution of postsynaptic intrinsic conductances to integration at these synapses. The present study demonstrates voltage-dependent amplification of EPSPs in external tufted (ET) cells in response to monosynaptic (ON) inputs. This amplification is mainly exerted by persistent Na(+) conductance. Larger EPSPs, which bring the membrane potential to a relatively depolarized level, are further boosted by the low-voltage-activated Ca(2+) conductance. In contrast, the hyperpolarization-activated nonselective cation conductance (I(h)) attenuates EPSPs mainly by reducing EPSP duration; this also reduces temporal summation of multiple EPSPs. Regulation of EPSPs by these subthreshold, voltage-dependent conductances can enhance both the signal-to-noise ratio and the temporal summation of multiple synaptic inputs and thus help ET cells differentiate high- and low-frequency synaptic inputs. I(h) can also transform inhibitory inputs to postsynaptic excitation. When the ET cell membrane potential is relatively depolarized, as during a burst of action potentials, IPSPs produce classic inhibition. However, near resting membrane potentials where I(h) is engaged, IPSPs produce rebound bursts of action potentials. ET cells excite GABAergic PG cells. Thus, the transformation of inhibitory inputs to postsynaptic excitation in ET cells may enhance intraglomerular inhibition of mitral/tufted cells, the main output neurons in the olfactory bulb, and hence shape signaling to olfactory cortex.

  10. Intrinsic Charge Transport across Phase Transitions in Hybrid Organo-Inorganic Perovskites.

    PubMed

    Yi, Hee Taek; Wu, Xiaoxi; Zhu, Xiaoyang; Podzorov, Vitaly

    2016-08-01

    Hall effect measurements in CH3 NH3 PbBr3 single crystals reveal that the charge-carrier mobility follows an inverse-temperature power-law dependence, μ ∝ T(-) (γ) , with the power exponent γ = 1.4 ± 0.1 in the cubic phase, indicating an acoustic-phonon-dominated carrier scattering, and γ = 0.5 ± 0.1 in the tetragonal phase, suggesting another dominant mechanism, such as a piezoelectric or space-charge scattering.

  11. Network Analysis Reveals Similar Transcriptomic Responses to Intrinsic Properties of Carbon Nanomaterials in Vitro and in Vivo.

    PubMed

    Kinaret, Pia; Marwah, Veer; Fortino, Vittorio; Ilves, Marit; Wolff, Henrik; Ruokolainen, Lasse; Auvinen, Petri; Savolainen, Kai; Alenius, Harri; Greco, Dario

    2017-04-11

    Understanding the complex molecular alterations related to engineered nanomaterial (ENM) exposure is essential for carrying out toxicity assessment. Current experimental paradigms rely on both in vitro and in vivo exposure setups that often are difficult to compare, resulting in questioning the real efficacy of cell models to mimic more complex exposure scenarios at the organism level. Here, we have systematically investigated transcriptomic responses of the THP-1 macrophage cell line and lung tissues of mice, after exposure to several carbon nanomaterials (CNMs). Under the assumption that the CNM exposure related molecular alterations are mixtures of signals related to their intrinsic properties, we inferred networks of responding genes, whose expression levels are coordinately altered in response to specific CNM intrinsic properties. We observed only a minute overlap between the sets of intrinsic property-correlated genes at different exposure scenarios, suggesting specific transcriptional programs working in different exposure scenarios. However, when the effects of the CNM were investigated at the level of significantly altered molecular functions, a broader picture of substantial commonality emerged. Our results imply that in vitro exposures can efficiently recapitulate the complex molecular functions altered in vivo. In this study, altered molecular pathways in response to specific CNM intrinsic properties have been systematically characterized from transcriptomic data generated from multiple exposure setups. Our computational approach to the analysis of network response modules further revealed similarities between in vitro and in vivo exposures that could not be detected by traditional analysis of transcriptomics data. Our analytical strategy also opens a possibility to look for pathways of toxicity and understanding the molecular and cellular responses identified across predefined biological themes.

  12. The intrinsic stiffness of the in vivo lumbar spine in response to quick releases: implications for reflexive requirements.

    PubMed

    Brown, Stephen H M; McGill, Stuart M

    2009-10-01

    Torso muscles contribute both intrinsic and reflexive stiffness to the spine; recent modeling studies indicate that intrinsic stiffness alone is sometimes insufficient to maintain stability in dynamic situations. The purpose of this study was to experimentally test this idea by limiting muscular reflexive responses to sudden trunk perturbations. Nine healthy males lay on a near-frictionless apparatus and were subjected to quick trunk releases from the neutral position into flexion or right-side lateral bend. Different magnitudes of moment release were accomplished by having participants contract their musculature to create a range of moment levels. EMG was recorded from 12 torso muscles and three-dimensional lumbar spine rotations were monitored. A second-order linear model of the trunk was employed to estimate trunk stiffness and damping during each quick release. Participants displayed very limited reflex responses to the quick load release paradigms, and consequently underwent substantial trunk displacements (>50% flexion range of motion and >70% lateral bend range of motion in the maximum moment trials). Trunk stiffness increased significantly with significant increases in muscle activation, but was still unable to prevent the largest trunk displacements in the absence of reflexes. Thus, it was concluded that the intrinsic stiffness of the trunk was insufficient to adequately prevent the spine from undergoing potentially harmful rotational displacements. Voluntary muscular responses were more apparent than reflexive responses, but occurred too late and of too low magnitude to sufficiently make up for the limited reflexes.

  13. Interdiffusion in the Mg-Al system and Intrinsic Diffusion in (Al3Mg2) Phase

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Kulkarni, Nagraj S; Sohn, Yong Ho

    2011-01-01

    Increasing use and development of lightweight Mg-alloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As a strengthening component, Al is one of the most important and common alloying elements for Mg-alloys. In this study, solid-to-solid diffusion couple techniques were employed to examine the interdiffusion between pure Mg and Al. Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopies (SEM) were employed to observe the formation of the intermetallics -Al12Mg17 and -Al3Mg2, but not -phase. Concentration profiles were determined using X-ray energy dispersive spectroscopy (XEDS). The growth constants and activation energies were determined for each intermetallic phase.

  14. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  15. Intrinsic magnetic properties of single-phase Mn1+xGa (0 < x < 1) alloys

    PubMed Central

    Lu, Q. M.; Yue, M.; Zhang, H. G.; Wang, M. L.; Yu, F.; Huang, Q. Z.; Ryan, D. H.; Altounian, Z.

    2015-01-01

    Magnetization measurements have been carried out on a series of carefully prepared single-phase Mn1 + xGa (0 < x < 1) alloys. The saturation magnetization Ms, measured at 5 K, has a value of 92.0 emu/g for x = 0.15. This is the highest value reported in these alloys and is close to the calculated value of 116 emu/g for the stoichiometric compound (x = 0). Ms decreases gradually with x and has a value of 60.7 emu/g for x = 0.86. This behavior is consistent with the extra Mn atoms occupying Ga sites and coupling antiferromagnetically with the rest of the Mn atoms. The intrinsic magnetic properties of the Mn-Ga alloys indicate their great potential as novel, rare-earth free permanent magnetic materials. PMID:26597458

  16. The Pervasive Negative Effects of Rewards on Intrinsic Motivation: Response to Cameron (2001).

    ERIC Educational Resources Information Center

    Deci, Edward L.; Ryan, Richard M.; Koestner, Richard

    2001-01-01

    Replies to commentary by J. Cameron asserting that the negative results of extrinsic reward on intrinsic motivation are limited and avoidable. Suggests that the most recent meta analysis by Cameron and others shares methodological weaknesses with an earlier analysis, lacking ecological validity. (SLD)

  17. Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift

    DOEpatents

    Davidson, James R.; Lassahn, Gordon D.

    2001-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  18. Estimation of the phase response curve from Parkinsonian tremor

    PubMed Central

    Saifee, Tabish A.; Edwards, Mark J.; Kassavetis, Panagiotis

    2015-01-01

    Phase response curves (PRCs), characterizing the response of an oscillator to weak external perturbation, have been estimated from a broad range of biological oscillators, including single neurons in vivo. PRC estimates, in turn, provide an intuitive insight into how oscillatory systems become entrained and how they can be desynchronized. Here, we explore the application of PRC theory to the case of Parkinsonian tremor. Initial attempts to establish a causal effect of subthreshold transcranial magnetic stimulation applied to primary motor cortex on the filtered tremor phase were unsuccessful. We explored the possible explanations of this and demonstrate that assumptions made when estimating the PRC in a traditional setting, such as a single neuron, are not arbitrary when applied to the case of tremor PRC estimation. We go on to extract the PRC of Parkinsonian tremor using an iterative method that requires varying the definition of the tremor cycle and estimating the PRC at multiple peristimulus time samples. Justification for this method is supported by estimates of PRC from simulated single neuron data. We provide an approach to estimating confidence limits for tremor PRC and discuss the interpretational caveats introduced by tremor harmonics and the intrinsic variability of the tremor's period. PMID:26561596

  19. Maggot excretion products from the blowfly Lucilia sericata contain contact phase/intrinsic pathway-like proteases with procoagulant functions.

    PubMed

    Kahl, M; Gökçen, A; Fischer, S; Bäumer, M; Wiesner, J; Lochnit, G; Wygrecka, M; Vilcinskas, A; Preissner, K T

    2015-08-01

    For centuries, maggots have been used for the treatment of wounds by a variety of ancient cultures, as part of their traditional medicine. With increasing appearance of antimicrobial resistance and in association with diabetic ulcers, maggot therapy was revisited in the 1980s. Three mechanisms by which sterile maggots of the green bottle fly Lucilia sericata may improve healing of chronic wounds have been proposed: Biosurgical debridement, disinfecting properties, and stimulation of the wound healing process. However, the influence of maggot excretion products (MEP) on blood coagulation as part of the wound healing process has not been studied in detail. Here, we demonstrate that specific MEP-derived serine proteases from Lucilia sericata induce clotting of human plasma and whole blood, particularly by activating contact phase proteins factor XII and kininogen as well as factor IX, thereby providing kallikrein-bypassing and factor XIa-like activities, both in plasma and in isolated systems. In plasma samples deficient in contact phase proteins, MEP restored full clotting activity, whereas in plasma deficient in either factor VII, IX, X or II no effect was seen. The observed procoagulant/intrinsic pathway-like activity was mediated by (chymo-) trypsin-like proteases in total MEP, which were significantly blocked by C1-esterase inhibitor or other contact phase-specific protease inhibitors. No significant influence of MEP on platelet activation or fibrinolysis was noted. Together, MEP provides contact phase bypassing procoagulant activity and thereby induces blood clotting in the context of wound healing. Further characterisation of the active serine protease(s) may offer new perspectives for biosurgical treatment of chronic wounds.

  20. Low-mass, intrinsically-hard high-temperature radiator. Final report, Phase I

    SciTech Connect

    1990-06-15

    Thermacore, Inc. of Lancaster, Pennsylvania has completed a Phase I SBIR program to investigate the use of layered ceramic/metal composites in the design of low-mass hardened radiators for space heat rejection systems. The program is being monitored by the Los Alamos National Laboratory (LANL) for the Strategic Defense Initiative Organization (SDIO). This effort evaluated the use of layered composites as a material to form thin-walled, vacuum leaktight heat pipes. The heat pipes would be incorporated into a large heat pipe radiator for waste heat rejection from a space nuclear power source. This approach forms an attractive alternative to metal or silicon-carbon fiber reinforced metal heat pipes by offering a combination of low mass and improved fabricability. Titanium has been shown to have a yield strength too low at 875{degrees}K to be a useful radiator material. A silicon carbide fiber reinforced titanium material appears to have sufficient strength at 875{degrees}K. but cannot be welded due to the continuous fibers, and the preferred heat pipe working fluid (potassium) has been demonstrated to be incompatible with silicon carbide at 875{degrees}K. Moreover, titanium does not appear to be acceptable for radiators subjected to anticipated laser threats. As part of this effort, Thermacore performed composite material evaluations on combinations of refractory metals and ceramic powders. Layered composite tube samples with wall thicknesses as thin as 0.012 inches were developed. Fabrication experiments were performed that demonstrated the weldability of layered composites. Two titanium/titanium diboride composite tubes were successfully fabricated into potassium heat pipes and operated at temperatures in excess of 700{degrees}C. A hybrid composite tube was also fabricated into a potassium heat pipe. The tube was composed of alternating layers of niobium-1% zirconium foil and layers of a mixture of titanium powder and titanium diboride powder.

  1. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans.

    PubMed

    Yee, Callista; Yang, Wen; Hekimi, Siegfried

    2014-05-08

    The increased longevity of the C. elegans electron transport chain mutants isp-1 and nuo-6 is mediated by mitochondrial ROS (mtROS) signaling. Here we show that the mtROS signal is relayed by the conserved, mitochondria-associated, intrinsic apoptosis signaling pathway (CED-9/Bcl2, CED-4/Apaf1, and CED-3/Casp9) triggered by CED-13, an alternative BH3-only protein. Activation of the pathway by an elevation of mtROS does not affect apoptosis but protects from the consequences of mitochondrial dysfunction by triggering a unique pattern of gene expression that modulates stress sensitivity and promotes survival. In vertebrates, mtROS induce apoptosis through the intrinsic pathway to protect from severely damaged cells. Our observations in nematodes demonstrate that sensing of mtROS by the apoptotic pathway can, independently of apoptosis, elicit protective mechanisms that keep the organism alive under stressful conditions. This results in extended longevity when mtROS generation is inappropriately elevated. These findings clarify the relationships between mitochondria, ROS, apoptosis, and aging.

  2. Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hao, Yong; Chen, Chunhui; Yang, Xinyi; Xiao, Guanjun; Zou, Bo; Yang, Jianwen; Wang, Chunlei

    2017-01-01

    Manganese sulfide (MnS), a member of transition metal sulfides, has been considered as a promising anode material for reversible Li storage due to its high theoretical capacity and structural advantages. However, the intrinsic electrochemical performance of MnS with different phases in lithium-ion batteries is yet to be fully investigated. Herein, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. The RS-MnS, ZB-MnS and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability in comparison to RS-MnS and WZ-MnS nanocrystals. Interestingly, all the three kinds of MnS electrodes exhibited an unusual phenomenon of capacity increase upon cycling along with reduced particle sizes and without change in crystallinity. The main contribution of capacity increase was ascribed to the decreased cell resistance and enhanced interfacial charge storage, which facilitated more effective Li+ diffusion into electrode materials.

  3. A nonequilibrium phase transition in immune response

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qi, An-Shen

    2004-07-01

    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied. In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions, the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  4. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2

  5. Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization.

    PubMed

    O'Leary, Timothy; van Rossum, Mark C W; Wyllie, David J A

    2010-01-01

    In order to maintain stable functionality in the face of continually changing input, neurones in the CNS must dynamically modulate their electrical characteristics. It has been hypothesized that in order to retain stable network function, neurones possess homeostatic mechanisms which integrate activity levels and alter network and cellular properties in such a way as to counter long-term perturbations. Here we describe a simple model system where we investigate the effects of sustained neuronal depolarization, lasting up to several days, by exposing cultures of primary hippocampal pyramidal neurones to elevated concentrations (10-30 mm) of KCl. Following exposure to KCl, neurones exhibit lower input resistances and resting potentials, and require more current to be injected to evoke action potentials. This results in a rightward shift in the frequency-input current (FI) curve which is explained by a simple linear model of the subthreshold I-V relationship. No changes are observed in action potential profiles, nor in the membrane potential at which action potentials are evoked. Furthermore, following depolarization, an increase in subthreshold potassium conductance is observed which is accounted for within a biophysical model of the subthreshold I-V characteristics of neuronal membranes. The FI curve shift was blocked by the presence of the L-type Ca(2+) channel blocker nifedipine, whilst antagonism of NMDA receptors did not interfere with the effect. Finally, changes in the intrinsic properties of neurones are reversible following removal of the depolarizing stimulus. We suggest that this experimental system provides a convenient model of homeostatic regulation of intrinsic excitability, and permits the study of temporal characteristics of homeostasis and its dependence on stimulus magnitude.

  6. Measurement of the contrast agent intrinsic and native harmonic response with single transducer pulse waved ultrasound systems.

    PubMed

    Verbeek, X A; Willigers, J M; Brands, P J; Ledoux, L A; Hoeks, A P

    1999-01-01

    Ultrasound contrast agents, i.e., small gas filled microbubbles, enhance the echogenicity of blood and have the potential to be used for tissue perfusion assessment. The contrast agents scatter ultrasound in a nonlinear manner and thereby introduce harmonics in the ultrasound signal. This property is exploited in new ultrasound techniques like harmonic imaging, which aims to display only the contrast agent presence. Much attention has already been given to the physical properties of the contrast agent. The present study focuses on practical aspects of the measurement of the intrinsic harmonic response of ultrasound contrast agents with single transducer pulse waved ultrasound systems. Furthermore, the consequences of two other sources of harmonics are discussed. These sources are the nonlinear distortion of ultrasound in a medium generating native harmonics, and the emitted signal itself which might contain contaminating harmonics. It is demonstrated conceptually and by experiments that optimization of the contrast agent harmonic response measured with a single transducer is governed by the transducer spectral sensitivity distribution rather than the resonance properties of the contrast agent. Both native and contaminating harmonics may be of considerable strength and can be misinterpreted as intrinsic harmonics of the contrast agent. Practical difficulties to filter out the harmonic component selectively, without deteriorating the image, may cause misinterpretation of the fundamental as a harmonic.

  7. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway).

    PubMed

    Kumar, C Ganesh; Poornachandra, Y; Chandrasekhar, Cheemalamarri

    2015-11-28

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.

  8. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.

    PubMed

    Floriddia, Elisa M; Rathore, Khizr I; Tedeschi, Andrea; Quadrato, Giorgia; Wuttke, Anja; Lueckmann, Jan-Matthis; Kigerl, Kristina A; Popovich, Phillip G; Di Giovanni, Simone

    2012-10-03

    Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.

  9. The intrinsically disordered C-RING biomineralization protein, AP7, creates protein phases that introduce nanopatterning and nanoporosities into mineral crystals.

    PubMed

    Chang, Eric P; Russ, Jennie A; Verch, Andreas; Kröger, Roland; Estroff, Lara A; Evans, John Spencer

    2014-07-15

    We report an interesting process whereby the formation of nanoparticle assemblies on and nanoporosities within calcite crystals is directed by an intrinsically disordered C-RING mollusk shell nacre protein, AP7. Under mineralization conditions, AP7 forms protein phases that direct the nucleation of ordered calcite nanoparticles via a repetitive protein phase deposition process onto calcite crystals. These organized nanoparticles are separated by gaps or spaces that become incorporated into the forming bulk crystal as nanoporosities. This is an unusual example of organized nanoparticle biosynthesis and mineral modification directed by a C-RING protein phase.

  10. The Intrinsically Disordered C-RING Biomineralization Protein, AP7, Creates Protein Phases That Introduce Nanopatterning and Nanoporosities into Mineral Crystals

    PubMed Central

    2015-01-01

    We report an interesting process whereby the formation of nanoparticle assemblies on and nanoporosities within calcite crystals is directed by an intrinsically disordered C-RING mollusk shell nacre protein, AP7. Under mineralization conditions, AP7 forms protein phases that direct the nucleation of ordered calcite nanoparticles via a repetitive protein phase deposition process onto calcite crystals. These organized nanoparticles are separated by gaps or spaces that become incorporated into the forming bulk crystal as nanoporosities. This is an unusual example of organized nanoparticle biosynthesis and mineral modification directed by a C-RING protein phase. PMID:24977921

  11. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer.

    PubMed

    Ng, King Pan; Hillmer, Axel M; Chuah, Charles T H; Juan, Wen Chun; Ko, Tun Kiat; Teo, Audrey S M; Ariyaratne, Pramila N; Takahashi, Naoto; Sawada, Kenichi; Fei, Yao; Soh, Sheila; Lee, Wah Heng; Huang, John W J; Allen, John C; Woo, Xing Yi; Nagarajan, Niranjan; Kumar, Vikrant; Thalamuthu, Anbupalam; Poh, Wan Ting; Ang, Ai Leen; Mya, Hae Tha; How, Gee Fung; Yang, Li Yi; Koh, Liang Piu; Chowbay, Balram; Chang, Chia-Tien; Nadarajan, Veera S; Chng, Wee Joo; Than, Hein; Lim, Lay Cheng; Goh, Yeow Tee; Zhang, Shenli; Poh, Dianne; Tan, Patrick; Seet, Ju-Ee; Ang, Mei-Kim; Chau, Noan-Minh; Ng, Quan-Sing; Tan, Daniel S W; Soda, Manabu; Isobe, Kazutoshi; Nöthen, Markus M; Wong, Tien Y; Shahab, Atif; Ruan, Xiaoan; Cacheux-Rataboul, Valère; Sung, Wing-Kin; Tan, Eng Huat; Yatabe, Yasushi; Mano, Hiroyuki; Soo, Ross A; Chin, Tan Min; Lim, Wan-Teck; Ruan, Yijun; Ong, S Tiong

    2012-03-18

    Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual's response to TKIs. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the B-cell CLL/lymphoma 2 (BCL2) family of proteins, and its upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from exon 4 to exon 3, which resulted in expression of BIM isoforms lacking the pro-apoptotic BCL2-homology domain 3 (BH3). The polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, but this resistance could be overcome with BH3-mimetic drugs. Notably, individuals with CML and EGFR NSCLC harboring the polymorphism experienced significantly inferior responses to TKIs than did individuals without the polymorphism (P = 0.02 for CML and P = 0.027 for EGFR NSCLC). Our results offer an explanation for the heterogeneity of TKI responses across individuals and suggest the possibility of personalizing therapy with BH3 mimetics to overcome BIM-polymorphism-associated TKI resistance.

  12. Genome-wide assessment of sequence-intrinsic enhancer responsiveness at single-base-pair resolution.

    PubMed

    Arnold, Cosmas D; Zabidi, Muhammad A; Pagani, Michaela; Rath, Martina; Schernhuber, Katharina; Kazmar, Tomáš; Stark, Alexander

    2017-02-01

    Gene expression is controlled by enhancers that activate transcription from the core promoters of their target genes. Although a key function of core promoters is to convert enhancer activities into gene transcription, whether and how strongly they activate transcription in response to enhancers has not been systematically assessed on a genome-wide level. Here we describe self-transcribing active core promoter sequencing (STAP-seq), a method to determine the responsiveness of genomic sequences to enhancers, and apply it to the Drosophila melanogaster genome. We cloned candidate fragments at the position of the core promoter (also called minimal promoter) in reporter plasmids with or without a strong enhancer, transfected the resulting library into cells, and quantified the transcripts that initiated from each candidate for each setup by deep sequencing. In the presence of a single strong enhancer, the enhancer responsiveness of different sequences differs by several orders of magnitude, and different levels of responsiveness are associated with genes of different functions. We also identify sequence features that predict enhancer responsiveness and discuss how different core promoters are employed for the regulation of gene expression.

  13. Intrinsic Brain Activity Responsible for Sex Differences in Shyness and Social Anxiety.

    PubMed

    Yang, Xun; Zhou, Ming; Lama, Sunima; Chen, Lizhou; Hu, Xinyu; Wang, Song; Chen, Taolin; Shi, Yan; Huang, Xiaoqi; Gong, Qiyong

    2017-01-01

    Male and female show significant differences in important behavioral features such as shyness, yet the neural substrates of these differences remain poorly understood. Previous neuroimaging studies have demonstrated that both shyness and social anxiety in healthy subjects are associated with increased activation in the fronto-limbic and cognitive control areas. However, it remains unknown whether these brain abnormalities would be shared by different genders. Therefore, in the current study, we used resting-state fMRI (r-fMRI) to investigate sex differences in intrinsic cerebral activity that may contribute to shyness and social anxiety. Sixty subjects (28 males, 32 females) participated in r-fMRI scans, and the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) were used to measure the spontaneous regional cerebral activity in all subjects. We first compared the differences between male and female both in the ALFF and fALFF and then we also examined the whole brain correlation between the ALFF/fALFF and the severity of shyness as well as social anxiety by genders. Referring to shyness measure, we found a significant positive correlation between shyness scores (CBSS) and ALFF/fALFF value in the frontoparietal control network and a negative correlation in the cingulo-insular network in female; while in male, there is no such correlation. For the social anxiety level, we found positive correlations between Leibowitz Social Anxiety Scale (LSAS) scores and spontaneous activity in the frontal-limbic network in male and negative correlation between the frontal-parietal network; however, such correlation was not prominent in female. This pattern suggests that shy female individuals engaged a proactive control process, driven by a positive association with activity in frontoparietal network and negative association in cingulo-insular network, whereas social anxiety males relied more on a reactive control process, driven by a positive correlation of

  14. Intrinsic Brain Activity Responsible for Sex Differences in Shyness and Social Anxiety

    PubMed Central

    Yang, Xun; Zhou, Ming; Lama, Sunima; Chen, Lizhou; Hu, Xinyu; Wang, Song; Chen, Taolin; Shi, Yan; Huang, Xiaoqi; Gong, Qiyong

    2017-01-01

    Male and female show significant differences in important behavioral features such as shyness, yet the neural substrates of these differences remain poorly understood. Previous neuroimaging studies have demonstrated that both shyness and social anxiety in healthy subjects are associated with increased activation in the fronto-limbic and cognitive control areas. However, it remains unknown whether these brain abnormalities would be shared by different genders. Therefore, in the current study, we used resting-state fMRI (r-fMRI) to investigate sex differences in intrinsic cerebral activity that may contribute to shyness and social anxiety. Sixty subjects (28 males, 32 females) participated in r-fMRI scans, and the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) were used to measure the spontaneous regional cerebral activity in all subjects. We first compared the differences between male and female both in the ALFF and fALFF and then we also examined the whole brain correlation between the ALFF/fALFF and the severity of shyness as well as social anxiety by genders. Referring to shyness measure, we found a significant positive correlation between shyness scores (CBSS) and ALFF/fALFF value in the frontoparietal control network and a negative correlation in the cingulo-insular network in female; while in male, there is no such correlation. For the social anxiety level, we found positive correlations between Leibowitz Social Anxiety Scale (LSAS) scores and spontaneous activity in the frontal-limbic network in male and negative correlation between the frontal-parietal network; however, such correlation was not prominent in female. This pattern suggests that shy female individuals engaged a proactive control process, driven by a positive association with activity in frontoparietal network and negative association in cingulo-insular network, whereas social anxiety males relied more on a reactive control process, driven by a positive correlation of

  15. IDO2 Modulates T Cell-Dependent Autoimmune Responses through a B Cell-Intrinsic Mechanism.

    PubMed

    Merlo, Lauren M F; DuHadaway, James B; Grabler, Samantha; Prendergast, George C; Muller, Alexander J; Mandik-Nayak, Laura

    2016-06-01

    Mechanistic insight into how adaptive immune responses are modified along the self-nonself continuum may offer more effective opportunities to treat autoimmune disease, cancer, and other sterile inflammatory disorders. Recent genetic studies in the KRN mouse model of rheumatoid arthritis demonstrate that the immunomodulatory molecule IDO2 modifies responses to self-antigens; however, the mechanisms involved are obscure. In this study, we show that IDO2 exerts a critical function in B cells to support the generation of autoimmunity. In experiments with IDO2-deficient mice, adoptive transplant experiments demonstrated that IDO2 expression in B cells was both necessary and sufficient to support robust arthritis development. IDO2 function in B cells was contingent on a cognate, Ag-specific interaction to exert its immunomodulatory effects on arthritis development. We confirmed a similar requirement in an established model of contact hypersensitivity, in which IDO2-expressing B cells are required for a robust inflammatory response. Mechanistic investigations showed that IDO2-deficient B cells lacked the ability to upregulate the costimulatory marker CD40, suggesting IDO2 acts at the T-B cell interface to modulate the potency of T cell help needed to promote autoantibody production. Overall, our findings revealed that IDO2 expression by B cells modulates autoimmune responses by supporting the cross talk between autoreactive T and B cells.

  16. Gadd45 modulation of intrinsic and extrinsic stress responses in myeloid cells.

    PubMed

    Hoffman, Barbara; Liebermann, Dan A

    2009-01-01

    Gadd45 proteins modulate signaling in response to physiological and environmental stressors. Expression of gadd45 genes is rapidly induced by different stressors, including differentiation-inducing cytokines and genotoxic stress. Induction of gadd45 genes at the onset of myeloid differentiation suggested that Gadd45 protein(s) play a role in hematopoiesis, yet no apparent abnormalities were observed in either the bone marrow (BM) or peripheral blood compartments of mice deficient for either gadd45a or gadd45b. However, under conditions of hematological stress, including acute stimulation with cytokines, myelo-ablation and inflammation, both gadd45a-deficient and gadd45b-deficient mice exhibited deficiencies. This is discussed within the context of what is known about Gadd45 proteins in stress signaling, hematopoietic development and the innate immune response. Furthermore, myeloid enriched BM cells from gadd45a and gadd45b deficient mice were observed to be more sensitive to ultraviolet radiation (UVC), VP-16 and daunorubicin (DNR) induced apoptosis compared to wild-type (WT) cells, displaying defective G2/M arrest following exposure to UVC and VP-16, but not to DNR. Novel mechanisms that mediate the pro-survival functions of Gadd45 in hematopoietic cells following UV irradiation were demonstrated, involving activation of the Gadd45a-p38-NF-kappaB survival pathway and Gadd45b mediated inhibition of the stress response MKK4-JNK apoptotic pathway. The ramifications regarding the pathogenesis of different leukemias and the response of normal and malignant hematopoietic cells to chemo- and radiation-therapy, as well as other challenges to the hematopoietic compartment, are discussed.

  17. On the Firing Rate Dependency of the Phase Response Curve of Rat Purkinje Neurons In Vitro

    PubMed Central

    Couto, João; Linaro, Daniele; De Schutter, E; Giugliano, Michele

    2015-01-01

    Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective properties of neurons and networks, by quantifying the impact of an infinitesimal depolarizing current pulse on the time of occurrence of subsequent action potentials, while a neuron is firing tonically. Recently, the PRC theory applied to cerebellar Purkinje cells revealed that these behave as phase-independent integrators at low firing rates, and switch to a phase-dependent mode at high rates. Given the implications for computation and information processing in the cerebellum and the possible role of synchrony in the communication with its post-synaptic targets, we further explored the firing rate dependency of the PRC in Purkinje cells. We isolated key factors for the experimental estimation of the PRC and developed a closed-loop approach to reliably compute the PRC across diverse firing rates in the same cell. Our results show unambiguously that the PRC of individual Purkinje cells is firing rate dependent and that it smoothly transitions from phase independent integrator to a phase dependent mode. Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve. PMID:25775448

  18. Time-Resolved Transcriptomics and Bioinformatic Analyses Reveal Intrinsic Stress Responses during Batch Culture of Bacillus subtilis

    PubMed Central

    Blom, Evert-Jan; Ridder, Anja N. J. A.; Lulko, Andrzej T.; Roerdink, Jos B. T. M.; Kuipers, Oscar P.

    2011-01-01

    We have determined the time-resolved transcriptome of the model gram-positive organism B. subtilis during growth in a batch fermentor on rich medium. DNA microarrays were used to monitor gene transcription using 10-minute intervals at 40 consecutive time points. From the growth curve and analysis of all gene expression levels, we identified 4 distinct growth phases and one clear transition point: a lag phase, an exponential growth phase, the transition point and the very clearly separated early and late stationary growth phases. The gene expression profiles suggest the occurrence of stress responses at specific times although no external stresses were applied. The first one is a small induction of the SigB regulon that occurs at the transition point. Remarkably, a very strong response is observed for the SigW regulon, which is highly upregulated at the onset of the late stationary phase. Bioinformatic analyses that were performed on our data set suggest several novel putative motifs for regulator binding. In addition, the expression profiles of several genes appeared to correlate with the oxygen concentration. This data set of the expression profiles of all B. subtilis genes during the entire growth curve on rich medium constitutes a rich repository that can be further mined by the scientific community. PMID:22087258

  19. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response

    PubMed Central

    Conn, Kristen L.; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R.; Grant, Kyle G.; Domingues, Patricia

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated

  20. The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance.

    PubMed

    Laubacher, Mary E; Ades, Sarah E

    2008-03-01

    Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth, new peptidoglycan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the beta-lactam antibiotics amdinocillin (mecillinam) and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to beta-lactam antibiotics.

  1. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal.

    PubMed

    Yan, Jin; Li, Yan; Wu, Shin-Tson

    2011-04-15

    We demonstrate a tunable phase grating using a polymer-stabilized blue phase liquid crystal. Because of the electric-field-induced rectangularlike phase profile, a high diffraction efficiency of 40% is achieved. Moreover, this device shows submillisecond response time. The proposed tunable phase grating holds great potential for photonics and display applications.

  2. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response

    PubMed Central

    Yeh, Connie Y.; Koehl, Kristin L.; Harman, Christine D.; Iwabe, Simone; Guzman, José M.; Petersen-Jones, Simon M.; Kardon, Randy H.; Komáromy, András M.

    2017-01-01

    Purpose The purpose of this study was to evaluate a chromatic pupillometry protocol for specific functional assessment of rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) in dogs. Methods Chromatic pupillometry was tested and compared in 37 dogs in different stages of primary loss of rod, cone, and combined rod/cone and optic nerve function, and in 5 wild-type (WT) dogs. Eyes were stimulated with 1-s flashes of dim (1 cd/m2) and bright (400 cd/m2) blue light (for scotopic conditions) or bright red (400 cd/m2) light with 25-cd/m2 blue background (for photopic conditions). Canine retinal melanopsin/Opn4 was cloned, and its expression was evaluated using real-time quantitative reverse transcription-PCR and immunohistochemistry. Results Mean ± SD percentage of pupil constriction amplitudes induced by scotopic dim blue (scDB), scotopic bright blue (scBB), and photopic bright red (phBR) lights in WT dogs were 21.3% ± 10.6%, 50.0% ± 17.5%, and 19.4% ± 7.4%, respectively. Melanopsin-mediated responses to scBB persisted for several minutes (7.7 ± 4.6 min) after stimulus offset. In dogs with inherited retinal degeneration, loss of rod function resulted in absent scDB responses, followed by decreased phBR responses with disease progression and loss of cone function. Primary loss of cone function abolished phBR responses but preserved those responses to blue light (scDB and scBB). Although melanopsin/Opn4 expression was diminished with retinal degeneration, melanopsin-expressing ipRGCs were identified for the first time in both WT and degenerated canine retinas. Conclusions Pupil responses elicited by light stimuli of different colors and intensities allowed differential functional assessment of canine rods, cones, and ipRGCs. Chromatic pupillometry offers an effective tool for diagnosing retinal and optic nerve diseases. PMID:28061512

  3. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin

    PubMed Central

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.

    2015-01-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution. PMID:26042819

  4. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin.

    PubMed

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K

    2015-06-04

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.

  5. Structural ensembles reveal intrinsic disorder for the multi-stimuli responsive bio-mimetic protein Rec1-resilin

    NASA Astrophysics Data System (ADS)

    Balu, Rajkamal; Knott, Robert; Cowieson, Nathan P.; Elvin, Christopher M.; Hill, Anita J.; Choudhury, Namita R.; Dutta, Naba K.

    2015-06-01

    Rec1-resilin is the first recombinant resilin-mimetic protein polymer, synthesized from exon-1 of the Drosophila melanogaster gene CG15920 that has demonstrated unusual multi-stimuli responsiveness in aqueous solution. Crosslinked hydrogels of Rec1-resilin have also displayed remarkable mechanical properties including near-perfect rubber-like elasticity. The structural basis of these extraordinary properties is not clearly understood. Here we combine a computational and experimental investigation to examine structural ensembles of Rec1-resilin in aqueous solution. The structure of Rec1-resilin in aqueous solutions is investigated experimentally using circular dichroism (CD) spectroscopy and small angle X-ray scattering (SAXS). Both bench-top and synchrotron SAXS are employed to extract structural data sets of Rec1-resilin and to confirm their validity. Computational approaches have been applied to these experimental data sets in order to extract quantitative information about structural ensembles including radius of gyration, pair-distance distribution function, and the fractal dimension. The present work confirms that Rec1-resilin is an intrinsically disordered protein (IDP) that displays equilibrium structural qualities between those of a structured globular protein and a denatured protein. The ensemble optimization method (EOM) analysis reveals a single conformational population with partial compactness. This work provides new insight into the structural ensembles of Rec1-resilin in solution.

  6. Bi2Sr2CaCu2O8+δ intrinsic SQUIDs as candidates of high-Tc phase qubits

    NASA Astrophysics Data System (ADS)

    Jin, X. Y.; Lisenfeld, J.; Koval, Y.; Lukashenko, A.; Ustinov, A. V.; Müller, P.

    2009-03-01

    An intrinsic SQUID is a superconducting ring made of Bi2Sr2CaCu2O8+δ single crystal, intercepted by two intrinsic Josephson junction stacks. The inductance parameter βL can be tuned in a wide range by changing the height and the cross-section area of the stacks. When biased with dc current, the device showed typical properties of hysteretic dc-SQUIDs. When a device was coupled with a coil and a Nb readout dc-SQUID, typical rf-SQUID behavior was observed. By choosing a proper reset field, quantum escape from a single minimum has been measured on a sample of βL˜10. The escape rate can be fine-tuned by applying short pulses down to 1 ns, which allows a fast readout technique. With these prerequisites achieved, our experiments have opened the path to directly using these intrinsic SQUIDs as high-Tc phase qubits. The first attempts to measure Rabi oscillations on these devices will be discussed.

  7. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics.

    PubMed

    Krawczyk-Balska, A; Markiewicz, Z

    2016-02-01

    Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures.

  8. The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae

    PubMed Central

    Kandler, Justin L.; Holley, Concerta L.; Reimche, Jennifer L.; Dhulipala, Vijaya; Balthazar, Jacqueline T.; Muszyński, Artur; Carlson, Russell W.

    2016-01-01

    During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4- to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity. PMID:27216061

  9. Optical response of phase change material for metasurface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chu, Cheng Hung; Tseng, Ming Lun; Chen, Jie; Wu, Hui Jun; Wang, Hsiang-Chu; Chen, Ting-Yu; Tsai, Din Ping

    2016-09-01

    Phase change materials are used as the recording layer in optical data storage, electronic storage and nanolithography due to the enormous physical difference between crystalline and amorphous states. In recent years, they are demonstrated to exploit in various tunable plasmonic devices, such as perfect absorber, planar lenses, plasmonic antenna, Fano resonance and so on. However, in these researches, the phase change material merely plays a role as a refractive index switchable substrate. In this paper, we study the intrinsic optical properties of phase change material Ge2Sb2Te5 (GST) in the near-infrared regime. A clear insight into the dipole resonance system of GST is provided. The reflection phase retardation and intensity of each unit cells depending on the phase state and geometry are estimated. Further, we introduce the concept of reconfigurable gradient metasurface, which has different anomalous reflection angles by switching the combination of nanorods with different geometries and phase states. The research has great potential in the area of tunable metamaterial device (metadevice) in the future.

  10. Dynamic Response of High Temperature Uranium Phases

    SciTech Connect

    Zaretsky, E.; Herrmann, B.; Shvarts, D.

    2006-07-28

    Unalloyed uranium and uranium-0.78 wt%Ti alloy were studied in planar impact experiments with initial sample temperature ranging from 27 to 860 degree sign C. The velocity of the free surface of the samples was monitored by VISAR. It was found that the dynamic compressive strength of both the materials undergoes two-fold increase in the narrow temperature interval corresponding to the domain of beta-phase of uranium. The increase is followed by abrupt, factor of 3-4, strength drop when the initial state of the tested material is gamma-uranium. Such strength behavior explains the uranium susceptibility to adiabatic shear banding. The spall strength of both the alloys is characterized by similar temperature variations. The strength mechanism (phonon viscosity) acting in gamma-phase of pure uranium seems inherited from its alpha-structure while the strength of beta-uranium is controlled by high resistance to shearing characteristic for material having the structure of intermetallic sigma-phase.

  11. Phase-Amplitude Response Functions for Transient-State Stimuli

    PubMed Central

    2013-01-01

    Abstract The phase response curve (PRC) is a powerful tool to study the effect of a perturbation on the phase of an oscillator, assuming that all the dynamics can be explained by the phase variable. However, factors like the rate of convergence to the oscillator, strong forcing or high stimulation frequency may invalidate the above assumption and raise the question of how is the phase variation away from an attractor. The concept of isochrons turns out to be crucial to answer this question; from it, we have built up Phase Response Functions (PRF) and, in the present paper, we complete the extension of advancement functions to the transient states by defining the Amplitude Response Function (ARF) to control changes in the transversal variables. Based on the knowledge of both the PRF and the ARF, we study the case of a pulse-train stimulus, and compare the predictions given by the PRC-approach (a 1D map) to those given by the PRF-ARF-approach (a 2D map); we observe differences up to two orders of magnitude in favor of the 2D predictions, especially when the stimulation frequency is high or the strength of the stimulus is large. We also explore the role of hyperbolicity of the limit cycle as well as geometric aspects of the isochrons. Summing up, we aim at enlightening the contribution of transient effects in predicting the phase response and showing the limits of the phase reduction approach to prevent from falling into wrong predictions in synchronization problems. List of Abbreviations PRC phase response curve, phase resetting curve. PRF phase response function. ARF amplitude response function. PMID:23945295

  12. Intrinsic Geodesy

    DTIC Science & Technology

    1952-03-01

    Variation with the Height of the Principal Radii of Curvature in Somigliana’s Theory"), Bollettino di Geodesia e Scienze Affini, anno VIII, 1950 46...MARUSSI, A., "Principi di Geodesia Intrinseca applicati al campo di Somigliana" ("Principles of Intrinsic Geodesy Applied to Somigliana’s Field...34), Bollettino di Geodesia e Scienze Affini, anno VIII, 1950; and also Atti della XLII Riunione _dela Socie&Ljtsjjganaper il Progresso delle Scienze, Roma

  13. Regulation of the acute phase and immune responses

    SciTech Connect

    Sehgal, P.B.; Grieninger, G.; Tosato, G.

    1989-01-01

    This book contains the conference entitled Regulation of the acute phase and immune responses: Interleukin-L. Topics covered include: Interferon-B{sub 2}/26kDa Protein, Regulation of acute phase liver gene expression, and Genetics and regulation of expression of IL-6.

  14. Federal Radiological Monitoring and Assessment Center: Phase I Response

    SciTech Connect

    C. Riland; D. R. Bowman; R. Lambert; R. Tighe

    1999-09-30

    A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to a Lead Federal Agency (LFA) or State request when a radiological emergency is anticipated or has occurred. The FRMAC coordinates the off-site monitoring, assessment, and analysis activities during such an emergency. The FRMAC response is divided into three phases. FRMAC Phase 1 is a rapid, initial-response capability that can interface with Federal or State officials and is designed for a quick response time and rapid radiological data collection and assessment. FRMAC Phase 1 products provide an initial characterization of the radiological situation and information on early health effects to officials responsible for making and implementing protective action decisions.

  15. Cephalic phase responses to sweet taste.

    PubMed

    Abdallah, L; Chabert, M; Louis-Sylvestre, J

    1997-03-01

    The sweet taste of nonnutritive sweeteners has been reported to increase hunger and food intake through the mechanism of cephalic-phase insulin release (CPIR). We investigated the effect of oral sensation of sweetness on CPIR and other indexes associated with glucose metabolism using nutritive and nonnutritive sweetened tablets as stimuli. At lunchtime, 12 normal-weight men sucked for 5 min a sucrose, an aspartame-polydextrose, or an unsweetened polydextrose tablet (3 g) with no added flavor. The three stimuli were administered in a counterbalanced order, each on a separate day at 1-wk intervals. Blood was drawn continuously for 45 min before and 25 min after the beginning of sucking and samples were collected at 1-min intervals. Spontaneous oscillations in glucose, insulin, and glucagon concentrations were assessed as were increments (slopes) of fatty acid concentrations during the baseline period. The nature of the baseline (oscillations: glucose, insulin, and glucagon; and slopes: fatty acids) was taken into account in the analyses of postexposure events. No CPIR and no significant effect on plasma glucagon or fatty acid concentrations were observed after the three stimuli. However, there was a significant decrease in plasma glucose and insulin after all three stimuli. Only the consumption of the sucrose tablet was followed by a postabsorptive increase in plasma glucose and insulin concentrations starting 17 and 19 min, respectively, after the beginning of sucking. In conclusion, this study suggested that oral stimulation provided by sweet nonflavored tablets is not sufficient for inducing CPIR.

  16. Rhodopsin-stimulated activation-deactivation cycle of transducin: kinetics of the intrinsic fluorescence response of the alpha subunit.

    PubMed

    Guy, P M; Koland, J G; Cerione, R A

    1990-07-31

    The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues [cf. Phillips and Cerione (1988) J. Biol. Chem. 263, 15498-15505]. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on [rhodopsin], while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high [rhodopsin], the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin. The results of this modeling suggest the following points: (1) the dependency of the activation-deactivation cycle on [rhodopsin] can be described by a simple dose response profile; (2) the rate of the rhodopsin

  17. Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2. [jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Sengupta, G.

    1978-01-01

    Low frequency cabin noise and sonically induced stresses in an aircraft fuselage may be reduced by intrinsic tuning of the various structural members such as the skin, stringers, and frames and then applying damping treatments on these members. The concept is also useful in identifying the key structural resonance mechanisms controlling the fuselage response to broadband random excitation and in developing suitable damping treatments for reducing the structural response in various frequency ranges. The mathematical proof of the concept and the results of some laboratory and field tests on a group of skin-stringer panels are described. In the so-called stiffness-controlled region, the noise transmission may actually be controlled by stiffener resonances, depending upon the relationship between the natural frequencies of the skin bay and the stiffeners. Therefore, cabin noise in the stiffness-controlled region may be effectively reduced by applying damping treatments on the stiffeners.

  18. Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia.

    PubMed

    Nanjappa, Som Gowda; Hernández-Santos, Nydiaris; Galles, Kevin; Wüthrich, Marcel; Suresh, M; Klein, Bruce S

    2015-09-01

    Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients.

  19. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  20. Adaptive optics and phase diversity imaging for responsive space applications.

    SciTech Connect

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  1. Intrinsic (gas phase) thermodynamic stability of 2-adamantyl cation. Its bearing on the solvolysis rates of 2-adamantyl derivatives.

    PubMed

    Abboud, José-Luis M; Castaño, Obis; Dávalos, Juan Z; Jiménez, Pilar; Gomperts, Roberto; Müller, Paul; Roux, María Victoria

    2002-02-22

    The standard enthalpy of formation of gaseous 2-adamantyl chloride(2-Ad-Cl) was determined by calorimetric techniques. The standard Gibbs energy change for the chloride anion exchange between 1-adamantyl (1-Ad+) and 2-adamantyl (2-Ad+) cations in the gas phase was obtained by Fourier transform ion cyclotron resonance spectroscopy (FT ICR). Theoretical calculations at the G2(MP2) level were performed on these and other relevant species. This and data from the literature provided three highly consistent independent estimates of the relative stabilities of 2-Ad+ and 1-Ad+. This difference in gas-phase stability was compared to the differential structural effects on the rates of solvolysis of the corresponding chlorides and tosylates, and it was shown that the thermodynamic stability of the secondary cation is the leading factor determining the solvolytic reactivity of the precursors in the absence of solvent effects. Thus, under these conditions, the previously established linear free energy correlation between carbenium ion stability and solvolytic reactivity of bridgehead derivatives applies also to secondary derivatives.

  2. Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots

    NASA Astrophysics Data System (ADS)

    Biswas, Sayantan; Chatterjee, Avigyan; Biswas, Ashim Kumar; Sinha, Amitabha

    2016-10-01

    Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.

  3. De qi, a threshold of the stimulus intensity, elicits the specific response of acupoints and intrinsic change of human brain to acupuncture.

    PubMed

    Tian, Dai-Shi; Xiong, Jin; Pan, Qing; Liu, Fang; Wang, Lu; Xu, Sha-Bei; Huang, Guang-Ying; Wang, Wei

    2014-01-01

    Objectives.  De qi is the subjective constellation of sensations perceived by the acupuncturists and patients as described in several literatures, but the absence of quantitative evaluation methods in de qi restricts the use of acupuncture treatment widely in the world. In the present study, we tried to investigate the intrinsic property of de qi is and how evaluate it quantitatively. Methods. 30 healthy adult volunteers were determined to investigate intrinsic changes in the human body after acupuncture with de qi. Results. Acupuncture treatment with de qi apparently increased acupoint blood flow, tissue displacement, and the amplitude of myoelectricity after de qi on acupoints. Furthermore, acupuncture treatment induced fMRI signal increase/decrease in different brain regions although no significant change in electroencephalography. Interpretation. The intrinsic change of the subjects representing the specific response of acupoints and human brain to acupuncture indicated that de qi might be evaluated quantitatively by those above aspects, which facilitated the confirmation in validity and propagation of this treatment modality widely in the world.

  4. Improved stability and cell response by intrinsic cross-linking of multilayers from collagen I and oxidized glycosaminoglycans.

    PubMed

    Zhao, Mingyan; Li, Lihua; Zhou, Changren; Heyroth, Frank; Fuhrmann, Bodo; Maeder, Karsten; Groth, Thomas

    2014-11-10

    Stability of surface coatings against environmental stress, such as pH, high ionic strength, mechanical forces, and so forth, is crucial for biomedical application of implants. Here, a novel extracellular-matrix-like polyelectrolyte multilayer (PEM) system composed of collagen I (Col I) and oxidized glycosaminoglycans (oGAGs) was stabilized by intrinsic cross-linking due to formation of imine bonds between aldehydes of oxidized chondroitin sulfate (oCS) or hyaluronan (oHA) and amino groups of Col I. It was also found that Col I contributed significantly more to overall mass in CS-Col I than in HA-Col I multilayer systems and fibrillized particularly in the presence of native and oxidized CS. Adhesion and proliferation studies with murine C3H10T1/2 embryonic fibroblasts demonstrated that covalent cross-linking of oGAG with Col I had no adverse effects on cell behavior. By contrast, it was found that cell size and polarization was more pronounced on oGAG-based multilayer systems, which corresponded also to the higher stiffness of cross-linked multilayers as observed by studies with quartz crystal microbalance (QCM). Overall, PEMs prepared from oGAG and Col I give rise to stable PEM constructs due to intrinsic cross-linking that may be useful for making bioactive coatings of implants and tissue engineering scaffolds.

  5. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  6. [Modeling and simulation of responses from ultrasonic linear phased array].

    PubMed

    He, Wenjing; Zhu, Yuanzhong; Wang, Yufeng; He, Lingli; Lai, Siyu

    2012-10-01

    Phased array transducers are very attractive because the beam generated by the arrays can be electronically focused and steered. The present work characterizes far-field 2D properties of phased array system by functions that are deduced from rectangle source, rectangle line array and phased array based on point source. Results are presented for the distribution of ultrasound intensity on plane xoz and on x-axis by simulation using numerical calculation. It is shown that the shape of response of rectangle line array is modulated by the single array element. It is also demonstrated that the delay time of phased array is the key to steer the beam, sacrificing the value of main lobe and increasing the number of side lobes.

  7. Dynamic response of a blue phase to an applied field

    NASA Astrophysics Data System (ADS)

    Dolganov, V. K.; Heppke, G.; Kitzerow, H.-S.

    1992-10-01

    The dynamic response of the three-dimensionally ordered blue phases BPI and BPII to a step-function electric field was studied in a liquid crystal with negative dielectric anisotropy. A change of diffraction intensities, indicating the existence of two qualitatively different transformations of the structure, has been observed in a pulse electric field. Nous avons étudié la dynamique des propriétés électro-optiques pour les mésophases cubiques Phase Bleue I (BPI) et Phase Bleue II (BPII) dans un mélange avec une anisotropie diélectrique négative. Le changement des intensités des réflexions de Bragg sous l'influence d'un champ alternatif modulé indique deux transformations différentes de la structure des phases bleues.

  8. Phase responses of harmonics reflected from radio-frequency electronics

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; McGowan, Sean F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Martone, Anthony F.; Narayanan, Ram M.

    2016-05-01

    The phase responses of nonlinear-radar targets illuminated by stepped frequencies are studied. Data is presented for an experimental radar and two commercial electronic targets at short standoff ranges. The amplitudes and phases of harmonics generated by each target at each frequency are captured over a 100-MHz-wide transmit band. As in the authors' prior work, target detection is demonstrated by receiving at least one harmonic of at least one transmit frequency. In the present work, experiments confirm that the phase of a harmonic reflected from a radio-frequency electronic target at a standoff distance is linear versus frequency. Similar to traditional wideband radar, the change of the reflected phase with respect to frequency indicates the range to the nonlinear target.

  9. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  10. Phase response theory extended to nonoscillatory network components

    PubMed Central

    Sieling, Fred H.; Archila, Santiago; Hooper, Ryan; Canavier, Carmen C.; Prinz, Astrid A.

    2012-01-01

    New tools for analysis of oscillatory networks using phase response theory (PRT) under the assumption of pulsatile coupling have been developed steadily since the 1980s, but none have yet allowed for analysis of mixed systems containing nonoscillatory elements. This caveat has excluded the application of PRT to most real systems, which are often mixed. We show that a recently developed tool, the functional phase resetting curve (fPRC), provides a serendipitous benefit: it allows incorporation of nonoscillatory elements into systems of oscillators where PRT can be applied. We validate this method in a model system of neural oscillators and a biological system, the pyloric network of crustacean decapods. PMID:23004844

  11. Phase response curves in the characterization of epileptiform activity

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, J. L.; Galán, R. F.; Dominguez, L. Garcia; Leshchenko, Y.; Lo, S.; Belkas, J.; Erra, R. Guevara

    2007-12-01

    Coordinated cellular activity is a major characteristic of nervous system function. Coupled oscillator theory offers unique avenues to address cellular coordination phenomena. In this study, we focus on the characterization of the dynamics of epileptiform activity, based on some seizures that manifest themselves with very periodic rhythmic activity, termed absence seizures. Our approach consists in obtaining experimentally the phase response curves (PRCs) in the neocortex and thalamus, and incorporating these PRCs into a model of coupled oscillators. Phase preferences of the stationary states and their stability are determined, and these results from the model are compared with the experimental recordings, and interpreted in physiological terms.

  12. Prestimulation phase predicts the TMS-evoked response

    PubMed Central

    Johnson, Jeffrey S.; Postle, Bradley R.

    2014-01-01

    Prestimulation oscillatory phase and power in particular frequency bands predict perception of at-threshold visual stimuli and of transcranial magnetic stimulation (TMS)-induced phosphenes. These effects may be due to changes in cortical excitability, such that certain ranges of power and/or phase values result in a state in which a particular brain area is more receptive to input, thereby biasing behavior. However, the effects of trial-by-trial fluctuations in phase and power of ongoing oscillations on the brain's electrical response to TMS itself have thus far not been addressed. The present study adopts a combined TMS and electroencepalography (EEG) approach to determine whether the TMS-evoked response is sensitive to momentary fluctuations in prestimulation phase and/or power in different frequency bands. Specifically, TMS was applied to superior parietal lobule while subjects performed a short-term memory task. Results showed that the prestimulation phase, particularly within the beta (15–25 Hz) band, predicted pulse-by-pulse variations in the global mean field amplitude. No such relationship was observed between prestimulation power and the global mean field amplitude. Furthermore, TMS-evoked power in the beta band fluctuated with prestimulation phase in the beta band in a manner that differed from spontaneous brain activity. These effects were observed in areas at and distal to the stimulation site. Together, these results confirm the idea that fluctuating phase of ongoing neuronal oscillations create “windows of excitability” in the brain, and they give insight into how TMS interacts with ongoing brain activity on a pulse-by-pulse basis. PMID:25008413

  13. Acid tolerance response of Bordetella bronchiseptica in avirulent phase.

    PubMed

    Fingermann, M; Hozbor, D

    2015-12-01

    Bordetella bronchiseptica is a Gram-negative bacterium responsible for respiratory diseases in many mammalian hosts, including humans. This pathogen has been shown as able to persist inside the host cells, even in the phagosomes that are acidified to pH 4.5-5.0 after bacterial infection. Here we evaluated the resistance of B. bronchiseptica to survive under acidic conditions. In particular we analyzed the bacterial capacity to develop the mechanism known as acid tolerance response (ATR). Our studies were mainly focused on the avirulent phase of the bacteria since this phenotypic phase was reported to be more resistant to environmental stress conditions than the virulent phase. Results from B. bronchiseptica in virulent phase were also included for comparison purposes. In fact, for B. bronchiseptica 9.73 bacteria in virulent phase we observed that the viability of bacteria does not decrease significantly when grown at pH as low as 4.5, but it is affected when the pH of the medium was equal to or less than 4.0. After acid-adaptation at pH 5.5 for several hours, the survival rate of B. bronchiseptica 9.73 at lethal pH 4.0 for 6h was increased. Interestingly, the avirulent phase mediated by the two-component BvgAS system conferred further resistance to lethal acid challenge and a marked increase in the magnitude of the expressed ATR. The ATR for this avirulent phase seems to be associated with changes in LPS and surface protein profiles. 2D-gel electrophoresis revealed at least 25 polypeptides differentially expressed, 17 of which were only expressed or over-expressed under acid conditions. Using MALDI-TOF mass spectrometry, 10 of these differentially expressed polypeptides were identified.

  14. Effects of Crowding and Environment on the Evolution of Conformational Ensembles of the Multi-Stimuli-Responsive Intrinsically Disordered Protein, Rec1-Resilin: A Small-Angle Scattering Investigation.

    PubMed

    Balu, Rajkamal; Mata, Jitendra P; Knott, Robert; Elvin, Christopher M; Hill, Anita J; Choudhury, Namita R; Dutta, Naba K

    2016-07-14

    In this study, we explore the overall structural ensembles and transitions of a biomimetic, multi-stimuli-responsive, intrinsically disordered protein (IDP), Rec1-resilin. The structural transition of Rec1-resilin with change in molecular crowding and environment is evaluated using small-angle neutron scattering and small-angle X-ray scattering. The quantitative analyses of the experimental scattering data using a combination of computational models allowed comprehensive description of the structural evolution, organization, and conformational ensembles of Rec1-resilin in response to the changes in concentration, pH, and temperature. Rec1-resilin in uncrowded solutions demonstrates the equilibrium intrinsic structure quality of an IDP with radius of gyration Rg ∼ 5 nm, and a scattering function for the triaxial ellipsoidal model best fit the experimental dataset. On crowding (increase in concentration >10 wt %), Rec1-resilin molecules exert intermolecular repulsive force of interaction, the Rg value reduces with a progressive increase in concentration, and molecular chains transform from a Gaussian coil to a fully swollen coil. It is also revealed that the structural organization of Rec1-resilin dynamically transforms from a rod (pH 2) to coil (pH 4.8) and to globular (pH 12) as a function of pH. The findings further support the temperature-triggered dual-phase-transition behavior of Rec1-resilin, exhibiting rod-shaped structural organization below the upper critical solution temperature (∼4 °C) and a large but compact structure above the lower critical solution temperature (∼75 °C). This work attempted to correlate unusual responsiveness of Rec1-resilin to the evolution of conformational ensembles.

  15. Evaluation of the Phase-Dependent Rhythm Control of Human Walking Using Phase Response Curves

    PubMed Central

    Yamamoto, Yuki; Aoi, Shinya; Imai, Takashi; Aoyagi, Toshio; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-01-01

    Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur. PMID:27203839

  16. Response of phase Doppler anemometer systems to nonspherical droplets.

    PubMed

    Damaschke, N; Gouesbet, G; Gréhan, G; Mignon, H; Tropea, C

    1998-04-01

    The Phase Doppler Anemometer (PDA) technique measures particle diameter assuming sphericity. A means for detecting nonsphericity has usually been implemented in commercial PDA systems to avoid sizing errors if the sphericity assumption is not valid. In the present research the response of standard and planar PDA systems is examined experimentally in more detail by passing nonspherical droplets of known shape through the measurement volume. The effectiveness of nonsphericity detection schemes can be evaluated, and furthermore the influence of the droplet oscillations on the frequency and phase evolution of individual signals can be quantified. The light scattering from such particles has been simulated by using geometric optics, and the computed response of standard and planar PDA systems agrees well with the experimental observations. We conclude with some remarks concerning the possibilities of characterizing the nonsphericity with PDA systems.

  17. Three phase bone scan interpretation based upon vascular endothelial response

    PubMed Central

    Kumar, Kush

    2015-01-01

    Objectives: A new method of interpretation of Three Phase Bone Scan (TPBS) scan based upon the normal physiological vascular endothelial related response. Materials and Methods: Fifty cases of TPBS were evaluated. Thirteen were normal. In remaining 37 positive studies, 20 showed localized hyperemic response. All localized hyperemic responses except one with vascular endothelial dysfunction were without infection (95.0%). Infection could be ruled out in absence of generalized massive flow and pool response. All 17 cases with generalized massive hyperemic response had infection, consistent with infection or CRPS/RSD. Micro-bacterial or histological confirmation of infection was obtained in 11 cases. All 11 cases with confirmed infection showed generalized massive hyperemic response (100.0%). Two were CRPS/RSD and 2 cases were of cellulitis (100.0%). Among remaining 2, one refused surgery and other was lost to follow-up. Additionally, 20 published cases in the literature of osteomyelitis were also analyzed. Nineteen cases of bone and joint infection, (osteomyelitis/arthritis/cellulitis) except one with endothelial dysfunction showed generalized massive increased flow and pool response (95.0%). All published cases of osteomyelitis in the literature showed generalized massive hyperemic response (100.0%). Results: The data clearly indicated that 100% of the cases of bone infection (osteomyelitis/arthritis/cellulitis) and cases of CRPS/RSD showed generalized massive flow and pool pattern. Infection could be ruled out in absence of generalized massive flow and pool response. All 100% published cases of osteomyelitis in the literature showed positive vascular endothelial response. Conclusion: By incorporating the concept of vascular endothelial related response causing massive vasodilatation in infection, the interpretation of the TPBS can be more précised as it is based upon the normal physiology. Larger studies are recommended. PMID:25829726

  18. The Ship Response Tactical Decision Aid. Phase 1

    DTIC Science & Technology

    1989-11-01

    was conducted in April 1988 to validate the Phase I Ship Response Tactical Decision Aid. The ship, USS CONYNGHAM ( DDG -17), was equipped with the SPS...the relative direction of the seas and ship. Comparisons between measured and predicted ship motions made aboard USS CONYN- GHAM are presented in Figs...environment. 1 I I I I 18! I I ACKNOWLEDGEMENTS The kind cooperation of the USS CONYNGHAM, under the capable leadership of Commander David Rose, allowed

  19. Normal Caloric Responses during Acute Phase of Vestibular Neuritis

    PubMed Central

    Lee, Sun-Uk; Park, Seong-Ho; Kim, Hyo-Jung; Koo, Ja-Won

    2016-01-01

    Background and Purpose We report a novel finding of caloric conversion from normal responses into unilateral paresis during the acute phase of vestibular neuritis (VN). Methods We recruited 893 patients with a diagnosis of VN at Dizziness Clinic of Seoul National University Bundang Hospital from 2003 to 2014 after excluding 28 patients with isolated inferior divisional VN (n=14) and those without follow-up tests despite normal caloric responses initially (n=14). We retrospectively analyzed the neurotological findings in four (0.5%) of the patients who showed a conversion from initially normal caloric responses into unilateral paresis during the acute phase. Results In those four patients, the initial caloric tests were performed within 2 days of symptom onset, and conversion into unilateral caloric paresis was documented 1–4 days later. The clinical and laboratory findings during the initial evaluation were consistent with VN in all four patients except for normal findings in bedside head impulse tests in one of them. Conclusions Normal findings in caloric tests should be interpreted with caution during the acute phase of suspected VN. Follow-up evaluation should be considered when the findings of the initial caloric test are normal, but VN remains the most plausible diagnosis. PMID:26932259

  20. Rhodopsin-stimulated activation-deactivation cycle of transducin: Kinetics of the intrinsic fluorescence response of the alpha subunit

    SciTech Connect

    Guy, P.M.; Koland, J.G.; Cerione, R.A. )

    1990-07-31

    The intrinsic tryptophan fluorescence of the alpha subunit of transducin (alpha T) has been shown to be sensitive to the binding of guanine nucleotides, with the fluorescence being enhanced by as much as 2-fold upon the binding of GTP or nonhydrolyzable GTP analogues. In this work, we have used these fluorescence changes to analyze the kinetics for the activation (GTP binding)-deactivation (GTPase) cycle of transducin in a well-defined reconstituted phospholipid vesicle system containing purified rhodopsin and the alpha T and beta gamma T subunits of the retinal GTP-binding protein. Both the rate and the extent of the GTP-induced fluorescence enhancement are dependent on (rhodopsin), while only the rate (and not the extent) of the GTP gamma S-induced enhancement is dependent on the levels of rhodopsin. Comparisons of the fluorescence enhancements elicited by GTP gamma S and GTP indicate that the GTP gamma S-induced enhancements directly reflect the GTP gamma S-binding event while the GTP-induced enhancements represent a composite of the GTP-binding and GTP hydrolysis events. At high (rhodopsin), the rates for GTP binding and GTPase are sufficiently different such that the GTP-induced enhancement essentially reflects GTP binding. A fluorescence decay, which always follows the GTP-induced enhancement, directly reflects the GTP hydrolytic event. The rate of the fluorescence decay matches the rate of (32P)Pi production due to (gamma-32P)GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP. The GTP-induced fluorescence changes (i.e., the enhancement and ensuing decay) could be fit to a simple model describing the activation-deactivation cycle of transducin.

  1. A Temperature-Responsive Smart Europium Metal-Organic Framework Switch for Reversible Capture and Release of Intrinsic Eu(3+) Ions.

    PubMed

    Zhu, Min; Song, Xue-Zhi; Song, Shu-Yan; Zhao, Shu-Na; Meng, Xing; Wu, Lan-Lan; Wang, Cheng; Zhang, Hong-Jie

    2015-04-01

    Stimuli-responsive structural transformations are emerging as a scaffold to develop a charming class of smart materials. A EuL metal-organic framework (MOF) undergoes a reversible temperature-stimulated single-crystal to single-crystal transformation, showing a specific behavior of fast capture/release of free Eu(3+) in the channels at low and room temperatures. At room temperature, compound 1a is obtained with one free carboxylate group severing as further hook, featuring one-dimensional square channels filled with intrinsic free europium ions. Trigged by lowering the ambient temperature, 1b is gained. In 1b, the intrinsic free europium ions can be fast captured by the carboxylate-hooks anchored in the framework, resulting in the structural change and its channel distortion. To the best of our knowledge, this is the first report of such a rapid and reversible switch stemming from dynamic control between noncovalent and covalent Eu-ligand interactions. Utilizing EuL MOF to detect highly explosive 2,4,6-trinitrophenol at room temperature and low temperature provides a glimpse into the potential of this material in fluorescence sensors.

  2. Functional phase response curves: a method for understanding synchronization of adapting neurons.

    PubMed

    Cui, Jianxia; Canavier, Carmen C; Butera, Robert J

    2009-07-01

    Phase response curves (PRCs) for a single neuron are often used to predict the synchrony of mutually coupled neurons. Previous theoretical work on pulse-coupled oscillators used single-pulse perturbations. We propose an alternate method in which functional PRCs (fPRCs) are generated using a train of pulses applied at a fixed delay after each spike, with the PRC measured when the phasic relationship between the stimulus and the subsequent spike in the neuron has converged. The essential information is the dependence of the recovery time from pulse onset until the next spike as a function of the delay between the previous spike and the onset of the applied pulse. Experimental fPRCs in Aplysia pacemaker neurons were different from single-pulse PRCs, principally due to adaptation. In the biological neuron, convergence to the fully adapted recovery interval was slower at some phases than that at others because the change in the effective intrinsic period due to adaptation changes the effective phase resetting in a way that opposes and slows the effects of adaptation. The fPRCs for two isolated adapting model neurons were used to predict the existence and stability of 1:1 phase-locked network activity when the two neurons were coupled. A stability criterion was derived by linearizing a coupled map based on the fPRC and the existence and stability criteria were successfully tested in two-simulated-neuron networks with reciprocal inhibition or excitation. The fPRC is the first PRC-based tool that can account for adaptation in analyzing networks of neural oscillators.

  3. Functional Phase Response Curves: A Method for Understanding Synchronization of Adapting Neurons

    PubMed Central

    Cui, Jianxia; Canavier, Carmen C.; Butera, Robert J.

    2009-01-01

    Phase response curves (PRCs) for a single neuron are often used to predict the synchrony of mutually coupled neurons. Previous theoretical work on pulse-coupled oscillators used single-pulse perturbations. We propose an alternate method in which functional PRCs (fPRCs) are generated using a train of pulses applied at a fixed delay after each spike, with the PRC measured when the phasic relationship between the stimulus and the subsequent spike in the neuron has converged. The essential information is the dependence of the recovery time from pulse onset until the next spike as a function of the delay between the previous spike and the onset of the applied pulse. Experimental fPRCs in Aplysia pacemaker neurons were different from single-pulse PRCs, principally due to adaptation. In the biological neuron, convergence to the fully adapted recovery interval was slower at some phases than that at others because the change in the effective intrinsic period due to adaptation changes the effective phase resetting in a way that opposes and slows the effects of adaptation. The fPRCs for two isolated adapting model neurons were used to predict the existence and stability of 1:1 phase-locked network activity when the two neurons were coupled. A stability criterion was derived by linearizing a coupled map based on the fPRC and the existence and stability criteria were successfully tested in two-simulated-neuron networks with reciprocal inhibition or excitation. The fPRC is the first PRC-based tool that can account for adaptation in analyzing networks of neural oscillators. PMID:19420126

  4. Phase response curves for models of earthquake fault dynamics.

    PubMed

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-06-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

  5. Intrinsic properties of muscle satellite cells are changed in response to long-term selection of mice for different growth traits.

    PubMed

    Rehfeldt, C; Walther, K; Albrecht, E; Nürnberg, G; Renne, U; Bünger, L

    2002-12-01

    Satellite cell cultures were derived from mice selected long-term over 70 generations for body weight (DU-6, growth), carcass protein amount (DU-6P, protein) and an index combining body weight and endurance treadmill performance (DU-6+LB, growth + fitness) at 42 days of age and from an unselected control line (DU-Ks). They were grown under identical environmental conditions to examine intrinsic cellular differences in proliferation, protein metabolism and responsiveness to growth factors. Growth kinetics (DNA and protein amounts) were determined over a 12-day period. During exponential growth, all growth-selected cultures grew faster than the control culture: (DU-6+LB=DU-6P)>DU-6>DU-Ks. The differences in DNA and protein levels were maintained until day 8. DU-Ks cultures reached similar levels as the growth (DU-6) and protein (DU-6P) cultures in terms of DNA at day 12 of cultivation. Thus, the cultures from the growth and protein lines, but not from the growth + fitness line, exhibited larger protein:DNA ratios (cell size) than the control cultures. Cell cultures from the selected lines were more responsive to serum and epidermal growth factor in terms of [(3)H] thymidine incorporation into DNA, whereas no stimulation by insulin or insulin-like growth factor-I was detectable in cultures from selected lines or controls. During differentiation, protein metabolism in cultures from selected lines was characterised by higher rates of protein synthesis (PS) and degradation (PD), as measured by [(3)H] phenylalanine incorporation or release, respectively, than in control cells. The ratios of the relative differences from the control in PS and PD were only >1.0 in the growth and protein lines. In conclusion, long-term selection for growth therefore modifies the intrinsic capability of satellite cells for proliferation and protein metabolism, with changes being dependent on the selection trait.

  6. On hysteretic response and stationary phase fronts in rubber

    NASA Astrophysics Data System (ADS)

    Niemczura, J.; Ravi-Chandar, K.

    2010-09-01

    We consider the dynamic response of natural, latex and synthetic, nitrile rubbers under non-monotonic dynamic loading conditions; in particular, we recreate an experiment first considered by Kolsky (Nature 224:1301, 1969) in which two segments of a long rubber specimen are initially maintained at different strain levels by external force and then allowed to evolve dynamically towards equilibrium. We show that as a result of the hysteretic behavior, a phase boundary that is stationary with respect to the material points can be established in both these materials. We also show that this phase boundary persists indefinitely in strain-crystallizing natural, latex rubber, but disappears quickly in the non-crystallizing nitrile rubber.

  7. Collective phase response curves for heterogeneous coupled oscillators

    NASA Astrophysics Data System (ADS)

    Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.

    2015-08-01

    Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.

  8. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs.

  9. Acute phase protein response in the capybara (Hydrochoerus hydrochaeris).

    PubMed

    Bernal, Luis; Feser, Mariane; Martínez-Subiela, Silvia; García-Martínez, Juan D; Cerón, José J; Tecles, Fernando

    2011-10-01

    We evaluated the acute phase protein response in capybaras (Hydrochoerus hydrochaeris). Three animal groups were used: 1) healthy animals (n=30), 2) a group in which experimental inflammation with turpentine was induced (n=6), and 3) a group affected with sarcoptic scabies (n=14) in which 10 animals were treated with ivermectin. Haptoglobin (Hp), acid-soluble glycoprotein (ASG) and albumin were analyzed in all animals. In those treated with turpentine, Hp reached its maximum value at 2 wk with a 2.7-fold increase, whereas ASG increased 1.75-fold and albumin decreased 0.87-fold 1 wk after the induction of inflammation. Capybaras affected with sarcoptic scabies presented increases in Hp and ASG of 4.98- and 3.18-fold, respectively, and a 0.87-fold decrease in albumin, compared with healthy animals. Haptoglobin and ASG can be considered as moderate, positive acute phase proteins in capybaras because they showed less than 10-fold increases after an inflammatory process and reached their peak concentrations 1 wk after the induction of inflammation. Conversely, albumin can be considered a negative acute phase protein in capybaras because it showed a reduction in concentration after inflammatory stimulus.

  10. Robust Entrainment of Circadian Oscillators Requires Specific Phase Response Curves

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin; Lefranc, Marc

    2011-01-01

    The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evolved so as to be robust to fluctuations in the signal that entrains them. To support this hypothesis, we analyze the synchronization behavior of weakly and periodically forced oscillators in terms of their phase response curve (PRC), which measures phase changes induced by a perturbation applied at different times of the cycle. We establish a general relationship between the robustness of key entrainment properties, such as stability and oscillator phase, on the one hand, and the shape of the PRC as characterized by a specific curvature or the existence of a dead zone, on the other hand. The criteria obtained are applied to computational models of circadian clocks and account for the disparate robustness properties of various forcing schemes. Finally, the analysis of PRCs measured experimentally in several organisms strongly suggests a case of convergent evolution toward an optimal strategy for maintaining a clock that is accurate and robust to environmental fluctuations. PMID:21641300

  11. Activation of the Nrf2 response by intrinsic hepatotoxic drugs correlates with suppression of NF-κB activation and sensitizes toward TNFα-induced cytotoxicity.

    PubMed

    Herpers, Bram; Wink, Steven; Fredriksson, Lisa; Di, Zi; Hendriks, Giel; Vrieling, Harry; de Bont, Hans; van de Water, Bob

    2016-05-01

    Drug-induced liver injury (DILI) is an important problem both in the clinic and in the development of new safer medicines. Two pivotal adaptation and survival responses to adverse drug reactions are oxidative stress and cytokine signaling based on the activation of the transcription factors Nrf2 and NF-κB, respectively. Here, we systematically investigated Nrf2 and NF-κB signaling upon DILI-related drug exposure. Transcriptomics analyses of 90 DILI compounds in primary human hepatocytes revealed that a strong Nrf2 activation is associated with a suppression of endogenous NF-κB activity. These responses were translated into quantitative high-content live-cell imaging of induction of a selective Nrf2 target, GFP-tagged Srxn1, and the altered nuclear translocation dynamics of a subunit of NF-κB, GFP-tagged p65, upon TNFR signaling induced by TNFα using HepG2 cells. Strong activation of GFP-Srxn1 expression by DILI compounds typically correlated with suppression of NF-κB nuclear translocation, yet reversely, activation of NF-κB by TNFα did not affect the Nrf2 response. DILI compounds that provided strong Nrf2 activation, including diclofenac, carbamazepine and ketoconazole, sensitized toward TNFα-mediated cytotoxicity. This was related to an adaptive primary protective response of Nrf2, since loss of Nrf2 enhanced this cytotoxic synergy with TNFα, while KEAP1 downregulation was cytoprotective. These data indicate that both Nrf2 and NF-κB signaling may be pivotal in the regulation of DILI. We propose that the NF-κB-inhibiting effects that coincide with a strong Nrf2 stress response likely sensitize liver cells to pro-apoptotic signaling cascades induced by intrinsic cytotoxic pro-inflammatory cytokines.

  12. The Touch and Zap Method for In Vivo Whole-Cell Patch Recording of Intrinsic and Visual Responses of Cortical Neurons and Glial Cells

    PubMed Central

    Schramm, Adrien E.; Marinazzo, Daniele; Gener, Thomas; Graham, Lyle J.

    2014-01-01

    Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi

  13. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice.

    PubMed

    Rosell, Meritxell; Kaforou, Myrsini; Frontini, Andrea; Okolo, Anthony; Chan, Yi-Wah; Nikolopoulou, Evanthia; Millership, Steven; Fenech, Matthew E; MacIntyre, David; Turner, Jeremy O; Moore, Jonathan D; Blackburn, Edith; Gullick, William J; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G; Christian, Mark

    2014-04-15

    Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.

  14. High-response piezoelectricity modeled quantitatively near a phase boundary

    NASA Astrophysics Data System (ADS)

    Newns, Dennis M.; Kuroda, Marcelo A.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.

    2017-01-01

    Interconversion of mechanical and electrical energy via the piezoelectric effect is fundamental to a wide range of technologies. The discovery in the 1990s of giant piezoelectric responses in certain materials has therefore opened new application spaces, but the origin of these properties remains a challenge to our understanding. A key role is played by the presence of a structural instability in these materials at compositions near the "morphotropic phase boundary" (MPB) where the crystal structure changes abruptly and the electromechanical responses are maximal. Here we formulate a simple, unified theoretical description which accounts for extreme piezoelectric response, its observation at compositions near the MPB, accompanied by ultrahigh dielectric constant and mechanical compliances with rather large anisotropies. The resulting model, based upon a Landau free energy expression, is capable of treating the important domain engineered materials and is found to be predictive while maintaining simplicity. It therefore offers a general and powerful means of accounting for the full set of signature characteristics in these functional materials including volume conserving sum rules and strong substrate clamping effects.

  15. The effects of inhaled corticosteroids on intrinsic responsiveness and histology of airways from infant monkeys exposed to house dust mite allergen and ozone

    SciTech Connect

    Joad, Jesse P. Kott, Kayleen S.; Bric, John M.; Schelegle, Edward S.; Gershwin, Laurel J.; Plopper, Charles G.; Peake, Janice L.; Pinkerton, Kent E.

    2008-01-15

    Inhaled corticosteroids (ICS) are recommended to treat infants with asthma, some with intermittent asthma. We previously showed that exposing infant monkeys to allergen/ozone resulted in asthma-like characteristics of their airways. We evaluated the effects of ICS on histology and intrinsic responsiveness of allergen/ozone-exposed and normal infant primate airways. Infant monkeys were exposed by inhalation to (1) filtered air and saline, (2) house dust mite allergen (HDMA) + ozone and saline, (3) filtered air and ICS (budesonide) or (4) HDMA + ozone and ICS. Allergen/ozone exposures started at 1 month and ICS at 3 months of age. At 6 months of age, methacholine-induced changes in luminal area of airways in proximal and distal lung slices were determined using videomicrometry, followed by histology of the same slices. Proximal airway responsiveness was increased by allergen/ozone and by ICS. Eosinophil profiles were increased by allergen/ozone in both proximal and distal airways, an effect that was decreased by ICS in distal airways. In both allergen/ozone- and air-exposed monkeys, ICS increased the number of alveolar attachments in distal airways, decreased mucin in proximal airways and decreased epithelial volume in both airways. ICS increased smooth muscle in air-exposed animals while decreasing it in allergen/ozone-exposed animals in both airways. In proximal airways, there was a small but significant positive correlation between smooth muscle and airway responsiveness, as well as between alveolar attachments and responsiveness. ICS change morphology and function in normal airways as well as allergen/ozone-exposed airways, suggesting that they should be reserved for infants with active symptoms.

  16. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2

  17. Ultrafast Intrinsic Photoresponse and Direct Evidence of Sub-gap States in Liquid Phase Exfoliated MoS2Thin Films

    PubMed Central

    Ghosh, Sujoy; Winchester, Andrew; Muchharla, Baleeswaraiah; Wasala, Milinda; Feng, Simin; Elias, Ana Laura; Krishna, M. Bala Murali; Harada, Takaaki; Chin, Catherine; Dani, Keshav; Kar, Swastik; Terrones, Mauricio; Talapatra, Saikat

    2015-01-01

    2-Dimensional structures with swift optical response have several technological advantages, for example they could be used as components of ultrafast light modulators, photo-detectors, and optical switches. Here we report on the fast photo switching behavior of thin films of liquid phase exfoliated MoS2, when excited with a continuous laser of λ = 658 nm (E = 1.88 eV), over a broad range of laser power. Transient photo-conductivity measurements, using an optical pump and THz probe (OPTP), reveal that photo carrier decay follows a bi-exponential time dependence, with decay times of the order of picoseconds, indicating that the photo carrier recombination occurs via trap states. The nature of variation of photocurrent with temperature confirms that the trap states are continuously distributed within the mobility gap in these thin film of MoS2, and play a vital role in influencing the overall photo response. Our findings provide a fundamental understanding of the photo-physics associated with optically active 2D materials and are crucial for developing advanced optoelectronic devices. PMID:26175112

  18. Linear control of neuronal spike timing using phase response curves.

    PubMed

    Stigen, Tyler; Danzl, Per; Moehlis, Jeff; Netoff, Theoden

    2009-01-01

    We propose a simple, robust, linear method to control the spike timing of a periodically firing neuron. The control scheme uses the neuron's phase response curve to identify an area of optimal sensitivity for the chosen stimulation parameters. The spike advance as a function of current pulse amplitude is characterized at the optimal phase and a linear least-squares regression is fit to the data. The inverted regression is used as the control function for this method. The efficacy of this method is demonstrated through numerical simulations of a Hodgkin-Huxley style neuron model as well as in real neurons from rat hippocampal slice preparations. The study shows a proof of concept for the application of a linear control scheme to control neuron spike timing in-vitro. This study was done on an individual cell level, but translation to a tissue or network level is possible. Control schemes of this type could be implemented in a closed loop implantable device to treat neuromotor disorders involving pathologically neuronal activity such as epilepsy or Parkinson's disease.

  19. Acute phase response in cattle infected with Anaplasma marginale.

    PubMed

    Nazifi, S; Razavi, S M; Kaviani, F; Rakhshandehroo, E

    2012-03-23

    This study was undertaken to evaluate the acute phase responses via the assessment of the concentration of serum sialic acids (total, lipid bound and protein bound), inflammatory mediators (IFN-γ and TNF-α) and acute phase proteins (Hp and SAA) in 20 adult crossbred cattle naturally infected by Anaplasma marginale. The infected animals were divided into 2 subgroups on the basis of parasitemia rate (<20% and >20%). Also, as a control group, 10 clinically healthy cattle from the same farms were sampled. Our data revealed significant decreases in red blood cell count (RBC), hematocrite (PCV) and hemoglobine (Hb) in infected cattle compared to healthy ones. Conversely, the concentrations of Hp, SAA, ceruloplasmin, fibrinogen, serum sialic acids and the circulatory IFN-γ and TNF-α were increased in the diseased cattle (P<0.05). In addition, it was evident that the progression of parasitemia in infected cattle did not induce any significant alterations in the hematological indices (RBCs, PCV and Hb) and the concentrations of Hp, SAA, ceruloplasmin and fibrinogen. SAA was the most sensitive factor to change in the diseased cattle. Therefore, increase in SAA concentration may be a good indicator of inflammatory process in cattle naturally infected with Anaplasma marginale.

  20. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    SciTech Connect

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities.

  1. Motexafin-Gadolinium and Involved Field Radiation Therapy for Intrinsic Pontine Glioma of Childhood: A Children's Oncology Group Phase 2 Study

    SciTech Connect

    Bradley, Kristin A.; Zhou Tianni; McNall-Knapp, Rene Y.; Jakacki, Regina I.; Pollack, Ian F.

    2013-01-01

    Purpose: To evaluate the effects on 1-year event-free survival (EFS) and overall survival (OS) of combining motexafin and gadolinium (MGd), a potent radiosensitizer, with daily fractionated radiation therapy in children with newly diagnosed intrinsic pontine gliomas. Methods and Materials: Patients with newly diagnosed intrinsic pontine glioma were treated with MGd daily for 5 consecutive days each week, for a total of 30 doses. Patients received a 5- to 10-min intravenous bolus of MGd, 4.4 mg/kg/day, given 2 to 5 h prior to standard dose irradiation. Radiation therapy was administered at a daily dose of 1.8 Gy for 30 treatments over 6 weeks. The total dose was 54 Gy. Results: Sixty eligible children received MGd daily, concurrent with 6 weeks of radiation therapy. The estimated 1-year EFS was 18% {+-} 5%, and the estimated 1-year OS was 53% {+-} 6.5%. The most common grade 3 to 4 toxicities were lymphopenia, transient elevation of liver transaminases, and hypertension. Conclusions: Compared to historical controls, the addition of MGd to a standard 6-week course of radiation did not improve the survival of pediatric patients with newly diagnosed intrinsic pontine gliomas.

  2. The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: Characterization of EgTIP2, a root-specific and osmotic stress-responsive gene.

    PubMed

    Rodrigues, Marcela I; Bravo, Juliana P; Sassaki, Flávio T; Severino, Fábio E; Maia, Ivan G

    2013-12-01

    Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups.

  3. Individual Patterns in Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Hom, Harry L., Jr.; Maxwell, Frederick R.

    The effects of extrinsic reward on students' intrinsic interest was investigated using a single-subject design in a behavior disorders classroom. Baseline measures of the interest level of five children (ages 9-11 years) were collected for academic and non-academic tasks. Assessment was then made of each subject's response hierarchy or level of…

  4. The acute phase response of cod (Gadus morhua L.): expression of immune response genes.

    PubMed

    Audunsdottir, Sigridur S; Magnadottir, Bergljot; Gisladottir, Berglind; Jonsson, Zophonias O; Bragason, Birkir Th

    2012-02-01

    An acute phase response (APR) was experimentally induced in Atlantic cod (Gadus morhua L.) by intramuscular injection of turpentine oil. The change in the expression of immune related genes was monitored in the anterior kidney and the spleen over a period of 7 days. The genes examined were two types of pentraxins, apolipoprotein A1 (ApoA-I), the complement component C3, interleukin-1β (IL-1β), transferrin, cathelicidin, and hepcidin. All genes were constitutively expressed in both organs and their expression amplified by the turpentine injection. A pattern of response was observed both with respect to the organ preference and to the timing of a maximum response. The increased gene expression of the pentraxins, ApoA-I and C3 was restricted to the anterior kidney, the gene expression of IL-1β, cathelicidin, and transferrin increased in both organs, while hepcidin gene expression was only significantly increased in the spleen. The pentraxins and ApoA-I appear to be early mediators of APR in cod, possibly stimulating C3 and IL-1β response, while the antimicrobial peptides may play a minor role. The increase in transferrin gene expression in both organs, and apparent indifference to cortisol release associated with the turpentine injection, suggests that this could be a typical acute phase protein in cod.

  5. Rhodopsin and Melanopsin Contributions to the Early Redilation Phase of the Post-Illumination Pupil Response (PIPR)

    PubMed Central

    Adhikari, Prakash; Feigl, Beatrix; Zele, Andrew J.

    2016-01-01

    Melanopsin expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) entirely control the post-illumination pupil response (PIPR) from 6 s post-stimulus to the plateau during redilation after light offset. However, the photoreceptor contributions to the early redilation phase of the PIPR (< 6 s post-stimulus) have not been reported. Here, we evaluated the photoreceptor contributions to the early phase PIPR (0.6 s to 5.0 s) by measuring the spectral sensitivity of the criterion PIPR amplitude in response to 1 s light pulses at five narrowband stimulus wavelengths (409, 464, 508, 531 and 592 nm). The retinal irradiance producing a criterion PIPR was normalised to the peak and fitted by either a single photopigment nomogram or the combined melanopsin and rhodopsin spectral nomograms with the +L+M cone photopic luminous efficiency (Vλ) function. We show that the PIPR spectral sensitivity at times ≥ 1.7 s after light offset is best described by the melanopsin nomogram. At times < 1.7 s, the peak PIPR sensitivity shifts to longer wavelengths (range: 482 to 498 nm) and is best described by the combined photoreceptor nomogram, with major contributions from melanopsin and rhodopsin. This first report of melanopsin and rhodopsin contributions to the early phase PIPR is in line with the electrophysiological findings of ipRGC and rod signalling after the cessation of light stimuli and provides a cut-off time for isolating photoreceptor specific function in healthy and diseased eyes. PMID:27548480

  6. Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron.

    PubMed

    Fujita, Tomohiro; Fukai, Tomoki; Kitano, Katsunori

    2012-06-01

    The activity patterns of the globus pallidus (GPe) and subthalamic nucleus (STN) are closely associated with motor function and dysfunction in the basal ganglia. In the pathological state caused by dopamine depletion, the STN-GPe network exhibits rhythmic synchronous activity accompanied by rebound bursts in the STN. Therefore, the mechanism of activity transition is a key to understand basal ganglia functions. As synchronization in GPe neurons could induce pathological STN rebound bursts, it is important to study how synchrony is generated in the GPe. To clarify this issue, we applied the phase-reduction technique to a conductance-based GPe neuronal model in order to derive the phase response curve (PRC) and interaction function between coupled GPe neurons. Using the PRC and interaction function, we studied how the steady-state activity of the GPe network depends on intrinsic membrane properties, varying ionic conductances on the membrane. We noted that a change in persistent sodium current, fast delayed rectifier Kv3 potassium current, M-type potassium current and small conductance calcium-dependent potassium current influenced the PRC shape and the steady state. The effect of those currents on the PRC shape could be attributed to extension of the firing period and reduction of the phase response immediately after an action potential. In particular, the slow potassium current arising from the M-type potassium and the SK current was responsible for the reduction of the phase response. These results suggest that the membrane property modulation controls synchronization/asynchronization in the GPe and the pathological pattern of STN-GPe activity.

  7. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients' responsiveness to lithium.

    PubMed

    Stern, S; Santos, R; Marchetto, M C; Mendes, A P D; Rouleau, G A; Biesmans, S; Wang, Q-W; Yao, J; Charnay, P; Bang, A G; Alda, M; Gage, F H

    2017-02-28

    Bipolar disorder (BD) is a progressive psychiatric disorder with more than 3% prevalence worldwide. Affected individuals experience recurrent episodes of depression and mania, disrupting normal life and increasing the risk of suicide greatly. The complexity and genetic heterogeneity of psychiatric disorders have challenged the development of animal and cellular models. We recently reported that hippocampal dentate gyrus (DG) neurons differentiated from induced pluripotent stem cell (iPSC)-derived fibroblasts of BD patients are electrophysiologically hyperexcitable. Here we used iPSCs derived from Epstein-Barr virus-immortalized B-lymphocytes to verify that the hyperexcitability of DG-like neurons is reproduced in this different cohort of patients and cells. Lymphocytes are readily available for research with a large number of banked lines with associated patient clinical description. We used whole-cell patch-clamp recordings of over 460 neurons to characterize neurons derived from control individuals and BD patients. Extensive functional analysis showed that intrinsic cell parameters are very different between the two groups of BD neurons, those derived from lithium (Li)-responsive (LR) patients and those derived from Li-non-responsive (NR) patients, which led us to partition our BD neurons into two sub-populations of cells and suggested two different subdisorders. Training a Naïve Bayes classifier with the electrophysiological features of patients whose responses to Li are known allows for accurate classification with more than 92% success rate for a new patient whose response to Li is unknown. Despite their very different functional profiles, both populations of neurons share a large, fast after-hyperpolarization (AHP). We therefore suggest that the large, fast AHP is a key feature of BD and a main contributor to the fast, sustained spiking abilities of BD neurons. Confirming our previous report with fibroblast-derived DG neurons, chronic Li treatment reduced

  8. Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation.

    PubMed

    Kaneko, Megumi; Xie, Yuxiang; An, Juan Ji; Stryker, Michael P; Xu, Baoji

    2012-04-04

    Sensory experience in early postnatal life shapes neuronal connections in the brain. Here we report that the local synthesis of brain-derived neurotrophic factor (BDNF) in dendrites plays an important role in this process. We found that dendritic spines of layer 2/3 pyramidal neurons of the visual cortex in mutant mice lacking dendritic Bdnf mRNA and thus local BDNF synthesis were normal at 3 weeks of age, but thinner, longer, and more closely spaced (morphological features of immaturity) at 4 months of age than in wild-type (WT) littermates. Layer 2/3 of the visual cortex in these mutant animals also had fewer GABAergic presynaptic terminals at both ages. The overall size and shape of dendritic arbors were, however, similar in mutant and WT mice at both ages. By using optical imaging of intrinsic signals and single-unit recordings, we found that mutant animals failed to recover cortical responsiveness following monocular deprivation (MD) during the critical period, although they displayed normally the competitive loss of responsiveness to an eye briefly deprived of vision. Furthermore, MD still induced a loss of responsiveness to the closed eye in adult mutant mice, but not in adult WT mice. These results indicate that dendritic BDNF synthesis is required for spine pruning, late-phase spine maturation, and recovery of cortical responsiveness following sensory deprivation. They also suggest that maturation of dendritic spines is required for the maintenance of cortical responsiveness following sensory deprivation in adulthood.

  9. Psychophysical estimates of cochlear phase response: masking by harmonic complexes.

    PubMed

    Lentz, J J; Leek, M R

    2001-12-01

    Harmonic complexes with identical component frequencies and amplitudes but different phase spectra may be differentially effective as maskers. Such harmonic waveforms, constructed with positive or negative Schroeder phases, have similar envelopes and identical long-term power spectra, but the positive Schroeder-phase waveform is typically a less effective masker than the negative Schroeder-phase waveform. These masking differences have been attributed to an interaction between the masker phase spectrum and the phase characteristic of the basilar membrane. To explore this relationship, the gradient of stimulus phase change across masker bandwidth was varied by systematically altering the Schroeder-phase algorithm. Observers detected a signal tone added in-phase to a single component of a masker whose frequencies ranged from 200 to 5000 Hz, with a fundamental frequency of 100 Hz. For signal frequencies of 1000-4000 Hz, differences in masking across the harmonic complexes could be as large as 5-10 dB for phase gradients changing by only 10%. The phase gradient that resulted in a minimum amount of masking varied with signal frequency, with low frequencies masked least effectively by stimuli with rapidly changing component phases and high frequencies masked by stimuli with more shallow phase gradients. A gammachirp filter was implemented to model these results, predicting the qualitative changes in curvature of the phase-byfrequency function estimated from the empirical data: In some cases, small modifications to the gammachirp filter produced better quantitative predictions of curvature changes across frequency, but this filter, as implemented here, was unable to accurately represent all the data.

  10. Acute phase response in lame crossbred dairy cattle

    PubMed Central

    Bagga, A.; Randhawa, Swaran Singh; Sharma, S.; Bansal, B. K.

    2016-01-01

    Aim: The study was undertaken to study acute phase response based on acute phase proteins (APPs) such as C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA), and fibrinogen in lame crossbred dairy cattle. Materials and Methods: Lame animals (n=30) were selected within 3-7 days of being noticed as lame by the farm veterinarian, from a local dairy farm in southeast Ludhiana over a period of 6 months, stratified proportionately with respect to stage of lactation with non-lame healthy cows (n=10). All the cows were otherwise healthy and did not have any other inflammatory problems such as pneumonia, enteritis, mastitis, or any kind of acute uterine inflammation. Blood samples were collected from all the animals; serum and plasma samples were separated and stored at −20°C. The levels of CRP, Hp, and SAA were estimated using Sandwich ELISA, whereas fibrinogen was estimated by heat precipitation method. Results: SAA levels in lame cows were significantly higher (22.19±0.85 µg/ml), approximately 3 times as compared to non-lame cows (8.89±0.72 µg/ml), whereas serum Hp concentration was approximately 20 times higher in the lame cattle (21.71±3.32 mg/dl) as compared to non-lame cows (1.17±0.07 mg/dl). Fibrinogen also increased in the lame cattle (3.97±0.22 g/L) as compared to non-lame group (1.40±0.17 g/L). Serum CRP levels analyzed in the lame cattle for the first time in the present study, and significant high concentration was appreciated in lame cattle (4.41±0.33 mg/L) as compared to non-lame cattle (0.61±0.14 mg/L). Lame cattle were having more of sole hemorrhages, sole ulcers, and white line lesions as compared to non-lame cattle. Conclusion: It can be concluded that lame cattle exhibit high levels of APPs including CRP, Hp, SAA, and fibrinogen as compared to non-lame cattle. PMID:27956769

  11. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  12. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  13. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  14. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  15. Identification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks

    PubMed Central

    Willis, Nicholas A.; Zhou, Chunshui; Elia, Andrew E. H.; Murray, Johanne M.; Carr, Antony M.; Elledge, Stephen J.; Rhind, Nicholas

    2016-01-01

    The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase–specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes. PMID:27298342

  16. Unraveling the origins of electromechanical response in mixed-phase Bismuth Ferrite

    SciTech Connect

    Vasudevan, Rama K; Okatan, M. B.; Liu, Y. Y.; Jesse, Stephen; Yang, J.-C.; Liang, W. -I.; Chu, Ying-Hao; Li, J. Y.; Kalinin, Sergei V; Valanoor, Nagarajan V

    2013-01-01

    The origin of giant electromechanical response in a mixed-phase rhombohedral-tetragonal BiFeO3 thin film is probed using sub-coercive scanning probe microscopy based multiple-harmonic measurements. Significant contributions to the strain arise from a second-order harmonic response localized at the phase boundaries. Strain and dissipation data, backed by thermodynamic calculations suggest that the source of the enhanced electromechanical response is the motion of phase boundaries. These findings elucidate the key role of labile phase boundaries, both natural and artificial, in achieving thin films with giant electromechanical properties.

  17. Diffuse intrinsic pontine glioma treated with prolonged temozolomide and radiotherapy--results of a United Kingdom phase II trial (CNS 2007 04).

    PubMed

    Bailey, S; Howman, A; Wheatley, K; Wherton, D; Boota, N; Pizer, B; Fisher, D; Kearns, P; Picton, S; Saran, F; Gibson, M; Glaser, A; Connolly, D J A; Hargrave, D

    2013-12-01

    Diffuse intrinsic pontine glioma (DIPG) has a dismal prognosis with no chemotherapy regimen so far resulting in any significant improvement over standard radiotherapy. In this trial, a prolonged regimen (21/28d) of temozolomide was studied with the aim of overcoming O(6)-methylguanine methyltransferase (MGMT) mediated resistance. Forty-three patients with a defined clinico-radiological diagnosis of DIPG received radiotherapy and concomitant temozolomide (75 mg/m(2)) after which up to 12 courses of 21d of adjuvant temozolomide (75-100mg/m(2)) were given 4 weekly. The trial used a 2-stage design and passed interim analysis. At diagnosis median age was 8 years (2-20 years), 81% had cranial nerve abnormalities, 76% ataxia and 57% long tract signs. Median Karnofsky/Lansky score was 80 (10-100). Patients received a median of three courses of adjuvant temozolomide, five received all 12 courses and seven did not start adjuvant treatment. Three patients were withdrawn from study treatment due to haematological toxicity and 10 had a dose reduction. No other significant toxicity related to temozolomide was noted. Overall survival (OS) (95% confidence interval (CI)) was 56% (40%, 69%) at 9 months, 35% (21%, 49%) at 1 year and 17% (7%, 30%) at 2 years. Median survival was 9.5 months (range 7.5-11.4 months). There were five 2-year survivors with a median age of 13.6 years at diagnosis. This trial demonstrated no survival benefit of the addition of dose dense temozolomide, to standard radiotherapy in children with classical DIPG. However, a subgroup of adolescent DIPG patients did have a prolonged survival, which needs further exploration.

  18. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  19. Theory of the spin-galvanic effect and the anomalous phase shift φ0 in superconductors and Josephson junctions with intrinsic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Konschelle, François; Tokatly, Ilya V.; Bergeret, F. Sebastián

    2015-09-01

    Due to the spin-orbit coupling (SOC) an electric current flowing in a normal metal or semiconductor can induce a bulk magnetic moment. This effect is known as the Edelstein (EE) or magnetoelectric effect. Similarly, in a bulk superconductor a phase gradient may create a finite spin density. The inverse effect, also known as the spin-galvanic effect, corresponds to the creation of a supercurrent by an equilibrium spin polarization. Here, by exploiting the analogy between a linear-in-momentum SOC and a background SU(2) gauge field, we develop a quasiclassical transport theory to deal with magnetoelectric effects in superconducting structures. For bulk superconductors this approach allows us to easily reproduce and generalize a number of previously known results. For Josephson junctions we establish a direct connection between the inverse EE and the appearance of an anomalous phase shift φ0 in the current-phase relation. In particular we show that φ0 is proportional to the equilibrium spin current in the weak link. We also argue that our results are valid generically, beyond the particular case of linear-in-momentum SOC. The magnetoelectric effects discussed in this study may find applications in the emerging field of coherent spintronics with superconductors.

  20. Design of asynchronous phase detection algorithms optimized for wide frequency response.

    PubMed

    Crespo, Daniel; Quiroga, Juan Antonio; Gomez-Pedrero, Jose Antonio

    2006-06-10

    In many fringe pattern processing applications the local phase has to be obtained from a sinusoidal irradiance signal with unknown local frequency. This process is called asynchronous phase demodulation. Existing algorithms for asynchronous phase detection, or asynchronous algorithms, have been designed to yield no algebraic error in the recovered value of the phase for any signal frequency. However, each asynchronous algorithm has a characteristic frequency response curve. Existing asynchronous algorithms present a range of frequencies with low response, reaching zero for particular values of the signal frequency. For real noisy signals, low response implies a low signal-to-noise ratio in the recovered phase and therefore unreliable results. We present a new Fourier-based methodology for designing asynchronous algorithms with any user-defined frequency response curve and known limit of algebraic error. We show how asynchronous algorithms designed with this method can have better properties for real conditions of noise and signal frequency variation.

  1. Intrinsic Nilpotent Approximation.

    DTIC Science & Technology

    1985-06-01

    RD-A1II58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 1/2 OF TECH CAMBRIDGE LAB FOR INFORMATION AND, DECISION UMCLRSSI SYSTEMS C...TYPE OF REPORT & PERIOD COVERED Intrinsic Nilpotent Approximation Technical Report 6. PERFORMING ORG. REPORT NUMBER LIDS-R-1482 7. AUTHOR(.) S...certain infinite-dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras or g . where x E M, (x,,Z) E T*M/O. It

  2. Natural variations in the stress and acute phase responses of cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The initial response of the innate immune system upon activation has been defined as the acute phase response (APR). Activation of the APR results in several responses that include fever, metabolic adaptations, and changes in behavior. The APR can be modulated by many factors, with stress being th...

  3. THE ACUTE PHASE RESPONSE INDUCED BY BRONCHOSCOPY WITH LAVAGE

    EPA Science Inventory

    Bronchoscopy has been used to evaluate the inflammatory responses in vitro and in vivo. The procedure may affect acute inflammation in the lower respiratory tract. We reviewed consecutive bronchoscopies done in normal healthy non-smokers between April, 1998 and April, 2004. The...

  4. Elastic Phase Response of Silica Nanoparticles Buried in Soft Matter

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Lynch, Rachel M; Voy, Brynn H; Shekhawat, Gajendra; Dravid, Vinayak; Thundat, Thomas George

    2008-01-01

    Tracking the uptake of nanomaterials by living cells is an important component in assessing both potential toxicity and in designing future materials for use in vivo. We show that the difference in the local elasticity at the site of silica (SiO{sub 2}) nanoparticles confined within a macrophage enables functional ultrasonic interactions. By elastically exciting the cell, a phase perturbation caused by the buried SiO{sub 2} nanoparticles was detected and used to map the subsurface populations of nanoparticles. Localization and mapping of stiff chemically synthesized silica nanoparticles within the cellular structures of a macrophage are important in basic as well as applied studies.

  5. Liquid-phase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity.

    PubMed

    Wang, Yixian; Zhang, Xiao; Luo, Zhimin; Huang, Xiao; Tan, Chaoliang; Li, Hai; Zheng, Bing; Li, Bing; Huang, Ying; Yang, Jian; Zong, Yun; Ying, Yibin; Zhang, Hua

    2014-11-07

    A facile method for the synthesis of metal nanostructure-decorated two-dimensional (2D) semiconductor nanosheets was developed. The solution-processable molybdenum trioxide (MoO3) nanosheet was used as a template for direct liquid-phase growth of platinum nanoparticles (Pt NPs) under ambient conditions. Results show that the Pt NPs with sizes of 1-3 nm were uniformly grown on the MoO3 surface. Importantly, the Pt-MoO3 hybrid nanomaterial exhibits an enhanced peroxidase-like catalytic activity compared to the MoO3 nanosheet, Pt NPs, and their physical mixture under the same conditions. As a proof-of-concept application, the Pt-MoO3 hybrid nanomaterial was used as a high-efficiency peroxidase-mimic for ultrasensitive colorimetric detection of glucose in serum samples. This work provides a promising strategy for design and development of biomimetic catalysts by smart assembly of different dimensional nanomaterials.

  6. Characterizing the intrinsic stability of gas-phase clusters of transition metal complex dianions with alkali metal counterions: counterion perturbation of multiply charged anions.

    PubMed

    Burke, Ruth M; Boxford, William E; Dessent, Caroline E H

    2007-02-14

    The authors report the gas-phase generation and characterization of a series of cation-dianion clusters, e.g., M(+).PtCl(6) (2-), M(+).PtCl(4) (2-), M(+).Pt(CN)(6) (2-), and M(+).Pd(CN)(4) (2-), where M(+)=Na(+),K(+),Rb(+), as model systems for investigating gas-phase contact ionpairs. Low-energy collisional excitation of these systems isolated within a quadrupole ion trap reveals that the fragmentation products are determined by the dianion and are independent of the counterion. This indicates that cation-dianion clusters represent gaseous ion-pair complexes, in line with recent findings for K(+).Pt(CN)(n) (2-), n=4,6 [Burke et al., J. Chem. Phys. 125, 021105 (2006)]. The relative fragmentation energies of several cation-dianion systems are obtained as a function of the counterion to explore the nature of ion-pair binding. For most of the systems studied, e.g., M(+).PtCl(6) (2-), the fragmentation energy increases as the cation size decreases, in line with a simple electrostatic description of the cation-dianion binding. However, the M(+).Pt(CN)(4) (2-) clusters displayed the reverse trend with the fragmentation energy increasing as the cation size increases. Density functional theory calculations of the cation-dianion fragmentation potential energy surfaces reveal the existence of a novel double-minima surface, separated by a repulsive Coulomb barrierlike feature at short range. The experimentally observed trends in the fragmentation energies can be fully understood with reference to the computed surfaces, hence providing strong support for the existence of the double-minima surface.

  7. Effect of different phases of menstrual cycle on brainstem auditory evoked response

    PubMed Central

    Batta, Meenal; Dhir, Shashi Kant; Kumar, Avnish; Singh, KD

    2017-01-01

    Introduction: The change in the hormonal levels during the three phases of menstrual cycle, namely, menstrual phase (hormonal withdrawal), proliferative phase (estrogen peak), and secretory phase (progesterone peak), influences the conduction velocities in the central auditory pathways. Variable findings of brainstem auditory evoked response (BAER) have been reported during different phases of menstrual cycle by different researchers. Aim: To study the effect of different phases of menstrual cycle on BAER. Methodology: A prospective observational study on 80 audiometrically normal, healthy, eumenorrheic female students in age group of 18–24 years was done at a medical college of northern India. BAER was recorded across the three phases of the menstrual cycle, i.e., menstrual phase (day 1–3), proliferative phase (day 10–12), and secretory phase (day 20–22). Recordings of peak latencies, interpeak latencies, and amplitude of waves of BAER were taken and statistically analyzed. Results: In this study, significant decrease in the latencies of wave III, wave V, and interpeak latency I-III and a trend of decrease in latencies of wave I and interpeak latency I-V (which was statistically insignificant) were observed in proliferative (estrogen peak) phase as compared to menstrual and secretory phase. However, there was no statistically significant difference found in the amplitude of waves of BAER during all the three phases of menstrual cycle. Conclusion: The hormonal changes during different phases of menstrual cycle do seem to influence BAER. PMID:28251107

  8. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1

    PubMed Central

    Brown, James R.; Conn, Kristen L.; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven

    2016-01-01

    ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against

  9. A pilot study of phase-evoked acoustic responses from the ears of human subjects

    NASA Astrophysics Data System (ADS)

    Christensen, Anders T.; Dewey, James; Dhar, Sumitrajit; Ordoñez, Rodrigo; Hammershøi, Dorte

    2015-12-01

    Otoacoustic emissions (OAEs) evoked by pure tones lock onto the phase of the stimulus at the place of their generation in the cochlea. The effects of phase transitions in a pure tone stimulus on OAEs have not been investigated. By combining responses to pure tones with smooth phase transitions, phase-evoked residual responses (PERRs) were extracted from nine normal-hearing subjects. Five of them had PERRs in at least 18 of 36 parameter conditions expected to yield a response. PERRs do not have a straightforward dependence on stimulus parameters, but their general prevalence suggests a temporary decoupling between stimulus and OAE phase - between 5 and 10 ms. Since the stimulus is narrow in the frequency domain, the PERR may reflect the dynamic behavior of localized regions of OAE generators.

  10. Movements indicate threat response phases in children at-risk for anxiety.

    PubMed

    McGinnis, Ellen; McGinnis, Ryan; Muzik, Maria; Hruschak, Jessica; Lopez-Duran, Nestor; Perkins, Noel; Fitzgerald, Kate; Rosenblum, Katherine

    2016-08-25

    Temporal phases of threat response including Potential Threat (Anxiety), Acute Threat (Startle, Fear), and Post-threat Response Modulation have been identified as underlying markers of anxiety disorders. Objective measures of response during these phases may help identify children at risk for anxiety, however the complexity of current assessment techniques prevent their adoption in many research and clinical contexts. We propose an alternative technology, an inertial measurement unit (IMU), that enables non-invasive measurement of the movements associated with threat response, and test its ability to detect threat response phases in young children at heightened risk for developing anxiety. We quantified the motion of 18 children (3-7 years old) during an anxiety/fear provoking behavioural task using an IMU. Specifically, measurements from a single IMU secured to the child's waist were used to extract root-mean-square acceleration and angular velocity in the horizontal and vertical directions, and tilt and yaw range-of-motion during each threat response phase. IMU measurements detected expected differences in child motion by threat phase. Additionally, potential threat motion was positively correlated to familial anxiety risk, startle range of motion was positively correlated with child internalizing symptoms, and response modulation motion was negatively correlated to familial anxiety risk. Results suggest differential theory-driven threat response phases, and support previous literature connecting maternal child risk to anxiety with behavioural measures using more feasible objective methods. This is the first study demonstrating the utility of an IMU for characterizing the motion of young children to mark the phases of threat response modulation. The technique provides a novel and objective measure of threat response for mental health researchers.

  11. Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials

    SciTech Connect

    Herklotz, Andreas; Guo, Hangwen; Wong, Anthony T.; Lee, Ho Nyung; Rack, Philip D.; Ward, Thomas Z.

    2016-07-13

    When confining an electronically phase we separated manganite film to the scale of its coexisting self-organized metallic and these insulating domains allows resistor-capacitor circuit-like responses while providing both electroresistive and magnetoresistive switching functionality.

  12. An ATM-independent S-phase checkpoint response involves CHK1 pathway

    NASA Technical Reports Server (NTRS)

    Zhou, Xiang-Yang; Wang, Xiang; Hu, Baocheng; Guan, Jun; Iliakis, George; Wang, Ya

    2002-01-01

    After exposure to genotoxic stress, proliferating cells actively slow down the DNA replication through a S-phase checkpoint to provide time for repair. We report that in addition to the ataxia-telangiectasia mutated (ATM)-dependent pathway that controls the fast response, there is an ATM-independent pathway that controls the slow response to regulate the S-phase checkpoint after ionizing radiation in mammalian cells. The slow response of S-phase checkpoint, which is resistant to wortmannin, sensitive to caffeine and UCN-01, and related to cyclin-dependent kinase phosphorylation, is much stronger in CHK1 overexpressed cells, and it could be abolished by Chk1 antisense oligonucleotides. These results provide evidence that the ATM-independent slow response of S-phase checkpoint involves CHK1 pathway.

  13. Intrinsic gas-phase reactivity toward methanol of trinuclear tungsten W(3)S(4) complexes bearing W-X (X = Br, OH) groups.

    PubMed

    Vicent, Cristian; Feliz, Marta; Llusar, Rosa

    2008-12-11

    Electrospray ionization (ESI) tandem mass spectrometry is used to investigate the gas-phase dissociation of trinuclear sulfide W(3)S(4) complexes containing three diphosphane ligands and three terminal bromine atoms, namely, [W(3)S(4)(dmpe)(3)(Br)(3)](+) (1(+)) or hydroxo groups, [W(3)S(4)(dmpe)(3)(OH)(3)](+) (2(+)) (dmpe = 1,2-bis(dimethylphosphanyl)ethane). Sequential evaporation of two diphosphane ligands is the sole fragmentation channel for the 1(+) cation that yields product ions with one or two unsaturated W-Br functional groups, respectively. Conversely, evaporation of one diphosphane ligand followed by two water molecules is observed for cation 2(+). Complementary deuterium-labeling experiments in conjunction with computational studies provide deep insight into the thermodynamically favored product ion structures found along the fragmentation pathways. From these results, the formation of a series of cluster cations with WBr, WOH, and WO functional groups either on saturated or unsaturated metal sites is proposed. The effect of the properties of these cluster cations, among them chemical composition and coordinative saturation, on their reactivity toward methanol is discussed.

  14. Intrinsic structure in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.

    2015-10-01

    Saturn's rings are the most prominent in our Solar system and one example of granular matter in space. Dominated by tides and inelastic collisions the system is highly flattened being almost 300000km wide while only tens of meters thick. Individual particles are composed of primarily water ice and range from microns to few tens of meters in size. Apparent patterns comprise ringlets, gaps, kinematic wakes, propellers, bending waves, and the winding spiral arms of density waves. These large-scale structures are perturbations foremost created by external as well as embedded moons. Observations made by the Cassini spacecraft currently in orbit around Saturn show these structures in unprecedented detail. But high-resolution measurements reveal the presence of small-scale structures throughout the system. These include self-gravity wakes (50-100m), overstable waves (100-300m), subkm structure at the A and B ring edges, "straw" and "ropy" structures (1-3km), and the C ring "ghosts". Most of these had not been anticipated and are found in perturbed regions, driven by resonances with external moons, where the system undergoes periodic phases of compression and relaxation that correlate with the presence of structure. High velocity dispersion and the presence of large clumps imply structure formation on time scales as short as one orbit (about 10 hours). The presence of these intrinsic structures is seemingly the response to varying local conditions such as internal density, optical depth, underlying particle size distribution, granular temperature, and distance from the central planet. Their abundance provides evidence for an active and dynamic ring system where aggregation and fragmentation are ongoing on orbital timescales. Thus a kinetic description of the rings may be more appropriate than the fluid one. I will present Cassini Ultraviolet Spectrometer (UVIS) High Speed Photometer (HSP) occultations, Voyager 1 and 2 Imaging Science Subsystem (ISS), and high

  15. Creating Diversified Response Profiles from a Single Quenchometric Sensor Element by Using Phase-Resolved Luminescence

    PubMed Central

    Tehan, Elizabeth C.; Bukowski, Rachel M.; Chodavarapu, Vamsy P.; Titus, Albert H.; Cartwright, Alexander N.; Bright, Frank V.

    2015-01-01

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions). PMID:25569752

  16. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

    PubMed

    Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

    2015-01-05

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

  17. Intrinsic Patterns of Human Activity

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Ivanov, Plamen Ch.; Chen, Zhi; Hilton, Michael; Stanley, H. Eugene; Shea, Steven

    2003-03-01

    Activity is one of the defining features of life. Control of human activity is complex, being influenced by many factors both extrinsic and intrinsic to the body. The most obvious extrinsic factors that affect activity are the daily schedule of planned events, such as work and recreation, as well as reactions to unforeseen or random events. These extrinsic factors may account for the apparently random fluctuations in human motion observed over short time scales. The most obvious intrinsic factors are the body clocks including the circadian pacemaker that influences our sleep/wake cycle and ultradian oscillators with shorter time scales [2, 3]. These intrinsic rhythms may account for the underlying regularity in average activity level over longer periods of up to 24 h. Here we ask if the known extrinsic and intrinsic factors fully account for all complex features observed in recordings of human activity. To this end, we measure activity over two weeks from forearm motion in subjects undergoing their regular daily routine. Utilizing concepts from statistical physics, we demonstrate that during wakefulness human activity possesses previously unrecognized complex dynamic patterns. These patterns of activity are characterized by robust fractal and nonlinear dynamics including a universal probability distribution and long-range power-law correlations that are stable over a wide range of time scales (from minutes to hours). Surprisingly, we find that these dynamic patterns are unaffected by changes in the average activity level that occur within individual subjects throughout the day and on different days of the week, and between subjects. Moreover, we find that these patterns persist when the same subjects undergo time-isolation laboratory experiments designed to account for the phase of the circadian pacemaker, and control the known extrinsic factors by restricting behaviors and manipulating scheduled events including the sleep/wake cycle. We attribute these newly

  18. Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide.

    PubMed

    Gomez, Christian R; Acuña-Castillo, Claudio; Pérez, Claudio; Leiva-Salcedo, Elías; Riquelme, Denise M; Ordenes, Gamaliel; Oshima, Kiyoko; Aravena, Mauricio; Pérez, Viviana I; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2008-12-01

    Aging is associated with a deterioration of the acute phase response to inflammatory challenges. However, the nature of these defects remains poorly defined. We analyzed the hepatic inflammatory response after intraperitoneal administration of lipopolysaccharide (LPS) given to Fisher 344 rats aged 6, 15, and 22-23 months. Induction of the acute phase proteins (APPs), haptoglobin, alpha-1-acid glycoprotein, and T-kininogen was reduced and/or retarded with aging. Initial induction of interleukin-6 in aged rats was normal, but the later response was increased relative to younger counterparts. An exacerbated hepatic injury was observed in aged rats receiving LPS, as evidenced by the presence of multiple microabscesses in portal tracts, confluent necrosis, higher neutrophil accumulation, and elevated serum levels of alanine aminotransferase, relative to younger animals. Our results suggest that aged rats displayed a reduced expression of APPs and increased hepatic injury in response to the inflammatory insult.

  19. Origins of asymmetric stress-strain response in phase transformations

    SciTech Connect

    Sehitoglu, H.; Gall, K.

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  20. Neuro-oscillatory phase alignment drives speeded multisensory response times: an electro-corticographic investigation.

    PubMed

    Mercier, Manuel R; Molholm, Sophie; Fiebelkorn, Ian C; Butler, John S; Schwartz, Theodore H; Foxe, John J

    2015-06-03

    Even simple tasks rely on information exchange between functionally distinct and often relatively distant neuronal ensembles. Considerable work indicates oscillatory synchronization through phase alignment is a major agent of inter-regional communication. In the brain, different oscillatory phases correspond to low- and high-excitability states. Optimally aligned phases (or high-excitability states) promote inter-regional communication. Studies have also shown that sensory stimulation can modulate or reset the phase of ongoing cortical oscillations. For example, auditory stimuli can reset the phase of oscillations in visual cortex, influencing processing of a simultaneous visual stimulus. Such cross-regional phase reset represents a candidate mechanism for aligning oscillatory phase for inter-regional communication. Here, we explored the role of local and inter-regional phase alignment in driving a well established behavioral correlate of multisensory integration: the redundant target effect (RTE), which refers to the fact that responses to multisensory inputs are substantially faster than to unisensory stimuli. In a speeded detection task, human epileptic patients (N = 3) responded to unisensory (auditory or visual) and multisensory (audiovisual) stimuli with a button press, while electrocorticography was recorded over auditory and motor regions. Visual stimulation significantly modulated auditory activity via phase reset in the delta and theta bands. During the period between stimulation and subsequent motor response, transient synchronization between auditory and motor regions was observed. Phase synchrony to multisensory inputs was faster than to unisensory stimulation. This sensorimotor phase alignment correlated with behavior such that stronger synchrony was associated with faster responses, linking the commonly observed RTE with phase alignment across a sensorimotor network.

  1. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8

    PubMed Central

    Ahlstrand, Tuuli; Tuominen, Heidi; Beklen, Arzu; Torittu, Annamari; Oscarsson, Jan; Sormunen, Raija; Pöllänen, Marja T.; Permi, Perttu; Ihalin, Riikka

    2017-01-01

    ABSTRACT Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI− mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations. PMID:27459270

  2. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8.

    PubMed

    Ahlstrand, Tuuli; Tuominen, Heidi; Beklen, Arzu; Torittu, Annamari; Oscarsson, Jan; Sormunen, Raija; Pöllänen, Marja T; Permi, Perttu; Ihalin, Riikka

    2017-02-17

    Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI(-) mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.

  3. Predicting Intrinsic Motivation

    ERIC Educational Resources Information Center

    Martens, Rob; Kirschner, Paul A.

    2004-01-01

    Intrinsic motivation can be predicted from participants' perceptions of the social environment and the task environment (Ryan & Deci, 2000)in terms of control, relatedness and competence. To determine the degree of independence of these factors 251 students in higher vocational education (physiotherapy and hotel management) indicated the extent to…

  4. [Intrinsic cardiac ganglia].

    PubMed

    Birand, Ahmet

    2008-12-01

    Heart has been considered as the source and the seat of emotions, passion and love. But from the dawn of XIXth century, scientists have emphasized that the heart, though life depends on its ceaseless activity, is merely a electromechanical pump, pumping oxygenated blood. Nowadays, we all know that heart pumps blood commensurate with the needs of the body and this unending toil, and its regulation depends on the intrinsic properties of the myocardium, Frank-Starling Law and neurohumoral contribution. It has been understood, though not clearly enough, that these time-tensions may cause structural or functional cardiac impairments and arrhythmias are related to the autonomic nervous system. Less well known and less taken in account in daily cardiology practice is the fact that heart has an intrinsic cardiac nervous system, or "heart brain" consisting of complex ganglia, intrinsic cardiac ganglia containing afferent (receiving), local circuit (interneurons) and efferent (transmitting) sympathetic and parasympathetic neurons. This review enlightens structural and functional aspects of intrinsic cardiac ganglia as the very first step in the regulation of cardiac function. This issue is important for targets of pharmacological treatment and techniques of cardiac surgery interventions as repair of septal defects, valvular interventions and congenital corrections.

  5. Competition and Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Tripathi, Kailas Nath

    1992-01-01

    Reports on a study of competition, motivation, and performance among 60 adolescents in India. Finds that direct competition with another person led to higher levels of immediate performance. Also finds that indirect competition against a pre-set standard resulted in greater intrinsic motivation. (CFR)

  6. Evaluating Intrinsic Goals.

    ERIC Educational Resources Information Center

    Silberman, Harry F.

    1984-01-01

    A social learning model focusing on intrinsic outcomes of vocational programs is proposed. It would assess technical skills and knowledge, communication skills and literacy, and personal skills and attitudes. Instruments should be devised to measure characteristics of the learning setting, learner involved activities, and nature of consequences of…

  7. Acute phase response induced following tumor treatment by photodynamic therapy: relevance for the therapy outcome

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Merchant, Soroush; Stott, Brandon; Cecic, Ivana; Payne, Peter; Sun, Jinghai

    2006-02-01

    Acute phase response is an effector process orchestrated by the innate immune system for the optimal mobilization of the resources of the organism distant from the local insult site needed in the execution of a host-protecting reaction. Our research has shown that mice bearing tumors treated by photodynamic therapy (PDT) exhibit the three major hallmarks of acute phase response: release of acute phase reactants, neutrophilia, and pituitary/adrenal axis activation. Of particular interest in this study were acute phase proteins that have a pivotal role in the clearance of dead cells, since the occurrence of this process in PDT-treated tumors emerges as a critical event in the course of PDT-associated host response. It is shown that this type of acute phase reactants, including complement proteins (C3, C5, C9, mannose-binding lectin, and ficolin A) and related pentraxins (serum amyloid P component and PTX3), are upregulated following tumor PDT and accumulate in the targeted lesions. Based on the recently accumulated experimental evidence it is definitely established that the acute phase response is manifested in the hosts bearing PDT-treated tumors and it is becoming clear that this effector process is an important element of PDT-associated host response bearing in impact on the eventual outcome of this therapy.

  8. Association between subjective and cortisol stress response depends on the menstrual cycle phase.

    PubMed

    Duchesne, Annie; Pruessner, Jens C

    2013-12-01

    The relation between the physiologic and subjective stress responses is inconsistently reported across studies. Menstrual cycle phases variations have been found to influence the psychophysiological stress response; however little is known about possible cycle phase differences in the relationship between physiological and subjective stress responses. This study examined the effect of menstrual cycle phase in the association between subjective stress and physiological response. Forty-five women in either the follicular (n=21) or the luteal phase of the menstrual cycle were exposed to a psychosocial stress task. Salivary cortisol, cardiovascular, and subjective stress were assessed throughout the experiment. Results revealed a significant group difference in the association between peak levels of cortisol and post task subjective stress. In women in the follicular phase a negative association was observed (r(2)=0.199, p=0.04), while this relation was positive in the group of women in the luteal phase (r(2)=0.227, p=0.02). These findings suggest a possible role of sex hormones in modulating the cortisol stress response function in emotion regulation.

  9. Effects of low-spatial-frequency response of phase plates on TEM imaging

    NASA Astrophysics Data System (ADS)

    Edgcombe, C. J.

    2015-10-01

    Images of simple objects produced by a perfect lens and a phase plate have been calculated by use of Abbe theory for Foucault, Hilbert and Zernike phase plates. The results show that with a Zernike plate, white outlines and ringing like those observed previously can be caused by the beam hole, which limits the low-spatial-frequency response of the system even when the lens behaves perfectly. When the change of phase added by the phase plate is distributed over a range of radius rather than a simple step, the unwanted effects are substantially reduced.

  10. Survival of Campylobacter jejuni during Stationary Phase: Evidence for the Absence of a Phenotypic Stationary-Phase Response

    PubMed Central

    Kelly, Alison F.; Park, Simon F.; Bovill, Richard; Mackey, Bernard M.

    2001-01-01

    When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions. PMID:11319108

  11. The effects of digitizing rate and phase distortion errors on the shock response spectrum

    NASA Technical Reports Server (NTRS)

    Wise, J. H.

    1983-01-01

    Some of the methods used for acquisition and digitization of high-frequency transients in the analysis of pyrotechnic events, such as explosive bolts for spacecraft separation, are discussed with respect to the reduction of errors in the computed shock response spectrum. Equations are given for maximum error as a function of the sampling rate, phase distortion, and slew rate, and the effects of the characteristics of the filter used are analyzed. A filter is noted to exhibit good passband amplitude, phase response, and response to a step function is a compromise between the flat passband of the elliptic filter and the phase response of the Bessel filter; it is suggested that it be used with a sampling rate of 10f (5 percent).

  12. Enhanced response to ozone exposure during the follicular phase of the menstrual cycle

    SciTech Connect

    Fox, S.D.; Adams, W.C.; Brookes, K.A.; Lasley, B.L. )

    1993-08-01

    Exposure to ozone (O[sub 3]), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuation in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O[sub 3] inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O[sub 3] inhalation with respect to pulmonary function impairment during their follicular (F) menstrual phase when progesterone levels are lowest that during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hour each to filtered air and to 0.30 ppm O[sub 3] in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O[sub 3]) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1]), and forced expiratory flow between 25 and 75% of FVC (FEF[sub 25-75]), showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O[sub 3] exposure during the F phase than during the ML phase of their menstrual cycles. This difference in pulmonary function response could be related to the anti-inflammatory effects of increased progesterone concentrations during the luteal phase.

  13. A phase response curve to single bright light pulses in human subjects

    NASA Technical Reports Server (NTRS)

    Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.

    2003-01-01

    The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.

  14. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator.

    PubMed

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo

    2014-06-16

    Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.

  15. Observation of spectrum effect on the measurement of intrinsic error field on EAST

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui; Sun, You-Wen; Qian, Jin-Ping; Shi, Tong-Hui; Shen, Biao; Gu, Shuai; Liu, Yue-Qiang; Guo, Wen-Feng; Chu, Nan; He, Kai-Yang; Jia, Man-Ni; Chen, Da-Long; Xue, Min-Min; Ren, Jie; Wang, Yong; Sheng, Zhi-Cai; Xiao, Bing-Jia; Luo, Zheng-Ping; Liu, Yong; Liu, Hai-Qing; Zhao, Hai-Lin; Zeng, Long; Gong, Xian-Zu; Liang, Yun-Feng; Wan, Bao-Nian; The EAST Team

    2016-06-01

    Intrinsic error field on EAST is measured using the ‘compass scan’ technique with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The intrinsic error field measured using a non-resonant dominated spectrum with even connection of the upper and lower resonant magnetic perturbation coils is of the order {{b}r2,1}/{{B}\\text{T}}≃ {{10}-5} and the toroidal phase of intrinsic error field is around {{60}{^\\circ}} . A clear difference between the results using the two coil configurations, resonant and non-resonant dominated spectra, is observed. The ‘resonant’ and ‘non-resonant’ terminology is based on vacuum modeling. The penetration thresholds of the non-resonant dominated cases are much smaller than that of the resonant cases. The difference of penetration thresholds between the resonant and non-resonant cases is reduced by plasma response modeling using the MARS-F code.

  16. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe 2-x Crystals

    DOE PAGES

    Mahjouri-Samani, Masoud; Liang, Liangbo; Oyedele, Akinola; ...

    2016-01-01

    Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. In this paper, we demonstrate the growth of MoSe2–x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ~20%, that exhibit a remarkable transition in electrical transport properties frommore » n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at ~250 cm-1 appears, and the A1g Raman characteristic mode at 240 cm-1 softens toward ~230 cm-1 which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. Finally, first-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions.« less

  17. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe 2-x Crystals

    SciTech Connect

    Mahjouri-Samani, Masoud; Liang, Liangbo; Oyedele, Akinola; Kim, Yong-Sung; Tian, Mengkun; Cross, Nicholas; Wang, Kai; Lin, Ming-Wei; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; Xiao, Kai; Yoon, Mina; Eres, Gyula; Duscher, Gerd; Sumpter, Bobby G.; Geohegan, David B.

    2016-01-01

    Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. In this paper, we demonstrate the growth of MoSe2–x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to ~20%, that exhibit a remarkable transition in electrical transport properties from n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at ~250 cm-1 appears, and the A1g Raman characteristic mode at 240 cm-1 softens toward ~230 cm-1 which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. Finally, first-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions.

  18. Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought.

    PubMed

    de Miguel, Marina; Sánchez-Gómez, David; Cervera, María Teresa; Aranda, Ismael

    2012-01-01

    Drought is an important environmental factor in Mediterranean ecosystems affecting seedling recruitment, productivity or susceptibility to fires and pathogens. Studying water use efficiency in these environments is crucial due to its adaptive value allowing trees to cope with low water availability. We studied the phenotypic variability and genetic control of intrinsic water use efficiency (WUE(i)) and related traits in a full-sib family of Pinus pinaster under drought imposition. We detected significant differences in WUE(i) between clones of the same family and moderate heritability estimates that indicate some degree of genetic control over this trait. Stomatal conductance to water vapor was the trait most affected by drought imposition and it showed the strongest influence in WUE(i). Stomatal conductance to water vapor and specific leaf area (SLA) were the traits with highest heritabilities and they showed a significant genetic correlation with WUE(i), suggesting that selection of needles with low SLA values will improve WUE(i) in this species by reducing water losses through stomatal control.

  19. Cells and secretagogues involved in the human late-phase response.

    PubMed

    Charlesworth, E N; Iliopoulos, O; MacDonald, S M; Kagey-Sobotka, A; Lichtenstein, L M

    1989-01-01

    Those scientists interested in allergic inflammatory processes have recently been focusing on the late-phase response, since it appears most similar to the chronic disease states observed in allergic patients. In this review we will focus on the pattern of mediator release and cellular traffic observed in two in vivo human models of the late-phase reaction, one involving the upper airways and the other the skin. We have observed in these models, as had been observed earlier in blood, that the late-phase reaction is associated with a second increase in the level of mediators. We also describe our studies of the secretagogues responsible for this late-phase mediator release and, in so doing, introduce the subjects of histamine-releasing factors and IgE heterogeneity.

  20. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015

    PubMed Central

    Auger, R. Robert; Burgess, Helen J.; Emens, Jonathan S.; Deriy, Ludmila V.; Thomas, Sherene M.; Sharkey, Katherine M.

    2015-01-01

    A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed. Citation: Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med 2015;11(10):1199–1236. PMID:26414986

  1. Ultrafast terahertz-induced response of GeSbTe phase-change materials

    SciTech Connect

    Shu, Michael J.; Zalden, Peter; Chen, Frank; Weems, Ben; Chatzakis, Ioannis; Xiong, Feng; Jeyasingh, Rakesh; Pop, Eric; Philip Wong, H.-S.; Hoffmann, Matthias C.; Wuttig, Matthias; Lindenberg, Aaron M.

    2014-06-23

    The time-resolved ultrafast electric field-driven response of crystalline and amorphous GeSbTe films has been measured all-optically, pumping with single-cycle terahertz pulses as a means of biasing phase-change materials on a sub-picosecond time-scale. Utilizing the near-band-gap transmission as a probe of the electronic and structural response below the switching threshold, we observe a field-induced heating of the carrier system and resolve the picosecond-time-scale energy relaxation processes and their dependence on the sample annealing condition in the crystalline phase. In the amorphous phase, an instantaneous electroabsorption response is observed, quadratic in the terahertz field, followed by field-driven lattice heating, with Ohmic behavior up to 200 kV/cm.

  2. Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension.

    PubMed

    Howard, Mary F; Poeppel, David

    2010-11-01

    Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.

  3. Discrimination of Speech Stimuli Based on Neuronal Response Phase Patterns Depends on Acoustics But Not Comprehension

    PubMed Central

    Poeppel, David

    2010-01-01

    Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3–7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response. PMID:20484530

  4. Caffeine in hot drinks elicits cephalic phase responses involving cardiac activity.

    PubMed

    McMullen, Michael K; Whitehouse, Julie M; Shine, Gillian; Whitton, Peter A; Towell, Anthony

    2012-09-01

    Caffeine stimulates both oropharyngeal and gut bitter taste receptors (hTAS2Rs) and so has the potential to elicit reflex autonomic responses. Coffee containing 130 mg caffeine has been reported to increase heart rate for 30 min post-ingestion. Whereas added-caffeine, in doses of 25 to 200 mg, ingested with decaffeinated coffee/tea decreases heart rate 10 to 30 min post-ingestion. This study aimed to clarify caffeine's chemosensory impact. Double-espresso coffees were compared to a placebo-control capsule in a double-blind between-measures design. Coffees tested were regular coffee (130 mg caffeine) and decaffeinated coffee with added-caffeine (0, 67 and 134 mg). Cardiovascular measures from three post-ingestion phases: 1) 0 to 5; 2) 10 to 15; and 3) 25 to 30 min; were compared to pre-ingestion measures. Participants comprised 11 women in the control group and 10 women in the test group. Decaffeinated coffee elicited no changes. Decaffeinated coffee with 67 mg caffeine: decreased dp/dt in Phase 1. Decaffeinated coffee with 134 mg caffeine: increased heart rate in Phases 1 and 2; decreased spontaneous baroreflex sensitivity in Phase 1; and increased diastolic pressure in Phases 2 and 3. Regular coffee: increased heart rate in Phases 1 and 2; decreased dp/dt in all phases; and decreased systolic pressure in Phase 1. Caffeine is the substance in regular coffee which elicits chemosensory autonomic reflex responses, which involves heart activity and the baroreflex. Compared to the caffeine in regular coffee, added-caffeine elicits somewhat different chemosensory responses including a more pronounced pressor effect and resetting of the baroreflex. Caffeine in commonly consumed amounts, as well as modulating body processes by blocking adenosine receptors, can elicit reflex autonomic responses during the ingestion of caffeinated drinks. It is plausible that caffeine stimulates hTAS2Rs, during the ingestion of coffee, eliciting cephalic phase responses. These cephalic phase

  5. Phase Synchronization and Desynchronization of Structural Response Induced by Turbulent and External Sound

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2002-01-01

    Acoustic and turbulent boundary layer flow loadings over a flexible structure are used to study the spatial-temporal dynamics of the response of the structure. The stability of the spatial synchronization and desynchronization by an active external force is investigated with an array of coupled transducers on the structure. In the synchronous state, the structural phase is locked, which leads to the formation of spatial patterns while the amplitude peaks exhibit chaotic behaviors. Large amplitude, spatially symmetric loading is superimposed on broadband, but in the desynchronized state, the spectrum broadens and the phase space is lost. The resulting pattern bears a striking resemblance to phase turbulence. The transition is achieved by using a low power external actuator to trigger broadband behaviors from the knowledge of the external acoustic load inducing synchronization. The changes are made favorably and efficiently to alter the frequency distribution of power, not the total power level. Before synchronization effects are seen, the panel response to the turbulent boundary layer loading is discontinuously spatio-temporally correlated. The stability develops from different competing wavelengths; the spatial scale is significantly shorter than when forced with the superimposed external sound. When the external sound level decreases and the synchronized phases are lost, changes in the character of the spectra can be linked to the occurrence of spatial phase transition. These changes can develop broadband response. Synchronized responses of fuselage structure panels have been observed in subsonic and supersonic aircraft; results from two flights tests are discussed.

  6. Robust Measurements of Phase Response Curves Realized via Multicycle Weighted Spike-Triggered Averages

    NASA Astrophysics Data System (ADS)

    Imai, Takashi; Ota, Kaiichiro; Aoyagi, Toshio

    2017-02-01

    Phase reduction has been extensively used to study rhythmic phenomena. As a result of phase reduction, the rhythm dynamics of a given system can be described using the phase response curve. Measuring this characteristic curve is an important step toward understanding a system's behavior. Recently, a basic idea for a new measurement method (called the multicycle weighted spike-triggered average method) was proposed. This paper confirms the validity of this method by providing an analytical proof and demonstrates its effectiveness in actual experimental systems by applying the method to an oscillating electric circuit. Some practical tips to use the method are also presented.

  7. Roles of STAT3 in Protein Secretion Pathways during the Acute-Phase Response

    PubMed Central

    Ahyi, Ayele-Nati N.; Quinton, Lee J.; Jones, Matthew R.; Ferrari, Joseph D.; Pepper-Cunningham, Zachary A.; Mella, Juan R.; Remick, Daniel G.

    2013-01-01

    The acute-phase response is characteristic of perhaps all infections, including bacterial pneumonia. In conjunction with the acute-phase response, additional biological pathways are induced in the liver and are dependent on the transcription factors STAT3 and NF-κB, but these responses are poorly understood. Here, we demonstrate that pneumococcal pneumonia and other severe infections increase expression of multiple components of the cellular secretory machinery in the mouse liver, including the endoplasmic reticulum (ER) translocon complex, which mediates protein translation into the ER, and the coat protein complexes (COPI and COPII), which mediate vesicular transport of proteins to and from the ER. Hepatocyte-specific mutation of STAT3 prevented the induction of these secretory pathways during pneumonia, with similar results observed following pharmacological activation of ER stress by using tunicamycin. These findings implicate STAT3 in the unfolded protein response and suggest that STAT3-dependent optimization of secretion may apply broadly. Pneumonia also stimulated the binding of phosphorylated STAT3 to promoter regions of secretion-related genes in the liver, supporting a direct role for STAT3 in their transcription. Altogether, these results identify a novel function of STAT3 during the acute-phase response, namely, the induction of secretory machinery in hepatocytes. This may facilitate the processing and delivery of newly synthesized loads of acute-phase proteins, enhancing innate immunity and preventing liver injury during infection. PMID:23460517

  8. Intrinsic and Extrinsic Motivation among Collegiate Instrumentalists

    ERIC Educational Resources Information Center

    Diaz, Frank M.

    2010-01-01

    The purpose of this study was to gather and compare information on measures of intrinsic and extrinsic motivation among instrumentalists enrolled in collegiate ensembles. A survey instrument was developed to gather information concerning demographic data and responses to questions on motivational preference. Participants were undergraduate and…

  9. Enhanced response to ozone exposure during the follicular phase of the menstrual cycle.

    PubMed Central

    Fox, S D; Adams, W C; Brookes, K A; Lasley, B L

    1993-01-01

    Exposure to ozone (O3), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuations in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O3 inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O3 inhalation with respect to pulmonary function impairment during their follicular (F) menstrual phase when progesterone levels are lowest than during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hr each to filtered air and to 0.30 ppm O3 in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O3) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1), and forced expiratory flow between 25 and 75% of FVC (FEF25-75; p < .05). More importantly, the pulmonary function flow rates, FEV1 and FEF25-75, showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O3 exposure during the F phase than during the ML phase of their menstrual cycles.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:8404762

  10. Stimulus-locked responses of two phase oscillators coupled with delayed feedback.

    PubMed

    Krachkovskyi, Valerii; Popovych, Oleksandr V; Tass, Peter A

    2006-06-01

    For a system of two phase oscillators coupled with delayed self-feedback we study the impact of pulsatile stimulation administered to both oscillators. This system models the dynamics of two coupled phase-locked loops (PLLs) with a finite internal delay within each loop. The delayed self-feedback leads to a rich variety of dynamical regimes, ranging from phase-locked and periodically modulated synchronized states to chaotic phase synchronization and desynchronization. Remarkably, for large coupling strength the two PLLs are completely desynchronized. We study stimulus-locked responses emerging in the different dynamical regimes. Simple phase resets may be followed by a response clustering, which is intimately connected with long poststimulus resynchronization. Intriguingly, a maximal perturbation (i.e., maximal response clustering and maximal resynchronization time) occurs, if the system gets trapped at a stable manifold of an unstable saddle fixed point due to appropriately calibrated stimulus. Also, single stimuli with suitable parameters can shift the system from a stable synchronized state to a stable desynchronized state or vice versa. Our result show that appropriately calibrated single pulse stimuli may cause pronounced transient and/or long-lasting changes of the oscillators' dynamics. Pulse stimulation may, hence, constitute an effective approach for the control of coupled oscillators, which might be relevant to both physical and medical applications.

  11. Optically addressed and submillisecond response phase only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangjie; Duan, Jiazhu; Zhang, Dayong; Luo, Yongquan

    2014-10-01

    Liquid crystal based phase only spatial light modulator has attracted many research interests since last decades because of its superior advantage. Until now the liquid crystal spatial light modulator has been applied in many fields, but the response speed of nematic LC limited its further application. In this paper, an optically addressed phase only LC spatial light modulator was proposed based on polymer network liquid crystal. Morphology effect on the light scattering of PNLC was studied, which was mainly consisted of fiber and fiber bundles. The morphology nearly determined the light scattering and electro-optical property. Due to the high threshold voltage, to address the PNLC phase modulator was also concerned. Optical addressing method was proposed, in which BSO crystal was selected to replace one of the glass substrate. The response speed of PNLC was so fast that the reorientation of liquid crystal director will follow the change of effective voltage applied on LC layer, which was related with the voltage signal and especially with electron transport of photo-induced carriers due to diffusion and drift. The on state dynamic response of phase change was investigated. Based on this device, beam steering was also achieved by loading 488nm laser strip on the optical addressed phase only spatial light modulator.

  12. Investigating the Temporal Patterns within and between Intrinsic Connectivity Networks under Eyes-Open and Eyes-Closed Resting States: A Dynamical Functional Connectivity Study Based on Phase Synchronization

    PubMed Central

    Wang, Xun-Heng; Li, Lihua; Xu, Tao; Ding, Zhongxiang

    2015-01-01

    The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome. PMID:26469182

  13. Elastin-like Polypeptides as Models of Intrinsically Disordered Proteins

    PubMed Central

    Roberts, Stefan; Dzuricky, Michael; Chilkoti, Ashutosh

    2015-01-01

    Elastin-like polypeptides (ELPs) are a class of stimuli-responsive biopolymers inspired by the intrinsically disordered domains of tropoelastin that are composed of repeats of the VPGXG pentapeptide motif, where X is a “guest residue”. They undergo a reversible, thermally triggered lower critical solution temperature (LCST) phase transition, which has been utilized for a variety of applications including protein purification, affinity capture, immunoassays, and drug delivery. ELPs have been extensively studied as protein polymers and as biomaterials, but their relationship to other disordered proteins has heretofore not been established. The biophysical properties of ELPs that lend them their unique material behavior are similar to the properties of many intrinsically disordered proteins (IDP). Their low sequence complexity, phase behavior, and elastic properties make them an interesting “minimal” artificial IDP, and the study of ELPs can hence provide insights into the behavior of other more complex IDPs. Motivated by this emerging realization of the similarities between ELPs and IDPs, this review discusses the biophysical properties of ELPs, their biomedical utility, and their relationship to other disordered polypeptide sequences. PMID:26325592

  14. Preventing sleep on the first resting phase following a traumatic event attenuates anxiety-related responses.

    PubMed

    Cohen, Shlomi; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2017-03-01

    Sleep deprivation (SD) in the early aftermath of stress exposure at the onset of the inactive (resting)-phase, has been shown to ameliorate stress-related sequelae. We examined whether this effect is affected by the temporal proximity between SD and the stressful event or whether it was related to the prevention of sleep in the first resting phase following the exposure. Rats were exposed to stress at the onset of their active phase. Then, they were prevented from sleeping immediately thereafter [forced wakefulness (FW)], or during the first resting phase (SD). The behavior in the elevated plus-maze and acoustic startle response paradigms were assessed seven days post-exposure for retrospective classification into behavioral response groups. We found that resting phase SD (with or without FW) decreased PTSD-like phenotype, whereas immediate FW had no significant effect. The long-term anxiolytic effects of SD appear to stem from a diurnal cycle-dependent mechanism, such that preventing sleep during the first natural resting phase following the traumatic exposure is beneficial in preventing the traumatic sequelae.

  15. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  16. In Utero Exposure to Lipopolysaccharide Alters the Postnatal Acute Phase Response in Beef Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the potential effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to an LPS challenge in heifers. Pregnant crossbred cows (n = 50) were separated into prenatal immune stimulation (PIS; n = 25; administered 0.1 microgr...

  17. Intrinsically Disordered Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-05-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium.

  18. Intrinsically Disordered Energy Landscapes

    PubMed Central

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-01-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294

  19. EGR Control for Emisson Reduction Using Fast Response Sensors - Phase 1A

    SciTech Connect

    Gravel, Roland; Conley, Jason; Kittelson, David

    2008-09-30

    The overall objective of this project was to develop exhaust gas recirculation (EGR) control strategies using fast-response Particulate Matter (PM) sensors and NOx sensors to improve the quality of particulate and gaseous emissions from diesel engines. This project initially comprised three phases: (1) Phase IA - sensor requirements to meet PM sensor specifications, NOx sensor assessment, and initial model development for EGR control; (2) Phase IB - continue development on PM and NOx sensors, integrate the sensor signals into the control simulations, and finalize model development for control strategies; and (3) Phase II - validation testing of the control strategies. Only Phase 1A was funded by DOE and executed by Honeywell. The major objectives of Phase 1A of the project included: (1) Sensor validation and operation of fast-response PM and NOx sensors; (2) Control system modeling of low-pressure EGR controls, development of control strategies, and initial evaluation of these models and strategies for EGR control in diesel engines; (3) Sensor testing to understand applicability of fast-response PM sensors in determining loading rates of the particle trap; and (4) Model validation and sensor testing under steady-state and transient operational conditions of actual engines. In particular, specific objectives included demonstration of: (1) A PM sensor response time constant (T10 - T90) of better than 100 milliseconds (msec); (2) The ability to detect PM at concentrations from 0.2 to 2 Bosch smoke number (BSN) or equivalent; (3) PM sensor accuracy to within 20% BSN over the entire range of operation; and (4) PM sensor repeatability to within 10% over the PM entire sensor range equivalent to a BSN of 0.2 to 2.

  20. Three Phases of Plant Response to Atmospheric CO2 Enrichment 1

    PubMed Central

    Idso, Sherwood B.

    1988-01-01

    Several years of research on seven different plants (five terrestrial and two aquatic species) suggest that the beneficial effects of atmospheric CO2 enrichment may be divided into three distinct growth response phases. First is a well-watered optimum-growth-rate phase where a 300 parts per million increase in the CO2 content of the air generally increases plant productivity by approximately 30%. Next comes a nonlethal water-stressed phase where the same increase in atmospheric CO2 is more than half again as effective in increasing plant productivity. Finally, there is a water-stressed phase normally indicative of impending death, where atmospheric CO2 enrichment may actually prevent plants from succumbing to the rigors of the environment and enable them to maintain essential life processes, as life ebbs from corresponding ambient-treatment plants. PMID:16666125

  1. Intrinsic evolutions of dielectric function and electronic transition in tungsten doping Ge{sub 2}Sb{sub 2}Te{sub 5} phase change films discovered by ellipsometry at elevated temperatures

    SciTech Connect

    Guo, S.; Ding, X. J.; Zhang, J. Z.; Hu, Z. G. Chu, J. H.; Ji, X. L.; Wu, L. C.; Song, Z. T.

    2015-02-02

    Tungsten (W) doping effects on Ge{sub 2}Sb{sub 2}Te{sub 5} (GSTW) phase change films with different concentrations (3.2, 7.1, and 10.8%) have been investigated by variable-temperature spectroscopic ellipsometry. The dielectric functions from 210 K to 660 K have been evaluated with the aid of Tauc-Lorentz and Drude dispersion models. The analysis of Tauc gap energy (E{sub g}) and partial spectral weight integral reveal the correlation between optical properties and local structural change. The order degree increment and chemical bond change from covalent to resonant should be responsible for band gap narrowing and electronic transition enhancement during the phase change process. It is found that the elevated crystalline temperature for GSTW can be related to improved disorder degree. Furthermore, the shrinkage of E{sub g} for GSTW should be attributed to the enhanced metallicity compared with undoped GST.

  2. Using Geo-Data Corporately on the Response Phase of Emergency Management

    NASA Astrophysics Data System (ADS)

    Demir Ozbek, E.; Ates, S.; Aydinoglu, A. C.

    2015-08-01

    Response phase of emergency management is the most complex phase in the entire cycle because it requires cooperation between various actors relating to emergency sectors. A variety of geo-data is needed at the emergency response such as; existing data provided by different institutions and dynamic data collected by different sectors at the time of the disaster. Disaster event is managed according to elaborately defined activity-actor-task-geodata cycle. In this concept, every activity of emergency response is determined with Standard Operation Procedure that enables users to understand their tasks and required data in any activity. In this study, a general conceptual approach for disaster and emergency management system is developed based on the regulations to serve applications in Istanbul Governorship Provincial Disaster and Emergency Directorate. The approach is implemented to industrial facility explosion example. In preparation phase, optimum ambulance locations are determined according to general response time of the ambulance to all injury cases in addition to areas that have industrial fire risk. Management of the industrial fire case is organized according to defined actors, activities, and working cycle that describe required geo-data. A response scenario was prepared and performed for an industrial facility explosion event to exercise effective working cycle of actors. This scenario provides using geo-data corporately between different actors while required data for each task is defined to manage the industrial facility explosion event. Following developing web technologies, this scenario based approach can be effective to use geo-data on the web corporately.

  3. Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae.

    PubMed Central

    Foss, E J

    2001-01-01

    A tof1 mutant was recovered in a screen aimed at identifying genes involved specifically in the S phase branch of the MEC1-dependent DNA damage response pathway. The screen was based on the observation that mutants missing this branch are particularly dependent on the cell cycle-wide branch and, therefore, on RAD9, for surviving DNA damage. tof1 and rad9 conferred synergistic sensitivity to MMS, UV, and HU, and the double mutant was incapable of slowing S phase in response to MMS, inducing RNR3 transcription in response to UV, and phosphorylating Rad53p in response to HU. TOF1's contribution to DNA damage response appeared to be restricted to S phase, since TOF1 did not contribute to UV-induced transcription during G1 or to the cdc13-1-induced block to anaphase in G2/M. I suggest a model in which Tof1p functions to link Mec1p with Rad53p. PMID:11156979

  4. A three pulse phase response curve to three milligrams of melatonin in humans

    PubMed Central

    Burgess, Helen J; Revell, Victoria L; Eastman, Charmane I

    2008-01-01

    Exogenous melatonin is increasingly used for its phase shifting and soporific effects. We generated a three pulse phase response curve (PRC) to exogenous melatonin (3 mg) by administering it to free-running subjects. Young healthy subjects (n = 27) participated in two 5 day laboratory sessions, each preceded by at least a week of habitual, but fixed sleep. Each 5 day laboratory session started and ended with a phase assessment to measure the circadian rhythm of endogenous melatonin in dim light using 30 min saliva samples. In between were three days in an ultradian dim light (< 150 lux)–dark cycle (LD 2.5 : 1.5) during which each subject took one pill per day at the same clock time (3 mg melatonin or placebo, double blind, counterbalanced). Each individual's phase shift to exogenous melatonin was corrected by subtracting their phase shift to placebo (a free-run). The resulting PRC has a phase advance portion peaking about 5 h before the dim light melatonin onset, in the afternoon. The phase delay portion peaks about 11 h after the dim light melatonin onset, shortly after the usual time of morning awakening. A dead zone of minimal phase shifts occurred around the first half of habitual sleep. The fitted maximum advance and delay shifts were 1.8 h and 1.3 h, respectively. This new PRC will aid in determining the optimal time to administer exogenous melatonin to achieve desired phase shifts and demonstrates that using exogenous melatonin as a sleep aid at night has minimal phase shifting effects. PMID:18006583

  5. Decreased first phase insulin response in children with congenital insensitivity to pain with anhidrosis.

    PubMed

    Schreiber, Ruth; Levy, Jacov; Loewenthal, Neta; Pinsk, Vered; Hershkovitz, Eli

    2005-09-01

    Nerve growth factor (NGF) and its receptor tyrosine kinase A (TrkA) participate in endocrine pancreas morphogenesis and insulin secretion in vitro. Mutations in the TrkA gene cause the syndrome of congenital insensitivity to pain with anhydrosis (CIPA). We hypothesized that CIPA may represent a natural model for impaired NGF effect on insulin secretion in humans. Glucose challenge tests were performed in seven children with CIPA. We calculated the first phase insulin response (FPIR), the second phase insulin response (SPIR) and glucose disposal rate. FPIR was impaired in four and borderline in two patients. SPIR and glucose disposal rate were within the normal range. Oral glucose tolerance test was normal in all patients. Low FPIR in. CIPA suggests for the first time that the NGF-TrkA pathway may play a role in insulin secretion in response to glucose challenge in humans. Additional studies on the clinical significance of NGF-TrkA effects on insulin secretion are required.

  6. INTRINSIC BISPECTRA OF COSMIC MAGNETIC FIELDS

    SciTech Connect

    Brown, Iain A.

    2011-06-01

    Forthcoming data sets from the Planck experiment and others are in a position to probe the cosmic microwave background (CMB) non-Gaussianity with higher accuracy than has yet been possible, and potentially open a new window into the physics of the very early universe. However, a signal need not necessarily be inflationary in origin, and possible contaminants should be examined in detail. One such is provided by early universe magnetic fields, which can be produced by a variety of models including during an inflationary phase, at phase transitions, or seeded by cosmic defects. Should such fields have been extant in the early universe, they would provide a natural source of CMB non-Gaussianity. Knowledge of the CMB angular bispectrum requires the complete Fourier-space (or 'intrinsic') bispectrum. In this paper, I consider in detail the intrinsic bispectra of an early-universe magnetic field for a range of power-law magnetic spectra.

  7. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    PubMed

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.

  8. Intrinsic Feature Motion Tracking

    SciTech Connect

    Goddard, Jr., James S.

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.

  9. Gaussian Intrinsic Entanglement

    NASA Astrophysics Data System (ADS)

    Mišta, Ladislav; Tatham, Richard

    2016-12-01

    We introduce a cryptographically motivated quantifier of entanglement in bipartite Gaussian systems called Gaussian intrinsic entanglement (GIE). The GIE is defined as the optimized mutual information of a Gaussian distribution of outcomes of measurements on parts of a system, conditioned on the outcomes of a measurement on a purifying subsystem. We show that GIE vanishes only on separable states and exhibits monotonicity under Gaussian local trace-preserving operations and classical communication. In the two-mode case, we compute GIE for all pure states as well as for several important classes of symmetric and asymmetric mixed states. Surprisingly, in all of these cases, GIE is equal to Gaussian Rényi-2 entanglement. As GIE is operationally associated with the secret-key agreement protocol and can be computed for several important classes of states, it offers a compromise between computable and physically meaningful entanglement quantifiers.

  10. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  11. Evaluation of the accuracy of BOTDA systems based on the phase spectral response.

    PubMed

    Lopez-Gil, Alexia; Soto, Marcelo A; Angulo-Vinuesa, Xabier; Dominguez-Lopez, Alejandro; Martin-Lopez, Sonia; Thévenaz, Luc; Gonzalez-Herraez, Miguel

    2016-07-25

    We evaluate the Brillouin frequency shift (BFS) determination error when utilizing the Brillouin phase spectrum (BPS) instead of the Brillouin gain spectrum (BGS) in BOTDA systems. Systems based on the BPS perform the determination of the BFS through a linear fit around the zero de-phase frequency region. An analytical expression of the error obtained in the BFS determination as a function of the different experimental parameters is provided and experimentally validated. The experimental results show a good agreement with the theoretical predictions as a function of the number of sampling points, signal-to-noise ratio (SNR) and Brillouin spectral linewidth. For an equal SNR and linewidth, the phase response only provides a better BFS estimation than the gain response when the fit is performed over a restricted frequency range around the center of the spectral profile. This may reduce the measurement time of specific BOTDA systems requiring a narrow frequency scanning. When the frequency scan covers most of the Brillouin spectral profile, gain and phase responses give very similar estimations of the BFS and the BPS offers no crucial benefit.

  12. Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat.

    PubMed Central

    Timofeev, I; Contreras, D; Steriade, M

    1996-01-01

    1. The fluctuations during various phases of the slow sleep oscillation (< 1 Hz) in synaptic responsiveness of motor cortical (Cx), thalamic reticular (RE) and thalamocortical (TC) neurones were investigated intracellularly in cats under ketamine-xylazine anaesthesia. Orthodromic responses to stimuli applied to brachium conjunctivum (BC) axons and corticothalamic pathways were studied. The phases of slow oscillation consist of a long-hyperpolarized, followed by a sharp depth-negative EEG deflection and a series of faster waves that are associated with the depolarization of Cx and RE neurones, while TC cells display a sequence of IPSPs within the spindle frequency. 2. BC-evoked bisynaptic excitatory postsynaptic potentials (EPSPs) in Cx and RE neurones were drastically reduced in amplitude during the long-lasting hyperpolarization and the early part of the depolarizing phase. By contrast, the BC-evoked monosynaptic EPSPs of TC cells were not diminished during the depth-positive EEG wave, but the hyperpolarization during this phase of the slow oscillation prevented TC neurones transferring prethalamic signals to the cortex. 3. At variance with the diminished bisynaptic EPSPs evoked in response to BC stimuli during the long-lasting hyperpolarization, Cx-evoked monosynaptic EPSPs in Cx cells increased linearly with hyperpolarization during this phase of the slow oscillation. Similarly, the amplitudes of Cx-evoked EPSPs in RE and TC cells were not diminished during the long-lasting hyperpolarization. 4. The diminished responsiveness of Cx and RE neurones to prethalamic volleys during the long-lasting hyperpolarization is attributed to gating processes at the level of TC cells that, because of their hyperpolarization, do not transfer prethalamic information to further relays. PMID:8814620

  13. Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In,Ga)As quantum dots.

    PubMed

    Li, Yan; Sinitsyn, N; Smith, D L; Reuter, D; Wieck, A D; Yakovlev, D R; Bayer, M; Crooker, S A

    2012-05-04

    The problem of how single central spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying time scales and dynamical responses (exponential, power-law, gaussian, etc.). Here we detect the small random fluctuations of central spins in thermal equilibrium [holes in singly charged (In,Ga)As quantum dots] to reveal the time scales and functional form of bath-induced spin relaxation. This spin noise indicates long (400 ns) spin correlation times at a zero magnetic field that increase to ∼5  μs as dominant hole-nuclear relaxation channels are suppressed with small (100 G) applied fields. Concomitantly, the noise line shape evolves from Lorentzian to power law, indicating a crossover from exponential to slow [∼1/log(t)] dynamics.

  14. Frequency and phase synchronization in neuromagnetic cortical responses to flickering-color stimuli

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.; Polyakov, Yu. S.; Yulmetyev, R. M.; Demin, S. A.; Panischev, O. Yu.; Shimojo, S.; Bhattacharya, J.

    2010-03-01

    In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms—MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.

  15. Characterizing dynamic interactions between ultradian glucocorticoid rhythmicity and acute stress using the phase response curve.

    PubMed

    Rankin, James; Walker, Jamie J; Windle, Richard; Lightman, Stafford L; Terry, John R

    2012-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a dynamic oscillatory hormone signalling system that regulates the pulsatile secretion of glucocorticoids from the adrenal glands. In addition to regulation of basal levels of glucocorticoids, the HPA axis provides a rapid hormonal response to stress that is vitally important for homeostasis. Recently it has become clear that glucocorticoid pulses encode an important biological signal that regulates receptor signalling both in the central nervous system and in peripheral tissues. It is therefore important to understand how stressful stimuli disrupt the pulsatile dynamics of this system. Using a computational model that incorporates the crucial feed-forward and feedback components of the axis, we provide novel insight into experimental observations that the size of the stress-induced hormonal response is critically dependent on the timing of the stress. Further, we employ the theory of Phase Response Curves to show that an acute stressor acts as a phase-resetting mechanism for the ultradian rhythm of glucocorticoid secretion. Using our model, we demonstrate that the magnitude of an acute stress is a critical factor in determining whether the system resets via a Type 1 or Type 0 mechanism. By fitting our model to our in vivo stress-response data, we show that the glucocorticoid response to an acute noise stress in rats is governed by a Type 0 phase-resetting curve. Our results provide additional evidence for the concept of a deterministic sub-hypothalamic oscillator regulating the ultradian glucocorticoid rhythm, which constitutes a highly responsive peripheral hormone system that interacts dynamically with hypothalamic inputs to regulate the overall hormonal response to stress.

  16. Protective effect of resveratrol in endotoxemia-induced acute phase response in rats.

    PubMed

    Sebai, Hichem; Ben-Attia, Mossadok; Sani, Mamane; Aouani, Ezzedine; Ghanem-Boughanmi, Néziha

    2009-04-01

    Lipopolysaccharide (LPS), a glycolipid component of the cell wall of gram-negative bacteria can elicit a systemic inflammatory process leading to septic shock and death. Acute phase response is characterized by fever, leucocytosis, thrombocytopenia, altered metabolic responses and redox balance by inducing excessive reactive oxygen species (ROS) generation. Resveratrol (trans-3,5,4' trihydroxystilbene) is a natural polyphenol exhibiting antioxidant and anti-inflammatory properties. We investigated the protective effect of resveratrol on endotoxemia-induced acute phase response in rats. When acutely administered by i.p. route, resveratrol (40 mg/kg b.w.) counteracted the effect of a single injection of LPS (4 mg/kg b.w.) which induced fever, a decrease in white blood cells (WBC) and platelets (PLT) counts. When i.p. administered during 7 days at 20 mg/kg per day (subacute treatment), resveratrol abrogated LPS-induced erythrocytes lipoperoxidation and catalase (CAT) activity depression to control levels. In the plasma compartment, LPS increased malondialdehyde (MDA) via nitric monoxide (NO) elevation and decreased iron level. All these deleterious LPS effects were reversed by a subacute resveratrol pre-treatment via a NO independent way. Resveratrol exhibited potent protective effect on LPS-induced acute phase response in rats.

  17. Optical information authentication using compressed double-random-phase-encoded images and quick-response codes.

    PubMed

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2015-03-09

    In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.

  18. Monitoring the acute phase response to vaso-occlusive crisis in sickle cell disease.

    PubMed Central

    Stuart, J; Stone, P C; Akinola, N O; Gallimore, J R; Pepys, M B

    1994-01-01

    AIMS--To identify suitable acute phase proteins as objective markers of tissue ischaemia during painful vaso-occlusive crises in sickle cell disease. METHODS--The prodromal and established phases of 14 vaso-occlusive crises were studied longitudinally in 10 patients with sickle cell anaemia. Automated solid phase enzyme immunoassays were used to measure the fast responding acute phase proteins C-reactive protein and serum amyloid A protein. Slower responding glycoproteins (fibrinogen, orosomucoid, sialic acid and concanavalin-A binding) were measured in parallel. RESULTS--C-reactive protein and serum amyloid A protein increased early in crisis, sometimes within the early (prodromal) phase. Crises that resolved within 24 hours in hospital showed a minor and transient rise compared with crises that required treatment for four days or more. In eight crises treated by patients at home the acute phase response ranged from minor to a level consistent with extensive tissue ischaemia. CONCLUSIONS--Sensitive enzyme immunoassays for C-reactive protein and serum amyloid A protein are of potential value for monitoring the onset of tissue ischaemia in sickle cell crisis and for confirming subsequent resolution. PMID:7510726

  19. Visual stimuli recruit intrinsically generated cortical ensembles.

    PubMed

    Miller, Jae-eun Kang; Ayzenshtat, Inbal; Carrillo-Reid, Luis; Yuste, Rafael

    2014-09-23

    The cortical microcircuit is built with recurrent excitatory connections, and it has long been suggested that the purpose of this design is to enable intrinsically driven reverberating activity. To understand the dynamics of neocortical intrinsic activity better, we performed two-photon calcium imaging of populations of neurons from the primary visual cortex of awake mice during visual stimulation and spontaneous activity. In both conditions, cortical activity is dominated by coactive groups of neurons, forming ensembles whose activation cannot be explained by the independent firing properties of their contributing neurons, considered in isolation. Moreover, individual neurons flexibly join multiple ensembles, vastly expanding the encoding potential of the circuit. Intriguingly, the same coactive ensembles can repeat spontaneously and in response to visual stimuli, indicating that stimulus-evoked responses arise from activating these intrinsic building blocks. Although the spatial properties of stimulus-driven and spontaneous ensembles are similar, spontaneous ensembles are active at random intervals, whereas visually evoked ensembles are time-locked to stimuli. We conclude that neuronal ensembles, built by the coactivation of flexible groups of neurons, are emergent functional units of cortical activity and propose that visual stimuli recruit intrinsically generated ensembles to represent visual attributes.

  20. Frustration-induced protein intrinsic disorder

    NASA Astrophysics Data System (ADS)

    Matsushita, Katsuyoshi; Kikuchi, Macoto

    2013-03-01

    Spontaneous folding into a specific native structure is the most important property of protein to perform their biological functions within organisms. Spontaneous folding is understood on the basis of an energy landscape picture based on the minimum frustration principle. Therefore, frustration seemingly only leads to protein functional disorder. However, frustration has recently been suggested to have a function in allosteric regulation. Functional frustration has the possibility to be a key to our deeper understanding of protein function. To explore another functional frustration, we theoretically examined structural frustration, which is designed to induce intrinsic disorder of a protein and its function through the coupled folding and binding. We extended the Wako-Saitô-Muñoz-Eaton model to take into account a frustration effect. With the model, we analyzed the binding part of neuron-restrictive silencer factor and showed that designed structural frustration in it induces intrinsic disorder. Furthermore, we showed that the folding and the binding are cooperative in interacting with a target protein. The cooperativity enables an intrinsically disordered protein to exhibit a sharp switch-like folding response to binding chemical potential change. Through this switch-like response, the structural frustration may contribute to the regulation function of interprotein interaction of the intrinsically disordered protein.

  1. Qutrit teleportation under intrinsic decoherence

    NASA Astrophysics Data System (ADS)

    Jafarpour, Mojtaba; Naderi, Negar

    2016-08-01

    We study qutrit teleportation and its fidelity in the presence and absence of intrinsic decoherence through a qutrit channel. The channel consists of a Heisenberg chain with xyz interaction model and the intrinsic decoherence is implemented through the Milburn model. It is shown that while the fidelity diminishes due to intrinsic decoherence, it may be enhanced if the channel is initially in an entangled state. It is also observed that, for stronger intrinsic decoherence, the initial entanglement of the channel is more effective in enhancing of fidelity.

  2. Assessment of Tumor Response to the Vascular Disrupting Agents 5,6-Dimethylxanthenone-4-Acetic Acid or Combretastatin-A4-Phosphate by Intrinsic Susceptibility Magnetic Resonance Imaging

    SciTech Connect

    McPhail, Lesley D. Griffiths, John R. D.Phil.; Robinson, Simon P.

    2007-11-15

    Purpose: To investigate the use of the transverse magnetic resonance imaging (MRI) relaxation rate R{sub 2}* (s{sup -1}) as a biomarker of tumor vascular response to monitor vascular disrupting agent (VDA) therapy. Methods and Materials: Multigradient echo MRI was used to quantify R{sub 2}* in rat GH3 prolactinomas. R{sub 2}* is a sensitive index of deoxyhemoglobin in the blood and can therefore be used to give an index of tissue oxygenation. Tumor R{sub 2}* was measured before and up to 35 min after treatment, and 24 h after treatment with either 350 mg/kg 5,6-dimethylxanthenone-4-acetic acid (DMXAA) or 100 mg/kg combretastatin-A4-phosphate (CA4P). After acquisition of the MRI data, functional tumor blood vessels remaining after VDA treatment were quantified using fluorescence microscopy of the perfusion marker Hoechst 33342. Results: DMXAA induced a transient, significant (p < 0.05) increase in tumor R{sub 2}* 7 min after treatment, whereas CA4P induced no significant changes in tumor R{sub 2}* over the first 35 min. Twenty-four hours after treatment, some DMXAA-treated tumors demonstrated a decrease in R{sub 2}*, but overall, reduction in R{sub 2}* was not significant for this cohort. Tumors treated with CA4P showed a significant (p < 0.05) reduction in R{sub 2}* 24 h after treatment. The degree of Hoechst 33342 uptake was associated with the degree of R{sub 2}* reduction at 24 h for both agents. Conclusions: The reduction in tumor R{sub 2}* or deoxyhemoglobin levels 24 h after VDA treatment was a result of reduced blood volume caused by prolonged vascular collapse. Our results suggest that DMXAA was less effective than CA4P in this rat tumor model.

  3. Undernutrition, the Acute Phase Response to Infection, and Its Effects on Micronutrient Status Indicators12

    PubMed Central

    Bresnahan, Kara A.; Tanumihardjo, Sherry A.

    2014-01-01

    Infection and undernutrition are prevalent in developing countries and demonstrate a synergistic relation. Undernutrition increases infection-related morbidity and mortality. The acute phase response (APR) is an innate, systemic inflammatory reaction to a wide array of disruptions in a host’s homeostasis, including infection. Released from immune cells in response to deleterious stimuli, proinflammatory cytokines act on distant tissues to induce behavioral (e.g., anorexia, weakness, and fatigue) and systemic effects of the APR. Cytokines act to increase energy and protein requirements to manifest fever and support hepatic acute phase protein (APP) production. Blood concentrations of glucose and lipid are augmented to provide energy to immune cells in response to cytokines. Additionally, infection decreases intestinal absorption of nutrients and can cause direct loss of micronutrients. Traditional indicators of iron, zinc, and vitamin A status are altered during the APR, leading to inaccurate estimations of deficiency in populations with a high or unknown prevalence of infection. Blood concentrations of APPs can be measured in nutrition interventions to assess the time stage and severity of infection and correct for the APR; however, standardized cutoffs for nutrition applications are needed. Protein-energy malnutrition leads to increased gut permeability to pathogens, abnormal immune cell populations, and impaired APP response. Micronutrient deficiencies cause specific immune impairments that affect both innate and adaptive responses. This review describes the antagonistic interaction between the APR and nutritional status and emphasizes the need for integrated interventions to address undernutrition and to reduce disease burden in developing countries. PMID:25398733

  4. Acute-phase responses vary with pathogen identity in house sparrows (Passer domesticus).

    PubMed

    Coon, Courtney A C; Warne, Robin W; Martin, Lynn B

    2011-06-01

    Pathogens may induce different immune responses in hosts contingent on pathogen characteristics, host characteristics, or interactions between the two. We investigated whether the broadly effective acute-phase response (APR), a whole body immune response that occurs in response to constitutive immune receptor activation and includes fever, secretion of immune peptides, and sickness behaviors such as anorexia and lethargy, varies with pathogen identity in the house sparrow (Passer domesticus). Birds were challenged with a subcutaneous injection of either a glucan at 0.7 mg/kg (to simulate fungal infection), a synthetic double-stranded RNA at 25 mg/kg (to simulate viral infection), or LPS at 1 mg/kg (to simulate a gram-negative bacterial infection), and then body mass, core body temperature changes, sickness behaviors, and secretion of an acute-phase protein, haptoglobin, were compared. Despite using what are moderate-to-high pyrogen doses for other vertebrates, only house sparrows challenged with LPS showed measurable APRs. Febrile, behavioral, and physiological responses to fungal and viral mimetics had minimal effects.

  5. Toward phase 4 trials in heart failure: A social and corporate responsibility of the medical profession

    PubMed Central

    Iyngkaran, Pupalan; Beneby, Glen S

    2015-01-01

    Congestive heart failure (CHF) is a chronic condition, requiring polypharmacy, allied health supports and regular monitoring. All these factors are needed to ensure compliance and to deliver the positive outcomes demonstrated from randomized controlled trials. Unfortunately many centers around the world are unable to match trial level support. The outcomes for many communities are thus unclear. Research design factors in post-marketing surveillance to address this issue. Phase 4 studies is the name given to trials designed to obtain such community level data and thus address issues of external validity. CHF phase 4 studies are relatively underutilized. We feel the onus for this research lies with the health profession. In this commentary we provide arguments as to why phase 4 studies should be viewed as a social and corporate responsibility of health professional that care for clients with CHF. PMID:26713277

  6. Toward phase 4 trials in heart failure: A social and corporate responsibility of the medical profession.

    PubMed

    Iyngkaran, Pupalan; Beneby, Glen S

    2015-12-26

    Congestive heart failure (CHF) is a chronic condition, requiring polypharmacy, allied health supports and regular monitoring. All these factors are needed to ensure compliance and to deliver the positive outcomes demonstrated from randomized controlled trials. Unfortunately many centers around the world are unable to match trial level support. The outcomes for many communities are thus unclear. Research design factors in post-marketing surveillance to address this issue. Phase 4 studies is the name given to trials designed to obtain such community level data and thus address issues of external validity. CHF phase 4 studies are relatively underutilized. We feel the onus for this research lies with the health profession. In this commentary we provide arguments as to why phase 4 studies should be viewed as a social and corporate responsibility of health professional that care for clients with CHF.

  7. Origin of magnetic and dielectric response in single phase nano crystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Feroze, Asad; Idrees, Muhammad; Nadeem, Muhammad; Siddiqi, Saadat A.; Saleem, Murtaza; Atif, Muhammad; Siddique, Muhammad; Shaukat, Saleem F.

    2016-12-01

    Stoichiometric and single phase synthesis of BiFeO3 is critical both in its particle industrial applications as well as in understanding the origin of its attractive dielectric and magnetic properties. In this study, BiFeO3 has been obtained at temperatures as low as 400 °C. Zero Fe+2/Fe+3 ratio, and absence of bismuth and oxygen non-stoichiometry have been probed by 57Fe Mössbauer spectroscopy. The appearance of different magnetic phases in 57Fe Mössbauer spectrum, MH hysteresis curve and exchange bias effect have been conferred on the basis of magneto-crystalline anisotropy and particle size distribution. Dependence of the dielectric response on the applied electric field reveals that the colossal dielectric response in BiFeO3 is dominated by extrinsic effects at grain-grain interface.

  8. Simulated response of top-hat electrostatic analysers - importance of phase-space resolution

    NASA Astrophysics Data System (ADS)

    De Marco, Rossana; Bruno, Roberto; D'Amicis, Raffaella; Federica Marcucci, Maria; Servidio, Sergio; Valentini, Francesco

    2016-04-01

    We use a numerical code able to reproduce the angular/energy response of a typical electrostatic analyzer of top-hat type starting from velocity distribution functions (VDFs) generated by numerical imulations.The simulations are based on the Hybrid Vlasov-Maxwell (HVM) numerical algorithm which integrates the Vlasov equation for the ion distribution function in multi-dimensional geometry in phase space, while the electrons are treated as a fluid. Virtual satellites launched through the simulation box measure the particle VDFs. Such VDFs are interpolated into a spacecraft reference frame and moved from the simulation Cartesian grid to energy-angular coordinates to mimic the response of a real electrostatic sensor in the solar wind and in the magnetosheath for different conditions. We discuss the results of this study with respect to the importance of phase-space resolution for a space plasma experiment meant to investigate kinetic plasma regime.

  9. Modeling the viscoplastic micromechanical response of two-phase materials using fast Fourier transforms

    SciTech Connect

    Lebensohn, Ricardo A; Lee, Sukbin; Rollett, Anthony D

    2009-01-01

    A viscoplastic approach using the Fast Fourier Transform (FFT) method for obtaining local mechanical response is utilized to study microstructure-property relationships in composite materials. Specifically, three-dimensional, two-phase digital materials containing isotropically coarsened particles surrounded by a matrix phase, generated through a Kinetic Monte Carlo Potts model for Ostwald ripening, are used as instantiations in order to calculate the stress and strain rate fields under uniaxial tension. The effects of the morphology of the matrix phase, the volume fraction and the contiguity of particles, and the polycrystallinity of matrix phase, on the stress and strain rate fields under uniaxial tension are examined. It is found that the first moments of the stress and strain rate fields have a different dependence on the particle volume fraction and the particle contiguity from their second moments. The average stresses and average strain rates of both phases and of the overall composite have rather simple relationships with the particle volume fraction whereas their standard deviations vary strongly, especially when the particle volume fraction is high, and the contiguity of particles has a noticeable effect on the mechanical response. It is also found that the shape of stress distribution in the BCC hard particle phase evolves as the volume fraction of particles in the composite varies, such that it agrees with the stress field in the BCC polycrystal as the volume of particles approaches unity. Finally, it is observed that the stress and strain rate fields in the microstructures with a polycrystalline matrix are less sensitive to changes in volume fraction and contiguity of particles.

  10. Sex differences in acute hormonal and subjective response to naltrexone: The impact of menstrual cycle phase.

    PubMed

    Roche, Daniel J O; King, Andrea C

    2015-02-01

    Women often exhibit larger hormonal and subjective responses to opioid receptor antagonists than men, but the biological mechanisms mediating this effect remain unclear. Among women, fluctuations in estradiol (E2) and progesterone (P4) across the menstrual cycle (MC) affect the endogenous opioid system. Therefore, the goal of the current study was to compare acute naltrexone response between women in the early follicular phase of the MC (low E2 and P4), women in the luteal phase of the MC (high E2 and P4), and men. Seventy healthy controls (n=46 women) participated in two morning sessions in which they received 50mg naltrexone or placebo in a randomized, counterbalanced order. Women were randomized to complete both sessions in either the early follicular (n=23) or luteal phase of the MC. Serum cortisol, salivary cortisol, prolactin, luteinizing hormone (LH), and subjective response were assessed upon arrival to the laboratory and at regular intervals after pill administration. In luteal and early follicular women but not men, naltrexone (vs. placebo) increased serum cortisol and prolactin levels from baseline; however, the naltrexone-induced increases in these hormones were significantly greater in luteal women than early follicular women. Additionally, only luteal women demonstrated an increase from baseline in salivary cortisol levels and the severity of adverse drug effects in response to naltrexone. In sum, the results indicate that luteal phase women are more sensitive to acute hormonal and subjective effects of naltrexone than early follicular women and men. These findings may have important implications for the use of naltrexone in women.

  11. Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis.

    PubMed

    Vandewalle, Gilles; Archer, Simon N; Wuillaume, Catherine; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Dijk, Derk-Jan; Maquet, Pierre

    2011-06-01

    Light is a powerful modulator of cognition through its long-term effects on circadian rhythmicity and direct effects on brain function as identified by neuroimaging. How the direct impact of light on brain function varies with wavelength of light, circadian phase, and sleep homeostasis, and how this differs between individuals, is a largely unexplored area. Using functional MRI, we compared the effects of 1 minute of low-intensity blue (473 nm) and green light (527 nm) exposures on brain responses to an auditory working memory task while varying circadian phase and status of the sleep homeostat. Data were collected in 27 subjects genotyped for the PER3 VNTR (12 PER3(5/5) and 15 PER3(4/4) ) in whom it was previously shown that the brain responses to this task, when conducted in darkness, depend on circadian phase, sleep homeostasis, and genotype. In the morning after sleep, blue light, relative to green light, increased brain responses primarily in the ventrolateral and dorsolateral prefrontal cortex and in the intraparietal sulcus, but only in PER3(4/4) individuals. By contrast, in the morning after sleep loss, blue light increased brain responses in a left thalamofrontoparietal circuit to a larger extent than green light, and only so in PER3(5/5) individuals. In the evening wake maintenance zone following a normal waking day, no differential effect of 1 minute of blue versus green light was observed in either genotype. Comparison of the current results with the findings observed in darkness indicates that light acts as an activating agent particularly under those circumstances in which and in those individuals in whom brain function is jeopardized by an adverse circadian phase and high homeostatic sleep pressure.

  12. Early responses of human cancer cells upon photodynamic treatment monitored by laser phase microscopy

    NASA Astrophysics Data System (ADS)

    Roelofs, Theo A.; Graschew, Georgi; Perevedentseva, Elena V.; Rakowsky, Stefan; Dressler, Cathrin; Beuthan, Juergen; Schlag, Peter M.

    2001-04-01

    Photodynamic treatment of cancer cells is known to eventually cause cell death in most cases. The precise pathways and the time course seem to vary among different cell types and modes of photodynamic treatment. In this contribution, the focus was put on the responses of human colon carcinoma cells HCT-116 within the first 15 minutes after laser irradiation in the presence of Photofrin« II (PII). To monitor the cell response in this early time period laser phase microscopic imaging was used, a method sensitive to changes in overall cell shape and intracellular structures, mediated by changes in the local refractive index. Laser irradiation of cells loaded with PII induced a significant reduction of the phase shifts, which probably reflects the induced damage to the different cellular membrane structures. The data suggest that even within the first 30 s after the onset of laser illumination, a significant reduction of the phase shifts can be detected. These results underline that laser phase microscopy is a suitable diagnostic tool for cellular research, also in the early time domain.

  13. Nonlinear driven response of a phase-field crystal in a periodic pinning potential.

    PubMed

    Achim, C V; Ramos, J A P; Karttunen, M; Elder, K R; Granato, E; Ala-Nissila, T; Ying, S C

    2009-01-01

    We study numerically the phase diagram and the response under a driving force of the phase field crystal model for pinned lattice systems introduced recently for both one- and two-dimensional systems. The model describes the lattice system as a continuous density field in the presence of a periodic pinning potential, allowing for both elastic and plastic deformations of the lattice. We first present results for phase diagrams of the model in the absence of a driving force. The nonlinear response to a driving force on an initially pinned commensurate phase is then studied via overdamped dynamic equations of motion for different values of mismatch and pinning strengths. For large pinning strength the driven depinning transitions are continuous, and the sliding velocity varies with the force from the threshold with power-law exponents in agreement with analytical predictions. Transverse depinning transitions in the moving state are also found in two dimensions. Surprisingly, for sufficiently weak pinning potential we find a discontinuous depinning transition with hysteresis even in one dimension under overdamped dynamics. We also characterize structural changes of the system in some detail close to the depinning transition.

  14. Heterogeneous nanotribological response of polymorphic self-assembled monolayers arising from domain and phase dependent friction.

    PubMed

    Paradinas, Markos; Munuera, Carmen; Silien, Christophe; Buck, Manfred; Ocal, Carmen

    2013-01-28

    Micro-/nanoelectromechanical systems demand robust ultrathin films for lubrication. As they can drastically modify the frictional properties of surfaces, few nanometers thick self-assembled monolayers (SAMs) constitute accepted candidates as boundary lubricants. Their high stability and easy preparation make them attractive also for low cost applications. Given their high order, organosulfur SAMs have been archetypal systems for structural investigations, but few efforts have been devoted to analyze the influence of lateral inhomogeneities on their surface properties. The impact on the frictional response of the surface due to the existence of crystalline domains with lateral dimension in the sub-micrometer range is considered here. To this end, two polymorphic structures of self-assembled monolayers of ω-(4'-methylbiphenyl-4-yl) butane-1-thiol coexisting on Au(111) are investigated by scanning tunneling and force microscopy. Described by rectangular 5√5 × 3 (α-phase) and oblique 6√3 × 2√3 (β-phase) unit cells, they exhibit pronouncedly different frictional responses. The lateral nano-tribological heterogeneity of the surface is further influenced by the azimuthal orientation dependence of friction for each phase. In particular, this phenomenon is exploited in the less densely packed β-phase for which the separate analysis of forward and backward lateral force scans is used to differentiate domains rotated 180°. The results demonstrate the level of structural control required in the design of SAMs for nano-tribology applications.

  15. Intrinsic Friction Microscopy

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel; Overney, Rene

    2008-03-01

    A novel scanning probe methodology based on lateral force microscopy is presented wherein kinetic friction measurements, obtained as a function of velocity for various temperatures, are used to deduce apparent Arrhenius-type activation energies for surface and subsurface molecular mobilities. Depending on the coupling strength (cooperativity) between molecular mobilities involved the dissipation energy can carry a significant entropic energy contribution, accounting for the majority of the apparent Arrhenius activation energy. The intrinsic friction methodology also provides a means of directly separating enthalpic energy contributions from entropic ones by employing absolute rate theory. As such, the degree of cooperativity in the system is readily apparent. This methodology is illustrated with nanoscale tribological experiments on two systems, (1) monodisperse, atactic polystyrene and (2) self assembling molecular glassy chromophores. In polystyrene, dissipation was found to be a discrete function of loading, where the γ-relaxation (phenyl group rotation) was recovered for ultra low loads and the β-relaxation (local backbone translation) for higher loads in the same temperature range, indicating sensitivity to surface and subsurface mobilities. For self assembling glassy chromophores, the degree of intermolecular cooperativity was deduced using the methodology, resulting in an increased understanding of the interactions between self assembling molecules.

  16. Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm.

    PubMed

    Chang, Wei-Der

    2015-01-01

    This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter.

  17. Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm

    PubMed Central

    Chang, Wei-Der

    2015-01-01

    This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168

  18. Phononic Frequency Comb via Intrinsic Three-Wave Mixing.

    PubMed

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2017-01-20

    Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.

  19. Phononic Frequency Comb via Intrinsic Three-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin

    2017-01-01

    Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.

  20. Photo responsive monoolein cubic phase containing coumarin-Tween 20 conjugates.

    PubMed

    Dai, Jing; Kim, Jin-Chul

    2013-09-01

    Photo-responsive monoolein (MO) cubic phase was developed by incorporating coumarin-Tween 20 conjugate in the cubic phase. 7-chlorocarbonylmethoxycoumarin was obtained from 7-hydroxycoumarin through three-step reactions with the yield of 19.8% and it was conjugated to the head group of Tween 20. The molar ratio of the coumarin derivative/Tween 20 in the conjugate was about 1/1 on ¹H NMR spectrum. The cubic phase was prepared by melting the mixture of MO/conjugate (100/0.88, w/w) and hydrating the molten mixture with 5(6)-carboxyfluorescein (CF) solution. UV irradiation (254 nm and/or 365 nm) for 3 h resulted in 1.27% to 2.69% reduction in the double bond of MO but the cubic phase was stable in terms of its integrity under the UV irradiation. The release of CF from coumarin-Tween 20 conjugate-incorporated cubic phase was somewhat suppressed by being subjected to the UV irradiation. The head groups of coumarin-Tween 20 conjugate will be cross-linked so the diffusion in the water channel will be suppressed.

  1. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  2. The intrinsic resistance of bacteria.

    PubMed

    Gang, Zhang; Jie, Feng

    2016-10-20

    Antibiotic resistance is often considered to be a trait acquired by previously susceptible bacteria, on the basis of which can be attributed to the horizontal acquisition of new genes or the occurrence of spontaneous mutation. In addition to acquired resistance, bacteria have a trait of intrinsic resistance to different classes of antibiotics. An intrinsic resistance gene is involved in intrinsic resistance, and its presence in bacterial strains is independent of previous antibiotic exposure and is not caused by horizontal gene transfer. Recently, interest in intrinsic resistance genes has increased, because these gene products not only may provide attractive therapeutic targets for development of novel drugs that rejuvenate the activity of existing antibiotics, and but also might predict future emergence of resistant pathogens if they become mobilized. In the present review, we summarize the conventional examples of intrinsic resistance, including the impermeability of cellular envelopes, the activity of multidrug efflux pumps or lack of drug targets. We also demonstrate that transferases and enzymes involved in basic bacterial metabolic processes confer intrinsic resistance in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. We present as well information on the cryptic intrinsic resistance genes that do not confer resistance to their native hosts but are capable of conferring resistance when their expression levels are increased and the activation of the cryptic genes. Finally, we discuss that intrinsic genes could be the origin of acquired resistance, especially in the genus Acinetobacter.

  3. Menstrual cycle phase effects free testosterone responses to prolonged aerobic exercise.

    PubMed

    Lane, A R; O'Leary, C B; Hackney, A C

    2015-09-01

    Research has shown that total testosterone (tT) levels in women increase acutely during a prolonged bout of aerobic exercise. Few studies, however, have considered the impact of the menstrual cycle phase on this response or have looked at the biologically active free testosterone (fT) form responses. Therefore, this study examined the fT concentration response independently and as a percentage (fT%) of tT to prolonged aerobic exercise during phases of the menstrual cycle with low estrogen-progesterone (L-EP; i.e., follicular phase) and high estrogen-progesterone (H-EP; i.e., luteal phase). Ten healthy, recreationally trained, eumennorrheic women (X ± SD: age = 20 ± 2 y, mass = 58.7 ± 8.3 kg, body fat = 22.3 ± 4.9 %, VO(2max) = 50.7 ± 9.0 ml/kg/min) participated in a laboratory based study and completed a 60-minute treadmill run during the L-EP and H-EP menstrual phases at ~70% of VO(2max). Blood was drawn prior to (PRE), immediately after (POST) and following 30 minutes of recovery (30POST) with each 60-minute run. During H-EP, there was a significant increase in fT concentrations from PRE to POST (p < 0.01) while in L-EP fT levels were unchanged; which resulted in fT being significantly higher at H-EP POST versus L-EP POST (p < 0.03). Area-under-the-curve (AUC) responses were calculated, for fT the total AUC was greater in H-EP than L-EP (p < 0.04). There was no significant interaction of fT% between phases and exercise sampling time. There was, however, a main effect for exercise where fT% POST was a greater proportion of tT than at PRE (p < 0.01). In summary, hormonal changes associated with the menstrual cycle impact fT response to a prolonged aerobic exercise bout; specifically, there being higher levels under H-EP conditions. This suggests more biologically active T is available during exercise in this phase. This response may be a function of the higher core temperatures found with H-EP causing greater sex hormone binding protein release of T, or could

  4. Topological electromagnetic responses of bosonic quantum Hall, topological insulator, and chiral semimetal phases in all dimensions

    NASA Astrophysics Data System (ADS)

    Lapa, Matthew F.; Jian, Chao-Ming; Ye, Peng; Hughes, Taylor L.

    2017-01-01

    We calculate the topological part of the electromagnetic response of bosonic integer quantum Hall (BIQH) phases in odd (space-time) dimensions, and bosonic topological insulator (BTI) and bosonic chiral semimetal (BCSM) phases in even dimensions. To do this, we use the nonlinear sigma model (NLSM) description of bosonic symmetry-protected topological (SPT) phases, and the method of gauged Wess-Zumino (WZ) actions. We find the surprising result that for BIQH states in dimension 2 m -1 (m =1 ,2 ,⋯ ), the bulk response to an electromagnetic field Aμ is characterized by a Chern-Simons term for Aμ with a level quantized in integer multiples of m ! (factorial). We also show that BTI states (which have an extra Z2 symmetry) can exhibit a Z2-breaking quantum Hall effect on their boundaries, with this boundary quantum Hall effect described by a Chern-Simons term at level m/! 2 . We show that the factor of m ! can be understood by requiring gauge invariance of the exponential of the Chern-Simons term on a general Euclidean manifold, and we also use this argument to characterize the electromagnetic and gravitational responses of fermionic SPT phases with U(1 ) symmetry in all odd dimensions. We then use our gauged boundary actions for the BIQH and BTI states to (i) construct a bosonic analog of a chiral semimetal (BCSM) in even dimensions, (ii) show that the boundary of the BTI state exhibits a bosonic analog of the parity anomaly of Dirac fermions in odd dimensions, and (iii) study anomaly inflow at domain walls on the boundary of BTI states. In a series of Appendixes we derive important formulas and additional results. In particular, in Appendix A we use the connection between equivariant cohomology and gauged WZ actions to give a mathematical interpretation of the actions for the BIQH and BTI boundaries constructed in this paper.

  5. Intrinsic Amino Acid Side-Chain Hydrophilicity/Hydrophobicity Coefficients Determined by Reversed-Phase High-Performance Liquid Chromatography of Model Peptides: Comparison with Other Hydrophilicity/Hydrophobicity Scales

    PubMed Central

    Mant, Colin T.; Kovacs, James M.; Kim, Hyun-Min; Pollock, David D.; Hodges, Robert S.

    2009-01-01

    An accurate determination of the intrinsic hydrophilicity/hydrophobicity of amino acid side-chains in peptides and proteins is fundamental in understanding many areas, including protein folding and stability, peptide and protein function, protein-protein interactions and peptide/protein oligomerization, as well as the design of protocols for purification and characterization of peptides and proteins. Our definition of intrinsic hydrophilicity/hydrophobicity of side-chains is the maximum possible hydrophilicity/hydrophobicity of side-chains in the absence of any nearest-neighbor effects and/or any conformational effects of the polypeptide chain that prevent full expression of side-chain hydrophilicity/hydrophobicity. In this review, we have compared an experimentally-derived intrinsic side-chain hydrophilicity/hydrophobicity scale generated from RP-HPLC retention behavior of de novo designed synthetic model peptides at pH 2 and pH 7 with other RP-HPLC-derived scales, as well as scales generated from classic experimental and calculation-based methods of octanol/water partitioning of Nα-acetyl-amino-acid amides or free energy of transfer of free amino acids. Generally poor correlation was found with previous RP-HPLC-derived scales, likely due to the random nature of the peptide mixtures in terms of varying peptide size, conformation and frequency of particular amino acids. In addition, generally poor correlation with the classical approaches served to underline the importance of the presence of a polypeptide backbone when generating intrinsic values. We have shown that the intrinsic scale determined here is in full agreement with the structural characteristics of amino acid side-chains. PMID:19795449

  6. Phase-locked hippocampal theta-band responses are related to discriminative eyeblink conditioned responding.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2013-11-01

    Hippocampal electrophysiological oscillatory activity is undoubtedly related to learning and memory. The relative power of spontaneously occurring hippocampal theta (∼4-8 Hz) oscillations predicts how fast and how well an animal will learn: more theta predicts faster acquisition of the conditioned response in eyeblink conditioning in both rats and rabbits. Here, our aim was to study how hippocampal theta-band responses to conditioned stimuli elicited during very-long delay discrimination eyeblink conditioning relate to the accompanying conditioned behavior. We trained adult male New Zealand White rabbits using 1500-ms auditory stimuli as conditioned stimuli and a 100-ms airpuff as an unconditioned stimulus. The reinforced conditioned stimulus overlapped and co-terminated with the unconditioned stimulus whereas the non-reinforced conditioned stimulus was always presented alone. Consistent with previous results, hippocampal theta-band responses to the conditioned stimuli diminished in amplitude across training. Interestingly, hippocampal theta-band responses were most consistently time-locked when a well-trained animal failed to suppress behavioral learned responses to the non-reinforced conditioned stimulus. We suggest that phase-locking of hippocampal theta-band oscillations in response to external stimuli reflects retrieval of the dominant memory trace (adaptive or not) along with initiating the most prominent action scheme related to that memory trace.

  7. Presence of an acute phase response in sheep with clinical classical scrapie

    PubMed Central

    2012-01-01

    Background Work with experimental scrapie in sheep has been performed on-site for many years including studies on PrPSc dissemination and histopathology of organs and tissues both at preclinical and clinical stages. In this work serum was sampled at regular intervals from lambs which were infected immediately after birth and from parallel healthy controls, and examined for acute phase proteins. In contrast to earlier experiments, which extensively studied PrPSc dissemination and histopathology in peripheral tissues and brain, this experiment is focusing on examination of serum for non-PrPSc markers that discriminates the two groups, and give insight into other on-going processes detectable in serum samples. Results There was clear evidence of an acute phase response in sheep with clinical scrapie, both experimental and natural. All the three proteins, ceruloplasmin, haptoglobin and serum amyloid A, were increased at the clinical stage of scrapie. Conclusion There was evidence of a systemic measurable acute phase response at the clinical terminal end-stage of classical scrapie. PMID:22805457

  8. SnTe field effect transistors and the anomalous electrical response of structural phase transition

    SciTech Connect

    Li, Haitao Zhu, Hao; Yuan, Hui; Li, Qiliang; You, Lin; Kopanski, Joseph J.; Richter, Curt A.; Zhao, Erhai

    2014-07-07

    SnTe is a conventional thermoelectric material and has been newly found to be a topological crystalline insulator. In this work, back-gate SnTe field-effect transistors have been fabricated and fully characterized. The devices exhibit n-type transistor behaviors with excellent current-voltage characteristics and large on/off ratio (>10{sup 6}). The device threshold voltage, conductance, mobility, and subthreshold swing have been studied and compared at different temperatures. It is found that the subthreshold swings as a function of temperature have an apparent response to the SnTe phase transition between cubic and rhombohedral structures at 110 K. The abnormal and rapid increase in subthreshold swing around the phase transition temperature may be due to the soft phonon/structure change which causes the large increase in SnTe dielectric constant. Such an interesting and remarkable electrical response to phase transition at different temperatures makes the small SnTe transistor attractive for various electronic devices.

  9. Intrinsic optical modulation mechanism in electro-optic crystals

    NASA Astrophysics Data System (ADS)

    Garzarella, A.; Hinton, R. J.; Qadri, S. B.; Wu, Dong Ho

    2008-06-01

    An intrinsic mechanism of optical intensity modulation occurring in electro-optic devices such as field sensors and modulators under applied fields is described. The optical modulation results from interactions between internally generated Fizeau interference patterns and electro-optic effects within the nonlinear crystal. Our results indicate that when phase matched with the conventional polarimetric signal, the intrinsic modulation mechanism can nearly double device sensitivity.

  10. Phase coherence in vibration-induced responses of tactile fibres associated with Pacinian corpuscle receptors in the cat.

    PubMed Central

    Greenstein, J; Kavanagh, P; Rowe, M J

    1987-01-01

    1. In pentobarbitone-anaesthetized cats, responses were recorded in peripheral nerves or cervical dorsal columns from sensory fibres associated with Pacinian corpuscle (P.c.) receptors in the forelimb footpads. Factors affecting the phase of response to cutaneous vibration in individual P.c. fibres, and the extent of phase coherence in the responses of different P.c. fibres were examined when sinusoidal vibratory stimuli at 100-400 Hz were delivered using a 1 mm diameter probe. 2. Increases in vibration amplitude from the absolute to the 1:1 threshold for the P.c. fibre led to phase advances in the response, often of about 60 deg, in over 85% of fibres tested at 200 and 300 Hz, but further increases had little effect. 3. Variations in stimulus position within the receptive field led to unpredictable changes in the response phase that ranged from minimal change to shifts of 180 deg. As the response phase was unrelated to the distance from the point of peak sensitivity it is likely that at high vibration frequencies (greater than or equal to 100 Hz) the recruited population of P.c. fibres will respond over the whole range of phase angles. 4. The calculated phase of spike initiation in different pairs of P.c. fibres that shared coincident points of best sensitivity on the skin ranged from near synchrony to maximum asynchrony indicating that there is little phase coherence even in the subpopulation of somatotopically related P.c. fibres recruited by high-frequency cutaneous vibration. 5. Paired recordings from P.c. fibres within the cervical dorsal columns revealed a broad range of phase discrepancies in the responses of P.c. fibres to vibration at 200 and 300 Hz. 6. Several hypotheses are considered to explain the known presence of phase-locked responses to high-frequency (greater than or equal to 100 Hz) vibration in the central neurones of dorsal column nuclei. PMID:3681709

  11. Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26-Like Intrinsic Protein to Salt and Water Stress.

    PubMed

    Park, Jong-Won; Benatti, Thiago R; Marconi, Thiago; Yu, Qingyi; Solis-Gracia, Nora; Mora, Victoria; da Silva, Jorge A

    2015-01-01

    Transcriptome analysis of sugarcane hybrid CP72-1210 (cold susceptible) and Saccharum spontaneum TUS05-05 (cold tolerant) using Sugarcane Assembled Sequences (SAS) from SUCEST-FUN Database showed that a total of 35,340 and 34,698 SAS genes, respectively, were expressed before and after chilling stress. The analysis revealed that more than 600 genes are differentially expressed in each genotype after chilling stress. Blast2Go annotation revealed that the major difference in gene expression profiles between CP72-1210 and TUS05-05 after chilling stress are present in the genes related to the transmembrane transporter activity. To further investigate the relevance of transmembrane transporter activity against abiotic stress tolerance, a S. spontaneum homolog of a NOD26-like major intrinsic protein gene (SspNIP2) was selected for functional analysis, of which expression was induced after chilling stress in the cold tolerant TUS05-05. Quantitative real-time PCR showed that SspNIP2 expression was increased ~2.5 fold at 30 minutes after cold treatment and stayed induced throughout the 24 hours of cold treatment. The amino acid sequence analysis of the cloned SspNIP2 confirmed the presence of six transmembrane domains and two NPA (Asn-Pro-Ala) motifs, signature features of major intrinsic protein families. Amino acid analysis confirmed that four amino acids, comprising the ar/R (aromatic residue/arginine) region responsible for the substrate specificity among MIPs, are conserved among monocot silicon transporters and SspNIP2. Salinity stress test on SspNIP2 transgenic tobacco plants resulted in more vigorous transgenic lines than the non-transgenic tobacco plants, suggesting some degree of tolerance to salt stress conferred by SspNIP2. SspNIP2-transgenic plants, exposed to 2 weeks of water stress without irrigation, developed various degrees of water stress symptom. The water stress test confirmed that the SspNIP2 transgenic lines had lower evapotranspiration rates than non

  12. Cold Responsive Gene Expression Profiling of Sugarcane and Saccharum spontaneum with Functional Analysis of a Cold Inducible Saccharum Homolog of NOD26-Like Intrinsic Protein to Salt and Water Stress

    PubMed Central

    Park, Jong-Won; Benatti, Thiago R.; Marconi, Thiago; Yu, Qingyi; Solis-Gracia, Nora; Mora, Victoria; da Silva, Jorge A.

    2015-01-01

    Transcriptome analysis of sugarcane hybrid CP72-1210 (cold susceptible) and Saccharum spontaneum TUS05-05 (cold tolerant) using Sugarcane Assembled Sequences (SAS) from SUCEST-FUN Database showed that a total of 35,340 and 34,698 SAS genes, respectively, were expressed before and after chilling stress. The analysis revealed that more than 600 genes are differentially expressed in each genotype after chilling stress. Blast2Go annotation revealed that the major difference in gene expression profiles between CP72-1210 and TUS05-05 after chilling stress are present in the genes related to the transmembrane transporter activity. To further investigate the relevance of transmembrane transporter activity against abiotic stress tolerance, a S. spontaneum homolog of a NOD26-like major intrinsic protein gene (SspNIP2) was selected for functional analysis, of which expression was induced after chilling stress in the cold tolerant TUS05-05. Quantitative real-time PCR showed that SspNIP2 expression was increased ~2.5 fold at 30 minutes after cold treatment and stayed induced throughout the 24 hours of cold treatment. The amino acid sequence analysis of the cloned SspNIP2 confirmed the presence of six transmembrane domains and two NPA (Asn-Pro-Ala) motifs, signature features of major intrinsic protein families. Amino acid analysis confirmed that four amino acids, comprising the ar/R (aromatic residue/arginine) region responsible for the substrate specificity among MIPs, are conserved among monocot silicon transporters and SspNIP2. Salinity stress test on SspNIP2 transgenic tobacco plants resulted in more vigorous transgenic lines than the non-transgenic tobacco plants, suggesting some degree of tolerance to salt stress conferred by SspNIP2. SspNIP2-transgenic plants, exposed to 2 weeks of water stress without irrigation, developed various degrees of water stress symptom. The water stress test confirmed that the SspNIP2 transgenic lines had lower evapotranspiration rates than non

  13. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise

    NASA Astrophysics Data System (ADS)

    Wu, Fuqiang; Wang, Chunni; Jin, Wuyin; Ma, Jun

    2017-03-01

    Complex electrical activities in neuron can induce time-varying electromagnetic field and the effect of various electromagnetic inductions should be considered in dealing with electrical activities of neuron. Based on an improved neuron model, the effect of electromagnetic induction is described by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. Furthermore, additive phase noise is imposed on the neuron to detect the dynamical response of neuron and phase transition in modes. The dynamical properties of electrical activities are detected and discussed, and double coherence resonance behavior is observed, respectively. Furthermore, multiple modes of electrical activities can be observed in the sampled time series for membrane potential of the neuron model.

  14. Habituation of single CO2 laser-evoked responses during interictal phase of migraine.

    PubMed

    de Tommaso, Marina; Libro, Giuseppe; Guido, Marco; Losito, Luciana; Lamberti, Paolo; Livrea, Paolo

    2005-09-01

    A reduced habituation of averaged laser-evoked potential (LEP) amplitudes was previously found in migraine patients. The aim of the present study was to assess the habituation of single LEP responses and pain sensation during the interictal phase in migraine patients. Fourteen migraine patients were compared with ten control subjects. The pain stimulus was laser pulses, generated by CO2 laser, delivered to right supraorbital zone. Patients were evaluated during attack-free conditions. The LEP habituation was studied by measuring the changes of LEP amplitudes across and within three consecutive repetitions of 21 non-averaged trials. In migraine patients the N2-P2 wave amplitudes did not show a tendency toward habituation across and, above all, within the three repetitions. Anomalous behaviour of nociceptive cortex during the interictal phase of migraine may predispose patients to headache occurrence and persistence.

  15. Subcycle Optical Response Caused by a Terahertz Dressed State with Phase-Locked Wave Functions

    NASA Astrophysics Data System (ADS)

    Uchida, K.; Otobe, T.; Mochizuki, T.; Kim, C.; Yoshita, M.; Akiyama, H.; Pfeiffer, L. N.; West, K. W.; Tanaka, K.; Hirori, H.

    2016-12-01

    The coherent interaction of light with matter imprints the phase information of the light field on the wave function of the photon-dressed electronic state. A driving electric field, together with a stable phase that is associated with the optical probe pulses, enables the role of the dressed state in the optical response to be investigated. We observed optical absorption strengths modulated on a subcycle time scale in a GaAs quantum well in the presence of a multicycle terahertz driving pulse using a near-infrared probe pulse. The measurements were in good agreement with the analytical formula that accounts for the optical susceptibilities caused by the dressed state of the excitons, which indicates that the output probe intensity was coherently reshaped by the excitonic sideband emissions.

  16. Two genes controlling acute phase responses by the antitumor polysacch aride, lentinan.

    PubMed

    Maeda, Y Y; Takahama, S; Kohara, Y; Yonekawa, H

    1996-01-01

    Lentinan, a beta-1,6;1,3-glucan, is tumor-specific for transplantable mouse solid-type tumors and it also stimulates the production of acute phase proteins (APPs). The APP response to lentinan is of the delayed type (DT-APR) and differs from that to lipopolysaccharide, which is acute. We found that the responses were genetically controlled in mice and that low responsiveness is dominant (Maeda et al. 1991). Using 123 segregants of crosses between SWR/J (a high responder) and Mus spretus (a low responder), we analyzed the linkage between DT-APR responsiveness and the DNA polymerase chain reaction-simple sequence length polymorphism (PCR-SSLP) phenotype using 80 chromosome-specific microsatellite markers. We identified two loci (ltn1.1 and ltn1.2) responsible for DT-APR. ltn1.1 is closely linked to D3Mit11 on chromosome 3 and ltn1.2 to D11Nds9 on chromosome 11 (P <0.001). The linkage analysis also suggested that ltn1.2 is the major determinant for DT-APR. Correlation between lentinan-specific IL-6 mRNA expression (the late expression) controlled recessively and DT-APR induction suggests that the ltn1 loci control some process(es) of IL-6 expression in the regulation step before NF-IL6.

  17. ELN 2013 response status criteria: relevance for de novo imatinib chronic phase chronic myeloid leukemia patients?

    PubMed

    Etienne, Gabriel; Dulucq, Stéphanie; Lascaux, Axelle; Schmitt, Anna; Bidet, Audrey; Fort, Marie-Pierre; Lippert, Eric; Bureau, Caroline; Adiko, Didier; Hayette, Sandrine; Reiffers, Josy; Nicolini, Franck-Emmanuel; Mahon, François-Xavier

    2015-01-01

    The response definitions proposed by the European Leukemia Net (ELN) have been recently modified. We evaluated the new criteria for de novo imatinib (400 mg/d) chronic phase chronic myeloid leukemia (CP-CML) patients. Response status according to the 2009 and 2013 criteria were determined in 180 unselected patients. Outcome of the subgroups of patients were then compared. The 180 patients were classified as optimal responders (OR2009; n = 113, 62.7%), suboptimal responders (SOR2009; n = 47, 26.1%) and failures (FAIL2009; n = 20, 11.1%) according to the 2009 ELN criteria and optimal responders (OR2013; n = 77, 42.7%), warnings (WAR2013; n = 59, 32.7%), and failures (FAIL2013; n = 44, 24.4%) according to the 2013 ELN criteria. No difference in terms of outcome was observed between OR2009 patients who became WAR2013 when compared with OR2013 patients. When compared with FAIL2009 patients, SOR2009 patients who became WAR2013 had better EFS, FFS, PFS, and OS. No difference was observed in PFS or OS in SOR2009 patients who became FAIL2013. The 2013 ELN response status criteria have improved patients classification in terms of response status. However, in our patient population this improvement is related to a better definition of failure rather than that of optimal response for CP-CML patients treated with IM frontline therapy.

  18. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial.

    PubMed

    Braun, Thorsten; Itzykson, Raphael; Renneville, Aline; de Renzis, Benoit; Dreyfus, François; Laribi, Kamel; Bouabdallah, Krimo; Vey, Norbert; Toma, Andrea; Recher, Christian; Royer, Bruno; Joly, Bertrand; Vekhoff, Anne; Lafon, Ingrid; Sanhes, Laurence; Meurice, Guillaume; Oréar, Cédric; Preudhomme, Claude; Gardin, Claude; Ades, Lionel; Fontenay, Michaela; Fenaux, Pierre; Droin, Nathalie; Solary, Eric

    2011-10-06

    Hydroxyurea is the standard therapy of chronic myelomonocytic leukemia (CMML) presenting with advanced myeloproliferative and/or myelodysplastic features. Response to hypomethylating agents has been reported in heterogeneous series of CMML. We conducted a phase 2 trial of decitabine (DAC) in 39 patients with advanced CMML defined according to a previous trial. Median number of DAC cycles was 10 (range, 1-24). Overall response rate was 38% with 4 complete responses (10%), 8 marrow responses (21%), and 3 stable diseases with hematologic improvement (8%). Eighteen patients (46%) demonstrated stable disease without hematologic improvement, and 6 (15%) progressed to acute leukemia. With a median follow-up of 23 months, overall survival was 48% at 2 years. Mutations in ASXL1, TET2, AML1, NRAS, KRAS, CBL, FLT3, and janus kinase 2 (JAK2) genes, and hypermethylation of the promoter of the tumor suppressor gene TIF1γ, did not predict response or survival on DAC therapy. Lower CJUN and CMYB gene expression levels independently predicted improved overall survival. This trial confirmed DAC efficacy in approximately 40% of CMML patients with advanced myeloproliferative or myelodysplastic features and suggested that CJUN and CMYB expression could be potential biomarkers in this setting. This trial is registered at EudraCT (eudract.ema.europa.eu) as #2008-000470-21 and www.clinicaltrials.gov as #NCT01098084.

  19. Recent progress on intrinsic charm

    NASA Astrophysics Data System (ADS)

    Hobbs, T. J.

    2017-03-01

    Over the past ˜10 years, the topic of the nucleon's nonperturbative or intrinsic charm (IC) content has enjoyed something of a renaissance, largely motivated by theoretical developments involving quark modelers and PDF-fitters. In this talk I will briefly describe the importance of intrinsic charm to various issues in high-energy phenomenology, and survey recent progress in constraining its overall normalization and contribution to the momentum sum rule of the nucleon. I end with the conclusion that progress on the side of calculation has now placed the onus on experiment to unambiguously resolve the proton's intrinsic charm component.

  20. MUTATIONAL AND TRANSCRIPTIONAL RESPONSES OF STATIONARY- AND LOGARITHMIC-PHASE SALMONELLA TO MX: CORRELATION OF MUTATIONAL RESPONSE TO CHANGES IN GENE EXPRESSION

    EPA Science Inventory

    We measured the mutational and transcriptional response of stationary-phase and logarithmic-phase S. typhimurium TA100 to 3 concentrations of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). The mutagenicity of MX in strain TA100 was evaluated...

  1. Tasting fat: cephalic phase hormonal responses and food intake in restrained and unrestrained eaters.

    PubMed

    Crystal, Susan R; Teff, Karen L

    2006-09-30

    Restrained eaters exhibit strict cognitive control over their food intake, primarily by limiting intake of high-fat foods. Earlier studies indicate a relationship between dietary restraint and cephalic phase insulin release, which is hypothesized to influence hunger and food intake. To compare cephalic phase hormonal responses to high- and low-fat stimuli and determine if the sensory experience of tasting fat alters hormonal responses and influences subsequent food intake in restrained and unrestrained eaters, normal weight women classified as unrestrained (n=11) or restrained (n=11) eaters were tested under 3 conditions: (1) fasting, (2) sham-feeding a non-fat cake, and (3) sham-feeding a high-fat cake. Following an overnight fast, arterialized venous blood was drawn prior to and for 30 min immediately following a 3-min sham feed. Plasma samples were analyzed for insulin, glucose, glucagon and pancreatic polypeptide (PP). Subjects were subsequently given a selection of high-fat and low-fat foods and allowed to select what they wished to eat. Cephalic phase PP was significantly greater following oral sensory stimulation by the high-fat food (205.4+/-83.6) compared to the fasting control (11.1+/-38.8, p=0.04). No significant differences in hormonal responses to the food stimuli were found between restrained and unrestrained eaters but the restrained eaters consumed more food after the high-fat condition (p<0.05) relative to the fasted condition and compared to the unrestrained group (p<0.05). In conclusion, the sensory experience of tasting fat increases food intake in restrained eaters and increases vagal efferent activity compared to a non-fat food in both populations.

  2. Enhanced dynamical response of derivative controlled third order phase locked loops

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Sarkar, B. C.

    2016-07-01

    Dynamical responses of third order phase locked loops with resonant filters are examined by modifying the control signal applied to loop oscillator. Using signals obtained at some internal nodes of loop resonant filter, the control signal is modified. These signals are effectively single or double derivatives of normal control signal. Performances of modified loops are found to improve during transient and tracking modes of loop operation. This is established through analytical, numerical simulation and experimental studies. The dynamics of the loops in unstable self-oscillatory and aperiodic oscillating modes could also be controlled by these additional derivative control signals.

  3. Effect of Phase on Human Responses to Vertical Whole-Body Vibration and SHOCK—ANALYTICAL Investigation

    NASA Astrophysics Data System (ADS)

    MATSUMOTO, Y.; GRIFFIN, M. J.

    2002-03-01

    The effect of the “phase” on human responses to vertical whole-body vibration and shock has been investigated analytically using alternative methods of predicting subjective responses (using r.m.s., VDV and various frequency weightings). Two types of phase have been investigated: the effect of the relative phase between two frequency components in the input stimulus, and the phase response of the human body. Continuous vibrations and shocks, based on half-sine and one-and-a-half-sine accelerations, each of which had two frequency components, were used as input stimuli. For the continuous vibrations, an effect of relative phase was found for the vibration dose value (VDV) when the ratio between two frequency components was three: about 12% variation in the VDV of the unweighted acceleration was possible by changing the relative phase. The effect of the phase response of the body represented by frequency weightings was most significant when the frequencies of two sinusoidal components were about 3 and 9 Hz. With shocks, the effect of relative phase was observed for all stimuli used. The variation in the r.m.s. acceleration and in the VDV caused by variations in the relative phase varied between 3 and 100%, depending on the nature of stimulus and the frequency weighting. The phase of the frequency weightings had a different effect on the r.m.s. and the VDV.

  4. Instantaneous kinematic phase reflects neuromechanical response to lateral perturbations of running cockroaches.

    PubMed

    Revzen, Shai; Burden, Samuel A; Moore, Talia Y; Mongeau, Jean-Michel; Full, Robert J

    2013-04-01

    Instantaneous kinematic phase calculation allows the development of reduced-order oscillator models useful in generating hypotheses of neuromechanical control. When perturbed, changes in instantaneous kinematic phase and frequency of rhythmic movements can provide details of movement and evidence for neural feedback to a system-level neural oscillator with a time resolution not possible with traditional approaches. We elicited an escape response in cockroaches (Blaberus discoidalis) that ran onto a movable cart accelerated laterally with respect to the animals' motion causing a perturbation. The specific impulse imposed on animals (0.50 [Formula: see text] 0.04 m s[Formula: see text]; mean, SD) was nearly twice their forward speed (0.25 [Formula: see text] 0.06 m s[Formula: see text]. Instantaneous residual phase computed from kinematic phase remained constant for 110 ms after the onset of perturbation, but then decreased representing a decrease in stride frequency. Results from direct muscle action potential recordings supported kinematic phase results in showing that recovery begins with self-stabilizing mechanical feedback followed by neural feedback to an abstracted neural oscillator or central pattern generator. Trials fell into two classes of forward velocity changes, while exhibiting statistically indistinguishable frequency changes. Animals pulled away from the side with front and hind legs of the tripod in stance recovered heading within 300 ms, whereas animals that only had a middle leg of the tripod resisting the pull did not recover within this period. Animals with eight or more legs might be more robust to lateral perturbations than hexapods.

  5. Inhibitory control of intrinsic hippocampal oscillations?

    PubMed

    Fischer, Yacov; Dürr, Roland

    2003-08-22

    An oscillatory mode of activity is a basic operational mode of the hippocampus. Such activity involves the concurrent expression of several rhythmic processes, of which theta (4-15 Hz) and gamma (20-80 Hz) oscillations are prominent and considered to be important for cognitive processing. In an experimental model that preserves the intrinsic network oscillator, exhibiting the dependency on cholinergic inputs and consequent expression of concurrent theta and gamma oscillations, we investigate the intrinsic mechanisms underlying such integrated hippocampal network responses. This experimental framework is used here to examine the currently prevailing dogma, that interneurons control hippocampal oscillations. The spontaneous response of individual pyramidal cells (in areas CA3 and CA1) and interneurons (area CA3), during oscillatory activity, was monitored intracellularly. Particular attention was given to the initiation of interneuron discharge during oscillations, to the impact of the synaptic output of discharging interneurons on the oscillatory activity, and to the time at which interneurons discharge in relation to the oscillatory cycles. Analysis of the spontaneous patterns of activity in individual interneurons and their outcome, during the oscillatory activity, revealed that interneuron activity is incompatible with initiating, pacing or determining the oscillatory frequencies, although contributing to the apparent rhythmic patterns. Moreover, our results show that non-interneuronal members of the network control interneuron activity. We therefore suggest that the activity of the excitatory cells, i.e., principle cells, is critical toward the initiation, pacing and synchronization of intrinsic hippocampal network oscillations.

  6. Trypanosoma cruzi: dehydroepiandrosterone (DHEA) and immune response during the chronic phase of the experimental Chagas' disease.

    PubMed

    Caetano, Leony Cristina; Santello, Fabricia Helena; Del Vecchio Filipin, Marina; Brazão, Vânia; Caetano, Luana Naiara; Toldo, Miriam Paula Alonso; Caldeira, Jerri C; do Prado Júnior, José Clóvis

    2009-07-07

    Dehydroepiandrosterone (DHEA) has long been considered as a precursor for many steroid hormones. It also enhances the immune responses against a wide range of viral, bacterial, and parasitic pathogens. The aims of this work were to evaluate the influences of exogenous DHEA treatment on Wistar rats infected with the Y strain of Trypanosoma cruzi during the acute and its influence on the chronic phase of infection. Animals were subcutaneous treated with 40 mg/kg body weight/day of DHEA. DHEA treatment promoted increased lymphoproliferative responses as well as enhanced concentrations of NO and IL-12. So, we point in the direction that our results validate the utility of the use of DHEA as an alternative therapy candidate against T. cruzi.

  7. NONO regulates the intra-S-phase checkpoint in response to UV radiation.

    PubMed

    Alfano, L; Costa, C; Caporaso, A; Altieri, A; Indovina, P; Macaluso, M; Giordano, A; Pentimalli, F

    2016-02-04

    The main risk factor for skin cancer is ultraviolet (UV) exposure, which causes DNA damage. Cells respond to UV-induced DNA damage by activating the intra-S-phase checkpoint, which prevents replication fork collapse, late origin firing and stabilizes fragile sites. Recently, the 54-kDa multifunctional protein NONO was found to be involved in the non-homologous end-joining DNA repair process and in poly ADP-ribose polymerase 1 activation. Interestingly, NONO is mutated in several tumour types and emerged as a crucial factor underlying both melanoma development and progression. Therefore, we set out to evaluate whether NONO could be involved in the DNA-damage response to UV radiations. We generated NONO-silenced HeLa cell clones and found that lack of NONO decreased cell growth rate. Then, we challenged NONO-silenced cells with exposure to UV radiations and found that NONO-silenced cells, compared with control cells, continued to synthesize DNA, failed to block new origin firing and impaired CHK1S345 phosphorylation showing a defective checkpoint activation. Consistently, NONO is present at the sites of UV-induced DNA damage where it localizes to RAD9 foci. To position NONO in the DNA-damage response cascade, we analysed the loading onto chromatin of various intra-S-phase checkpoint mediators and found that NONO favours the loading of topoisomerase II-binding protein 1 acting upstream of the ATM and Rad3-related kinase activity. Strikingly, re-expression of NONO, through an sh-resistant mRNA, rescued CHK1S345 phosphorylation in NONO-silenced cells. Interestingly, NONO silencing affected cell response to UV radiations also in a melanoma cell line. Overall, our data uncover a new role for NONO in mediating the cellular response to UV-induced DNA damage.

  8. Intrinsic magnetization of antiferromagnetic textures

    NASA Astrophysics Data System (ADS)

    Tveten, Erlend G.; Müller, Tristan; Linder, Jacob; Brataas, Arne

    2016-03-01

    Antiferromagnets (AFMs) exhibit intrinsic magnetization when the order parameter spatially varies. This intrinsic spin is present even at equilibrium and can be interpreted as a twisting of the homogeneous AFM into a state with a finite spin. Because magnetic moments couple directly to external magnetic fields, the intrinsic magnetization can alter the dynamics of antiferromagnetic textures under such influence. Starting from the discrete Heisenberg model, we derive the continuum limit of the free energy of AFMs in the exchange approximation and explicitly rederive that the spatial variation of the antiferromagnetic order parameter is associated with an intrinsic magnetization density. We calculate the magnetization profile of a domain wall and discuss how the intrinsic magnetization reacts to external forces. We show conclusively, both analytically and numerically, that a spatially inhomogeneous magnetic field can move and control the position of domain walls in AFMs. By comparing our model to a commonly used alternative parametrization procedure for the continuum fields, we show that the physical interpretations of these fields depend critically on the choice of parametrization procedure for the discrete-to-continuous transition. This can explain why a significant amount of recent studies of the dynamics of AFMs, including effective models that describe the motion of antiferromagnetic domain walls, have neglected the intrinsic spin of the textured order parameter.

  9. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response.

    PubMed

    Franciszkiewicz, Katarzyna; Boissonnas, Alexandre; Boutet, Marie; Combadière, Christophe; Mami-Chouaib, Fathia

    2012-12-15

    Immune system-mediated eradication of neoplastic cells requires induction of a strong long-lasting antitumor T-cell response. However, generation of tumor-specific effector T cells does not necessarily result in tumor clearance. CTL must first be able to migrate to the tumor site, infiltrate the tumor tissue, and interact with the target to finally trigger effector functions indispensable for tumor destruction. Chemokines are involved in circulation, homing, retention, and activation of immunocompetent cells. Although some of them are known to contribute to tumor growth and metastasis, others are responsible for changes in the tumor microenvironment that lead to extensive infiltration of lymphocytes, resulting in tumor eradication. Given their chemoattractive and activating properties, a role for chemokines in the development of the effector phase of the antitumor immune response has been suggested. Here, we emphasize the role of the chemokine-chemokine receptor network at multiple levels of the T-cell-mediated antitumor immune response. The identification of chemokine-dependent molecular mechanisms implicated in tumor-specific CTL trafficking, retention, and regulation of their in situ effector functions may offer new perspectives for development of innovative immunotherapeutic approaches to cancer treatment.

  10. NRF2 and the Phase II Response in Acute Stress Resistance Induced by Dietary Restriction

    PubMed Central

    Hine, Christopher M.; Mitchell, James R.

    2013-01-01

    Dietary restriction (DR) as a means to increase longevity is well-established in a number of model organisms from yeast to primates. DR also improves metabolic fitness and increases resistance to acute oxidative, carcinogenic and toxicological stressors - benefits with more immediate potential for clinical translation than increased lifespan. While the detailed mechanism of DR action remains unclear, a conceptual framework involving an adaptive, or hormetic response to the stress of nutrient/energy deprivation has been proposed. A key prediction of the hormesis hypothesis of DR is that beneficial adaptations occur in response to an increase in reactive oxygen/nitrogen species (ROS). These ROS may be derived either from increased mitochondrial respiration or increased xenobiotic metabolism in the case of some DR mimetics. This review will focus on the potential role of the redox-sensing transcription factor NF-E2-related factor 2 (NRF2) and its control of the evolutionarily conserved antioxidant/redox cycling and detoxification systems, collectively known as the Phase II response, in the adaptive response to DR. PMID:23505614

  11. Flexible designs for phase II comparative clinical trials involving two response variables.

    PubMed

    Bersimis, S; Sachlas, A; Papaioannou, T

    2015-01-30

    The aim of phase II clinical trials is to determine whether an experimental treatment is sufficiently promising and safe to justify further testing. The need for reduced sample size arises naturally in phase II clinical trials owing to both technical and ethical reasons, motivating a significant part of research in the field during recent years, while another significant part of the research effort is aimed at more complex therapeutic schemes that demand the consideration of multiple endpoints to make decisions. In this paper, our attention is restricted to phase II clinical trials in which two treatments are compared with respect to two dependent dichotomous responses proposing some flexible designs. These designs permit the researcher to terminate the clinical trial when high rates of favorable or unfavorable outcomes are observed early enough requiring in this way a small number of patients. From the mathematical point of view, the proposed designs are defined on bivariate sequences of multi-state trials, and the corresponding stopping rules are based on various distributions related to the waiting time until a certain number of events appear in these sequences. The exact distributions of interest, under a unified framework, are studied using the Markov chain embedding technique, which appears to be very useful in clinical trials for the sample size determination. Tables of expected sample size and power are presented. The numerical illustration showed a very good performance for these new designs.

  12. Multidimensional representations of the phase response curve for both type 1 and type 2 membrane excitability

    NASA Astrophysics Data System (ADS)

    Raidt, Robert; Smith, Andrew J.; Oprisan, Sorinel A.

    2012-02-01

    Neurons are complex excitable cells with a highly nonlinear response to external perturbations, such as presynaptic inputs and biological noise. Single-cell activity is determined by the properties of ionic channels and the ionic makeup of cell's environment and is mathematically described by coupled and nonlinear evolution equations. The phase resetting curve (PRC) reduces the complexity of the biophysical mechanisms involved in generating action potentials to tabulating advances or delays of subsequent spikes of a neuron due to an external perturbation. The PRC is widely used to predict the activity of large neural networks that by replacing the computationally intensive integration of evolution equations with lookup tables. The fundamental assumption of the PRC approach in predicting phase-locked modes in coupled neural networks is that the transient PRC measured for isolated and bursting neurons (open-loop) remains the same under the recurrent inputs of a phase-locked mode (close-loop). The novelties of our approach are: 1) the use of discrete sine transforms (DST's) to store the PRC's as a series of coefficients, and 2) the use of multidimensional stacks to represent multidimensional objects.

  13. Responsive Gel-Gel Phase Transitions in Artificially Engineered Protein Hydrogels

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.

    2012-02-01

    Artificially engineered protein hydrogels provide an attractive platform for biomedical materials due to their similarity to components of the native extracellular matrix. Engineering responsive transitions between shear-thinning and tough gel phases in these materials could potentially enable gels that are both shear-thinning and tough to be produced as novel injectable biomaterials. To engineer a gel with such transitions, a triblock copolymer with thermoresponsive polymer endblocks and an artificially engineered protein gel midblock is designed. Temperature is used to trigger a transition from a single network protein hydrogel phase to a double network phase with both protein and block copolymer networks present at different length scales. The thermodynamics of network formation and resulting structural changes are established using small-angle scattering, birefringence, and dynamic scanning calorimetry. The formation of the second network is shown to produce a large, nonlinear increase in the elastic modulus as well as enhancements in creep compliance and toughness. Although the gels show yielding behavior in both the single and double network regimes, a qualitative change in the deformation mechanism is observed due to the structural changes.

  14. Acute exercise does not induce an acute phase response (APR) in Standardbred trotters.

    PubMed

    Kristensen, Lena; Buhl, Rikke; Nostell, Katarina; Bak, Lars; Petersen, Ellen; Lindholm, Maria; Jacobsen, Stine

    2014-04-01

    The purpose of the study was to investigate whether acute strenuous exercise (1600- to 2500-m race) would elicit an acute phase response (APR) in Standardbred trotters. Blood levels of several inflammatory markers [serum amyloid A (SAA), haptoglobin, fibrinogen, white blood cell count (WBC), and iron], muscle enzymes [creatinine kinase (CK) and aspartate transaminase (AST)], and hemoglobin were assessed in 58 Standardbred trotters before and after racing. Hemoglobin levels increased and iron levels decreased 12 to 14 h after racing and haptoglobin concentrations, white blood cell counts, and iron levels were decreased 2 and/or 7 d after racing. Concentrations of CK, AST, SAA, and fibrinogen were unaltered in response to racing. Acute strenuous exercise did not elicit an acute phase reaction. The observed acute increase in hemoglobin levels and decreases in haptoglobin and iron levels may have been caused by exercise-induced hemolysis, which indicates that horses might experience a condition similar to athlete's anemia in humans. The pathogenesis and clinical implications of the hematological and blood-biochemical changes elicited by acute exercise in Standardbred trotters in the present study warrant further investigation.

  15. Phase III Preclinical Trials in Translational Stroke Research: Community Response on Framework and Guidelines.

    PubMed

    Boltze, Johannes; Wagner, Daniel-Christoph; Henninger, Nils; Plesnila, Nikolaus; Ayata, Cenk

    2016-08-01

    The multicenter phase III preclinical trial concept is currently discussed to enhance the predictive value of preclinical stroke research. After public announcement, we collected a community feedback on the concept with emphasis on potential design features and guidelines by an anonymous survey. Response analysis was conducted after plausibility checks by applying qualitative and quantitative measures. Most respondents supported the concept, including the implementation of a centralized steering committee. Based on received feedback, we suggest careful, stepwise implementation and to leave selected competencies and endpoint analysis at the discretion of participating centers. Strict application of quality assurance methods is accepted, but should be harmonized. However, received responses also indicate that the application of particular quality assurance models may require more attention throughout the community. Interestingly, clear and pragmatic preferences were given regarding publication and financing, suggesting the establishing of writing committees similar to large-scale clinical trials and global funding resources for financial support. The broad acceptance among research community encourages phase III preclinical trial implementation.

  16. Detecting a preformed pair phase: Response to a pairing forcing field

    NASA Astrophysics Data System (ADS)

    Tagliavini, A.; Capone, M.; Toschi, A.

    2016-10-01

    The normal state of strongly coupled superconductors is characterized by the presence of "preformed" Cooper pairs well above the superconducting critical temperature. In this regime, the electrons are paired, but they lack the phase coherence necessary for superconductivity. The existence of preformed pairs implies the existence of a characteristic energy scale associated with a pseudogap. Preformed pairs are often invoked to interpret systems where some signatures of pairing are present without actual superconductivity, but an unambiguous theoretical characterization of a preformed-pair system is still lacking. To fill this gap, we consider the response to an external pairing field of an attractive Hubbard model, which hosts one of the cleanest realizations of a preformed pair phase, and a repulsive model where s -wave superconductivity cannot be realized. Using dynamical mean-field theory to study this response, we identify the characteristic features which distinguish the reaction of a preformed pair state from a normal metal without any precursor of pairing. The theoretical detection of preformed pairs is associated with the behavior of the second derivative of the order parameter with respect to the external field, as confirmed by analytic calculations in limiting cases. Our findings provide a solid test bed for the interpretation of state-of-the-art calculations for the normal state of the doped Hubbard model in terms of d -wave preformed pairs and, in perspective, of nonequilibrium experiments in high-temperature superconductors.

  17. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    SciTech Connect

    Ortiz, W. )

    1990-05-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33{degree}C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with ({sup 35}S)sodium sulfate were carried out with cells grown at room temperature or at 33{degree}C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33{degree}C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell.

  18. Nature of men and higher animals' response to the lunar phases.

    NASA Astrophysics Data System (ADS)

    Troshichev, Oleg; Vladimir, Vorobeichikov; Viktor, Stepanov; Eduard, Gorshkov

    The Moon impact on the abnormal behavior of men and higher animals was marked during the entire mankind history, but the nature of this effect remained unclear. The popular hypothesis of the tidal influence of the Moon on the living organisms turned out to be incompatible with the contemporary biophysics concepts. In addition, the estimates of the lunar gravity influence on the men organism showed the negligible value of the possible effect. Vorobeichikov et al. [2006] were the first who suggested that the organisms' response to the lunar phases can be linked with the bacillus E.coli inhabiting in the bowels of the living organisms. E.coli belongs to family of enterobacteria, which are the important component of the human body microflora. Bacteria E.coli being sowed in the nutritious medium go in their development through four stages: adjusting, explosive reproducing, stationary, and dieing. The adjusting stage (or lagphase) is the most interesting for researchers, since duration of this phase L (the interval between the sowing time and the onset of the quick, exponential reproduction) is strongly influenced by the external conditions and can vary from standard 3 - 3.5 hours to some minutes. In our experiments the lag-phase L was determined for days of new moon and full moon, and for such exclusive events as the solar and lunar eclipses. The standard quantity of E.coli was sowed in the standard volume of the artificial nutritive. Lag-phase was detected every 1 minute near the key moment and every 15 minutes at other hours. It turned out that lag-phase is reduced to 1.5 hour for new moon, 1 hour for full moon, 0.5 hour for the lunar eclipse and falls to zero for the solar eclipse. In the latter case it took about 10 hours for the lag phase reduction before the eclipse and the lag-phase recovery after the eclipse. In case of a new moon the lag phase reduction lasted about half of hour. Thus, the close was the Moon to the line Sun-Earth, the shorter was lag phase and

  19. Demand Response Spinning Reserve Demonstration -- Phase 2 Findings from the Summer of 2008

    SciTech Connect

    Eto, Joseph H.; Nelson-Hoffman, Janine; Parker, Eric; Bernier, Clark; Young, Paul; Sheehan, Dave; Kueck, John; Kirby, Brendan

    2009-04-30

    The Demand Response Spinning Reserve project is a pioneering demonstration showing that existing utility load-management assets can provide an important electricity system reliability resource known as spinning reserve. Using aggregated demand-side resources to provide spinning reserve as demonstrated in this project will give grid operators at the California Independent System Operator (CA ISO) and Southern California Edison (SCE) a powerful new tool to improve reliability, prevent rolling blackouts, and lower grid operating costs.In the first phase of this demonstration project, we target marketed SCE?s air-conditioning (AC) load-cycling program, called the Summer Discount Plan (SDP), to customers on a single SCE distribution feederand developed an external website with real-time telemetry for the aggregated loads on this feeder and conducted a large number of short-duration curtailments of participating customers? air-conditioning units to simulate provision of spinning reserve. In this second phase of the demonstration project, we explored four major elements that would be critical for this demonstration to make the transition to a commercial activity:1. We conducted load curtailments within four geographically distinct feeders to determine the transferability of target marketing approaches and better understand the performance of SCE?s load management dispatch system as well as variations in the AC use of SCE?s participating customers;2. We deployed specialized, near-real-time AC monitoring devices to improve our understanding of the aggregated load curtailments we observe on the feeders;3. We integrated information provided by the AC monitoring devices with information from SCE?s load management dispatch system to measure the time required for each step in the curtailment process; and4. We established connectivity with the CA ISO to explore the steps involved in responding to CA ISO-initiated requests for dispatch of spinning reserve.The major findings from

  20. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite

    SciTech Connect

    Wang, Yonggang; Lu, Xujie; Yang, Wenge; Wen, Ting; Yang, Liuxiang; Ren, Xiangting; Wang, Lin; Lin, Zheshuai; Zhao, Yusheng

    2015-08-18

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH3NH3PbBr3 (MAPbBr3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr6 octahedra and destroying of long-range ordering of MA cations, respectively. The visible light response of MAPbBr3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.

  1. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite

    DOE PAGES

    Wang, Yonggang; Lu, Xujie; Yang, Wenge; ...

    2015-08-18

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH3NH3PbBr3 (MAPbBr3), under hydrostatic pressure up to 34 GPa at room temperature: Two phase transformations below 2 GPa (from Pm3¯m to Im3¯, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr6 octahedra and destroying of long-range ordering of MA cations, respectively.more » The visible light response of MAPbBr3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Lastly, our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber.« less

  2. Estimating mortality risk in preoperative patients using immunologic, nutritional, and acute-phase response variables.

    PubMed Central

    Christou, N V; Tellado-Rodriguez, J; Chartrand, L; Giannas, B; Kapadia, B; Meakins, J; Rode, H; Gordon, J

    1989-01-01

    We measured the delayed type hypersensitivity (DTH) skin test response, along with additional variables of host immunocompetence in 245 preoperative patients to determine which variables are associated with septic-related deaths following operation. Of the 14 deaths (5.7%), 12 were related to sepsis and in 2 sepsis was contributory. The DTH response (p less than 0.00001), age (p less than 0.0002), serum albumin (p less than 0.003), hemoglobin (p less than 0.02), and total hemolytic complement (p less than 0.03), were significantly different between those who died and those who lived. By logistic regression analysis, only the DTH skin test response (log likelihood = 41.7, improvement X2 = 6.24, p less than 0.012) and the serum albumin (log likelihood = 44.8, improvement X2 = 17.7, p less than 0.001) were significantly and independently associated with the deaths. The resultant probability of mortality calculation equation was tested in a separate validation group of 519 patients (mortality = 5%) and yielded a good predictive capability as assessed by (1) X2 = 0.08 between observed and expected deaths, NS; (2) Goodman-Kruskall G statistic = 0.673) Receiver-Operating-Characteristic (ROC) curve analysis with an area under the ROC curve, Az = 0.79 +/- 0.05. We conclude that a reduced immune response (DTH skin test anergy) plus a nutritional deficit and/or acute-phase response change are both associated with increased septic-related deaths in elective surgical patients. PMID:2472781

  3. A phase transition model for the speed-accuracy trade-off in response time experiments.

    PubMed

    Dutilh, Gilles; Wagenmakers, Eric-Jan; Visser, Ingmar; van der Maas, Han L J

    2011-03-01

    Most models of response time (RT) in elementary cognitive tasks implicitly assume that the speed-accuracy trade-off is continuous: When payoffs or instructions gradually increase the level of speed stress, people are assumed to gradually sacrifice response accuracy in exchange for gradual increases in response speed. This trade-off presumably operates over the entire range from accurate but slow responding to fast but chance-level responding (i.e., guessing). In this article, we challenge the assumption of continuity and propose a phase transition model for RTs and accuracy. Analogous to the fast guess model (Ollman, 1966), our model postulates two modes of processing: a guess mode and a stimulus-controlled mode. From catastrophe theory, we derive two important predictions that allow us to test our model against the fast guess model and against the popular class of sequential sampling models. The first prediction--hysteresis in the transitions between guessing and stimulus-controlled behavior--was confirmed in an experiment that gradually changed the reward for speed versus accuracy. The second prediction--bimodal RT distributions--was confirmed in an experiment that required participants to respond in a way that is intermediate between guessing and accurate responding.

  4. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    SciTech Connect

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.; Andrews, Debora; Schladweiler, Mette C.; Ghio, Andrew J.; Gavett, Stephen H.; Kodavanti, Urmila P.

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  5. The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE+ cells in memory responses is particularly unclear. IgE B cell differentiation is characterized by a transient GC phase, a bias towards the plasma cell (PC) fate,...

  6. Interpretation of Quadrature and In-Phase Terrain Electrical Conductivity Responses Observed in Siting and Monitoring Surveys in Glaciolacustrine Soils

    NASA Astrophysics Data System (ADS)

    Hayles, J. G.; Ferguson, I. J.

    2004-05-01

    Terrain electrical conductivity (TEC) surveys can assist in the siting and monitoring of landfills and wastewater lagoons. Results of TEC surveys in glaciolacustrine clay-rich soils in southern Manitoba, Canada show how these surveys have successfully mapped sub-surface geology, identified heterogeneity in the sub-surface, and identified areas of leakage from such facilities. TEC instruments provide a quadrature response, from which the electrical conductivity of the ground is usually determined, and an in-phase response. In areas of low to moderate electrical conductivity (less than several hundred mS/m) the quadrature and in-phase responses both increase with increasing electrical conductivity. The relationship between the two responses over a uniform half-space is well approximated by a second-order power law. Results from many sites in Manitoba indicate that in some areas this power law is followed whereas in other areas a roughly linear relationship is observed. At some survey sites, TEC in-phase responses that are spatially uncorrelated with the quadrature response are observed. These observations occur in soils with relatively low electrical conductivity and relatively low magnetization. Results from a number of sites suggest the effect occurs in areas of plowed agricultural land that have undergone long-term exposure to wastewater seepage. We hypothesize that positive in-phase shifts indicate an increase in the electrical polarization in the glaciolacustrine soils caused by their interaction with wastewater. Laboratory studies have shown that the complex conductivity response at the frequency of the TEC measurements is affected by the clay mineralogy; groundwater salinity, acidity, and cation chemistry; and the presence of organic contaminants. In this study we examine a site with enhanced in-phase response in detail. The results reveal increased concentrations of heavy-metals and some variations in soil mineralogy that correlate with the in-phase response

  7. Ulnar intrinsic anatomy and dysfunction.

    PubMed

    Dell, Paul C; Sforzo, Christopher R

    2005-01-01

    Normal hand function is a balance between the extrinsic and intrinsic musculature. Although individually the intrinsics are small muscles in diameter, collectively they represent a large muscle that contributes approximately 50% of grip strength. Dysfunction of the intrinsics consequently leads to impaired grip and pinch strength as well recognized deformities. Low ulnar nerve palsy preserves ulnar innervated extrinsics resulting in sensory loss, digital clawing, thumb deformity, abduction of the small finger, and asynchronous finger motion. High ulnar nerve palsy is characterized by the above plus paralysis of the ulnar profundi and the flexor carpi ulnaris. Understanding the normal anatomy allows the clinician to identify the site of the lesion and plan appropriate surgical intervention. This article revisits the classic work of Richard J. Smith on ulnar nerve palsy with contemporary perspective.

  8. Magnetically responsive phase-change microspheres with large magnetization using ferrite nanoparticles.

    PubMed

    Du, Yufan; Wang, Yongsheng; He, Dawei; Feng, Bin; Ju, Changbin; Zhao, Huan; Fu, Ming

    2010-03-01

    Magnetically responsive phase-change microspheres were prepared and studied in this article. In the synthetic process, oleic acid was used to modify the iron oxide nanoparticles. The ferrite nanoparticles, about 10 nm in diameter, were highly dispersed due to the oleic acid on the surface of the particles, and they were encapsulated in polymethyl methacrylate (PMMA) by microemulsion polymerization with paraffin, which could be presumed from the differential scanning calorimetry (DSC) curves. According to the morphology in the scanning electron microscopy (SEM) image, the average diameter of the microspheres was about 200 nm, a large amount of nano-sized ferrite can be observed in a transmission electron microscope (TEM) image showing the structure of the microspheres. Finally, in the magnetization curve from a vibrating sample magnetometer, the saturation magnetization of microspheres was 12.2 emu/g, which was effective in the compatibility of infrared simulation and microwave absorption.

  9. Abrupt onset of tongue deformation and phase space response of ions in magnetically-confined plasmas

    PubMed Central

    Ida, K.; Kobayashi, T.; Itoh, K.; Yoshinuma, M.; Tokuzawa, T.; Akiyama, T.; Moon, C.; Tsuchiya, H.; Inagaki, S.; Itoh, S.-I.

    2016-01-01

    An abrupt onset of the new tongue-shaped deformation of magnetic surface in magnetized plasmas, which was conjectured in since the 1960s but has not been observed, is experimentally identified just before an abrupt onset of a large-scale collapse event. Two novel properties of the event are identified. First, the transition of symmetry of perturbation (rather than a growth of linearly unstable MHD modes) was found to be a key for the onset of abrupt collapse, i.e., the transition of symmetry gives a new route to the collapse from stable state. Second, as a phase-space response of ions, the distortion from Maxwell-Boltzmann distribution of epithermal ions was observed for the first time. PMID:27796370

  10. Bending the curve: force health protection during the insertion phase of the Ebola outbreak response.

    PubMed

    Bailey, Mark S; Beaton, K; Bowley, D; Eardley, W; Hunt, P; Johnson, S; Round, J; Tarmey, N T; Williams, A

    2016-06-01

    After >10 years of enduring operations in Iraq and Afghanistan, Defence Strategic Direction is returning to a contingency posture. As the first post-Afghanistan operation, in September 2014, a UK Joint Inter-Agency Task Force deployed to Sierra Leone in response to the Ebola virus disease (EVD) epidemic in West Africa. The aims were expanding treatment capacity, assisting with training and supporting host nation resilience. The insertion phase of this deployment created a unique set of challenges for force health protection. In addition to the considerable risk of tropical disease and trauma, deployed personnel faced the risks of working in an EVD epidemic. This report explores how deployed medical assets overcame the difficulties of mounting a short-notice contingent operation in a region of the world with inherent major climatic and health challenges.

  11. NASA Environmentally Responsible Aviation Projects Propulsion Technology Phase I Overview and Highlights of Accomplishments

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Delaat, John C.

    2012-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and highlights of the results obtained during the first phase of ERA will be presented.

  12. Reproductive phase locking of mosquito populations in response to rainfall frequency.

    PubMed

    Shaman, Jeffrey; Day, Jonathan F

    2007-03-28

    The frequency of moderate to heavy rainfall events is projected to change in response to global warming. Here we show that these hydrologic changes may have a profound effect on mosquito population dynamics and rates of mosquito-borne disease transmission. We develop a simple model, which treats the mosquito reproductive cycle as a phase oscillator that responds to rainfall frequency forcing. This model reproduces observed mosquito population dynamics and indicates that mosquito-borne disease transmission can be sensitive to rainfall frequency. These findings indicate that changes to the hydrologic cycle, in particular the frequency of moderate to heavy rainfall events, could have a profound effect on the transmission rates of some mosquito-borne diseases.

  13. Abrupt onset of tongue deformation and phase space response of ions in magnetically-confined plasmas

    NASA Astrophysics Data System (ADS)

    Ida, K.; Kobayashi, T.; Itoh, K.; Yoshinuma, M.; Tokuzawa, T.; Akiyama, T.; Moon, C.; Tsuchiya, H.; Inagaki, S.; Itoh, S.-I.

    2016-10-01

    An abrupt onset of the new tongue-shaped deformation of magnetic surface in magnetized plasmas, which was conjectured in since the 1960s but has not been observed, is experimentally identified just before an abrupt onset of a large-scale collapse event. Two novel properties of the event are identified. First, the transition of symmetry of perturbation (rather than a growth of linearly unstable MHD modes) was found to be a key for the onset of abrupt collapse, i.e., the transition of symmetry gives a new route to the collapse from stable state. Second, as a phase-space response of ions, the distortion from Maxwell-Boltzmann distribution of epithermal ions was observed for the first time.

  14. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability

    SciTech Connect

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01

    Power system operators and utilities worldwide have concerns about the impact of high-penetration wind and solar generation on electric grid reliability (EirGrid 2011b, Hydro-Quebec 2006, ERCOT 2010). The stability of North American grids under these conditions is a particular concern and possible impediment to reaching future renewable energy goals. Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) considers a 33% wind and solar annual energy penetration level that results in substantial changes to the characteristics of the bulk power system, including different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior of wind and solar generation. WWSIS-3 evaluates two specific aspects of fundamental frequency system stability: frequency response and transient stability.

  15. Human phase response curve to intermittent blue light using a commercially available device.

    PubMed

    Revell, Victoria L; Molina, Thomas A; Eastman, Charmane I

    2012-10-01

    Light shifts the timing of the circadian clock according to a phase response curve (PRC). To date, all human light PRCs have been to long durations of bright white light. However, melanopsin, the primary photopigment for the circadian system, is most sensitive to short wavelength blue light. Therefore, to optimise light treatment it is important to generate a blue light PRC.We used a small, commercially available blue LED light box, screen size 11.2 × 6.6 cm at ∼50 cm, ∼200 μW cm(−2), ∼185 lux. Subjects participated in two 5 day laboratory sessions 1 week apart. Each session consisted of circadian phase assessments to obtain melatonin profiles before and after 3 days of free-running through an ultradian light–dark cycle (2.5 h wake in dim light, 1.5 h sleep in the dark), forced desynchrony protocol. During one session subjects received intermittent blue light (three 30 min pulses over 2 h) once a day for the 3 days of free-running, and in the other session (control) they remained in dim room light, counterbalanced. The time of blue light was varied among subjects to cover the entire 24 h day. For each individual, the phase shift to blue light was corrected for the free-run determined during the control session. The blue light PRC had a broad advance region starting in the morning and extending through the afternoon. The delay region started a few hours before bedtime and extended through the night. This is the first PRC to be constructed to blue light and to a stimulus that could be used in the real world.

  16. Hemodynamic response during standing test after blood donation can predict the late phase vasovagal reaction.

    PubMed

    Yoshida, Masayoshi; Ando, Shin-Ichi; Eura, Emi; Hayashi, Atsumi; Kawamura, Natsumi; Narita, Sumito; Matsumoto, Mari; Momii, Hidetoshi; Kadokami, Toshiaki; Kiyokawa, Hiroyuki

    2016-12-01

    A major complication of blood donation is vasovagal reaction (VVR) with or without syncope. VVR occurs not only in the early phase, but also in the late phase after blood donation. We previously reported the hemodynamic characteristics of blood donors susceptible to early phase VVR. In the present study, we investigated the hemodynamic characteristics of those who developed late VVR. Ninety-six healthy volunteers donating 400 ml of whole blood were studied. After asking about their physical condition or routine questions for blood donation, blood pressure (BP) and heart rate (HR) were recorded while the donors were kept standing up for 3 min before and after blood collection. Questionnaires were distributed to all donors for reporting late VVR symptoms within 24 h. Those with younger age and lower diastolic blood pressure were more susceptible to late VVR (both p < 0.05). Furthermore, we identified the increase in HR during the standing test after blood collection as a good predictor of late VVR (odds ratio 1.063, 95 % CI 1.005-1.124; p = 0.031). Also, analysis of questions asked before donation revealed that significantly more donors considered themselves as sensitive to pain in the late VVR group (Odds ratio 0.070, 95 % CI 0.008-0.586; p = 0.014). Excessive HR response to standing after blood collection and subjective sensitivity to pain as well as younger age and lower diastolic BP may be useful to detect donors at high risk for late VVR.

  17. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.

    PubMed

    Nelson, G M; Nychka, J A; McDonald, A G

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to

  18. DNA damage responses by human ELG1 in S phase are important to maintain genomic integrity.

    PubMed

    Sikdar, Nilabja; Banerjee, Soma; Lee, Kyoo-young; Wincovitch, Stephen; Pak, Evgenia; Nakanishi, Koji; Jasin, Maria; Dutra, Amalia; Myung, Kyungjae

    2009-10-01

    Genomic integrity depends on DNA replication, recombination and repair, particularly in S phase. We demonstrate that a human homologue of yeast Elg1 plays an important role in S phase to preserve genomic stability. The level of ELG1 is induced during recovery from a variety of DNA damage. In response to DNA damage, ELG1 forms distinct foci at stalled DNA replication forks that are different from DNA double strand break foci. Targeted gene knockdown of ELG1 resulted in spontaneous foci formation of gamma-H2AX, 53BP1 and phosphorylated-ATM that mark chromosomal breaks. Abnormal chromosomes including fusions, inversions and hypersensitivity to DNA damaging agents were also observed in cells expressing low level of ELG1 by targeted gene knockdown. Knockdown of ELG1 by siRNA reduced homologous recombination frequency in the I-SceI induced double strand break-dependent assay. In contrast, spontaneous homologous recombination frequency and sister chromatin exchange rate were upregulated when ELG1 was silenced by shRNA. Taken together, we propose that ELG1 would be a new member of proteins involved in maintenance of genomic integrity.

  19. Intrinsically disordered proteins and multicellular organisms.

    PubMed

    Dunker, A Keith; Bondos, Sarah E; Huang, Fei; Oldfield, Christopher J

    2015-01-01

    Intrinsically disordered proteins (IDPs) and IDP regions lack stable tertiary structure yet carry out numerous biological functions, especially those associated with signaling, transcription regulation, DNA condensation, cell division, and cellular differentiation. Both post-translational modifications (PTMs) and alternative splicing (AS) expand the functional repertoire of IDPs. Here we propose that an "IDP-based developmental toolkit," which is comprised of IDP regions, PTMs, especially multiple PTMs, within these IDP regions, and AS events within segments of pre-mRNA that code for these same IDP regions, allows functional diversification and environmental responsiveness for molecules that direct the development of complex metazoans.

  20. Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time

    NASA Astrophysics Data System (ADS)

    Nugroho, Bintoro S.; Iskandar, Alexander A.; Malyshev, Victor A.; Knoester, Jasper

    2013-07-01

    We conduct a theoretical study of the bistable optical response of a nanoparticle heterodimer comprised of a closely spaced semiconductor quantum dot and a metal nanoparticle. The bistable nature of the response results from the interplay between the quantum dot's optical nonlinearity and its self-action (feedback) originating from the presence of the metal nanoparticle. The feedback is governed by a complex valued coupling parameter G = GR + iGI. We calculate the bistability phase diagram within the system's parameter space: spanned by GR, GI, and Δ, the latter being the detuning between the driving frequency and the transition frequency of the quantum dot. Additionally, switching times from the lower stable branch to the upper one (and vice versa) are calculated as a function of the intensity of the driving field. The conditions for bistability to occur can be realized, for example, for a heterodimer comprised of a closely spaced CdSe (or CdSe/ZnSe) quantum dot and a gold nanosphere.

  1. Mechanical Ventilation Induces an Inflammatory Response in Preinjured Lungs in Late Phase of Sepsis.

    PubMed

    Xuan, Wei; Zhou, Quanjun; Yao, Shanglong; Deng, Qingzhu; Wang, Tingting; Wu, Qingping

    2015-01-01

    Mechanical ventilation (MV) may amplify the lung-specific inflammatory response in preinjured lungs by elevating cytokine release and augmenting damage to the alveolar integrity. In this study, we test the hypothesis that MV exerts different negative impacts on inflammatory response at different time points of postlung injury. Basic lung injury was induced by cecal ligation and puncture (CLP) surgery in rats. Physiological indexes including blood gases were monitored during MV and samples were assessed following each experiment. Low V T (tidal volume) MV caused a slight increase in cytokine release and tissue damage at day 1 and day 4 after sepsis induced lung injury, while cytokine release from the lungs in the two moderately ventilated V T groups was amplified. Interestingly, in the two groups where rats received low V T MV, we found that infiltration of inflammatory cells was only profound at day 4 after CLP. Marked elevation of protein leakage indicated a compromise in alveolar integrity in rats that received moderate V T MV at day 4 following CLP, correlating with architectural damage to the alveoli. Our study indicates that preinjured lungs are more sensitive to mechanical MV at later phases of sepsis, and this situation may be a result of differing immune status.

  2. From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task

    PubMed Central

    Fründ, Ingo; Busch, Niko A; Schadow, Jeanette; Körner, Ursula; Herrmann, Christoph S

    2007-01-01

    Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms) such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed) integration processes. PMID:17439642

  3. Intrinsic Motivation in Physical Education

    ERIC Educational Resources Information Center

    Davies, Benjamin; Nambiar, Nathan; Hemphill, Caroline; Devietti, Elizabeth; Massengale, Alexandra; McCredie, Patrick

    2015-01-01

    This article describes ways in which educators can use Harter's perceived competence motivation theory, the achievement goal theory, and self-determination theory to develop students' intrinsic motivation to maintain physical fitness, as demonstrated by the Sound Body Sound Mind curriculum and proven effective by the 2013 University of…

  4. The onset of the progression of acute phase response mechanisms induced by extreme impacts can be followed by the decrease in blood levels of positive acute phase proteins.

    NASA Astrophysics Data System (ADS)

    Larina, Olga; Bekker, Anna

    Studies performed at space flights and earth-based simulation models detected the plasma indices of acute phase reaction (APR), i.e. the increase of APR cytokine mediators and alterations in the production of blood acute phase proteins (APP) at the initial stages of adaptation to altered gravity conditions. Acute phase response is the principal constituent of the functional activity of innate immunity system. Changes in plasma APPs contents are considered to serve the restoration of homeostasis state. According to trends of their concentration shifts at the evolving of acute phase reaction APPs are denoted as positive, neutral, or negative. Plasma concentrations of positive acute phase proteins α1-acid glycoprotein (α1-AGP), α1-antitrypsin (α1-AT), and neutral α2-macroglobulin (α2-M) were measured in human study at 12-hour antiorthostatic position (AOP) with 15° head down tilt and hypoxia experiments at 14% oxygen in pressure chamber. Both of these impacts were shown to produce alterations in the APP levels indicative for acute phase response. Nevertheless, in AOP experiment noticeable decrease in α1-AGP concentration occurred by hour 12, and even more pronounced decline of α1-AGP and α1-AT were found on hypoxia hours 12 and 36. Acute phase proteins α1-AGP and α2-M possess the features of proteinase inhibitors. This function is implemented by the formation of complexes with the molecules of proteolytic enzymes which subsequently are removed from the blood flow. Transient decrease in plasma concentrations of protease inhibitors on early phases of APR development was reported to result from the growth of plasma protease activity due to cathepsin release from activated leukocytes, which had not yet been compensated by enhanced APP synthesis. Being a carrier protein for positively charged and neutral substances, α1-AGP shows pronounced elevation in its blood content during APR development. As assumed, it is required for the transportation of the increased

  5. Probing Quasar Winds Using Intrinsic Narrow Absorption Lines

    NASA Astrophysics Data System (ADS)

    Culliton, Christopher S.; Charlton, Jane C.; Eracleous, Michael; Roberts, Amber; Ganguly, Rajib; Misawa, Toru; Muzahid, Sowgat

    2017-01-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole. Furthermore, outflows potentially have a role in providing feedback to the galaxy, and halting star formation and infall of gas. The geometry and density of these outflows remain unknown, especially as a function of ionization and velocity. Having searched ultraviolet spectra at both high redshift (VLT/UVES; 1.4intrinsic to (physically associated with) the quasar. We identify intrinsic NALs with a wide range of properties, including ejection velocity, coverage fraction, and ionization level. We also consider the incidence of intrinsic absorbers as a function of quasar properties (optical, radio and X-ray fluxes), and find that radio properties and quasar orientation are influential in determining if a quasar is likely to host an intrinsic system. We find that there is a continuum of properties within the intrinsic NAL sample, rather than discrete families, ranging from partially covered CIV systems with black Lya and with a separate low ionization gas phase to partially covered NV systems with partially covered Lya and without detected low ionization gas. Additionally, we construct a model describing the spatial distributions, geometries, and varied ionization structures of intrinsic NALs.

  6. Responses of a top and a meso predator and their prey to moon phases.

    PubMed

    Penteriani, Vincenzo; Kuparinen, Anna; del Mar Delgado, Maria; Palomares, Francisco; López-Bao, José Vicente; Fedriani, José María; Calzada, Javier; Moreno, Sacramento; Villafuerte, Rafael; Campioni, Letizia; Lourenço, Rui

    2013-11-01

    We compared movement patterns and rhythms of activity of a top predator, the Iberian lynx Lynx pardinus, a mesopredator, the red fox Vulpes vulpes, and their shared principal prey, the rabbit Oryctolagus cuniculus, in relation to moon phases. Because the three species are mostly nocturnal and crepuscular, we hypothesized that the shared prey would reduce its activity at most risky moon phases (i.e. during the brightest nights), but that fox, an intraguild prey of lynx, would avoid lynx activity peaks at the same time. Rabbits generally moved further from their core areas on darkest nights (i.e. new moon), using direct movements which minimize predation risk. Though rabbits responded to the increased predation risk by reducing their activity during the full moon, this response may require several days, and the moon effect we observed on the rabbits had, therefore, a temporal gap. Lynx activity patterns may be at least partially mirroring rabbit activity: around new moons, when rabbits moved furthest and were more active, lynxes reduced their travelling distances and their movements were concentrated in the core areas of their home ranges, which generally correspond to areas of high density of rabbits. Red foxes were more active during the darkest nights, when both the conditions for rabbit hunting were the best and lynxes moved less. On the one hand, foxes increased their activity when rabbits were further from their core areas and moved with more discrete displacements; on the other hand, fox activity in relation to the moon seemed to reduce dangerous encounters with its intraguild predator.

  7. Photic entrainment of Period mutant mice is predicted from their phase response curves

    PubMed Central

    Pendergast, Julie S.; Friday, Rio C.; Yamazaki, Shin

    2010-01-01

    A fundamental property of circadian clocks is that they entrain to environmental cues. The circadian genes, Period1 and Period2, are involved in entrainment of the mammalian circadian system. To investigate the roles of the Period genes in photic entrainment, we constructed phase response curves (PRC) to light pulses for C57BL/6J wild-type, Per1−/−, Per2−/−, and Per3−/− mice and tested whether the PRCs accurately predict entrainment to non-24 light-dark cycles (T-cycles) and constant light (LL). The PRCs of wild-type and Per3−/− mice are similar in shape and amplitude and have relatively large delay zones and small advance zones, resulting in successful entrainment to T26, but not T21, with similar phase angles. Per1−/− mice have a high-amplitude PRC, resulting in entrainment to a broad range of T-cycles. Per2−/− mice also entrain to a wide range of T-cycles because the advance portion of their PRC is larger than wild-types. Period aftereffects following entrainment to T-cycles were similar among all genotypes. We found that the ratio of the advance portion to the delay portion of the PRC accurately predicts the lengthening of the period of the activity rhythm in LL. Wild-type, Per1−/−, and Per3−/− mice had larger delay zones than advance zones and lengthened (>24hrs) periods in LL, while Per2−/− mice had delay and advance zones that were equal in size and no period lengthening in LL. Together, these results demonstrate that PRCs are powerful tools for predicting and understanding photic entrainment of circadian mutant mice. PMID:20826680

  8. Intrinsic randomness and intrinsic irreversibility in classical dynamical systems

    PubMed Central

    Courbage, M.; Prigogine, I.

    1983-01-01

    We continue our previous work on dynamic “intrinsically random” systems for which we can derive dissipative Markov processes through a one-to-one change of representation. For these systems, the unitary group of evolution can be transformed in this way into two distinct Markov processes leading to equilibrium for either t→ + ∞ or t→ - ∞. To lift the degeneracy, we first formulate the second principle as a selection rule that is meaningful in intrinsically random systems. For these systems, this excludes a set of unrealizable states. As a result of this exclusion, permitted initial conditions correspond to a set of states that is not invariant through velocity inversion. In this way, the time-reversal symmetry of dynamics is broken and these systems acquire a new feature we may call “intrinsic irreversibility.” The set of admitted initial conditions can be characterized by an entropy displaying the amount of information necessary for their preparation. The initial conditions selected by the second law correspond to a finite amount of information, while the initial conditions that are rejected correspond to an infinite amount of information and are therefore “impossible.” We believe that our formulation permits a microscopic formulation of the second law of thermodynamics for well-defined classes of dynamical systems. PMID:16578774

  9. Effect of a misspecification of response rates on type I and type II errors, in a phase II Simon design.

    PubMed

    Baey, Charlotte; Le Deley, Marie-Cécile

    2011-07-01

    Phase-II trials are a key stage in the clinical development of a new treatment. Their main objective is to provide the required information for a go/no-go decision regarding a subsequent phase-III trial. In single arm phase-II trials, widely used in oncology, this decision relies on the comparison of efficacy outcomes observed in the trial to historical controls. The false positive rate generally accepted in phase-II trials, around 10%, contrasts with the very high attrition rate of new compounds tested in phase-III trials, estimated at about 60%. We assumed that this gap could partly be explained by the misspecification of the response rate expected with standard treatment, leading to erroneous hypotheses tested in the phase-II trial. We computed the false positive probability of a defined design under various hypotheses of expected efficacy probability. Similarly we calculated the power of the trial to detect the efficacy of a new compound for different expected efficacy rates. Calculations were done considering a binary outcome, such as the response rate, with a decision rule based on a Simon two-stage design. When analysing a single-arm phase-II trial, based on a design with a pre-specified null hypothesis, a 5% absolute error in the expected response rate leads to a false positive rate of about 30% when it is supposed to be 10%. This inflation of type-I error varies only slightly according to the hypotheses of the initial design. Single-arm phase-II trials poorly control for the false positive rate. Randomised phase-II trials should, therefore, be more often considered.

  10. Solvent effects in the helix-coil transition model can explain the unusual biophysics of intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Badasyan, Artem; Mamasakhlisov, Yevgeni Sh.; Podgornik, Rudolf; Parsegian, V. Adrian

    2015-07-01

    We analyze a model statistical description of the polypeptide chain helix-coil transition, where we take into account the specificity of its primary sequence, as quantified by the phase space volume ratio of the number of all accessible states to the number corresponding to a helical conformation. The resulting transition phase diagram is then juxtaposed with the unusual behavior of the secondary structures in Intrinsically Disordered Proteins (IDPs) and a number of similarities are observed, even if the protein folding is a more complex transition than the helix-coil transition. In fact, the deficit in bulky and hydrophobic amino acids observed in IDPs, translated into larger values of phase space volume, allows us to locate the region in parameter space of the helix-coil transition that would correspond to the secondary structure transformations that are intrinsic to conformational transitions in IDPs and that is characterized by a modified phase diagram when compared to globular proteins. Here, we argue how the nature of this modified phase diagram, obtained from a model of the helix-coil transition in a solvent, would illuminate the turned-out response of IDPs to the changes in the environment conditions that follow straightforwardly from the re-entrant (cold denaturation) branch in their folding phase diagram.

  11. A phase-locked loop model of the response of the postural control system to periodic platform motion.

    PubMed

    Schilling, Robert J; Robinson, Charles J

    2010-06-01

    A phase-locked loop (PLL) model of the response of the postural control system to periodic platform motion is proposed. The PLL model is based on the hypothesis that quiet standing (QS) postural sway can be characterized as a weak sinusoidal oscillation corrupted with noise. Because the signal to noise ratio is quite low, the characteristics of the QS oscillator are not measured directly from the QS sway, instead they are inferred from the response of the oscillator to periodic motion of the platform. When a sinusoidal stimulus is applied, the QS oscillator changes speed as needed until its frequency matches that of the platform, thus achieving phase lock in a manner consistent with a PLL control mechanism. The PLL model is highly effective in representing the frequency, amplitude, and phase shift of the sinusoidal component of the phase-locked response over a range of platform frequencies and amplitudes. Qualitative analysis of the PLL control mechanism indicates that there is a finite range of frequencies over which phase lock is possible, and that the size of this capture range decreases with decreasing platform amplitude. The PLL model was tested experimentally using nine healthy subjects and the results reveal good agreement with a mean phase shift error of 13.7 degrees and a mean amplitude error of 0.8 mm.

  12. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    SciTech Connect

    Xiangjie, Zhao E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo

    2015-01-07

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  13. Kelussia odoratissima Mozaff. activates intrinsic pathway of apoptosis in breast cancer cells associated with S phase cell cycle arrest via involvement of p21/p27 in vitro and in vivo

    PubMed Central

    Karimian, Hamed; Arya, Aditya; Fadaeinasab, Mehran; Razavi, Mahboubeh; Hajrezaei, Maryam; Karim Khan, Ataul; Mohd Ali, Hapipah; Abdulla, Mahmood Ameen; Noordin, Mohamad Ibrahim

    2017-01-01

    Background The aim of this study was to evaluate the anticancer potential of Kelussia odoratissima. Several in vitro and in vivo biological assays were applied to explore the direct effect of an extract and bioactive compound of this plant against breast cancer cells and its possible mechanism of action. Materials and methods K. odoratissima methanol extract (KME) was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC) assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated. Results Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP), upregulated Bax and downregulated Bcl-2. Conclusion This study demonstrated that K. odoratissima exhibits antitumor activity against breast cancer cells via cell death and cell cycle arrest. PMID:28203057

  14. Adaptation and inhibition underlie responses to time-varying interaural phase cues in a model of inferior colliculus neurons.

    PubMed

    Borisyuk, Alla; Semple, Malcolm N; Rinzel, John

    2002-10-01

    A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on

  15. Influence of induction of parturition on the neonatal acute phase response in foals.

    PubMed

    Duggan, Vivienne E; Holyoak, G Reed; MaCallister, Charles G; Confer, Anthony W

    2007-01-15

    The objectives of the present study were to determine whether induction of parturition in mares at term with low doses of oxytocin (2.5 i.u. i.v. every 20 min) affected the incidence of peri-partum complications or inflammatory responses in the neonatal foal. Parturition was induced in 11 of 26 mares and the remainder foaled spontaneously. Serum concentrations of amyloid A (AA; an acute phase protein) were measured (with a commercial ELISA) from 0 to 72 h postpartum in 18 of the neonatal foals. The incidence of dystocia and premature placental separation was higher in induced mares (2 of 11 and 1 of 11 versus 0 of 15 and 0 of 15, respectively), whereas retained fetal membranes were more common in spontaneous foalings (2 of 15 versus 0 of 11). When abnormal foals were excluded (to decrease the influence of endogenous serum AA elevations), serum concentrations of AA increased to the same extent over time in foals with induced versus spontaneous parturition; foals with spontaneous parturition had a mean serum AA concentration of 7.8 microg/mL at birth that increased to a maximum of 58.9 microg/mL at 36 h; foals with induced parturition had a mean serum AA concentration of 5.4 microg/mL at birth that increased to a maximum of 41.4 microg/mL at 48 h. Baseline serum AA concentrations were lower in induced foals. We concluded that inducing parturition with low doses of oxytocin in mares at term did not affect (relative to spontaneous parturition) the temporal dynamics of serum AA concentrations in the normal foal in the first 72 h of life. However, the induction procedure may lead to complications during parturition that, if not detected early, could result in the development of an inflammatory response in the neonate.

  16. A robust optimization model for distribution and evacuation in the disaster response phase

    NASA Astrophysics Data System (ADS)

    Fereiduni, Meysam; Shahanaghi, Kamran

    2016-10-01

    Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster periods. At first, a single-objective optimization model is presented that addresses the response phase of disaster management. This model will help the decision makers to make the most optimal choices in regard to location, allocation, and evacuation simultaneously. The proposed model also considers emergency tents as temporary medical centers. To cope with the uncertainty and dynamic nature of disasters, and their consequences, our multi-period robust model considers the values of critical input data in a set of various scenarios. Second, because of probable disruption in the distribution infrastructure (such as bridges), the Monte Carlo simulation is used for generating related random numbers and different scenarios; the p-robust approach is utilized to formulate the new network. The p-robust approach can predict possible damages along pathways and among relief bases. We render a case study of our robust optimization approach for Tehran's plausible earthquake in region 1. Sensitivity analysis' experiments are proposed to explore the effects of various problem parameters. These experiments will give managerial insights and can guide DMs under a variety of conditions. Then, the performances of the "robust optimization" approach and the "p-robust optimization" approach are evaluated. Intriguing results and practical insights are demonstrated by our analysis on this comparison.

  17. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent

    SciTech Connect

    Johnson, N.F.; Gurule, D.M.; Carpenter, T.R.

    1995-12-01

    One role of the p53 tumor suppressor protein has been recently revealed. Kastan, M.B. reported that p53 protein accumulates in cells exposed to ionizing radiation. The accumulation of p53 protein is in response to DNA damage, most importantly double-strand breaks, that results from exposure to ionizing radiation. The rise in cellular p53 levels is necessary for an arrest in the G{sub 1} phase of the cell cycle to provide additional time for DNA repair. The p53 response has also been demonstrated to enhance PCNA-dependent repair. p53 is thus an important regulator of the cellular response to DNA-damaging radiation. From this data, it can be concluded that the magnitude of the p53 response is not dependent on the phase of culture growth.

  18. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  19. Acrolein-Induced Dyslipidemia and Acute Phase Response Independenly of HMG-CoA Reductase

    PubMed Central

    Conklin, Daniel J.; Prough, Russell A.; Juvan, Peter; Rezen, Tadeja; Rozman, Damjana; Haberzettl, Petra; Srivastava, Sanjay; Bhatnagar, Aruni

    2012-01-01

    Scope Aldehydes are ubiquitous natural constituents of foods, water and beverages. Dietary intake represents the greatest source of exposure to acrolein and related aldehydes. Oral acrolein induces dyslipidemia acutely and chronically increases atherosclerosis in mice, yet the mechanisms are unknown. Because lipid synthesis and trafficking are largely under hepatic control, we examined hepatic genes in murine models of acute and chronic oral acrolein exposure. Methods and results Changes in hepatic gene expression were examined using a Steroltalk microarray. Acute acrolein feeding modified plasma and hepatic proteins and increased plasma triglycerides within 15 min. By 6h, acrolein altered hepatic gene expression including Insig1, Insig2 and Hmgcr genes and stimulated an acute phase response (APR) with up-regulation of serum amyloid A genes (Saa) and systemic hypoalbuminemia. To test if decreased HMG-CoA reductase activity could modify acrolein-induced dyslipidemia or the APR, mice were pretreated with simvastatin. Statin treatment, however, did not alter acrolein-induced dyslipidemia or hypoalbuminemia associated with an APR. Few hepatic genes were dysregulated by chronic acrolein feeding in apoE-null mice. These studies confirmed that acute acrolein exposure altered expression of hepatic genes involved with lipid synthesis and trafficking and APR, and thus, indicated a hepatic locus of acrolein-induced dyslipidemia and APR that was independent of HMG CoA-reductase. Conclusion Dietary intake of acrolein could contribute to cardiovascular disease risk by disturbing hepatic function. PMID:21812109

  20. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase.

    PubMed

    Sareen, Archana; Chaudhury, Indrajit; Adams, Nicole; Sobeck, Alexandra

    2012-09-01

    Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2-FANCI complex versus the monomeric proteins are. We show that the FANCD2-FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2-FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to-and independently of-FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase.

  1. Internal structure and phase transition behavior of stimuli-responsive microgels in PEG melts.

    PubMed

    Schneider, Florian; Balaceanu, Andreea; Di, Zhenyu; Melnichenko, Yuri B; Allgaier, Jürgen; Pich, Andrij; Schneider, Gerald J; Richter, Dieter

    2017-02-20

    In this work we investigated the behaviour of stimuli-responsive poly(N-vinylcaprolactam) (PVCL) microgels in poly(ethylene glycol) (PEGs) with a linear architecture. We performed small-angle neutron scattering (SANS) experiments at two different microgel concentrations and various temperatures. The results were compared with those on PVCL microgels in water. PVCL in PEG (molecular weight MW = 2 kg mol(-1)) exhibits a volume phase transition temperature (VPTT) at a temperature between 160 and 180 °C. The diameter of the swollen microgel is only slightly smaller than in water. Furthermore, with increasing molecular weight of the surrounding polymer matrices fewer chains penetrate the microgel particles. In agreement with that, we identify a decreasing diameter with increasing molecular weight. In the short chain polymers up to MW = 3 kg mol(-1), PVCL is well dispersed in the matrices with only minor signatures of agglomeration. For the well dispersed systems, we find unperturbed chain conformation of the PEG. Our results clearly show that the miscibility of PVCL and PEG disappears in a molecular weight range of 3 to 10 kg mol(-1).

  2. EXPERIMENTAL INFECTION WITH Toxocara cati IN PIGS: MIGRATORY PATTERN AND PATHOLOGICAL RESPONSE IN EARLY PHASE

    PubMed Central

    Sommerfelt, Irma Estela; Duchene, Adriana; Daprato, Betina; Lopez, Clara María; Cardillo, Natalia; Franco, Aníbal Juan

    2014-01-01

    Experimental inoculations of approximately 100,000 infective Toxocara cati larval eggs were done in twelve pigs. The T. cati eggs used for inoculation were collected from cat's feces. Another group of three pigs served as an uninfected control. Groups of infected pigs were euthanized at seven, 14, 21, and 28 days post-inoculation (dpi). Tissue samples were taken for digestion and histopathology changes in early phase. The number of larvae recovered from the lungs peaked at seven and 14 dpi and were also present at 21, and 28 dpi. Larvae of T. cati were present in the lymph nodes of the small and large intestine at seven, 14, and 28 dpi and at seven, 14, 21, and 28 dpi respectively. In other studied tissues, no larvae or less than one larva per gram was detected. The pathological response observed in the liver and lungs at seven and 14 dpi, showed white spots on the liver surface and areas of consolidation were observed in the lungs. The lungs showed an inflammatory reaction with larvae in center at 28 dpi. In the liver we observed periportal and perilobular hepatitis. The lymph nodes of the intestines displayed eosinophil lymphadenitis with reactive centers containing parasitic forms in some of them. The granulomatous reaction was not observed in any tissues. The role of the other examined tissues had less significance. The relevance of this parasite as an etiological agent that leads to disease in paratenic hosts is evident. PMID:25076437

  3. Experimental infection with Toxocara cati in pigs: migratory pattern and pathological response in early phase.

    PubMed

    Sommerfelt, Irma Estela; Duchene, Adriana; Daprato, Betina; Lopez, Clara María; Cardillo, Natalia; Franco, Aníbal Juan

    2014-01-01

    Experimental inoculations of approximately 100,000 infective Toxocara cati larval eggs were done in twelve pigs. The T. cati eggs used for inoculation were collected from cat's feces. Another group of three pigs served as an uninfected control. Groups of infected pigs were euthanized at seven, 14, 21, and 28 days post-inoculation (dpi). Tissue samples were taken for digestion and histopathology changes in early phase. The number of larvae recovered from the lungs peaked at seven and 14 dpi and were also present at 21, and 28 dpi. Larvae of T. cati were present in the lymph nodes of the small and large intestine at seven, 14, and 28 dpi and at seven, 14, 21, and 28 dpi respectively. In other studied tissues, no larvae or less than one larva per gram was detected. The pathological response observed in the liver and lungs at seven and 14 dpi, showed white spots on the liver surface and areas of consolidation were observed in the lungs. The lungs showed an inflammatory reaction with larvae in center at 28 dpi. In the liver we observed periportal and perilobular hepatitis. The lymph nodes of the intestines displayed eosinophil lymphadenitis with reactive centers containing parasitic forms in some of them. The granulomatous reaction was not observed in any tissues. The role of the other examined tissues had less significance. The relevance of this parasite as an etiological agent that leads to disease in paratenic hosts is evident.

  4. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase

    PubMed Central

    Sareen, Archana; Chaudhury, Indrajit; Adams, Nicole; Sobeck, Alexandra

    2012-01-01

    Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2–FANCI complex versus the monomeric proteins are. We show that the FANCD2–FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2–FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to—and independently of—FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase. PMID:22753026

  5. Intrinsic Coupling Modes in Source-Reconstructed Electroencephalography

    PubMed Central

    Breakspear, Michael; Britz, Juliane; Boonstra, Tjeerd W.

    2014-01-01

    Abstract Intrinsic coupling of neuronal assemblies constitutes a key feature of ongoing brain activity, yielding the rich spatiotemporal patterns observed in neuroimaging data and putatively supporting cognitive processes. Intrinsic coupling has been investigated in electrophysiological recordings using two types of functional connectivity measures: amplitude and phase coupling. These two coupling modes differ in their likely causes and functions, and have been proposed to provide complementary insights into intrinsic neuronal interactions. Here, we investigate the relationship between amplitude and phase coupling in source-reconstructed electroencephalography (EEG). Volume conduction is a key obstacle for connectivity analysis in EEG—we therefore also test the envelope correlation of orthogonalized signals and the phase lag index. Functional connectivity between six seed source regions (bilateral visual, sensorimotor, and auditory cortices) and all other cortical voxels was computed. For all four measures, coupling between homologous sensory areas in both hemispheres was significantly higher than with other voxels at the same physical distance. The frequency of significant coupling differed between sensory areas: 10 Hz for visual, 30 Hz for auditory, and 40 Hz for sensorimotor cortices. By contrasting envelope correlations and phase locking values, we observed two distinct clusters of voxels showing a different relationship between amplitude and phase coupling. Large clusters contiguous to the seed regions showed an identity (1:1) relationship between amplitude and phase coupling, whereas a cluster located around the contralateral homologous regions showed higher phase than amplitude coupling. These results show a relationship between intrinsic coupling modes that is distinct from the effect of volume conduction. PMID:25230358

  6. Intrinsic Efficiency Calibration Considering Geometric Factors in Gamma-ray Computed Tomography for Radioactive Waste Assay

    SciTech Connect

    Liu, Zhe; Zhang, Li

    2015-07-01

    In radioactive waste assay with gamma-ray computed tomography, calibration for intrinsic efficiency of the system is important to the reconstruction of radioactivity distribution. Due to the geometric characteristics of the system, the non-uniformity of intrinsic efficiency for gamma-rays with different incident positions and directions are often un-negligible. Intrinsic efficiency curves versus geometric parameters of incident gamma-ray are obtained by Monte-Carlo simulation, and two intrinsic efficiency models are suggested to characterize the intrinsic efficiency determined by relative source-detector position and system geometry in the system matrix. Monte-Carlo simulation is performed to compare the different intrinsic efficiency models. Better reconstruction results of radioactivity distribution are achieved by both suggested models than by the uniform intrinsic efficiency model. And compared to model based on detector position, model based on point response increases reconstruction accuracy as well as complexity and time of calculation. (authors)

  7. Repeated phase shifts in the lighting regimen change the blood pressure response to norepinephrine stimulation in rats.

    PubMed

    Molcan, L; Vesela, A; Zeman, M

    2014-01-01

    Disturbed circadian activity of the sympathetic system may be involved in negative consequences of chronodisruption on the cardiovascular system. We studied daily changes in pressure response to adrenergic stimulation in rats exposed to repeated phase advance shifts (PAS) of light/dark (LD) regimen. Blood pressure (BP), heart rate (HR) and locomotor activity was measured by radiotelemetry in normotensive Wistar rats exposed to repeated PAS (three 8-h shifts per week) lasting for 12 weeks. Norepinephrine was administered subcutaneously in the middle of L and D during week 12 of PAS exposure. In the control LD cycle, cardiovascular parameters exhibited significant daily rhythms with expected higher values during D than L phase. Rats exposed to PAS showed disturbed rhythms without a BP and HR increase. Administration of norepinephrine to control rats revealed daily variability in the cardiovascular response with higher stimulation of BP during L than D. This daily pattern of BP response to norepinephrine was diminished in the PAS group. The damped daily variability in pressure response to norepinephrine and augmented response during the light phase of the day suggest that the increased and desynchronized activity of the sympathetic system may worsen responses of the cardiovascular system to load in individuals exposed to irregular LD conditions.

  8. Influence of Menstrual Cycle Phase on Neural and Craving Responses to Appetitive Smoking Cues in Naturally Cycling Females

    PubMed Central

    Jagannathan, Kanchana; Wetherill, Reagan R.; Johnson, Barbara; Kelly, Shannon; Langguth, Jamison; Mumma, Joel; Childress, Anna Rose

    2015-01-01

    Introdu ction: Functional magnetic resonance imaging (fMRI) has been used extensively in an attempt to understand brain vulnerabilities that mediate maladaptive responses to drug cues. Using perfusion fMRI, we have consistently shown reward-related activation (medial orbitofrontal cortex/ventral striatum) to smoking cues (SCs). Because preclinical and clinical studies generally show that progesterone may reduce reward and craving, we hypothesized that females in the follicular phase of the cycle (FPs; when progesterone levels are low) would have greater reward-related neural responses to SCs compared with females in the luteal phase (LPs). Methods: Sated cigarette-dependent premenopausal naturally cycling females underwent pseudo-continuous arterial spin-labeled perfusion fMRI during exposure to 10-min audio visual clips of appetitive SCs and non-SCs. Brain responses to SCs relative to non-SCs were examined among females grouped according to menstrual cycle (MC) phase at the time of scanning (22 FPs, 15 LPs). Craving scores were acquired pre- and post-SC exposure. Results: FPs showed increased neural responses to SCs compared with non-SCs in the medial orbitofrontal cortex (p ≤ .05corrected), whereas LPs did not. FPs reported SC-elicited craving (p ≤ .005), whereas LPs did not. Within FPs, SC-induced craving correlated with increased neural responses in the anterior insula (r = 0.73, p < .0001). Conclusions: FPs may be more vulnerable to relapse during appetitive SC exposure than LPs. Because the influence of MC phase on drug cue neural activity has not been examined, these results contribute to our knowledge of the neurobiological underpinnings of responses to drug cues, and they highlight the importance of monitoring menstrual cycle phase in all areas of addiction research. PMID:25762748

  9. Synthesis of thermo-responsive polymers recycling aqueous two-phase systems and phase formation mechanism with partition of ε-polylysine.

    PubMed

    Xu, Chengning; Dong, Wenying; Wan, Junfen; Cao, Xuejun

    2016-11-11

    Aqueous two-phase systems (ATPS) have the potential application in bioseparation and biocatalysis engineering. In this paper, a recyclable ATPS was developed by two thermo-responsive copolymers, PVBAm and PN. Copolymer PVBAm was copolymerized using N-vinylcaprolactam, Butyl methacrylate and Acrylamide as monomers, and PN was synthesized by N-isopropylacrylamide. The lower critical solution temperature (LCST) of PVBAm and PN were 45.0°C and 33.5°C, respectively. The recoveries of both polymers could achieve over 95.0%. The phase behavior and formation mechanism of PVBAm/PN ATPS was studied. Low-field nuclear magnetic resonance (LF-NMR) was applied in the phase-forming mechanism study in ATPS. In addition, combining the analysis results of surface tension, transmission electron microscopy and dynamic light scattering, the phase-forming of the PVBAm/PN ATPS was proved. The application was performed by partition of ε-polylysine in the 2% PVBAm/2% PN (w/w) ATPS. The results demonstrated that ε-polylysine was extracted into the PN-rich phase, the maximal partition coefficient (1/K) and extraction recovery of pure ε-polylysine were 6.87 and 96.36%, respectively, and 7.41 partition coefficient and 97.85% extraction recovery for ε-polylysine fermentation broth were obtained in the presence of 50mM (NH4)2SO4 at room temperature. And this method can effectively remove the most impurities from fermentation broth when (NH4)2SO4 exists in the ATPS. It is believed that the thermo-responsive recycling ATPS has a good application prospect in the field of bio-separation.

  10. Finite Element Modeling of the Magnetotelluric Phase Tensor Response to Evaluate Sensitivity to Lateral and Vertical Resistivity Contrasts

    NASA Astrophysics Data System (ADS)

    Hawkes, S.; McClain, J. S.

    2015-12-01

    Phase tensor analysis of magnetotelluric data is a relatively new technique introduced by Caldwell et. al. (2004) and requires substantial research efforts to evaluate the capabilities of the method. We have conducted finite element (FE) modeling using the AC/DC module of Comsol Multiphysics to determine the effect of resistivity structure on the phase tensor response. Measurements are made at eleven frequencies from 10-104 Hz at points on a 5x5 grid above various simple model geometries. Phase tensor plotting methods are adapted from Booker (2013) and involve displaying data graphically as stacks of colored ellipses. This allows for interpretation across the frequency spectrum vertically as well as laterally between stations. Two types of plot are presented for each model, a "ϕmin plot" where the ellipses are colored according to the minimum principle phase and a "delta plot" where the ellipses are colored according to the difference between the principle phases (ϕmax - ϕmin), which provides a quantification of the phase anisotropy. Results suggest that the principle phases ϕmin and ϕmax are sensitive to vertical resistivity contrasts but not lateral resistivity contrasts. Conversely, delta plots reveal sensitivity to lateral resistivity contrasts but not vertical resistivity contrasts. A clear distance relationship is observed with proximity to the boundary controlling the frequency range that senses a lateral resistivity contrast. Rotation of the phase tensor ellipses and increased skew values occur in the presence of resistivity contrasts that strike nonparallel to the source field, with the effect increasing towards lower frequencies. The total phase tensor response is confirmed to be sensitive to both vertical and lateral resistivity contrasts and can be used effectively to interpret subsurface resistivity structure.

  11. Intrinsic dephasing in one-dimensional ultracold atom interferometers

    PubMed Central

    Bistritzer, R.; Altman, E.

    2007-01-01

    Quantum-phase fluctuations prevent true long-range phase order from forming in interacting 1D condensates, even at zero temperature. Nevertheless, by dynamically splitting the condensate into two parallel decoupled tubes the system can be prepared with a macroscopic relative phase, facilitating interferometric measurement. Here, we describe a dephasing mechanism whereby the quantum-phase fluctuations, which are so effective in equilibrium, act to destroy the macroscopic relative phase that was imposed as a nonequilibrium initial condition. We show that the phase coherence between the condensates decays exponentially with a dephasing time that depends on intrinsic parameters: the interaction strength, sound velocity, and density. Interestingly, significant temperature dependence appears only above a cross-over scale T∗. In contrast to the usual phase diffusion, which is essentially an effect of confinement and leads to Gaussian decay, the exponential dephasing caused by fluctuations is a bulk effect that survives the thermodynamic limit. PMID:17548834

  12. The acute phase inflammatory response to maximal exercise testing in children and young adults with sickle cell anaemia.

    PubMed

    Liem, Robert I; Onyejekwe, Kasiemobi; Olszewski, Marie; Nchekwube, Chisalu; Zaldivar, Frank P; Radom-Aizik, Shlomit; Rodeghier, Mark J; Thompson, Alexis A

    2015-12-01

    Although individuals with sickle cell anaemia (SCA) have elevated baseline inflammation and endothelial activation, the acute phase response to maximal exercise has not been evaluated among children with SCA. We measured the acute phase response to maximal exercise testing for soluble vascular cell adhesion molecule (sVCAM) as well as interleukin 6 (IL6), total white blood cell (WBC) count, C-reactive protein (CRP) and D-dimer in a cohort of children with SCA and matched controls at baseline, immediately after, and 30, 60 and 120 min following exercise. Despite higher baseline levels of all biomarkers except CRP, the acute phase response from baseline to immediately after exercise was significantly greater in subjects versus controls for CRP (2·1 vs. 0·2 mg/l, P = 0·02) and D-dimer (160 vs. 10 μg/l, P < 0·01) only. Similar between-group trends were observed over time for all biomarkers, including sVCAM, IL6, total WBC, CRP and D-dimer. Lower fitness, defined by peak oxygen consumption (VO2 ), was independently associated with greater acute phase responses to exercise for sVCAM. Our results suggest maximal exercise may not be associated with any greater escalation of endothelial activation or inflammation in SCA and provide preliminary biomarker evidence for the safety of brief, high-intensity physical exertion in children with SCA.

  13. Prenatal transportation alters the acute phase response (APR) of bull calves exposed to a lipopolysaccharide (LPS) challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if prenatal transportation influences the acute phase response (APR) to a postnatal Lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day...

  14. Supplementation of Lactobacillus acidophilus fermentation product can attenuate the acute phase response following a lipopolysaccharide challenge in pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if feeding a Lactobacillus acidophilus fermentation product to weaned pigs would reduce stress and acute phase responses (APR) following a lipopolysaccharide (LPS) challenge. Pigs (n=30; 6.4±0.1 kilograms body weight) were housed individually in pens with ad libi...

  15. Yeast cell wall supplementation alters the physiological and acute phase responses of crossbred heifers to an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred newly-received heifers to an endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving a Control diet (n = 8), ...

  16. The effect of yeast cell wall supplementation on the physiological and acute phase responses of crossbred heifers to endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred newly-received heifers to endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.9+/-2.4 kg) were obtained from commercial sale barns and tra...

  17. OmniGen-AF supplementation modulated the physiological and acute phase responses of Brahman heifers to an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the physiological and acute phase responses (APR) of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 183±5 kilograms) from the Texas AgriLife Research Center in Overton...

  18. Dried citrus pulp modulates the physiological and acute phase responses of crossbred heifers to an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding dried citrus pulp (CP) pellets on the physiological and acute phase responses (APR) of newly-received crossbred heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.3±2.4 kg) were obtained from commercial sale barns and transported...

  19. MICROBIAL RESPONSES TO IN SITU CHEMICAL OXIDATION, SIX-PHASE HEATING, AND STEAM INJECTION REMEDIATION TECHNOLOGIES IN GROUND WATER

    EPA Science Inventory

    The evaluation of microbial responses to three in situ source removal remedial technologies including permanganate-based in-situ chemical oxidation (ISCO), six-phase heating (SPH), and steam injection (SI) was performed at Cape Canaveral Air Station in Florida. The investigatio...

  20. Phase I to II cross-induction of xenobiotic metabolizing enzymes: A feedforward control mechanism for potential hormetic responses

    SciTech Connect

    Zhang Qiang Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  1. Optical response of two-level atoms with reflection geometry as a model of a quantum phase gate

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki; Takeuchi, Shigeki; Sasaki, Keiji

    2005-07-01

    The nonlinear optical response obtained from a model system of a quantum phase gate is investigated. The model system consists of a thin infinite atomic layer of two-level atoms placed in front of a perfect reflecting mirror. The optical response obtained from the model system is semiclassically analyzed using the finite difference time domain method with the optical Bloch equations. It is shown that a nonlinear phase shift of π is achieved when the atomic layer is placed at an antinode of the input field. This result is consistent with the theoretical result obtained from a one-dimensional atom model [H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, J. Opt. B: Quantum Semiclassical Opt. 5, 218 (2003)]. The dependence of the nonlinear phase shift on the position of the atomic layer is also studied in detail.

  2. Intrinsic radiation resistance in human chondrosarcoma cells

    SciTech Connect

    Moussavi-Harami, Farid; Mollano, Anthony; Martin, James A.; Ayoob, Andrew; Domann, Frederick E.; Gitelis, Steven; Buckwalter, Joseph A. . E-mail: joseph-buckwalter@uiowa.edu

    2006-07-28

    Human chondrosarcomas rarely respond to radiation treatment, limiting the options for eradication of these tumors. The basis of radiation resistance in chondrosarcomas remains obscure. In normal cells radiation induces DNA damage that leads to growth arrest or death. However, cells that lack cell cycle control mechanisms needed for these responses show intrinsic radiation resistance. In previous work, we identified immortalized human chondrosarcoma cell lines that lacked p16{sup ink4a}, one of the major tumor suppressor proteins that regulate the cell cycle. We hypothesized that the absence of p16{sup ink4a} contributes to the intrinsic radiation resistance of chondrosarcomas and that restoring p16{sup ink4a} expression would increase their radiation sensitivity. To test this we determined the effects of ectopic p16{sup ink4a} expression on chondrosarcoma cell resistance to low-dose {gamma}-irradiation (1-5 Gy). p16{sup ink4a} expression significantly increased radiation sensitivity in clonogenic assays. Apoptosis did not increase significantly with radiation and was unaffected by p16{sup ink4a} transduction of chondrosarcoma cells, indicating that mitotic catastrophe, rather than programmed cell death, was the predominant radiation effect. These results support the hypothesis that p16{sup ink4a} plays a role in the radiation resistance of chondrosarcoma cell lines and suggests that restoring p16 expression will improve the radiation sensitivity of human chondrosarcomas.

  3. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure.

    PubMed

    Shannahan, Jonathan H; Alzate, Oscar; Winnik, Witold M; Andrews, Debora; Schladweiler, Mette C; Ghio, Andrew J; Gavett, Stephen H; Kodavanti, Urmila P

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA.

  4. Seismic Safety Margins Research Program. Phase 1. Project V. Structural sub-system response: subsystem response review. [PWR; BWR

    SciTech Connect

    Fogelquist, J.; Kaul, M.K.; Koppe, R.; Tagart, S.W. Jr.; Thailer, H.; Uffer, R.

    1980-03-01

    This project is directed toward a portion of the Seismic Safety Margins Research Program which includes one link in the seismic methodology chain. The link addressed here is the structural subsystem dynamic response which consists of those components and systems whose behavior is often determined decoupled from the major structural response. Typically the mathematical model utilized for the major structural response will include only the mass effects of the subsystem and the main model is used to produce the support motion inputs for subsystem seismic qualification. The main questions addressed in this report have to do with the seismic response uncertainty of safety-related components or equipment whose seismic qualification is performed by (a) analysis, (b) tests, or (c) combinations of analysis and tests, and where the seismic input is assumed to have no uncertainty.

  5. Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks.

    PubMed

    Rich, Scott; Booth, Victoria; Zochowski, Michal

    2016-01-01

    The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics

  6. Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks

    PubMed Central

    Rich, Scott; Booth, Victoria; Zochowski, Michal

    2016-01-01

    The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics

  7. A GUIDE TO PREPARING INTRINSICALLY PROGRAMED INSTRUCTIONAL MATERIAL.

    ERIC Educational Resources Information Center

    CROWDER, N.; WALTHER, R.E.

    TO AID THOSE RESPONSIBLE FOR THE PREPARATION OF INTRINSICALLY PROGRAMED INSTRUCTIONAL MATERIALS, THE PROCEDURES AND TECHNIQUES DEVELOPED BY THE EDUCATIONAL SCIENCE DIVISION OF U.S. INDUSTRIES, INC., HAVE HERE BEEN ORGANIZED INTO A PRACTICAL WORKING GUIDE. THE ORGANIZATION OF THIS REPORT CLOSELY FOLLOWS THE SEQUENCE OF STEPS REQUIRED TO PRODUCE AN…

  8. Intrinsic bioremediation modeling to support Superfund site closure

    SciTech Connect

    Bedard, A.H.; Day, M.J.; Johnson, R.H.; Ritter, K.J.; Stancel, S.G.; Thomson, J.A.M.

    1997-09-01

    Closure of the groundwater component of a major Superfund site has been accomplished by a combination of source control, engineered in-situ bioremediation, and subsequent long-term intrinsic bioremediation. Engineered bioremediation outside the source control area resulted in very significant contaminant mass removal. This allowed intrinsic bioremediation to be considered as a passive remedial management method of achieving cleanup objectives after active remediation needed. Modeling demonstrated that intrinsic bioremediation would achieve cleanup objectives (for this site, Federal drinking water standards) within ten years of shutdown of the active bioremediation system. Modeling showed that residual electron acceptors and nutrients distributed in the aquifer during engineered bioremediation greatly enhance the intrinsic bioremediation process. The results of the modeling effort led to the active system being shut down a year ahead of schedule, allowing the project to move into a low-maintenance intrinsic bioremediation and long-term monitoring phase. The modeling demonstration coupled Visual MODFLOW{copyright} and BioTrans{copyright} to simulate groundwater flow, solute transport, and oxygen-limited, multi-species biodegradation. Regional flow evaluation, detailed model sensitivity analyses, and subarea modeling were employed to provide support to model predictions. Predictions will be tested by subsequent progress and compliance monitoring. Site closure began in early 1996.

  9. Intrinsic motivation and amotivation in first episode and prolonged psychosis.

    PubMed

    Luther, Lauren; Lysaker, Paul H; Firmin, Ruth L; Breier, Alan; Vohs, Jenifer L

    2015-12-01

    The deleterious functional implications of motivation deficits in psychosis have generated interest in examining dimensions of the construct. However, there remains a paucity of data regarding whether dimensions of motivation differ over the course of psychosis. Therefore, this study examined two motivation dimensions, trait-like intrinsic motivation, and the negative symptom of amotivation, and tested the impact of illness phase on the 1) levels of these dimensions and 2) relationship between these dimensions. Participants with first episode psychosis (FEP; n=40) and prolonged psychosis (n=66) completed clinician-rated measures of intrinsic motivation and amotivation. Analyses revealed that when controlling for group differences in gender and education, the FEP group had significantly more intrinsic motivation and lower amotivation than the prolonged psychosis group. Moreover, intrinsic motivation was negatively correlated with amotivation in both FEP and prolonged psychosis, but the magnitude of the relationship did not statistically differ between groups. These findings suggest that motivation deficits are more severe later in the course of psychosis and that low intrinsic motivation may be partially independent of amotivation in both first episode and prolonged psychosis. Clinically, these results highlight the importance of targeting motivation in early intervention services.

  10. Gas-phase chemistry of diphosphate anions as a tool to investigate the intrinsic requirements of phosphate ester enzymatic reactions: the [M1M2HP2O7]- ions.

    PubMed

    Pepi, Federico; Barone, Vincenzo; Cimino, Paola; Ricci, Andreina

    2007-01-01

    Experimental studies on gaseous inorganic phosphate ions are practically nonexistent, yet they can prove helpful for a better understanding of the mechanisms of phosphate ester enzymatic processes. The present contribution extends our previous investigations on the gas-phase ion chemistry of diphosphate species to the [M(1)M(2)HP(2)O(7)](-) ions where M(1) and M(2) are the same or different and correspond to the Li, Na, K, Cs, and Rb cations. The diphosphate ions are formed by electrospray ionization of 10(-4) M solutions of Na(5)P(3)O(10) in CH(3)CN/H(2)O (1/1) and MOH bases or M salts as a source of M(+) cations. The joint application of mass spectrometric techniques and quantum-mechanical calculations makes it possible to characterize the gaseous [M(1)M(2)HP(2)O(7)](-) ions as a mixed ionic population formed by two isomeric species: linear diphosphate anion coordinated to two M(+) cations (group I) and [PO(3)M(1)M(2)HPO(4)](-) clusters (group II). The relative gas-phase stabilities and activation barriers for the isomerization I-->II, which depend on the nature of the M(+) cations, highlight the electronic susceptibility of P-O-P bond breaking in the active site of enzymes. The previously unexplored gas-phase reactivity of [M(1)M(2)HP(2)O(7)](-) ions towards alcohols of different acidity was investigated by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The reaction proceeds by addition of the alcohol molecule followed by elimination of a water molecule.

  11. Nuclear Filtering of Intrinsic Charm

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-11-12

    Nuclei are transparent for a heavy intrinsic charm (IC) component of the beam hadrons, what leads to an enhanced nuclear dependence of open charm production at large Feynman x{sub F}. Indeed, such an effect is supported by data from the SELEX experiment published recently [1]. Our calculations reproduce well the data, providing strong support for the presence of IC in hadrons in amount less than 1%. Moreover, we performed an analysis of nuclear effects in J/{Psi} production and found at large x{sub F} a similar, albeit weaker effect, which does not contradict data.

  12. Adolescents' cortisol responses to awakening and social stress; effects of gender, menstrual phase and oral contraceptives. The TRAILS study.

    PubMed

    Bouma, Esther M C; Riese, Harriëtte; Ormel, Johan; Verhulst, Frank C; Oldehinkel, Albertine J

    2009-07-01

    Studies on the influence of sex hormones on cortisol responses to awakening and stress have mainly been conducted in adults, while reports on adolescents are scarce. We studied the effects of gender, menstrual cycle phase and oral contraceptive (OC) use on cortisol responses in a large sample of adolescents. Data come from TRAILS (TRacking Adolescents' Individual Lives Survey), a prospective population study of Dutch adolescents. This study uses data of 644 adolescents (age 15-17 years, 54.7% boys) who participated in a laboratory session including a performance-related social stress task (public speaking and mental arithmetic). Free cortisol levels were assessed by multiple saliva samples, both after awakening and during the laboratory session. No significant effects of gender and menstrual phase on cortisol responses to awakening were found, while girls using OC displayed a slightly blunted response (F(1, 244)=5.30, p=.02). Cortisol responses to social stress were different for boys and free-cycling girls (F(3, 494)=9.73, p<.001), and OC users and free-cycling girls (F(3, 279)=15.12, p<.001). Unexpectedly, OC users showed no response at all but displayed linearly decreasing levels F(1, 279)=19.03, p<.001) of cortisol during the social stress test. We found no effect of menstrual cycle phase on cortisol responses to social stress (F(3, 157)=0.58, p=.55). The absence of a gender difference in the adolescents' cortisol awakening response found in this study is consistent with previous reports. Our results further suggest that adolescent OC users display slightly blunted cortisol responses after awakening, and that gender differences in cortisol responses to social stress during adolescence are comparable to those described for adult populations, that is, stronger responses in men than in women. Whereas previous work in adults suggested blunted stress responses in OC users compared to men and free-cycling women, adolescent OC users showed no cortisol response

  13. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study

    PubMed Central

    Harrison, Neil R.; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.’s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation. PMID:26858621

  14. Understanding Plant Community Responses to Combinations of Biotic and Abiotic Factors in Different Phases of the Plant Growth Cycle

    PubMed Central

    Wood, Kevin A.; Stillman, Richard A.; Clarke, Ralph T.; Daunt, Francis; O’Hare, Matthew T.

    2012-01-01

    Understanding plant community responses to combinations of biotic and abiotic factors is critical for predicting ecosystem response to environmental change. However, studies of plant community regulation have seldom considered how responses to such factors vary with the different phases of the plant growth cycle. To address this deficit we studied an aquatic plant community in an ecosystem subject to gradients in mute swan (Cygnus olor) herbivory, riparian shading, water temperature and distance downstream of the river source. We quantified abundance, species richness, evenness, flowering and dominance in relation to biotic and abiotic factors during the growth-, peak-, and recession-phases of the plant growth cycle. We show that the relative importance of biotic and abiotic factors varied between plant community properties and between different phases of the plant growth cycle. Herbivory became more important during the later phases of peak abundance and recession due to an influx of swans from adjacent pasture fields. Shading by riparian vegetation also had a greater depressing effect on biomass in later seasons, probably due to increased leaf abundance reducing light intensity reaching the aquatic plants. The effect of temperature on community diversity varied between upstream and downstream sites by altering the relative competitiveness of species at these sites. These results highlight the importance of seasonal patterns in the regulation of plant community structure and function by multiple factors. PMID:23166777

  15. Understanding plant community responses to combinations of biotic and abiotic factors in different phases of the plant growth cycle.

    PubMed

    Wood, Kevin A; Stillman, Richard A; Clarke, Ralph T; Daunt, Francis; O'Hare, Matthew T

    2012-01-01

    Understanding plant community responses to combinations of biotic and abiotic factors is critical for predicting ecosystem response to environmental change. However, studies of plant community regulation have seldom considered how responses to such factors vary with the different phases of the plant growth cycle. To address this deficit we studied an aquatic plant community in an ecosystem subject to gradients in mute swan (Cygnus olor) herbivory, riparian shading, water temperature and distance downstream of the river source. We quantified abundance, species richness, evenness, flowering and dominance in relation to biotic and abiotic factors during the growth-, peak-, and recession-phases of the plant growth cycle. We show that the relative importance of biotic and abiotic factors varied between plant community properties and between different phases of the plant growth cycle. Herbivory became more important during the later phases of peak abundance and recession due to an influx of swans from adjacent pasture fields. Shading by riparian vegetation also had a greater depressing effect on biomass in later seasons, probably due to increased leaf abundance reducing light intensity reaching the aquatic plants. The effect of temperature on community diversity varied between upstream and downstream sites by altering the relative competitiveness of species at these sites. These results highlight the importance of seasonal patterns in the regulation of plant community structure and function by multiple factors.

  16. Mutations in Replicative Stress Response Pathways Are Associated with S Phase-specific Defects in Nucleotide Excision Repair*

    PubMed Central

    Bélanger, François; Angers, Jean-Philippe; Fortier, Émile; Hammond-Martel, Ian; Costantino, Santiago; Drobetsky, Elliot; Wurtele, Hugo

    2016-01-01

    Nucleotide excision repair (NER) is a highly conserved pathway that removes helix-distorting DNA lesions induced by a plethora of mutagens, including UV light. Our laboratory previously demonstrated that human cells deficient in either ATM and Rad3-related (ATR) kinase or translesion DNA polymerase η (i.e. key proteins that promote the completion of DNA replication in response to UV-induced replicative stress) are characterized by profound inhibition of NER exclusively during S phase. Toward elucidating the mechanistic basis of this phenomenon, we developed a novel assay to quantify NER kinetics as a function of cell cycle in the model organism Saccharomyces cerevisiae. Using this assay, we demonstrate that in yeast, deficiency of the ATR homologue Mec1 or of any among several other proteins involved in the cellular response to replicative stress significantly abrogates NER uniquely during S phase. Moreover, initiation of DNA replication is required for manifestation of this defect, and S phase NER proficiency is correlated with the capacity of individual mutants to respond to replicative stress. Importantly, we demonstrate that partial depletion of Rfa1 recapitulates defective S phase-specific NER in wild type yeast; moreover, ectopic RPA1–3 overexpression rescues such deficiency in either ATR- or polymerase η-deficient human cells. Our results strongly suggest that reduction of NER capacity during periods of enhanced replicative stress, ostensibly caused by inordinate sequestration of RPA at stalled DNA replication forks, represents a conserved feature of the multifaceted eukaryotic DNA damage response. PMID:26578521

  17. TIF1 Activates the Intra-S-Phase Checkpoint Response in the Diploid Micronucleus and Amitotic Polyploid Macronucleus of Tetrahymena

    PubMed Central

    Yakisich, J. Sebastian; Sandoval, Pamela Y.; Morrison, Tara L.

    2006-01-01

    The ribosomal DNA origin binding protein Tif1p regulates the timing of rDNA replication and is required globally for proper S-phase progression and division of the Tetrahymena thermophila macronucleus. Here, we show that Tif1p safeguards chromosomes from DNA damage in the mitotic micronucleus and amitotic macronucleus. TIF1p localization is dynamically regulated as it moves into the micro- and macronucleus during the respective S phases. TIF1 disruption mutants are hypersensitive to hydroxyurea and methylmethanesulfonate, inducers of DNA damage and intra-S-phase checkpoint arrest in all examined eukaryotes. TIF1 mutants incur double-strand breaks in the absence of exogenous genotoxic stress, destabilizing all five micronuclear chromosomes. Wild-type Tetrahymena elicits an intra-S-phase checkpoint response that is induced by hydroxyurea and suppressed by caffeine, an inhibitor of the apical checkpoint kinase ATR/MEC1. In contrast, hydroxyurea-challenged TIF1 mutants fail to arrest in S phase or exhibit caffeine-sensitive Rad51 overexpression, indicating the involvement of TIF1 in checkpoint activation. Although aberrant micro- and macronuclear division occurs in TIF1 mutants and caffeine-treated wild-type cells, TIF1p bears no similarity to ATR or its substrates. We propose that TIF1 and ATR function in the same epistatic pathway to regulate checkpoint responses in the diploid mitotic micronucleus and polyploid amitotic macronucleus. PMID:17005912

  18. Stimuli-sensitive intrinsically disordered protein brushes

    NASA Astrophysics Data System (ADS)

    Srinivasan, Nithya; Bhagawati, Maniraj; Ananthanarayanan, Badriprasad; Kumar, Sanjay

    2014-10-01

    Grafting polymers onto surfaces at high density to yield polymer brush coatings is a widely employed strategy to reduce biofouling and interfacial friction. These brushes almost universally feature synthetic polymers, which are often heterogeneous and do not readily allow incorporation of chemical functionalities at precise sites along the constituent chains. To complement these synthetic systems, we introduce a biomimetic, recombinant intrinsically disordered protein that can assemble into an environment-sensitive brush. This macromolecule adopts an extended conformation and can be grafted to solid supports to form oriented protein brushes that swell and collapse dramatically with changes in solution pH and ionic strength. We illustrate the value of sequence specificity by using proteases with mutually orthogonal recognition sites to modulate brush height in situ to predictable values. This study demonstrates that stimuli-responsive brushes can be fabricated from proteins and introduces them as a new class of smart biomaterial building blocks.

  19. Multipulse phase resetting curves

    NASA Astrophysics Data System (ADS)

    Krishnan, Giri P.; Bazhenov, Maxim; Pikovsky, Arkady

    2013-10-01

    In this paper, we introduce and study systematically, in terms of phase response curves, the effect of dual-pulse excitation on the dynamics of an autonomous oscillator. Specifically, we test the deviations from linear summation of phase advances resulting from two small perturbations. We analytically derive a correction term, which generally appears for oscillators whose intrinsic dimensionality is >1. The nonlinear correction term is found to be proportional to the square of the perturbation. We demonstrate this effect in the Stuart-Landau model and in various higher dimensional neuronal models. This deviation from the superposition principle needs to be taken into account in studies of networks of pulse-coupled oscillators. Further, this deviation could be used in the verification of oscillator models via a dual-pulse excitation.

  20. Predictors of Longitudinal Outcomes after Unstable Response to Acute Phase Cognitive Therapy for Major Depressive Disorder

    PubMed Central

    Vittengl, Jeffrey R.; Clark, Lee Anna; Thase, Michael E.; Jarrett, Robin B.

    2015-01-01

    After patients with major depressive disorder (MDD) respond to acute-phase cognitive therapy (CT), continuation-phase treatments may be applied to improve long-term outcomes. We clarified which CT responders experience remission, recovery, relapse, and recurrence by testing baseline demographic, clinical, and personality variables. The sample of CT responders at higher risk of relapse (N = 241) was randomized to 8 months of continuation-phase CT (C-CT), double-blinded fluoxetine or pill placebo, and followed 24 months (Jarrett & Thase, 2010). Patients with lower positive emotionality and behavioral activation at the end of acute-phase CT showed increased risk for relapse/recurrence of MDD. In addition, patients with lower positive emotionality and behavioral activation, as well as higher residual depression (including emotional, cognitive, and social facets), showed decreased probability of remission (≥6 continuous weeks of minimal or absent symptoms) after acute-phase CT. Finally, patients with greater residual depression, as well as younger age and earlier MDD onset, showed decreased probability of recovery (≥35 continuous weeks of minimal or absent symptoms) after acute-phase CT. Moderator analyses did not reveal differential prediction across the continuation phase treatment arms. These results may help clinicians gauge the prognoses and need for continuation treatment among MDD patients who respond to acute-phase CT. PMID:25985046

  1. Intrinsic defect formation in peptide self-assembly

    NASA Astrophysics Data System (ADS)

    Deng, Li; Zhao, Yurong; Xu, Hai; Wang, Yanting

    2015-07-01

    In contrast to extensively studied defects in traditional materials, we report here a systematic investigation of the formation mechanism of intrinsic defects in self-assembled peptide nanostructures. The Monte Carlo simulations with our simplified dynamic hierarchical model revealed that the symmetry breaking of layer bending mode at the two ends during morphological transformation is responsible for intrinsic defect formation, whose microscopic origin is the mismatch between layer stacking along the side-chain direction and layer growth along the hydrogen bond direction. Moreover, defect formation does not affect the chirality of the self-assembled structure, which is determined by the initial steps of the peptide self-assembly process.

  2. Intrinsic motivation and attentional capture from gamelike features in a visual search task.

    PubMed

    Miranda, Andrew T; Palmer, Evan M

    2014-03-01

    In psychology research studies, the goals of the experimenter and the goals of the participants often do not align. Researchers are interested in having participants who take the experimental task seriously, whereas participants are interested in earning their incentive (e.g., money or course credit) as quickly as possible. Creating experimental methods that are pleasant for participants and that reward them for effortful and accurate data generation, while not compromising the scientific integrity of the experiment, would benefit both experimenters and participants alike. Here, we explored a gamelike system of points and sound effects that rewarded participants for fast and accurate responses. We measured participant engagement at both cognitive and perceptual levels and found that the point system (which invoked subtle, anonymous social competition between participants) led to positive intrinsic motivation, while the sound effects (which were pleasant and arousing) led to attentional capture for rewarded colors. In a visual search task, points were awarded after each trial for fast and accurate responses, accompanied by short, pleasant sound effects. We adapted a paradigm from Anderson, Laurent, and Yantis (Proceedings of the National Academy of Sciences 108(25):10367-10371, 2011b), in which participants completed a training phase during which red and green targets were probabilistically associated with reward (a point bonus multiplier). During a test phase, no points or sounds were delivered, color was irrelevant to the task, and previously rewarded targets were sometimes presented as distractors. Significantly longer response times on trials in which previously rewarded colors were present demonstrated attentional capture, and positive responses to a five-question intrinsic-motivation scale demonstrated participant engagement.

  3. Intrinsic polarization switching mechanisms in BiFeO3

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Garcia, Vincent; Fusil, Stéphane; Bibes, Manuel; Bellaiche, L.

    2017-03-01

    A first-principles-based effective Hamiltonian technique is used to investigate the polarization switching mechanisms in two polymorphic phases of BiFeO3 having no defects. The switching mechanism is homogeneous for any switching field in the rhombohedral phase, while in the supertetragonal phase it changes from the classical nucleation and domain-wall motion to nucleation-limited switching with virtually no propagation, and then to homogeneous switching with increasing electric field. The first two inhomogeneous switching mechanisms of the supertetragonal phase of BiFeO3 are thus intrinsic in nature, and can be well described by the classical and nucleation-limited switching models, respectively. The reason behind their absence in the rhombohedral phase is also indicated. Moreover, the field-induced changes of switching mechanism within the supertetragonal phase are further elucidated from an energetic point of view.

  4. Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes.

    PubMed

    Kelly, Jesse C; Degrood, Nicholas L; Roberts, Mark E

    2015-03-28

    For the purpose of realizing inherently safe high-power Li-ion batteries, a model Li4Ti5O12/LiFePO4 rechargeable battery is investigated using the thermally responsive polymer, poly(benzyl methacrylate), in an ionic liquid. At high temperature, battery operation is inhibited as a result of increased internal resistance caused by polymer and ionic liquid phase separation. Li-ion concentration is shown to affect the phase transition temperature and the extent to which batteries are deactivated.

  5. Intrinsically disordered proteins and intrinsically disordered protein regions.

    PubMed

    Oldfield, Christopher J; Dunker, A Keith

    2014-01-01

    Intrinsically disordered proteins (IDPs) and IDP regions fail to form a stable structure, yet they exhibit biological activities. Their mobile flexibility and structural instability are encoded by their amino acid sequences. They recognize proteins, nucleic acids, and other types of partners; they accelerate interactions and chemical reactions between bound partners; and they help accommodate posttranslational modifications, alternative splicing, protein fusions, and insertions or deletions. Overall, IDP-associated biological activities complement those of structured proteins. Recently, there has been an explosion of studies on IDP regions and their functions, yet the discovery and investigation of these proteins have a long, mostly ignored history. Along with recent discoveries, we present several early examples and the mechanisms by which IDPs contribute to function, which we hope will encourage comprehensive discussion of IDPs and IDP regions in biochemistry textbooks. Finally, we propose future directions for IDP research.

  6. Metabolizable protein supply modulated the acute-phase response following vaccination of beef steers.

    PubMed

    Moriel, P; Arthington, J D

    2013-12-01

    Our objective was to evaluate the effects of MP supply, through RUP supplementation, on the acute-phase response of beef steers following vaccination. On d 0, Brangus-crossbred steers (n = 24; 173 ± 31 kg; 175 ± 16 d of age) were randomly assigned to receive 1 of 3 isocaloric diets formulated to provide 85, 100, and 115% of the daily MP requirements of a beef steer gaining 0.66 kg of BW daily. Diets were limit-fed at 1.8% of BW (DM basis) and individually provided to steers once daily (0800 h) from d 0 to 29. Steers were weighed on d 0 and 29, following a 12-h period of feed and water withdrawal. On d 7, steers were vaccinated against Mannheimia haemolytica (OneShot, Pfizer), and blood samples were collected on d 0, 7, 8, 10, 14, 21, and 30. Plasma metabolites were analyzed as repeated measures using the MIXED procedure of SAS. Final BW and ADG were similar (P ≥ 0.50) among treatments (mean = 184 ± 9 kg and 0.5 ± 0.08 kg/d, respectively). Effects of time were detected (P < 0.01) for plasma concentrations of all acute-phase proteins, which peaked between d 7 to 14, returning to baseline concentrations by d 29. Treatment effects were not detected (P ≥ 0.19) for plasma concentrations of acid-soluble protein, albumin, fibrinogen, IGF-1 and serum amyloid-A. Plasma concentrations of total protein (TP) and plasma urea nitrogen (PUN) increased (P ≤ 0.05) with increasing supply of MP (87.1, 89.6, and 90.1 ± 1.09 mg TP/mL and 6.1, 8.3, and 10.3 ± 0.41 mg PUN/dL for 85, 100, and 115% MP steers, respectively). From d 10 to 29, steers provided 115% MP had less (P < 0.001) plasma concentrations of ceruloplasmin than steers fed 85 and 100% MP, which had similar plasma ceruloplasmin concentrations. On d 14, plasma concentrations of haptoglobin were greatest (P ≤ 0.06) for steers fed 115% MP, intermediate for 100% MP, and least for 85% MP (0.98, 0.71 and 0.44 ± 0.099 mg/mL, respectively). On d 10, plasma concentrations of creatinine were greater (P = 0.01) for steers

  7. Intrinsic relationship between electronic structures and phase transition of SrBi{sub 2−x}Nd{sub x}Nb{sub 2}O{sub 9} ceramics from ultraviolet ellipsometry at elevated temperatures

    SciTech Connect

    Duan, Z. H.; Jiang, K.; Xu, L. P.; Li, Y. W.; Hu, Z. G. Chu, J. H.

    2014-02-07

    The ferroelectric orthorhombic to paraelectric tetragonal phase transition of SrBi{sub 2−x}Nd{sub x}Nb{sub 2}O{sub 9} (x = 0, 0.05, 0.1, and 0.2) layer-structured ceramics has been investigated by temperature-dependent spectroscopic ellipsometry. Based on the analysis of dielectric functions from 0 to 500 °C with double Tauc-Lorentz dispersion model, the interband transitions located at ultraviolet region have shown an abrupt variation near the Curie temperature. The changes of dielectric functions are mainly due to the thermal-optical and/or photoelastic effect. Moreover, the characteristic alteration in interband transitions can be ascribed to distortion of NbO{sub 6} octahedron and variation of hybridization between Bi 6s and O 2p states during the structure transformation.

  8. Characterization of the cellular responses of the pulmonary and hepatic phases of primary murine Schistosoma mansoni infections.

    PubMed

    Khoury, P B; Phillips, S M

    1981-03-01

    Lymphocytes from the mediastinal lymph nodes (draining the pulmonary phase of the infection), the hepatic lymph nodes (draining the hepatic phase of the infection), and the spleen of C57BL/6 mice exposed to Schistosoma mansoni were characterized relative to their capacity to interact with a soluble immunogen prepared from the adult worm (SWI). B or T RFC (rosette forming cells), RAFC (rosette-antibody forming cells), and PFC (plaque forming cells) were assayed. The RFC responses of the mediastinal and hepatic nodes were predominantly B cell in character and were maximal at that period which corresponded to the anatomic exposure which would be predicted from the migratory pattern of the parasite. High levels of T RFC and predominantly IgM B-responsive cells were generated in the mediastinal nodes during the presence of the schistosomulum in the lung parenchyma. Immunoglobulin-responsive (IgM greater than IgG greater than IgE) B cells were initially detected in the hepatic nodes during the lung-to-liver migration of the schistosomulum and its maturation to the adult form. However, elevated levels of T RFC and IgG greater than IgM greater than or equal to IgE-responsive B cells were maximally present in the hepatic nodes during optimal egg production and egg-induced granuloma formation in the liver. In contrast to the responses of the lymph nodes, the splenic responses were predominantly T cell in nature for the first 8 weeks of infection. Splenic lymphocytes expressed a biphasic response, the first represented by T RFC and IgM-responsive B cells and coincided with the migration of the schistosomulum out of the lung and the second was also represented by T RFC but with predominance of IgG-responsive B cells and correlated with the production of eggs and maximal granuloma formation at the hepatic level.

  9. Systemic acute phase proteins response in calves experimentally infected with Eimeria zuernii.

    PubMed

    Lassen, Brian; Bangoura, Berit; Lepik, Triin; Orro, Toomas

    2015-09-15

    Acute phase proteins (APPs) have been demonstrated to be useful in evaluating general health stress and diseases in cattle. Serum amyloid A (SAA) and haptoglobin (Hp) are APPs that are produced during inflammation, and likely play a role in host immunological defence against Eimeria infection and the associated intestinal tissue damage. We investigated the involvement of SAA and HP in an experimental study, including three groups of calves: a control group (group 0, n=11), and two groups infected with either 150,000 or 250,000 Eimeria zuernii oocysts (group 1 (n=11) and group 2 (n=12), respectively). The calves were monitored for 28 days and data was collected on oocyst excretion, faecal score, animal weight, and SAA and Hp serum concentrations. Generalized linear mixed models showed that the clinical symptoms, indicated by an increase in the number of oocysts in the faeces and severe diarrhoea, manifested at patency for group 1 and 2. Serum Hp and SAA levels also increased during this period. Hp appeared to be a more sensitive marker than SAA, and differences between groups 1 and 2 were observed only for Hp. Linear regression models showed a negative association between weight gain and Hp concentrations, calculated as the area under the curve (AUC) during the overall experimental period and the patency period. A similar result was seen for SAA only during the patency period. This result supports the assumption that reduced weight gain due to E. zuernii infection is an immunologically driven process that involves an increase in APPs. A random intercept regression model of oocyst shedding groups showed that calves shedding 1-500 oocysts had reduced concentrations of Hp, indicating that a different immunological reaction occurs during mild shedding of E. zuernii oocysts than during more intensive shedding. A similar model was used to examine associations between faecal scores and Hp concentrations for each group. Group 2 calves with haemorrhagic diarrhoea displayed

  10. Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity.

    PubMed

    Spitzer, M W; Semple, M N

    1998-12-01

    Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80: 3062-3076, 1998. Previous studies demonstrated that tuning of inferior colliculus (IC) neurons to interaural phase disparity (IPD) is often profoundly influenced by temporal variation of IPD, which simulates the binaural cue produced by a moving sound source. To determine whether sensitivity to simulated motion arises in IC or at an earlier stage of binaural processing we compared responses in IC with those of two major IPD-sensitive neuronal classes in the superior olivary complex (SOC), neurons whose discharges were phase locked (PL) to tonal stimuli and those that were nonphase locked (NPL). Time-varying IPD stimuli consisted of binaural beats, generated by presenting tones of slightly different frequencies to the two ears, and interaural phase modulation (IPM), generated by presenting a pure tone to one ear and a phase modulated tone to the other. IC neurons and NPL-SOC neurons were more sharply tuned to time-varying than to static IPD, whereas PL-SOC neurons were essentially uninfluenced by the mode of stimulus presentation. Preferred IPD was generally similar in responses to static and time-varying IPD for all unit populations. A few IC neurons were highly influenced by the direction and rate of simulated motion, but the major effect for most IC neurons and all SOC neurons was a linear shift of preferred IPD at high rates-attributable to response latency. Most IC and NPL-SOC neurons were strongly influenced by IPM stimuli simulating motion through restricted ranges of azimuth; simulated motion through partially overlapping azimuthal ranges elicited discharge profiles that were highly discontiguous, indicating that the response associated with a particular IPD is dependent on preceding portions of the stimulus. In contrast, PL-SOC responses tracked instantaneous IPD throughout the trajectory of simulated

  11. Phase-shift, stimuli-responsive drug carriers for targeted delivery

    PubMed Central

    O’Neill, Brian E; Rapoport, Natalya

    2011-01-01

    The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed. PMID:22059114

  12. Intrinsic optimization using stochastic nanomagnets

    NASA Astrophysics Data System (ADS)

    Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo

    2017-03-01

    This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets.

  13. Intrinsic optimization using stochastic nanomagnets

    PubMed Central

    Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo

    2017-01-01

    This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets. PMID:28295053

  14. Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits

    PubMed Central

    Boyd, Windy A.; Smith, Marjolein V.; Co, Caroll A.; Pirone, Jason R.; Rice, Julie R.; Shockley, Keith R.; Freedman, Jonathan H.

    2015-01-01

    s potential toxicity to humans. Citation: Boyd WA, Smith MV, Co CA, Pirone JR, Rice JR, Shockley KR, Freedman JH. 2016. Developmental effects of the ToxCast™ Phase I and II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ Health Perspect 124:586–593; http://dx.doi.org/10.1289/ehp.1409645 PMID:26496690

  15. Antioxidant defence system during exponential and stationary growth phases of Phycomyces blakesleeanus: response to oxidative stress by hydrogen peroxide.

    PubMed

    de Castro, Cristina; del Valle, Pilar; Rúa, Javier; García-Armesto, María Rosario; Gutiérrez-Larraínzar, Marta; Busto, Félix; de Arriaga, Dolores

    2013-04-01

    An analysis of the components of the antioxidant defence system in exponential and stationary growth phases of filamentous fungus Phycomyces blakesleeanus and the response to the oxidative stress hydrogen peroxide were performed. There is a strong positive correlation between mycelial antioxidant capacity and the contents of gallic acid, d-erythroascorbate (d-EAA) or d-erythroascorbate monoglucoside (d-EAAG). These secondary metabolites are specifically synthesized by this fungus and reach maximal values in the stationary growth phase, suggesting that they can play some role in the antioxidant defence system of this fungus. There is a differential expression of the two more notable antioxidant activities, catalase (CAT) and superoxide dismutase (SOD), depending of the growth stage of P. blakesleeanus, CAT being expressed in the exponential and SOD in the stationary phase. Phycomyces blakesleeanus showed a high resistance to the oxidative stress caused by H2O2 (50 and 200 mM) which was higher in exponential phase. This higher resistance can be explained by the presence of CAT, glutathione peroxidase (GPx), and the probable contribution of glutathione-S-transferase (GST) and high levels of reduced form of glutathione (GSH). The transition to stationary phase was accompanied with a higher physiological oxidative damage illustrated by the higher protein carbonylation. In this growth stage the resistance of the fungus to the oxidative stress caused by H2O2 could be explained by the presence of SOD, GPx, and the probable contribution of GST as well as of secondary metabolites, mainly d-EAA and d-EAAG. These results highlight a specific response to oxidative stress by H2O2 depending on the growth phase of P. blakesleeanus.

  16. Induction of several acute-phase protein genes by heavy metals: A new class of metal-responsive genes

    SciTech Connect

    Yiangou, Minas; Ge, Xin; Carter, K.C.; Papaconstantinou, J. Shriners Burns Institute, Galveston, TX )

    1991-04-16

    Acute-phase reactants, metallothioneins, and heat-shock proteins are the products of three families of genes that respond to glucocorticoids and cytokines. Metallothioneins and heat-shock proteins, however, are also stimulated by heavy metals whereas very little is known about the effect of heavy metals on acute-phase-reactant genes. The authors have studied the effect of heavy metals (Hg, Cd, Pb, Cu, Ni, and Zn) and Mg on the acute-phase reactants {alpha}{sub 1}-acid glycoprotein, C-reactive protein, {alpha}{sub 1}-antitrypsin and {alpha}{sub 1}-antichymotrypsin. {alpha}{sub 1}-Acid glycoprotein and C-reactive protein mRNA levels were increased severalfold in livers of heavy-metal-treated Balb/c mice. The strongest induction was mediated by Hg, followed in order of response by Cd > Pb > Cu > Ni > Zn > Mg. None of the metals affected the mRNA levels of albumin, {alpha}{sub 1}-antitrypsin, and {alpha}{sub 1}-antichymotrypsin. Furthermore, failure to repress albumin, a negative acute-phase reactant, indicated that the induction of these genes was not due to a metal-mediated inflammatory response. The metals also induced {alpha}{sub 1}-acid glycoprotein and C-reactive protein in adrenalectomized animals, indicating that induction by the heavy metals is not mediated by the glucocorticoid induction pathway. Sequence analysis has revealed a region of homology to metal-responsive elements in the {alpha}{sub 1}-acid glycoprotein and C-reactive protein promoters. The studies indicate that the induction of {alpha}{sub 1}-acid glycoprotein and C-reactive protein by heavy metals may be regulated by these metal-responsive elements at the level of transcription.

  17. An ex vivo approach to the differential parenchymal responses induced by cigarette whole smoke and its vapor phase.

    PubMed

    Lin, James Chi-Jen; Roy, Jean-Philippe; Verreault, Jules; Talbot, Sébastien; Côté, France; Couture, Réjean; Morin, André

    2012-03-11

    Using a rat lung slice model, this study compared the stress responses induced by cigarette whole smoke (WS) to that induced by the vapor phase (VP) of the smoke. Following a 3-day exposure, lung slices exposed to 4, 10 and 20% WS retained 85, 42 and 16% relative survival respectively in comparison to the air-exposed ones. Consistently, histological observations revealed concentration-related alveolar damages in the lung slices. Expression of 5 stress-response genes was examined following a single 30 min exposure to 4% WS or VP. WS exposure resulted in 4, 11 and 50-fold induction of IL-1β, kinin type I receptor (B₁R) and CYP1A1 genes, respectively, while CYP1B1 and TNF-α genes expression was found only two times higher in comparison to VP group. Since cigarette WS consists of particulate and vapor phases, these results highlight the preferential or synergistic role of the particulate phase in the induction of IL-1β, B₁R and CYP1A1 genes and that VP did not have comparable effects on expression of these genes. However, both phases fairly contributed to the induction of CYP1B1 and TNF-α genes. VP was the fraction responsible for the toxic effect since WS did not produce further toxicity. The 4% whole smoke deposited about 7.1 μg/cm² of total particulate matter (TPM) to the exposure chamber which may account for observed differential stress responses in the lung slices.

  18. Profibus features intrinsic safety, interoperability

    SciTech Connect

    Bryant, M.

    1996-11-01

    The newest member of the Profibus (process fieldbus) family of interoperable field-bus protocols is {open_quotes}PA{close_quotes}, an intrinsically safe (IS) standard released more than a year ago. IS and non-IS plants using PA for process chemicals, energy production, and food manufacturing are coming online. PA was developed by vendor and user members of the Profibus standards community to meet the needs of customers in the process industries. PA complies with IEC 1158-2, which, among non-IS capabilities, specifies a low-speed, intrinsically safe fieldbus for automating explosive chemical manufacturing. PA thus provides all H1, or {open_quotes}hunk{close_quotes} 1, IS and non-IS services. Importantly, it also provides all H2, or {open_quotes}hunk{close_quotes} 2, services. As the newest segment of the site-proven system of fieldbus protocols, Profibus-PA defines by example the concepts of interoperability and interchangeability. It is a field instrument network that automatically interoperates with a large installed base of fieldbus nodes. As low-speed networks, PA and its competitor, Foundation fieldbus H1 comply with the same standard. They do the same job; auxiliary power to the application, with a data rate of 31.25 kbit/sec. Similarities include a function-block-based architecture and a device description language (DDL). They use the same physical layer for digital data transfer. A casual observer would find PA and H1 virtually the same. The key differences are in the protocol implementations. Although PA and H1 could be wired together, the messages delivered by one would make no sense to the other. At least not yet. PA protocols are capable of both IS and non-IS operations. This opens the door to a wide range of interoperable process-manufacturing requirements. 1 fig., 1 tab.

  19. Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, q 95 dependence, and toroidal torques

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Ryan, D.; Kirk, A.; Li, Li; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys. Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503). A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with {{q}95}˜ 3.8 (q 95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low n (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement. The core kink response is typically weak for the n  =  4 coil configuration at low q, and for the n  =  2 configuration but only at high q ({{q}95}˜ 5.5 ). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component. This leads to an optimal coil phasing of about 100 (-100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the

  20. Intrinsic Defect Ferromagnetism: The case of Hafnium Oxide

    NASA Astrophysics Data System (ADS)

    Das Pemmaraju, Chaitanya

    2005-03-01

    In view of the recent experimental reports of intrinsic ferromagnetism in Hafnium Oxide (HfO2) thin film systems ootnotetextM. Venkatesan, C. B. Fitzgerald, J. M. D. Coey Nature 430, 630 (2004) Brief Communications, we carried out first principles investigations to look for magnetic structure in HfO2 possibly brought about by the presence of small concentrations of intrinsic point defects. Ab initio electronic structure calculations using Density Functional Theory (DFT) show that isolated cation vacancy sites in HfO2 lead to the formation of high spin defect states which couple ferromagnetically to each other. Interestingly, these high spin states are observed in the low symmetry monoclinic and tetragonal phases while the highly symmetric cubic flourite phase exhibits a non-magnetic ground state. Detailed studies of the electronic structure of cation vacancies in the three crystalline phases of Hafnia show that symmetry leading to orbitally degenerate defect levels is not a pre-requsite for ferromagnetism and that the interplay between Kinetic, Coulomb and Exchange energy together with favourable coupling to the Crystalline environment can lead to high spin ferromagnetic ground states even in extreme low symmetry systems like monoclinic HfO2. These findings open up a much wider class of systems to the possibility of intrinsic defect ferromagnetism.

  1. Postpartum Circulating Markers of Inflammation and the Systemic Acute-Phase Response After Early-Onset Preeclampsia.

    PubMed

    van Rijn, Bas B; Bruinse, Hein W; Veerbeek, Jan H; Post Uiterweer, Emiel D; Koenen, Steven V; van der Bom, Johanna G; Rijkers, Ger T; Roest, Mark; Franx, Arie

    2016-02-01

    Preeclampsia is an inflammatory-mediated hypertensive disorder of pregnancy and seems to be an early indicator of increased cardiovascular risk, but mechanisms underlying this association are unclear. In this study, we identified levels of circulating inflammatory markers and dynamic changes in the systemic acute-phase response in 44 women with a history of severe early-onset preeclampsia, compared with 29 controls with only uneventful pregnancies at 1.5 to 3.5 years postpartum. Models used were in vivo seasonal influenza vaccination and in vitro whole-blood culture with T-cell stimulants and the toll-like receptor-4 ligand lipopolysaccharide. Outcome measures were C-reactive protein, interleukin-6 (IL-6), IL-18, fibrinogen, myeloperoxidase, and a panel of 13 cytokines representative of the innate and adaptive inflammatory response, in addition to established cardiovascular markers. The in vivo acute-phase response was higher for women with previous preeclampsia than that for controls without such a history, although only significant for C-reactive protein (P=0.04). Preeclampsia was associated with higher IL-1β (P<0.05) and IL-8 (P<0.01) responses to T-cell activation. Hierarchical clustering revealed 2 distinct inflammatory clusters associated with previous preeclampsia: an adaptive response cluster associated with increased C-reactive protein and IL-6 before and after vaccination, increased weight, and low high-density lipoprotein cholesterol; and a toll-like receptor-4 mediated the cluster associated with increased IL-18 before and after vaccination but not associated with other cardiovascular markers. Furthermore, we found interactions between previous preeclampsia, common TLR4 gene variants, and the IL-18 response to vaccination. In conclusion, preeclampsia is associated with alterations in the inflammatory response postpartum mostly independent of other established cardiovascular risk markers.

  2. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve.

    PubMed

    Reebs, S G; Mrosovsky, N

    1989-01-01

    The goal of this study was to provide an example of nonsocial and nonphotic entrainment in Syrian hamsters, together with a corresponding phase response curve (PRC). Fourteen male hamsters were given 2-hr bouts of induced activity (mostly wheel running) at 23.83-hr intervals in constant darkness (DD). The activity onsets of 10 hamsters entrained to this manipulation, with no anticipatory activity present. After entrainment, the rhythms resumed free-running from a time 0.66-3.91 hr after the onset of the last bout of induced activity. Postentrainment free-running periods were shorter than pre-entrainment values. The PRC for 2-hr pulses of induced activity in DD revealed phase advances induced in some animals between circadian time (CT) 4 and CT 11 (approximately the last half of the hamsters' rest period), and delays between CT 23 and CT 3 and between CT 17 and CT 20. The CTs for phase advances are compatible with the phase angle differences observed between rhythm and zeitgeber at the end of entrainment. Many features of the results (not all animals entraining, PRC characteristics, lack of observable anticipation to the daily stimuli, phase relationship between zeitgeber and activity rhythms) are similar to those from a previous study on social entrainment in this species (Mrosovsky, 1988). These similarities reinforce the idea that induced activity and social zeitgebers act on activity rhythms via a common mechanism.

  3. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    NASA Astrophysics Data System (ADS)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-08-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x)BaTiO3, which initially possess a pseudo-cubic symmetry, can be tuned to undergo phase transformations to combined lower symmetry phases, thus decreasing the anisotropy of the transformation strain. Further, modelling of transformation strains of individual grains shows that minimum grain-scale strain heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials.

  4. United States Department of Energy, Strategic Petroleum Reserve: Phase 2, CERCLA (Comprehensive Environmental Response Compensation Liability Act) report: Confirmation

    SciTech Connect

    Upton, C.

    1987-04-27

    This report was prepared on behalf of the Department of Energy (DOE) by Boeing Petroleum Services, Inc. the management, operations, and maintenance contractor to DOE for the Strategic Petroleum Reserve. DOE Order 5480.14 requires all DOE-owned sites to achieve compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In accordance with the understanding reached between BPS and DOE, and as set forth in the letter dated March 28, 1985, DOE is the owner and operator of the SPR. This report fulfills Phase II (Confirmation) of that order, which is to conduct sampling at the areas of potential hazardous waste identified in the Installation Assessment (Phase I) to confirm the presence or absence of hazardous waste. Recommendations to proceed to the Engineering Assessment (Phase III) are made for areas where the presence of hazardous waste is confirmed. In Phase I, recommendations for further sampling were made for the Bayou Choctaw, Big Hill, Bryan Mound, and Sulphur Mines sites. This sampling was carried out as Phase II. Findings from that sampling are presented in this report. Recommendations to proceed to Engineering Assessment were made for Bayous Choctaw cavern 10 and for the Big Hill wells. 11 figs., 39 tabs.

  5. Back to the Definitions Themselves: The Pragmatics of Intrinsic Justification.

    ERIC Educational Resources Information Center

    Bahm, Kenneth

    Such terms as "intrinsic justification,""intrinsicness," and "intrinsicality" are increasingly being heard in academic debate circles. Intrinsic justification consists of an argument which focuses evaluation of a resolutional term on the term's definitional contours. Essential qualities are defining characteristics…

  6. Diverse precerebellar neurons share similar intrinsic excitability

    PubMed Central

    Kolkman, Kristine E.; McElvain, Lauren E.; du Lac, Sascha

    2011-01-01

    The cerebellum dedicates a majority of the brain’s neurons to processing a wide range of sensory, motor, and cognitive signals. Stereotyped circuitry within the cerebellar cortex suggests that similar computations are performed throughout the cerebellum, but little is known about whether diverse precerebellar neurons are specialized for the nature of the information they convey. In vivo recordings indicate that firing responses to sensory or motor stimuli vary dramatically across different precerebellar nuclei, but whether this reflects diverse synaptic inputs or differentially tuned intrinsic excitability has not been determined. We targeted whole-cell patch clamp recordings to neurons in 8 precerebellar nuclei which were retrogradely labeled from different regions of the cerebellum in mice. Intrinsic physiology was compared across neurons in the medial vestibular, external cuneate, lateral reticular, prepositus hypoglossi, supragenual, Roller/intercalatus, reticularis tegmenti pontis (NRTP), and pontine nuclei. Within the firing domain, precerebellar neurons were remarkably similar. Firing faithfully followed temporally modulated inputs, could be sustained at high rates, and was a linear function of input current over a wide range of inputs and firing rates. Pharmacological analyses revealed common expression of Kv3 currents, which were essential for a wide linear firing range, and of SK currents, which were essential for a wide linear input range. In contrast, membrane properties below spike threshold varied considerably within and across precerebellar nuclei, as evidenced by variability in postinhibitory rebound firing. Our findings indicate that diverse precerebellar neurons perfom similar scaling computations on their inputs but may be differentially tuned to synaptic inhibition. PMID:22090493

  7. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response

    PubMed Central

    Rivory, L P; Slaviero, K A; Clarke, S J

    2002-01-01

    Inflammatory disease states (infection, arthritis) are associated with reduced drug oxidation by the cytochrome P450 3A system. Many chemotherapy agents are metabolised through this pathway, and disease may therefore influence inter-individual differences in drug pharmacokinetics. The purpose of this study was to assess cytochrome P450 3A function in patients with advanced cancer, and its relation to the acute-phase response. We evaluated hepatic cytochrome P450 3A function in 40 patients with advanced cancer using the erythromycin breath test. Both the traditional C20min measure and the recently proposed 1/TMAX values were estimated. The marker of acute-phase response, C-reactive protein and the pro-inflammatory cytokines IL-6, IL-1β, TNFα and IL-8 were measured in serum or plasma at baseline. Cancer patients with an acute phase response (C-reactive protein >10 mg l−1, n=26) had reduced metabolism as measured with the erythromycin breath test 1/TMAX (Kruskal–Wallis Anova, P=0.0062) as compared to controls (C-reactive protein ⩽10 mg l−1, n=14). Indeed, metabolism was significantly associated with C-reactive protein over the whole concentration range of this acute-phase marker (r=−0.64, Spearman Rank Correlation, P<0.00001). C-reactive protein serum levels were significantly correlated with those of IL-6 (Spearman coefficient=0.58, P<0.0003). The reduction in cytochrome P450 3A function with acute-phase reaction was independent of the tumour type and C-reactive protein elevation was associated with poor performance status. This indicates that the sub-group of cancer patients with significant acute-phase response have compromised drug metabolism, which may have implications for the safety of chemotherapy in this population. British Journal of Cancer (2002) 87, 277–280. doi:10.1038/sj.bjc.6600448 www.bjcancer.com © 2002 Cancer Research UK PMID:12177794

  8. Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice.

    PubMed

    Poulsen, Sarah S; Knudsen, Kristina B; Jackson, Petra; Weydahl, Ingrid E K; Saber, Anne T; Wallin, Håkan; Vogel, Ulla

    2017-01-01

    Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been linked to an increased risk of developing cardiovascular disease in addition to the well-documented physicochemical-dependent adverse lung effects. A proposed mechanism is through a strong and sustained pulmonary secretion of acute phase proteins to the blood. We identified physicochemical determinants of MWCNT-induced systemic acute phase response by analyzing effects of pulmonary exposure to 14 commercial, well-characterized MWCNTs in female C57BL/6J mice pulmonary exposed to 0, 6, 18 or 54 μg MWCNT/mouse. Plasma levels of acute phase response proteins serum amyloid A1/2 (SAA1/2) and SAA3 were determined on day 1, 28 or 92. Expression levels of hepatic Saa1 and pulmonary Saa3 mRNA levels were assessed to determine the origin of the acute phase response proteins. Pulmonary Saa3 mRNA expression levels were greater and lasted longer than hepatic Saa1 mRNA expression. Plasma SAA1/2 and SAA3 protein levels were related to time and physicochemical properties using adjusted, multiple regression analyses. SAA3 and SAA1/2 plasma protein levels were increased after exposure to almost all of the MWCNTs on day 1, whereas limited changes were observed on day 28 and 92. SAA1/2 and SAA3 protein levels did not correlate and only SAA3 protein levels correlated with neutrophil influx. The multiple regression analyses revealed a protective effect of MWCNT length on SAA1/2 protein level on day 1, such that a longer length resulted in lowered SAA1/2 plasma levels. Increased SAA3 protein levels were positively related to dose and content of Mn, Mg and Co on day 1, whereas oxidation and diameter of the MWCNTs were protective on day 28 and 92, respectively. The results of this study reveal very differently controlled pulmonary and hepatic acute phase responses after MWCNT exposure. As the responses were influenced by the physicochemical properties of the MWCNTs, this study provides the first step towards designing

  9. Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates.

    PubMed

    Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki

    2016-01-01

    Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks.

  10. Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf

    2014-09-01

    This experimental work reports the results of a study addressing tool wear, surface topography, and x-ray diffraction analysis for the finish cutting process of room-temperature austenitic NiTi alloy. Turning operation of NiTi alloy was conducted under dry, minimum quantity lubrication (MQL) and cryogenic cooling conditions at various cutting speeds. Findings revealed that cryogenic machining substantially reduced tool wear and improved surface topography and quality of the finished parts in comparison with the other two approaches. Phase transformation on the surface of work material was not observed after dry and MQL machining, but B19' martensite phase was found on the surface of cryogenically machined samples.

  11. Study of Hind Limb Tissue Gas Phase Formation in Response to Suspended Adynamia and Hypokinesia

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.

    1996-01-01

    The purpose of this study was to investigate the hypothesis that reduced joint/muscle activity (hypo kinesia) as well as reduced or null loading of limbs (adynamia) in gravity would result in reduced decompression-induced gas phase and symptoms of decompression sickness (DCS). Finding a correlation between the two phenomena would correspond to the proposed reduction in tissue gas phase formation in astronauts undergoing decompression during extravehicular activity (EVA) in microgravity. The observation may further explain the reported low incidence of DCS in space.

  12. Buying into conservation: intrinsic versus instrumental value.

    PubMed

    Justus, James; Colyvan, Mark; Regan, Helen; Maguire, Lynn

    2009-04-01

    Many conservation biologists believe the best ethical basis for conserving natural entities is their claimed intrinsic value, not their instrumental value for humans. But there is significant confusion about what intrinsic value is and how it could govern conservation decision making. After examining what intrinsic value is supposed to be, we argue that it cannot guide the decision making conservation requires. An adequate ethical basis for conservation must do this, and instrumental value does it best.

  13. Effects of a beetroot juice with high neobetanin content on the early-phase insulin response in healthy volunteers.

    PubMed

    Wootton-Beard, Peter C; Brandt, Kirsten; Fell, David; Warner, Sarah; Ryan, Lisa

    2014-01-01

    Produce rich in phytochemicals may alter postprandial glucose and insulin responses by interacting with the pathways that regulate glucose uptake and insulin secretion in humans. The aims of the present study were to assess the phytochemical constituents of red beetroot juice and to measure the postprandial glucose and insulin responses elicited by either 225 ml beetroot juice (BEET), a control beverage matched for macronutrient content (MCON) or a glucose beverage in healthy adults. Beetroot juice was a particularly rich source of betalain degradation compounds. The orange/yellow pigment neobetanin was measured in particularly high quantities (providing 1·3 g in the 225 ml). A total of sixteen healthy individuals were recruited, and consumed the test meals in a controlled single-blind cross-over design. Results revealed a significant lowering of the postprandial insulin response in the early phase (0-60 min) (P < 0·05) and a significantly lower glucose response in the 0-30 min phase (P < 0·05) in the BEET treatment compared with MCON. Betalains, polyphenols and dietary nitrate found in the beetroot juice may each contribute to the observed differences in the postprandial insulin concentration.

  14. Issues in Purchasing and Maintaining Intrinsic Standards

    SciTech Connect

    PETTIT,RICHARD B.; JAEGER,KLAUS; EHRLICH,CHARLES D.

    2000-09-12

    Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.

  15. Human phase response curve to a single 6.5 h pulse of short-wavelength light

    PubMed Central

    Rüger, Melanie; St Hilaire, Melissa A; Brainard, George C; Khalsa, Sat-Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2013-01-01

    The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a phase response curve (PRC). Previous PRCs in humans have utilized high-intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18–30 years) were studied for 9–10 days in a time-free environment. The protocol included three baseline days followed by a constant routine (CR) to assess initial circadian phase. Following this CR, participants were exposed to a 6.5 h 480 nm light exposure (11.8 μW cm−2, 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in dim light melatonin onset (DLMO) between CRs. Exposure to 6.5 h of 480 nm light resets the circadian pacemaker according to a conventional type 1 PRC with fitted maximum delays and advances of −2.6 h and 1.3 h, respectively. The 480 nm PRC induced ∼75% of the response of the 10,000 lux white light PRC. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure. PMID:23090946

  16. Response of Global Lightning Activity Observed by the TRMM/LIS During Warm and Cold ENSO Phases

    NASA Technical Reports Server (NTRS)

    Chronis, Themis G.; Cecil, Dan; Goodman, Steven J.; Buechler, Dennis

    2007-01-01

    This paper investigates the response of global lightning activity to the transition from the warm (January February March-JFM 1998) to the cold (JFM 1999) ENSO phase. The nine-year global lightning climatology for these months from the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) provides the observational baseline. Flash rate density is computed on a 5.0x5.0 degree lat/lon grid within the LIS coverage area (between approx.37.5 N and S) for each three month period. The flash rate density anomalies from this climatology are examined for these months in 1998 and 1999. The observed lightning anomalies spatially match the documented general circulation features that accompany the warm and cold ENSO events. During the warm ENSO phase the dominant positive lightning anomalies are located mostly over the Western Hemisphere and more specifically over Gulf of Mexico, Caribbean and Northern Mid-Atlantic. We further investigate specifically the Northern Mid-Atlantic related anomaly features since these show strong relation to the North Atlantic Oscillation (NAO). Furthermore these observed anomaly patterns show strong spatial agreement with anomalous upper level (200 mb) cold core cyclonic circulations. Positive sea surface temperature anomalies during the warm ENSO phase also affect the lightning activity, but this is mostly observed near coastal environments. Over the open tropical oceans, there is climatologically less lightning and the anomalies are less pronounced. Warm ENSO related anomalies over the Eastern Hemisphere are most prominent over the South China coast. The transition to the cold ENSO phase illustrates the detected lightning anomalies to be more pronounced over East and West Pacific. A comparison of total global lightning between warm and cold ENSO phase reveals no significant difference, although prominent regional anomalies are located over mostly oceanic environments. All three tropical "chimneys" (Maritime Continent, Central

  17. Dynamic iso-resistive trunk extension simulation: contributions of the intrinsic and reflexive mechanisms to spinal stability.

    PubMed

    Davarani, S Zeinali; Shirazi-Adl, A; Hemami, H; Mousavi, S J; Parnianpour, M

    2007-01-01

    The effects of external resistance on the recruitment of trunk muscles and the role of intrinsic and reflexive mechanisms to ensure the spinal stability are significant issues in spinal biomechanics. A computational model of spine under the control of 48 anatomically oriented muscle actions was used to simulate iso-resistive trunk movements. Neural excitation of muscles was attained based on inverse dynamics approach along with the stability-based optimization. The effect of muscle spindle reflex response on the trunk movement stability was evaluated upon the application of a perturbation moment. In this study, the trunk extension movement at various resistance levels while extending from 60 degrees flexion to the upright posture was investigated. Incorporation of the stability condition as an additional constraint in the optimization algorithm increased antagonistic activities for all resistance levels demonstrating that the co-activation caused an increase in the intrinsic stiffness of the spine and its stability in a feed-forward manner. During the acceleration phase of the movement, extensors activity increased while flexors activity decreased in response to the higher resistance. The co-activation ratio noticed in the braking phase of the movement increased with higher resistance. In presence of a 30 Nm flexion perturbation moment, reflexive feed-back noticeably decreased the induced deviation of the velocity and position profiles from the desired ones at all resistance levels. The stability-generated co-activation decreased the reflexive response of muscle spindles to the perturbation demonstrating that both intrinsic and reflexive mechanisms contribute to the trunk stability. The rise in muscle co-activation can ameliorate the corruption of afferent neural sensory system at the expense of higher loading of the spine.

  18. Intrinsic Localized Modes in Proteins

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2015-01-01

    Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321

  19. Modulation of C4b-binding protein isoforms during the acute phase response caused by orthopedic surgery.

    PubMed

    Criado-García, O; González-Rubio, C; López-Trascasa, M; Pascual-Salcedo, D; Munuera, L; Rodríguez de Córdoba, S

    1997-01-01

    Orthopedic surgery is described as an event with a high risk of thromboembolic diseases. This is probably a consequence of a synergistic combination of different risk factors in the patients subjected to this type of surgery, including age, immobilization, anesthesia and different hypercoagulable states. After surgery patients develop an acute-phase response that leads to changes in several plasma proteins. One of these proteins is the complement regulator C4b-binding protein (C4BP). We have recently shown that in some acute-phase patients C4BP is incorrectly controlled (with elevation of the C4BP beta-containing isoforms), leading to a potential hypercoagulable state by decreasing the plasma levels of free (active) protein S. Here we have studied whether patients subjected to orthopedic surgery have an appropriate modulation of the C4BP isoforms during their postoperative acute-phase responses. We have analyzed the evolution of the C4BP isoforms in serial samples from 11 patients who have undergone knee (or hip) prosthesis surgery (mean age 70 years), or scoliosis surgery (mean age 18 years). Our data suggest a similar evolution of C4BP isoforms in all these patients, with an almost exclusive increase of C4BP isoforms lacking C4BP beta polypeptides and steady levels of free protein S.

  20. Unusual Electro-Optic Kerr Response in a Self-Stabilized Amorphous Blue Phase with Nanoscale Smectic Clusters.

    PubMed

    Le, Khoa V; Hafuri, Miho; Ocak, Hale; Bilgin-Eran, Belkız; Tschierske, Carsten; Sasaki, Takeo; Araoka, Fumito

    2016-05-18

    We investigated the electro-optic response in the "foggy" amorphous blue phase (BPIII) as well as in the isotropic phase. To the best of our knowledge, such a study has not yet been performed due to the very limited thermal range of BPIII. In this study, we used a single-component chiral bent-core liquid crystal with a self-stabilized BPIII, which is stable over a wide temperature range. The results show that the response time is on the order of hundreds of microseconds in the isotropic phase and increases to 1-2 ms in the BPIII (at TI-BP -T <1), then drastically increases up to a few tens of milliseconds upon further cooling in BPIII. Such an unusual behavior was explained on the basis of the high rotational viscosity and/or the existence of nanoscale smectic (Sm) clusters. The Kerr constant was also measured and found to be ∼500 pm V(-2) , which is the largest among bent-core BP systems reported so far and comparable with that of polymer-stabilized BPs.

  1. Effect of organic mobile phase composition on signal responses for selected polyalkene additive compounds by liquid chromatography-mass spectrometry.

    PubMed

    Duderstadt, Randall E; Fischer, Steven M

    2008-06-06

    The high performance liquid chromatography (HPLC) separation methodology employed in the study of polyalkene additive compounds by atmospheric pressure ionization mass spectrometry (API-MS) was undertaken. Both atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were examined. APPI (including dopant-assisted APPI) was found to be an inferior ionization technique to APCI in all cases. APCI ion responses were found to be highly dependent upon the organic solvent type used in the HPLC separations. Namely, employing a water/methanol gradient in place of a water/acetonitrile or a water/acetone gradient yielded improvements in analyte ion intensities between 2.3- and 52-fold for the liquid chromatography-mass spectrometry (LC-MS) experiments. Analyte and mobile phase solvent ionization energies were found to be only partially responsible, whereas mobile phase cluster formation and hydration was also implicated. Mobile phase component modification is demonstrated to be an important consideration when developing new, or modifying existing HPLC separations for use in LC-MS experiments in order to enhance analyte sensitivity for a wide variety of common polyalkene additives.

  2. The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response

    NASA Astrophysics Data System (ADS)

    Suchenek, Mariusz

    2017-04-01

    One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.

  3. Shock response and phase transitions of MgO at planetary impact conditions

    DOE PAGES

    Root, Seth; Shulenburger, Luke; Lemke, Raymond W.; ...

    2015-11-04

    The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth’s mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories’ Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42,000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solidmore » and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. Furthermore, the high pressure required for complete shock melting has implications for a broad range of planetary collision events.« less

  4. Shock response and phase transitions of MgO at planetary impact conditions

    SciTech Connect

    Root, Seth; Shulenburger, Luke; Lemke, Raymond W.; Dolan, Daniel H.; Mattsson, Thomas R.; Desjarlais, Michael P.

    2015-11-04

    The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth’s mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories’ Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42,000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. Furthermore, the high pressure required for complete shock melting has implications for a broad range of planetary collision events.

  5. Phase behavior and unusual dynamics of stimuli-responsive microgel colloids

    NASA Astrophysics Data System (ADS)

    Tata, B. V. R.

    2013-02-01

    Monodisperse poly (N-isopropylacrylamide) (PNIPAM) microgel particles in aqueous medium exhibit structural ordering similar to that observed in atomic systems. Colloidal crystals of these microgel particles exhibit series of phase transitions with increase in temperature due to reduction in the particle size and variation in the interparticle interactions. Unlike hard-sphere or charged colloidal particles, microgel particles are heterogeneous in particle density with dense solvent penetrable polymer core and brush-like polymer chains forming a shell. In this talk I will present static/dynamic light scattering, confocal microscopy and UV-Visible spectroscopy results on dense microgel suspensions exhibiting unusual dynamics across melting, tunabilty of Bragg diffraction, particle distribution and nature of interparticle interaction upon osmotic compression. From these results I conclude that PNIPAM microgel sphere are not only soft but also compressible and differ from other hard-sphere and charged colloidal systems in significant way in their structure, dynamics and phase behaviour.

  6. Shock Response and Phase Transitions of MgO at Planetary Impact Conditions.

    PubMed

    Root, Seth; Shulenburger, Luke; Lemke, Raymond W; Dolan, Daniel H; Mattsson, Thomas R; Desjarlais, Michael P

    2015-11-06

    The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth's mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories' Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42 000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting has implications for a broad range of planetary collision events.

  7. Enhanced dielectric and piezoelectric responses in Zn1-xMgxO thin films near the phase separation boundary

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu; Shetty, Smitha; Garten, Lauren; Ihlefeld, Jon F.; Trolier-McKinstry, Susan; Maria, Jon-Paul

    2017-01-01

    Dielectric and piezoelectric properties for Zn1-xMgxO (ZMO) thin films are reported as a function of MgO composition up to and including the phase separation region. Zn1-xMgxO (0.25 ≤ x ≤ 0.5) thin films with c-axis textures were deposited by pulsed laser deposition on platinized sapphire substrates. The films were phase pure wurtzite for MgO concentrations up to 40%; above that limit, a second phase with rocksalt structure evolves with strong {100} texture. With increasing MgO concentration, the out-of-plane (d33,f) and in-plane (e31,f) piezoelectric coefficients increase by 360% and 290%, respectively. The increase in piezoelectric coefficients is accompanied by a 35% increase in relative permittivity. Loss tangent values fall monotonically with increasing MgO concentration, reaching a minimum of 0.001 for x ≥ 0.30, at which point the band gap is reported to be 4 eV. The enhanced piezoelectric response, the large band gap, and the low dielectric loss make Zn1-xMgxO an interesting candidate for thin film piezoelectric devices, and demonstrate that compositional phase transformations provide opportunities for property engineering.

  8. Response of a catalytic reaction to periodic variation of the CO pressure: increased CO2 production and dynamic phase transition.

    PubMed

    Machado, Erik; Buendía, Gloria M; Rikvold, Per Arne; Ziff, Robert M

    2005-01-01

    We present a kinetic Monte Carlo study of the dynamical response of a Ziff-Gulari-Barshad model for CO oxidation with CO desorption to periodic variation of the CO pressure. We use a square-wave periodic pressure variation with parameters that can be tuned to enhance the catalytic activity. We produce evidence that, below a critical value of the desorption rate, the driven system undergoes a dynamic phase transition between a CO2 productive phase and a nonproductive one at a critical value of the period and waveform of the pressure oscillation. At the dynamic phase transition the period-averaged CO2 production rate is significantly increased and can be used as a dynamic order parameter. We perform a finite-size scaling analysis that indicates the existence of power-law singularities for the order parameter and its fluctuations, yielding estimated critical exponent ratios beta/nu approximately 0.12 and gamma/nu approximately 1.77. These exponent ratios, together with theoretical symmetry arguments and numerical data for the fourth-order cumulant associated with the transition, give reasonable support for the hypothesis that the observed nonequilibrium dynamic phase transition is in the same universality class as the two-dimensional equilibrium Ising model.

  9. Enhanced dielectric and piezoelectric responses in Zn1-xMgxO thin films near the phase separation boundary

    DOE PAGES

    Kang, Xiaoyu; Shetty, Smitha; Garten, Lauren; ...

    2017-01-23

    Dielectric and piezoelectric properties for Zn1-xMgxO (ZMO) thin films are reported as a function of MgO composition up to and including the phase separation region. Zn1-xMgxO (0.25 ≤ x ≤ 0.5) thin films with c-axis textures were deposited by pulsed laser deposition on platinized sapphire substrates. The films were phase pure wurtzite for MgO concentrations up to 40%; above that limit, a second phase with rocksalt structure evolves with strong {100} texture. With increasing MgO concentration, the out-of-plane (d33,f) and in-plane (e31,f) piezoelectric coefficients increase by 360% and 290%, respectively. The increase in piezoelectric coefficients is accompanied by a 35%more » increase in relative permittivity. Loss tangent values fall monotonically with increasing MgO concentration, reaching a minimum of 0.001 for x ≥ 0.30, at which point the band gap is reported to be 4 eV. As a result, the enhanced piezoelectric response, the large band gap, and the low dielectric loss make Zn1-xMgxO an interesting candidate for thin film piezoelectric devices, and demonstrate that compositional phase transformations provide opportunities for property engineering.« less

  10. Experimental observations on mechanical response of three-phase NiTi shape memory alloy under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-10-01

    In this paper, the mechanical behavior of three-phase NiTi shape memory alloy (SMA) is examined in a wide temperature range using in situ digital image correlation. By varying the temperature and the cooling/heating history, we get the specimens with initial austenite (A), initial R-phase (R), initial martensite (M), initial mixture of A and R, initial mixture of R and M and initial mixture of A and M. It is observed in the experiments that NiTi SMA exhibits localized A → M transformation and R → M transformation while homogenous R-reorientation and martensitic reorientation. Moreover, the influence of the initial mixed states, i.e. mixture of A and M, mixture of R and M and mixture of A and R, on the mechanical response of NiTi SMA is discussed. Interestingly, we find that the specimens with initial mixture of R and M demonstrate homogenous deformation manner and the emergence of R in M facilitates the transformation of NiTi SMA greatly. The three-phase phase diagram is also established. The thermal dependences of the critical transformation stresses associated with various transformation processes are calculated for further theoretical investigation and simulation.

  11. Similarities in acute phase protein response during hibernation in black bears and major depression in humans: A response to underlying metabolic depression?

    USGS Publications Warehouse

    Tsiouris, J.A.; Chauhan, V.P.S.; Sheikh, A.M.; Chauhan, A.; Malik, M.; Vaughan, M.R.

    2004-01-01

    This study investigated the effects of hibernation with mild hypothermia and the stress of captivity on levels of six acute-phase proteins (APPs) in serial samples of serum from 11 wild and 6 captive black bears (Ursus americanus Pallas, 1780) during active and hibernating states. We hypothesize that during hibernation with mild hypothermia, bears would show an APP response similar to that observed in major depression. Enzyme-linked immunoabsorbent assay was used to measure alpha2-macroglobulin and C-reactive protein, and a nephelometer to measure alpha1-antitrypsin, haptoglobin, ceruloplasmin, and transferrin. Levels of all other proteins except ceruloplasmin were significantly elevated during hibernation in both wild and captive bears at the p < 0.05 to p < 0.001 level. Alpha 2-macroglobulin and C-reactive-protein levels were increased in captive versus wild bears in both active and hibernating states at the p < 0.01 to p < 0.0001 level. During hibernation with mild hypothermia, black bears do not show immunosuppression, but show an increased APP response similar to that in patients with major depression. This APP response is explained as an adaptive response to the underlying metabolic depression in both conditions. Metabolic depression in hibernating bears is suggested as a natural model for research to explain the neurobiology of depression.

  12. Characterization of the Acinetobacter baumannii growth phase-dependent and serum responsive transcriptomes.

    PubMed

    Jacobs, Anna C; Sayood, Khalid; Olmsted, Stephen B; Blanchard, Catlyn E; Hinrichs, Steven; Russell, David; Dunman, Paul M

    2012-04-01

    Acinetobacter baumannii has emerged as a bacterial pathogen of considerable healthcare concern. Yet, little is known about the organism's basic biological processes and the regulatory networks that modulate expression of its virulence factors and antibiotic resistance. Using Affymetrix GeneChips , we comprehensively defined and compared the transcriptomes of two A. baumannii strains, ATCC 17978 and 98-37-09, during exponential and stationary phase growth in Luria-Bertani (LB) medium. Results revealed that in addition to expected growth phase-associated metabolic changes, several putative virulence factors were dramatically regulated in a growth phase-dependent manner. Because a common feature between the two most severe types of A. baumannii infection, pneumonia and septicemia, includes the organism's dissemination to visceral organs via the circulatory system, microarray studies were expanded to define the expression properties of A. baumannii during growth in human serum. Growth in serum significantly upregulated iron acquisition systems, genes associated with epithelial cell adherence and DNA uptake, as well as numerous putative drug efflux pumps. Antibiotic susceptibility testing verified that the organism exhibits increased antibiotic tolerance when cultured in human serum, as compared to LB medium. Collectively, these studies provide researchers with a comprehensive database of A. baumannii's expression properties in LB medium and serum and identify biological processes that may contribute to the organism's virulence and antibiotic resistance.

  13. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  14. Intrinsic vs. extrinsic controls on channel evolution in a sub-tropical river, Australia

    NASA Astrophysics Data System (ADS)

    Daley, James; Croke, Jacky; Thompson, Chris; Cohen, Tim; Macklin, Mark; Sharma, Ashneel

    2016-04-01

    Palaeohydrological research provides valuable insights to the understanding of short- and long-term fluvial dynamics in response to climate change and tectonic activity. In landscapes where tectonic activity is minimal fluvial archives record long-term changes in sediment and discharge dynamics related to either intrinsic or extrinsic controls. Isolating the relative controls of these factors is an important frontier in this area of research. Advances in geochronology, the acquisition of high resolution topographic data and geomorphological techniques provide an opportunity to assess the relative importance of intrinsic and extrinsic controls on terrace and floodplain formation. This study presents the results of detailed chrono-stratigraphic research in a partly confined river valley in subtropical southeast Queensland. River systems within this region are characterized by high hydrological variability and have a near-ubiquitous compound channel morphology (macrochannel) where Holocene deposits are inset within late Pleistocene terraces. These macrochannels can accommodate floods up to and beyond the predicted 100-year flood. Using single grain optically stimulated luminescence and radiocarbon analyses, combined with high resolution spatial datasets, we demonstrate the nature of fluvial response to major late Quaternary climate change. A large proportion of the valley floor is dominated by terrace alluvium deposited after the Last Glacial Maximum (LGM) (17 - 13 ka) and overlies basal older Pleistocene alluvium. Preliminary results suggest a phase of incision occurred at 10 ka with the formation of the large alluvial trench. The Holocene floodplain is dominated by processes of catastrophic vertical accretion and erosion (cut-and-fill) and oblique accretion at the macrochannel margins. The consistency in ages for the terraces and subsequent incision suggests a uniform network response. Alluvial sediments and channel configuration in this compound and complex

  15. Phase II trial of sequential gefitinib after minor response or partial response to chemotherapy in Chinese patients with advanced non-small-cell lung cancer

    PubMed Central

    Xu, Jian Ming; Han, Yu; Li, Yue Min; Zhao, Chuan Hua; Wang, Yan; Paradiso, Angelo

    2006-01-01

    Background Basic research of gefitinib (Iressa, ZD1839) has demonstrated the combination effects of gefitinib and chemotherapy were sequence-dependent. To evaluate the efficacy of sequential administration of gefitinib following a minor response or partial response to two to three cycles of chemotherapy, a phase II clinical trial was done in Chinese patients with advanced non-small-cell lung cancer (NSCLC). Methods Thirty-three consecutive patients with advanced NSCLC that had been pretreated with at least one chemotherapeutic regimen and were responding to chemotherapy following 2 to 3 cycles of treatment, entered the trial from May 2004 to February 2006. Patients received gefitinib at an oral dose of 250 mg once daily for 4 weeks. Results Thirty-three patients were evaluable for response and toxicity. The objective response rate was 24.2% (8 of 33)(95% CI, 11% to 42%). The symptom improvement rate was 54.5% (18 of 33) (95% CI, 41% to 69%). The median duration of response was 7 months (95%CI, 4.0 to 13.2 months). The median time to disease progression (TTP) was 6.5 months (95%CI, 0.7 to 16.6 months). The median overall survival time (OS) was 9.8 months (range, 2.1 to 18.0 months), and the actuarial 1-year survival was 36.4%. Toxicity was relatively mild and included only one patient (3.0%) with grade 4 diarrhea, 1 (3.0%) with grade 3 rash, 1 (3.0%) with grade 3 nausea, and 1 with grade 3 vomiting (3.0%). Conclusion Preliminary results suggest that sequential administration of gefitinib following a response to chemotherapy may be beneficial for Chinese patients with advanced NSCLC. Further randomized clinical trials are needed. PMID:17173694

  16. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers.

    PubMed

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang

    2016-11-08

    A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems.

  17. Effects of background noise on inter-trial phase coherence and auditory N1-P2 responses to speech stimuli.

    PubMed

    Koerner, Tess K; Zhang, Yang

    2015-10-01

    This study investigated the effects of a speech-babble background noise on inter-trial phase coherence (ITPC, also referred to as phase locking value (PLV)) and auditory event-related responses (AERP) to speech sounds. Specifically, we analyzed EEG data from 11 normal hearing subjects to examine whether ITPC can predict noise-induced variations in the obligatory N1-P2 complex response. N1-P2 amplitude and latency data were obtained for the /bu/syllable in quiet and noise listening conditions. ITPC data in delta, theta, and alpha frequency bands were calculated for the N1-P2 responses in the two passive listening conditions. Consistent with previous studies, background noise produced significant amplitude reduction and latency increase in N1 and P2, which were accompanied by significant ITPC decreases in all the three frequency bands. Correlation analyses further revealed that variations in ITPC were able to predict the amplitude and latency variations in N1-P2. The results suggest that trial-by-trial analysis of cortical neural synchrony is a valuable tool in understanding the modulatory effects of background noise on AERP measures.

  18. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers

    PubMed Central

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang

    2016-01-01

    A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799

  19. Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion

    PubMed Central

    Lorenzi, Tommaso; Chisholm, Rebecca H; Melensi, Matteo; Lorz, Alexander; Delitala, Marcello

    2015-01-01

    T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host’s repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in ‘chase-and-escape’ dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research. PMID:26119966

  20. Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.

    PubMed

    Lorenzi, Tommaso; Chisholm, Rebecca H; Melensi, Matteo; Lorz, Alexander; Delitala, Marcello

    2015-10-01

    T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host's repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in 'chase-and-escape' dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research.

  1. Extrinsic and intrinsic S stars in the Henize sample

    NASA Astrophysics Data System (ADS)

    Van Eck, Sophie; Jorissen, Alain; Mayor, Michel; Udry, Stephane; Burnet, Michel

    Previous studies have identified two distinct families among S stars: intrinsic S stars exhibiting Tc lines in their spectrum, and extrinsic S stars lacking Tc lines. Extrinsic S stars were found to be binaries, and probably owe their chemical peculiarities to mass transfer in the binary system. On the contrary, intrinsic S stars are thermally-pulsating AGB stars where the third dredge-up brought heavy elements to the surface. The Henize sample of 205 S stars south of declination -25^circ is especially well suited for inferring the relative frequency of extrinsic/intrinsic S stars, since it is not biased towards low galactic latitudes where intrinsic S stars tend to concentrate. Each star has been measured 3 or 4 times over a period of 5 years with the spectrovelocimeter CORAVEL. The search for binaries is complicated by the fact that Mira-type pulsations are frequent among intrinsic S stars. Fortunately, radial-velocity variations due to atmospheric motions are generally associated with very broad and asymmetric CORAVEL cross-correlation profiles [see also poster P2-14!]. Therefore extrinsic and intrinsic S stars can be distinguished thanks to (1) radial velocity variations, (2) the shape of the CORAVEL cross-correlation profiles, (3) the presence or absence of the radioactive element Tc, as derived from high-resolution spectroscopy, (4) photometric variability, as derived from a survey in the Geneva photometric system. These criteria correlate in a nice way and allow to derive the frequency of intrinsic-genuine AGB-S stars. The galactic distributions of the two families of S stars are clearly distinct, intrinsic S stars being much more concentrated along the galactic plane that extrinsic S stars. High-resolution spectroscopy led to the discovery of two symbiotic stars among the Henize sample (symbiotic stars are interacting binary systems in which a hot compact object accretes matter ejected by a cool (super)giant). The physical parameters responsible for the

  2. Anomalous phase diagram of ferroelectric (Ba,Ca)TiO3 single crystals with giant electromechanical response.

    PubMed

    Fu, Desheng; Itoh, Mitsuru; Koshihara, Shin-ya; Kosugi, Taichi; Tsuneyuki, Shinji

    2008-06-06

    We report the anomalous phase evolution in ferroelectric single crystals Ba1-xCaxTiO3 (0.02phase transition. In addition, large electromechanical responses in this class of crystals are also demonstrated. Our results indicate that an effective approach to control the ferroelectricity of perovskite oxide can be realized not only by the covalency between A site atom and oxygen but also by the substitution of A site with small ions with off-centering nature. Theoretical calculations support the idea that the off-center displacements of the smaller Ca ions in the Ba-site play an important role in the exotic natures of Ba1-xCaxTiO3.

  3. Phase II dose-response trials: A simulation study to compare analysis method performance under design considerations.

    PubMed

    Rekowski, Jan; Köllmann, Claudia; Bornkamp, Björn; Ickstadt, Katja; Scherag, André

    2017-02-21

    Phase II trials are intended to provide information about the dose-response relationship and to support the choice of doses for a pivotal phase III trial. Recently, new analysis methods have been proposed to address these objectives, and guidance is needed to select the most appropriate analysis method in specific situations. We set up a simulation study to evaluate multiple performance measures of one traditional and three more recent dose-finding approaches under four design options and illustrate the investigated analysis methods with an example from clinical practice. Our results reveal no general recommendation for a particular analysis method across all design options and performance measures. However, we also demonstrate that the new analysis methods are worth the effort compared to the traditional ANOVA-based approach.

  4. Intrinsic Tamper Indicating Device (TID) Program

    SciTech Connect

    Haag, W.E.

    1996-09-01

    The Los Alamos National Laboratory (LANL) Intrinsic Tamper Indicating Device (TID) Program has recently been developed in conjunction with the regular LANL TID Program to assist groups who perform measurements using sealed sources or store difficult-to-measure items. The program was then expanded to include other types of sealed sources and items processed for long-term storage in the Nuclear Material Packaging and Repackaging Program. The Intrinsic TID Program encompasses both Special Nuclear Material (SNM) and Nuclear Material (NM) items that have intrinsic characteristics that would immediately indicate tampering upon visual inspection. Items determined to be intrinsically sealed do not need to be sealed with authorized tamper indicating devices. Under the program, an identified intrinsic item receives the same safeguards credits as other tamper-sealed items already in the TID Program. The major benefits of the Intrinsic TID Program include reducing verification measurements on intrinsically identified inventory items and reducing exposure to operators working in highly irradiated environments. Intrinsic TIDs should be combined with other safeguards requirements, and items should have defensible measurements as well as visual inspections. Several groups at LANL are already implementing the program and providing feedback so that we can tailor it to better meet the customers` needs.

  5. Intrinsic bioremediation of landfills interim report

    SciTech Connect

    Brigmon, R.L.; Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  6. Development of Intrinsically Photoluminescent and Photostable Polylactones

    PubMed Central

    Xie, Zhiwei; Zhang, Yi; Liu, Li; Weng, Hong; Mason, Ralph P.; Tang, Liping; Nguyen, Kytai T.; Hsieh, Jer-Tsong

    2014-01-01

    A method of introducing intrinsically photoluminescent properties to biodegradable polymer was introduced, exemplified by the synthesis of intrinsically photoluminescent polylactones that enable non-invasively monitoring and tracking material degradation in vivo in real-time and the formation of theranostic nanoparticles for cancer imaging and drug delivery. PMID:24668888

  7. Dielectric function beyond the random-phase approximation: kinetic theory versus linear response theory.

    PubMed

    Reinholz, H; Röpke, G

    2012-03-01

    Calculating the frequency-dependent dielectric function for strongly coupled plasmas, the relations within kinetic theory and linear response theory are derived and discussed in comparison. In this context, we give a proof that the Kohler variational principle can be extended to arbitrary frequencies. It is shown to be a special case of the Zubarev method for the construction of a nonequilibrium statistical operator from the principle of the extremum of entropy production. Within kinetic theory, the commonly used energy-dependent relaxation time approach is strictly valid only for the Lorentz plasma in the static case. It is compared with the result from linear response theory that includes electron-electron interactions and applies for arbitrary frequencies, including bremsstrahlung emission. It is shown how a general approach to linear response encompasses the different approximations and opens options for systematic improvements.

  8. Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases.

    PubMed

    Khang, Dongwoo; Liu-Snyder, Peishan; Pareta, Rajesh; Lu, Jing; Webster, Thomas J

    2009-06-01

    Extensive prolonged interactions of inflammatory cells (such as macrophages) at the host-implant interface may lead to implant failure. While previous studies have shown increased in vitro and in vivo bone cell adhesion, proliferation and mineralization on nanophase compared to currently implanted ceramics, few studies have been conducted to elucidate inflammatory cell responses on such nanophase ceramics. Controlling surface feature size and corresponding surface roughness on implants may clearly alter immune cell responses, which would be an extremely important consideration for the use of nanostructured materials as improved biomaterials. In this study, reduced macrophage density was observed on alumina (Al(2)O(3)) compacts with greater nanometer surface roughness accompanied by changes in crystallinity for up to 24 h in culture. Since alumina is a commonly used ceramic in orthopedic applications, this in vitro study continues to support the use of nanophase ceramics as improved orthopedic implants by demonstrating reduced macrophage responses.

  9. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia.

    PubMed

    Konopleva, Marina; Pollyea, Daniel A; Potluri, Jalaja; Chyla, Brenda; Hogdal, Leah; Busman, Todd; McKeegan, Evelyn; Salem, Ahmed Hamed; Zhu, Ming; Ricker, Justin L; Blum, William; DiNardo, Courtney D; Kadia, Tapan; Dunbar, Martin; Kirby, Rachel; Falotico, Nancy; Leverson, Joel; Humerickhouse, Rod; Mabry, Mack; Stone, Richard; Kantarjian, Hagop; Letai, Anthony

    2016-10-01

    We present a phase II, single-arm study evaluating 800 mg daily venetoclax, a highly selective, oral small-molecule B-cell leukemia/lymphoma-2 (BCL2) inhibitor in patients with high-risk relapsed/refractory acute myelogenous leukemia (AML) or unfit for intensive chemotherapy. Responses were evaluated following revised International Working Group (IWG) criteria. The overall response rate was 19%; an additional 19% of patients demonstrated antileukemic activity not meeting IWG criteria (partial bone marrow response and incomplete hematologic recovery). Twelve (38%) patients had isocitrate dehydrogenase 1/2 mutations, of whom 4 (33%) achieved complete response or complete response with incomplete blood count recovery. Six (19%) patients had BCL2-sensitive protein index at screening, which correlated with time on study. BH3 profiling was consistent with on-target BCL2 inhibition and identified potential resistance mechanisms. Common adverse events included nausea, diarrhea and vomiting (all grades), and febrile neutropenia and hypokalemia (grade 3/4). Venetoclax demonstrated activity and acceptable tolerability in patients with AML and adverse features.

  10. Interdiffusion and Intrinsic Diffusion in the Mg-Al System

    SciTech Connect

    Brennan, Sarah; Bermudez, Katrina; Sohn, Yong Ho; Kulkarni, Nagraj S

    2012-01-01

    Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96%) and Al (99.999%). Diffusion anneals were carried out at 300 , 350 , and 400 C for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were utilized to identify the formation of the intermetallic phases, -Al12Mg17 and -Al3Mg2 and absence of the -phase in the diffusion couples. Thicknesses of the -Al12Mg17 and -Al3Mg2 phases were measured and the parabolic growth constants were calculated to determine the activation energies for the growth, 165 and 86 KJ/mole, respectively. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, -Al12Mg17 and - Al3Mg2 and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the -Al3Mg2 phase, followed by -Al12Mg17, Al-solid solution and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann s analysis (e.g., marker plane) were determined for the ~38 at.% Mg in the -Al3Mg2 phase. Activation energies and the pre-exponential factors for the inter- and intrinsic diffusion coefficients were calculated for the temperature range examined. The -Al3Mg2 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the -Al3Mg2 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared to the available self- and impurity diffusion data from literature. Thermodynamic factor, tracer diffusion coefficients and atomic mobilities at the marker plane composition were approximated using available literature values of Mg activity in the -Al

  11. Elevation of Intact and Proteolytic Fragments of Acute Phase Proteins Constitutes the Earliest Systemic Antiviral Response in HIV-1 Infection

    PubMed Central

    Kramer, Holger B.; Lavender, Kerry J.; Qin, Li; Stacey, Andrea R.; Liu, Michael K. P.; di Gleria, Katalin; Simmons, Alison; Gasper-Smith, Nancy; Haynes, Barton F.; McMichael, Andrew J.; Borrow, Persephone; Kessler, Benedikt M.

    2010-01-01

    The earliest immune responses activated in acute human immunodeficiency virus type 1 infection (AHI) exert a critical influence on subsequent virus spread or containment. During this time frame, components of the innate immune system such as macrophages and DCs, NK cells, β-defensins, complement and other anti-microbial factors, which have all been implicated in modulating HIV infection, may play particularly important roles. A proteomics-based screen was performed on a cohort from whom samples were available at time points prior to the earliest positive HIV detection. The ability of selected factors found to be elevated in the plasma during AHI to inhibit HIV-1 replication was analyzed using in vitro PBMC and DC infection models. Analysis of unique plasma donor panels spanning the eclipse and viral expansion phases revealed very early alterations in plasma proteins in AHI. Induction of acute phase protein serum amyloid A (A-SAA) occurred as early as 5–7 days prior to the first detection of plasma viral RNA, considerably prior to any elevation in systemic cytokine levels. Furthermore, a proteolytic fragment of alpha–1-antitrypsin (AAT), termed virus inhibitory peptide (VIRIP), was observed in plasma coincident with viremia. Both A-SAA and VIRIP have anti-viral activity in vitro and quantitation of their plasma levels indicated that circulating concentrations are likely to be within the range of their inhibitory activity. Our results provide evidence for a first wave of host anti-viral defense occurring in the eclipse phase of AHI prior to systemic activation of other immune responses. Insights gained into the mechanism of action of acute-phase reactants and other innate molecules against HIV and how they are induced could be exploited for the future development of more efficient prophylactic vaccine strategies. PMID:20463814

  12. Intrinsic decoherence in isolated quantum systems

    NASA Astrophysics Data System (ADS)

    Wu, Yang-Le; Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-01-01

    We study the intrinsic, disorder-induced decoherence of an isolated quantum system under its own dynamics. Specifically, we investigate the characteristic time scale (i.e., the decoherence time) associated with an interacting many-body system losing the memory of its initial state. To characterize the erasure of the initial state memory, we define a time scale, the intrinsic decoherence time, by thresholding the gradual decay of the disorder-averaged return probability. We demonstrate the system-size independence of the intrinsic decoherence time in different models, and we study its dependence on the disorder strength. We find that the intrinsic decoherence time increases monotonically as the disorder strength increases in accordance with the relaxation of locally measurable quantities. We investigate several interacting spin (e.g., Ising and Heisenberg) and fermion (e.g., Anderson and Aubry-André) models to obtain the intrinsic decoherence time as a function of disorder and interaction strength.

  13. Intrinsic and Network Mechanisms Constrain Neural Synchrony in the Moth Antennal Lobe

    PubMed Central

    Lei, Hong; Yu, Yanxue; Zhu, Shuifang; Rangan, Aaditya V.

    2016-01-01

    Projection-neurons (PNs) within the antennal lobe (AL) of the hawkmoth respond vigorously to odor stimulation, with each vigorous response followed by a ~1 s period of suppression—dubbed the “afterhyperpolarization-phase,” or AHP-phase. Prior evidence indicates that this AHP-phase is important for the processing of odors, but the mechanisms underlying this phase and its function remain unknown. We investigate this issue. Beginning with several physiological experiments, we find that pharmacological manipulation of the AL yields surprising results. Specifically, (a) the application of picrotoxin (PTX) lengthens the AHP-phase and reduces PN activity, whereas (b) the application of Bicuculline-methiodide (BIC) reduces the AHP-phase and increases PN activity. These results are curious, as both PTX and BIC are inhibitory-receptor antagonists. To resolve this conundrum, we speculate that perhaps (a) PTX reduces PN activity through a disinhibitory circuit involving a heterogeneous population of local-neurons, and (b) BIC acts to hamper certain intrinsic currents within the PNs that contribute to the AHP-phase. To probe these hypotheses further we build a computational model of the AL and benchmark our model against our experimental observations. We find that, for parameters which satisfy these benchmarks, our model exhibits a particular kind of synchronous activity: namely, “multiple-firing-events” (MFEs). These MFEs are causally-linked sequences of spikes which emerge stochastically, and turn out to have important dynamical consequences for all the experimentally observed phenomena we used as benchmarks. Taking a step back, we extract a few predictions from our computational model pertaining to the real AL: Some predictions deal with the MFEs we expect to see in the real AL, whereas other predictions involve the runaway synchronization that we expect when BIC-application hampers the AHP-phase. By examining the literature we see support for the former, and we

  14. Intrinsic fiber optic Sagnac ultrasound sensor for process monitoring in composite structures

    NASA Astrophysics Data System (ADS)

    Fomitchov, Pavel A.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1999-02-01

    In this paper, we report the development of an intrinsic fiber-optic Sagnac-type ultrasound sensor for cure monitoring. The Sagnac ultrasonic sensor consists of a Sagnac demodulation unit and a sensing segment which can be embedded in a composite structure. The Sagnac optical demodulator is common-path and hence self-stabilized and much simpler than the alternate Fabry-Perot or Michelson type sensors which require external stabilization. Any phase variations that the sampling beams experience due to ultrasound impinging on the sensing segment are demodulated by the Sagnac sensor to produce a signal proportional to ultrasonic signal. The sensing fiber segment of the Sagnac is placed within the composite at the time of manufacture. As the composite is cured, this sensor detects ultrasound that is generated by a laser source or a pzt-transducer. The wavespeed and attenuation of the ultrasound are measured as the cure process proceeds, and these provide information on the state of cure of the composite. We discuss the details of the above intrinsic Sagnac sensor, as well as report on its characteristics including frequency response, sensitivity, and directionality. Results of a cure monitoring are also presented.

  15. Activation of InsP3 receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons

    PubMed Central

    Ashhad, Sufyan; Johnston, Daniel

    2014-01-01

    The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. PMID:25552640

  16. Differential acute phase immune responses by Angus and Romosinuano steers following an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our primary objective was to evaluate potential genetic differences between two diverse Bos taurus breeds (Angus (AG) and Romosinuano (RO)) in response to an endotoxin. The RO is a tropically adaptive Bos taurus breed developed in the Sinú valley of northern Colombia. Eighteen steers (n = 9 steers/b...

  17. 40 CFR 35.6570 - Use of the same engineer during subsequent phases of response.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CERCLA remedial response Cooperative Agreement may use the engineer procured to conduct any or all of the... using CERCLA funds for follow-on activities, the recipient may use the engineer for subsequent work...) That any CERCLA-funded contract between the engineer and the recipient meets all of the...

  18. Analyzing the Effectiveness of Logistics Networks During the Immediate Response Phase of Three Different Natural Disasters

    DTIC Science & Technology

    2010-12-01

    in Aceh (From: Cosgrave, 2007) .........65 Figure 13. NGO Responses About Resources Available for Relief- India (From: Thomas & Ramalingam, Lessons...with different cultures and objectives. Power struggles will trigger miscommunication and create duplication of efforts. In the virtual humanitarian...livelihood were Indonesia, Sri Lanka, and India (Thomas & Ramalingam, 2005). Because some of the countries affected by the tsunami were tourist

  19. Chromium supplementation enhances the acute phase response of steers to a lipopolysaccharide (LPS) challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study examined the effect of chromium supplementation on the response of steers to an LPS challenge. Twenty crossbred steers (235±4 kg BW) received 0 ppb (Control; C) or 200 ppb chromium propionate (CHR) for 55 days. Steers were fitted with jugular catheters and rectal temperature (RT) recording...

  20. Enhancement of the acute phase response to lipopolysaccharide (LPS) challenge in steers supplemented with chromium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study examined the effect of chromium supplementation on the response of steers to an LPS challenge. Twenty steers received a premix that added 0 (control) or 0.2 mg/kg of chromium (KemTRACE®brandChromiumProprionate 0.04%, Kemin Industries) to the total diet on a dry matter basis for 55 d. Steer...

  1. 40 CFR 35.6570 - Use of the same engineer during subsequent phases of response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CERCLA remedial response Cooperative Agreement may use the engineer procured to conduct any or all of the... using CERCLA funds for follow-on activities, the recipient may use the engineer for subsequent work...) That any CERCLA-funded contract between the engineer and the recipient meets all of the...

  2. 40 CFR 35.6570 - Use of the same engineer during subsequent phases of response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CERCLA remedial response Cooperative Agreement may use the engineer procured to conduct any or all of the... using CERCLA funds for follow-on activities, the recipient may use the engineer for subsequent work...) That any CERCLA-funded contract between the engineer and the recipient meets all of the...

  3. 40 CFR 35.6570 - Use of the same engineer during subsequent phases of response.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CERCLA remedial response Cooperative Agreement may use the engineer procured to conduct any or all of the... using CERCLA funds for follow-on activities, the recipient may use the engineer for subsequent work...) That any CERCLA-funded contract between the engineer and the recipient meets all of the...

  4. The restless brain: how intrinsic activity organizes brain function.

    PubMed

    Raichle, Marcus E

    2015-05-19

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.

  5. The restless brain: how intrinsic activity organizes brain function

    PubMed Central

    Raichle, Marcus E.

    2015-01-01

    Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease. PMID:25823869

  6. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  7. Transport of Intrinsic Plutonium Colloids in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.

    2011-12-01

    Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the

  8. Defining the optimal dose of rifapentine for pulmonary tuberculosis: Exposure-response relations from two phase II clinical trials.

    PubMed

    Savic, R M; Weiner, M; MacKenzie, W R; Engle, M; Whitworth, W C; Johnson, J L; Nsubuga, P; Nahid, P; Nguyen, N V; Peloquin, C A; Dooley, K E; Dorman, S E

    2017-01-25

    Rifapentine is a highly active antituberculosis antibiotic with treatment-shortening potential; however, exposure-response relations and the dose needed for maximal bactericidal activity have not been established. We used pharmacokinetic/pharmacodynamic data from 657 adults with pulmonary tuberculosis participating in treatment trials to compare rifapentine (n = 405) with rifampin (n = 252) as part of intensive-phase therapy. Population pharmacokinetic/pharmacodynamic analyses were performed with nonlinear mixed-effects modeling. Time to stable culture conversion of sputum to negative was determined in cultures obtained over 4 months of therapy. Rifapentine exposures were lower in participants who were coinfected with human immunodeficiency virus, black, male, or fasting when taking drug. Rifapentine exposure, large lung cavity size, and geographic region were independently associated with time to culture conversion in liquid media. Maximal treatment efficacy is likely achieved with rifapentine at 1,200 mg daily. Patients with large lung cavities appear less responsive to treatment, even at high rifapentine doses.

  9. Cholesteric Thermo-reversible Liquid-Crystal Gels: Phase Behaviour and Electro-optical Response

    NASA Astrophysics Data System (ADS)

    Janssen, Rob H. C.; Teunissen, Jean-Pierre; Picken, Stephen J.; Bastiaansen, Cees W. M.; Broer, Dirk J.; Tervoort, Theo A.; Smith, Paul

    2001-04-01

    Thermo-reversible gels of a chiral nematic liquid-crystal (LC) with 12-hydroxyoctadecanoic acid (HOA) were cast in a light-reflecting planar configuration by choosing a processing temperature higher than the sol-gel temperature but lower than the onset-temperature for the chiral nematic-isotropic transition in the gel. The choice of processing temperature is dictated by the quasi-ternary phase diagram of the system, which displays a 3-phase region at which an isotropic liquid is in equilibrium with a fibrillar solid and a chiral nematic mesophase. Planar configurations of the gels produced show a significant broadening of the reflection band with respect to the neat LC-material indicating a distribution of the cholesteric pitch within the gel. Visco-elasticity, electro-optical activity and zero electric field bistability of gelled films has been utilized in building a reflective bistable chiral nematic cell with improved shock-resistance that holds the promise of being produced via a continuous processing route.

  10. Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles

    PubMed Central

    Nott, Timothy J.; Petsalaki, Evangelia; Farber, Patrick; Jervis, Dylan; Fussner, Eden; Plochowietz, Anne; Craggs, Timothy D.; Bazett-Jones, David P.; Pawson, Tony; Forman-Kay, Julie D.; Baldwin, Andrew J.

    2015-01-01

    Summary Cells chemically isolate molecules in compartments to both facilitate and regulate their interactions. In addition to membrane-encapsulated compartments, cells can form proteinaceous and membraneless organelles, including nucleoli, Cajal and PML bodies, and stress granules. The principles that determine when and why these structures form have remained elusive. Here, we demonstrate that the disordered tails of Ddx4, a primary constituent of nuage or germ granules, form phase-separated organelles both in live cells and in vitro. These bodies are stabilized by patterned electrostatic interactions that are highly sensitive to temperature, ionic strength, arginine methylation, and splicing. Sequence determinants are used to identify proteins found in both membraneless organelles and cell adhesion. Moreover, the bodies provide an alternative solvent environment that can concentrate single-stranded DNA but largely exclude double-stranded DNA. We propose that phase separation of disordered proteins containing weakly interacting blocks is a general mechanism for forming regulated, membraneless organelles. PMID:25747659

  11. Variable air temperature response of gas-phase atmospheric polychlorinated biphenyls near a former manufacturing facility.

    PubMed

    Hermanson, Mark H; Scholten, Cheryl A; Compher, Kevin

    2003-09-15

    Many investigations of gas-phase atmospheric PCB show a strong relationship between concentration and air temperature, especially near PCB sources. Comparative gas-phase atmospheric PCB trends during an annual temperature regime at two sites near a former PCB manufacturing plant and nearby PCB landfills in Anniston, AL, indicate a departure from this trend. The Mars Hill sampling site, located closest to the plant and landfills, shows an annual average sigmaPCB concentration of 27 ng m(-3) (ranging from 8.7 to 82 ng m(-3)) three times the average at Carter, 1.5 km away (9 ng m(-3), ranging from 1.1 to 39). However, total PCB and congener concentrations vary more with air temperature at Carter where PCB are evaporating from surfaces during warmer weather. The slopes of the Clausius-Clapeyron plots of 18 of the most concentrated congeners representing dichloro- through heptachlorobiphenyl homologues are significantly higher at the Carter site. While some of the atmospheric PCB at Mars Hill is derived from ground surface evaporation, the source of much of it apparently is the material buried in the landfills, which has different thermal properties than surface materials and is not in equilibrium with air temperature.

  12. Bayesian designs of phase II oncology trials to select maximum effective dose assuming monotonic dose-response relationship

    PubMed Central

    2014-01-01

    Background For many molecularly targeted agents, the probability of response may be assumed to either increase or increase and then plateau in the tested dose range. Therefore, identifying the maximum effective dose, defined as the lowest dose that achieves a pre-specified target response and beyond which improvement in the response is unlikely, becomes increasingly important. Recently, a class of Bayesian designs for single-arm phase II clinical trials based on hypothesis tests and nonlocal alternative prior densities has been proposed and shown to outperform common Bayesian designs based on posterior credible intervals and common frequentist designs. We extend this and related approaches to the design of phase II oncology trials, with the goal of identifying the maximum effective dose among a small number of pre-specified doses. Methods We propose two new Bayesian designs with continuous monitoring of response rates across doses to identify the maximum effective dose, assuming monotonicity of the response rate across doses. The first design is based on Bayesian hypothesis tests. To determine whether each dose level achieves a pre-specified target response rate and whether the response rates between doses are equal, multiple statistical hypotheses are defined using nonlocal alternative prior densities. The second design is based on Bayesian model averaging and also uses nonlocal alternative priors. We conduct simulation studies to evaluate the operating characteristics of the proposed designs, and compare them with three alternative designs. Results In terms of the likelihood of drawing a correct conclusion using similar between-design average sample sizes, the performance of our proposed design based on Bayesian hypothesis tests and nonlocal alternative priors is more robust than that of the other designs. Specifically, the proposed Bayesian hypothesis test-based design has the largest probability of being the best design among all designs under comparison and

  13. THE INITIAL PHASE OF AN IMMUNE RESPONSE FUNCTIONS TO ACTIVATE REGULATORY T CELLS

    PubMed Central

    O’Gorman, William E.; Dooms, Hans; Thorne, Steve H.; Kuswanto, Wilson F.; Simonds, Erin F.; Krutzik, Peter O.; Nolan, Garry P.; Abbas, Abul K.

    2009-01-01

    An early reaction of CD4+ T lymphocytes to antigen is the production of cytokines, notably IL-2. In order to detect cytokine dependent responses, naive antigen-specific T cells were stimulated in vivo and the presence of phosphorylated STAT5 molecules was used to identify the cell populations responding to IL-2. Within hours of T-cell priming, IL-2-dependent STAT5 phosphorylation occurred primarily in Foxp3+ regulatory T cells. In contrast, the antigen-specific T cells received STAT5 signals only after repeated antigen exposure or memory differentiation. Regulatory T cells receiving IL-2 signals proliferated and developed enhanced suppressive activity. These results indicate that one of the earliest events in a T cell response is the activation of endogenous regulatory cells, potentially to prevent autoimmunity. PMID:19542444

  14. Optimize the modulation response of twisted-nematic liquid crystal displays as pure phase spatial light modulators

    NASA Astrophysics Data System (ADS)

    Ma, Baiheng; Peng, Fei; Kang, Mingwu; Zhou, Jiawu

    2014-11-01

    Twisted-nematic liquid crystal displays (TN-LCD) are widely used in numerous research fields of optics working as spatial light modulators. Approaches to obtaining desired intensity or phase modulation by TN-LCD have been extensively studied based on the knowledge of TN-LCD's internal structure parameters, e.g., the orientation of LC molecules at the surfaces, the twist angle, the thickness of the LC layer, and the birefringence of the material. Generally TN-LCD placed between two linear polarizers (P) produces coupled intensity and phase modulation. To obtain the commonly used pure phase modulation, quarter wave plates (QWP) are often used in front of and/or behind the LCD. In this paper, we present a method to optimize the optical modulation properties of the TN-LCD to obtain pure phase modulation in the configuration of P-QWP-LCD-QWP-P each with proper orientation. Firstly an improved method for determining the Jones matrix of the TN-LCD without knowing its internal p