Sample records for intrinsic semiconductors based

  1. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires.

    PubMed

    Yan, Jie-Yun

    2018-06-13

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  2. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Jie-Yun

    2018-06-01

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  3. Charge Saturation and Intrinsic Doping in Electrolyte-Gated Organic Semiconductors.

    PubMed

    Atallah, Timothy L; Gustafsson, Martin V; Schmidt, Elliot; Frisbie, C Daniel; Zhu, X-Y

    2015-12-03

    Electrolyte gating enables low voltage operation of organic thin film transistors, but little is known about the nature of the electrolyte/organic interface. Here we apply charge-modulation Fourier transform infrared spectroscopy, in conjunction with electrical measurements, on a model electrolyte gated organic semiconductor interface: single crystal rubrene/ion-gel. We provide spectroscopic signature for free-hole like carriers in the organic semiconductor and unambiguously show the presence of a high density of intrinsic doping of the free holes upon formation of the rubrene/ion-gel interface, without gate bias (Vg = 0 V). We explain this intrinsic doping as resulting from a thermodynamic driving force for the stabilization of free holes in the organic semiconductor by anions in the ion-gel. Spectroscopy also reveals the saturation of free-hole like carrier density at the rubrene/ion-gel interface at Vg < -0.5 V, which is commensurate with the negative transconductance seen in transistor measurements.

  4. Evaluation of Intrinsic Charge Carrier Transport at Insulator-Semiconductor Interfaces Probed by a Non-Contact Microwave-Based Technique

    PubMed Central

    Honsho, Yoshihito; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Seki, Shu

    2013-01-01

    We have successfully designed the geometry of the microwave cavity and the thin metal electrode, achieving resonance of the microwave cavity with the metal-insulator-semiconductor (MIS) device structure. This very simple MIS device operates in the cavity, where charge carriers are injected quantitatively by an applied bias at the insulator-semiconductor interface. The local motion of the charge carriers was clearly probed through the applied external microwave field, also giving the quantitative responses to the injected charge carrier density and charge/discharge characteristics. By means of the present measurement system named field-induced time-resolved microwave conductivity (FI-TRMC), the pentacene thin film in the MIS device allowed the evaluation of the hole and electron mobility at the insulator-semiconductor interface of 6.3 and 0.34 cm2 V−1 s−1, respectively. This is the first report on the direct, intrinsic, non-contact measurement of charge carrier mobility at interfaces that has been fully experimentally verified. PMID:24212382

  5. Extrinsic photoresponse enhancement under additional intrinsic photoexcitation in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kounavis, P., E-mail: pkounavis@upatras.gr

    2016-06-28

    Dual light beam photoresponse experiments are employed to explore the photoresponse under simultaneous extrinsic and intrinsic photoexcitation of organic semiconductors. The photoresponse of a red modulated light extrinsic photoexcitation is found that can be significantly enhanced under an additional blue bias-light intrinsic photoexcitation in two terminal pentacene films on glass substrates. From the frequency resolved photoresponse, it is deduced that the phenomenon of photoresponse enhancement can be attributed to an increase in the extrinsic photogeneration rate of the red modulated light and/or an improvement of the drift velocity of carriers under an additional blue light intrinsic photoexcitation. The possible predominantmore » extrinsic photogeneration mechanism, which can be compatible with the observed dependence of the photoresponse enhancement on the frequency and on the light intensities of the red and blue light excitation, is the singlet exciton dissociation through electron transfer to acceptor-like traps. Moreover, an improvement in the drift velocity of carriers traversing grain boundaries with potential energy barriers, which may be reduced by trapping of minority carriers created from the intrinsic photoexcitation, may partly contribute to the photoresponse enhancement.« less

  6. Photogenerated Intrinsic Free Carriers in Small-molecule Organic Semiconductors Visualized by Ultrafast Spectroscopy

    PubMed Central

    He, Xiaochuan; Zhu, Gangbei; Yang, Jianbing; Chang, Hao; Meng, Qingyu; Zhao, Hongwu; Zhou, Xin; Yue, Shuai; Wang, Zhuan; Shi, Jinan; Gu, Lin; Yan, Donghang; Weng, Yuxiang

    2015-01-01

    Confirmation of direct photogeneration of intrinsic delocalized free carriers in small-molecule organic semiconductors has been a long-sought but unsolved issue, which is of fundamental significance to its application in photo-electric devices. Although the excitonic description of photoexcitation in these materials has been widely accepted, this concept is challenged by recently reported phenomena. Here we report observation of direct delocalized free carrier generation upon interband photoexcitation in highly crystalline zinc phthalocyanine films prepared by the weak epitaxy growth method using ultrafast spectroscopy. Transient absorption spectra spanning the visible to mid-infrared region revealed the existence of short-lived free electrons and holes with a diffusion length estimated to cross at least 11 molecules along the π−π stacking direction that subsequently localize to form charge transfer excitons. The interband transition was evidenced by ultraviolet-visible absorption, photoluminescence and electroluminescence spectroscopy. Our results suggest that delocalized free carriers photogeneration can also be achieved in organic semiconductors when the molecules are packed properly. PMID:26611323

  7. Dual passivation of intrinsic defects at the compound semiconductor/oxide interface using an oxidant and a reductant.

    PubMed

    Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C

    2015-05-26

    Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

  8. All-semiconductor metamaterial-based optical circuit board at the microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less

  9. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  10. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.

    PubMed

    Hlaing, Htay; Kim, Chang-Hyun; Carta, Fabio; Nam, Chang-Yong; Barton, Rob A; Petrone, Nicholas; Hone, James; Kymissis, Ioannis

    2015-01-14

    The vertical integration of graphene with inorganic semiconductors, oxide semiconductors, and newly emerging layered materials has recently been demonstrated as a promising route toward novel electronic and optoelectronic devices. Here, we report organic thin film transistors based on vertical heterojunctions of graphene and organic semiconductors. In these thin heterostructure devices, current modulation is accomplished by tuning of the injection barriers at the semiconductor/graphene interface with the application of a gate voltage. N-channel devices fabricated with a thin layer of C60 show a room temperature on/off ratio >10(4) and current density of up to 44 mAcm(-2). Because of the ultrashort channel intrinsic to the vertical structure, the device is fully operational at a driving voltage of 200 mV. A complementary p-channel device is also investigated, and a logic inverter based on two complementary transistors is demonstrated. The vertical integration of graphene with organic semiconductors via simple, scalable, and low-temperature fabrication processes opens up new opportunities to realize flexible, transparent organic electronic, and optoelectronic devices.

  11. Thiophene-Based Organic Semiconductors.

    PubMed

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-10-24

    Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).

  12. Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.

    PubMed

    Trung, Tran Quang; Lee, Nae-Eung

    2017-01-01

    Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non-stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field-effect transistors (FETs), photodetectors, light-emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.

    PubMed

    Pang, Hong; Masuda, Takuya; Ye, Jinhua

    2018-01-18

    The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state-of-the-art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bipolar magnetic semiconductor in silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Farghadan, Rouhollah

    2017-08-01

    A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green's function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  15. Thienoacene-based organic semiconductors.

    PubMed

    Takimiya, Kazuo; Shinamura, Shoji; Osaka, Itaru; Miyazaki, Eigo

    2011-10-11

    Thienoacenes consist of fused thiophene rings in a ladder-type molecular structure and have been intensively studied as potential organic semiconductors for organic field-effect transistors (OFETs) in the last decade. They are reviewed here. Despite their simple and similar molecular structures, the hitherto reported properties of thienoacene-based OFETs are rather diverse. This Review focuses on four classes of thienoacenes, which are classified in terms of their chemical structures, and elucidates the molecular electronic structure of each class. The packing structures of thienoacenes and the thus-estimated solid-state electronic structures are correlated to their carrier transport properties in OFET devices. With this perspective of the molecular structures of thienoacenes and their carrier transport properties in OFET devices, the structure-property relationships in thienoacene-based organic semiconductors are discussed. The discussion provides insight into new molecular design strategies for the development of superior organic semiconductors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.

    PubMed

    Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu

    2017-05-24

    Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.

  17. Intrinsic delay of permeable base transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wenchao; Guo, Jing; So, Franky

    2014-07-28

    Permeable base transistors (PBTs) fabricated by vacuum deposition or solution process have the advantages of easy fabrication and low power operation and are a promising device structure for flexible electronics. Intrinsic delay of PBT, which characterizes the speed of the transistor, is investigated by solving the three-dimensional Poisson equation and drift-diffusion equation self-consistently using finite element method. Decreasing the emitter thickness lowers the intrinsic delay by improving on-current, and a thinner base is also preferred for low intrinsic delay because of fewer carriers in the base region at off-state. The intrinsic delay exponentially decreases as the emitter contact Schottky barriermore » height decreases, and it linearly depends on the carrier mobility. With an optimized emitter contact barrier height and device geometry, a sub-nano-second intrinsic delay can be achieved with a carrier mobility of ∼10 cm{sup 2}/V/s obtainable in solution processed indium gallium zinc oxide, which indicates the potential of solution processed PBTs for GHz operations.« less

  18. Organic semiconductor crystals.

    PubMed

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  19. Thiazole-based organic semiconductors for organic electronics.

    PubMed

    Lin, Yuze; Fan, Haijun; Li, Yongfang; Zhan, Xiaowei

    2012-06-19

    Over the past two decades, organic semiconductors have been the subject of intensive academic and commercial interests. Thiazole is a common electron-accepting heterocycle due to electron-withdrawing nitrogen of imine (C=N), several moieties based on thiazole have been widely introduced into organic semiconductors, and yielded high performance in organic electronic devices. This article reviews recent developments in the area of thiazole-based organic semiconductors, particularly thiazole, bithiazole, thiazolothiazole and benzobisthiazole-based small molecules and polymers, for applications in organic field-effect transistors, solar cells and light-emitting diodes. The remaining problems and challenges, and the key research direction in near future are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGES

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  1. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  2. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  3. Light sources based on semiconductor current filaments

    DOEpatents

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  4. Tantalum-based semiconductors for solar water splitting.

    PubMed

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  5. Anisotropy-based crystalline oxide-on-semiconductor material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  6. Thin film solar cell including a spatially modulated intrinsic layer

    DOEpatents

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  7. ZnSe based semiconductor core-shell structures: From preparation to application

    NASA Astrophysics Data System (ADS)

    Sun, Chengcheng; Gu, Yarong; Wen, Weijia; Zhao, Lijuan

    2018-07-01

    Inorganic core-shell semiconductor materials have attracted increasing interest in recent years because of the unique structure, stable chemical properties and high performance in devices. With special properties such as a direct band-gap and excellent photoelectrical characteristics, ZnSe based semiconductor core-shell structures are promising materials for applications in such fields as photocatalysts, light-emitting diodes, solar cells, photodetectors, biomedical science and so on. However, few reviews on ZnSe based semiconductor core-shell structures have been reported so far. Therefore this manuscript mainly focuses on the research activities on ZnSe based semiconductor core-shell composites including various preparation methods and the applications of these core-shell structures, especially in photocatalysts, light emitting, solar cells and photodetectors. The possibilities and limitations of studies on ZnSe based semiconductor core-shell composites are also highlighted.

  8. Optical Biosensors Based on Semiconductor Nanostructures

    PubMed Central

    Martín-Palma, Raúl J.; Manso, Miguel; Torres-Costa, Vicente

    2009-01-01

    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented. PMID:22346691

  9. Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors

    DTIC Science & Technology

    2011-01-01

    Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors MATTHEW REASON,1 BRIAN R. BENNETT,1,2 RICHARD MAGNO,1 and J. BRAD BOOS1 1...2010 to 00-00-2010 4. TITLE AND SUBTITLE Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors 5a. CONTRACT NUMBER 5b. GRANT...Prescribed by ANSI Std Z39-18 EXPERIMENTAL PROCEDURES The samples reported in this work were grown by solid-source molecular - beam epitaxy (MBE) with

  10. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  11. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  12. Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy

    PubMed Central

    Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2014-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

  13. Hydrogen Sensors Using Nitride-Based Semiconductor Diodes: The Role of Metal/Semiconductor Interfaces

    PubMed Central

    Irokawa, Yoshihiro

    2011-01-01

    In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C–V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C–V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C–V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I–V) characterization, suggesting that low-frequency C–V method would be effective in detecting very low hydrogen concentrations. PMID:22346597

  14. Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics

    NASA Astrophysics Data System (ADS)

    Fukumura, T.; Yamada, Y.; Toyosaki, H.; Hasegawa, T.; Koinuma, H.; Kawasaki, M.

    2004-02-01

    A review is given for the recent progress of research in the field of oxide-based diluted magnetic semiconductor (DMS), which was triggered by combinatorial discovery of transparent ferromagnet. The possible advantages of oxide semiconductor as a host of DMS are described in comparison with conventional compound semiconductors. Limits and problems for identifying novel ferromagnetic DMS are described in view of recent reports in this field. Several characterization techniques are proposed in order to eliminate unidentified ferromagnetism of oxide-based DMS unidentified ferromagnetic oxide (UFO). Perspectives and possible devices are also given.

  15. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.

    PubMed

    Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S

    2006-01-01

    Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.

  16. Noncontact, Electrode-free Capacitance/Voltage Measurement Based on General Theory of Metal-Oxide-Semiconductor (MOS) Structure

    NASA Astrophysics Data System (ADS)

    Sakai, Takamasa; Kohno, Motohiro; Hirae, Sadao; Nakatani, Ikuyoshi; Kusuda, Tatsufumi

    1993-09-01

    In this paper, we discussed a novel approach to semiconductor surface inspection, which is analysis using the C--V curve measured in a noncontact method by the metal-air-semiconductor (MAIS) technique. A new gap sensing method using the so-called Goos-Haenchen effect was developed to achieve the noncontact C--V measurement. The MAIS technique exhibited comparable sensitivity and repeatability to those of conventional C--V measurement, and hence, good reproducibility and resolution for quantifying the electrically active impurity on the order of 1× 109/cm2, which is better than most spectrometric techniques, such as secondary ion mass spectroscopy (SIMS), electron spectroscopy for chemical analysis (ESCA) and Auger electron spectrocopy (AES) which are time-consuming and destructive. This measurement without preparation of any electrical contact metal electrode suggested, for the first time, the possibility of measuring an intrinsic characteristic of the semiconductor surface, using the examples of a concrete examination.

  17. Creating semiconductor metafilms with designer absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate thatmore » near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.« less

  18. Lewis Acid-Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors.

    PubMed

    Randell, Nicholas M; Fransishyn, Kyle M; Kelly, Timothy L

    2017-07-26

    Low-band-gap organic semiconductors are important in a variety of organic electronics applications, such as organic photovoltaic devices, photodetectors, and field effect transistors. Building on our previous work, which introduced 7-azaisoindigo as an electron-deficient building block for the synthesis of donor-acceptor organic semiconductors, we demonstrate how Lewis acids can be used to further tune the energies of the frontier molecular orbitals. Coordination of a Lewis acid to the pyridinic nitrogen of 7-azaisoindigo greatly diminishes the electron density in the azaisoindigo π-system, resulting in a substantial reduction in the lowest unoccupied molecular orbital (LUMO) energy. This results in a smaller highest occupied molecular orbital-LUMO gap and shifts the lowest-energy electronic transition well into the near-infrared region. Both H + and BF 3 are shown to coordinate to azaisoindigo and affect the energy of the S 0 → S 1 transition. A combination of time-dependent density functional theory and UV/vis and 1 H NMR spectroscopic titrations reveal that when two azaisoindigo groups are present and high concentrations of acid are used, both pyridinic nitrogens bind Lewis acids. Importantly, we demonstrate that this acid-base chemistry can be carried out at the solid-vapor interface by exposing thin films of aza-substituted organic semiconductors to vapor-phase BF 3 ·Et 2 O. This suggests the possibility of using the BF 3 -bound 7-azaisoindigo-based semiconductors as n-type materials in various organic electronic applications.

  19. Intrinsic feature-based pose measurement for imaging motion compensation

    DOEpatents

    Baba, Justin S.; Goddard, Jr., James Samuel

    2014-08-19

    Systems and methods for generating motion corrected tomographic images are provided. A method includes obtaining first images of a region of interest (ROI) to be imaged and associated with a first time, where the first images are associated with different positions and orientations with respect to the ROI. The method also includes defining an active region in the each of the first images and selecting intrinsic features in each of the first images based on the active region. Second, identifying a portion of the intrinsic features temporally and spatially matching intrinsic features in corresponding ones of second images of the ROI associated with a second time prior to the first time and computing three-dimensional (3D) coordinates for the portion of the intrinsic features. Finally, the method includes computing a relative pose for the first images based on the 3D coordinates.

  20. Determination of intrinsic mobility of a bilayer oxide thin-film transistor by pulsed I-V method

    NASA Astrophysics Data System (ADS)

    Woo, Hyunsuk; Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2017-04-01

    Amorphous oxide semiconductor thin-film transistors (TFT) have been considered as outstanding switch devices owing to their high mobility. However, because of their amorphous channel material with a certain level of density of states, a fast transient charging effect in an oxide TFT occurs, leading to an underestimation of the mobility value. In this paper, the effects of the fast charging of high-performance bilayer oxide semiconductor TFTs on mobility are examined in order to determine an accurate mobility extraction method. In addition, an approach based on a pulse I D -V G measurement method is proposed to determine the intrinsic mobility value. Even with the short pulse I D -V G measurement, a certain level of fast transient charge trapping cannot be avoided as long as the charge-trap start time is shorter than the pulse rising time. Using a pulse-amplitude-dependent threshold voltage characterization method, we estimated a correction factor for the apparent mobility, thus allowing us to determine the intrinsic mobility.

  1. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  2. Tunnel based spin injection devices for semiconductor spintronics

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    This dissertation summarizes the work on spin-dependent electron transport and spin injection in tunnel based spintronic devices. In particular, it focuses on a novel three terminal hot electron device combining ferromagnetic metals and semiconductors---the magnetic tunnel transistor (MTT). The MTT has extremely high magnetic field sensitivity and is a useful tool to explore spin-dependent electron transport in metals, semiconductors, and at their interfaces over a wide energy range. In Chap. 1, the basic concept and fabrication of the MTT are discussed. Two types of MTTs, with ferromagnetic single and spin-valve base layers, respectively, are introduced and compared. In the following chapters, the transport properties of the MTT are discussed in detail, including the spin-dependent hot electron attenuation lengths in CoFe and NiFe thin films on GaAs (Chap. 2), the bias voltage dependence of the magneto-current (Chap. 3), the giant magneto-current effect in MTTs with a spin-valve base (Chap. 4), and the influence of non-magnetic seed layers on magneto-electronic properties of MTTs with a Si collector (Chap. 5). Chap. 6 concentrates on electrical injection of spin-polarized electrons into semiconductors, which is an essential ingredient in semiconductor spintronics. Two types of spin injectors are discussed: an MTT injector and a CoFe/MgO tunnel injector. The spin polarization of the injected electron current is detected optically by measuring the circular polarization of electroluminescence from a quantum well light emitting diode. Using an MTT injector a spin polarization of ˜10% is found for injection electron energy of ˜2 eV at 1.4K. This moderate spin polarization is most likely limited by significant electron spin relaxation at high energy. Much higher spin injection efficiency is obtained by using a CoFe/MgO tunnel injector with spin polarization values of ˜50% at 100K. The temperature and bias dependence of the electroluminescence polarization provides

  3. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Matsui, Hiroyuki; Kubo, Takayoshi; Häusermann, Roger; Mitsui, Chikahiko; Okamoto, Toshihiro; Watanabe, Shun; Takeya, Jun

    2017-10-01

    Coherent charge transport can occur in organic semiconductor crystals thanks to the highly periodic electrostatic potential--despite the weak van der Waals bonds. And as spin-orbit coupling is usually weak in organic materials, robust spin transport is expected, which is essential if they are to be exploited for spintronic applications. In such systems, momentum relaxation occurs via scattering events, which enables an intrinsic mobility to be defined for band-like charge transport, which is >10 cm2 V-1 s-1. In contrast, there are relatively few experimental studies of the intrinsic spin relaxation for organic band-transport systems. Here, we demonstrate that the intrinsic spin relaxation in organic semiconductors is also caused by scattering events, with much less frequency than the momentum relaxation. Magnetotransport measurements and electron spin resonance spectroscopy consistently show a linear relationship between the two relaxation times over a wide temperature range, clearly manifesting the Elliott-Yafet type of spin relaxation mechanism. The coexistence of an ultra-long spin lifetime of milliseconds and the coherent band-like transport, resulting in a micrometre-scale spin diffusion length, constitutes a key step towards realizing spintronic devices based on organic single crystals.

  4. Plasmon-induced carrier polarization in semiconductor nanocrystals.

    PubMed

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V

    2018-06-01

    Spintronics 1 and valleytronics 2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals 3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In 2 O 3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes 11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  5. Plasmon-induced carrier polarization in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.

    2018-06-01

    Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  6. High-mobility pyrene-based semiconductor for organic thin-film transistors.

    PubMed

    Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee

    2013-05-01

    Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.

  7. Properties of a vector soliton laser passively mode-locked by a fiber-based semiconductor saturable absorber operating in transmission

    NASA Astrophysics Data System (ADS)

    Ouyang, Chunmei; Wang, Honghai; Shum, Ping; Fu, Songnian; Wong, Jia Haur; Wu, Kan; Lim, Desmond Rodney Chin Siong; Wong, Vincent Kwok Huei; Lee, Kenneth Eng Kian

    2011-01-01

    We experimentally demonstrate a passively mode-locked fiber laser employing a fiber-based semiconductor saturable absorber (SSA) operating in transmission. Polarization rotation locked vector solitons are observed in the laser. Due to the intrinsic dynamic feature of the laser, period-doubling of these vector solitons has also been observed. Furthermore, extra spectral sidebands are formed on the optical spectrum, caused by the energy exchange between the two orthogonal polarization components of the vector solitons. By careful reduction of the pump power together with fine adjustment to the cavity birefringence, period-one state can further be obtained. Additionally, the phase noise properties of the vector soliton fiber laser have also been characterized experimentally and analytically.

  8. External control of semiconductor nanostructure lasers

    NASA Astrophysics Data System (ADS)

    Naderi, Nader A.

    2011-12-01

    Novel semiconductor nanostructure laser diodes such as quantum-dot and quantum-dash are key optoelectronic candidates for many applications such as data transmitters in ultra fast optical communications. This is mainly due to their unique carrier dynamics compared to conventional quantum-well lasers that enables their potential for high differential gain and modified linewidth enhancement factor. However, there are known intrinsic limitations associated with semiconductor laser dynamics that can hinder the performance including the mode stability, spectral linewidth, and direct modulation capabilities. One possible method to overcome these limitations is through the use of external control techniques. The electrical and/or optical external perturbations can be implemented to improve the parameters associated with the intrinsic laser's dynamics, such as threshold gain, damping rate, spectral linewidth, and mode selectivity. In this dissertation, studies on the impact of external control techniques through optical injection-locking, optical feedback and asymmetric current bias control on the overall performance of the nanostructure lasers were conducted in order to understand the associated intrinsic device limitations and to develop strategies for controlling the underlying dynamics to improve laser performance. In turn, the findings of this work can act as a guideline for making high performance nanostructure lasers for future ultra fast data transmitters in long-haul optical communication systems, and some can provide an insight into making a compact and low-cost terahertz optical source for future implementation in monolithic millimeter-wave integrated circuits.

  9. Semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  10. Progress in ion torrent semiconductor chip based sequencing.

    PubMed

    Merriman, Barry; Rothberg, Jonathan M

    2012-12-01

    In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.

    PubMed

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-10-27

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures.

  12. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures

    PubMed Central

    Lee, Jae Yoon; Shin, Jun-Hwan; Lee, Gwan-Hyoung; Lee, Chul-Ho

    2016-01-01

    Two-dimensional (2D) semiconductors such as transition metal dichalcogenides (TMDCs) and black phosphorous have drawn tremendous attention as an emerging optical material due to their unique and remarkable optical properties. In addition, the ability to create the atomically-controlled van der Waals (vdW) heterostructures enables realizing novel optoelectronic devices that are distinct from conventional bulk counterparts. In this short review, we first present the atomic and electronic structures of 2D semiconducting TMDCs and their exceptional optical properties, and further discuss the fabrication and distinctive features of vdW heterostructures assembled from different kinds of 2D materials with various physical properties. We then focus on reviewing the recent progress on the fabrication of 2D semiconductor optoelectronic devices based on vdW heterostructures including photodetectors, solar cells, and light-emitting devices. Finally, we highlight the perspectives and challenges of optoelectronics based on 2D semiconductor heterostructures. PMID:28335321

  13. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    PubMed

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  14. Method of plasma etching Ga-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  15. Theory of extrinsic and intrinsic heterojunctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Ross, O.

    1980-01-01

    A careful analysis of an abrupt heterojunction consisting of two distinct semiconductors either intrinsic or extrinsic is presented. The calculations apply to a one-dimensional, nondegenerate structure. Taking into account all appropriate boundary conditions, it is shown that the intrinsic Fermi level shows a discontinuity at the interface between the two materials which leads to a discontinuity of the valence band edge equal to the difference in the band gap energies of the two materials. The conduction band edge stays continuous however. This result is independent of possible charged interface states and in sharp contrast to the Anderson model. The reasons for this discrepancy are discussed.

  16. Uniform Doping in Quantum-Dots-Based Dilute Magnetic Semiconductor.

    PubMed

    Saha, Avijit; Shetty, Amitha; Pavan, A R; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani

    2016-07-07

    Effective manipulation of magnetic spin within a semiconductor leading to a search for ferromagnets with semiconducting properties has evolved into an important field of dilute magnetic semiconductors (DMS). Although a lot of research is focused on understanding the still controversial origin of magnetism, efforts are also underway to develop new materials with higher magnetic temperatures for spintronics applications. However, so far, efforts toward quantum-dots(QDs)-based DMS materials are plagued with problems of phase separation, leading to nonuniform distribution of dopant ions. In this work, we have developed a strategy to synthesize highly crystalline, single-domain DMS system starting from a small magnetic core and allowing it to diffuse uniformly inside a thick CdS semiconductor matrix and achieve DMS QDs. X-ray absorption fine structure (XAFS) spectroscopy and energy-dispersive X-ray spectroscopy-scanning transmission electron microscopy (STEM-EDX) indicates the homogeneous distribution of magnetic impurities inside the semiconductor QDs leading to superior magnetic property. Further, the versatility of this technique was demonstrated by obtaining ultra large particles (∼60 nm) with uniform doping concentration as well as demonstrating the high quality magnetic response.

  17. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    PubMed Central

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  18. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    DOEpatents

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  19. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    NASA Astrophysics Data System (ADS)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  20. Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y., E-mail: yu.feng@unsw.edu.au; Lin, S.; Huang, S.

    Despite that Tauc plot extrapolation has been widely adopted for extracting bandgap energies of semiconductors, there is a lack of theoretical support for applying it to nanocrystals. In this paper, direct-allowed optical transitions in semiconductor nanocrystals have been formulated based on a purely theoretical approach. This result reveals a size-dependant transition of the power factor used in Tauc plot, increasing from one half used in the 3D bulk case to one in the 0D case. This size-dependant intermediate value of power factor allows a better extrapolation of measured absorption data. Being a material characterization technique, the generalized Tauc extrapolation givesmore » a more reasonable and accurate acquisition of the intrinsic bandgap, while the unjustified purpose of extrapolating any elevated bandgap caused by quantum confinement is shown to be incorrect.« less

  1. Metrology-based control and profitability in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Weber, Charles

    2001-06-01

    This paper summarizes three studies of the semiconductor industry conducted at SEMATECH and MIT's Sloan School of Management. In conjunction they lead to the conclusion that rapid problem solving is an essential component of profitability in the semiconductor industry, and that metrology-based control is instrumental to rapid problem solving. The studies also identify the need for defect attribution. Once a source of a defect has been identified, the appropriate resources--human and technological--need to be brought into the physically optimal location for corrective action. The Internet is likely to enable effective defect attribution by inducing collaboration between different companies.

  2. High-temperature ferromagnetism in new n-type Fe-doped ferromagnetic semiconductor (In,Fe)Sb

    NASA Astrophysics Data System (ADS)

    Thanh Tu, Nguyen; Hai, Pham Nam; Anh, Le Duc; Tanaka, Masaaki

    2018-06-01

    Over the past two decades, intensive studies on various ferromagnetic semiconductor (FMS) materials have failed to realize reliable FMSs that have a high Curie temperature (T C > 300 K), good compatibility with semiconductor electronics, and characteristics superior to those of their nonmagnetic host semiconductors. Here, we demonstrate a new n-type Fe-doped narrow-gap III–V FMS, (In1‑ x ,Fe x )Sb. Its T C is unexpectedly high, reaching ∼335 K at a modest Fe concentration (x) of 16%. The anomalous Hall effect and magnetic circular dichroism (MCD) spectroscopy indicate that the high-temperature ferromagnetism in (In,Fe)Sb thin films is intrinsic and originates from the zinc-blende (In,Fe)Sb alloy semiconductor.

  3. Method of plasma etching GA-based compound semiconductors

    DOEpatents

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  4. The practice of problem-based investigative teaching reform in semiconductor physics course

    NASA Astrophysics Data System (ADS)

    Chen, Aiping; Wu, Gaojian; Gu, Dawei; Jiang, Hongying; Wang, Lei

    2017-08-01

    Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.

  5. Spin cat state generation for quadrupolar nuclei in semiconductor quantum dots or defect centers

    NASA Astrophysics Data System (ADS)

    Bulutay, Ceyhun

    Implementing spin-based quantum information encoding schemes in semiconductors has a high priority. The so-called cat codes offer a paradigm that enables hardware-efficient error correction. Their inauguration to semiconductor-based nuclear magnetic resonance framework hinges upon the realization of coherent spin states (CSS). In this work, we show how the crucial superpositions of CSS can be generated for the nuclear spins. This is through the intrinsic electric quadrupole interaction involving a critical role by the biaxiality term that is readily available, as in strained heterostructures of semiconductors, or defect centers having nearby quadrupolar spins. The persistence of the cat states is achieved using a rotation pulse so as to harness the underlying fixed points of the classical Hamiltonian. We classify the two distinct types as polar- and equator-bound over the Bloch sphere with respect to principal axes. Their optimal performance as well as sensitivity under numerous parameter deviations are analyzed. Finally, we present how these modulo-2 cat states can be extended to modulo-4 by a three-pulse scheme. This work was supported by TUBITAK, The Scientific and Technological Research Council of Turkey through the project No. 114F409.

  6. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  7. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  8. Plastic Deformation as a Means to Achieve Stretchable Polymer Semiconductors

    NASA Astrophysics Data System (ADS)

    O'Connor, Brendan

    Developing intrinsically stretchable semiconductors will seamlessly transition traditional devices into a stretchable platform. Polymer semiconductors are inherently soft materials due to the weak van der Waal intermolecular bonding allowing for flexible devices. However, these materials are not typically stretchable and when large strains are applied they either crack or plastically deform. Here, we study the use of repeated plastic deformation as a means of achieving stretchable films. In this talk, critical aspects of polymer semiconductor material selection, morphology and interface properties will be discussed that enable this approach of achieving stretchable films. We show that one can employ high performance donor-acceptor polymer semiconductors that are typically brittle through proper polymer blending to significantly increase ductility to achieve stretchable films. We demonstrate a polymer blend film that can be repeatedly deformed over 65%, while maintaining charge mobility consistently above 0.15 cm2/Vs. During the stretching process we show that the films follow a well-controlled repeated deformation pattern for over 100 stretching cycles.

  9. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp

    NASA Astrophysics Data System (ADS)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei

    2018-01-01

    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  10. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Zhang, Liping; Jaroniec, Mietek

    2018-02-01

    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  11. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    DOE PAGES

    Moody, Galan; Dass, Chandriker Kavir; Hao, Kai; ...

    2015-09-18

    In this paper, the band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe 2). The homogeneous linewidthmore » is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.« less

  12. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    PubMed Central

    Moody, Galan; Kavir Dass, Chandriker; Hao, Kai; Chen, Chang-Hsiao; Li, Lain-Jong; Singh, Akshay; Tran, Kha; Clark, Genevieve; Xu, Xiaodong; Berghäuser, Gunnar; Malic, Ermin; Knorr, Andreas; Li, Xiaoqin

    2015-01-01

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. PMID:26382305

  13. Extraordinary plasticity of an inorganic semiconductor in darkness.

    PubMed

    Oshima, Yu; Nakamura, Atsutomo; Matsunaga, Katsuyuki

    2018-05-18

    Inorganic semiconductors generally tend to fail in a brittle manner. Here, we report that extraordinary "plasticity" can take place in an inorganic semiconductor if the deformation is carried out "in complete darkness." Room-temperature deformation tests of zinc sulfide (ZnS) were performed under varying light conditions. ZnS crystals immediately fractured when they deformed under light irradiation. In contrast, it was found that ZnS crystals can be plastically deformed up to a deformation strain of ε t = 45% in complete darkness. In addition, the optical bandgap of the deformed ZnS crystals was distinctly decreased after deformation. These results suggest that dislocations in ZnS become mobile in complete darkness and that multiplied dislocations can affect the optical bandgap over the whole crystal. Inorganic semiconductors are not necessarily intrinsically brittle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Development of biosensors based on the one-dimensional semiconductor nanomaterials.

    PubMed

    Yan, Shancheng; Shi, Yi; Xiao, Zhongdang; Zhou, Minmin; Yan, Wenfu; Shen, Haoliang; Hu, Dong

    2012-09-01

    Biosensors are becoming increasingly important due to their applications in biological and chemical analyses, food safety industry, biomedical diagnostics, clinical detection, and environmental monitoring. Recent years, nanostructured semiconductor materials have been used to fabricate biosensors owing to their biocompatibility, low toxicity, high electron mobility, and easy fabrication. In the present study, we focus on recent various biosensors based on the one-dimensional semiconductor nanomaterials such as electrochemical biosensor, field-effect transistors biosensor, and label-free optical biosensor. In particular, the development of the electrochemical biosensor is discussed detailedly.

  15. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  16. Defect Tolerant Semiconductors for Solar Energy Conversion.

    PubMed

    Zakutayev, Andriy; Caskey, Christopher M; Fioretti, Angela N; Ginley, David S; Vidal, Julien; Stevanovic, Vladan; Tea, Eric; Lany, Stephan

    2014-04-03

    Defect tolerance is the tendency of a semiconductor to keep its properties despite the presence of crystallographic defects. Scientific understanding of the origin of defect tolerance is currently missing. Here we show that semiconductors with antibonding states at the top of the valence band are likely to be tolerant to defects. Theoretical calculations demonstrate that Cu3N with antibonding valence band maximum has shallow intrinsic defects and no surface states, in contrast to GaN with bonding valence band maximum. Experimental measurements indicate shallow native donors and acceptors in Cu3N thin films, leading to 10(16)-10(17) cm(-3) doping with either electrons or holes depending on the growth conditions. The experimentally measured bipolar doping and the solar-matched optical absorption onset (1.4 eV) make Cu3N a promising candidate absorber for photovoltaic and photoelectrochemical solar cells, despite the calculated indirect fundamental band gap (1.0 eV). These conclusions can be extended to other materials with antibonding character of the valence band, defining a class of defect-tolerant semiconductors for solar energy conversion applications.

  17. Hybrid Molecular and Spin-Semiconductor Based Research

    DTIC Science & Technology

    2005-02-02

    thick layers of low- temperature-grown (LTG) GaAs, i.e. GaAs grown at lower than normal substrate temperatures in a molecular beam epitaxy system...1999 – Oct.31, 2004 4. TITLE AND SUBTITLE Hybrid Molecular and Spin-Semiconductor Based research 5. FUNDING NUMBERS DAAD19-99-1-0198...spintronic devices. Thrust III is entitled “ Molecular Electronics” and its objective is to develop, characterize and model organic/inorganic

  18. Teacher and Student Intrinsic Motivation in Project-Based Learning

    ERIC Educational Resources Information Center

    Lam, Shui-fong; Cheng, Rebecca Wing-yi; Ma, William Y. K.

    2009-01-01

    In this study we examined the relationship between teacher and student intrinsic motivation in project-based learning. The participants were 126 Hong Kong secondary school teachers and their 631 students who completed evaluation questionnaires after a semester-long project-based learning program. Both teachers and students were asked to indicate…

  19. Thermodynamic properties of semiconductor compounds studied based on Debye-Waller factors

    NASA Astrophysics Data System (ADS)

    Van Hung, Nguyen; Toan, Nguyen Cong; Ba Duc, Nguyen; Vuong, Dinh Quoc

    2015-08-01

    Thermodynamic properties of semiconductor compounds have been studied based on Debye-Waller factors (DWFs) described by the mean square displacement (MSD) which has close relation with the mean square relative displacement (MSRD). Their analytical expressions have been derived based on the statistical moment method (SMM) and the empirical many-body Stillinger-Weber potentials. Numerical results for the MSDs of GaAs, GaP, InP, InSb, which have zinc-blende structure, are found to be in reasonable agreement with experiment and other theories. This paper shows that an elements value for MSD is dependent on the binary semiconductor compound within which it resides.

  20. Mn-based ferromagnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz; Sawicki, Maciej

    2003-07-01

    The present status of research and prospects for device applications of ferromagnetic (diluted magnetic) semiconductors (DMS) is presented. We review the nature of the electronic states and the mechanisms of the carrier-mediated exchange interactions (mean-field Zener model) in p-type Mn-based III-V and II-VI compounds, highlighting a good correspondence of experimental findings and theoretical predictions. An account of the latest progress on the road of increasing the Currie point to above the room temperature is given for both families of compounds. We comment on a possibility of obtaining ferromagnetism in n-type materials, taking (Zn,Mn)O:Al as the example. Concerning technologically important issue of easy axis and domain engineering, we present theoretical predictions and experimental results on the temperature and carrier concentration driven change of magnetic anisotropy in (Ga,Mn)As.

  1. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agio, Mario

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group.more » The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.« less

  2. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  3. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  4. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  5. Spin manipulation with magnetic semiconductor barriers.

    PubMed

    Miao, Guo-Xing; Moodera, Jagadeesh S

    2015-01-14

    Magnetic semiconductors are a class of materials with special spin-filtering capabilities with magnetically tunable energy gaps. Many of these materials also possess another intrinsic property: indirect exchange interaction between the localized magnetic moments and the adjacent free electrons, which manifests as an extremely large effective magnetic field applying only on the spin degrees of freedom of the free electrons. Novel device concepts can be created by taking advantage of these properties. We discuss in the article the basic principles of these phenomena, and potential ways of applying them in constructing spintronic devices.

  6. Spin-dependent transport phenomena in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.

    Thin-film organic semiconductors transport can have an anomalously high sensitivity to low magnetic fields. Such a response is unexpected considering that thermal fluctuation energies are greater than the energy associated with the intrinsic spin of charge carriers at a modest magnetic field of 100 Oe by a factor of more than 104 at room temperature and is still greater by 102 even at liquid helium temperatures. Nevertheless, we report experimental characterization of (1) spin-dependent injection, detection and transport of spin-polarized current through organic semiconductors and (2) the influence of a magnetic field on the spin dynamics of recombination-limited transport. The first focus of this work was accomplished by fabricating basic spin-valve devices consisting of two magnetic layers spatially separated by a nonmagnetic organic semiconductor. The spin-valve effect is a change in electrical resistance due to the magnetizations of the magnetic layers changing from parallel to antiparallel alignment, or vice versa. The conductivities of the metallic contacts and that of the semiconductor differed by many orders of magnitude, which inhibited the injection of a spin-polarized current from the magnet into the nonmagnet. We successfully overcame the problem of conductivity mismatch by inserting ultra-thin tunnel barriers at the metal/semiconductor interfaces which aided in yielding a ˜20% spin-valve effect at liquid helium temperatures and the effect persisted up to 150 K. We built on this achievement by constructing spin valves where one of the metallic contacts was replaced by the organic-based magnetic semiconductor vanadium tetracyanoethylene (V[TCNE]2). At 10 K these devices produced the switching behavior of the spin-valve effect. The second focus of this work was the bulk magnetoresistance (MR) of small molecule, oligomer and polymer organic semiconductors in thin-film structures. At room temperature the resistance can change up to 8% at 100 Oe and 15% at

  7. Incremental learning of skill collections based on intrinsic motivation

    PubMed Central

    Metzen, Jan H.; Kirchner, Frank

    2013-01-01

    Life-long learning of reusable, versatile skills is a key prerequisite for embodied agents that act in a complex, dynamic environment and are faced with different tasks over their lifetime. We address the question of how an agent can learn useful skills efficiently during a developmental period, i.e., when no task is imposed on him and no external reward signal is provided. Learning of skills in a developmental period needs to be incremental and self-motivated. We propose a new incremental, task-independent skill discovery approach that is suited for continuous domains. Furthermore, the agent learns specific skills based on intrinsic motivation mechanisms that determine on which skills learning is focused at a given point in time. We evaluate the approach in a reinforcement learning setup in two continuous domains with complex dynamics. We show that an intrinsically motivated, skill learning agent outperforms an agent which learns task solutions from scratch. Furthermore, we compare different intrinsic motivation mechanisms and how efficiently they make use of the agent's developmental period. PMID:23898265

  8. Topology-based modeling of intrinsically disordered proteins: balancing intrinsic folding and intermolecular interactions.

    PubMed

    Ganguly, Debabani; Chen, Jianhan

    2011-04-01

    Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general. Copyright © 2011 Wiley-Liss, Inc.

  9. Gold-reflector-based semiconductor saturable absorber mirror for femtosecond mode-locked Cr4+:YAG lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Nakagawa, T.; Torizuka, K.; Sugaya, T.; Kobayashi, K.

    We developed a gold reflector based semiconductor saturable absorber mirror that has a sufficiently high reflectivity and a broad bandwidth and has been used to initiate the mode locking in a Cr4+:YAG laser. The laser achieved a similar efficiency to the lasers with Bragg-reflector-based semiconductor saturable absorber mirrors, but delivered a much broader spectrum and a shorter pulse.

  10. A microprocessor based on a two-dimensional semiconductor

    NASA Astrophysics Data System (ADS)

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-04-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  11. A microprocessor based on a two-dimensional semiconductor.

    PubMed

    Wachter, Stefan; Polyushkin, Dmitry K; Bethge, Ole; Mueller, Thomas

    2017-04-11

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor-molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.

  12. Microsensors based on GaN semiconductors covalently functionalized with luminescent Ru(II) complexes.

    PubMed

    López-Gejo, Juan; Arranz, Antonio; Navarro, Alvaro; Palacio, Carlos; Muñoz, Elías; Orellana, Guillermo

    2010-02-17

    Covalent tethering of a Ru(II) dye to gallium nitride surfaces has been accomplished as a key step in the development of innovative sensing devices in which the indicator support (semiconductor) plays the role of both support and excitation source. Luminescence emission decays and time-resolved emission spectra confirm the presence of the dye on the semiconductor surfaces, while X-ray photoelectron spectroscopy proves its covalent bonding. The O(2) sensitivity of the new device is comparable to those of other ruthenium-based sensor systems. This achievement paves the way to a new generation of integrable ultracompact microsensors that combine semiconductor emitter-probe assemblies.

  13. Ab initio description of the diluted magnetic semiconductor Ga1-xMnxAs: Ferromagnetism, electronic structure, and optical response

    NASA Astrophysics Data System (ADS)

    Craco, L.; Laad, M. S.; Müller-Hartmann, E.

    2003-12-01

    Motivated by a study of various experiments describing the electronic and magnetic properties of the diluted magnetic semiconductor Ga1-xMnxAs, we investigate its physical response in detail using a combination of first-principles band structure with methods based on dynamical mean field theory to incorporate strong, dynamical correlations, and intrinsic as well as extrinsic disorder in one single theoretical picture. We show how ferromagnetism is driven by double exchange (DE), in agreement with very recent observations, along with a good quantitative description of the details of the electronic structure, as probed by scanning tunneling microscopy and optical conductivity. Our results show how ferromagnetism can be driven by DE even in diluted magnetic semiconductors with small carrier concentration.

  14. Graphene-based half-metal and spin-semiconductor for spintronic applications.

    PubMed

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-31

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.

  15. Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2017-05-01

    Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.

  16. Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation

    DOE PAGES

    Lichterman, Michael F.; Sun, Ke; Hu, Shu; ...

    2015-10-25

    Small-band-gap (E g < 2 eV) semiconductors must be stabilized for use in integrated devices that convert solar energy into the bonding energy of a reduced fuel, specifically H 2 (g) or a reduced-carbon species such as CH 3 OH or CH 4 . To sustainably and scalably complete the fuel cycle, electrons must be liberated through the oxidation of water to O 2 (g). Strongly acidic or strongly alkaline electrolytes are needed to enable efficient and intrinsically safe operation of a full solar-driven water-splitting system. But, under water-oxidation conditions, the small-band-gap semiconductors required for efficient cell operation aremore » unstable, either dissolving or forming insulating surface oxides. Here, we describe herein recent progress in the protection of semiconductor photoanodes under such operational conditions. We specifically describe the properties of two protective overlayers, TiO 2 /Ni and NiO x , both of which have demonstrated the ability to protect otherwise unstable semiconductors for > 100 h of continuous solar-driven water oxidation when in contact with a highly alkaline aqueous electrolyte (1.0 M KOH(aq)). Furthermore, the stabilization of various semiconductor photoanodes is reviewed in the context of the electronic characteristics and a mechanistic analysis of the TiO 2 films, along with a discussion of the optical, catalytic, and electronic nature of NiO x films for stabilization of semiconductor photoanodes for water oxidation.« less

  17. Design and simulation of a semiconductor chip-based visible - NIR spectrometer for Earth observation

    NASA Astrophysics Data System (ADS)

    Coote, J.; Woolliams, E.; Fox, N.; Goodyer, I. D.; Sweeney, S. J.

    2014-03-01

    We present the development of a novel semiconductor chip-based spectrometer for calibration of Earth observation instruments. The chip follows the Solo spectroscopy approach utilising an array of microdisk resonators evanescently coupled to a central waveguide. Each resonator is tuned to select out a specific wavelength from the incoming spectrum, and forms a p-i-n junction in which current is generated when light of the correct wavelength is present. In this paper we discuss important design aspects including the choice of semiconductor material, design of semiconductor quantum well structures for optical absorption, and design and optimisation of the waveguide and resonators.

  18. Intrinsic Charge Transport in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly

    2005-03-01

    Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).

  19. Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.

  20. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energymore » resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.« less

  1. Plasma Reflection in Multigrain Layers of Narrow-Bandgap Semiconductors

    NASA Astrophysics Data System (ADS)

    Zhukov, N. D.; Shishkin, M. I.; Rokakh, A. G.

    2018-04-01

    Qualitatively similar spectral characteristics of plasma-resonance reflection in the region of 15-25 μm were obtained for layers of electrodeposited submicron particles of InSb, InAs, and GaAs and plates of these semiconductors ground with M1-grade diamond powder. The most narrow-bandgap semiconductor InSb (intrinsic absorption edge ˜7 μm) is characterized by an absorption band at 2.1-2.3 μm, which is interpreted in terms of the model of optical excitation of electrons coupled by the Coulomb interaction. The spectra of a multigrain layer of chemically deposited PbS nanoparticles (50-70 nm) exhibited absorption maxima at 7, 10, and 17 μm, which can be explained by electron transitions obeying the energy-quantization rules for quantum dots.

  2. Mg2BIV: Narrow Bandgap Thermoelectric Semiconductors

    NASA Astrophysics Data System (ADS)

    Kim, Il-Ho

    2018-05-01

    Thermoelectric materials can convert thermal energy directly into electric energy and vice versa. The electricity generation from waste heat via thermoelectric devices can be considered as a new energy source. For instance, automotive exhaust gas and all industrial processes generate an enormous amount of waste heat that can be converted to electricity by using thermoelectric devices. Magnesium compound Mg2BIV (BIV = Si, Ge or Sn) has a favorable combination of physical and chemical properties and can be a good base for the development of new efficient thermoelectrics. Because they possess similar properties to those of group BIV elemental semiconductors, they have been recognized as good candidates for thermoelectric applications. Mg2Si, Mg2Ge and Mg2Sn with an antifluorite structure are narrow bandgap semiconductors with indirect band gaps of 0.77 eV, 0.74 eV, and 0.35 eV, respectively. Mg2BIV has been recognized as a promising material for thermoelectric energy conversion at temperatures ranging from 500 K to 800 K. Compared to other thermoelectric materials operating in the similar temperature range, such as PbTe and filled skutterudites, the important aspects of Mg2BIV are non-toxic and earth-abundant elements. Based on classical thermoelectric theory, the material factor β ( m* / m e)3/2μκ L -1 can be utilized as the criterion for thermoelectric material selection, where m* is the density-of-states effective mass, me is the mass of an electron, μ is the carrier mobility, and κL is the lattice thermal conductivity. The β for magnesium silicides is 14, which is very high compared to 0.8 for iron silicides, 1.4 for manganese silicides, and 2.6 for silicon-germanium alloys. In this paper, basic phenomena of thermoelectricity and transport parameters for thermoelectric materials were briefly introduced, and thermoelectric properties of Mg2BIV synthesized by using a solid-state reaction were reviewed. In addition, various Mg2BIV compounds were discussed

  3. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources

    PubMed Central

    Elia, Angela; Lugarà, Pietro Mario; Di Franco, Cinzia; Spagnolo, Vincenzo

    2009-01-01

    The paper provides an overview on the use of photoacoustic sensors based on semiconductor laser sources for the detection of trace gases. We review the results obtained using standard, differential and quartz enhanced photoacoustic techniques. PMID:22303143

  4. Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy.

    PubMed

    Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon

    2015-12-23

    We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.

  5. Organic Single-Crystal Semiconductor Films on a Millimeter Domain Scale.

    PubMed

    Kwon, Sooncheol; Kim, Jehan; Kim, Geunjin; Yu, Kilho; Jo, Yong-Ryun; Kim, Bong-Joong; Kim, Junghwan; Kang, Hongkyu; Park, Byoungwook; Lee, Kwanghee

    2015-11-18

    Nucleation and growth processes can be effectively controlled in organic semiconductor films through a new concept of template-mediated molecular crystal seeds during the phase transition; the effective control of these processes ensures millimeter-scale crystal domains, as well as the performance of the resulting organic films with intrinsic hole mobility of 18 cm(2) V(-1) s(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  7. Allotropes of Phosphorus with Remarkable Stability and Intrinsic Piezoelectricity

    NASA Astrophysics Data System (ADS)

    Li, Zhenqing; He, Chaoyu; Ouyang, Tao; Zhang, Chunxiao; Tang, Chao; Römer, Rudolf A.; Zhong, Jianxin

    2018-04-01

    We construct a class of two-dimensional (2D) phosphorus allotropes by assembling a previously proposed ultrathin metastable phosphorus nanotube into planar structures in different stacking orientations. Based on first-principles methods, the structures, stabilities, and fundamental electronic properties of these allotropes are systematically investigated. Our results show that these 2D van der Waals phosphorene allotropes possess remarkable stabilities due to the strong intertube van der Waals interactions, which cause an energy release of about 30 - 70 meV /atom , depending on their stacking details. Most of them are confirmed to be energetically more favorable than the experimentally viable α -P and β -P . Three of them, showing a relatively higher probability of being synthesized in the future, are further confirmed to be dynamically stable semiconductors with strain-tunable band gaps and intrinsic piezoelectricity, which may have potential applications in nanosized sensors, piezotronics, and energy harvesting in portable electronic nanodevices.

  8. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.

    PubMed

    He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel

    2018-05-30

    Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.

  9. Biasing, operation and parasitic current limitation in single device equivalent to CMOS, and other semiconductor systems

    DOEpatents

    Welch, James D.

    2003-09-23

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of applied gate voltage field induced carriers in essentially intrinsic, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at substantially equal doping levels, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at different doping levels, and containing a single metallurgical doping type, and functional combinations thereof. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents utilizing material(s) which form rectifying junctions with both N and P-type semiconductor whether metallurigically or field induced.

  10. Electrodes for Semiconductor Gas Sensors

    PubMed Central

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  11. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-01

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  12. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  13. On Practical Charge Injection at the Metal/Organic Semiconductor Interface

    PubMed Central

    Kumatani, Akichika; Li, Yun; Darmawan, Peter; Minari, Takeo; Tsukagoshi, Kazuhito

    2013-01-01

    We have revealed practical charge injection at metal and organic semiconductor interface in organic field effect transistor configurations. We have developed a facile interface structure that consisted of double-layer electrodes in order to investigate the efficiency through contact metal dependence. The metal interlayer with few nanometers thickness between electrode and organic semiconductor drastically reduces the contact resistance at the interface. The improvement has clearly obtained when the interlayer is a metal with lower standard electrode potential of contact metals than large work function of the contact metals. The electrode potential also implies that the most dominant effect on the mechanism at the contact interface is induced by charge transfer. This mechanism represents a step forward towards understanding the fundamental physics of intrinsic charge injection in all organic devices. PMID:23293741

  14. Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes

    PubMed Central

    Parker, Joel S.; Mullins, Michael; Cheang, Maggie C.U.; Leung, Samuel; Voduc, David; Vickery, Tammi; Davies, Sherri; Fauron, Christiane; He, Xiaping; Hu, Zhiyuan; Quackenbush, John F.; Stijleman, Inge J.; Palazzo, Juan; Marron, J.S.; Nobel, Andrew B.; Mardis, Elaine; Nielsen, Torsten O.; Ellis, Matthew J.; Perou, Charles M.; Bernard, Philip S.

    2009-01-01

    Purpose To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression–based “intrinsic” subtypes luminal A, luminal B, HER2-enriched, and basal-like. Methods A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen. Results The intrinsic subtypes as discrete entities showed prognostic significance (P = 2.26E-12) and remained significant in multivariable analyses that incorporated standard parameters (estrogen receptor status, histologic grade, tumor size, and node status). A prognostic model for node-negative breast cancer was built using intrinsic subtype and clinical information. The C-index estimate for the combined model (subtype and tumor size) was a significant improvement on either the clinicopathologic model or subtype model alone. The intrinsic subtype model predicted neoadjuvant chemotherapy efficacy with a negative predictive value for pCR of 97%. Conclusion Diagnosis by intrinsic subtype adds significant prognostic and predictive information to standard parameters for patients with breast cancer. The prognostic properties of the continuous risk score will be of value for the management of node-negative breast cancers. The subtypes and risk score can also be used to assess the likelihood of efficacy from neoadjuvant chemotherapy. PMID:19204204

  15. Fast optical detecting media based on semiconductor nanostructures for recording images obtained using charges of free photocarriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasherininov, P. G., E-mail: peter.kasherininov@mail.ioffe.ru; Tomasov, A. A.; Beregulin, E. V.

    2011-01-15

    Available published data on the properties of optical recording media based on semiconductor structures are reviewed. The principles of operation, structure, parameters, and the range of application for optical recording media based on MIS structures formed of photorefractive crystals with a thick layer of insulator and MIS structures with a liquid crystal as the insulator (the MIS LC modulators), as well as the effect of optical bistability in semiconductor structures (semiconductor MIS structures with nanodimensionally thin insulator (TI) layer, M(TI)S nanostructures). Special attention is paid to recording media based on the M(TI)S nanostructures promising for fast processing of highly informativemore » images and to fabrication of optoelectronic correlators of images for noncoherent light.« less

  16. Solution-Based 3D Printing of Polymers of Intrinsic Microporosity.

    PubMed

    Zhang, Fengyi; Ma, Yao; Liao, Jianshan; Breedveld, Victor; Lively, Ryan P

    2018-05-28

    Current additive manufacturing methods have significant limitations in the classes of compatible polymers. Many polymers of significant technological interest cannot currently be 3D printed. Here, a generalizable method for 3D printing of viscous tenary polymer solutions (polymer/solvent/nonsolvent) is applied to both "intrinsically porous" (a polymer of intrinsic microporosity, PIM-1) and "intrinsically nonporous" (cellulose acetate) polymers. Successful ternary ink formulations require balancing of solution thermodynamics (phase separation), mass transfer (solvent evaporation), and rheology. As a demonstration, a microporous polymer (PIM-1) incompatible with current additive manufacturing technologies is 3D printed into a high-efficiency mass transfer contactor exhibiting hierarchical porosity ranging from sub-nanometer to millimeter pores. Short contactors (1.27 cm) can fully purify (<1 ppm) toluene vapor (1000 ppm) in N 2 gas for 1.7 h, which is six times longer than PIM-1 in traditional structures, and more than 4000 times the residence time of gas in the contactor. This solution-based additive manufacturing approach greatly extends the range of 3D-printable materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  18. Intrinsic transmission magnetic circular dichroism spectra of GaMnAs

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    Transmission magnetic circular dichroism (MCD) spectroscopy has been widely used to reveal the spin-dependent band structure of ferromagnetic semiconductors. In these previous studies, some band pictures have been proposed from the spectral shapes observed in transmission MCD; however, extrinsic signals originating from optical interference have not been appropriately considered. In this study, we calculate the MCD spectra taking into account the optical interference of the layered structure of samples and show that the spectral shape of MCD is strongly influenced by optical interference. To correctly understand the transmission MCD, we also calculate the intrinsic MCD spectra of GaMnAs that are not influenced by the optical interference. The spectral shape of the intrinsic MCD can be explained by the characteristic band structure of GaMnAs, that is, the spin-polarized valence band and the impurity band existing above the valence band top.

  19. Roadmap on semiconductor-cell biointerfaces

    NASA Astrophysics Data System (ADS)

    Tian, Bozhi; Xu, Shuai; Rogers, John A.; Cestellos-Blanco, Stefano; Yang, Peidong; Carvalho-de-Souza, João L.; Bezanilla, Francisco; Liu, Jia; Bao, Zhenan; Hjort, Martin; Cao, Yuhong; Melosh, Nicholas; Lanzani, Guglielmo; Benfenati, Fabio; Galli, Giulia; Gygi, Francois; Kautz, Rylan; Gorodetsky, Alon A.; Kim, Samuel S.; Lu, Timothy K.; Anikeeva, Polina; Cifra, Michal; Krivosudský, Ondrej; Havelka, Daniel; Jiang, Yuanwen

    2018-05-01

    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.

  20. Extracting intrinsic functional networks with feature-based group independent component analysis.

    PubMed

    Calhoun, Vince D; Allen, Elena

    2013-04-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro

  1. Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang

    2002-12-01

    In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.

  2. THz semiconductor-based front-end receiver technology for space applications

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Siegel, Peter

    2004-01-01

    Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.

  3. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors

    PubMed Central

    Kim, Hae-Jin; Sim, Kyoseung; Thukral, Anish; Yu, Cunjiang

    2017-01-01

    A general strategy to impart mechanical stretchability to stretchable electronics involves engineering materials into special architectures to accommodate or eliminate the mechanical strain in nonstretchable electronic materials while stretched. We introduce an all solution–processed type of electronics and sensors that are rubbery and intrinsically stretchable as an outcome from all the elastomeric materials in percolated composite formats with P3HT-NFs [poly(3-hexylthiophene-2,5-diyl) nanofibrils] and AuNP-AgNW (Au nanoparticles with conformally coated silver nanowires) in PDMS (polydimethylsiloxane). The fabricated thin-film transistors retain their electrical performances by more than 55% upon 50% stretching and exhibit one of the highest P3HT-based field-effect mobilities of 1.4 cm2/V∙s, owing to crystallinity improvement. Rubbery sensors, which include strain, pressure, and temperature sensors, show reliable sensing capabilities and are exploited as smart skins that enable gesture translation for sign language alphabet and haptic sensing for robotics to illustrate one of the applications of the sensors. PMID:28913428

  4. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

    PubMed

    Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J

    2017-05-10

    Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

  5. All-optical XNOR/NOT logic gates and LATCH based on a reflective vertical cavity semiconductor saturable absorber.

    PubMed

    Pradhan, Rajib

    2014-06-10

    This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry-Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.

  6. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals

    DOE PAGES

    Kim, Jongwook; Agrawal, Ankit; Krieg, Franziska; ...

    2016-05-16

    Doped semiconductor nanocrystals are an emerging class of materials hosting localized surface plasmon resonance (LSPR) over a wide optical range. Studies so far have focused on tuning LSPR frequency by controlling the dopant and carrier concentrations in diverse semiconductor materials. However, the influence of anisotropic nanocrystal shape and of intrinsic crystal structure on LSPR remain poorly explored. Here, we illustrate how these two factors collaborate to determine LSPR characteristics in hexagonal cesium-doped tungsten oxide nanocrystals. The effect of shape anisotropy is systematically analyzed via synthetic control of nanocrystal aspect ratio (AR), from disks to nanorods. We demonstrate the dominant influencemore » of crystalline anisotropy, which uniquely causes strong LSPR band-splitting into two distinct peaks with comparable intensities. Modeling typically used to rationalize particle shape effects is refined by taking into account the anisotropic dielectric function due to crystalline anisotropy, thus fully accounting for the AR-dependent evolution of multiband LSPR spectra. Furthermore, this new insight into LSPR of semiconductor nanocrystals provides a novel strategy for an exquisite tuning of LSPR line shape.« less

  7. Structurally controllable spin spatial splitter in a hybrid ferromagnet and semiconductor nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Mao-Wang, E-mail: maowanglu@126.com; Cao, Xue-Li; Huang, Xin-Hong

    2014-05-07

    We theoretically investigate modulation of a tunable δ-potential to the lateral displacement of electrons across a magnetically modulated semiconductor nanostructure. Experimentally, this nanostructure can be produced by depositing a nanosized ferromagnetic stripe with in-plane magnetization on top of a semiconductor heterostructure, while the δ-potential can be realized by means of the atomic layer doping technique. Theoretical analysis reveals that this δ-doping can break the intrinsic symmetry in nanostructure and a considerable spin polarization in the lateral displacement will appear. Numerical calculations demonstrate that both magnitude and sign of spin polarization can be manipulated by changing the height and/or position ofmore » the δ-doping, giving rise to a structurally tunable spin spatial splitter.« less

  8. Numerical investigation of metal-semiconductor-insulator-semiconductor passivated hole contacts based on atomic layer deposited AlO x

    NASA Astrophysics Data System (ADS)

    Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.

  9. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    PubMed Central

    Long, Rathnait D.; McIntyre, Paul C.

    2012-01-01

    The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  10. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  11. Diode having trenches in a semiconductor region

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  12. Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates

    DOEpatents

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  13. Intrinsic quantum anomalous hall effect in a two-dimensional anilato-based lattice.

    PubMed

    Ni, Xiaojuan; Jiang, Wei; Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-06-13

    Using first-principles calculations, we predict an intrinsic quantum anomalous Hall (QAH) state in a monolayer anilato-based metal-organic framework M2(C6O4X2)3 (M = Mn and Tc, X = F, Cl, Br and I). The spin-orbit coupling of M d orbitals opens a nontrivial band gap up to 18 meV at the Dirac point. The electron counting rule is used to explain the intrinsic nature of the QAH state. The calculated nonzero Chern number, gapless edge states and quantized Hall conductance all confirm the nontrivial topological properties in the anilato-based lattice. Our findings provide an organic materials platform for the realization of the QAH effect without the need for magnetic and charge doping, which are highly desirable for the development of low-energy-consumption spintronic devices.

  14. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen Edward [Pinole, CA; Bourret-Courchesne, Edith [Berkeley, CA; Weber, Marvin J [Danville, CA; Klintenberg, Mattias K [Berkeley, CA

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  15. Codoped direct-gap semiconductor scintillators

    DOEpatents

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  16. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires.

    PubMed

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-22

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  17. An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films.

    PubMed

    Wang, Zi; Huang, Lizhen; Zhu, Xiaofei; Zhou, Xu; Chi, Lifeng

    2017-10-01

    Organic semiconductor gas sensor is one of the promising candidates of room temperature operated gas sensors with high selectivity. However, for a long time the performance of organic semiconductor sensors, especially for the detection of oxidizing gases, is far behind that of the traditional metal oxide gas sensors. Although intensive attempts have been made to address the problem, the performance and the understanding of the sensing mechanism are still far from sufficient. Herein, an ultrasensitive organic semiconductor NO 2 sensor based on 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-petacene) is reported. The device achieves a sensitivity over 1000%/ppm and fast response/recovery, together with a low limit of detection (LOD) of 20 ppb, all of which reach the level of metal oxide sensors. After a comprehensive analysis on the morphology and electrical properties of the organic films, it is revealed that the ultrahigh performance is largely related to the film charge transport ability, which was less concerned in the studies previously. And the combination of efficient charge transport and low original charge carrier concentration is demonstrated to be an effective access to obtain high performance organic semiconductor gas sensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device

    NASA Astrophysics Data System (ADS)

    Meena, Bharat Lal; Singh, Pankaj; Sah, Amar Nath; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima

    2018-01-01

    An in-house fabricated portable device has been tested to detect cervical precancer through the intrinsic fluorescence from human cervix of the whole uterus in a clinical setting. A previously validated technique based on simultaneously acquired polarized fluorescence and polarized elastic scattering spectra from a turbid medium is used to extract the intrinsic fluorescence. Using a diode laser at 405 nm, intrinsic fluorescence of flavin adenine dinucleotide, which is the dominant fluorophore and other contributing fluorophores in the epithelium of cervical tissue, has been extracted. Different grades of cervical precancer (cervical intraepithelial neoplasia; CIN) have been discriminated using principal component analysis-based Mahalanobis distance and linear discriminant analysis. Normal, CIN I and CIN II samples have been discriminated from one another with high sensitivity and specificity at 95% confidence level. This ex vivo study with cervix of whole uterus samples immediately after hysterectomy in a clinical environment indicates that the in-house fabricated portable device has the potential to be used as a screening tool for in vivo precancer detection using intrinsic fluorescence.

  19. Room-temperature ductile inorganic semiconductor.

    PubMed

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag 2 S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  20. Room-temperature ductile inorganic semiconductor

    NASA Astrophysics Data System (ADS)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  1. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOEpatents

    Yang, Peidong [El Cerrito, CA; Choi, Heonjin [Seoul, KR; Lee, Sangkwon [Daejeon, KR; He, Rongrui [Albany, CA; Zhang, Yanfeng [El Cerrito, CA; Kuykendal, Tevye [Berkeley, CA; Pauzauskie, Peter [Berkeley, CA

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  2. Mechanical properties of organic semiconductors for mechanically stable and intrinsically stretchable solar cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lipomi, Darren J.

    2016-09-01

    This presentation describes my group's efforts to understand the molecular and microstructural basis for the mechanical properties of organic semiconductors for organic photovoltaic (OPV) devices. Our work is motivated by two goals. The first goal is to mitigate mechanical forms of degradation of printed modules during roll-to-roll fabrication, installation, and environmental forces—i.e., wind, rain, snow, and thermal expansion and contraction. Mechanical stability is a prerequisite for inexpensive processing on flexible substrates: to encapsulate devices in glass is to surrender this advantage. The second goal is to enable the next generation of ultra-flexible and stretchable solar cells for collapsible, portable, and wearable applications, and as low-cost sources of energy—"solar tarps"—for disaster relief and for the developing world. It may seem that organic semiconductors, due to their carbon framework, are already sufficiently compliant for these applications. We have found, however, that the mechanical properties (stiffness and brittleness) occupy a wide range of values, and can be difficult to predict from molecular structure alone. We are developing an experimental and theoretical framework for how one can combine favorable charge-transport properties and mechanical compliance in organic semiconductor films. In particular, we have explored the roles of the backbone, alkyl side chain, microstructural order, the glass transition, molecular packing with fullerenes, plasticizing effects of additives, extent of separation of [60]PCBM and [70]PCBM, structural randomness in low-bandgap polymers, and reinforcement by encapsulation, on the mechanical compliance. We are exploring the applicability of semi-empirical "back-of-the-envelope" models, along with multi-scale molecular dynamics simulations, with the ultimate goal of designing electroactive organic materials whose mechanical properties can be dialed-in. We have used the insights we have developed to

  3. Chemical Modification of Semiconductor Surfaces for Molecular Electronics.

    PubMed

    Vilan, Ayelet; Cahen, David

    2017-03-08

    Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.

  4. New Fluoride-arsenide Diluted Magnetic Semiconductor (Ba,K)F(Zn,Mn)As with Independent Spin and Charge Doping

    NASA Astrophysics Data System (ADS)

    Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Liu, Qingqing; Gu, C. Z.; Hu, F. X.; Shen, B. G.; Frandsen, Benjamin; Cheung, Sky; Lian, Liu; Uemura, Yasutomo J.; Ding, Cui; Guo, Shengli; Ning, Fanlong; Munsie, Timothy J. S.; Wilson, Murray Neff; Cai, Yipeng; Luke, Graeme; Guguchia, Zurab; Yonezawa, Shingo; Li, Zhi; Jin, Changqing

    2016-11-01

    We report the discovery of a new fluoride-arsenide bulk diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with the tetragonal ZrCuSiAs-type structure which is identical to that of the “1111” iron-based superconductors. The joint hole doping via (Ba,K) substitution & spin doping via (Zn,Mn) substitution results in ferromagnetic order with Curie temperature up to 30 K and demonstrates that the ferromagnetic interactions between the localized spins are mediated by the carriers. Muon spin relaxation measurements confirm the intrinsic nature of the long range magnetic order in the entire volume in the ferromagnetic phase. This is the first time that a diluted magnetic semiconductor with decoupled spin and charge doping is achieved in a fluoride compound. Comparing to the isostructure oxide counterpart of LaOZnSb, the fluoride DMS (Ba,K)F(Zn,Mn)As shows much improved semiconductive behavior that would be benefit for further application developments.

  5. Cascadable all-optical inverter based on a nonlinear vertical-cavity semiconductor optical amplifier.

    PubMed

    Zhang, Haijiang; Wen, Pengyue; Esener, Sadik

    2007-07-01

    We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.

  6. A game theoretic framework for incentive-based models of intrinsic motivation in artificial systems

    PubMed Central

    Merrick, Kathryn E.; Shafi, Kamran

    2013-01-01

    An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players' optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots. PMID:24198797

  7. A game theoretic framework for incentive-based models of intrinsic motivation in artificial systems.

    PubMed

    Merrick, Kathryn E; Shafi, Kamran

    2013-01-01

    An emerging body of research is focusing on understanding and building artificial systems that can achieve open-ended development influenced by intrinsic motivations. In particular, research in robotics and machine learning is yielding systems and algorithms with increasing capacity for self-directed learning and autonomy. Traditional software architectures and algorithms are being augmented with intrinsic motivations to drive cumulative acquisition of knowledge and skills. Intrinsic motivations have recently been considered in reinforcement learning, active learning and supervised learning settings among others. This paper considers game theory as a novel setting for intrinsic motivation. A game theoretic framework for intrinsic motivation is formulated by introducing the concept of optimally motivating incentive as a lens through which players perceive a game. Transformations of four well-known mixed-motive games are presented to demonstrate the perceived games when players' optimally motivating incentive falls in three cases corresponding to strong power, affiliation and achievement motivation. We use agent-based simulations to demonstrate that players with different optimally motivating incentive act differently as a result of their altered perception of the game. We discuss the implications of these results both for modeling human behavior and for designing artificial agents or robots.

  8. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  9. Screening and transport in 2D semiconductor systems at low temperatures

    PubMed Central

    Das Sarma, S.; Hwang, E. H.

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  10. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    PubMed

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  11. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors

    NASA Astrophysics Data System (ADS)

    Jie, Wenjing; Hao, Jianhua

    2014-05-01

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  12. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  13. First-principles calculation of intrinsic defect chemistry and self-doping in PbTe

    DOE PAGES

    Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; ...

    2017-11-10

    Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less

  14. First-principles calculation of intrinsic defect chemistry and self-doping in PbTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.

    Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. For this study, we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling,more » and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.« less

  15. First-principles calculation of intrinsic defect chemistry and self-doping in PbTe

    NASA Astrophysics Data System (ADS)

    Goyal, Anuj; Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan

    2017-10-01

    Semiconductor dopability is inherently limited by intrinsic defect chemistry. In many thermoelectric materials, narrow band gaps due to strong spin-orbit interactions make accurate atomic level predictions of intrinsic defect chemistry and self-doping computationally challenging. Here we use different levels of theory to model point defects in PbTe, and compare and contrast the results against each other and a large body of experimental data. We find that to accurately reproduce the intrinsic defect chemistry and known self-doping behavior of PbTe, it is essential to (a) go beyond the semi-local GGA approximation to density functional theory, (b) include spin-orbit coupling, and (c) utilize many-body GW theory to describe the positions of individual band edges. The hybrid HSE functional with spin-orbit coupling included, in combination with the band edge shifts from G0W0 is the only approach that accurately captures both the intrinsic conductivity type of PbTe as function of synthesis conditions as well as the measured charge carrier concentrations, without the need for experimental inputs. Our results reaffirm the critical role of the position of individual band edges in defect calculations, and demonstrate that dopability can be accurately predicted in such challenging narrow band gap materials.

  16. Intrinsic fluorescence based in-vivo detection of cervical precancer with hand held prototype device

    NASA Astrophysics Data System (ADS)

    Meena, Bharat Lal; Raikwar, Akanksha; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima

    2018-02-01

    A prototype device (hand held probe) designed and fabricated in the lab has been tested for cervical precancer detection using intrinsic fluorescence. The intrinsic fluorescence gets strongly modulated by the interplay of scattering and absorption. This masks valuable biochemical information which is present in the intrinsic fluorescence. These distortion effects can be minimized by normalizing the polarized fluorescence spectra by the polarized elastic scattering spectra. The measurements have been made with a in-house fabricated device using a 405 nm diode laser and white light source respectively. 166 sites of different grades of cervical pre-cancer biopsy samples (CIN I and CIN II) (CIN: cervical intraepithelial neoplastic) have been discriminated from 29 sites of normal biopsy samples using principal component analysis (PCA) based linear discriminant analysis (LDA). The sensitivity and specificity for discrimination of normal samples from CIN I are found to be 99% and 96% respectively. Further the normal samples can be discriminated from CIN II samples with 96% sensitivity and 96% specificity. Based on these promising ex-vivo results an in-vivo study on patients has been initiated in the hospital. The hand held device built in-house shows promise as a useful tool for in vivo cervical precancer detection by polarized fluorescence. Preliminary in-vivo results on 10 patients indicate the efficacy of the hand held device for screening cervical precancers using intrinsic fluorescence.

  17. A Novel Defect Inspection Method for Semiconductor Wafer Based on Magneto-Optic Imaging

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Chen, L.; Li, W.; Zhang, G.; Wu, P.

    2013-03-01

    The defects of semiconductor wafer may be generated from the manufacturing processes. A novel defect inspection method of semiconductor wafer is presented in this paper. The method is based on magneto-optic imaging, which involves inducing eddy current into the wafer under test, and detecting the magnetic flux associated with eddy current distribution in the wafer by exploiting the Faraday rotation effect. The magneto-optic image being generated may contain some noises that degrade the overall image quality, therefore, in this paper, in order to remove the unwanted noise present in the magneto-optic image, the image enhancement approach using multi-scale wavelet is presented, and the image segmentation approach based on the integration of watershed algorithm and clustering strategy is given. The experimental results show that many types of defects in wafer such as hole and scratch etc. can be detected by the method proposed in this paper.

  18. Directional charge separation in isolated organic semiconductor crystalline nanowires

    DOE PAGES

    Labastide, J. A.; Thompson, H. B.; Marques, S. R.; ...

    2016-02-25

    One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n-type organic semiconductor, 7,8,15,16-tetraazaterrylene, generates a significant population of charge-separated polaron pairs along the π-stacking direction. Charge separation was signalled by pronounced power-law photoluminescence decay polarized alongmore » the same axis. In the transverse direction, we observed exponential decay associated with excitons localized on individual monomers. We propose that this effect derives from an intrinsic directional charge-transfer interaction that can ultimately be programmed by molecular packing geometry.« less

  19. Strain effects on the work function of an organic semiconductor

    PubMed Central

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-01-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. PMID:26831362

  20. Strain effects on the work function of an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V.; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C. Daniel

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  1. Strain effects on the work function of an organic semiconductor.

    PubMed

    Wu, Yanfei; Chew, Annabel R; Rojas, Geoffrey A; Sini, Gjergji; Haugstad, Greg; Belianinov, Alex; Kalinin, Sergei V; Li, Hong; Risko, Chad; Brédas, Jean-Luc; Salleo, Alberto; Frisbie, C Daniel

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ∼0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  2. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  3. Probing the intrinsic charge transport in indacenodithiophene-co-benzothiadiazole thin films

    NASA Astrophysics Data System (ADS)

    Wang, Wenhe; Tang, Wei; Zhao, Jiaqing; Bao, Bei; Xing, Hui; Guo, Xiaojun; Wang, Shun; Liu, Ying

    2017-12-01

    Indacenodithiophene-co-benzothiadiazole (IDTBT) belongs to a class of donor-acceptor polymers, exhibiting high electronic mobility and low energetic disorder. Applying vacuum as dielectric enables us to investigate the intrinsic charge transport properties in IDTBT. Vacuum-gap IDTBT field-effect transistors (FET) show high mobilites approaching 1 cm2V-1s-1. In addition, with increasing dielectric constant of the gate insulators, the mobilites of IDTBT transistors first increase and then decrease. The reason could be attributed to effect of both charge carrier accumulation and the presence of dipolar disorder at the semiconductor/insulator interface induced by polar insulator layer.

  4. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  5. Defining intrinsic vs. extrinsic atopic dermatitis.

    PubMed

    Karimkhani, Chante; Silverberg, Jonathan I; Dellavalle, Robert P

    2015-06-16

    Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin condition characterized by eczematous lesions, i.e. ill-demarcated erythematous patches and plaques. AD is commonly associated with elevated immunoglobulin E (IgE) and atopic disorders, such as asthma, hay fever, and food allergies. Rackemann and Mallory were some of the first to distinguish between asthma based on the presence ("extrinsic") or absence ("intrinsic") of allergy. This distinction has subsequently been applied to AD based on the presence ("extrinsic") or absence ("intrinsic") of increased IgE and atopic disease. Although the distinction between intrinsic and extrinsic AD is widely used, it remains controversial.

  6. Assessing Online Textual Feedback to Support Student Intrinsic Motivation Using a Collaborative Text-Based Dialogue System: A Qualitative Study

    ERIC Educational Resources Information Center

    Shroff, Ronnie H.; Deneen, Christopher

    2011-01-01

    This paper assesses textual feedback to support student intrinsic motivation using a collaborative text-based dialogue system. A research model is presented based on research into intrinsic motivation, and the specific construct of feedback provides a framework for the model. A qualitative research methodology is used to validate the model.…

  7. Optically programmable electron spin memory using semiconductor quantum dots.

    PubMed

    Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J

    2004-11-04

    The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.

  8. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  9. Charge transport in nanoscale "all-inorganic" networks of semiconductor nanorods linked by metal domains.

    PubMed

    Lavieville, Romain; Zhang, Yang; Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Di Fabrizio, Enzo; Krahne, Roman

    2012-04-24

    Charge transport across metal-semiconductor interfaces at the nanoscale is a crucial issue in nanoelectronics. Chains of semiconductor nanorods linked by Au particles represent an ideal model system in this respect, because the metal-semiconductor interface is an intrinsic feature of the nanosystem and does not manifest solely as the contact to the macroscopic external electrodes. Here we investigate charge transport mechanisms in all-inorganic hybrid metal-semiconductor networks fabricated via self-assembly in solution, in which CdSe nanorods were linked to each other by Au nanoparticles. Thermal annealing of our devices changed the morphology of the networks and resulted in the removal of small Au domains that were present on the lateral nanorod facets, and in ripening of the Au nanoparticles in the nanorod junctions with more homogeneous metal-semiconductor interfaces. In such thermally annealed devices the voltage dependence of the current at room temperature can be well described by a Schottky barrier lowering at a metal semiconductor contact under reverse bias, if the spherical shape of the gold nanoparticles is considered. In this case the natural logarithm of the current does not follow the square-root dependence of the voltage as in the bulk, but that of V(2/3). From our fitting with this model we extract the effective permittivity that agrees well with theoretical predictions for the permittivity near the surface of CdSe nanorods. Furthermore, the annealing improved the network conductance at cryogenic temperatures, which could be related to the reduction of the number of trap states.

  10. Intrinsic fluorescence of protein in turbid media using empirical relation based on Monte Carlo lookup table

    NASA Astrophysics Data System (ADS)

    Einstein, Gnanatheepam; Udayakumar, Kanniyappan; Aruna, Prakasarao; Ganesan, Singaravelu

    2017-03-01

    Fluorescence of Protein has been widely used in diagnostic oncology for characterizing cellular metabolism. However, the intensity of fluorescence emission is affected due to the absorbers and scatterers in tissue, which may lead to error in estimating exact protein content in tissue. Extraction of intrinsic fluorescence from measured fluorescence has been achieved by different methods. Among them, Monte Carlo based method yields the highest accuracy for extracting intrinsic fluorescence. In this work, we have attempted to generate a lookup table for Monte Carlo simulation of fluorescence emission by protein. Furthermore, we fitted the generated lookup table using an empirical relation. The empirical relation between measured and intrinsic fluorescence is validated using tissue phantom experiments. The proposed relation can be used for estimating intrinsic fluorescence of protein for real-time diagnostic applications and thereby improving the clinical interpretation of fluorescence spectroscopic data.

  11. Fabrication of Hydrogenated Diamond Metal-Insulator-Semiconductor Field-Effect Transistors.

    PubMed

    Liu, Jiangwei; Koide, Yasuo

    2017-01-01

    Diamond is regarded as a promising material for fabrication of high-power and high-frequency electronic devices due to its remarkable intrinsic properties, such as wide band gap energy, high carrier mobility, and high breakdown field. Meanwhile, since diamond has good biocompatibility, long-term durability, good chemical inertness, and a large electron-chemical potential window, it is a suitable candidate for the fabrication of biosensors. Here, we demonstrate the fabrication of hydrogenated diamond (H-diamond) based metal-insulator-semiconductor field-effect transistors (MISFETs). The fabrication is based on the combination of laser lithography, dry-etching, atomic layer deposition (ALD), sputtering deposition (SD), electrode evaporation, and lift-off techniques. The gate insulator is high-k HfO 2 with a SD/ALD bilayer structure. The thin ALD-HfO 2 film (4.0 nm) acts as a buffer layer to prevent the hydrogen surface of the H-diamond from plasma discharge damage during the SD-HfO 2 deposition. The growth of H-diamond epitaxial layer, fabrication of H-diamond MISFETs, and electrical property measurements for the MISFETs is demonstrated. This chapter explains the fabrication of H-diamond FET based biosensors.

  12. Incentives and intrinsic motivation in healthcare.

    PubMed

    Berdud, Mikel; Cabasés, Juan M; Nieto, Jorge

    It has been established in the literature that workers within public organisations are intrinsically motivated. This paper is an empirical study of the healthcare sector using methods of qualitative analysis research, which aims to answer the following hypotheses: 1) doctors are intrinsically motivated; 2) economic incentives and control policies may undermine doctors' intrinsic motivation; and 3) well-designed incentives may encourage doctors' intrinsic motivation. We conducted semi-structured interviews à-la-Bewley with 16 doctors from Navarre's Healthcare Service (Servicio Navarro de Salud-Osasunbidea), Spain. The questions were based on current theories of intrinsic motivation and incentives to test the hypotheses. Interviewees were allowed to respond openly without time constraints. Relevant information was selected, quantified and analysed by using the qualitative concepts of saturation and codification. The results seem to confirm the hypotheses. Evidence supporting hypotheses 1 and 2 was gathered from all interviewees, as well as indications of the validity of hypothesis 3 based on interviewees' proposals of incentives. The conclusions could act as a guide to support the optimal design of incentive policies and schemes within health organisations when healthcare professionals are intrinsically motivated. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals

    DTIC Science & Technology

    2009-06-30

    Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of

  14. Experimental study of disorder in a semiconductor microcavity

    NASA Astrophysics Data System (ADS)

    Gurioli, M.; Bogani, F.; Wiersma, D. S.; Roussignol, Ph.; Cassabois, G.; Khitrova, G.; Gibbs, H.

    2001-10-01

    A detailed study of the structural disorder in wedge semiconductor microcavities (MC's) is presented. We demonstrate that images of the coherent emission from the MC surface can be used for a careful characterization of both intrinsic and extrinsic optical properties of semiconductor MC's. The polariton broadening can be measured directly, avoiding the well-known problem of inhomogeneous broadening due to the MC wedge. A statistical analysis of the spatial line shape of the images of the MC surface shows the presence of static disorder associated with dielectric fluctuations in the Bragg reflector. Moreover, the presence of local fluctuations of the effective cavity length can be detected with subnanometer resolution. The analysis of the resonant Rayleigh scattering (RRS) gives additional information on the origin of the disorder. We find that the RRS is dominated by the scattering of the photonic component of the MC polariton by disorder in the Bragg reflector. Also the RRS is strongly enhanced along the [110] and [11¯0] directions. This peculiar scattering pattern is attributed to misfit dislocations induced by the large thickness of the mismatched AlGaAs alloy in the Bragg mirrors.

  15. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices

    NASA Astrophysics Data System (ADS)

    Smithe, Kirby K. H.; English, Chris D.; Suryavanshi, Saurabh V.; Pop, Eric

    2017-03-01

    We demonstrate monolayer (1L) MoS2 grown by chemical vapor deposition (CVD) with transport properties comparable to those of the best exfoliated 1L devices over a wide range of carrier densities (up to ˜1013 cm-2) and temperatures (80-500 K). Transfer length measurements decouple the intrinsic material mobility from the contact resistance, at practical carrier densities (>1012 cm-2). We demonstrate the highest current density reported to date (˜270 μA μm-1 or 44 MA cm-2) at 300 K for an 80 nm long device from CVD-grown 1L MoS2. Using simulations, we discuss what improvements of 1L MoS2 are still required to meet technology roadmap requirements for low power and high performance applications. Such results are an important step towards large-area electronics based on 1L semiconductors.

  16. New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials.

    PubMed

    Zhu, Tiejun; Hu, Lipeng; Zhao, Xinbing; He, Jian

    2016-07-01

    Defects and defect engineering are at the core of many regimes of material research, including the field of thermoelectric study. The 60-year history of V 2 VI 3 thermoelectric materials is a prime example of how a class of semiconductor material, considered mature several times, can be rejuvenated by better understanding and manipulation of defects. This review aims to provide a systematic account of the underexplored intrinsic point defects in V 2 VI 3 compounds, with regard to (i) their formation and control, and (ii) their interplay with other types of defects towards higher thermoelectric performance. We herein present a convincing case that intrinsic point defects can be actively controlled by extrinsic doping and also via compositional, mechanical, and thermal control at various stages of material synthesis. An up-to-date understanding of intrinsic point defects in V 2 VI 3 compounds is summarized in a (χ, r)-model and applied to elucidating the donor-like effect. These new insights not only enable more innovative defect engineering in other thermoelectric materials but also, in a broad context, contribute to rational defect design in advanced functional materials at large.

  17. Time-Resolved Photoluminescence Microscopy for the Analysis of Semiconductor-Based Paint Layers

    PubMed Central

    Mosca, Sara; Gonzalez, Victor; Eveno, Myriam

    2017-01-01

    In conservation, science semiconductors occur as the constituent matter of the so-called semiconductor pigments, produced following the Industrial Revolution and extensively used by modern painters. With recent research highlighting the occurrence of various degradation phenomena in semiconductor paints, it is clear that their detection by conventional optical fluorescence imaging and microscopy is limited by the complexity of historical painting materials. Here, we illustrate and prove the capabilities of time-resolved photoluminescence (TRPL) microscopy, equipped with both spectral and lifetime sensitivity at timescales ranging from nanoseconds to hundreds of microseconds, for the analysis of cross-sections of paint layers made of luminescent semiconductor pigments. The method is sensitive to heterogeneities within micro-samples and provides valuable information for the interpretation of the nature of the emissions in samples. A case study is presented on micro samples from a painting by Henri Matisse and serves to demonstrate how TRPL can be used to identify the semiconductor pigments zinc white and cadmium yellow, and to inform future investigations of the degradation of a cadmium yellow paint. PMID:29160862

  18. Semiconductor switch geometry with electric field shaping

    DOEpatents

    Booth, R.; Pocha, M.D.

    1994-08-23

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

  19. Semiconductor switch geometry with electric field shaping

    DOEpatents

    Booth, Rex; Pocha, Michael D.

    1994-01-01

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  20. Plasma Properties of an Exploding Semiconductor Igniter

    NASA Astrophysics Data System (ADS)

    McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.

    1997-11-01

    Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.

  1. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang

    2014-12-10

    nature of charge carriers is known to evolve as the carrier concentration increases, due to the presence of intrinsic disorder in organic semiconductors. Thus, a complementary question is: how does the nature of charge transport change as a function of carrier concentration?« less

  2. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  3. Intrinsic errors in transporting a single-spin qubit through a double quantum dot

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.

    2017-07-01

    Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.

  4. Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors

    NASA Astrophysics Data System (ADS)

    Yu, Jiadong; Hao, Zhibiao; Li, Linsen; Wang, Lai; Luo, Yi; Wang, Jian; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Li, Hongtao

    2017-03-01

    By considering the effects of stress fields coming from lattice distortion as well as charge fields coming from line charges at edge dislocation cores on radiative recombination of exciton, a model of carriers' radiative and non-radiative recombination has been established in GaN-based semiconductors with certain dislocation density. Using vector average of the stress fields and the charge fields, the relationship between dislocation density and the internal quantum efficiency (IQE) is deduced. Combined with related experimental results, this relationship is fitted well to the trend of IQEs of bulk GaN changing with screw and edge dislocation density, meanwhile its simplified form is fitted well to the IQEs of AlGaN multiple quantum well LEDs with varied threading dislocation densities but the same light emission wavelength. It is believed that this model, suitable for different epitaxy platforms such as MOCVD and MBE, can be used to predict to what extent the luminous efficiency of GaN-based semiconductors can still maintain when the dislocation density increases, so as to provide a reasonable rule of thumb for optimizing the epitaxial growth of GaN-based devices.

  5. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    PubMed Central

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-01-01

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080

  6. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    PubMed

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  7. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa

    2015-08-01

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.

  8. Low-threshold voltage ultraviolet light-emitting diodes based on (Al,Ga)N metal-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Han; Towe, Elias

    2017-12-01

    Al-rich III-nitride-based deep-ultraviolet (UV) (275-320 nm) light-emitting diodes are plagued with a low emission efficiency and high turn-on voltages. We report Al-rich (Al,Ga)N metal-insulator-semiconductor UV light-emitting Schottky diodes with low turn-on voltages of <3 V, which are about half those of typical (Al,Ga)N p-i-n diodes. Our devices use a thin AlN film as the insulator and an n-type Al0.58Ga0.42N film as the semiconductor. To improve the efficiency, we inserted a GaN quantum-well structure between the AlN insulator and the n-type Al x Ga1- x N semiconductor. The benefits of the quantum-well structure include the potential to tune the emission wavelength and the capability to confine carriers for more efficient radiative recombination.

  9. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets

    NASA Astrophysics Data System (ADS)

    Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.

    2018-05-01

    We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.

  10. Semiconductor laser-based optoelectronics oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-08-01

    We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  11. Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak

    Rainflow algorithms are one of the popular counting methods used in fatigue and failure analysis in conjunction with semiconductor lifetime estimation models. However, the rain-flow algorithm used in power semiconductor reliability does not consider the time-dependent mean temperature calculation. The equivalent temperature calculation proposed by Nagode et al. is applied to semiconductor lifetime estimation in this paper. A month-long arc furnace load profile is used as a test profile to estimate temperatures in insulated-gate bipolar transistors (IGBTs) in a STATCOM for reactive compensation of load. In conclusion, the degradation in the life of the IGBT power device is predicted basedmore » on time-dependent temperature calculation.« less

  12. Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications

    DOE PAGES

    GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak; ...

    2015-07-15

    Rainflow algorithms are one of the popular counting methods used in fatigue and failure analysis in conjunction with semiconductor lifetime estimation models. However, the rain-flow algorithm used in power semiconductor reliability does not consider the time-dependent mean temperature calculation. The equivalent temperature calculation proposed by Nagode et al. is applied to semiconductor lifetime estimation in this paper. A month-long arc furnace load profile is used as a test profile to estimate temperatures in insulated-gate bipolar transistors (IGBTs) in a STATCOM for reactive compensation of load. In conclusion, the degradation in the life of the IGBT power device is predicted basedmore » on time-dependent temperature calculation.« less

  13. Intrinsically stretchable and healable semiconducting polymer for organic transistors

    DOE PAGES

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; ...

    2016-11-16

    Developing a molecular design paradigm for conjugated polymers applicable to intrinsically stretchable semiconductors is crucial toward the next generation of wearable electronics. Current molecular design rules for high charge carrier mobility semiconducting polymers are unable to render the fabricated devices simultaneously stretchable and mechanically robust. Here in this paper, we present a new design concept to address the above challenge, while maintaining excellent electronic performance. This concept involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain ismore » applied, while retaining its high charge transport ability. As a result, our polymer is able to recover its high mobility performance (>1 cm 2/Vs) even after 100 cycles at 100% applied strain. Furthermore, we observed that the polymer can be efficiently repaired and/or healed with a simple heat and solvent treatment. These improved mechanical properties of our fabricated stretchable semiconductor enabled us to fabricate highly stretchable and high performance wearable organic transistors. This material design concept should illuminate and advance the pathways for future development of fully stretchable and healable skin-inspired wearable electronics.« less

  14. Intrinsically stretchable and healable semiconducting polymer for organic transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng

    Developing a molecular design paradigm for conjugated polymers applicable to intrinsically stretchable semiconductors is crucial toward the next generation of wearable electronics. Current molecular design rules for high charge carrier mobility semiconducting polymers are unable to render the fabricated devices simultaneously stretchable and mechanically robust. Here in this paper, we present a new design concept to address the above challenge, while maintaining excellent electronic performance. This concept involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain ismore » applied, while retaining its high charge transport ability. As a result, our polymer is able to recover its high mobility performance (>1 cm 2/Vs) even after 100 cycles at 100% applied strain. Furthermore, we observed that the polymer can be efficiently repaired and/or healed with a simple heat and solvent treatment. These improved mechanical properties of our fabricated stretchable semiconductor enabled us to fabricate highly stretchable and high performance wearable organic transistors. This material design concept should illuminate and advance the pathways for future development of fully stretchable and healable skin-inspired wearable electronics.« less

  15. Strain effects on the work function of an organic semiconductor

    DOE PAGES

    Wu, Yanfei; Chew, Annabel R.; Rojas, Geoffrey A.; ...

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding the electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively withmore » density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene -stacking direction. The results provide the first concrete link between mechanical strain and the WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder (charge traps) in soft organic electronic materials.« less

  16. Flexible non-volatile memory devices based on organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cosseddu, Piero; Casula, Giulia; Lai, Stefano; Bonfiglio, Annalisa

    2015-09-01

    The possibility of developing fully organic electronic circuits is critically dependent on the ability to realize a full set of electronic functionalities based on organic devices. In order to complete the scene, a fundamental element is still missing, i.e. reliable data storage. Over the past few years, a considerable effort has been spent on the development and optimization of organic polymer based memory elements. Among several possible solutions, transistor-based memories and resistive switching-based memories are attracting a great interest in the scientific community. In this paper, a route for the fabrication of organic semiconductor-based memory devices with performances beyond the state of the art is reported. Both the families of organic memories will be considered. A flexible resistive memory based on a novel combination of materials is presented. In particular, high retention time in ambient conditions are reported. Complementary, a low voltage transistor-based memory is presented. Low voltage operation is allowed by an hybrid, nano-sized dielectric, which is also responsible for the memory effect in the device. Thanks to the possibility of reproducibly fabricating such device on ultra-thin substrates, high mechanical stability is reported.

  17. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.

    PubMed

    Takimiya, Kazuo; Osaka, Itaru; Mori, Takamichi; Nakano, Masahiro

    2014-05-20

    The design, synthesis, and characterization of organic semiconductors applicable to organic electronic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), had been one of the most important topics in materials chemistry in the past decade. Among the vast number of materials developed, much expectation had been placed on thienoacenes, which are rigid and planar structures formed by fusing thiophenes and other aromatic rings, as a promising candidate for organic semiconductors for high-performance OFETs. However, the thienoacenes examined as an active material in OFETs in the 1990s afforded OFETs with only moderate hole mobilities (approximately 0.1 cm(2) V(-1) s(-1)). We speculated that this was due to the sulfur atoms in the thienoacenes, which hardly contributed to the intermolecular orbital overlap in the solid state. On the other hand, we have focused on other types of thienoacenes, such as [1]benzothieno[3,2-b][1]benzothiophene (BTBT), which seem to have appropriate HOMO spatial distribution for effective intermolecular orbital overlap. In fact, BTBT derivatives and their related materials, including dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT), have turned out to be superior organic semiconductors, affording OFETs with very high mobilities. To illustrate some examples, we have developed 2,7-diphenyl BTBT (DPh-BTBT) that yields vapor-deposited OFETs having mobilities of up to 2.0 cm(2) V(-1) s(-1) under ambient conditions, highly soluble dialkyl-BTBTs (Cn-BTBTs) that afford solution-processed OFETs with mobilities higher than 1.0 cm(2) V(-1) s(-1), and DNTT and its derivatives that yield OFETs with even higher mobilities (>3.0 cm(2) V(-1) s(-1)) and stability under ambient conditions. Such high performances are rationalized by their solid-state electronic structures that are calculated based on their packing structures: the large intermolecular orbital overlap and the isotropic two-dimensional electronic

  18. Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor

    NASA Astrophysics Data System (ADS)

    Qinwen, XUE; Xiaohua, WANG; Chenglin, LIU; Youwen, LIU

    2018-03-01

    The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2) N /GaAs/(SiO2/Si) N /air is far higher than in asymmetric structure of air/(Si/SiO2) N /GaAs/(Si/SiO2) N /air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.

  19. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  20. Mesoscopic spin Hall effect in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Zarbo, Liviu

    , appeared in 1970s, it is only in the past few years that advances in optical detection of nonequilibrium magnetization in semiconductors have made possible the detection of such extrinsic SHE in groundbreaking experiments. The experimental pursuits of SHE have, in fact, been largely motivated by very recent theoretical speculations for several order of magnitude greater spin Hall currents driven by intrinsic SO mechanisms due to SO couplings existing not only around the impurity but also throughout the sample. The homogeneous intrinsic SO couplings are capable of spin-splitting the band structure and appear as momentum-dependent magnetic field within the sample which causes spin non-conservation due to precession of injected spins which are not in the eigenstates of the corresponding Zeeman term. Besides deepening our understanding of subtle relativistic effects in solids, SHE has attracted a lot of attention since it offers an all-electrical way of generating pure spin currents in semiconductors. (Abstract shortened by UMI.)

  1. Shared Reading: assessing the intrinsic value of a literature-based health intervention.

    PubMed

    Longden, Eleanor; Davis, Philip; Billington, Josie; Lampropoulou, Sofia; Farrington, Grace; Magee, Fiona; Walsh, Erin; Corcoran, Rhiannon

    2015-12-01

    Public health strategies have placed increasing emphasis on psychosocial and arts-based strategies for promoting well-being. This study presents preliminary findings for a specific literary-based intervention, Shared Reading, which provides community-based spaces in which individuals can relate with both literature and one another. A 12-week crossover design was conducted with 16 participants to compare benefits associated with six sessions of Shared Reading versus a comparison social activity, Built Environment workshops. Data collected included quantitative self-report measures of psychological well-being, as well as transcript analysis of session recordings and individual video-assisted interviews. Qualitative findings indicated five intrinsic benefits associated with Shared Reading: liveness, creative inarticulacy, the emotional, the personal and the group (or collective identity construction). Quantitative data additionally showed that the intervention is associated with enhancement of a sense of 'Purpose in Life'. Limitations of the study included the small sample size and ceiling effects created by generally high levels of psychological well-being at baseline. The therapeutic potential of reading groups is discussed, including the distinction between instrumental and intrinsic value within arts-and-health interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. How does performance-based financing affect health workers' intrinsic motivation? A Self-Determination Theory-based mixed-methods study in Malawi.

    PubMed

    Lohmann, Julia; Muula, Adamson S; Houlfort, Nathalie; De Allegri, Manuela

    2018-07-01

    "Intrinsic motivation crowding out", the erosion of high-quality, sustainable motivation through the introduction of financial incentives, is one of the most frequently discussed but yet little researched potential unfavorable consequence of Performance-based Financing (PBF). We used the opportunity of the introduction of PBF in Malawi to investigate whether and how PBF affected intrinsic motivation, using a mixed-methods research design theoretically grounded in Self-Determination Theory (SDT). The quantitative component served to estimate the impact of PBF on intrinsic motivation, relying on a controlled pre- and post-test design, with data collected from health workers in 23 intervention and 10 comparison facilities before (March/April 2013; n = 70) and approximately two years after (June/July 2015; n = 71) the start of the intervention. The qualitative component, relying on in-depth interviews with health workers in selected intervention facilities one (April 2014; n = 21) and two (September 2015; n = 20) years after the start of PBF, served to understand how PBF did or did not bring about change in intrinsic motivation. Specifically, it allowed us to examine how the various motivation-relevant elements and consequences of PBF impacted health workers' basic psychological needs for autonomy, competence, and relatedness, which SDT postulates as central to intrinsic motivation. Our results suggest that PBF did not affect health workers' overall intrinsic motivation levels, with the intervention having had both positive and negative effects on psychological needs satisfaction. To maximize positive PBF effects on intrinsic motivation, our results underline the potential value of explicit strategies to mitigate unintended negative impact of unavoidable design, implementation, and contextual challenges, for instance by building autonomy support activities into PBF designs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Highly Sensitive Flexible Pressure Sensors Based on Printed Organic Transistors with Centro-Apically Self-Organized Organic Semiconductor Microstructures.

    PubMed

    Yeo, So Young; Park, Sangsik; Yi, Yeon Jin; Kim, Do Hwan; Lim, Jung Ah

    2017-12-13

    A highly sensitive pressure sensor based on printed organic transistors with three-dimensionally self-organized organic semiconductor microstructures (3D OSCs) was demonstrated. A unique organic transistor with semiconductor channels positioned at the highest summit of printed cylindrical microstructures was achieved simply by printing an organic semiconductor and polymer blend on the plastic substrate without the use of additional etching or replication processes. A combination of the printed organic semiconductor microstructure and an elastomeric top-gate dielectric resulted in a highly sensitive organic field-effect transistor (FET) pressure sensor with a high pressure sensitivity of 1.07 kPa -1 and a rapid response time of <20 ms with a high reliability over 1000 cycles. The flexibility and high performance of the 3D OSC FET pressure sensor were exploited in the successful application of our sensors to real-time monitoring of the radial artery pulse, which is useful for healthcare monitoring, and to touch sensing in the e-skin of a realistic prosthetic hand.

  4. The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga{sub 2}SeTe{sub 2} semiconductor alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdul-Jabbar, N. M.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Kalkan, B.

    2014-08-04

    We observe that pressure-induced amorphization of Ga{sub 2}SeTe{sub 2} (a III-VI semiconductor) is directly influenced by the periodicity of its intrinsic defect structures. Specimens with periodic and semi-periodic two-dimensional vacancy structures become amorphous around 10–11 GPa in contrast to those with aperiodic structures, which amorphize around 7–8 GPa. The result is an instance of altering material phase-change properties via rearrangement of stoichiometric vacancies as opposed to adjusting their concentrations. Based on our experimental findings, we posit that periodic two-dimensional vacancy structures in Ga{sub 2}SeTe{sub 2} provide an energetically preferred crystal lattice that is less prone to collapse under applied pressure. This ismore » corroborated through first-principles electronic structure calculations, which demonstrate that the energy stability of III-VI structures under hydrostatic pressure is highly dependent on the configuration of intrinsic vacancies.« less

  5. Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors

    DOE PAGES

    Akselrod, Gleb M.; Ming, Tian; Argyropoulos, Christos; ...

    2015-04-07

    Optical cavities with multiple tunable resonances have the potential to provide unique electromagnetic environments at two or more distinct wavelengths–critical for control of optical processes such as nonlinear generation, entangled photon generation, or photoluminescence (PL) enhancement. Here, we show a plasmonic nanocavity based on a nanopatch antenna design that has two tunable resonant modes in the visible spectrum separated by 350 nm and with line widths of ~60 nm. The importance of utilizing two resonances simultaneously is demonstrated by integrating monolayer MoS 2, a two-dimensional semiconductor, into the colloidally synthesized nanocavities. Here, we observe a 2000-fold enhancement in the PLmore » intensity of MoS 2– which has intrinsically low absorption and small quantum yield–at room temperature, enabled by the combination of tailored absorption enhancement at the first harmonic and PL quantum-yield enhancement at the fundamental resonance.« less

  6. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    PubMed

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cryptography based on the absorption/emission features of multicolor semiconductor nanocrystal quantum dots.

    PubMed

    Zhou, Ming; Chang, Shoude; Grover, Chander

    2004-06-28

    Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.

  8. Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements

    PubMed Central

    Tao, J.; Zhao, C.Z.; Zhao, C.; Taechakumput, P.; Werner, M.; Taylor, S.; Chalker, P. R.

    2012-01-01

    In capacitance-voltage (C-V) measurements, frequency dispersion in high-k dielectrics is often observed. The frequency dependence of the dielectric constant (k-value), that is the intrinsic frequency dispersion, could not be assessed before suppressing the effects of extrinsic frequency dispersion, such as the effects of the lossy interfacial layer (between the high-k thin film and silicon substrate) and the parasitic effects. The effect of the lossy interfacial layer on frequency dispersion was investigated and modeled based on a dual frequency technique. The significance of parasitic effects (including series resistance and the back metal contact of the metal-oxide-semiconductor (MOS) capacitor) on frequency dispersion was also studied. The effect of surface roughness on frequency dispersion is also discussed. After taking extrinsic frequency dispersion into account, the relaxation behavior can be modeled using the Curie-von Schweidler (CS) law, the Kohlrausch-Williams-Watts (KWW) relationship and the Havriliak-Negami (HN) relationship. Dielectric relaxation mechanisms are also discussed. PMID:28817021

  9. New organic semiconductors with imide/amide-containing molecular systems.

    PubMed

    Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing

    2014-10-29

    Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  11. Reasons for quitting: intrinsic and extrinsic motivation for smoking cessation in a population-based sample of smokers.

    PubMed

    Curry, S J; Grothaus, L; McBride, C

    1997-01-01

    An intrinsic-extrinsic model of motivation for smoking cessation is extended to a population-based sample of smokers (N = 1,137), using a previously validated Reasons for Quitting (RFQ) scale. Psychometric evaluation of the RFQ replicated the model that includes health concerns and self-control as intrinsic motivation dimensions and immediate reinforcement and social influence as extrinsic motivation dimensions. Compared to volunteers, the population-based sample of smokers reported equivalent health concerns, lower self-control, and higher social influence motivation for cessation. Within the population-based sample, women compared to men were less motivated to quit by health concerns and more motivated by immediate reinforcement; smokers above age 55 expressed lower health concerns and higher self-control motivation than smokers below age 55. Higher baseline levels of intrinsic relative to extrinsic motivation were associated with more advanced stages of readiness to quit smoking and successful smoking cessation at a 12-month follow-up. Among continuing smokers, improvement in stage of readiness to quit over time was associated with significant increases in health concerns and self-control motivation.

  12. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  13. 75 FR 49526 - Freescale Semiconductor, Inc., Technical Information Center, Tempe, AZ; Freescale Semiconductor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Semiconductor, Inc., Technical Information Center, Tempe, AZ; Freescale Semiconductor, Inc., Technical... October 1, 2009, applicable to workers of Freescale Semiconductor, Inc., Technical Information Center..., Massachusetts location of Freescale Semiconductor, Inc., Technical Information Center. The intent of the...

  14. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering.

    PubMed

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-28

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.

  15. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  16. Temperature Dependence of Density, Viscosity and Electrical Conductivity for Hg-Based II-VI Semiconductor Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The relaxation phenomenon of semiconductor melts, or the change of melt structure with time, impacts the crystal growth process and the eventual quality of the crystal. The thermophysical properties of the melt are good indicators of such changes in melt structure. Also, thermophysical properties are essential to the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the Hg-based II-VI semiconductor melts are scarce. This paper reports the results on the temperature dependence of melt density, viscosity and electrical conductivity of Hg-based II-VI compounds. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. Results were compared with available published data and showed good agreement. The implication of the structural changes at different temperature ranges was also studied and discussed.

  17. Macroporous Semiconductors

    PubMed Central

    Föll, Helmut; Leisner, Malte; Cojocaru, Ala; Carstensen, Jürgen

    2010-01-01

    Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal) and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  18. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.

    PubMed

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2012-05-07

    We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.

  19. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    PubMed

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  20. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  1. Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor.

    PubMed

    Campos, Antonio; Riera-Galindo, Sergi; Puigdollers, Joaquim; Mas-Torrent, Marta

    2018-05-09

    Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.

  2. Novel diluted magnetic semiconductor materials based on zinc oxide

    NASA Astrophysics Data System (ADS)

    Chakraborti, Deepayan

    The primary aim of this work was to develop a ZnO based diluted magnetic semiconductor (DMS) materials system which displays ferromagnetism above room temperature and to understand the origin of long-range ferromagnetic ordering in these systems. Recent developments in the field of spintronics (spin based electronics) have led to an extensive search for materials in which semiconducting properties can be integrated with magnetic properties to realize the objective of successful fabrication of spin-based devices. For these devices we require a high efficiency of spin current injection at room temperature. Diluted magnetic semiconductors (DMS) can serve this role, but they should not only display room temperature ferromagnetism (RTFM) but also be capable of generating spin polarized carriers. Transition metal doped ZnO has proved to be a potential candidate as a DMS showing RTFM. The origin of ferromagnetic ordering in ZnO is still under debate. However, the presence of magnetic secondary phases, composition fluctuations and nanoclusters could also explain the observation of ferromagnetism in the DMS samples. This encouraged us to investigate Cu-doped(+ spin in the 2+ valence state) ZnO system as a probable candidate exhibiting RTFM because neither metallic Cu nor its oxides (Cu2O or CuO) are ferromagnetic. The role of defects and free carriers on the ferromagnetic ordering of Cu-doped ZnO thin films was studied to ascertain the origin of ferromagnetism in this system. A novel non-equilibrium Pulsed Laser Deposition technique has been used to grow high quality epitaxial thin films of Cu:ZnO and (Co,Cu):ZnO on c-plane Sapphire by domain matching epitxay. Both the systems showed ferromagnetic ordering above 300K but Cu ions showed a much stronger ferromagnetic ordering than Co, especially at low concentrations (1-2%) of Cu where we realized near 100% polarization. But, the incorporation of Cu resulted in a 2-order of magnitude rise in the resistivity from 10-1 to 101

  3. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng

    2017-07-01

    Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.

  4. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  5. REVIEW ARTICLE: Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources

    NASA Astrophysics Data System (ADS)

    Quinlan, F.; Ozharar, S.; Gee, S.; Delfyett, P. J.

    2009-10-01

    Recent experimental work on semiconductor-based harmonically mode-locked lasers geared toward low noise applications is reviewed. Active, harmonic mode-locking of semiconductor-based lasers has proven to be an excellent way to generate 10 GHz repetition rate pulse trains with pulse-to-pulse timing jitter of only a few femtoseconds without requiring active feedback stabilization. This level of timing jitter is achieved in long fiberized ring cavities and relies upon such factors as low noise rf sources as mode-lockers, high optical power, intracavity dispersion management and intracavity phase modulation. When a high finesse etalon is placed within the optical cavity, semiconductor-based harmonically mode-locked lasers can be used as optical frequency comb sources with 10 GHz mode spacing. When active mode-locking is replaced with regenerative mode-locking, a completely self-contained comb source is created, referenced to the intracavity etalon.

  6. Metal-optic and Plasmonic Semiconductor-based Nanolasers

    DTIC Science & Technology

    2012-05-07

    provides a means to integrate laser sources for silicon photonics technology. Using wafer bonding techniques, the metal- clad nanocavity can be integrated...SUPPLEMENTARY NOTES 14. ABSTRACT Over the past few decades, semiconductor lasers have relentlessly followed the path towards miniaturization...Smaller lasers are more energy e cient, are cheaper to make, and open up new applications in sensing and displays, among many other things. Yet, up until

  7. Cyclopentadithiophene-Based Organic Semiconductors: Effect of Fluorinated Substituents on Electrochemical and Charge Transport Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, J. Sreedhar; Kale, Tejaswini; Balaji, Ganapathy

    2011-03-17

    Thiophene-based semiconductors are often hole conductors that have been converted to electron-transporting materials by incorporation of electron-withdrawing groups at terminal positions, such as fluorinated substituents. This conversion of an otherwise p-type material to n-type material is often attributed to the lowering of the lowest unoccupied molecular orbital (LUMO) energy level due to the increased electron affinity in the molecule. Yet, it is not clear if lowering of LUMO energy level is a sufficient condition for yielding n-type material. Herein, we report small-molecule semiconductors based on cyclopentadithiophene (CPD), which can be orthogonally functionalized at two different positions, which allows us tomore » tune the frontier orbital energy levels. We find that simply lowering the LUMO energy level, without inclusion of fluoro groups, does not result in conversion of the otherwise p-type material to n-type material, whereas incorporation of fluorinated substituents does. This indicates that charge transport behavior is not an exclusive function of the frontier orbital energy levels.« less

  8. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  9. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  10. High mobility emissive organic semiconductor

    PubMed Central

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  11. Semiconductor/High-Tc-Superconductor Hybrid ICs

    NASA Technical Reports Server (NTRS)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  12. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOEpatents

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  13. X-ray Characterization of Oxide-based Magnetic Semiconductors

    NASA Astrophysics Data System (ADS)

    Idzerda, Yves

    2008-05-01

    Although the evidence for magnetic semiconductors (not simply semiconductors which are ferromagnetic) is compelling, there is much uncertainty in the mechanism for the polarization of the carriers, suggesting that it must be quite novel. Recent experimental evidence suggests that this mechanism is similar to the polaron percolation theory proposed by Kaminski and Das Sarma,ootnotetextKaminski and S. Das Sarma, Physical Review Letters 88, 247202 (2002). which was recently applied specifically to doped oxides by Coey et al.ootnotetextJ. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Materials 4, 173 (2005). where the ferromagnetism is driven by the percolation of polarons generated by defects or dopants. We have used X-ray absorption spectroscopy at the L-edges and K-edges for low concentrations transition metal (TM) doped magnetic oxides (including TiO2, La1-xSrxO3, HfO2, and In2O3). We have found that in most cases, the transition metal assumes a valence consistent with being at a substitutional, and not interstitial site. We have also measured the X-ray Magnetic Circular Dichroism spectra. Although these materials show strong bulk magnetization, we are unable to detect a robust dichroism feature associated with magnetic elements in the host semiconductor. In the cases where a dichroism signal was observed, it was very weak and could be ascribed to a distinct ferromagnetic phase (TM metal cluster, TM oxide particulate, etc.) separate from the host material. This fascinating absence of a dichroic signal and its significant substantiation of important features of the polaron percolation model may help to finally resolve the issue of ferromagnetism in magnetically doped oxides.

  14. Analysis of the effects of periodic forcing in the spike rate and spike correlation's in semiconductor lasers with optical feedback

    NASA Astrophysics Data System (ADS)

    Quintero-Quiroz, C.; Sorrentino, Taciano; Torrent, M. C.; Masoller, Cristina

    2016-04-01

    We study the dynamics of semiconductor lasers with optical feedback and direct current modulation, operating in the regime of low frequency fluctuations (LFFs). In the LFF regime the laser intensity displays abrupt spikes: the intensity drops to zero and then gradually recovers. We focus on the inter-spike-intervals (ISIs) and use a method of symbolic time-series analysis, which is based on computing the probabilities of symbolic patterns. We show that the variation of the probabilities of the symbols with the modulation frequency and with the intrinsic spike rate of the laser allows to identify different regimes of noisy locking. Simulations of the Lang-Kobayashi model are in good qualitative agreement with experimental observations.

  15. A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface.

    PubMed

    Bonetti, Simone; Pistone, Assunta; Brucale, Marco; Karges, Saskia; Favaretto, Laura; Zambianchi, Massimo; Posati, Tamara; Sagnella, Anna; Caprini, Marco; Toffanin, Stefano; Zamboni, Roberto; Camaioni, Nadia; Muccini, Michele; Melucci, Manuela; Benfenati, Valentina

    2015-06-03

    Lysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties. The Lys insertion in T4 enables adhesion of primary culture of rat dorsal root ganglion (DRG), which is not achievable by plating cells on T4. Notably, on T4Lys, the number on adhering neurons/area is higher and displays a twofold longer neurite length than neurons plated on glass coated with poly-l-lysine. Finally, by whole-cell patch-clamp, it is shown that the biofunctionality of neurons cultured on T4Lys is preserved. The present study introduces an innovative concept for organic material neural interface that combines optical and iono-electronic functionalities with improved biocompatibility and neuron affinity promoted by Lys linkage and the softness of organic semiconductors. Lysinated organic semiconductors could set the scene for the fabrication of simplified bioorganic devices geometry for cells bidirectional communication or optoelectronic control of neural cells biofunctionality. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 3D imaging of intrinsic crystalline defects in zinc oxide by spectrally resolved two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Al-Tabich, A.; Inami, W.; Kawata, Y.; Jablonski, R.; Worasawat, S.; Mimura, H.

    2017-05-01

    We present a method for three-dimensional intrinsic defect imaging in zinc oxide (ZnO) by spectrally resolved two-photon fluorescence microscopy, based on the previously presented method of observing a photoluminescence distribution in wide-gap semiconductor crystals [Noor et al., Appl. Phys. Lett. 92(16), 161106 (2008)]. A tightly focused light beam radiated by a titanium-sapphire laser is used to obtain a two-photon excitation of selected area of the ZnO sample. Photoluminescence intensity of a specific spectral range is then selected by optical band pass filters and measured by a photomultiplier tube. Reconstruction of the specimen image is done by scanning the volume of interest by a piezoelectric positioning stage and measuring the spectrally resolved photoluminescence intensity at each point. The method has been proved to be effective at locating intrinsic defects of the ZnO crystalline structure in the volume of the crystal. The method was compared with other defect imaging and 3D imaging techniques like scanning tunneling microscopy and confocal microscopy. In both cases, our method shows superior penetration abilities and, as the only method, allows location of the defects of the chosen type in 3D. In this paper, we present the results of oxygen vacancies and zinc antisites imaging in ZnO nanorods.

  17. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  18. Electron transport in high aspect ratio semiconductor nanowires and metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Zhuting

    We are facing variability problems for modern semiconductor transistors due to the fact that the performances of nominally identical devices in the scale of 10 100 nm could be dramatically different attributed to the small manufacturing variations. Different doping strategies give statistical variations in the number of dopant atom density ND in the channel. The material size gives variations in wire diameter dW. And the immediate environment of the material leads to an additional level of variability. E.g. vacuum-semiconductor interface causes variations in surface state density Ds, metal-semiconductor interface causes variations in Schottky barrier and dielectric semiconductor interface induces dielectric confinement at small scales. To approach these variability problems, I choose Si-doped GaAs nanowires as an example. I investigate transport in Si-doped GaAs nanowire (NW) samples contacted by lithographically patterned Gold-Titanium films as function of temperature T. I find a drastically different temperature dependence between the wire resistance RW, which is relatively weak, and the zero bias resistance RC, which is strong. I show that the data are consistent with a model based on a sharp donor energy level slightly above the bottom of the semiconductor conduction band and develop a simple method for using transport measurements for estimates of the doping density after nanowire growth. I discuss the predictions of effective free carrier density n eff as function of the surface state density Ds and wire size dW. I also describe a correction to the widely used model of Schottky contacts that improves thermodynamic consistency of the Schottky tunnel barrier profile and show that the original theory may underestimate the barrier conductance under certain conditions. I also provide analytical calculations for shallow silicon dopant energy in GaAs crystals, and find the presence of dielectrics (dielectric screening) and free carriers (Coulomb screening) cause a

  19. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce

    2015-08-03

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less

  20. Rhombohedral cubic semiconductor materials on trigonal substrate with single crystal properties and devices based on such materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.

  1. Off-stoichiometric silver antimony telluride: An experimental study of transport properties with intrinsic and extrinsic doping

    DOE PAGES

    Nielsen, Michele D.; Jaworski, Christopher M.; Heremans, Joseph P.

    2015-03-20

    AgSbTe 2 is a thermoelectric semiconductor with an intrinsically low thermal conductivity and a valence band structure that is favorable to obtaining a high thermoelectric figure of merit zT. It also has a very small energy gap Eg ~ 7.6 ± 3 meV. As this gap is less than the thermal excitation energy at room temperature, near-intrinsic AgSbTe 2 is a two carrier system having both holes (concentration p) and electrons ( n). Good thermoelectric performance requires heavy p-type doping ( p > > n). This can be achieved with native defects or with extrinsic doping, e.g. with transition metalmore » element. The use of defect doping is complicated by the fact that many of the ternary Ag-Sb-Te and pseudo-binary Sb 2Te 3-Ag 2Te phase diagrams are contradictory. This paper determines the compositional region most favorable to creating a single phase material. Through a combination of intrinsic and extrinsic doping, values of zT > 1 are achieved, though not on single-phased material. In addition, we show that thermal conductivity is not affected by defects, further demonstrating that the low lattice thermal conductivity of I-V-VI 2 materials is due to an intrinsic mechanism, insensitive to changes in defect structure.« less

  2. Architectures for Improved Organic Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Beck, Jonathan H.

    Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes

  3. A compact semiconductor digital interferometer and its applications

    NASA Astrophysics Data System (ADS)

    Britsky, Oleksander I.; Gorbov, Ivan V.; Petrov, Viacheslav V.; Balagura, Iryna V.

    2015-05-01

    The possibility of using semiconductor laser interferometers to measure displacements at the nanometer scale was demonstrated. The creation principles of miniature digital Michelson interferometers based on semiconductor lasers were proposed. The advanced processing algorithm for the interferometer quadrature signals was designed. It enabled to reduce restrictions on speed of measured movements. A miniature semiconductor digital Michelson interferometer was developed. Designing of the precision temperature stability system for miniature low-cost semiconductor laser with 0.01ºС accuracy enabled to use it for creation of compact interferometer rather than a helium-neon one. Proper firmware and software was designed for the interferometer signals real-time processing and conversion in to respective shifts. In the result the relative displacement between 0-500 mm was measured with a resolution of better than 1 nm. Advantages and disadvantages of practical use of the compact semiconductor digital interferometer in seismometers for the measurement of shifts were shown.

  4. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

    NASA Astrophysics Data System (ADS)

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-12-01

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V-1 s-1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.

  5. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass.

    PubMed

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-12-08

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co 28.6 Fe 12.4 Ta 4.3 B 8.7 O 46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm 2  V -1  s -1 . Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.

  6. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

    PubMed Central

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-an; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-01-01

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V−1 s−1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. PMID:27929059

  7. Semiconductor metal oxide compounds based gas sensors: A literature review

    NASA Astrophysics Data System (ADS)

    Patil, Sunil Jagannath; Patil, Arun Vithal; Dighavkar, Chandrakant Govindrao; Thakare, Kashinath Shravan; Borase, Ratan Yadav; Nandre, Sachin Jayaram; Deshpande, Nishad Gopal; Ahire, Rajendra Ramdas

    2015-03-01

    This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein.

  8. Semiconductor laser using multimode interference principle

    NASA Astrophysics Data System (ADS)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao

    2018-01-01

    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  9. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.

    PubMed

    Baeg, Kang-Jun; Caironi, Mario; Noh, Yong-Young

    2013-08-21

    For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge

  10. A microprocessor based on a two-dimensional semiconductor

    PubMed Central

    Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas

    2017-01-01

    The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III–V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor—molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material. PMID:28398336

  11. The Complete Set of Genes Encoding Major Intrinsic Proteins in Arabidopsis Provides a Framework for a New Nomenclature for Major Intrinsic Proteins in Plants1

    PubMed Central

    Johanson, Urban; Karlsson, Maria; Johansson, Ingela; Gustavsson, Sofia; Sjövall, Sara; Fraysse, Laure; Weig, Alfons R.; Kjellbom, Per

    2001-01-01

    Major intrinsic proteins (MIPs) facilitate the passive transport of small polar molecules across membranes. MIPs constitute a very old family of proteins and different forms have been found in all kinds of living organisms, including bacteria, fungi, animals, and plants. In the genomic sequence of Arabidopsis, we have identified 35 different MIP-encoding genes. Based on sequence similarity, these 35 proteins are divided into four different subfamilies: plasma membrane intrinsic proteins, tonoplast intrinsic proteins, NOD26-like intrinsic proteins also called NOD26-like MIPs, and the recently discovered small basic intrinsic proteins. In Arabidopsis, there are 13 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, nine NOD26-like intrinsic proteins, and three small basic intrinsic proteins. The gene structure in general is conserved within each subfamily, although there is a tendency to lose introns. Based on phylogenetic comparisons of maize (Zea mays) and Arabidopsis MIPs (AtMIPs), it is argued that the general intron patterns in the subfamilies were formed before the split of monocotyledons and dicotyledons. Although the gene structure is unique for each subfamily, there is a common pattern in how transmembrane helices are encoded on the exons in three of the subfamilies. The nomenclature for plant MIPs varies widely between different species but also between subfamilies in the same species. Based on the phylogeny of all AtMIPs, a new and more consistent nomenclature is proposed. The complete set of AtMIPs, together with the new nomenclature, will facilitate the isolation, classification, and labeling of plant MIPs from other species. PMID:11500536

  12. Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser

    NASA Astrophysics Data System (ADS)

    Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming

    2017-09-01

    A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.

  13. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Haider, Ali

    2017-09-01

    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  14. Bidirectional chaos communication between two outer semiconductor lasers coupled mutually with a central semiconductor laser.

    PubMed

    Li, Ping; Wu, Jia-Gui; Wu, Zheng-Mao; Lin, Xiao-Dong; Deng, Dao; Liu, Yu-Ran; Xia, Guang-Qiong

    2011-11-21

    Based on a linear chain composed of a central semiconductor laser and two outer semiconductor lasers, chaos synchronization and bidirectional communication between two outer lasers have been investigated under the case that the central laser and the two outer lasers are coupled mutually, whereas there exists no coupling between the two outer lasers. The simulation results show that high-quality and stable isochronal synchronization between the two outer lasers can be achieved, while the cross-correlation coefficients between the two outer lasers and the central laser are very low under proper operation condition. Based on the high performance chaos synchronization between the two outer lasers, message bidirectional transmissions of bit rates up to 20 Gbit/s can be realized through adopting a novel decoding scheme which is different from that based on chaos pass filtering effect. Furthermore, the security of bidirectional communication is also analyzed. © 2011 Optical Society of America

  15. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  16. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  17. Fuzzy-based assessment of groundwater intrinsic vulnerability of a volcanic aquifer in the Chilean Andean Valley.

    PubMed

    Duhalde, Denisse J; Arumí, José L; Oyarzún, Ricardo A; Rivera, Diego A

    2018-06-11

    A fuzzy logic approach has been proposed to face the uncertainty caused by sparse data in the assessment of the intrinsic vulnerability of a groundwater system with parametric methods in Las Trancas Valley, Andean Mountain, south-central Chile, a popular touristic place in Chile, but lacking of a centralized drinking and sewage water public systems; this situation is a potentially source of groundwater pollution. Based on DRASTIC, GOD, and EKv and the expert knowledge of the study area, the Mamdani fuzzy approach was generated and the spatial data were processed by ArcGIS. The groundwater system exhibited areas with high, medium, and low intrinsic vulnerability indices. The fuzzy approach results were compared with traditional methods results, which, in general, have shown a good spatial agreement even though significant changes were also identified in the spatial distribution of the indices. The Mamdani logic approach has shown to be a useful and practical tool to assess the intrinsic vulnerability of an aquifer under sparse data conditions.

  18. A lead-halide perovskite molecular ferroelectric semiconductor

    PubMed Central

    Liao, Wei-Qiang; Zhang, Yi; Hu, Chun-Li; Mao, Jiang-Gao; Ye, Heng-Yun; Li, Peng-Fei; Huang, Songping D.; Xiong, Ren-Gen

    2015-01-01

    Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for exploration of ferroelectricity. Therefore, the design of molecular ferroelectric semiconductors based on these hybrids provides a possibility to obtain new or high-performance semiconductor ferroelectrics. Here we investigated Pb-layered perovskites, and found the layer perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours. It has a larger ferroelectric spontaneous polarization Ps=13 μC cm−2 and a higher Curie temperature Tc=438 K with a band gap of 3.65 eV. This finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics. PMID:26021758

  19. Nanopatterned organic semiconductors for visible light communications

    NASA Astrophysics Data System (ADS)

    Yang, Xilu; Dong, Yurong; Zeng, Pan; Yu, Yan; Xie, Yujun; Gong, Junyi; Shi, Meng; Liang, Rongqing; Ou, Qiongrong; Chi, Nan; Zhang, Shuyu

    2018-03-01

    Visible light communication (VLC) is becoming an important and promising supplement to the existing Wi-Fi network for the coming 5G communications. Organic light-emitting semiconductors present much fast fluorescent decay rates compared to those of conventional colour-converting phosphors, therefore capable of achieving much higher bandwidths. Here we explore how nanopatterned organic semiconductors can further enhance the data rates of VLC links by improving bandwidths and signal-to-noise ratios (SNRs) and by supporting spatial multiplexing. We first demonstrate a colour-converting VLC system based on nanopatterned hyperbolic metamaterials (HMM), the bandwidth of which is enhanced by 50%. With regard to enhancing SNRs, we achieve a tripling of optical gain by integrating a nanopatterned luminescent concentrator to a signal receiver. In addition, we demonstrate highly directional fluorescent VLC antennas based on nanoimprinted polymer films, paving the way to achieving parallel VLC communications via spatialmultiplexing. These results indicate nanopatterned organic semiconductors provide a promising route to high speed VLC links.

  20. pn junctions based on a single transparent perovskite semiconductor BaSnO3

    NASA Astrophysics Data System (ADS)

    Kim, Hoon Min; Kim, Useong; Park, Chulkwon; Kwon, Hyukwoo; Lee, Woongjae; Kim, Tai Hoon; Kim, Kee Hoon; Char, Kookrin; Mdpl, Department Of Physics; Astronomy Team; Censcmr, Department Of Physics; Astronomy Team

    2014-03-01

    Successful p doping of transparent oxide semiconductor will further increase its potential, especially in the area of optoelectronic applications. We will report our efforts to dope the BaSnO3 (BSO) with K by pulsed laser deposition. Although the K doped BSO exhibits rather high resistivity at room temperature, its conductivity increases dramatically at higher temperatures. Furthermore, the conductivity decreases when a small amount of oxygen was removed from the film, consistent with the behavior of p type doped oxides. We have fabricated pn junctions by using K doped BSO as a p type and La doped BSO as an n type material. I_V characteristics of these devices show the typical rectifying behavior of pn junctions. We will present the analysis of the junction properties from the temperature dependent measurement of their electrical properties, which shows that the I_V characteristics are consistent with the material parameters such as the carrier concentration, the mobility, and the bandgap. Our demonstration of pn junctions based on a single transparent perovskite semiconductor further enhances the potential of BSO system with high mobility and stability.

  1. Intrinsic factor

    MedlinePlus

    Intrinsic factor is a protein that helps your intestines absorb vitamin B12. It is made by cells in the ... Intrinsic factor is a protein that helps your body absorb vitamin B12. Vitamin B12 is needed for red blood ...

  2. The alphabet of intrinsic disorder

    PubMed Central

    Uversky, Vladimir N

    2013-01-01

    The ability of a protein to fold into unique functional state or to stay intrinsically disordered is encoded in its amino acid sequence. Both ordered and intrinsically disordered proteins (IDPs) are natural polypeptides that use the same arsenal of 20 proteinogenic amino acid residues as their major building blocks. The exceptional structural plasticity of IDPs, their capability to exist as heterogeneous structural ensembles and their wide array of important disorder-based biological functions that complements functional repertoire of ordered proteins are all rooted within the peculiar differential usage of these building blocks by ordered proteins and IDPs. In fact, some residues (so-called disorder-promoting residues) are noticeably more common in IDPs than in sequences of ordered proteins, which, in their turn, are enriched in several order-promoting residues. Furthermore, residues can be arranged according to their “disorder promoting potencies,” which are evaluated based on the relative abundances of various amino acids in ordered and disordered proteins. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and concerns glutamic acid, which is the second most disorder-promoting residue. PMID:28516010

  3. Multi-gas interaction modeling on decorated semiconductor interfaces: A novel Fermi distribution-based response isotherm and the inverse hard/soft acid/base concept

    NASA Astrophysics Data System (ADS)

    Laminack, William; Gole, James

    2015-12-01

    A unique MEMS/NEMS approach is presented for the modeling of a detection platform for mixed gas interactions. Mixed gas analytes interact with nanostructured decorating metal oxide island sites supported on a microporous silicon substrate. The Inverse Hard/Soft acid/base (IHSAB) concept is used to assess a diversity of conductometric responses for mixed gas interactions as a function of these nanostructured metal oxides. The analyte conductometric responses are well represented using a combination diffusion/absorption-based model for multi-gas interactions where a newly developed response absorption isotherm, based on the Fermi distribution function is applied. A further coupling of this model with the IHSAB concept describes the considerations in modeling of multi-gas mixed analyte-interface, and analyte-analyte interactions. Taking into account the molecular electronic interaction of both the analytes with each other and an extrinsic semiconductor interface we demonstrate how the presence of one gas can enhance or diminish the reversible interaction of a second gas with the extrinsic semiconductor interface. These concepts demonstrate important considerations in the array-based formats for multi-gas sensing and its applications.

  4. Do incentives undermine intrinsic motivation? Increases in intrinsic motivation within an incentive-based intervention for people living with HIV in Tanzania

    PubMed Central

    Dow, William H.; Njau, Prosper F.

    2018-01-01

    Background Cash and in-kind incentives can improve health outcomes in various settings; however, there is concern that incentives may ‘crowd out’ intrinsic motivation to engage in beneficial behaviors. We examined this hypothesis in a randomized trial of food and cash incentives for people living with HIV infection in Tanzania. Methods We analyzed data from 469 individuals randomized to one of three study arms: standard of care, short-term cash transfers, or short-term food assistance. Eligible participants were: 1) ≥18 years old; 2) HIV-infected; 3) food insecure; and 4) initiated antiretroviral therapy (ART) ≤90 days before the study. Food or cash transfers, valued at ~$11 per month and conditional on attending clinic visits, were provided for ≤6 months. Intrinsic motivation was measured at baseline, 6, and 12 months using the autonomous motivation section of the Treatment Self-Regulation Questionnaire (TSRQ). We compared the change in TSRQ score from baseline to 6 and 12 months and the change within study arms. Results The mean intrinsic motivation score was 2.79 at baseline (range: 1–3), 2.91 at 6 months (range: 1–3), and 2.95 at 12 months (range: 2–3), which was 6 months after the incentives had ended. Among all patients, the intrinsic motivation score increased by 0.13 points at 6 months (95% CI (0.09, 0.17), Cohen’s d = 0.29) and 0.19 points at 12 months (95% CI (0.14, 0.24), Cohen’s d = 0.49). Intrinsic motivation also increased within each study group at 6 months: 0.15 points in the food arm (95% CI (0.09, 0.21), Cohen’s d = 0.37), 0.11 points in the cash arm (95% CI (0.05, 0.18), Cohen’s d = 0.25), and 0.08 points in the comparison arm (95% CI (-0.03, 0.19), Cohen’s d = 0.21); findings were similar at 12 months. Increases in motivation were statistically similar between arms at 6 and 12 months. Conclusion Intrinsic motivation for ART adherence increased significantly both overall and within the food and cash incentive arms, even

  5. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing

    PubMed Central

    Lizbinski, Kristyn M.; Dacks, Andrew M.

    2018-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a “memory” by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform. PMID:29375314

  6. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing.

    PubMed

    Lizbinski, Kristyn M; Dacks, Andrew M

    2017-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a "memory" by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.

  7. Intrinsic charge trapping in amorphous oxide films: status and challenges

    NASA Astrophysics Data System (ADS)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  8. Stimulating Students' Intrinsic Motivation for Learning Chemistry through the Use of Context-Based Learning Modules

    ERIC Educational Resources Information Center

    Vaino, Katrin; Holbrook, Jack; Rannikmae, Miia

    2012-01-01

    This paper introduces a research project in which five chemistry teachers, working in cooperation with university researchers, implemented a new teaching approach using context-based modules specially designed to stimulate the intrinsic motivation of students. The intention was to induce change in chemistry teachers' teaching approach from more…

  9. Tuning polarity and improving charge transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Oh, Joon Hak; Han, A.-Reum; Yu, Hojeong; Lee, Eun Kwang; Jang, Moon Jeong

    2013-09-01

    Although state-of-the-art ambipolar polymer semiconductors have been extensively reported in recent years, highperformance ambipolar polymers with tunable dominant polarity are still required to realize on-demand, target-specific, high-performance organic circuitry. Herein, dithienyl-diketopyrrolopyrrole (TDPP)-based polymer semiconductors with engineered side-chains have been synthesized, characterized and employed in ambipolar organic field-effect transistors, in order to achieve controllable and improved electrical properties. Thermally removable tert-butoxycarbonyl (t-BOC) groups and hybrid siloxane-solubilizing groups are introduced as the solubilizing groups, and they are found to enable the tunable dominant polarity and the enhanced ambipolar performance, respectively. Such outstanding performance based on our molecular design strategies makes these ambipolar polymer semiconductors highly promising for low-cost, large-area, and flexible electronics.

  10. A Furan-Thiophene-Based Quinoidal Compound: A New Class of Solution-Processable High-Performance n-Type Organic Semiconductor.

    PubMed

    Xiong, Yu; Tao, Jingwei; Wang, Ruihao; Qiao, Xiaolan; Yang, Xiaodi; Wang, Deliang; Wu, Hongzhuo; Li, Hongxiang

    2016-07-01

    The furan-thiophene-based quinoidal organic semiconductor, TFT-CN, is designed and synthesized. TFT-CN displays a high electron mobility of 7.7 cm(2) V(-1) s(-1) , two orders of magnitude higher than the corresponding thiophene-based derivative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Variable temperature semiconductor film deposition

    DOEpatents

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  12. Variable temperature semiconductor film deposition

    DOEpatents

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  13. Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.

    PubMed

    Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J

    2006-10-01

    We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.

  14. Floating-gate memory based on an organic metal-insulator-semiconductor capacitor

    NASA Astrophysics Data System (ADS)

    William, S.; Mabrook, M. F.; Taylor, D. M.

    2009-08-01

    A floating gate memory element is described which incorporates an evaporated gold film embedded in the gate dielectric of a metal-insulator-semiconductor capacitor based on poly(3-hexylthiophene). On exceeding a critical amplitude in the voltage sweep, hysteresis is observed in the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the device. The anticlockwise hysteresis in C-V is consistent with strong electron trapping during the positive cycle but little hole trapping during the negative cycle. We argue that the clockwise hysteresis observed in the negative cycle of the I-V plot, arises from leakage of trapped holes through the underlying insulator to the control gate.

  15. GaN/NbN epitaxial semiconductor/superconductor heterostructures.

    PubMed

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D Scott; Nepal, Neeraj; Downey, Brian P; Muller, David A; Xing, Huili G; Meyer, David J; Jena, Debdeep

    2018-03-07

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  16. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years

    NASA Astrophysics Data System (ADS)

    Calvez, S.; Adams, M. J.

    2012-09-01

    Anniversaries call for celebrations. Since it is now fifty years since the first semiconductor lasers were reported, it is highly appropriate to celebrate this anniversary with a Special Issue dedicated to the topic. The semiconductor laser now has a major effect on our daily lives since it has been a key enabler in the development of optical fibre communications (and hence the internet and e-mail), optical storage (CDs, DVDs, etc) and barcode scanners. In the early 1960s it was impossible for most people (with the exception of very few visionaries) to foresee any of these future developments, and the first applications identified were for military purposes (range-finders, target markers, etc). Of course, many of the subsequent laser applications were made possible by developments in semiconductor materials, in the associated growth and fabrication technology, and in the increased understanding of the underlying fundamental physics. These developments continue today, so that the subject of semiconductor lasers, although mature, is in good health and continues to grow. Hence, we can be confident that the pervasive influence of semiconductor lasers will continue to develop as optoelectronics technology makes further advances into other sectors such as healthcare, security and a whole host of applications based on the global imperatives to reduce energy consumption, minimise environmental impact and conserve resources. The papers in this Special Issue are intended to tell some of the story of the last fifty years of laser development as well as to provide evidence of the current state of semiconductor laser research. Hence, there are a number of papers where the early developments are recalled by authors who played prominent parts in the story, followed by a selection of papers from authors who are active in today's exciting research. The twenty-fifth anniversary of the semiconductor laser was celebrated by the publication of a number of papers dealing with the early

  17. Back-side readout semiconductor photomultiplier

    DOEpatents

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  18. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment

    NASA Astrophysics Data System (ADS)

    Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.

    2013-12-01

    Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model

  19. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  20. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Westmont, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Rapid City, SD; Ko, Heung Cho [Urbana, IL; Mack, Shawn [Goleta, CA

    2011-10-18

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  1. Printable semiconductor structures and related methods of making and assembling

    DOEpatents

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2010-09-21

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  2. Chemical Defects and Electronics States in Organic Semiconductors

    DTIC Science & Technology

    2008-05-31

    from interacting with organic semiconductor devices. An expt./theoretical study of 0 2 in pentacene indicated that a positive gate voltage can cause...dissociative interaction of02 with pentacene . 1S. SUBJECT TERMS organic semiconductors, PBTIT, P3HT, PQT, polythiophenes, pentacene , defects...investigations of the interaction of02 molecules with pentacene were performed. Based on calculations of formation energies of charged defects a model was

  3. Semiconductor Materials for High Frequency Solid State Sources.

    DTIC Science & Technology

    1985-01-18

    saturation on near and submicron-scale device performance. The motivation for this is as follows: Presently, individual semiconductors are accepted or...basis of all FET scaling procedures; and is a major motivating factor for going to submicron structures. This scaling was tested with the 4 following...performance. The motivation for this is as follows: Presently, individual semiconductors are accepted or rejected as candidate device materials based, in

  4. Main principles of developing exploitation models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Simonova, A. V.

    2018-05-01

    The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.

  5. A FPGA-based Measurement System for Nonvolatile Semiconductor Memory Characterization

    NASA Astrophysics Data System (ADS)

    Bu, Jiankang; White, Marvin

    2002-03-01

    Low voltage, long retention, high density SONOS nonvolatile semiconductor memory (NVSM) devices are ideally suited for PCMCIA, FLASH and 'smart' cards. The SONOS memory transistor requires characterization with an accurate, rapid measurement system with minimum disturbance to the device. The FPGA-based measurement system includes three parts: 1) a pattern generator implemented with XILINX FPGAs and corresponding software, 2) a high-speed, constant-current, threshold voltage detection circuit, 3) and a data evaluation program, implemented with a LABVIEW program. Fig. 1 shows the general block diagram of the FPGA-based measurement system. The function generator is designed and simulated with XILINX Foundation Software. Under the control of the specific erase/write/read pulses, the analog detect circuit applies operational modes to the SONOS device under test (DUT) and determines the change of the memory-state of the SONOS nonvolatile memory transistor. The TEK460 digitizes the analog threshold voltage output and sends to the PC computer. The data is filtered and averaged with a LABVIEWTM program running on the PC computer and displayed on the monitor in real time. We have implemented the pattern generator with XILINX FPGAs. Fig. 2 shows the block diagram of the pattern generator. We realized the logic control by a method of state machine design. Fig. 3 shows a small part of the state machine. The flexibility of the FPGAs enhances the capabilities of this system and allows measurement variations without hardware changes. The characterization of the nonvolatile memory transistor device under test (DUT), as function of programming voltage and time, is achieved by a high-speed, constant-current threshold voltage detection circuit. The analog detection circuit incorporating fast analog switches controlled digitally with the FPGAs. The schematic circuit diagram is shown in Fig. 4. The various operational modes for the DUT are realized with control signals applied to the

  6. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  7. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  8. Gain-clamped semiconductor optical amplifiers based on compensating light: Theoretical model and performance analysis

    NASA Astrophysics Data System (ADS)

    Jia, Xin-Hong; Wu, Zheng-Mao; Xia, Guang-Qiong

    2006-12-01

    It is well known that the gain-clamped semiconductor optical amplifier (GC-SOA) based on lasing effect is subject to transmission rate restriction because of relaxation oscillation. The GC-SOA based on compensating effect between signal light and amplified spontaneous emission by combined SOA and fiber Bragg grating (FBG) can be used to overcome this problem. In this paper, the theoretical model on GC-SOA based on compensating light has been constructed. The numerical simulations demonstrate that good gain and noise figure characteristics can be realized by selecting reasonably the FBG insertion position, the peak reflectivity of FBG and the biasing current of GC-SOA.

  9. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  10. Capital investment in semiconductors: The lifeblood of the US semiconductor industry

    NASA Astrophysics Data System (ADS)

    Finan, William F.

    1990-09-01

    An analysis is given of four proposals designed to improve capital formation for U.S. industry in general, and the semiconductor industry in particular. The National Advisory Committee on Semiconductors recommendations were to make the current research and experimentation (R and E) tax credit more effective, to reduce taxes on capital gains, to increase personal savings incentives, and to improve semiconductor manufacturing equipment depreciation rules. The results of the qualitative analysis of the proposals as well as a description of the methodology employed are given.

  11. Semiconductor nanomembrane-based sensors for high frequency pressure measurements

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing

    2017-04-01

    This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.

  12. Estimation of carrier mobility and charge behaviors of organic semiconductor films in metal-insulator-semiconductor diodes consisting of high-k oxide/organic semiconductor double layers

    NASA Astrophysics Data System (ADS)

    Chosei, Naoya; Itoh, Eiji

    2018-02-01

    We have comparatively studied the charge behaviors of organic semiconductor films based on charge extraction by linearly increasing voltage in a metal-insulator-semiconductor (MIS) diode structure (MIS-CELIV) and by classical capacitance-voltage measurement. The MIS-CELIV technique allows the selective measurement of electron and hole mobilities of n- and p-type organic films with thicknesses representative of those of actual devices. We used an anodic oxidized sputtered Ta or Hf electrode as a high-k layer, and it effectively blocked holes at the insulator/semiconductor interface. We estimated the hole mobilities of the polythiophene derivatives regioregular poly(3-hexylthiophene) (P3HT) and poly(3,3‧‧‧-didodecylquarterthiophene) (PQT-12) before and after heat treatment in the ITO/high-k/(thin polymer insulator)/semiconductor/MoO3/Ag device structure. The hole mobility of PQT-12 was improved from 1.1 × 10-5 to 2.1 × 10-5 cm2 V-1 s-1 by the heat treatment of the device at 100 °C for 30 min. An almost two orders of magnitude higher mobility was obtained in MIS diodes with P3HT as the p-type layer. We also determined the capacitance from the displacement current in MIS diodes at a relatively low-voltage sweep, and it corresponded well to the classical capacitance-voltage and frequency measurement results.

  13. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.

    PubMed

    Regulacio, Michelle D; Han, Ming-Yong

    2016-03-15

    Semiconductor nanostructures that can effectively serve as light-responsive photocatalysts have been of considerable interest over the past decade. This is because their use in light-induced photocatalysis can potentially address some of the most serious environmental and energy-related concerns facing the world today. One important application is photocatalytic hydrogen production from water under solar radiation. It is regarded as a clean and sustainable approach to hydrogen fuel generation because it makes use of renewable resources (i.e., sunlight and water), does not involve fossil fuel consumption, and does not result in environmental pollution or greenhouse gas emission. Another notable application is the photocatalytic degradation of nonbiodegradable dyes, which offers an effective way of ridding industrial wastewater of toxic organic pollutants prior to its release into the environment. Metal oxide semiconductors (e.g., TiO2) are the most widely studied class of semiconductor photocatalysts. Their nanostructured forms have been reported to efficiently generate hydrogen from water and effectively degrade organic dyes under ultraviolet-light irradiation. However, the wide band gap characteristic of most metal oxides precludes absorption of light in the visible region, which makes up a considerable portion of the solar radiation spectrum. Meanwhile, nanostructures of cadmium chalcogenide semiconductors (e.g., CdS), with their relatively narrow band gap that can be easily adjusted through size control and alloying, have displayed immense potential as visible-light-responsive photocatalysts, but the intrinsic toxicity of cadmium poses potential risks to human health and the environment. In developing new nanostructured semiconductors for light-driven photocatalysis, it is important to choose a semiconducting material that has a high absorption coefficient over a wide spectral range and is safe for use in real-world settings. Among the most promising candidates

  14. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor.

    PubMed

    Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong

    2017-03-01

    One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.

  15. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    PubMed

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  16. Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Deci, Edward L.

    The paper draws together a wide variety of research which relates to the topic of intrinsic motivation; intrinsically motivated activities are defined as those which a person does for no apparent reward except the activity itself or the feelings which result from the activity. Most of this research was not originally reported within the framework…

  17. Optical orientation in ferromagnet/semiconductor hybrids

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  18. EDITORIAL The 23rd Nordic Semiconductor Meeting The 23rd Nordic Semiconductor Meeting

    NASA Astrophysics Data System (ADS)

    Ólafsson, Sveinn; Sveinbjörnsson, Einar

    2010-12-01

    A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a topical issue of Physica Scripta. All of the papers in this topical issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This meeting of the 23rd Nordic Semiconductor community, NSM 2009, was held at Háskólatorg at the campus of the University of Iceland, Reykjavik, Iceland, 14-17 June 2009. Support was provided by the University of Iceland. Almost 50 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The meeting aim was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. Topics Theory and fundamental physics of semiconductors Emerging semiconductor technologies (for example III-V integration on Si, novel Si devices, graphene) Energy and semiconductors Optical phenomena and optical devices MEMS and sensors Program 14 June Registration 13:00-17:00 15 June Meeting program 09:30-17:00 and Poster Session I 16 June Meeting program 09:30-17:00 and Poster Session II 17 June Excursion and dinner

  19. Semiconductor Ion Implanters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKinnon, Barry A.; Ruffell, John P.

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intelmore » product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.« less

  20. Interface Schottky barrier engineering via strain in metal-semiconductor composites

    NASA Astrophysics Data System (ADS)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2016-01-01

    The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures.The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation

  1. Dual emissions from MnS clusters confined in the sodalite nanocage of a chalcogenide-based semiconductor zeolite.

    PubMed

    Hu, Dandan; Zhang, Yingying; Lin, Jian; Hou, Yike; Li, Dongsheng; Wu, Tao

    2017-03-21

    A new host-guest hybrid system with MnS clusters confined in a chalcogenide-based semiconductor zeolite was for the first time constructed and its photoluminescence (PL) properties were also investigated. The existence of MnS clusters in the nanopores of the semiconductor zeolite was revealed by UV-Vis absorption spectroscopy, steady-state fluorescence analysis, Raman as well as Fourier transform infrared (FTIR) spectroscopy. The aggregation state of the entrapped MnS clusters at different measurement temperatures was probed by electron paramagnetic resonance (EPR) spectroscopy. Of significant importance is the fact that the entrapped MnS clusters displayed dual emissions at 518 nm (2.39 eV) and 746 nm (1.66 eV), respectively, and the long-wavelength emission has never been observed in other MnS-confined host-guest systems. These two emission peaks displayed tunable PL intensity affected by the loading level and measurement temperature. This can be explained by the different morphologies of MnS clusters with different aggregation states at the corresponding loading level or measurement temperature. The current study opens a new avenue to construct inorganic chalcogenide cluster involved host-guest systems with a semiconductor zeolite as the host matrix.

  2. Kinetic phenomena in zero-gap semiconductors CuFeS2 and CuFeTe2: Effect of pressure and heat treatment

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Konstantinov, P. P.; Rud', Yu. V.

    2011-10-01

    Electrical resistivity ρ and Hal coefficient R are measured as a function of the temperature ( T = 1.7-310 K) and the magnetic field (up to H = 28 kOe) in zero-gap semiconductor CuFeS2 samples subjected to hydrostatic compression and under various heat-treatment conditions. At low temperatures, anomalies are observed in the kinetic effects related to the presence of ferromagnetic clusters: the magnetoresistance at T = 4.2 K and T = 20.4 K acquires a hysteretic character and thermopower α changes its sign at T < 15 K. The temperature dependence of conduction-electron concentration n in CuFeS2 has a power form in the temperature range T = 14-300 K, which is characteristic of the intrinsic conductivity in zero-gap semiconductors. In CuFeS2, we have n( T) ∝ T 1.2; in isoelectron compound Cu1.13Fe1.22Te2, we have n( T) ∝ T 1.93. Heat treatment is found to affect the intrinsic conductivity of CuFeS2, as the action of hydrostatic compression (carrier concentration changes); that is, the carrier concentration changes. However, a power form of the n( T) and ρ( T) dependences is retained.

  3. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.

  4. Reducing leakage current in semiconductor devices

    DOEpatents

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  5. EDITORIAL: (Nano)characterization of semiconductor materials and structures (Nano)characterization of semiconductor materials and structures

    NASA Astrophysics Data System (ADS)

    Bonanni, Alberta

    2011-06-01

    The latest impressive advancements in the epitaxial fabrication of semiconductors and in the refinement of characterization techniques have the potential to allow insight into the deep relation between materials' structural properties and their physical and chemical functionalities. Furthermore, while the comprehensive (nano)characterization of semiconductor materials and structures is becoming more and more necessary, a compendium of the currently available techniques is lacking. We are positive that an overview of the hurdles related to the specific methods, often leading to deceptive interpretations, will be most informative for the broad community working on semiconductors, and will help in shining some light onto a plethora of controversial reports found in the literature. From this perspective, with this special issue we address and highlight the challenges and misinterpretations related to complementary local (nanoscale) and more global experimental methods for the characterization of semiconductors. The six topical reviews and the three invited papers by leading experts in the specific fields collected in here are intended to provide the required broad overview on the possibilities of actual (nano)characterization methods, from the microscopy of single quantum structures, over the synchrotron-based absorption and diffraction of nano-objects, to the contentious detection of tiny magnetic signals by quantum interference and resonance techniques. We are grateful to all the authors for their valuable contributions. Moreover, I would like to thank the Editorial Board of the journal for supporting the realization of this special issue and for inviting me to serve as Guest Editor. We greatly appreciate the work of the reviewers, of the editorial staff of Semiconductor Science and Technology and of IOP Publishing. In particular, the efforts of Alice Malhador in coordinating this special issue are acknowledged.

  6. Theory of intrinsic linewidth based on fluctuation-dissipation balance for thermal photons in THz quantum-cascade lasers.

    PubMed

    Yamanishi, Masamichi

    2012-12-17

    Intrinsic linewidth formula modified by taking account of fluctuation-dissipation balance for thermal photons in a THz quantum-cascade laser (QCL) is exhibited. The linewidth formula based on the model that counts explicitly the influence of noisy stimulated emissions due to thermal photons existing inside the laser cavity interprets experimental results on intrinsic linewidth, ~91.1 Hz reported recently with a 2.5 THz bound-to-continuum QCL. The line-broadening induced by thermal photons is estimated to be ~22.4 Hz, i.e., 34% broadening. The modified linewidth formula is utilized as a bench mark in engineering of THz thermal photons inside laser cavities.

  7. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology.

    PubMed

    Li, Jingsi; Wang, Huan; Chen, Xiangfei; Yin, Zuowei; Shi, Yuechun; Lu, Yanqing; Dai, Yitang; Zhu, Hongliang

    2009-03-30

    In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.

  8. Traveling wave electro-optic phase modulators based on intrinsically polar self-assembled chromophoric superlattices

    NASA Astrophysics Data System (ADS)

    Zhao, Y.-G.; Wu, A.; Lu, H.-L.; Chang, S.; Lu, W.-K.; Ho, S. T.; van der Boom, M. E.; Marks, T. J.

    2001-07-01

    Traveling-wave electro-optic modulators based on chromophoric self-assembled superlattices (SASs) possessing intrinsically polar microstructures have been designed and fabricated. Although the thickness of the SAS layer is only ˜150 nm, a π-phase shift is clearly observed. From the measured Vπ value, the effective electro-optic coefficient of the SAS film is determined to be ˜21.8 pm/V at an input wavelength of 1064 nm.

  9. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  10. Production of 35S for a Liquid Semiconductor Betavoltaic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, David E.; Garnov, A. Y.; Robertson, J. D.

    2009-10-01

    The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductormore » media.« less

  11. Intrinsic and extrinsic mortality reunited.

    PubMed

    Koopman, Jacob J E; Wensink, Maarten J; Rozing, Maarten P; van Bodegom, David; Westendorp, Rudi G J

    2015-07-01

    Intrinsic and extrinsic mortality are often separated in order to understand and measure aging. Intrinsic mortality is assumed to be a result of aging and to increase over age, whereas extrinsic mortality is assumed to be a result of environmental hazards and be constant over age. However, allegedly intrinsic and extrinsic mortality have an exponentially increasing age pattern in common. Theories of aging assert that a combination of intrinsic and extrinsic stressors underlies the increasing risk of death. Epidemiological and biological data support that the control of intrinsic as well as extrinsic stressors can alleviate the aging process. We argue that aging and death can be better explained by the interaction of intrinsic and extrinsic stressors than by classifying mortality itself as being either intrinsic or extrinsic. Recognition of the tight interaction between intrinsic and extrinsic stressors in the causation of aging leads to the recognition that aging is not inevitable, but malleable through the environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular

  13. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.

    PubMed

    Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles

    2016-05-10

    Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature

  14. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Xu, Zhen; Maxwell, Adam; Mancia, Lauren; Zhang, Xi; Lin, Kuang-Wei; Duryea, Alexander; Sukovich, Jonathan; Hall, Tim; Johnsen, Eric; Cain, Charles

    2018-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3–3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~ 20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C–90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability = 0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10°C to 14.9±1.4 MPa at 90°C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the

  15. European semiconductor industry: Markets, government programs

    NASA Astrophysics Data System (ADS)

    Scharf, A.

    1983-01-01

    The marketing of the semiconductor industry in Europe and especially microelectronics which is situated between the millstones of USA and Japan is discussed. The concerned enterprises and governments appear to lack the motivation for close cooperation using European resources, corresponding to the ideas of the contracts on which the common market is based. It is felt that microelectronics is promoted in individual countries under more national perspectives, and the enterprises are pursuing strictly their own interests in cooperating with predominantly American and Japanese partners. An insight into the European semiconductor scene, its markets, as well as assistance for promotion and establishment available in the individual countries is discussed.

  16. A semiconductor bridge ignited hot gas piston ejector

    NASA Technical Reports Server (NTRS)

    Grubelich, M. C.; Bickes, Robert W., Jr.

    1993-01-01

    The topics are presented in viewgraph form and include the following: semiconductor bridge technology (SCB); SCB philosophy; technology transfer; simplified sketch of SCB; SCB processing; SCB design; SCB test assembly; 5 mJ SCB burst based on a polaroid photograph; micro-convective heat transfer hypothesis; SCB fire set; comparison of SCB and hot-wire actuators; satellite firing sets; logic fire set; SCB smart component; SCB smart firing set; semiconductor design considerations; and the adjustable actuator system.

  17. Technology Roadmaps for Compound Semiconductors

    PubMed Central

    Bennett, Herbert S.

    2000-01-01

    The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615

  18. Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors.

    PubMed

    de Echegaray, Paula; Mancheño, María J; Arrechea-Marcos, Iratxe; Juárez, Rafael; López-Espejo, Guzmán; López Navarrete, J Teodomiro; Ramos, María Mar; Seoane, Carlos; Ortiz, Rocío Ponce; Segura, José L

    2016-11-18

    There is a great interest in peryleneimide (PI)-containing compounds given their unique combination of good electron accepting ability, high abosorption in the visible region, and outstanding chemical, thermal, and photochemical stabilities. Thus, herein we report the synthesis of perylene imide derivatives endowed with a 1,2-diketone functionality (PIDs) as efficient intermediates to easily access peryleneimide (PI)-containing organic semiconductors with enhanced absorption cross-section for the design of tunable semiconductor organic materials. Three processable organic molecular semiconductors containing thiophene and terthiophene moieties, PITa, PITb, and PITT, have been prepared from the novel PIDs. The tendency of these semiconductors for molecular aggregation have been investigated by NMR spectroscopy and supported by quantum chemical calculations. 2D NMR experiments and theoretical calculations point to an antiparallel π-stacking interaction as the most stable conformation in the aggregates. Investigation of the optical and electrochemical properties of the materials is also reported and analyzed in combination with DFT calculations. Although the derivatives presented here show modest electron mobilities of ∼10 -4 cm 2 V -1 s -1 , these preliminary studies of their performance in organic field effect transistors (OFETs) indicate the potential of these new building blocks as n-type semiconductors.

  19. Modeling space-charge-limited current transport in spatially disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Ang, Y. S.; Ang, L. K.

    Charge transport properties in organic semiconductors are determined by two kinds of microscopic disorder, namely energetic disorder and the spatial disorder. It is demonstrated that the thickness dependence of space-charge limited current (SCLC) can be related to spatial disorder within the framework of fractional-dimensional space. We present a modified Mott-Gurney (MG) law in different regimes to model the varying thickness dependence in such spatially disordered materials. We analyze multiple experimental results from literature where thickness dependence of SCLC shows that the classical MG law might lead to less accurate extraction of mobility parameter, whereas the modified MG law would be a better choice in such devices. Experimental SCLC measurement in a PPV-based structure was previously modeled using a carrier-density dependent model which contradicts with a recent experiment that confirms a carrier-density independent mobility originating from the disordered morphology of the polymer. Here, this is reconciled by the modified MG law which intrinsically takes into account the effect of spatial disorder without the need of using a carrier-density dependent model. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).

  20. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors.

    PubMed

    Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G

    2010-10-01

    We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.

  1. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.

    PubMed

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-03-01

    Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.

  2. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less

  3. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    DOE PAGES

    Yan, Yanfa; Yin, Wan-Jian; Wu, Yelong; ...

    2015-03-16

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se 2 (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this study, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. Although, in each solar cell device, the GBs can bemore » chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. In conclusion, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.« less

  4. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  5. Exploring the link between intrinsic motivation and quality

    NASA Astrophysics Data System (ADS)

    Christy, Steven M.

    1992-12-01

    This thesis proposes that it is workers' intrinsic motivation that leads them to produce quality work. It reviews two different types of evidence- expert opinion and empirical studies--to attempt to evaluate a link between intrinsic motivation and work quality. The thesis reviews the works of Total Quality writers and behavioral scientists for any connection they might have made between intrinsic motivation and quality. The thesis then looks at the works of Deming and his followers in an attempt to establish a match between Deming's motivational assumptions and the four task rewards in the Thomas/Tymon model of intrinsic motivation: choice, competence, meaningfulness, and progress. Based upon this analysis, it is proposed that the four Thomas/Tymon task rewards are a promising theoretical foundation for explaining the motivational basis of quality for workers in Total Quality organizations.

  6. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  7. Solution combustion synthesis of oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Thomas, Abegayl Lorenda Shara-Lynn

    The quest for stable and efficient photocatalytic materials beyond TiO2 and WO3 has over the years led to the development of new materials that possess varied interfacial energetics. This dissertation study focused on using for the first time a novel method, solution combustion synthesis (SCS), to prepare two distinct families of binary metal-based oxide semiconductor materials. Detailed studies on material characteristics and applications were carried out on tungsten- and niobium-based oxide semiconductors with varying principal metals. Initial emphasis was placed on the SCS of tungsten-based oxide semiconductors (ZnWO4, CuWO4, and Ag2WO4). The influence of different tungsten precursor's on the resultant product was of particular relevance to this study, with the most significant effects highlighted. Upon characterization, each sample's photocatalytic activity towards methyl orange dye degradation was studied, and benchmarked against their respective commercial oxide sample, obtained by solid-state ceramic synthesis. Detailed analysis highlighted the importance of the SCS process as a time- and energy-efficient method to produce crystalline nano-sized materials even without additional or excessive heat treatment. It was observed that using different tungstate precursors does influence the structural and morphological make-up of the resulting materials. The as-synthesized tungstate materials showed good photocatalytic performance for the degradation of methyl orange dye, while taking into account specific surface area and adsorbed dye amount on the surface of the material. Like the tungstate's, niobium-based oxide semiconductors CuNb 2O6 and ZnNb2O6 were the first to be synthesized via solution combustion synthesis. Particular attention was placed on the crystal structures formed while using an oxalate niobium precursor during the reaction process. X-ray patterns yielded a multiphase structure for the ZnNb2O6 and a single phase structure for CuNb 2O6

  8. III-V semiconductor resonators: A new strategy for broadband light perfect absorbers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoshan; Chen, Jian; Liu, Jiasong; Huang, Zhenping; Yu, Meidong; Pan, Pingping; Liu, Zhengqi

    2017-11-01

    Broadband light perfect absorbers (BPAs) are desirable for applications in numerous optoelectronics devices. In this work, a semiconductor-based broadband light perfect absorber (S-BPA) has been numerically demonstrated by utilizing plasmonlike resonances of high-index semiconductor resonators. A maximal absorption of 99.7% is observed in the near-infrared region. By taking the absorption above 80% into account, the spectral bandwidth reaches 340 nm. The absorption properties mainly originate from the optical cavity modes induced by the cylinder resonators and ultrathin semiconductor film. These optical properties and simple structural features can maintain the absorber platform with wide applications in semiconductor optoelectronics.

  9. Is DNA a metal, semiconductor or insulator? A theoretical approach

    NASA Astrophysics Data System (ADS)

    Rey-Gonzalez, Rafael; Fonseca-Romero, Karen; Plazas, Carlos; Grupo de Óptica e Información Cuántica Team

    Over the last years, scientific interest for designing and making low dimensional electronic devices with traditional or novel materials has been increased. These experimental and theoretical researches in electronic properties at molecular scale are looking for developing efficient devices able to carry out tasks which are currently done by silicon transistors and devices. Among the new materials DNA strands are highlighted, but the experimental results have been contradictories pointing to behaviors as conductor, semiconductor or insulator. To contribute to the understanding of the origin of the disparity of the measurements, we perform a numerical calculation of the electrical conductance of DNA segments, modeled as 1D disordered finite chains. The system is described into a Tight binding model with nearest neighbor interactions and a s orbital per site. Hydration effects are included as random variations of self-energies. The electronic current as a function of applied bias is calculated using Launder formalism, where the transmission probability is determined into the transfer matrix formalism. We find a conductor-to-semiconductor-to-insulator transition as a function of the three effects taken into account: chain size, intrinsic disorder, and hydration We thank Fundación para la Promoción de la Investigación y la Tecnología, Colombia, and Dirección de Investigación de Bogotá, Universidad Nacional de Colombia, for partial financial support.

  10. Semiconductor structure and recess formation etch technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching processmore » stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.« less

  11. Semiconductor technology program: Progress briefs

    NASA Technical Reports Server (NTRS)

    Galloway, K. F.; Scace, R. I.; Walters, E. J.

    1981-01-01

    Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.

  12. Monolithic integration of microfluidic channels and semiconductor lasers.

    PubMed

    Cran-McGreehin, Simon J; Dholakia, Kishan; Krauss, Thomas F

    2006-08-21

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  13. Monolithic integration of microfluidic channels and semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Cran-McGreehin, Simon J.; Dholakia, Kishan; Krauss, Thomas F.

    2006-08-01

    We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

  14. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less

  15. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering

    PubMed Central

    2014-01-01

    Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030

  16. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  17. Chitin Liquid-Crystal-Templated Oxide Semiconductor Aerogels.

    PubMed

    Chau, Trang The Lieu; Le, Dung Quang Tien; Le, Hoa Thi; Nguyen, Cuong Duc; Nguyen, Long Viet; Nguyen, Thanh-Dinh

    2017-09-13

    Chitin nanocrystals have been used as a liquid crystalline template to fabricate layered oxide semiconductor aerogels. Anisotropic chitin liquid crystals are transformed to sponge-like aerogels by hydrothermally cross-linked gelation and lyophilization-induced solidification. The hydrothermal gelation of chitin aqueous suspensions then proceeds with peroxotitanate to form hydrogel composites that recover to form aerogels after freeze-drying. The homogeneous peroxotitanate/chitin composites are calcined to generate freestanding titania aerogels that exhibit the nanostructural integrity of layered chitin template. Our extended investigations show that coassembling chitin nanocrystals with other metal-based precursors also yielded semiconductor aerogels of perovskite BaTiO 3 and CuO x nanocrystals. The potential of these materials is great to investigate these chitin sponges for biomedicine and these semiconductor aerogels for photocatalysis, gas sensing, and other applications. Our results present a new aerogel templating method of highly porous, ultralight materials with chitin liquid crystals.

  18. Semiconductor meta-surface based perfect light absorber

    NASA Astrophysics Data System (ADS)

    Liu, Guiqiang; Nie, Yiyou; Fu, Guolan; Liu, Xiaoshan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2017-04-01

    We numerically proposed and demonstrated a semiconductor meta-surface light absorber, which consists of a silicon patches array on a silicon thin-film and an opaque silver substrate. The Mie resonances of the silicon patches and the fundamental cavity mode of the ultra-thin silicon film couple strongly to the incident optical field, leading to a multi-band perfect absorption. The maximal absorption is above 99.5% and the absorption is polarization-independent. Moreover, the absorption behavior is scalable in the frequency region via tuning the structural parameters. These features hold the absorber platform with wide applications in optoelectronics such as hot-electron excitation and photo-detection.

  19. Anhydrous crystals of DNA bases are wide gap semiconductors.

    PubMed

    Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L

    2011-05-07

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  20. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  1. Crude and intrinsic birth rates for Asian countries.

    PubMed

    Rele, J R

    1978-01-01

    An attempt to estimate birth rates for Asian countries. The main sources of information in developing countries has been census age-sex distribution, although inaccuracies in the basic data have made it difficult to reach a high degree of accuracy. Different methods bring widely varying results. The methodology presented here is based on the use of the conventional child-woman ratio from the census age-sex distribution, with a rough estimate of the expectation of life at birth. From the established relationships between child-woman ratio and the intrinsic birth rate of the nature y = a + bx + cx(2) at each level of life expectation, the intrinsic birth rate is first computed using coefficients already computed. The crude birth rate is obtained using the adjustment based on the census age-sex distribution. An advantage to this methodology is that the intrinsic birth rate, normally an involved computation, can be obtained relatively easily as a biproduct of the crude birth rates and the bases for the calculations for each of 33 Asian countries, in some cases over several time periods.

  2. Determination of diffusion coefficient in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    Charge carrier transport in organic semiconductors is dominated by positional and energetic disorder in Gaussian density of states (GDOS) and is characterized by hopping through localized states. Due to the immobilization of charge carriers in these localized states, significant non-uniform carrier distribution exists, resulting diffusive transport. A simple, nevertheless powerful technique to determine diffusion coefficient D in disordered organic semiconductors has been presented. Diffusion coefficients of charge carriers in two technologically important organic molecular semiconductors, Pentacene and copper phthalocyanine (CuPc) have been measured from current-voltage (J-V) characteristics of Al/Pentacene/Au and Al/CuPc/Au based Schottky diodes. Ideality factor g and carrier mobility μ have been calculated from the exponential and space charge limited region respectively of J-V characteristics. Classical Einstein relation is not valid in organic semiconductors due to energetic disorders in DOS. Using generalized Einstein relation, diffusion coefficients have been obtained to be 1.31×10-6 and 1.73×10-7 cm2/s for Pentacene and CuPc respectively.

  3. Diode-Laser Pumped Far-Infrared Local Oscillator Based on Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K.; Li, J.; Ning, C. Z.; Larrabee, D. C.; Tang, J.; Khodaparast, G.; Kono, J.; Sasa, S.; Inoue, M.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The contents include: 1) Tetrahertz Field: A Technology Gap; 2) Existing THZ Sources and Shortcomings; 3) Applications of A THZ Laser; 4) Previous Optical Pumped LW Generations; 5) Optically Pumped Sb based Intersubband Generation Whys; 6) InGaAs/InP/AlAsSb QWs; 7) Raman Enhanced Optical Gain; 8) Pump Intensity Dependence of THZ Gain; 9) Pump-Probe Interaction Induced Raman Shift; 10) THZ Laser Gain in InGaAs/InP/AlAsSb QWs; 11) Diode-Laser Pumped Difference Frequency Generation (InGaAs/InP/AlAsSb QWs); 12) 6.1 Angstrom Semiconductor Quantum Wells; 13) InAs/GaSb/AlSb Nanostructures; 14) InAs/AlSb Double QWs: DFG Scheme; 15) Sb-Based Triple QWs: Laser Scheme; and 16) Exciton State Pumped THZ Generation. This paper is presented in viewgraph form.

  4. Bipolar resistive switching in metal-insulator-semiconductor nanostructures based on silicon nitride and silicon oxide

    NASA Astrophysics Data System (ADS)

    Koryazhkina, M. N.; Tikhov, S. V.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Antonov, I. N.; Karzanov, V. V.; Gorshkov, O. N.; Tetelbaum, D. I.; Karakolis, P.; Dimitrakis, P.

    2018-03-01

    Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.

  5. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  6. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  7. Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haur Kao, Chyuan; Chun Liu, Che; Ueng, Herng-Yih

    2014-05-14

    Multianalyte electrolyte–insulator–semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na{sup +}, K{sup +}, urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600 °C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed formore » use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications.« less

  8. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.

    PubMed

    Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan

    2016-01-01

    Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Cavity soliton laser based on mutually coupled semiconductor microresonators.

    PubMed

    Genevet, P; Barland, S; Giudici, M; Tredicce, J R

    2008-09-19

    We report on experimental observation of localized structures in two mutually coupled broad-area semiconductor resonators, one of which acts as a saturable absorber. These structures coexist with a dark homogeneous background and they have the same properties as cavity solitons without requiring the presence of a driving beam into the system. They can be switched individually on and off by means of a local addressing beam.

  10. Semiconductor electrode with improved photostability characteristics

    DOEpatents

    Frank, A.J.

    1985-02-19

    An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  11. Semiconductor electrode with improved photostability characteristics

    DOEpatents

    Frank, Arthur J.

    1987-01-01

    An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  12. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    PubMed

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  13. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  14. An analysis of phonon emission as controlled by the combined interaction with the acoustic and piezoelectric phonons in a degenerate III-V compound semiconductor using an approximated Fermi-Dirac distribution at low lattice temperatures

    NASA Astrophysics Data System (ADS)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2018-03-01

    Compound semiconductors being piezoelectric in nature, the intrinsic thermal vibration of the lattice atoms at any temperature gives rise to an additional potential field that perturbs the periodic potential field of the atoms. This is over and above the intrinsic deformation acoustic potential field which is always produced in every material. The scattering of the electrons through the piezoelectric perturbing potential is important in all compound semiconductors, particularly at the low lattice temperatures. Thus, the electrical transport in such materials is principally controlled by the combined interaction of the electrons with the deformation potential acoustic and piezoelectric phonons at low lattice temperatures. The study here, deals with the problem of phonon growth characteristics, considering the combined scattering of the non-equilibrium electrons in compound semiconductors, at low lattice temperatures. Beside degeneracy, other low temperature features, like the inelasticity of the electron-phonon collisions, and the full form of the phonon distribution have been duly considered. The distribution function of the degenerate ensemble of carriers, as given by the heated Fermi-Dirac function, has been approximated by a simplified, well-tested model. The model which has been proposed earlier, makes it much easier to carry out analytically the integrations without usual oversimplified approximations.

  15. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  16. GMAG Dissertation Award: Tunnel spin injectors for semiconductor spintronics

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    2004-03-01

    Spin-based electronics aims to develop novel sensor, memory and logic devices by manipulating the spin states of carriers in semiconducting materials. This talk will focus on electrical spin injection into semiconductors, which is a prerequisite for spintronics and, in particular, on tunnel based spin injectors that are potentially operable above room temperature. The magneto-transport properties of two families of tunnel spin injectors will be discussed. The spin polarization of the electron current within the semiconductor is detected by measuring the circular polarization of the electroluminescence (EL) from a quantum well light emitting diode structure. The temperature and bias dependence of the EL polarization provides insight into the mechanism of spin relaxation within the semiconductor heterostructure. Collaborators: Roger Wang^1,2, Sebastiaan van Dijken^1,*, Robert Shelby^1, Roger Macfarlane^1, Seth Bank^2, Glenn Solomon^2, James Harris^2, and Stuart S. P. Parkin^1 * Currently at Trinity College, Dublin, Ireland

  17. Tunable Intrinsic Spin Hall Conductivities in Bi2(Se,Te)3 Topological Insulators

    NASA Astrophysics Data System (ADS)

    Şahin, Cüneyt; Flatté, Michael E.

    2015-03-01

    It has been recently shown by spin-transfer torque measurements that Bi2Se3 exhibits a very large spin Hall conductivity (SHC). It is expected that Bi2Te3, a topological insulator with similar crystal and band structures as well as large spin-orbit coupling, would also exhibit a giant SHC. In this study we have calculated intrinsic spin Hall conductivities of Bi2Se3andBi2Te3 topological insulators from a tight-binding Hamiltonian including two nearest-neighbor interactions. We have calculated the Berry curvature, used the Kubo formula in the static, clean limit and shown that both materials exhibit giant spin Hall conductivities, consistent with the results of Ref. 1 and larger than previously reported Bi1-xSbx alloys. The density of Berry curvature has also been computed from the full Brillouin zone in order to compute the dependence of the SHC in these materials on the Fermi energy. Finally we report the intrinsic SHC for Bi2(Se,Te)3 topological insulators, which changes dramatically with doping or gate voltage. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  18. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Y. F.; Perera, A. G. U., E-mail: uperera@gsu.edu; Center for Nano-Optics

    2016-03-14

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3–5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ{sub 0}, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μmmore » in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ{sub 0} is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ{sub 0}. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.« less

  19. Solid-state semiconductor optical cryocooler based on CdS nanobelts.

    PubMed

    Li, Dehui; Zhang, Jun; Wang, Xinjiang; Huang, Baoling; Xiong, Qihua

    2014-08-13

    We demonstrate the laser cooling of silicon-on-insulator (SOI) substrate using CdS nanobelts. The local temperature change of the SOI substrate exactly beneath the CdS nanobelts is deduced from the ratio of the Stokes and anti-Stokes Raman intensities from the Si layer on the top of the SOI substrate. We have achieved a 30 and 20 K net cooling starting from 290 K under a 3.8 mW 514 nm and a 4.4 mW 532 nm pumping, respectively. In contrast, a laser heating effect has been observed pumped by 502 and 488 nm lasers. Theoretical analysis based on the general static heat conduction module in the Ansys program package is conducted, which agrees well with the experimental results. Our investigations demonstrate the laser cooling capability of an external thermal load, suggesting the applications of II-VI semiconductors in all-solid-state optical cryocoolers.

  20. Semiconductor superlattice photodetectors

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.; Coleman, J. J.; Leburton, J. P.

    1984-01-01

    A superlattice photomultiplier and a photodetector based on the real space transfer mechanism were studied. The wavelength for the first device is of the order of a micron or flexible corresponding to the bandgap absorption in a semiconductor. The wavelength for the second device is in the micron range (about 2 to 12 microns) corresponding to the energy of the conduction band edge discontinuity between an Al/(sub x)Ga(sub 1-x)As and GaAs interface. Both devices are described.

  1. Controlled Quantum Operations of a Semiconductor Three-Qubit System

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping

    2018-02-01

    In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.

  2. Electronegativity and intrinsic disorder of preeclampsia-related proteins.

    PubMed

    Polanco, Carlos; Castañón-González, Jorge Alberto; Uversky, Vladimir N; Buhse, Thomas; Samaniego Mendoza, José Lino; Calva, Juan J

    2017-01-01

    Preeclampsia, hemorrhage, and infection are the leading causes of maternal death in underdeveloped countries. Since several proteins associated with preeclampsia are known, we conducted a computational study which evaluated the commonness and potential functionality of intrinsic disorder of these proteins and also made an attempt to characterize their origin. The origin of the preeclampsia-related proteins was assessed with a supervised technique, a Polarity Index Method (PIM), which evaluates the electronegativity of proteins based solely on their sequence. The commonness of intrinsic disorder was evaluated using several disorder predictors from the PONDR family, the charge-hydropathy plot (CH-plot) and cumulative distribution function (CDF) analyses, and using the MobiDB web-based tool, whereas potential functionality of intrinsic disorder was studied with the D2P2 resource and ANCHOR predictor of disorder-based binding sites, and the STRING tool was used to build the interactivity networks of the preeclampsia-related proteins. Peculiarities of the PIM-derived polar profile of the group of preeclampsia-related proteins were then compared with profiles of a group of lipoproteins, antimicrobial peptides, angiogenesis-related proteins, and the intrinsically disordered proteins. Our results showed a high graphical correlation between preeclampsia proteins, lipoproteins, and the angiogenesis proteins. We also showed that many preeclampsia-related proteins contain numerous functional disordered regions. Therefore, these bioinformatics results led us to assume that the preeclampsia proteins are highly associated with the lipoproteins group, and that some preeclampsia-related proteins contain significant amounts of functional disorders.

  3. Human phoneme recognition depending on speech-intrinsic variability.

    PubMed

    Meyer, Bernd T; Jürgens, Tim; Wesker, Thorsten; Brand, Thomas; Kollmeier, Birger

    2010-11-01

    The influence of different sources of speech-intrinsic variation (speaking rate, effort, style and dialect or accent) on human speech perception was investigated. In listening experiments with 16 listeners, confusions of consonant-vowel-consonant (CVC) and vowel-consonant-vowel (VCV) sounds in speech-weighted noise were analyzed. Experiments were based on the OLLO logatome speech database, which was designed for a man-machine comparison. It contains utterances spoken by 50 speakers from five dialect/accent regions and covers several intrinsic variations. By comparing results depending on intrinsic and extrinsic variations (i.e., different levels of masking noise), the degradation induced by variabilities can be expressed in terms of the SNR. The spectral level distance between the respective speech segment and the long-term spectrum of the masking noise was found to be a good predictor for recognition rates, while phoneme confusions were influenced by the distance to spectrally close phonemes. An analysis based on transmitted information of articulatory features showed that voicing and manner of articulation are comparatively robust cues in the presence of intrinsic variations, whereas the coding of place is more degraded. The database and detailed results have been made available for comparisons between human speech recognition (HSR) and automatic speech recognizers (ASR).

  4. CaTiO.sub.3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.

  5. Semiconductor Manufacturing Comes to Virginia: Developing Partnerships for Workforce Education and Training.

    ERIC Educational Resources Information Center

    Cantor, Jeffrey A.

    1998-01-01

    In Virginia, a community college consortium for semiconductor education and training programs works with a semiconductor manufacturers' partnership to review programs based on a national core curriculum model. The results are being used to improve curriculum development, faculty training, facility improvement, and student recruitment. (SK)

  6. Cu2O-based solar cells using oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2016-01-01

    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0

  7. EDITORIAL: Focus on Dilute Magnetic Semiconductors FOCUS ON DILUTE MAGNETIC SEMICONDUCTORS

    NASA Astrophysics Data System (ADS)

    Chambers, Scott A.; Gallagher, Bryan

    2008-05-01

    -orbit coupling. They have also led to the demonstration of a wide range of novel phenomena including some, like tunneling anisotropic magnetoresistance, which have subsequently been achieved in metal ferromagnetic systems. However despite considerable effort over many years the maximum Curie point achieved in (Ga,Mn)As is still less than 200 K. So unless some major new breakthrough is achieved these materials are unlikely to be of use for practical spin electronics technologies. In 2000, Dietl et al [1] published a seminal paper in which mean field theory was used to predict which of the common diamagnetic semiconductors would exhibit a Curie point above ambient if doped with 5 at.% Mn and a hole concentration of 3.5 × 1020 cm-3. Of the many host semiconductors simulated, only ZnO and GaN were predicted to exhibit a critical temperature in excess of 300 K. Since 2000, high-Tc DMS research has proliferated in both experimental and theoretical arenas. Many papers have been published containing claims of new DMS materials based largely on limited film growth, powder diffraction, and magnetometry. In these papers, a film which exhibits a hysteretic SQUID or VSM loop at 300 K and phase purity with only the host semiconductor detected by XRD are often claimed to be true ferromagnetic DMSs. Many of these papers are flawed because the criteria for a well-defined DMS are much more extensive. These include: (i) a random dopant distribution, (ii) a well-known and preferably unique charge state and preferentially a unique local structural environment for the dopant, (iii) a demonstrated coupling of the dopant spin to the host band structure, leading to spin polarization of the majority carriers, and (iv) a rational dependence of the saturation magnetization and Curie point on the magnetic dopant and carrier concentrations. Implicit in this list is that trivial causes of ferromagnetism, such as magnetic contamination and magnetic secondary phase formation, are eliminated. Yet, in many

  8. Intrinsic Electron Mobility Exceeding 10³ cm²/(V s) in Multilayer InSe FETs.

    PubMed

    Sucharitakul, Sukrit; Goble, Nicholas J; Kumar, U Rajesh; Sankar, Raman; Bogorad, Zachary A; Chou, Fang-Cheng; Chen, Yit-Tsong; Gao, Xuan P A

    2015-06-10

    Graphene-like two-dimensional (2D) materials not only are interesting for their exotic electronic structure and fundamental electronic transport or optical properties but also hold promises for device miniaturization down to atomic thickness. As one material belonging to this category, InSe, a III-VI semiconductor, not only is a promising candidate for optoelectronic devices but also has potential for ultrathin field effect transistor (FET) with high mobility transport. In this work, various substrates such as PMMA, bare silicon oxide, passivated silicon oxide, and silicon nitride were used to fabricate multilayer InSe FET devices. Through back gating and Hall measurement in four-probe configuration, the device's field effect mobility and intrinsic Hall mobility were extracted at various temperatures to study the material's intrinsic transport behavior and the effect of dielectric substrate. The sample's field effect and Hall mobilities over the range of 20-300 K fall in the range of 0.1-2.0 × 10(3) cm(2)/(V s), which are comparable or better than the state of the art FETs made of widely studied 2D transition metal dichalcogenides.

  9. Investigation of 16 × 10 Gbps DWDM System Based on Optimized Semiconductor Optical Amplifier

    NASA Astrophysics Data System (ADS)

    Rani, Aruna; Dewra, Sanjeev

    2017-08-01

    This paper investigates the performance of an optical system based on optimized semiconductor optical amplifier (SOA) at 160 Gbps with 0.8 nm channel spacing. Transmission distances up to 280 km at -30 dBm input signal power and up to 247 km at -32 dBm input signal power with acceptable bit error rate (BER) and Q-factor are examined. It is also analyzed that the transmission distance up to 292 km has been covered at -28 dBm input signal power using Dispersion Shifted (DS)-Normal fiber without any power compensation methods.

  10. Stable surface passivation process for compound semiconductors

    DOEpatents

    Ashby, Carol I. H.

    2001-01-01

    A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.

  11. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis

    PubMed Central

    Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen

    2013-01-01

    Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422

  12. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.

    PubMed

    Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang

    2018-02-07

    There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis <12%) responses at the mechanical strain of up to 100%. A strain sensor in this format can be scalably manufactured and implemented as wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.

  13. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions

    DOE PAGES

    Dissanayake, D. M. N. M.; Ashraf, A.; Dwyer, D.; ...

    2016-02-12

    Scalable and low-cost doping of graphene could improve technologies in a wide range of fields such as microelectronics, optoelectronics, and energy storage. While achieving strong p-doping is relatively straightforward, non-electrostatic approaches to n-dope graphene, such as chemical doping, have yielded electron densities of 9.5 × 10 12 e/cm 2 or below. Furthermore, chemical doping is susceptible to degradation and can adversely affect intrinsic graphene’s properties. Here we demonstrate strong (1.33 × 10 13 e/cm 2), robust, and spontaneous graphene n-doping on a soda-lime-glass substrate via surface-transfer doping from Na without any external chemical, high-temperature, or vacuum processes. Remarkably, the n-dopingmore » reaches 2.11 × 10 13 e/cm 2 when graphene is transferred onto a p-type copper indium gallium diselenide (CIGS) semiconductor that itself has been deposited onto soda-lime-glass, via surface-transfer doping from Na atoms that diffuse to the CIGS surface. Using this effect, we demonstrate an n-graphene/p-semiconductor Schottky junction with ideality factor of 1.21 and strong photo-response. As a result, the ability to achieve strong and persistent graphene n-doping on low-cost, industry-standard materials paves the way toward an entirely new class of graphene-based devices such as photodetectors, photovoltaics, sensors, batteries, and supercapacitors.« less

  14. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors

    PubMed Central

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-01-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128

  15. Nonlinear optical properties of semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel

    1998-05-01

    This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of

  16. Modulation of Defects in Semiconductors by Facile and Controllable Reduction: The Case of p-type CuCrO2 Nanoparticles.

    PubMed

    Jiang, Tengfei; Li, Xueyan; Bujoli-Doeuff, Martine; Gautron, Eric; Cario, Laurent; Jobic, Stéphane; Gautier, Romain

    2016-08-01

    Optical and electrical characteristics of solid materials are well-known to be intimately related to the presence of intrinsic or extrinsic defects. Hence, the control of defects in semiconductors is of great importance to achieve specific properties, for example, transparency and conductivity. Herein, a facile and controllable reduction method for modulating the defects is proposed and used for the case of p-type delafossite CuCrO2 nanoparticles. The optical absorption in the infrared region of the CuCrO2 material can then be fine-tuned via the continuous reduction of nonstoichiometric Cu(II), naturally stabilized in small amounts. This reduction modifies the concentration of positive charge carriers in the material, and thus the conductive and reflective properties, as well as the flat band potential. Indeed, this controllable reduction methodology provides a novel strategy to modulate the (opto-) electronic characteristics of semiconductors.

  17. Machine fault feature extraction based on intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Fan, Xianfeng; Zuo, Ming J.

    2008-04-01

    This work employs empirical mode decomposition (EMD) to decompose raw vibration signals into intrinsic mode functions (IMFs) that represent the oscillatory modes generated by the components that make up the mechanical systems generating the vibration signals. The motivation here is to develop vibration signal analysis programs that are self-adaptive and that can detect machine faults at the earliest onset of deterioration. The change in velocity of the amplitude of some IMFs over a particular unit time will increase when the vibration is stimulated by a component fault. Therefore, the amplitude acceleration energy in the intrinsic mode functions is proposed as an indicator of the impulsive features that are often associated with mechanical component faults. The periodicity of the amplitude acceleration energy for each IMF is extracted by spectrum analysis. A spectrum amplitude index is introduced as a method to select the optimal result. A comparison study of the method proposed here and some well-established techniques for detecting machinery faults is conducted through the analysis of both gear and bearing vibration signals. The results indicate that the proposed method has superior capability to extract machine fault features from vibration signals.

  18. Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.; hide

    1994-01-01

    Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.

  19. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    DOE PAGES

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; ...

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO 3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO 3 photoanodes are fabricated withmore » their bulk heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.« less

  20. Electrons and Phonons in Semiconductor Multilayers

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    1996-11-01

    This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.

  1. Graphene-based topological insulator with an intrinsic bulk band gap above room temperature.

    PubMed

    Kou, Liangzhi; Yan, Binghai; Hu, Feiming; Wu, Shu-Chun; Wehling, Tim O; Felser, Claudia; Chen, Changfeng; Frauenheim, Thomas

    2013-01-01

    Topological insulators (TIs) represent a new quantum state of matter characterized by robust gapless states inside the insulating bulk gap. The metallic edge states of a two-dimensional (2D) TI, known as the quantum spin Hall (QSH) effect, are immune to backscattering and carry fully spin-polarized dissipationless currents. However, existing 2D TIs realized in HgTe and InAs/GaSb suffer from small bulk gaps (<10 meV) well below room temperature, thus limiting their application in electronic and spintronic devices. Here, we report a new 2D TI comprising a graphene layer sandwiched between two Bi2Se3 slabs that exhibits a large intrinsic bulk band gap of 30-50 meV, making it viable for room-temperature applications. Distinct from previous strategies for enhancing the intrinsic spin-orbit coupling effect of the graphene lattice, the present graphene-based TI operates on a new mechanism of strong inversion between graphene Dirac bands and Bi2Se3 conduction bands. Strain engineering leads to effective control and substantial enhancement of the bulk gap. Recently reported synthesis of smooth graphene/Bi2Se3 interfaces demonstrates the feasibility of experimental realization of this new 2D TI structure, which holds great promise for nanoscale device applications.

  2. Motor Memory Is Encoded as a Gain-Field Combination of Intrinsic and Extrinsic Action Representations

    PubMed Central

    Brayanov, Jordan B.; Press, Daniel Z.; Smith, Maurice A.

    2013-01-01

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices. PMID:23100418

  3. Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations.

    PubMed

    Brayanov, Jordan B; Press, Daniel Z; Smith, Maurice A

    2012-10-24

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices.

  4. A Custom Made Intrinsic Silicone Shade Guide for Indian Population

    PubMed Central

    Behanam, Mohammed; Ahila, S.C.; Jei, J. Brintha

    2016-01-01

    Introduction Replication of natural skin colour in maxillofacial prosthesis has been traditionally done using trial and error method, as concrete shade guides are unavailable till date. Hence a novel custom made intrinsic silicone shade guide has been attempted for Indian population. Aim Reconstruction of maxillofacial defects is challenging, as achieving an aesthetic result is not always easy. A concoction of a novel intrinsic silicone shade guide was contemplated for the study and its reproducibility in clinical practice was analysed. Materials and Methods Medical grade room temperature vulcanising silicone was used for the fabrication of shade tabs. The shade guide consisted of three main groups I, II and III which were divided based upon the hues yellow, red and blue respectively. Five distinct intrinsic pigments were added in definite proportions to subdivide each group of different values from lighter to darker shades. A total number of 15 circular shade tabs comprised the guide. To validate the usage of the guide, visual assessment of colour matching was done by four investigators to investigate the consent of perfect colour correspondence. Data was statistically analysed using kappa coefficients. Results The kappa values were found to be 0.47 to 0.78 for yellow based group I, 0.13 to 0.65 for red based group II, and 0.07 to 0.36 for blue based group III. This revealed that the shade tabs of yellow and red based hues matched well and showed a statistically good colour matching. Conclusion This intrinsic silicone shade guide can be effectively utilised for fabrication of maxillofacial prosthesis with silicone in Indian population. A transparent colour formula with definite proportioning of intrinsic pigments is provided for obtaining an aesthetic match to skin tone. PMID:27190946

  5. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  6. The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies

    NASA Astrophysics Data System (ADS)

    Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.

    2017-11-01

    Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.

  7. Solution-Based Electro-Orientation Spectroscopy (EOS) for Contactless Measurement of Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry

    2017-11-01

    Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.

  8. Parameter dependence of high-frequency nonlinear oscillations and intrinsic chaos in short GaAs/(Al, Ga)As superlattices

    NASA Astrophysics Data System (ADS)

    Essen, Jonathan; Ruiz-Garcia, Miguel; Jenkins, Ian; Carretero, Manuel; Bonilla, Luis L.; Birnir, Björn

    2018-04-01

    We explore the design parameter space of short (5-25 period), n-doped, Ga/(Al,Ga)As semiconductor superlattices (SSLs) in the sequential resonant tunneling regime. We consider SSLs at cool (77 K) and warm (295 K) temperatures, simulating the electronic response to variations in (a) the number of SSL periods, (b) the contact conductivity, and (c) the strength of disorder (aperiodicities). Our analysis shows that the chaotic dynamical phases exist on a number of sub-manifolds of codimension zero within the design parameter space. This result provides an encouraging guide towards the experimental observation of high-frequency intrinsic dynamical chaos in shorter SSLs.

  9. Intrinsic Brightness Temperatures of AGN Jets

    NASA Astrophysics Data System (ADS)

    Homan, D. C.; Kovalev, Y. Y.; Lister, M. L.; Ros, E.; Kellermann, K. I.; Cohen, M. H.; Vermeulen, R. C.; Zensus, J. A.; Kadler, M.

    2006-05-01

    We present a new method for studying the intrinsic brightness temperatures of the parsec-scale jet cores of active galactic nuclei (AGNs). Our method uses observed superluminal motions and observed brightness temperatures for a large sample of AGNs to constrain the characteristic intrinsic brightness temperature of the sample as a whole. To study changes in intrinsic brightness temperature, we assume that the Doppler factors of individual jets are constant in time, as justified by their relatively small changes in observed flux density. We find that in their median-low brightness temperature state, the sources in our sample have a narrow range of intrinsic brightness temperatures centered on a characteristic temperature, Tint~=3×1010 K, which is close to the value expected for equipartition, when the energy in the radiating particles equals the energy stored in the magnetic fields. However, in their maximum brightness state, we find that sources in our sample have a characteristic intrinsic brightness temperature greater than 2×1011 K, which is well in excess of the equipartition temperature. In this state, we estimate that the energy in radiating particles exceeds the energy in the magnetic field by a factor of ~105. We suggest that the excess of particle energy when sources are in their maximum brightness state is due to injection or acceleration of particles at the base of the jet. Our results suggest that the common method of estimating jet Doppler factors by using a single measurement of observed brightness temperature, the assumption of equipartition, or both may lead to large scatter or systematic errors in the derived values.

  10. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration

    PubMed Central

    Quist, Brian W.

    2012-01-01

    Rats actively tap and sweep their large mystacial vibrissae (whiskers) against objects to tactually explore their surroundings. When a vibrissa makes contact with an object, it bends, and this bending generates forces and bending moments at the vibrissa base. Researchers have only recently begun to quantify these mechanical variables. The present study quantifies the forces and bending moments at the vibrissa base with a quasi-static model of vibrissa deflection. The model was validated with experiments on real vibrissae. Initial simulations demonstrated that almost all vibrissa-object collisions during natural behavior will occur with the concave side of the vibrissa facing the object, and we therefore paid particular attention to the role of the vibrissa's intrinsic curvature in shaping the forces at the base. Both simulations and experiments showed that vibrissae with larger intrinsic curvatures will generate larger axial forces. Simulations also demonstrated that the range of forces and moments at the vibrissal base vary over approximately three orders of magnitude, depending on the location along the vibrissa at which object contact is made. Both simulations and experiments demonstrated that collisions in which the concave side of the vibrissa faces the object generate longer-duration contacts and larger net forces than collisions with the convex side. These results suggest that the orientation of the vibrissa's intrinsic curvature on the mystacial pad may increase forces during object contact and provide increased sensitivity to detailed surface features. PMID:22298834

  11. Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles.

    PubMed

    Chen, Feng; Valdovinos, Hector F; Hernandez, Reinier; Goel, Shreya; Barnhart, Todd E; Cai, Weibo

    2017-06-01

    Titanium-45 ( 45 Ti) with a three-hour half-life (t 1/2 =3.08 h), low maximum positron energy and high positron emission branching ratio, is a suitable positron emission tomography (PET) isotope whose potential has not yet been fully explored. Complicated radiochemistry and rapid hydrolysis continue to be major challenges to the development of 45 Ti compounds based on a traditional chelator-based radiolabeling strategy. In this study we introduced an intrinsic (or chelator-free) radiolabeling technique for the successful labeling of 45 Ti using mesoporous silica nanoparticle (MSN). We synthesized uniform MSN with an average particle size of ∼150 nm in diameter. The intrinsic 45 Ti-labeling was accomplished through strong interactions between 45 Ti (hard Lewis acid) and hard oxygen donors (hard Lewis bases), the deprotonated silanol groups (-Si-O-) from the outer surface and inner meso-channels of MSN. In vivo tumor-targeted PET imaging of as-developed PEGylated [ 45 Ti]MSN was further demonstrated in the 4T1 murine breast tumor-bearing mice. This MSN-based intrinsic radiolabeling strategy could open up new possibilities and speed up the biomedical applications of 45 Ti in the future.

  12. Introduction to Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  13. New developments in power semiconductors

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1983-01-01

    This paper represents an overview of some recent power semiconductor developments and spotlights new technologies that may have significant impact for aircraft electric secondary power. Primary emphasis will be on NASA-Lewis-supported developments in transistors, diodes, a new family of semiconductors, and solid-state remote power controllers. Several semiconductor companies that are moving into the power arena with devices rated at 400 V and 50 A and above are listed, with a brief look at a few devices.

  14. Strongly exchange-coupled triplet pairs in an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Weiss, Leah R.; Bayliss, Sam L.; Kraffert, Felix; Thorley, Karl J.; Anthony, John E.; Bittl, Robert; Friend, Richard H.; Rao, Akshay; Greenham, Neil C.; Behrends, Jan

    2017-02-01

    From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.

  15. [Medical professionals on the subject of their core values: the importance of practice-based stories and intrinsic motivation].

    PubMed

    Witman, Yolande; van den Kerkhof, Peter C M; Braat, Didi D M

    2013-01-01

    In the current system for guaranteeing quality of care, emphasis is placed firmly on external control of professionals. We looked for a way to appeal to the intrinsic motivation of medical professionals and to discover what they mean by 'good work'. This was achieved with the aid of reflective sessions using the toolkit 'Good Work': in four sessions three different groups of medical professionals (medical department chairs, residents and interns) from a Dutch university hospital reflected on the topics 'excellence', 'moral responsibility' and 'personal engagement'. The participants exchanged practice-based stories during the sessions. The most important theme was moral responsibility, with its accompanying dilemmas. The sessions gave rise to feelings of mutual acknowledgement, recognition, inspiration and motivation. Sharing meaningful practice-based stories can be considered as a 'moment of learning', strengthening professional identity and stimulating intrinsic motivation. More space for this form of reflection might restore the balance with external control systems.

  16. Intrinsically High Thermoelectric Performance in AgInSe2 n‐Type Diamond‐Like Compounds

    PubMed Central

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang

    2017-01-01

    Abstract Diamond‐like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high‐performance diamond‐like thermoelectric materials are p‐type semiconductors. The lack of high‐performance n‐type diamond‐like thermoelectric materials greatly restricts the fabrication of diamond‐like material‐based modules and their real applications. In this work, it is revealed that n‐type AgInSe2 diamond‐like compound has intrinsically high thermoelectric performance with a figure of merit (zT) of 1.1 at 900 K, comparable to the best p‐type diamond‐like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low‐frequency Ag‐Se “cluster vibrations,” as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high‐performance n‐type AgInSe2‐based compounds, the diamond‐like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond‐like thermoelectric materials. PMID:29593972

  17. New Icosahedral Boron Carbide Semiconductors

    NASA Astrophysics Data System (ADS)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  18. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    NASA Astrophysics Data System (ADS)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  19. Phonon structures of GaN-based random semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Mei; Chen, Xiaobin; Li, Gang; Zheng, Fawei; Zhang, Ping

    2017-12-01

    Accurate modeling of thermal properties is strikingly important for developing next-generation electronics with high performance. Many thermal properties are closely related to phonon dispersions, such as sound velocity. However, random substituted semiconductor alloys AxB1-x usually lack translational symmetry, and simulation with periodic boundary conditions often requires large supercells, which makes phonon dispersion highly folded and hardly comparable with experimental results. Here, we adopt a large supercell with randomly distributed A and B atoms to investigate substitution effect on the phonon dispersions of semiconductor alloys systematically by using phonon unfolding method [F. Zheng, P. Zhang, Comput. Mater. Sci. 125, 218 (2016)]. The results reveal the extent to which phonon band characteristics in (In,Ga)N and Ga(N,P) are preserved or lost at different compositions and q points. Generally, most characteristics of phonon dispersions can be preserved with indium substitution of gallium in GaN, while substitution of nitrogen with phosphorus strongly perturbs the phonon dispersion of GaN, showing a rapid disintegration of the Bloch characteristics of optical modes and introducing localized impurity modes. In addition, the sound velocities of both (In,Ga)N and Ga(N,P) display a nearly linear behavior as a function of substitution compositions. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80481-0.

  20. Charge regulation at semiconductor-electrolyte interfaces.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Understanding and predicting profile structure and parametric scaling of intrinsic rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W. X.; Grierson, B. A.; Ethier, S.

    2017-08-10

    This study reports on a recent advance in developing physical understanding and a first-principles-based model for predicting intrinsic rotation profiles in magnetic fusion experiments. It is shown for the first time that turbulent fluctuation-driven residual stress (a non-diffusive component of momentum flux) along with diffusive momentum flux can account for both the shape and magnitude of the observed intrinsic toroidal rotation profile. Both the turbulence intensity gradient and zonal flow E×B shear are identified as major contributors to the generation of the k ∥-asymmetry needed for the residual stress generation. The model predictions of core rotation based on global gyrokineticmore » simulations agree well with the experimental measurements of main ion toroidal rotation for a set of DIII-D ECH discharges. The validated model is further used to investigate the characteristic dependence of residual stress and intrinsic rotation profile structure on the multi-dimensional parametric space covering the turbulence type, q-profile structure, and up-down asymmetry in magnetic geometry with the goal of developing the physics understanding needed for rotation profile control and optimization. It is shown that in the flat-q profile regime, intrinsic rotations driven by ITG and TEM turbulence are in the opposite direction (i.e., intrinsic rotation reverses). The predictive model also produces reversed intrinsic rotation for plasmas with weak and normal shear q-profiles.« less

  2. Spin-based quantum computation in multielectron quantum dots

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Das Sarma, S.

    2001-10-01

    In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.

  3. Quantitative biomarkers of colonic dysplasia based on intrinsic second-harmonic generation signal

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Zhu, Xiaoqin; Wu, Guizhu; Chen, Jianxin; Xie, Shusen

    2011-12-01

    Most colorectal cancers arise from dysplastic lesions, such as adenomatous polyps, and these lesions are difficult to be detected by the current endoscopic screening approaches. Here, we present the use of an intrinsic second-harmonic generation (SHG) signal as a novel means to differentiate between normal and dysplastic human colonic tissues. We find that the SHG signal can quantitatively identify collagen change associated with colonic dysplasia that is indiscernible by conventional pathologic techniques. By comparing normal with dysplastic mucosa, there were significant differences in collagen density and collagen fiber direction, providing substantial potential to become quantitative intrinsic biomarkers for in vivo clinical diagnosis of colonic dysplasia.

  4. Method for removing semiconductor layers from salt substrates

    DOEpatents

    Shuskus, Alexander J.; Cowher, Melvyn E.

    1985-08-27

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  5. Intrinsically stretchable and healable semiconducting polymer for organic transistors

    NASA Astrophysics Data System (ADS)

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C.; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B.-H.; Bao, Zhenan

    2016-11-01

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be

  6. Intrinsically stretchable and healable semiconducting polymer for organic transistors.

    PubMed

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B-H; Bao, Zhenan

    2016-11-17

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be

  7. Development of p-type oxide semiconductors based on tin oxide and its alloys: application to thin film transistors

    NASA Astrophysics Data System (ADS)

    Barros, Ana Raquel Xarouco de

    In spite of the recent p-type oxide TFTs developments based on SnOx and CuxO, the results achieved so far refer to devices processed at high temperatures and are limited by a low hole mobility and a low On-Off ratio and still there is no report on p-type oxide TFTs with performance similar to n-type, especially when comparing their field-effect mobility values, which are at least one order of magnitude higher on n-type oxide TFTs. Achieving high performance p-type oxide TFTs will definitely promote a new era for electronics in rigid and flexible substrates, away from silicon. None of the few reported p-channel oxide TFTs is suitable for practical applications, which demand significant improvements in the device engineering to meet the real-world electronic requirements, where low processing temperatures together with high mobility and high On-Off ratio are required for TFT and CMOS applications. The present thesis focuses on the study and optimization of p-type thin film transistors based on oxide semiconductors deposited by r.f. magnetron sputtering without intentional substrate heating. In this work several p-type oxide semiconductors were studied and optimized based on undoped tin oxide, Cu-doped SnOx and In-doped SnO2.

  8. Intrinsic Motivation and Engagement as "Active Ingredients" in Garden-Based Education: Examining Models and Measures Derived from Self-Determination Theory

    ERIC Educational Resources Information Center

    Skinner, Ellen A.; Chi, Una

    2012-01-01

    Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as "active ingredients" in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and…

  9. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    NASA Astrophysics Data System (ADS)

    Piskorski, K.; Passi, V.; Ruhkopf, J.; Lemme, M. C.; Przewlocki, H. M.

    2018-05-01

    We report on the advantages of using Graphene-Insulator-Semiconductor (GIS) instead of Metal-Insulator-Semiconductor (MIS) structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I). Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I) = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  10. Coherent Exciton Dynamics in GaAs-Based Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Colocci, M.; Bogani, F.; Ceccherini, S.; Gurioli, M.

    We show that a very powerful tool in the investigation of the coherent exciton dynamics in semiconductors is provided by the study of the emitted light after resonant excitation from pairs of phase-locked femtosecond pulses. Under these conditions, not only the full dynamics of the coherent transients (dephasing times, quantum beat periods, etc.) can be obtained from linear experiments, but it can also be obtained a straightforward discrimination between the coherent or incoherent character of the emission by means of spectral filtering.

  11. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    ERIC Educational Resources Information Center

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  12. Hybrid structures based on gold nanoparticles and semiconductor quantum dots for biosensor applications.

    PubMed

    Kurochkina, Margarita; Konshina, Elena; Oseev, Aleksandr; Hirsch, Soeren

    2018-01-01

    The luminescence amplification of semiconductor quantum dots (QD) in the presence of self-assembled gold nanoparticles (Au NPs) is one of way for creating biosensors with highly efficient transduction. The objective of this study was to fabricate the hybrid structures based on semiconductor CdSe/ZnS QDs and Au NP arrays and to use them as biosensors of protein. In this paper, the hybrid structures based on CdSe/ZnS QDs and Au NP arrays were fabricated using spin coating processes. Au NP arrays deposited on a glass wafer were investigated by optical microscopy and absorption spectroscopy depending on numbers of spin coating layers and their baking temperature. Bovine serum albumin (BSA) was used as the target protein analyte in a phosphate buffer. A confocal laser scanning microscope was used to study the luminescent properties of Au NP/QD hybrid structures and to test BSA. The dimensions of Au NP aggregates increased and the space between them decreased with increasing processing temperature. At the same time, a blue shift of the plasmon resonance peak in the absorption spectra of Au NP arrays was observed. The deposition of CdSe/ZnS QDs with a core diameter of 5 nm on the surface of the Au NP arrays caused an increase in absorption and a red shift of the plasmon peak in the spectra. The exciton-plasmon enhancement of the QDs' photoluminescence intensity has been obtained at room temperature for hybrid structures with Au NPs array pretreated at temperatures of 100°C and 150°C. It has been found that an increase in the weight content of BSA increases the photoluminescence intensity of such hybrid structures. The ability of the qualitative and quantitative determination of protein content in solution using the Au NP/QD structures as an optical biosensor has been shown experimentally.

  13. Attomole-level protein fingerprinting based on intrinsic peptide fluorescence.

    PubMed

    Okerberg, E; Shear, J B

    2001-04-01

    Protein identification has relied heavily on proteolytic analysis, but current techniques are often slow and generally consume large quantities of valuable protein sample. We report the development of a rapid, ultralow volume protein analysis strategy based on tryptic digestion within the tip of a 1.5-microm capillary channel followed by separation of the proteolytic fragments using capillary electrophoresis (CE). Two-photon excitation is used to probe the intrinsic fluorescence of peptide fragments through "deep-UV" excitation of aromatic amino acid residues at the outlet of the CE channel. Detection limits using this technique are 0.7, 2.4, and 23 amol for the aromatic amino acids tryptophan, tyrosine, and phenylalanine, respectively. In these studies, we demonstrate the capacity to differentiate bovine and yeast cytochrome c variants using less than 15 amol of protein through tryptic fingerprinting. Moreover, the detection of a single amino acid substitution between bovine and canine cytochrome c illustrates the sensitivity of this approach to minor differences in protein sequence. The 2-pL sample volume required for this on-column tryptic digestion is, to our knowledge, the smallest yet reported for a proteolytic assay.

  14. Manipulating semiconductor colloidal stability through doping.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  15. Chemical vapor deposition and characterization of polysilanes polymer based thin films and their applications in compound semiconductors and silicon devices

    NASA Astrophysics Data System (ADS)

    Oulachgar, El Hassane

    As the semiconductors industry is moving toward nanodevices, there is growing need to develop new materials and thin films deposition processes which could enable strict control of the atomic composition and structure of thin film materials in order to achieve precise control on their electrical and optical properties. The accurate control of thin film characteristics will become increasingly important as the miniaturization of semiconductor devices continue. There is no doubt that chemical synthesis of new materials and their self assembly will play a major role in the design and fabrication of next generation semiconductor devices. The objective of this work is to investigate the chemical vapor deposition (CVD) process of thin film using a polymeric precursor as a source material. This process offers many advantages including low deposition cost, hazard free working environment, and most importantly the ability to customize the polymer source material through polymer synthesis and polymer functionalization. The combination between polymer synthesis and CVD process will enable the design of new generation of complex thin film materials with a wide range of improved chemical, mechanical, electrical and optical properties which cannot be easily achieved through conventional CVD processes based on gases and small molecule precursors. In this thesis we mainly focused on polysilanes polymers and more specifically poly(dimethylsilanes). The interest in these polymers is motivated by their distinctive electronic and photonic properties which are attributed to the delocalization of the sigma-electron along the Si-Si backbone chain. These characteristics make polysilane polymers very promising in a broad range of applications as a dielectric, a semiconductor and a conductor. The polymer-based CVD process could be eventually extended to other polymer source materials such as polygermanes, as well as and a variety of other inorganic and hybrid organic-inorganic polymers

  16. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe.

    PubMed

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  17. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe

    NASA Astrophysics Data System (ADS)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  18. Quantum weak turbulence with applications to semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lvov, Yuri Victorovich

    Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two particle interaction potential equivalent to the static screening approximation. The resulting asymytotic closure and quantum kinetic Boltzmann equation are derived in a self consistent manner without resorting to a priori statistical hypotheses or cumulant discard assumptions. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy across momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We explore these solutions by using differential approximation to collision integral. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers. We show that semiconductor laser output efficiency can be improved by exciting these finite flux solutions. Numerical simulations of the semiconductor Maxwell Bloch equations support the claim.

  19. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Ayvazian, Talin

    This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand

  20. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    PubMed

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  1. Sequence periodicity in nucleosomal DNA and intrinsic curvature

    PubMed Central

    2010-01-01

    Background Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Results Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. Conclusions The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA. PMID:20487515

  2. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.

    PubMed

    Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan

    2017-01-18

    Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.

  3. Magnetic fields and the technology challenges they pose to beam-based equipment: a semiconductor perspective

    NASA Astrophysics Data System (ADS)

    Esqueda, Vincent; Montoya, Julian A.

    2005-08-01

    As semiconductor devices shrink in size to accommodate faster processing speeds, the need for higher resolution beam-based metrology equipment and beam-based writing equipment will increase. The electron and ion beams used within these types of equipment are sensitive to very small variations in magnetic force applied to the beam. This phenomenon results from changes in Alternating Current (AC) and Direct Current (DC) magnetic flux density at the beam column which causes deflections of the beam that can impact equipment performance. Currently the most sensitive beam-based microscope manufacturers require an ambient magnetic field environment that does not have variations that exceed 0.2 milli-Gauss (mG). Studies have shown that such low levels of magnetic flux density can be extremely difficult to achieve. As examples, scissor lifts, vehicles, metal chairs, and doors moving in time and space under typical use conditions can create distortions in the Earth's magnetic field that can exceed 0.2 mG at the beam column. In addition it is known that changes in the Earth's magnetic field caused by solar flares, earthquakes, and variations in the Earth's core itself all cause changes in the magnetic field that can exceed 0.2 mG. This paper will provide the reader with the basic understanding of the emerging problem, will discuss the environmental and facility level challenges associated in meeting such stringent magnetic field environments, will discuss some of the mitigation techniques used to address the problem, and will close by discussing needs for further research in this area to assure semiconductor and nanotechnology industries are pre-positioned for even more stringent magnetic field environmental requirements.

  4. Initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds with fast semiconductor switches and energy-releasing elements

    NASA Astrophysics Data System (ADS)

    Savenkov, G. G.; Kardo-Sysoev, A. F.; Zegrya, A. G.; Os'kin, I. A.; Bragin, V. A.; Zegrya, G. G.

    2017-10-01

    The first findings concerning the initiation of explosive conversions in energy-saturated nanoporous silicon-based compounds via the electrical explosion of a semiconductor bridge are presented. The obtained results indicate that the energy parameters of an explosive conversion depend on the mass of a combustible agent—namely, nanoporous silicon—and the silicon-doping type.

  5. What is Intrinsic Motivation? A Typology of Computational Approaches

    PubMed Central

    Oudeyer, Pierre-Yves; Kaplan, Frederic

    2007-01-01

    Intrinsic motivation, centrally involved in spontaneous exploration and curiosity, is a crucial concept in developmental psychology. It has been argued to be a crucial mechanism for open-ended cognitive development in humans, and as such has gathered a growing interest from developmental roboticists in the recent years. The goal of this paper is threefold. First, it provides a synthesis of the different approaches of intrinsic motivation in psychology. Second, by interpreting these approaches in a computational reinforcement learning framework, we argue that they are not operational and even sometimes inconsistent. Third, we set the ground for a systematic operational study of intrinsic motivation by presenting a formal typology of possible computational approaches. This typology is partly based on existing computational models, but also presents new ways of conceptualizing intrinsic motivation. We argue that this kind of computational typology might be useful for opening new avenues for research both in psychology and developmental robotics. PMID:18958277

  6. Emission factors of air toxics from semiconductor manufacturing in Korea.

    PubMed

    Eom, Yun-Sung; Hong, Ji-Hyung; Lee, Suk-Jo; Lee, Eun-Jung; Cha, Jun-Seok; Lee, Dae-Gyun; Bang, Sun-Ae

    2006-11-01

    The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.

  7. Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser

    NASA Astrophysics Data System (ADS)

    Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa

    2018-02-01

    A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.

  8. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  9. Religion-based emotional social support mediates the relationship between intrinsic religiosity and mental health.

    PubMed

    Hovey, Joseph D; Hurtado, Gabriela; Morales, Lori R A; Seligman, Laura D

    2014-01-01

    Although previous research suggests that increased religiosity is associated with better mental health and many authors have conjectured that religion-based social support may help explain this connection, scant research has directly examined whether religion-based support mediates religiosity and mental health. The present study examined whether various dimensions of religion-based support (social interaction, instrumental, and emotional) mediated the relationship between religiosity and mental health in college students in the Midwest United States. As expected, of the support dimensions, perceived emotional support was the strongest predictor of decreased hopelessness, depression, and suicide behaviors; and the relationships among intrinsic religiosity and the mental health variables were fully mediated by emotional support. These findings provide strong support to the notion that the relationship between religiosity and mental health can be reduced to mediators such as social support. Research and theoretical implications are discussed.

  10. Semiconductor laser self-mixing micro-vibration measuring technology based on Hilbert transform

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2016-06-01

    A signal-processing synthesizing Wavelet transform and Hilbert transform is employed to measurement of uniform or non-uniform vibrations in self-mixing interferometer on semiconductor laser diode with quantum well. Background noise and fringe inclination are solved by decomposing effect, fringe counting is adopted to automatic determine decomposing level, a couple of exact quadrature signals are produced by Hilbert transform to extract vibration. The tempting potential of real-time measuring micro vibration with high accuracy and wide dynamic response bandwidth using proposed method is proven by both simulation and experiment. Advantages and error sources are presented as well. Main features of proposed semiconductor laser self-mixing interferometer are constant current supply, high resolution, simplest optical path and much higher tolerance to feedback level than existing self-mixing interferometers, which is competitive for non-contact vibration measurement.

  11. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  12. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  13. General Electronics Technician: Semiconductor Devices and Circuits.

    ERIC Educational Resources Information Center

    Hilley, Robert

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in general electronics focusing on semiconductor devices and circuits and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional…

  14. n-Channel semiconductor materials design for organic complementary circuits.

    PubMed

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  15. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. EDITORIAL: The 24th Nordic Semiconductor Meeting The 24th Nordic Semiconductor Meeting

    NASA Astrophysics Data System (ADS)

    Páll Gunnlaugsson, Haraldur; Nylandsted Larsen, Arne; Uhrenfeldt, Christian

    2012-03-01

    A Nordic Semiconductor Meeting is held every other year with the venue rotating amongst the Nordic countries of Denmark, Finland, Iceland, Norway and Sweden. The focus of these meetings remains 'original research and science being carried out on semiconductor materials, devices and systems'. Reports on industrial activity have usually featured. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. Proceedings from these events are regularly published as a Topical Issue of Physica Scripta. All of the papers in this Topical Issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the high scientific standards and quality of the series. This 24th meeting of the Nordic Semiconductor community, NSM 2011, was held at Fuglsøcentret, close to Aarhus, Denmark, 19-22 June 2011. Support was provided by the Carlsberg Foundation, Danfysik and the semiconductor group at Aarhus University. Over 30 participants presented a broad range of topics covering semiconductor materials and devices as well as related material science interests. The conference provided a forum for Nordic and international scientists to present and discuss new results and ideas concerning the fundamentals and applications of semiconductor materials. The aim of the meeting was to advance the progress of Nordic science and thus aid in future worldwide technological advances concerning technology, education, energy and the environment. The 25th Nordic Semiconductor Meeting will be organized in June 2013 in Finland, chaired by Dr Filip Tuomisto, Aalto University. A Nordic Summer School on Semiconductor Science will be organized in connection with the conference (just before), chaired by Dr Jonatan Slotte, Aalto University. Information on these events can be found at physics.aalto.fi/nsm2013. List of participants Søren Vejling

  17. Semiconductor quantum wells: old technology or new device functionalities

    NASA Astrophysics Data System (ADS)

    Kolbas, R. M.; Lo, Y. C.; Hsieh, K. Y.; Lee, J. H.; Reed, F. E.; Zhang, D.; Zhang, T.

    2009-08-01

    The introduction of semiconductor quantum wells in the 1970s created a revolution in optoelectronic devices. A large fraction of today's lasers and light emitting diodes are based on quantum wells. It has been more than 30 years but novel ideas and new device functions have recently been demonstrated using quantum well heterostructures. This paper provides a brief overview of the subject and then focuses on the physics of quantum wells that the lead author believes holds the key to new device functionalities. The data and figures contained within are not new. They have been assembled from 30 years of work. They are presented to convey the story of why quantum wells continue to fuel the engine that drives the semiconductor optoelectronic business. My apologies in advance to my students and co-workers that contributed so much that could not be covered in such a short manuscript. The explanations provided are based on the simplest models possible rather than the very sophisticated mathematical models that have evolved over many years. The intended readers are those involved with semiconductor optoelectronic devices and are interested in new device possibilities.

  18. Extrinsic and intrinsic motivation at 30: Unresolved scientific issues.

    PubMed

    Reiss, Steven

    2005-01-01

    The undermining effect of extrinsic reward on intrinsic motivation remains unproven. The key unresolved issues are construct invalidity (all four definitions are unproved and two are illogical); measurement unreliability (the free-choice measure requires unreliable, subjective judgments to infer intrinsic motivation); inadequate experimental controls (negative affect and novelty, not cognitive evaluation, may explain "undermining" effects); and biased metareviews (studies with possible floor effects excluded, but those with possible ceiling effects included). Perhaps the greatest error with the undermining theory, however, is that it does not adequately recognize the multifaceted nature of intrinsic motivation (Reiss, 2004a). Advice to limit the use of applied behavior analysis based on "hidden" undermining effects is ideologically inspired and is unsupported by credible scientific evidence.

  19. Understanding the Influence of Intrinsic and Extrinsic Factors on Inquiry-Based Science Education at Township Schools in South Africa

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2016-01-01

    This mixed-methods research investigated teachers' perceptions of intrinsic factors (personal attributes of the teacher) and extrinsic factors (environmental) influencing the implementation of inquiry-based science learning at township (underdeveloped urban area) high schools in South Africa. Quantitative data were collected by means of an adapted…

  20. Imitation learning based on an intrinsic motivation mechanism for efficient coding

    PubMed Central

    Triesch, Jochen

    2013-01-01

    A hypothesis regarding the development of imitation learning is presented that is rooted in intrinsic motivations. It is derived from a recently proposed form of intrinsically motivated learning (IML) for efficient coding in active perception, wherein an agent learns to perform actions with its sense organs to facilitate efficient encoding of the sensory data. To this end, actions of the sense organs that improve the encoding of the sensory data trigger an internally generated reinforcement signal. Here it is argued that the same IML mechanism might also support the development of imitation when general actions beyond those of the sense organs are considered: The learner first observes a tutor performing a behavior and learns a model of the the behavior's sensory consequences. The learner then acts itself and receives an internally generated reinforcement signal reflecting how well the sensory consequences of its own behavior are encoded by the sensory model. Actions that are more similar to those of the tutor will lead to sensory signals that are easier to encode and produce a higher reinforcement signal. Through this, the learner's behavior is progressively tuned to make the sensory consequences of its actions match the learned sensory model. I discuss this mechanism in the context of human language acquisition and bird song learning where similar ideas have been proposed. The suggested mechanism also offers an account for the development of mirror neurons and makes a number of predictions. Overall, it establishes a connection between principles of efficient coding, intrinsic motivations and imitation. PMID:24204350

  1. Purcell effect for active tuning of light scattering from semiconductor optical antennas.

    PubMed

    Holsteen, Aaron L; Raza, Søren; Fan, Pengyu; Kik, Pieter G; Brongersma, Mark L

    2017-12-15

    Subwavelength, high-refractive index semiconductor nanostructures support optical resonances that endow them with valuable antenna functions. Control over the intrinsic properties, including their complex refractive index, size, and geometry, has been used to manipulate fundamental light absorption, scattering, and emission processes in nanostructured optoelectronic devices. In this study, we harness the electric and magnetic resonances of such antennas to achieve a very strong dependence of the optical properties on the external environment. Specifically, we illustrate how the resonant scattering wavelength of single silicon nanowires is tunable across the entire visible spectrum by simply moving the height of the nanowires above a metallic mirror. We apply this concept by using a nanoelectromechanical platform to demonstrate active tuning. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Nanoscale Spectroscopic Imaging of Organic Semiconductor Films by Plasmon-Polariton Coupling

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Heinemeyer, U.; Stanciu, C.; Sackrow, M.; Braun, K.; Hennemann, L. E.; Wang, X.; Scholz, R.; Schreiber, F.; Meixner, A. J.

    2010-02-01

    Tip-enhanced near-field optical images and correlated topographic images of an organic semiconductor film (diindenoperylene, DIP) on Si have been recorded with high optical contrast and high spatial resolution (17 nm) using a parabolic mirror with a high numerical aperture for tip illumination and signal collection. The DIP molecular domain boundaries being one to four molecular layers (1.5-6 nm) high are resolved topographically by a shear-force scanning tip and optically by simultaneously recording the 6×105 times enhanced photoluminescence (PL). The excitation is 4×104 times enhanced and the intrinsically weak PL-yield of the DIP-film is 15-fold enhanced by the tip. The Raman spectra indicate an upright orientation of the DIP molecules. The enhanced PL contrast results from the local film morphology via stronger coupling between the tip plasmon and the exciton-polariton in the DIP film.

  3. Electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy

    NASA Astrophysics Data System (ADS)

    Jiang, F. D.; Feng, J. Y.

    2008-02-01

    Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.

  4. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  5. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  6. Course-Specific Intrinsic Motivation: Effects of Instructor Support and Global Academic Motivation

    ERIC Educational Resources Information Center

    Zook, J. M.; Herman, A. P.

    2011-01-01

    This study examined the effects of instructor support and students' global academic motivation on students' course-specific intrinsic motivation. The authors hypothesized, based on self-determination theory (Ryan & Deci, 2000), that instructor support for students' psychological needs would enhance intrinsic motivation. Students reported their…

  7. Majorana zero modes in superconductor-semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Krogstrup, P.; Marcus, C. M.; Oreg, Y.

    2018-05-01

    Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor-superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

  8. Investigation of intrinsic toroidal rotation scaling in KSTAR

    NASA Astrophysics Data System (ADS)

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.

    2017-07-01

    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  9. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  10. Youth fitness testing: the effect of percentile-based evaluative feedback on intrinsic motivation.

    PubMed

    Whitehead, J R; Corbin, C B

    1991-06-01

    This study was a test of Deci and Ryan's (1985) cognitive evaluation theory in a fitness testing situation. More specifically, it was a test of Proposition 2 of that theory, which posits that external events that increase or decrease perceived competence will increase or decrease intrinsic motivation. Seventh and eighth grade schoolchildren (N = 105) volunteered for an experiment that was ostensibly to collect data on a new youth fitness test (the Illinois Agility Run). After two untimed practice runs, a specially adapted version of the Intrinsic Motivation Inventory (IMI) was administered as a pretest of intrinsic motivation. Two weeks later when subjects ran again, they were apparently electronically timed. In reality, the subjects were given bogus feedback. Subjects in a positive feedback condition were told their scores were above the 80th percentile, while those in a negative feedback condition were told their scores were below the 20th percentile. Those in a control condition received no feedback. The IMI was again administered to the subjects after their runs. Multivariate and subsequent univariate tests were significant for all four subscale dependent variables (perceived interest-enjoyment, competence, effort, and pressure-tension). Positive feedback enhanced all aspects of intrinsic motivation, whereas negative feedback decreased them. In a further test of cognitive evaluation theory, path analysis results supported the prediction that perceived competence would mediate changes in the other IMI subscales. Taken together, these results clearly support cognitive evaluation theory and also may have important implications regarding motivation for those who administer youth fitness tests.

  11. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials

    PubMed Central

    Xie, Hanhui; Wang, Heng; Fu, Chenguang; Liu, Yintu; Snyder, G. Jeffrey; Zhao, Xinbing; Zhu, Tiejun

    2014-01-01

    The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0×1019 to 2.3×1021 cm−3 by changing Sb dopant content. The optimized carrier concentration nH ≈ 3–4×1020 cm−2 results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features. PMID:25363573

  12. Room-temperature semiconductor heterostructure refrigeration

    NASA Astrophysics Data System (ADS)

    Chao, K. A.; Larsson, Magnus; Mal'shukov, A. G.

    2005-07-01

    With the proper design of semiconductor tunneling barrier structures, we can inject low-energy electrons via resonant tunneling, and take out high-energy electrons via a thermionic process. This is the operation principle of our semiconductor heterostructure refrigerator (SHR) without the need of applying a temperature gradient across the device. Even for the bad thermoelectric material AlGaAs, our calculation shows that at room temperature, the SHR can easily lower the temperature by 5-7K. Such devices can be fabricated with the present semiconductor technology. Besides its use as a kitchen refrigerator, the SHR can efficiently cool microelectronic devices.

  13. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  14. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  15. Simple intrinsic defects in GaP and InP

    NASA Astrophysics Data System (ADS)

    Schultz, Peter A.

    2012-02-01

    To faithfully simulate evolution of defect chemistry and electrical response in irradiated semiconductor devices requires accurate defect reaction energies and energy levels. In III-Vs, good data is scarce, theory hampered by band gap and supercell problems. I apply density functional theory (DFT) to intrinsic defects in GaP and InP, predicting stable charge states, ground state configurations, defect energy levels, and identifying mobile species. The SeqQuest calculations incorporate rigorous charge boundary conditions removing supercell artifacts, demonstrated converged to the infinite limit. Computed defect levels are not limited by a band gap problem, despite Kohn-Sham gaps much smaller than the experimental gap. As in GaAs, [P.A. Schultz and O.A. von Lilienfeld, Modeling Simul. Mater. Sci. Eng. 17, 084007 (2009)], defects in GaP and InP exhibit great complexity---multitudes of charge states, bistabilities, and negative U systems---but show similarities to each other (and to GaAs). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Light-Immune pH Sensor with SiC-Based Electrolyte-Insulator-Semiconductor Structure

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Ting; Huang, Chien-Shiang; Chow, Lee; Lan, Jyun-Ming; Yang, Chia-Ming; Chang, Liann-Be; Lai, Chao-Sung

    2013-12-01

    An electrolyte-insulator-semiconductor (EIS) structure with high-band-gap semiconductor of silicon carbide is demonstrated as a pH sensor in this report. Two different sensing membranes, i.e., gadolinium oxide (Gd2O3) and hafnium oxide (HfO2), were investigated. The HfO2 film deposited by atomic layer deposition (ALD) at low temperature shows high pH sensing properties with a sensitivity of 52.35 mV/pH and a low signal of 4.95 mV due to light interference. The EIS structures with silicon carbide can provide better visible light immunity due to its high band gap that allows pH detection in an outdoor environment without degradation of pH sensitivity.

  17. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  18. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  19. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  20. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  1. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  2. Integrated all-optical programmable logic array based on semiconductor optical amplifiers.

    PubMed

    Dong, Wenchan; Huang, Zhuyang; Hou, Jie; Santos, Rui; Zhang, Xinliang

    2018-05-01

    The all-optical programmable logic array (PLA) is one of the most important optical complex logic devices that can implement combinational logic functions. In this Letter, we propose and experimentally demonstrate an integrated all-optical PLA at the operation speed of 40 Gb/s. The PLA mainly consists of a delay interferometer (DI) and semiconductor optical amplifiers (SOAs) of different lengths. The DI is used to pre-code the input signals and improve the reconfigurability of the scheme. The longer SOAs are nonlinear media for generating canonical logic units (CLUs) using four-wave mixing. The shorter SOAs are used to select the appropriate CLUs by changing the working states; then reconfigurable logic functions can be output directly. The results show that all the CLUs are realized successfully, and the optical signal-to-noise ratios are above 22 dB. The exclusive NOR gate and exclusive OR gate are experimentally demonstrated based on output CLUs.

  3. Bi-Se doped with Cu, p-type semiconductor

    DOEpatents

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  4. Method of producing strained-layer semiconductor devices via subsurface-patterning

    DOEpatents

    Dodson, Brian W.

    1993-01-01

    A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.

  5. Epitaxy of semiconductor-superconductor nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S.

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

  6. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  7. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Shakouri, Ali; Sands, Timothy D.

    2018-06-01

    Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.

  8. Monte Carlo simulation based on dynamic disorder model in organic semiconductors: From coherent to incoherent transport

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Si, Wei; Hou, Xiaoyuan; Wu, Chang-Qin

    2012-06-01

    The dynamic disorder model for charge carrier transport in organic semiconductors has been extensively studied in recent years. Although it is successful on determining the value of bandlike mobility in the organic crystalline materials, the incoherent hopping, the typical transport characteristic in amorphous molecular semiconductors, cannot be described. In this work, the decoherence process is taken into account via a phenomenological parameter, say, decoherence time, and the projective and Monte Carlo method are applied for this model to determine the waiting time and thus the diffusion coefficient. It is obtained that the type of transport is changed from coherent to incoherent with a sufficiently short decoherence time, which indicates the essential role of decoherence time in determining the type of transport in organics. We have also discussed the spatial extent of carriers for different decoherence time, and the transition from delocalization (carrier resides in about 10 molecules) to localization is observed. Based on the experimental results of spatial extent, we estimate that the decoherence time in pentacene has the order of 1 ps. Furthermore, the dependence of diffusion coefficient on decoherence time is also investigated, and corresponding experiments are discussed.

  9. Monte Carlo simulation based on dynamic disorder model in organic semiconductors: from coherent to incoherent transport.

    PubMed

    Yao, Yao; Si, Wei; Hou, Xiaoyuan; Wu, Chang-Qin

    2012-06-21

    The dynamic disorder model for charge carrier transport in organic semiconductors has been extensively studied in recent years. Although it is successful on determining the value of bandlike mobility in the organic crystalline materials, the incoherent hopping, the typical transport characteristic in amorphous molecular semiconductors, cannot be described. In this work, the decoherence process is taken into account via a phenomenological parameter, say, decoherence time, and the projective and Monte Carlo method are applied for this model to determine the waiting time and thus the diffusion coefficient. It is obtained that the type of transport is changed from coherent to incoherent with a sufficiently short decoherence time, which indicates the essential role of decoherence time in determining the type of transport in organics. We have also discussed the spatial extent of carriers for different decoherence time, and the transition from delocalization (carrier resides in about 10 molecules) to localization is observed. Based on the experimental results of spatial extent, we estimate that the decoherence time in pentacene has the order of 1 ps. Furthermore, the dependence of diffusion coefficient on decoherence time is also investigated, and corresponding experiments are discussed.

  10. Controlling the stoichiometry and doping of semiconductor materials

    DOEpatents

    Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric

    2016-08-16

    Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.

  11. Asymptotic Analysis of Melt Growth for Antimonide-Based Compound Semiconductor Crystals in Magnetic and Electric Fields

    DTIC Science & Technology

    2006-10-01

    F. Bliss, Gerald W. Iseler and Piotr Becla, "Combining static and rotating magnetic fields during modified vertical Bridgman crystal growth ," AIAA...Wang and Nancy Ma, "Semiconductor crystal growth by the vertical Bridgman process with rotating magnetic fields," ASME Journal of Heat Transfer...2005. 15. Stephen J. LaPointe, Nancy Ma and Donald W. Mueller, Jr., " Growth of binary alloyed semiconductor crystals by the vertical Bridgman

  12. Reflection technique for thermal mapping of semiconductors

    DOEpatents

    Walter, Martin J.

    1989-06-20

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  13. Intrinsic motivations drive learning of eye movements: an experiment with human adults.

    PubMed

    Caligiore, Daniele; Mustile, Magda; Cipriani, Daniele; Redgrave, Peter; Triesch, Jochen; De Marsico, Maria; Baldassarre, Gianluca

    2015-01-01

    Intrinsic motivations drive the acquisition of knowledge and skills on the basis of novel or surprising stimuli or the pleasure to learn new skills. In so doing, they are different from extrinsic motivations that are mainly linked to drives that promote survival and reproduction. Intrinsic motivations have been implicitly exploited in several psychological experiments but, due to the lack of proper paradigms, they are rarely a direct subject of investigation. This article investigates how different intrinsic motivation mechanisms can support the learning of visual skills, such as "foveate a particular object in space", using a gaze contingency paradigm. In the experiment participants could freely foveate objects shown in a computer screen. Foveating each of two "button" pictures caused different effects: one caused the appearance of a simple image (blue rectangle) in unexpected positions, while the other evoked the appearance of an always-novel picture (objects or animals). The experiment studied how two possible intrinsic motivation mechanisms might guide learning to foveate one or the other button picture. One mechanism is based on the sudden, surprising appearance of a familiar image at unpredicted locations, and a second one is based on the content novelty of the images. The results show the comparative effectiveness of the mechanism based on image novelty, whereas they do not support the operation of the mechanism based on the surprising location of the image appearance. Interestingly, these results were also obtained with participants that, according to a post experiment questionnaire, had not understood the functions of the different buttons suggesting that novelty-based intrinsic motivation mechanisms might operate even at an unconscious level.

  14. Intrinsic Motivations Drive Learning of Eye Movements: An Experiment with Human Adults

    PubMed Central

    Caligiore, Daniele; Mustile, Magda; Cipriani, Daniele; Redgrave, Peter; Triesch, Jochen; De Marsico, Maria; Baldassarre, Gianluca

    2015-01-01

    Intrinsic motivations drive the acquisition of knowledge and skills on the basis of novel or surprising stimuli or the pleasure to learn new skills. In so doing, they are different from extrinsic motivations that are mainly linked to drives that promote survival and reproduction. Intrinsic motivations have been implicitly exploited in several psychological experiments but, due to the lack of proper paradigms, they are rarely a direct subject of investigation. This article investigates how different intrinsic motivation mechanisms can support the learning of visual skills, such as “foveate a particular object in space”, using a gaze contingency paradigm. In the experiment participants could freely foveate objects shown in a computer screen. Foveating each of two “button” pictures caused different effects: one caused the appearance of a simple image (blue rectangle) in unexpected positions, while the other evoked the appearance of an always-novel picture (objects or animals). The experiment studied how two possible intrinsic motivation mechanisms might guide learning to foveate one or the other button picture. One mechanism is based on the sudden, surprising appearance of a familiar image at unpredicted locations, and a second one is based on the content novelty of the images. The results show the comparative effectiveness of the mechanism based on image novelty, whereas they do not support the operation of the mechanism based on the surprising location of the image appearance. Interestingly, these results were also obtained with participants that, according to a post experiment questionnaire, had not understood the functions of the different buttons suggesting that novelty-based intrinsic motivation mechanisms might operate even at an unconscious level. PMID:25775248

  15. The role of intrinsic motivations in attention allocation and shifting

    PubMed Central

    Di Nocera, Dario; Finzi, Alberto; Rossi, Silvia; Staffa, Mariacarla

    2014-01-01

    The concepts of attention and intrinsic motivations are of great interest within adaptive robotic systems, and can be exploited in order to guide, activate, and coordinate multiple concurrent behaviors. Attention allocation strategies represent key capabilities of human beings, which are strictly connected with action selection and execution mechanisms, while intrinsic motivations directly affect the allocation of attentional resources. In this paper we propose a model of Reinforcement Learning (RL), where both these capabilities are involved. RL is deployed to learn how to allocate attentional resources in a behavior-based robotic system, while action selection is obtained as a side effect of the resulting motivated attentional behaviors. Moreover, the influence of intrinsic motivations in attention orientation is obtained by introducing rewards associated with curiosity drives. In this way, the learning process is affected not only by goal-specific rewards, but also by intrinsic motivations. PMID:24744746

  16. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  17. Intrinsic and Extrinsic Motivation for Smoking Cessation.

    ERIC Educational Resources Information Center

    Curry, Susan; And Others

    1990-01-01

    Evaluated intrinsic-extrinsic model of motivation for smoking cessation using two samples (Ns=1,217 and 151) of smokers. Analysis on Reasons for Quitting scale supported intrinsic-extrinsic motivation distinction, defining four-factor model with two intrinsic and two extrinsic dimensions. Found that smokers with higher levels of intrinsic relative…

  18. Semiconductor Nanotechnology: Novel Materials and Devices for Electronics, Photonics, and Renewable Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag S

    2010-03-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low costmore » of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of Nano and Giga Challenges in Electronics and Photonics NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10 14

  19. Characterising experimental time series using local intrinsic dimension

    NASA Astrophysics Data System (ADS)

    Buzug, Thorsten M.; von Stamm, Jens; Pfister, Gerd

    1995-02-01

    Experimental strange attractors are analysed with the averaged local intrinsic dimension proposed by A. Passamante et al. [Phys. Rev. A 39 (1989) 3640] which is based on singular value decomposition of local trajectory matrices. The results are compared to the values of Kaplan-Yorke and the correlation dimension. The attractors, reconstructed with Takens' delay time coordinates from scalar velocity time series, are measured in the hydrodynamic Taylor-Couette system. A period doubling route towards chaos obtained from a very short Taylor-Couette cylinder yields a sequence of experimental time series where the local intrinsic dimension is applied.

  20. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  1. Positive and negative gain exceeding unity magnitude in silicon quantum well metal-oxide-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Hu, Gangyi; Wijesinghe, Udumbara; Naquin, Clint; Maggio, Ken; Edwards, H. L.; Lee, Mark

    2017-10-01

    Intrinsic gain (AV) measurements on Si quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors show that these devices can have |AV| > 1 in quantum transport negative transconductance (NTC) operation at room temperature. QW NMOS devices were fabricated using an industrial 45 nm technology node process incorporating ion implanted potential barriers to define a lateral QW in the conduction channel under the gate. While NTC at room temperature arising from transport through gate-controlled QW bound states has been previously established, it was unknown whether the quantum NTC mechanism could support gain magnitude exceeding unity. Bias conditions were found giving both positive and negative AV with |AV| > 1 at room temperature. This result means that QW NMOS devices could be useful in amplifier and oscillator applications.

  2. DNA/RNA transverse current sequencing: intrinsic structural noise from neighboring bases

    PubMed Central

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2015-01-01

    Nanopore DNA sequencing via transverse current has emerged as a promising candidate for third-generation sequencing technology. It produces long read lengths which could alleviate problems with assembly errors inherent in current technologies. However, the high error rates of nanopore sequencing have to be addressed. A very important source of the error is the intrinsic noise in the current arising from carrier dispersion along the chain of the molecule, i.e., from the influence of neighboring bases. In this work we perform calculations of the transverse current within an effective multi-orbital tight-binding model derived from first-principles calculations of the DNA/RNA molecules, to study the effect of this structural noise on the error rates in DNA/RNA sequencing via transverse current in nanopores. We demonstrate that a statistical technique, utilizing not only the currents through the nucleotides but also the correlations in the currents, can in principle reduce the error rate below any desired precision. PMID:26150827

  3. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI.

    PubMed

    Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening

    2006-01-01

    In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.

  4. Bacteria inside semiconductors as potential sensor elements: biochip progress.

    PubMed

    Sah, Vasu R; Baier, Robert E

    2014-06-24

    It was discovered at the beginning of this Century that living bacteria-and specifically the extremophile Pseudomonas syzgii-could be captured inside growing crystals of pure water-corroding semiconductors-specifically germanium-and thereby initiated pursuit of truly functional "biochip-based" biosensors. This observation was first made at the inside ultraviolet-illuminated walls of ultrapure water-flowing semiconductor fabrication facilities (fabs) and has since been, not as perfectly, replicated in simpler flow cell systems for chip manufacture, described here. Recognizing the potential importance of these adducts as optical switches, for example, or probes of metabolic events, the influences of the fabs and their components on the crystal nucleation and growth phenomena now identified are reviewed and discussed with regard to further research needs. For example, optical beams of current photonic circuits can be more easily modulated by integral embedded cells into electrical signals on semiconductors. Such research responds to a recently published Grand Challenge in ceramic science, designing and synthesizing oxide electronics, surfaces, interfaces and nanoscale structures that can be tuned by biological stimuli, to reveal phenomena not otherwise possible with conventional semiconductor electronics. This short review addresses only the fabrication facilities' features at the time of first production of these potential biochips.

  5. THE LIMITED EFFECT OF COINCIDENT ORIENTATION ON THE CHOICE OF INTRINSIC AXIS (.).

    PubMed

    Li, Jing; Su, Wei

    2015-06-01

    The allocentric system computes and represents general object-to-object spatial relationships to provide a spatial frame of reference other than the egocentric system. The intrinsic frame-of-reference system theory, which suggests people learn the locations of objects based upon an intrinsic axis, is important in research about the allocentric system. The purpose of the current study was to determine whether the effect of coincident orientation on the choice of intrinsic axis was limited. Two groups of participants (24 men, 24 women; M age = 24 yr., SD = 2) encoded different spatial layouts in which the objects shared the coincident orientation of 315° and 225° separately at learning perspective (0°). The response pattern of partial-scene-recognition task following learning reflected different strategies for choosing the intrinsic axis under different conditions. Under the 315° object-orientation condition, the objects' coincident orientation was as important as the symmetric axis in the choice of the intrinsic axis. However, participants were more likely to choose the symmetric axis as the intrinsic axis under the 225° object-orientation condition. The results suggest the effect of coincident orientation on the choice of intrinsic axis is limited.

  6. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  7. Optical devices featuring textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D [Dover, MA; Cabalu, Jasper S [Cary, NC

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  8. Rare earth doped III-nitride semiconductors for spintronic and optoelectronic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Palai, Ratnakar

    2016-10-01

    Since last four decades the information and communication technologies are relying on the semiconductor materials. Currently a great deal of attention is being focused on adding spin degree-of-freedom into semiconductor to create a new area of solid-state electronics, called spintronics. In spintronics not only the current but also its spin state is controlled. Such materials need to be good semiconductors for easy integration in typical integrated circuits with high sensitivity to the spin orientation, especially room temperature ferromagnetism being an important desirable property. GaN is considered to be the most important semiconductor after silicon. It is widely used for the production of green, blue, UV, and white LEDs in full color displays, traffic lights, automotive lightings, and general room lighting using white LEDs. GaN-based systems also show promise for microwave and high power electronics intended for radar, satellite, wireless base stations and spintronic applications. Rare earth (Yb, Eu, Er, and Tm) doped GaN shows many interesting optoelectronic and magnetoptic properties e. g. sharp emission from UV through visible to IR, radiation hardness, and ferromagnetism. The talk will be focused on fabrication, optoelectronic (photoluminescence, cathodeluminescence, magnetic, and x-ray photoelectron spectroscopy) properties of some rare earth doped GaN and InGaN semiconductor nanostructures grown by plasma assisted molecular beam epitaxy (MBE) and future applications.

  9. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  10. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons.

    PubMed

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J; Treutlein, Philipp

    2017-08-11

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf=0.66  GHz, the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure η_{e2e}^{50  ns}=3.4(3)% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency η_{int}=17(3)%. Straightforward technological improvements can boost the end-to-end-efficiency to η_{e2e}≈35%; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9×10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ_{1}=0.27(4) photons, the signal to noise level would be unity.

  11. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    NASA Astrophysics Data System (ADS)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  12. Theory of Intrinsic Spin Torque Due to Interface Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Kalitsov, Alan; Chshiev, Mairbek; Butler, William; Mryasov, Oleg

    2014-03-01

    The effect of intrinsic spin torque due to spin-orbit coupling (SOC) at the interface between thin ferromagnetic film and non-magnetic metal has attracted significant fundamental and applied research interest. We report quantum theory of SOC driven spin torque (SOT) within the Rashba model of SOC and two-band tight binding (TB) Hamiltonian including s-d exchange interactions (J). We employ the non-equilibrium Green Function formalism and find that SOT to the first order in SOC has symmetry consistent with the earlier quasi-classical diffusive theory. An obvious benefit of the proposed approach is the expression for the SOT given in terms of TB parameters which enables a physically transparent analysis of the dependencies of SOT on material specific parameters such as Rashba SOC constant, hopping integral, Fermi level and J. On the basis of analytical and numerical results we discuss trends in strength of SOT and its correlation with the Spin Hall conductivity. This work was supported in part by C-SPIN, STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  13. EDITORIAL: Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications

    NASA Astrophysics Data System (ADS)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-04-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of 'Nano and Giga Challenges in Electronics and Photonics'— NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix— were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10

  14. Separating semiconductor devices from substrate by etching graded composition release layer disposed between semiconductor devices and substrate including forming protuberances that reduce stiction

    DOEpatents

    Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis

    2015-05-12

    A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.

  15. Extracting Intrinsic Functional Networks with Feature-Based Group Independent Component Analysis

    ERIC Educational Resources Information Center

    Calhoun, Vince D.; Allen, Elena

    2013-01-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in…

  16. Hybrid structures based on gold nanoparticles and semiconductor quantum dots for biosensor applications

    PubMed Central

    Kurochkina, Margarita; Konshina, Elena; Oseev, Aleksandr; Hirsch, Soeren

    2018-01-01

    Background The luminescence amplification of semiconductor quantum dots (QD) in the presence of self-assembled gold nanoparticles (Au NPs) is one of way for creating biosensors with highly efficient transduction. Aims The objective of this study was to fabricate the hybrid structures based on semiconductor CdSe/ZnS QDs and Au NP arrays and to use them as biosensors of protein. Methods In this paper, the hybrid structures based on CdSe/ZnS QDs and Au NP arrays were fabricated using spin coating processes. Au NP arrays deposited on a glass wafer were investigated by optical microscopy and absorption spectroscopy depending on numbers of spin coating layers and their baking temperature. Bovine serum albumin (BSA) was used as the target protein analyte in a phosphate buffer. A confocal laser scanning microscope was used to study the luminescent properties of Au NP/QD hybrid structures and to test BSA. Results The dimensions of Au NP aggregates increased and the space between them decreased with increasing processing temperature. At the same time, a blue shift of the plasmon resonance peak in the absorption spectra of Au NP arrays was observed. The deposition of CdSe/ZnS QDs with a core diameter of 5 nm on the surface of the Au NP arrays caused an increase in absorption and a red shift of the plasmon peak in the spectra. The exciton–plasmon enhancement of the QDs’ photoluminescence intensity has been obtained at room temperature for hybrid structures with Au NPs array pretreated at temperatures of 100°C and 150°C. It has been found that an increase in the weight content of BSA increases the photoluminescence intensity of such hybrid structures. Conclusion The ability of the qualitative and quantitative determination of protein content in solution using the Au NP/QD structures as an optical biosensor has been shown experimentally. PMID:29731613

  17. Electrochemical characterization of bilayer lipid membrane-semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiao Kang; Baral, S.; Fendler, J.H.

    Three different systems of glyceryl monooleate (GMO), bilayer lipid membrane (BLM) supported semiconductor particles have been prepared and characterized. A single composition of particulate semiconductor deposited only on one side of the BLM constituted system A, two different compositions of particulate semiconductors sequentially deposited on the same side of the BLM represented system B, and two different compositions of particulate semiconductors deposited on the opposite sides of the BLM made up system C.

  18. Nanoscale-driven crystal growth of hexaferrite heterostructures for magnetoelectric tuning of microwave semiconductor integrated devices.

    PubMed

    Hu, Bolin; Chen, Zhaohui; Su, Zhijuan; Wang, Xian; Daigle, Andrew; Andalib, Parisa; Wolf, Jason; McHenry, Michael E; Chen, Yajie; Harris, Vincent G

    2014-11-25

    A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25-40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the crystal growth technique is considered theoretically and experimentally to be universal and suitable for the growth of a wide range of diverse crystals. In the present experiment, the conical spin structure of Co2Y ferrite crystals was found to give rise to an intrinsic magnetoelectric effect. Our experiment reveals a remarkable increase in the conical phase transition temperature by ∼150 K for Co2Y ferrite, compared to 5-10 K of Zn2Y ferrites recently reported. The high quality Co2Y ferrite crystals, having low microwave loss and magnetoelectricity, were successfully grown on a wide bandgap semiconductor GaN. The demonstration of the nanostructure materials-based "system on a wafer" architecture is a critical milestone to next generation microwave integrated systems. It is also practical that future microwave integrated systems and their magnetic performances could be tuned by an electric field because of the magnetoelectricity of hexaferrites.

  19. Intrinsic rotation, hysteresis and back transition in reversed shear internal transport barriers

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Jhang, Hogun; Diamond, P. H.; Terzolo, L.; Yi, S.; Hahm, T. S.

    2011-07-01

    A study of intrinsic rotation and hysteresis in ion thermal internal transport barrier (ITB) is presented. Global flux-driven gyrofluid simulations are performed. It is found that significant co-current intrinsic rotation (0.1 <~ Mth <~ 0.2, where Mth is the thermal Mach number) can be produced in ITB plasmas. Exploration of the relationship between the intrinsic rotation and the ITB temperature gradient leads to a novel scaling of intrinsic rotation in ITB plasmas. Long time power ramp simulations with self-consistently evolving profiles clearly demonstrate the existence of hysteresis in reversed shear ITBs. It is shown that intrinsic rotation plays an important role in ITB dynamics and is responsible for determining unique properties of ITB hysteresis. A negative feedback mechanism based on destruction of E × B shear prevails in barrier back transition, triggered by an outward momentum transport event during the power ramp down.

  20. Intrinsic disorder in transcription factors†

    PubMed Central

    Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424