Geographies of American Popular Music: Introducing Students to Basic Geographic Concepts
ERIC Educational Resources Information Center
McClain, Stephen S.
2010-01-01
Popular music can be used to study many subjects and issues related to the social sciences. "Geographies of American Popular Music" was a workshop that not only examined the history and development of select genres of American music, it also introduced students to basic geographic concepts such as the culture hearth and spatial diffusion. Through…
ERIC Educational Resources Information Center
Federal Reserve Bank of Boston, MA.
The booklet outlines and presents examples of basic economics concepts. Objectives are to help elementary and secondary teachers introduce economic concepts in the classroom and to help teachers grasp some of the fundamentals of economics. The document is divided into seven sections. Each section presents concepts, offers three supporting…
Unders and Overs: Using a Dice Game to Illustrate Basic Probability Concepts
ERIC Educational Resources Information Center
McPherson, Sandra Hanson
2015-01-01
In this paper, the dice game "Unders and Overs" is described and presented as an active learning exercise to introduce basic probability concepts. The implementation of the exercise is outlined and the resulting presentation of various probability concepts are described.
ERIC Educational Resources Information Center
Durukan, Ümmü Gülsüm; Saglam-Arslan, Aysegül
2015-01-01
Learners face a variety of concepts during the instructional process they experience. These concepts are mostly introduced by teachers; thus, the competences of teachers in terms of teaching concepts are vitally important. The aim of this study is to detect the understanding levels of teacher candidates about basic astronomy concepts. The method…
Teaching Basic Probability in Undergraduate Statistics or Management Science Courses
ERIC Educational Resources Information Center
Naidu, Jaideep T.; Sanford, John F.
2017-01-01
Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…
Computer Literacy Project. A General Orientation in Basic Computer Concepts and Applications.
ERIC Educational Resources Information Center
Murray, David R.
This paper proposes a two-part, basic computer literacy program for university faculty, staff, and students with no prior exposure to computers. The program described would introduce basic computer concepts and computing center service programs and resources; provide fundamental preparation for other computer courses; and orient faculty towards…
Learning Genetics with Paper Pets
ERIC Educational Resources Information Center
Finnerty, Valerie Raunig
2006-01-01
By the end of the eighth grade, students are expected to have a basic understanding of the mechanism of basic genetic inheritance. However, these concepts can be difficult to teach. In this article, the author introduces a new learning tool that will help facilitate student learning and enthusiasm to the basic concepts of genetic inheritance. This…
Using a Thyroid Case Study and Error Plausibility to Introduce Basic Lab Skills
ERIC Educational Resources Information Center
Browning, Samantha; Urschler, Margaret; Meidl, Katherine; Peculis, Brenda; Milanick, Mark
2017-01-01
We describe a 3-hour session that provides students with the opportunity to review basic lab concepts and important techniques using real life scenarios. We began with two separate student-engaged discussions to remind/reinforce some basic concepts in physiology and review calculations with respect to chemical compounds. This was followed by…
ERIC Educational Resources Information Center
Busch, Phyllis S.
1985-01-01
Suggests simple ways to introduce students to the concept that the cell is the basic unit of structure of most organisms. Mentions materials for microscope study that are readily available and easy to handle, e.g., membranes from between the scales of the onion bulb, thin-leaved plants, pond water, and pollen. (JHZ)
Using a Self-Administered Visual Basic Software Tool To Teach Psychological Concepts.
ERIC Educational Resources Information Center
Strang, Harold R.; Sullivan, Amie K.; Schoeny, Zahrl G.
2002-01-01
Introduces LearningLinks, a Visual Basic software tool that allows teachers to create individualized learning modules that use constructivist and behavioral learning principles. Describes field testing of undergraduates at the University of Virginia that tested a module designed to improve understanding of the psychological concepts of…
Teaching Economics in the Mini-Economy.
ERIC Educational Resources Information Center
Indiana State Dept. of Education, Indianapolis.
This booklet produced by the State of Indiana introduces elementary teachers to economic concepts appropriate to the elementary curriculum and explains how to use mini-economy activities to teach these concepts. Chapter 1 describes how the mini-economy works, while chapter 2 introduces basic economic vocabulary and discusses market economy. Ideas…
Economics: An Analysis of Unintended Consequences. Volume 1: Introduction to Microeconomics.
ERIC Educational Resources Information Center
Schenk, Robert E.
This curriculum guide introduces high school students to the basic principles of microeconomics. Chapter 1 provides a basic definition of economics, while chapter 2 introduces a number of important economic concepts and ideas and examines reasons for unintended or unexpected consequences of decision-making. Chapter 3 considers how individual…
Basic Reference Tools for Nursing Research. A Workbook with Explanations and Examples.
ERIC Educational Resources Information Center
Smalley, Topsy N.
This workbook is designed to introduce nursing students to basic concepts and skills needed for searching the literatures of medicine, nursing, and allied health areas for materials relevant to specific information needs. The workbook introduces the following research tools: (1) the National Library of Medicine's MEDLINE searches, including a…
Introduction to Probability, Part 1 - Basic Concepts. Student Text. Revised Edition.
ERIC Educational Resources Information Center
Blakeslee, David W.; And Others
This book is designed to introduce the reader to some fundamental ideas about probability. The mathematical theory of probability plays an increasingly important role in science, government, industry, business, and economics. An understanding of the basic concepts of probability is essential for the study of statistical methods that are widely…
Getting Back to Basics (& Acidics)
ERIC Educational Resources Information Center
Rhodes, Sam
2006-01-01
This article describes a few novel acid-base experiments intended to introduce students to the basic concepts of acid-base chemistry and provide practical examples that apply directly to the study of biology and the human body. Important concepts such as the reaction between carbon dioxide and water, buffers and protein denaturation, are covered.…
TRI Fotonovela Slideshow - English
Presentation designed to introduce the basic concepts of the Toxics Release Inventory, including why TRI is an important resource for commmunities and which tool provides the easiest access to basic TRI data.
Basic Electricity--a Novel Analogy.
ERIC Educational Resources Information Center
Grant, Richard
1996-01-01
Uses the analogy of water flow to introduce concepts in basic electricity. Presents a demonstration that uses this analogy to help students grasp the relationship between current, voltage, and resistance. (JRH)
TRI Fotonovela Slideshow - Spanish
Presentation designed to introduce the basic concepts of the Toxics Release Inventory, including why TRI is an important resource for commmunities and which tool provides the easiest access to basic TRI data.
NASA Astrophysics Data System (ADS)
Wei, Yajun; Zhai, Zhaohui; Gunnarsson, Klas; Svedlindh, Peter
2014-11-01
Basic concepts concerning magnetic hysteresis are of vital importance in understanding magnetic materials. However, these concepts are often misinterpreted by many students and even textbooks. We summarize the most common misconceptions and present a new approach to help clarify these misconceptions and enhance students’ understanding of the hysteresis loop. In this approach, students are required to perform an experiment and plot the measured magnetization values and thereby calculated demagnetizing field, internal field, and magnetic induction as functions of the applied field point by point on the same graph. The concepts of the various coercivity, remanence, saturation magnetization, and saturation induction will not be introduced until this stage. By plotting this graph, students are able to interlink all the preceding concepts and intuitively visualize the underlying physical relations between them.
Introduction to TRI for Communities
Presentation designed to introduce the basic concepts of the Toxics Release Inventory, including why TRI is an important resource for commmunities and which tool provides the easiest access to basic TRI data.
Raising native plants in nurseries: basic concepts
R. Kasten Dumroese; Thomas D. Landis; Tara Luna
2012-01-01
Growing native plants can be fun, challenging, and rewarding. This booklet, particularly the first chapter that introduces important concepts, is for the novice who wants to start growing native plants as a hobby; however, it can also be helpful to someone with a bit more experience who is wondering about starting a nursery. The second chapter provides basic...
Color, Temperature and Heat: Exploring University Students Mental Thoughts
ERIC Educational Resources Information Center
Canlas, Ian Phil
2016-01-01
Color, temperature and heat are among the concepts in science that are interconnected. These concepts are introduced to learners even before they enter the basic education. On the other hand, in school, it is formally introduced to them not only in science but also in the humanities. The foregoing study attempted to explore the mental thoughts of…
TRI Fotonovela (Latino/Hispanic novella-style introduction to TRI)
Presentation designed to introduce the basic concepts of the Toxics Release Inventory, including why TRI is an important resource for commmunities and which tool provides the easiest access to basic TRI data.
A Simple Case Study of a Grid Performance System
NASA Technical Reports Server (NTRS)
Aydt, Ruth; Gunter, Dan; Quesnel, Darcy; Smith, Warren; Taylor, Valerie; Biegel, Bryan (Technical Monitor)
2001-01-01
This document presents a simple case study of a Grid performance system based on the Grid Monitoring Architecture (GMA) being developed by the Grid Forum Performance Working Group. It describes how the various system components would interact for a very basic monitoring scenario, and is intended to introduce people to the terminology and concepts presented in greater detail in other Working Group documents. We believe that by focusing on the simple case first, working group members can familiarize themselves with terminology and concepts, and productively join in the ongoing discussions of the group. In addition, prototype implementations of this basic scenario can be built to explore the feasibility of the proposed architecture and to expose possible shortcomings. Once the simple case is understood and agreed upon, complexities can be added incrementally as warranted by cases not addressed in the most basic implementation described here. Following the basic performance monitoring scenario discussion, unresolved issues are introduced for future discussion.
ERIC Educational Resources Information Center
Schon, Isabel
1992-01-01
A guide for teachers and librarians covering over 50 Spanish-language books that introduce children to various animals; the world around them; colors, shapes, and numbers; the universe; basic science concepts; and the process of conception, pregnancy, and birth. (MDH)
On introduction of artificial intelligence elements to heat power engineering
NASA Astrophysics Data System (ADS)
Dregalin, A. F.; Nazyrova, R. R.
1993-10-01
The basic problems of 'the thermodynamic intelligence' of personal computers have been outlined. The thermodynamic intellect of personal computers as a concept has been introduced to heat processes occurring in engines of flying vehicles. In particular, the thermodynamic intellect of computers is determined by the possibility of deriving formal relationships between thermodynamic functions. In chemical thermodynamics, a concept of a characteristic function has been introduced.
Fundamentals in Biostatistics for Research in Pediatric Dentistry: Part I - Basic Concepts.
Garrocho-Rangel, J A; Ruiz-Rodríguez, M S; Pozos-Guillén, A J
The purpose of this report was to provide the reader with some basic concepts in order to better understand the significance and reliability of the results of any article on Pediatric Dentistry. Currently, Pediatric Dentists need the best evidence available in the literature on which to base their diagnoses and treatment decisions for the children's oral care. Basic understanding of Biostatistics plays an important role during the entire Evidence-Based Dentistry (EBD) process. This report describes Biostatistics fundamentals in order to introduce the basic concepts used in statistics, such as summary measures, estimation, hypothesis testing, effect size, level of significance, p value, confidence intervals, etc., which are available to Pediatric Dentists interested in reading or designing original clinical or epidemiological studies.
ERIC Educational Resources Information Center
Knobloch, Phillip D. Th.
2016-01-01
This article introduces a specific concept of consumer culture into the international and European discussion about new concepts and categories in comparative education. Basic meanings of consumer culture are presented in reference to consumer research, consumer culture theory, and a revisited concept of world polity. In addition to general…
Modelling students' knowledge organisation: Genealogical conceptual networks
NASA Astrophysics Data System (ADS)
Koponen, Ismo T.; Nousiainen, Maija
2018-04-01
Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.
ERIC Educational Resources Information Center
Umar, Yunusa
2014-01-01
A simple and effective hands-on classroom activity designed to illustrate basic polymer concepts is presented. In this activity, students build primary structures of homopolymers and different arrangements of monomers in copolymer using paper clips as monomers. The activity supports formation of a basic understanding of polymer structures,…
A Demonstration of the Analysis of Variance Using Physical Movement and Space
ERIC Educational Resources Information Center
Owen, William J.; Siakaluk, Paul D.
2011-01-01
Classroom demonstrations help students better understand challenging concepts. This article introduces an activity that demonstrates the basic concepts involved in analysis of variance (ANOVA). Students who physically participated in the activity had a better understanding of ANOVA concepts (i.e., higher scores on an exam question answered 2…
Plastic Solar Cells: A Multidisciplinary Field to Construct Chemical Concepts from Current Research
ERIC Educational Resources Information Center
Gomez, Rafael; Segura, Jose L.
2007-01-01
Examples of plastic solar-cell technology to illustrate core concepts in chemistry are presented. The principles of operations of a plastic solar cell could be used to introduce key concepts, which are fundamentally important to understand photosynthesis and the basic process that govern most novel optoelectronic devices.
Cor, M Ken
Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.
Reflections on Earth--Remote-Sensing Research from Your Classroom.
ERIC Educational Resources Information Center
Campbell, Bruce A.
2001-01-01
Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)
TRAINING IN INDUSTRY--THE MANAGEMENT OF LEARNING.
ERIC Educational Resources Information Center
BASS, BERNARD M.; VAUGHAN, JAMES A.
THE PRINCIPLES OF LEARNING BEHAVIOR DERIVED THROUGH LABORATORY STUDY CAN BE EXTENDED TO EXPLAIN MUCH OF THE COMPLEX LEARNING REQUIRED IN INDUSTRIAL TRAINING PROGRAMS. A REVIEW OF THE BASIC PRINCIPLES OF HUMAN LEARNING INTRODUCES FOUR BASIC CONCEPTS--DRIVE, STIMULUS, RESPONSE, AND REINFORCER--AND DISCUSSES CLASSICAL AND INSTRUMENTAL CONDITIONING…
Rethinking Recycling: Why Teach about Garbage?
ERIC Educational Resources Information Center
Clearing, 1993
1993-01-01
Ties environmental education, via garbage disposal issues, to Oregon's educational reform agenda. Discusses teaching the basics through "garbage" lessons. Includes how to (1) take an interdisciplinary approach; (2) introduce waste management concepts in other lessons; (3) use waste management examples to apply existing concepts; and (4)…
How to Add Philosophy Dimensions in Your Basic International Business Course
ERIC Educational Resources Information Center
Thanopoulos, John
2010-01-01
This article aims to assist professors in introducing concepts of self, philosophy, religions, the universe, existential dilemmas, etc., in their basic international business classes. Using active learning and five-member student teams, a student organized and administered conference adds a very useful dimension of knowledge sacrificing only one…
Project Logic Handbook: Computer Literacy through BASIC.
ERIC Educational Resources Information Center
Huber, Leonard; And Others
This handbook for teachers offers guidance on introducing computer literacy into elementary and secondary classrooms. It includes a list of computer concepts exemplified by each step in learning to write programs in BASIC Programming Language and the objectives for the elementary and secondary activities; suggestions for using computers in…
Psychosocial vital signs: using simulation to introduce a new concept.
Spade, Charlotte M
2008-01-01
Psychosocial vital signs (PVS) is a tool used for defining and measuring essential psychosocial variables of health. Because nurse-patient interaction is basic to PVS, simulation is the methodology used for introducing this new concept to students. When learning PVS as a fundamental nursing skill, students' thinking is informed and guided toward a holistic view of their patients. The author discusses components of PVS and the curriculum used for teaching students how to use PVS.
ERIC Educational Resources Information Center
VanCleave, Janice
This book provides opportunities for engaging students in scientific investigations, offering a hands-on approach that encourages students to understand science concepts, gives them ways to apply the concepts, and introduces and reinforces the skills they need to become independent investigators. The basic outline and objectives of each section of…
Gradual Introduction of Some Aspects of Quantum Mechanics in a High School Curriculum.
ERIC Educational Resources Information Center
Cuppari, A.; Rinaudo, G.; Robutti, O.; Violino, P.
1997-01-01
Suggests that the basic concepts of quantum mechanics can be introduced at the high school level by considering the action of classical mechanics, then introducing Planck's constant as the granularity of that action. Uses the periodic motion of a spring as a practical example. (AIM)
Choosing the Best Method to Introduce Accounting.
ERIC Educational Resources Information Center
Guerrieri, Donald J.
1988-01-01
Of the traditional approaches to teaching accounting--single entry, journal, "T" account, balance sheet, and accounting equation--the author recommends the accounting equation approach. It is the foundation of the double entry system, new material is easy to introduce, and it provides students with a rationale for understanding basic concepts.…
Introducing Disjoint and Independent Events in Probability.
ERIC Educational Resources Information Center
Kelly, I. W.; Zwiers, F. W.
Two central concepts in probability theory are those of independence and mutually exclusive events. This document is intended to provide suggestions to teachers that can be used to equip students with an intuitive, comprehensive understanding of these basic concepts in probability. The first section of the paper delineates mutually exclusive and…
Understanding Thermal Equilibrium through Activities
ERIC Educational Resources Information Center
Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra
2015-01-01
Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…
Learning Multiplication Using Indonesian Traditional Game in Third Grade
ERIC Educational Resources Information Center
Prahmana, Rully Charitas Indra; Zulkardi; Hartono, Yusuf
2012-01-01
Several previous researches showed that students had difficulty in understanding the basic concept of multiplication. Students are more likely to be introduced by using formula without involving the concept itself. This underlies the researcher to design a learning trajectory of learning multiplication using Permainan Tradisional Tepuk Bergambar…
Global energy regulation in the solar wind-magnetosphere-ionosphere system
NASA Technical Reports Server (NTRS)
Sato, T.
1985-01-01
Some basic concepts which are essential in the understanding of global energy regulation in the solar wind-magnetosphere-ionosphere system are introduced. The importance of line-tying concept is particularly emphasized in connection with the solar wind energy, energy release in the magnetosphere and energy dissipation in the ionosphere.
The Keynesian Diagram: A Cross to Bear?
ERIC Educational Resources Information Center
Fleck, Juergen
In elementary economics courses students are often introduced to the basic concepts of macroeconomics through very simplified static models, and the concept of a macroeconomic equilibrium is generally explained with the help of an aggregate demand/aggregate supply (AD/AS) model and an income/expenditure model (via the Keynesian cross diagram).…
Reducing Abstraction When Learning Graph Theory
ERIC Educational Resources Information Center
Hazzan, Orit; Hadar, Irit
2005-01-01
This article presents research on students' understanding of basic concepts in Graph Theory. Students' understanding is analyzed through the lens of the theoretical framework of reducing abstraction (Hazzan, 1999). As it turns out, in spite of the relative simplicity of the concepts that are introduced in the introductory part of a traditional…
Orientation, Sketching, Mechanical Drawing, Drafting--Basic: 9253.01.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The course introduces the student to the drafting trade, freehand sketching, and basic mechanical drawing. The course has no prerequisites and will guide the student into drafting concepts and serve as a foundation for further study in vocational drafting. Requiring a total of 45 class hours, eight hours are utilized in orientation, 15 hours are…
Using Data Mining to Teach Applied Statistics and Correlation
ERIC Educational Resources Information Center
Hartnett, Jessica L.
2016-01-01
This article describes two class activities that introduce the concept of data mining and very basic data mining analyses. Assessment data suggest that students learned some of the conceptual basics of data mining, understood some of the ethical concerns related to the practice, and were able to perform correlations via the Statistical Package for…
Basic Wiring. Third Edition. Teacher Edition [and] Student Edition.
ERIC Educational Resources Information Center
Kaltwasser, Stan; Flowers, Gary; Blasingame, Don; Batson, Larry; Ipock, Dan; Carroll, Charles; Friesen, Wade; Fleming, Glenn
This publication contains both a teacher edition and a student edition of materials for a foundation course in an electrical wiring program. The course introduces basic concepts and skills that are prerequisites to residential wiring and commercial and industrial wiring courses. The contents of the materials are tied to measurable and observable…
ERIC Educational Resources Information Center
Ireson, Gren
2001-01-01
If football captures the interest of students, it can be used to teach physics. In this case, a Beckham free-kick can be used to introduce concepts such as drag, the Bernoulli principle, Reynolds number, and the Magnus effect by asking the simple question: How does he curve the ball so much? Introduces basic mechanics along the way. (Author/ASK)
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Two-Dimensional Crystallography Introduced by the Sprinkler Watering Problem
ERIC Educational Resources Information Center
De Toro, Jose A.; Calvo, Gabriel F.; Muniz, Pablo
2012-01-01
The problem of optimizing the number of circular sprinklers watering large fields is used to introduce, from a purely elementary geometrical perspective, some basic concepts in crystallography and comment on a few size effects in condensed matter physics. We examine square and hexagonal lattices to build a function describing the, so-called, dry…
Introducing Field-Based Geologic Research Using Soil Geomorphology
ERIC Educational Resources Information Center
Eppes, Martha Cary
2009-01-01
A field-based study of soils and the factors that influence their development is a strong, broad introduction to geologic concepts and research. A course blueprint is detailed where students design and complete a semester-long field-based soil geomorphology project. Students are first taught basic soil concepts and to describe soil, sediment and…
Statistics and Data Interpretation for Social Work
ERIC Educational Resources Information Center
Rosenthal, James A.
2011-01-01
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
Biological Concepts. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Carnegie, John W.
This manual contains the textual material for a three-lesson unit which introduces students to the basic concepts applicable to all biological treatment systems. The general topic areas addressed in the lessons are: (1) the microorganisms found in biological systems; (2) the factors that affect the growth and health of biological systems; and (3)…
ERIC Educational Resources Information Center
Matthews, Catherine E.
1996-01-01
Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)
Grass Grows, the Cow Eats: A Simple Grazing Systems Model with Emergent Properties
ERIC Educational Resources Information Center
Ungar, Eugene David; Seligman, Noam G.; Noy-Meir, Imanuel
2004-01-01
We describe a simple, yet intellectually challenging model of grazing systems that introduces basic concepts in ecology and systems analysis. The practical is suitable for high-school and university curricula with a quantitative orientation, and requires only basic skills in mathematics and spreadsheet use. The model is based on Noy-Meir's (1975)…
Introduction to Concepts in Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Living the Good (Work) Life: Implications of General Values for Work Values
ERIC Educational Resources Information Center
Carlstrom, Aaron H.
2011-01-01
Advances in the understanding of general values from personality and social psychology apply to work values. In this paper, I introduce the concepts of values, value priorities, motivational goals, value types, and personal value systems used to clarify work values. I also introduce the terms basic and broad value and work value types. Second, I…
The Semiotics of Education: A New Vision in an Old Landscape
ERIC Educational Resources Information Center
Pikkarainen, Eetu
2011-01-01
In this article, I attempt to describe how certain theoretical constructions of semiotics could be applied in educational theoretical work. First I introduce meaning as a basic concept of semiotics, thus also touching on concepts such as action, competence and causality. I am then able to define learning as a change of competences, and also refer…
A Conceptual-Pictorial Approach to the Understanding of Piaget's Theory of Mental Development.
ERIC Educational Resources Information Center
Mattimore-Knudson, Russell S.
Utilizing a minimum of technical terminology, this eight-chapter monograph introduces beginning psychology students to the basic concepts of Piaget's theory of mental development and to its application by parents and teachers. As an aid to learning, each of the concepts discussed is illustrated by black-and-white drawings which can be reproduced…
Back to Basics: Patient and Family Engagement.
Spruce, Lisa
2015-07-01
Patient and family engagement is an active involvement in health care between patients, families, and their caregivers. Perioperative nurses should be active proponents of implementing patient engagement activities in the perioperative setting. This article introduces basic patient engagement concepts and how they can be implemented in the perioperative setting. Copyright © 2015 AORN, Inc. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Martins, Isabel P.; Veiga, Luisa
2001-01-01
Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)
Three Concepts or One? Students' Understanding of Basic Limit Concepts
ERIC Educational Resources Information Center
Fernández-Plaza, José Antonio; Simpson, Adrian
2016-01-01
In many mathematics curricula, the notion of limit is introduced three times: the limit of a sequence, the limit of a function at a point and the limit of a function at infinity. Despite the use of very similar symbols, few connections between these notions are made explicitly and few papers in the large literature on student understanding of…
ERIC Educational Resources Information Center
US Environmental Protection Agency, 2007
2007-01-01
This paper was developed to help teachers teach English to adult students while introducing basic concepts about the environment and individual environmental responsibility. These concepts can help the newly-arrived be part of cleaner and healthier communities by understanding and practicing the "3Rs" of solid waste management: reduce, reuse, and…
Electron Optics Cannot Be Taught through Computation?
ERIC Educational Resources Information Center
van der Merwe, J. P.
1980-01-01
Describes how certain concepts basic to electron optics may be introduced to undergraduate physics students by calculating trajectories of charged particles through electrostatic fields which can be evaluated on minicomputers with a minimum of programing effort. (Author/SA)
Microcomputers! Applications to Physics Teaching.
ERIC Educational Resources Information Center
Tinker, Robert F.; Stringer, Gene A.
1978-01-01
Reviews the use of computers in various aspects of physics teaching. Introduces some basic hardware and software concepts and jargon. Illustrates these ideas using four vastly different microcomputers, with prices, to help in choosing the right educational computer system. (GA)
Introducing Students to Basic ChE Concepts: Four Simple Experiments.
ERIC Educational Resources Information Center
Fraser, Duncan M.
1999-01-01
Describes an Introduction to Chemical Engineering course with particular reference to the development, use, and evaluation of four simple experiments centered around the fundamental principles of heat transfer, mass transfer, reaction kinetics, and momentum transfer. (WRM)
An analysis of possible applications of fuzzy set theory to the actuarial credibility theory
NASA Technical Reports Server (NTRS)
Ostaszewski, Krzysztof; Karwowski, Waldemar
1992-01-01
In this work, we review the basic concepts of actuarial credibility theory from the point of view of introducing applications of the fuzzy set-theoretic method. We show how the concept of actuarial credibility can be modeled through the fuzzy set membership functions and how fuzzy set methods, especially fuzzy pattern recognition, can provide an alternative tool for estimating credibility.
On the Use of History of Mathematics: An Introduction to Galileo's Study of Free Fall Motion
ERIC Educational Resources Information Center
Ponce Campuzano, Juan Carlos; Matthews, Kelly E.; Adams, Peter
2018-01-01
In this paper, we report on an experimental activity for discussing the concepts of speed, instantaneous speed and acceleration, generally introduced in first year university courses of calculus or physics. Rather than developing the ideas of calculus and using them to explain these basic concepts for the study of motion, we led 82 first year…
Visual Astronomy; A guide to understanding the night sky
NASA Astrophysics Data System (ADS)
Photinos, Panos
2015-03-01
This book introduces the basics of observational astronomy. It explains the essentials of time and coordinate systems, and their use in basic observations of the night sky. The fundamental concepts and terminology are introduced in simple language making very little use of equations and math. Examples illustrate how to select the relevant information from widely accessible resources, and how to use the information to determine what is visible and when it is visible from the reader's particular location. Particular attention is paid to the dependence of the appearance and motion on the observer's location, by extending the discussion to include various latitudes in both North and South hemispheres.
The EPA has developed the Teach English, Teach about the Environment curriculum to help you teach English to adult students while introducing basic concepts about the environment and individual environmental responsibility.
A Physics Workshop in Hispaniola.
ERIC Educational Resources Information Center
Little, R. N.
1983-01-01
Describes two workshops for physics teachers in Hispaniola. Workshops demonstrated how mechanics could be developed from planetary motions and how basic mechanics concepts could be introduced through a guided discovery approach. Comments on workshop activities, organization, participant attitudes, and physics curriculum/instruction in Hispaniola…
Something's Fishy in Paxton Lake: A Case on Speciation in Sticklebacks.
ERIC Educational Resources Information Center
Sharp, Joan
2002-01-01
Introduces a case study on speciation and evolutionary mechanisms. Teaches science process skills as well as natural selection, biological species concepts, basic genetic terminology, and classification. Includes teaching notes and classroom management strategies. (Contains 14 references.) (YDS)
Image processing in forensic pathology.
Oliver, W R
1998-03-01
Image processing applications in forensic pathology are becoming increasingly important. This article introduces basic concepts in image processing as applied to problems in forensic pathology in a non-mathematical context. Discussions of contrast enhancement, digital encoding, compression, deblurring, and other topics are presented.
[Theraplay--a direct communication play therapy].
Franke, U
1990-01-01
This paper introduces the basic concepts and the application of the directive short-term play therapy called Theraplay. Goals and methods are illustrated by examples from the assessment (Marschak Interaction Method) and by sessions with a 6 year old regressive noncompliant mutistic twin.
Transpersonal Group Psychotherapy: Theory, Method, and Community.
ERIC Educational Resources Information Center
Clark, Carlton F. "Perk"
1998-01-01
Transpersonal group psychotherapy is a carpet of theory, technique, and experiences woven from threads of contemporary psychology, mysticism, and a perennial philosophy many centuries old. Introduces the basic concepts of transpersonal group psychotherapy, proposes a model of transpersonal group psychotherapy, discusses the training of…
Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model
Kuepfer, L; Niederalt, C; Wendl, T; Schlender, J‐F; Willmann, S; Lippert, J; Block, M; Eissing, T
2016-01-01
The aim of this tutorial is to introduce the fundamental concepts of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling with a special focus on their practical implementation in a typical PBPK model building workflow. To illustrate basic steps in PBPK model building, a PBPK model for ciprofloxacin will be constructed and coupled to a pharmacodynamic model to simulate the antibacterial activity of ciprofloxacin treatment. PMID:27653238
Selli, Cigdem; Yıldırım, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner
2014-01-01
This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation, polymerase chain reaction (PCR), and gel electrophoresis. The participants were 13-year-old eighth-graders attending primary schools affiliated with Ministry of National Education in urban and rural areas of Izmir, Turkey. The purpose of this study was to introduce basic molecular biology concepts through individually performed experiments such as PCR and gel electrophoresis integrated with creative drama. The students were assessed at the beginning and the end of each project day via mini-tests, experimental and presentation skills evaluation forms. Data showed that students' knowledge about DNA structure and basic molecular biology techniques significantly increased. On the basis of experimental and presentational skills, there was no significant difference between kids from urban and rural schools or between public and boarding public schools, whereas the average score of girls was significantly higher than that of boys. In conclusion, individually performed experiments integrated with creative drama significantly increased students' perception of complex experimental procedures on basic molecular biology concepts. Data suggests that integration of these concepts into the science and technology curriculum of Turkish primary education may support the recruitment of future scientists who can handle rapidly developing genomic techniques that will affect our everyday life. © 2014 by The International Union of Biochemistry and Molecular Biology.
Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing
NASA Astrophysics Data System (ADS)
Krajíček, Jiří
This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].
Estimation of the basicity of the donor strength of terminal groups in cationic polymethine dyes
NASA Astrophysics Data System (ADS)
Kachkovsky, Alexey; Obernikhina, Nataliya; Prostota, Yaroslav; Naumenko, Antonina; Melnyk, Dmitriy; Yashchuk, Valeriy
2018-02-01
The well-known conception of the basicity of the terminal groups in the cationic polymethine dyes showing their donor properties is examined (considered) in detail. The various approachs are proposed to quantitative quantum-chemical estimation of a donor strength of the terminal groups in cationic polymethine dyes: shift of the frontier levels upon introducing terminal residues in comparison with unsybstituted polymethine cation; transferring of the electron density from the terminal groups to the polymethine chain and hence manifested itself as a redistribution of total positive charge between molecular fragments; changes of the charge alternation at carbon atoms along the chain. All approach correlate between them and agree with the concept of the basicity as a capability of terminal heterocycles to show its donor properties in the polymethine dyes. The results of the fulfilled calculations of numerous examples are presented; the proposed parameters point correctly the tendency in the change donor strength upon varying of the chemical constitution: the dimension of cycle, introducing of various heteroatoms, linear or angular annelating by benzene ring; as well as direct to take into consideration the existence of local levels.
The Clinical Value, Principle, and Basic Practical Technique of Mindfulness Intervention.
Zou, Tao; Wu, Chenghan; Fan, Xiaoduo
2016-06-25
Mindfulness intervention is a psychotherapy based on the Buddhist practice of meditation, combining the theories and methodology of contemporary psychology. The empirical research in recent years has indicated that mindfulness intervention yields favorable results including reduction of depression relapse, alleviation of the symptoms of depression and anxiety, reduction of substance abuse, relief of pain, blood pressure management, enhancement of immunity, and improvement of sleep. Currently, mindfulness therapy has become the mainstream of psychotherapy in the realm of European and American psychotherapy. The fields of psychology and psychotherapy in China have also begun to introduce mindfulness intervention in recent years. However, there is a lack of relevant practice and research in the field of clinical mental health. This article will briefly introduce the concept of mindfulness, the basic mechanism of the intervention, and the basic skills and guidelines in clinical practice.
ERIC Educational Resources Information Center
McDonald's Corp., Oak Brook, IL.
One of five McDonald's Action Packs, this learning package introduces intermediate grade students to basic economic concepts. The fourteen activities include the topics of consumption (4 activities), production (5), the market system (3), a pretest, and a posttest. Specific titles under consumption include The Wonderful Treasure Tree (introduction…
Chaos Modeling: An Introduction and Research Application.
ERIC Educational Resources Information Center
Newman, Isadore; And Others
1993-01-01
Introduces the basic concepts of chaos theory and chaos modeling. Relates chaos theory to qualitative research and factor analysis. Describes some current research in education and psychology using chaos theory. Claims that the philosophical implications of chaos theory have been misapplied in practical terms. (KS)
Sobie, Eric A
2011-09-13
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy.
Sobie, Eric A.
2014-01-01
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy. PMID:21934110
Volumic visual perception: principally novel concept
NASA Astrophysics Data System (ADS)
Petrov, Valery
1996-01-01
The general concept of volumic view (VV) as a universal property of space is introduced. VV exists in every point of the universe where electromagnetic (EM) waves can reach and a point or a quasi-point receiver (detector) of EM waves can be placed. Classification of receivers is given for the first time. They are classified into three main categories: biological, man-made non-biological, and mathematically specified hypothetical receivers. The principally novel concept of volumic perception is introduced. It differs chiefly from the traditional concept which traces back to Euclid and pre-Euclidean times and much later to Leonardo da Vinci and Giovanni Battista della Porta's discoveries and practical stereoscopy as introduced by C. Wheatstone. The basic idea of novel concept is that humans and animals acquire volumic visual data flows in series rather than in parallel. In this case the brain is free from extremely sophisticated real time parallel processing of two volumic visual data flows in order to combine them. Such procedure seems hardly probable even for humans who are unable to combine two primitive static stereoscopic images in one quicker than in a few seconds. Some people are unable to perform this procedure at all.
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hawk, J. D.
1975-01-01
A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Sackes, Mesut
2010-01-01
It is important to help young children make connections between events in their lives and science concepts in preschool classrooms, so introducing basic meteorology ideas offer a great opportunity to make weather connections and awaken scientific curiosity (Spiropoulou, Kostopoulos, and Jacovides 1999). Therefore, this article presents a science…
ERIC Educational Resources Information Center
Baumgartner, Erin; Zabin, Chela J.
2006-01-01
The study of "zonation", the distribution of plants and animals into distinct spatial areas, is a great way to introduce students to basic ecological concepts. Students can conduct methodical, quantifying surveys of zones in areas as diverse as mudflats, beaches, forests, wetlands, and fields. Students collect data from these areas with field…
A Simple Statistical Thermodynamics Experiment
ERIC Educational Resources Information Center
LoPresto, Michael C.
2010-01-01
Comparing the predicted and actual rolls of combinations of both two and three dice can help to introduce many of the basic concepts of statistical thermodynamics, including multiplicity, probability, microstates, and macrostates, and demonstrate that entropy is indeed a measure of randomness, that disordered states (those of higher entropy) are…
Animatronics, Children and Computation
ERIC Educational Resources Information Center
Sempere, Andrew
2005-01-01
In this article, we present CTRL_SPACE: a design for a software environment with companion hardware, developed to introduce preliterate children to basic computational concepts by means of an animatronic face, whose individual features serve as an analogy for a programmable object. In addition to presenting the environment, this article briefly…
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
Using Simulated Patients to Teach Clinical Nutrition.
ERIC Educational Resources Information Center
Carroll, J. Gregory; And Others
1983-01-01
"Clinical Nutrition in an Interdisciplinary Setting" is a course designed to introduce basic nutrition knowledge and concepts of nutritional assessment, counseling, and intervention in the clinical care of patients. Provides a brief course overview and descriptions of its development, use, and preliminary evaluation of the patient simulation…
Banking Structure and Monetary Policy: New Wine in Old Bottles.
ERIC Educational Resources Information Center
Hacche, John
1989-01-01
Provides an extension of the basic banking model used in introductory economics courses. This expanded model introduces the concept of banking capital and reserves, and includes the relationship existing between current issues and banking structure and money supply growth. Provides worksheet exercises and answers. (LS)
Educational Evaluation: Analysis and Responsibility.
ERIC Educational Resources Information Center
Apple, Michael W., Ed.; And Others
This book presents controversial aspects of evaluation and aims at broadening perspectives and insights in the evaluation field. Chapter 1 criticizes modes of evaluation and the basic rationality behind them and focuses on assumptions that have problematic consequences. Chapter 2 introduces concepts of evaluation and examines methods of grading…
Fish: A New Computer Program for Friendly Introductory Statistics Help
ERIC Educational Resources Information Center
Brooks, Gordon P.; Raffle, Holly
2005-01-01
All introductory statistics students must master certain basic descriptive statistics, including means, standard deviations and correlations. Students must also gain insight into such complex concepts as the central limit theorem and standard error. This article introduces and describes the Friendly Introductory Statistics Help (FISH) computer…
Significant and Basic Innovations in Urban Planning
NASA Astrophysics Data System (ADS)
Kolyasnikov, V. A.
2017-11-01
The article considers the development features of the innovative urban planning in the USSR and Russia in XVIII - XX centuries. Innovative urban planning is defined as an activity on innovations creation and their implementation to obtain a socio-economic, political, environmental or other effect. In the course of urban development history this activity represents a cyclic wave process in which there are phases of rise and fall. The study of cyclic waves in the development of innovative urban planning uses the concept of basic and epochal innovations selection. This concept was developed by scientists for the study of cyclic wave processes in economics. Its adaptation to the conditions of innovative urban planning development allows one to introduce the concept of “basic innovation” and “significant innovation” in the theory and practice of settlement formation and their systems as well as to identify opportunities to highlight these innovations in the history of Russian urban planning. From these positions, six innovation waves committed to the urban development over the past 300 years are being investigated. The observed basic innovations in the domestic urban area show that urban development is a vital area for ensuring the country’s geopolitical security. Basic innovations are translated in time and modernized under new conditions of urban planning development. In this regard, we can predict the development of four basic innovations in post-Soviet Russia.
[Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].
Murase, Kenya
2014-01-01
Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.
Law and Marketing: Implications for the Secondary Curriculum.
ERIC Educational Resources Information Center
Beck-Dudley, Caryn L.; Stull, William A.
1990-01-01
Provides a basic understanding of some of the legal issues that should be included in a secondary education marketing curriculum. Teaching legal concepts in the areas of contract, antitrust, agency, employment law, and finance is an excellent way to introduce students to legal problems they may encounter in business. (Author)
Interpersonal Communication: The Self and Perception in Communication
ERIC Educational Resources Information Center
Belmore, JaneAnne
2009-01-01
The Self and Perception are key components of the foundation of interpersonal communication. Students new to the communication discipline often have a difficult time understanding these concepts and the value of understanding and practicing them. The following teaching unit is designed to introduce the basics of understanding the Self and…
Physical Education for Tomorrow.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center for Vocational and Technical Education.
The learning experiences in the teacher's guide are built on the concept of movement exploration. Self-awareness is realized as students discover potentials for performing basic motor skills and explore creative movement. Intended for use at the preschool and primary levels, the guide suggests and describes ways for the teacher to introduce and…
Teaching Mendelian Genetics with the Computer.
ERIC Educational Resources Information Center
Small, James W., Jr.
Students in general undergraduate courses in both biology and genetics seem to have great difficulty mastering the basic concepts of Mendelian Genetics and solving even simple problems. In an attempt to correct this situation, students in both courses at Rollins College were introduced to three simulation models of the genetics of the fruit…
Teaching Cell Anatomy with a Fabric Model
ERIC Educational Resources Information Center
Kluka, Michelle
2005-01-01
Middle schoolers are often first introduced to detailed cellular anatomy through one-dimensional drawings in basic life science books, fill-in-the blank handouts accompanied by notes from the teacher, or desktop hard-plastic commercial models that resemble giant lollipops. One of the most important, yet difficult, life science concepts for…
The Problem of "Bildung" and the Basic Structure of "Bildungstheorie"
ERIC Educational Resources Information Center
Rucker, Thomas; Gerónimo, Eric Dan
2017-01-01
In this article, an attempt is made to introduce a systematization of the loosely connected group of authors called "Bildungstheorie". This ought to not only be of significance for German-speaking educational science, for the concept of "Bildung" is also increasingly used internationally for the formulation and development of…
Social Stratification: A Modular Approach. Cultural Anthropology.
ERIC Educational Resources Information Center
Kassebaum, Peter
Designed for use as supplementary instructional material in a cultural anthropology course, this learning module introduces students to the basic concepts of social stratification, one of the more controversial areas of contemporary social theory. An overview is provided of the explanations that have been put forth by social philosophers for…
The Market System: Does It Work?
ERIC Educational Resources Information Center
O'Neill, James B.
Included in this student booklet are a variety of learning activities for secondary students which will aid their understanding of the United States economic system. Basic concepts are introduced which show how a market mechanism resolves the conflict between finite resources and infinite desires, how supply and demand interact, and how…
Solar Energy Education Packet for Elementary & Secondary Students.
ERIC Educational Resources Information Center
Center for Renewable Resources, Washington, DC.
The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…
Reducing Noise by Repetition: Introduction to Signal Averaging
ERIC Educational Resources Information Center
Hassan, Umer; Anwar, Muhammad Sabieh
2010-01-01
This paper describes theory and experiments, taken from biophysics and physiological measurements, to illustrate the technique of signal averaging. In the process, students are introduced to the basic concepts of signal processing, such as digital filtering, Fourier transformation, baseline correction, pink and Gaussian noise, and the cross- and…
YouTube as a Qualitative Research Asset: Reviewing User Generated Videos as Learning Resources
ERIC Educational Resources Information Center
Chenail, Ronald J.
2011-01-01
YouTube, the video hosting service, offers students, teachers, and practitioners of qualitative researchers a unique reservoir of video clips introducing basic qualitative research concepts, sharing qualitative data from interviews and field observations, and presenting completed research studies. This web-based site also affords qualitative…
Bringing Science Research into Secondary Schools
ERIC Educational Resources Information Center
Allwood, Dan A.; Dean, Julian; Bryan, Matthew T.; Baker, Alan
2009-01-01
Finite element modelling software has been used to allow secondary school students to study nanoscale magnetic materials for hard drive recording applications. The students were introduced to the basic concepts of finite element modelling using a freely available internet game before modelling the magnetization reversal of single magnetic grains.…
The Mosque Project: Collective Drawings
ERIC Educational Resources Information Center
Erwin, Douglas B.
2013-01-01
Teaching the author's fifth-graders about Islam through art was a challenge. Remembering a colleague's "Collective Architecture" project, he reworked the concept using mosque architecture as the basis for a new project. The goal was to introduce Islam and its basic tenets using the visual arts, with the hope of enhancing cultural tolerance and…
Traditional Occupational Analysis and Contemporary CBVE Instruction.
ERIC Educational Resources Information Center
Duenk, Lester G.
Trade and industrial educators were pioneers in the development and practice of occupational analysis as utilized in curriculum development and improvement. In the 1940s, Verne C. Fryklund refined the existing system of occupational analysis and introduced it into public school industrial arts educational programs. The basic concept of Fryklund's…
An Introduction to the Computerized Assessment of Art-Based Instruments
ERIC Educational Resources Information Center
Mattson, Donald C.
2012-01-01
This article provides a historical overview of computer-assisted art assessment, introduces the basic concepts of computerized assessment of art-based instruments (CAABI), and offers a tutorial to assist art therapists in the study of its application. Understanding this emergent technology may assist art therapists in overcoming hesitancy in…
Electrochemical Study and Determination of Electroactive Species with Screen-Printed Electrodes
ERIC Educational Resources Information Center
Martín-Yerga, Daniel; Costa Rama, Estefanía; Costa García, Agustín
2016-01-01
A lab appropriate to introduce voltammetric techniques and basic electrochemical parameters is described in this work. It is suitable to study theoretical concepts of electrochemistry in an applied way for analytical undergraduate courses. Two electroactive species, hexaammineruthenium and dopamine, are used as simple redox systems. Screen-printed…
How to Engage Medical Students in Chronobiology: An Example on Autorhythmometry
ERIC Educational Resources Information Center
Rol de Lama, M. A.; Lozano, J. P.; Ortiz, V.; Sanchez-Vazquez, F. J.; Madrid, J. A.
2005-01-01
This contribution describes a new laboratory experience that improves medical students' learning of chronobiology by introducing them to basic chronobiology concepts as well as to methods and statistical analysis tools specific for circadian rhythms. We designed an autorhythmometry laboratory session where students simultaneously played the role…
Peace Education with Refugees: Case Studies
ERIC Educational Resources Information Center
Kyuchukov, Hristo; New, William
2016-01-01
The authors suggest the possibility of using concepts and practices drawn from peace education to assist in the treatment and education of refugees suffering from post-traumatic stress. They introduce four basic principles of peace education, which permit students/clients to work through memory and present conflicts, and calls on…
ERIC Educational Resources Information Center
Hanson, Deroy L.
Designed to motivate eighth-grade civics students in the study of the United States Constitution, this game is intended to simulate the basic problems faced by the delegates to the Philadelphia Convention of 1787. The four parts of the game introduce the governmental concepts of the bicameral legislature, the executive branch, the judicial branch,…
Description and Application of a Mathematical Method for the Analysis of Harmony
Zuo, Qiting; Jin, Runfang; Ma, Junxia
2015-01-01
Harmony issues are widespread in human society and nature. To analyze these issues, harmony theory has been proposed as the main theoretical approach for the study of interpersonal relationships and relationships between humans and nature. Therefore, it is of great importance to study harmony theory. After briefly introducing the basic concepts of harmony theory, this paper expounds the five elements that are essential for the quantitative description of harmony issues in water resources management: harmony participant, harmony objective, harmony regulation, harmony factor, and harmony action. A basic mathematical equation for the harmony degree, that is, a quantitative expression of harmony issues, is introduced in the paper: HD = ai − bj, where a is the uniform degree, b is the difference degree, i is the harmony coefficient, and j is the disharmony coefficient. This paper also discusses harmony assessment and harmony regulation and introduces some application examples. PMID:26167535
Middelton, L A; Peters, K F
2001-10-01
The information gained from the Human Genome Project and related genetic research will undoubtedly create significant changes in healthcare practice. It is becoming increasingly clear that nurses in all areas of clinical practice will require a fundamental understanding of basic genetics. This article provides the oncology nurse with an overview of basic genetic concepts, including inheritance patterns of single gene conditions, pedigree construction, chromosome aberrations, and the multifactorial basis underlying the common diseases of adulthood. Normal gene structure and function are introduced and the biochemistry of genetic errors is described.
What are hierarchical models and how do we analyze them?
Royle, Andy
2016-01-01
In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)
Motivating students' participation in a computer networks course by means of magic, drama and games.
Hilas, Constantinos S; Politis, Anastasios
2014-01-01
The recent economic crisis has forced many universities to cut down expenses by packing students into large lecture groups. The problem with large auditoria is that they discourage dialogue between students and faculty and they burden participation. Adding to this, students in computer science courses usually find the field to be full of theoretical and technical concepts. Lack of understanding leads them to lose interest and / or motivation. Classroom experience shows that the lecturer could employ alternative teaching methods, especially for early-year undergraduate students, in order to grasp their interest and introduce basic concepts. This paper describes some of the approaches that may be used to keep students interested and make them feel comfortable as they comprehend basic concepts in computer networks. The lecturing procedure was enriched with games, magic tricks and dramatic representations. This approach was used experimentally for two semesters and the results were more than encouraging.
Software-Based Scoring and Sound Design: An Introductory Guide for Music Technology Instruction
ERIC Educational Resources Information Center
Walzer, Daniel A.
2016-01-01
This article explores the creative function of virtual instruments, sequencers, loops, and software-based synthesizers to introduce basic scoring and sound design concepts for visual media in an introductory music technology course. Using digital audio workstations with user-focused and configurable options, novice composers can hone a broad range…
ERIC Educational Resources Information Center
Gupta, Anju
2015-01-01
This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…
Disaster Day! Integrating Speech Skills though Impromptu Group Research and Presentation
ERIC Educational Resources Information Center
Pruim, Douglas E.
2016-01-01
Courses: Disaster Day (DD) is a single-class activity designed for public speaking classrooms, but could also be applied to courses addressing small group communication. Objectives: DD integrates fundamental skills of the basic speech course, fosters participation through group work, and introduces new concepts and skills. By the end of the…
Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry
ERIC Educational Resources Information Center
Knutson, Cassandra M.; Schneiderman, Deborah K.; Yu, Ming; Javner, Cassidy H.; Distefano, Mark D.; Wissinger, Jane E.
2017-01-01
With new K-12 national science standards emerging, there is an increased need for experiments that integrate engineering into the context of society. Here we describe a chemistry experiment that combines science and engineering principles while introducing basic polymer and green chemistry concepts. Using medical sutures as a platform for…
ERIC Educational Resources Information Center
Hart, Ariel R.; Dillard, Rebecca; Perkins, Molly M.; Vaughan, Camille P.; Kinlaw, Kathy; McKay, J. Lucas; Waldrop-Valverde, Drenna; Hagen, Kimberley; Wincek, Ron C.; Hackney, Madeleine E.
2017-01-01
The DREAMS Team research advocacy training program helps clinical faculty and health students introduce basic clinical research concepts to diverse older adults to galvanize their active involvement in the research process. Older adults are frequently underrepresented in clinical research, due to barriers to participation including distrust,…
Cybersex and the E-Teen: What Marriage and Family Therapists Should Know
ERIC Educational Resources Information Center
Delmonico, David L.; Griffin, Elizabeth J.
2008-01-01
Adolescents who use the Internet regularly (the "e-teen") present a new set of challenges for marriage and family therapists. This article introduces marriage and family therapists to (a) the basic technological concepts and unique psychological characteristics of the Internet important in understanding and addressing adolescent online sexual…
Using Spreadsheets in the Management, Analysis, and Reporting of Evaluation Data.
ERIC Educational Resources Information Center
Glowacki, Margaret L.; Rice, Richard L., Jr.
Currently available spreadsheet programs for microcomputers provide many features that can be very useful for evaluators and researchers. Some of the basic concepts involved in spreadsheet use are introduced, and information is provided on the use of spreadsheets in maintaining and analyzing evaluation data. The spreadsheet used in the discussion…
Astra's Magic Math. Teacher's Manual, Manipulatives, and Student Worksheets.
ERIC Educational Resources Information Center
Brown, Judith; And Others
Astra's Magic Math is a beginning multi-sensory program that attempts to teach basic math skills through 22 sequentially developed self-contained units designed to combine manipulation, writing, and language activities. The units are first introduced to the large group to stimulate interest and develop concepts through oral language. Children then…
Introduction to the Management Process (NS 222): Competency-Based Course Syllabus.
ERIC Educational Resources Information Center
Brady, Marilyn H.
"Introduction to the Management Process" (NS 222) is an associate degree nursing course offered at Chattanooga State Technical Community College to introduce students to basic management concepts, methods of nursing care delivery, patient classification systems, and methods of enacting change and working as a change agent. Upon completion of the…
Preliminary Investigation of the 1991 Medical College Admission Test Factor Structure.
ERIC Educational Resources Information Center
Li, Weichang; Mitchell, Karen J.
A substantially revised Medical College Admission Test (MCAT) was introduced in spring 1991. The new examination is designed to assess critical thinking skills, basic concepts and problem solving facility in science, and writing skills. This paper reports preliminary findings on the factor structure of the revised MCAT, which consists of four…
Atoms and Molecules: Do They Have a Place in Primary Science?
ERIC Educational Resources Information Center
Lee, Kam-Wah Lucille; Tan, Swee-Ngin
2004-01-01
In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…
ERIC Educational Resources Information Center
Yu, Yanmin
As the world becomes more global, communicating with people from other cultures becomes a necessity. The cultural mix challenges individuals to improve their knowledge and skills in intercultural communication. This course proposal describes a 3-credit course designed to introduce students to the basic concepts, theories, and practices of…
Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.
ERIC Educational Resources Information Center
Center for Renewable Resources, Washington, DC.
The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…
Corpus-Based Approaches to Language Description for Specialized Academic Writing
ERIC Educational Resources Information Center
Flowerdew, John
2017-01-01
Language description is a fundamental requirement for second language (L2) syllabus design. The greatest advances in language description in recent decades have been done with the help of electronic corpora. Such language description is the theme of this article. The article first introduces some basic concepts and principles in corpus research.…
Introducing a New Guided Design into the Classroom.
ERIC Educational Resources Information Center
Allen, Charles W.
Based on a workshop presented by Charles Wales, a guided design project was developed for a junior mechanical design class at California State University-Chico. This course involves lectures on the design process and an extension of the basic mechanics of materials concepts, particularly as related to design and prevention of failure. The…
Inversion exercises inspired by mechanics
NASA Astrophysics Data System (ADS)
Groetsch, C. W.
2016-02-01
An elementary calculus transform, inspired by the centroid and gyration radius, is introduced as a prelude to the study of more advanced transforms. Analysis of the transform, including its inversion, makes use of several key concepts from basic calculus and exercises in the application and inversion of the transform provide practice in the use of technology in calculus.
Representations and Concepts of Professional Ethos among Swiss Religious Education Teacher Trainers
ERIC Educational Resources Information Center
Rota, Andrea; Bleisch Bouzar, Petra
2017-01-01
Over the past two decades, the organisation of religious education classes in Switzerland has undergone profound reforms. Amid the increasing secularisation and pluralisation of the religious landscape, many cantons have introduced a compulsory course that falls under the responsibility of the state and is aimed at teaching basic knowledge about a…
Clay Tablets to Micro Chips: The Evolution of Archival Practice into the Twenty-First Century.
ERIC Educational Resources Information Center
Hannestad, Stephen E.
1991-01-01
Describes archival concepts and theories and their evolution in recent times. Basic archival functions--appraisal, arrangement, description, reference, preservation, and publication--are introduced. Early applications of automation to archives (including SPINDEX, NARS-5, NARS-A-1, MARC AMC, presNET, CTRACK, PHOTO, and DIARY) and automation trends…
A Systemic-Constructivist Approach to the Facilitation and Debriefing of Simulations and Games
ERIC Educational Resources Information Center
Kriz, Willy Christian
2010-01-01
This article introduces some basic concepts of a systemic-constructivist perspective. These show that gaming simulation corresponds closely to a systemic-constructivist approach to learning and instruction. Some quality aspects of facilitating and debriefing simulation games are described from a systemic-constructivist point of view. Finally, a…
Floating Data and the Problem with Illustrating Multiple Regression.
ERIC Educational Resources Information Center
Sachau, Daniel A.
2000-01-01
Discusses how to introduce basic concepts of multiple regression by creating a large-scale, three-dimensional regression model using the classroom walls and floor. Addresses teaching points that should be covered and reveals student reaction to the model. Finds that the greatest benefit of the model is the low fear, walk-through, nonmathematical…
Technical Considerations in the Delivery of Audio-Visual Course Content.
ERIC Educational Resources Information Center
Lightfoot, Jay M.
2002-01-01
In an attempt to provide students with the benefit of the latest technology, some instructors include multimedia content on their class Web sites. This article introduces the basic terms and concepts needed to understand the multimedia domain. Provides a brief tutorial designed to help instructors create good, consistent audio-visual content. (AEF)
Teaching Children about Aspects of Comfort in the Built Environment
ERIC Educational Resources Information Center
Kowaltowski, Doris C. C. K.; Filho, Francisco Borges; Labaki, Lucila C.; Pina, Silvia A. Mikami G.; Bernardi, Nubia
2004-01-01
This article presents specific teaching material for the primary school level that introduces basic concepts of environmental comfort. The authors developed 2 booklets to make children aware of the built environment. Following a postoccupancy evaluation of state schools in the city of Campinas, in the state of Sao Paulo, Brazil, the research team…
Object-Oriented Programming in High Schools the Turing Way.
ERIC Educational Resources Information Center
Holt, Richard C.
This paper proposes an approach to introducing object-oriented concepts to high school computer science students using the Object-Oriented Turing (OOT) language. Students can learn about basic object-oriented (OO) principles such as classes and inheritance by using and expanding a collection of classes that draw pictures like circles and happy…
Module One: Electrical Current; Basic Electricity and Electronics Individualized Learning System.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
The student is introduced in this module to some fundamental concepts of electricity. The module is divided into five lessons: electricity and the electron, electron movement, current flow, measurement of current, and the ammeter. Each lesson consists of an overview, a list of study resources, lesson narratives, programed materials, and lesson…
Flat Engineered Multichannel Reflectors
NASA Astrophysics Data System (ADS)
Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.
2017-07-01
Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.
NASA Astrophysics Data System (ADS)
Robin, C. M.
2005-12-01
Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketterer, S.P.
This manual is designed as a comprehensive hands-on instructional manual for learning the T{sub E}X* computer typesetting program in a classroom environment. Each section presents a new concept in careful detail, concluding with an exercise (T{sub E}Xercise) to reinforce the learning of the concept. The manual introduces the novice T{sub E}X user to the program's basic command structure, along with the concepts of grouping, producing accents, making font changes, and generating mathematical symbols. The T{sub E}Xercises guide the new user in generating text containing footnotes, multilevel lists, and hanging indentations, as well as in magnifying text for viewgraphs. Once themore » basic text generation is defined, the more advanced topics of formatting math equations and tables are explained. A full range of math capabilities is presented --- beginning with simple one-line equations, progressing through complex numbered and aligned equations, and concluding with matrices. The sections on table generation present the basic concepts in T{sub E}X's table-formatting program and then build on them. The new user first learns to construct simple tables, and with careful explanations and guidance, learns to add one new table enhancement at a time. By the conclusion of these sections, the user can construct tables with horizontal and vertical rules and with column entries that are paragraphs. 1 ref.« less
Basic physics of nuclear magnetic resonance.
Patz, S
1986-01-01
This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.
NLSE: Parameter-Based Inversion Algorithm
NASA Astrophysics Data System (ADS)
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.
Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.
Plant Identification Characteristics for Deciduous Trees & Shrubs. Lesson Plans.
ERIC Educational Resources Information Center
Burkholder, Kathy
This manual contains a group of lesson plans designed for use with a slide series (not included here). Its purpose is to introduce students to the basic concepts and terminology used in the identification of deciduous trees and shrubs. The manual is composed of 12 lesson plans. The first lesson is an introduction to plant identification. The…
ERIC Educational Resources Information Center
Karal, Hasan
2015-01-01
The changes demanded by technology are reshaping people's expectations of education. These changing demands and expectations have introduced certain concepts, such as individuals who have become skilled at learning and the learning organization. Individuals and schools, as the most basic unit of educational organizations, should demonstrate a…
The Nature and Significance of Curricular Claims and How They Are Validated.
ERIC Educational Resources Information Center
Lottes, John; McCray, Emajean
This paper is concerned with the clarification and resolution of two basic defects of curricular and instructional research: vagueness as to what is being undertaken, and inattention to the logical aspects of evaluation. It introduces the concepts of curricular claim and instructional claim, clarifies the function and import of curricular claims,…
Developing a Technology Enhanced CS0 Course for Engineering Students
ERIC Educational Resources Information Center
Lokkila, Erno; Kaila, Erkki; Lindén, Rolf; Laakso, Mikko-Jussi; Sutinen, Erkki
2016-01-01
The CS0 course in the curriculum typically has the role of introducing students into basic concepts and terminology of computer science. Hence, it is used to form a base on which the subsequent programming courses can build on. However, much of the effort to build better methodologies for courses is spent on introductory programming courses…
Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.
ERIC Educational Resources Information Center
Schlenker, Richard M.
Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…
A Proposal to Introduce a Topic of Contemporary Physics into High-School Teaching
ERIC Educational Resources Information Center
Santos, Wilma M.S.; Luiz, Adir M.; de Carvalho, Carlos R.
2009-01-01
This article presents an approach to integrate contemporary physics into high-school teaching. We present a simple way to understand mass spectroscopy using basic physics concepts, so that high-school students may have contact with recent topics of modern research. The main features of a time-of-flight (TOF) mass spectrometer using secondary…
ERIC Educational Resources Information Center
Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.
2012-01-01
This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…
Society, the City and the Space-Economy of Urbanism, Resource Paper No. 18.
ERIC Educational Resources Information Center
Harvey, David
Theoretical concepts of spatial organization appropriate to bringing about humanizing social change are identified. This resource paper is part of a series designed to supplement existing texts and to fill a gap between research and accessible materials in geography. Part 1, societies and cities, introduces three basic forms of society:…
Famous Georgians and Their Homes: A Social Studies Unit for Upper Elementary Students.
ERIC Educational Resources Information Center
Deaver, Susan B.
This upper-elementary level social studies curriculum guide is designed to: (1) teach students to understand and appreciate the built (man made) environment; (2) instruct students about Georgia's history and heritage; and (3) introduce the basic concepts of historic preservation. The unit highlights 10 architectural styles of the homes of famous…
Hopping into Economics: First Graders Learn about Economics through an Easter Theme.
ERIC Educational Resources Information Center
Davis, Gaylene
A 3-month study unit introducing first grade students to economics through an Easter theme is outlined in five sections. Sections 1 and 2 describe rationale, goals, and learning objectives. Section 3 provides learning activities. A wide range of instructional strategies is used to teach the basic economic concepts of want, need, scarcity,…
ERIC Educational Resources Information Center
Multistate Academic and Vocational Curriculum Consortium, Stillwater, OK.
This publication contains both a teacher edition and a student edition of materials for a course in graphic arts that covers the process camera, stripping, and platemaking. The course introduces basic concepts and skills necessary for entry-level employment in a graphic communication occupation. The contents of the materials are tied to measurable…
Begin Here. A Maths Pack. Material from the Merseyside and Cheshire Numeracy Lift-Off Project.
ERIC Educational Resources Information Center
Adult Literacy and Basic Skills Unit, London (England).
This skills pack is intended to assist numeracy tutors working with adults needing help with basic arithmetic, time telling, and money concept skills. The following materials are included: money worksheets (dealing with British currency); worksheets introducing subtraction and the various phrases used to express the difference between two numbers;…
ERIC Educational Resources Information Center
Vigilante, Richard P.
This monograph introduces educational administrators at a variety of levels to the basic concepts and procedures in the successful implementation of educational computer systems. In the first section, the units and functions of the computer are defined, and the administrative, research, and instructional applications of educational computing are…
Bringing Older Adults into the Classroom: The Sharing Community Model
ERIC Educational Resources Information Center
Hantman, Shira; Oz, Miriam Ben; Gutman, Caroline; Criden, Wendy
2013-01-01
This article describes an innovative model for teaching gerontological social work that has been introduced into the social work methods curriculum in the Department of Social Work at a college in northern Israel. The basic concept of the model is to create an alternative learning environment by including older persons as full participants in the…
Introduction for Freshmen to Embedded Systems Using LEGO Mindstorms
ERIC Educational Resources Information Center
Kim, Seung Han; Jeon, Jae Wook
2009-01-01
The purpose of the course presented here is to introduce freshmen to embedded systems using LEGO Mindstorms, under an ANSI-C programming environment. The students build their own LEGO robots, make programs for them using ANSI-C, and operate them. By creating these LEGO robots, the students become more motivated, learning the basic concepts of…
ERIC Educational Resources Information Center
Consumer Product Safety Commission, Washington, DC.
This guide for teachers contains product safety information appropriate for young children and suggests learning activities for third through sixth graders. Activities encourage children to examine their home environments for safety hazards and to share this information with family and friends. Unit 1 introduces five basic safety concepts upon…
An Introduction to Item Response Theory and Rasch Models for Speech-Language Pathologists
ERIC Educational Resources Information Center
Baylor, Carolyn; Hula, William; Donovan, Neila J.; Doyle, Patrick J.; Kendall, Diane; Yorkston, Kathryn
2011-01-01
Purpose: To present a primarily conceptual introduction to item response theory (IRT) and Rasch models for speech-language pathologists (SLPs). Method: This tutorial introduces SLPs to basic concepts and terminology related to IRT as well as the most common IRT models. The article then continues with an overview of how instruments are developed…
Teaching Emerging Diseases: A Strategy for Succeeding with Nonmajors
FASS, MARION FIELD
2000-01-01
A nonmajors course on emerging diseases served to introduce students to basic concepts in microbiology and to improve scientific literacy. The course used a range of learner-centered approaches to encourage students to take responsibility for their own learning. Evaluations demonstrated both student satisfaction and an increased understanding of important issues in microbiology. PMID:23653535
Learning and Teaching Mathematics through Real Life Models
ERIC Educational Resources Information Center
Takaci, Djurdjica; Budinski, Natalija
2011-01-01
This paper proposes modelling based learning as a tool for learning and teaching mathematics in high school. We report on an example of modelling real world problems in two high schools in Serbia where students were introduced for the first time to the basic concepts of modelling. Student use of computers and educational software, GeoGebra, was…
NASA Astrophysics Data System (ADS)
Ireson, Gren
2001-01-01
It is hard to think of a medium that does not use football or soccer as a means of promotion. It is also hard to think of a student who has not heard of David Beckham. If football captures the interest of students it can be used to teach physics; in this case a Beckham free-kick can be used to introduce concepts such as drag, the Bernoulli principle, Reynolds number and the Magnus effect, by asking the simple question: How does he curve the ball so much? Much basic mechanics can also be introduced along the way.
Quantum computation for solving linear systems
NASA Astrophysics Data System (ADS)
Cao, Yudong
Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.
[Basic theory and research method of urban forest ecology].
He, Xingyuan; Jin, Yingshan; Zhu, Wenquan; Xu, Wenduo; Chen, Wei
2002-12-01
With the development of world economy and the increment of urban population, the urban environment problem hinders the urban sustainable development. Now, more and more people realized the importance of urban forests in improving the quality of urban ecology. Therefore, a new subject, urban forest ecology, and correlative new concept frame in the field formed. The theoretic foundation of urban forest ecology derived from the mutual combination of theory relating to forest ecology, landscape ecology, landscape architecture ecology and anthrop-ecology. People survey the development of city from the view of ecosystem, and regard the environment, a colony of human, animals and plants, as main factors of the system. The paper introduces systematically the urban forest ecology as follows: 1) the basic concept of urban forest ecology; 2) the meaning of urban forest ecology; 3) the basic principle and theoretic base of urban forest ecology; 4) the research method of urban forest ecology; 5) the developmental expectation of urban forest ecology.
Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Ahumada, Al (Technical Monitor)
1997-01-01
These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.
Embedded PLC Webserver and Possibilities of its Utilization
NASA Astrophysics Data System (ADS)
Kopček, Michal
2016-12-01
The concept Industry 4.0 is a top theme of recent times. Even if it represents the so-called 4th industrial revolution its main ideas could be used also to support the education of subjects from IT and automation. Furthermore, the basic IT and web technologies inherited by this concept are very well known to students. This paper introduces the embedded webserver of PLC and the options for its optimal utilization. The web server is essentially a simple and widely well-known technology, therefore it was chosen as an example.
Studying the interpretation of dreams in the company of analytic candidates.
Levy, Joshua
2009-08-01
Seminars serve as an important, though undervalued, component of psychoanalytic education. The focus of this paper is on the teaching of Freud's The Interpretation of Dreams through a series of seminars presented to analytic candidates at the Toronto Psychoanalytic Institutes. This has been an essential book for introducing generations of candidates to the psychoanalytic concept of the mind and for shaping candidates' understanding and attitudes toward working with their patients' dreams. Four of Freud's basic dream concepts-(1) the method and its application to the exploration of the relationship between manifest and latent dream content, (2) the sources of dreams (day residues), (3) the dream-work, and (4) wish fulfillment-are critically studied in the seminars. Detailed discussion of these basic dream concepts among the candidates and with the teacher, as well as the candidates' feedback at the conclusion of the seminars, are summarized and discussed. Through the teaching and study within the seminar framework of the fundamentals of Freud's dream theory, a shared growth experience results for both teacher and candidates.
Steinert, R E; Sadaghian Sadabad, M; Harmsen, H J M; Weber, P
2016-12-01
Emerging evidence suggests that the gut microbiota has a critical role in both the maintenance of human health and the pathogenesis of many diseases. Modifying the colonic microbiota using functional foods has attracted significant research effort and product development. The pioneering concept of prebiotics, as introduced by Gibson and Roberfroid in the 1990s, emphasized the importance of diet in the modulation of the gut microbiota and its relationships to human health. Increasing knowledge of the intestinal microbiota now suggests a more comprehensive definition. This paper briefly reviews the basics of the prebiotic concept with a discussion of recent attempts to refine the concept to open the door for novel prebiotic food ingredients, such as polyphenols, minerals and vitamins.
ERIC Educational Resources Information Center
Vardeman, Lou
Integrating concepts of basic citizenship education with community involvement, this experiential curriculum provides a means for developing decision making and critical thinking skills within the existing social studies curriculum at the kindergarten level. Consisting of 11 lessons, the guide, written in Spanish, introduces the meaning of rules,…
A Taste of English: Nutrition Workbook for Adult ESL Students. Teacher's Manual.
ERIC Educational Resources Information Center
Association of Farmworker Opportunity Program, Arlington, VA.
This workbook introduces basic concepts of nutrition and health to beginning adult students of English as a Second Language (ESL). The text may also be adapted for use with new readers. It is intended as a supplement to existing instructional materials. An introductory section offers teachers suggestions for use of the text and notes on the design…
Influencing the Influencers: The Role of Mothers in IT Career Choices
ERIC Educational Resources Information Center
Stockdale, Rosemary; Keane, Therese
2016-01-01
This paper reports on the outcomes from a pilot study targeted at mothers of school children in Melbourne, Australia. The aim of the study was to engender a positive view of technology in the participants and to introduce the concept of Information Technology (IT) as a potential career. Mothers were given the opportunity to develop basic IT skills…
Group Solutions, Too! More Cooperative Logic Activities for Grades K-4. Teacher's Guide. LHS GEMS.
ERIC Educational Resources Information Center
Goodman, Jan M.; Kopp, Jaine
There is evidence that structured cooperative logic is an effective way to introduce or reinforce mathematics concepts, explore thinking processes basic to both math and science, and develop the important social skills of cooperative problem-solving. This book contains a number of cooperative logic activities for grades K-4 in order to improve…
Playing Music, Playing with Music: A Proposal for Music Coding in Primary School
ERIC Educational Resources Information Center
Baratè, Adriano; Ludovico, Luca Andrea; Mangione, Giuseppina Rita; Rosa, Alessia
2015-01-01
In this work we will introduce the concept of "music coding," namely a new discipline that employs basic music activities and simplified languages to teach the computational way of thinking to musically-untrained children who attend the primary school. In this context, music represents both a mean and a goal: in fact, from one side…
Robic, Srebrenka
2010-01-01
To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability.
On the concept of individual in ecology and evolution.
Metz, J A J
2013-03-01
Part of the art of theory building is to construct effective basic concepts, with a large reach and yet powerful as tools for getting at conclusions. The most basic concept of population biology is that of individual. An appropriately reengineered form of this concept has become the basis for the theories of structured populations and adaptive dynamics. By appropriately delimiting individuals, followed by defining their states as well as their environment, it become possible to construct the general population equations that were introduced and studied by Odo Diekmann and his collaborators. In this essay I argue for taking the properties that led to these successes as the defining characteristics of the concept of individual, delegating the properties classically invoked by philosophers to the secondary role of possible empirical indicators for the presence of those characteristics. The essay starts with putting in place as rule for effective concept engineering that one should go for relations that can be used as basis for deductive structure building rather than for perceived ontological essence. By analysing how we want to use it in the mathematical arguments I then build up a concept of individual, first for use in population dynamical considerations and then for use in evolutionary ones. These two concepts do not coincide, and neither do they on all occasions agree with common intuition-based usage.
Integrated Force Method Solution to Indeterminate Structural Mechanics Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.
2004-01-01
Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.
Probability, statistics, and computational science.
Beerenwinkel, Niko; Siebourg, Juliane
2012-01-01
In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.
A cross-disciplinary introduction to quantum annealing-based algorithms
NASA Astrophysics Data System (ADS)
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco
2018-04-01
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.
Dark Skies, Bright Kids Year 7
NASA Astrophysics Data System (ADS)
Bittle, Lauren E.; Johnson, Kelsey E.; Borish, H. Jacob; Burkhardt, Andrew; Firebaugh, Ariel; Hancock, Danielle; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; Prager, Brian; Pryal, Matthew; Sokal, Kimberly R.; Troup, Nicholas William; Wenger, Trey
2016-01-01
We present updates from our seventh year of operation including new club content, continued assessments, and our fifth annual Star Party. Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.
Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beggs, W.J.
1981-02-01
This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; themore » analysis of variance; quality control procedures; and linear regression analysis.« less
ERIC Educational Resources Information Center
do Carmo, Eduardo; Hönnicke, Marcelo Goncalves
2018-01-01
There are different forms to introduce/illustrate the energy concepts for the basic physics students. The explosive seed dispersal mechanism found in a variety of trees could be one of them. Sibipiruna trees carry out fruits (pods) who show such an explosive mechanism. During the explosion, the pods throw out seeds several meters away. In this…
ERIC Educational Resources Information Center
Arteaga, Ines Lopez; Vinken, Esther
2013-01-01
Results of a successful pilot study are presented, in which quizzes are introduced in a second year bachelor course for mechanical engineering students. The pilot study course entailed the basic concepts of mechanical vibrations in complex, realistic structures. The quiz is held weekly using a SharePoint application. The purpose of the quizzes is…
Coherent Ising machines—optical neural networks operating at the quantum limit
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshihisa; Aihara, Kazuyuki; Leleu, Timothee; Kawarabayashi, Ken-ichi; Kako, Satoshi; Fejer, Martin; Inoue, Kyo; Takesue, Hiroki
2017-12-01
In this article, we will introduce the basic concept and the quantum feature of a novel computing system, coherent Ising machines, and describe their theoretical and experimental performance. We start with the discussion how to construct such physical devices as the quantum analog of classical neuron and synapse, and end with the performance comparison against various classical neural networks implemented in CPU and supercomputers.
[Prospect and application of microsatellite population genetics in study of geoherbs].
Zhang, Wen-Jing; Zhang, Yong-Qing; Yuan, Qing-Jun; Huang, Lu-Qi; Jiang, Dan; Jing, Li
2013-12-01
The author introduces the basic concepts of microsatellite and population genetics and its characteristics, expounds the application of these theories for population genetic structure and genetic diversity, gene flow and evolutionary significant unit ESU division research. This paper discuss its applicationin study of genetic causes, origin of cultivation, different regional origins of geoherbs, aiming at providing a new theory and method for geoherbs.
ERIC Educational Resources Information Center
de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.
2014-01-01
Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…
Research progress on quantum informatics and quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Yusheng
2018-03-01
Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.
NASA Astrophysics Data System (ADS)
Pringle, James E.; King, Andrew
2003-07-01
Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas
Low-cost diffuse optical tomography for the classroom
NASA Astrophysics Data System (ADS)
Minagawa, Taisuke; Zirak, Peyman; Weigel, Udo M.; Kristoffersen, Anna K.; Mateos, Nicolas; Valencia, Alejandra; Durduran, Turgut
2012-10-01
Diffuse optical tomography (DOT) is an emerging imaging modality with potential applications in oncology, neurology, and other clinical areas. It allows the non-invasive probing of the tissue function using relatively inexpensive and safe instrumentation. An educational laboratory setup of a DOT system could be used to demonstrate how photons propagate through tissues, basics of medical tomography, and the concepts of multiple scattering and absorption. Here, we report a DOT setup that could be introduced to the advanced undergraduate or early graduate curriculum using inexpensive and readily available tools. The basis of the system is the LEGO Mindstorms NXT platform which controls the light sources, the detectors (photo-diodes), a mechanical 2D scanning platform, and the data acquisition. A basic tomographic reconstruction is implemented in standard numerical software, and 3D images are reconstructed. The concept was tested and developed in an educational environment that involved a high-school student and a group of post-doctoral fellows.
Molecular Thermodynamics for Cell Biology as Taught with Boxes
Mayorga, Luis S.; López, María José; Becker, Wayne M.
2012-01-01
Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of “information” and Maxwell's demons operating under nonequilibrium conditions. PMID:22383615
Molecular thermodynamics for cell biology as taught with boxes.
Mayorga, Luis S; López, María José; Becker, Wayne M
2012-01-01
Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of "information" and Maxwell's demons operating under nonequilibrium conditions.
Modeling selected emulsions and double emulsions as memristive systems.
Spasic, Aleksandar M; Jovanovic, Jovan M; Jovanovic, Mica
2012-06-15
The recent development in basic and applied science and engineering of finely dispersed systems is presented in general, but more attention has been paid to the liquid-liquid finely dispersed systems or to the particular emulsions and double emulsions. The selected systems for theoretical and experimental research were emulsions and double emulsions that appeared in the pilot plant for extraction of uranium from wet phosphoric acid. The objective of this research was to try to provide a new or different approach to elaborate the complex phenomena that occur at developed liquid-liquid interfaces. New concepts were introduced, the first is a concept of an entity, and the corresponding classification of finely dispersed systems and the second concept consider the introduction of an almost forgotten basic electrodynamics element memristor, and the corresponding memristive systems. Based on these concepts a theory of electroviscoelasticity was proposed and experimentally corroborated using the selected representative liquid-liquid system. Also, it is shown that the droplet, and/or droplet-film structure, that is, selected emulsion and/or double emulsion may be considered as the particular example of memristive systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Ribaric, Samo; Kordas, Marjan
2011-06-01
Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time consuming and unsuitable for most undergraduate medical students. As a result, quantitative thinking about time-dependent physiological phenomena is often not extensively dealt with in an undergraduate physiological course. However, basic concepts of steady and presteady state can be explained with relative simplicity, without the introduction of differential equation, with equivalent electronic circuits (EECs). We introduced undergraduate medical students to the concept of simulating cardiovascular phenomena with EECs. EEC simulations facilitate the understanding of simple or complex time-dependent cardiovascular physiological phenomena by stressing the analogies between EECs and physiological processes. Student perceptions on using EEC to simulate, study, and understand cardiovascular phenomena were documented over a 9-yr period, and the impact of the course on the students' knowledge of selected basic facts and concepts in cardiovascular physiology was evaluated over a 3-yr period. We conclude that EECs are a valuable tool for teaching cardiovascular physiology concepts and that EECs promote active learning.
Clinical research: business opportunities for pharmacy-based investigational drug services.
Marnocha, R M
1999-02-01
The application by an academic health center of business principles to the conduct of clinical research is described. Re-engineering of the infrastructure for clinical research at the University of Wisconsin and University of Wisconsin Hospital and Clinics began in 1990 with the creation of the Center for Clinical Trials (CCT) and the restructuring of the investigational drug services (IDS). Strategies to further improve the institution's clinical research activities have been continually assessed and most recently have centered on the adaptation of a business philosophy within the institution's multidisciplinary research infrastructure. Toward that end, the CCT and IDS have introduced basic business principles into operational activities. Four basic business concepts have been implemented: viewing the research protocol as a commodity, seeking payment for services rendered, tracking investments, and assessing performance. It is proposed that incorporation of these basic business concepts is not only compatible with the infrastructure for clinical research but beneficial to that infrastructure. The adaptation of a business mindset is likely to enable an academic health center to reach its clinical research goals.
Assessing Cognitive Learning of Analytical Problem Solving
NASA Astrophysics Data System (ADS)
Billionniere, Elodie V.
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
Active Learning in an Introductory Meteorology Class
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Bluestone, C.
2007-12-01
Active learning modules were introduced to the primarily minority population in the introductory meteorology class at Queensborough Community College (QCC). These activities were developed at QCC and other 4 year colleges and designed to reinforce basic meteorological concepts. The modules consisted of either Interactive Lecture Demonstrations (ILD) or discovery-based activities. During the ILD the instructor would describe an experiment that would be demonstrated in class. Students would predict what the outcome would be and compare their expected results to the actual outcome of the experiment. In the discovery-based activities students would learn about physical concepts by performing basic experiments. These activities differed from the traditional lab in that it avoided "cookbook" procedures and emphasized having the students learn about the concept using the scientific method. As a result of these activities student scores measuring conceptual understanding, as well as factual knowledge, increased as compared to student scores in a more affluent community college. Students also had higher self- efficacy scores. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Rourke, Patrick Francis
The purpose of this report is to provide the reader with an understanding of how a Monte Carlo neutron transport code was written, developed, and evolved to calculate the probability distribution functions (PDFs) and their moments for the neutron number at a final time as well as the cumulative fission number, along with introducing several basic Monte Carlo concepts.
Designing, engineering, and testing wood structures
NASA Technical Reports Server (NTRS)
Gorman, Thomas M.
1992-01-01
The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.
Introduction: The SERENITY vision
NASA Astrophysics Data System (ADS)
Maña, Antonio; Spanoudakis, George; Kokolakis, Spyros
In this chapter we present an overview of the SERENITY approach. We describe the SERENITY model of secure and dependable applications and show how it addresses the challenge of developing, integrating and dynamically maintaining security and dependability mechanisms in open, dynamic, distributed and heterogeneous computing systems and in particular Ambient Intelligence scenarios. The chapter describes the basic concepts used in the approach and introduces the different processes supported by SERENITY, along with the tools provided.
Coherent Diffractive Imaging: From Nanometric Down to Picometric Resolution
NASA Astrophysics Data System (ADS)
De Caro, Liberato; Carlino, Elvio; Siliqi, Dritan; Giannini, Cinzia
Coherent diffractive imaging (CDI) is a novel technique for inspecting (crystalline and non-crystalline) matter from nanometric down to picometric resolution. It was used originally with X-rays and, more recently, with electrons (so-called electron diffractive imaging, or EDI). This chapter introduces basic concepts concerning CDI and addresses the different types of X-ray CDI experiments that have been conducted, namely plane wave CDI from isolated objects in forward scattering, focused-beam Fresnel CDI from isolated objects in forward scattering, Bragg CDI from nanocrystals, and keyhole CDI and ptychography from extended objects. A CDI experiment with a transmission electron microscope, alternatively named an EDI experiment, is also introduced.
NASA Astrophysics Data System (ADS)
Zhou, Hai-Jun
2016-04-01
Rock-Paper-Scissors (RPS), a game of cyclic dominance, is not merely a popular children's game but also a basic model system for studying decision-making in non-cooperative strategic interactions. Aimed at students of physics with no background in game theory, this paper introduces the concepts of Nash equilibrium and evolutionarily stable strategy, and reviews some recent theoretical and empirical efforts on the non-equilibrium properties of the iterated RPS, including collective cycling, conditional response patterns and microscopic mechanisms that facilitate cooperation. We also introduce several dynamical processes to illustrate the applications of RPS as a simplified model of species competition in ecological systems and price cycling in economic markets.
Book Review: Dolores Knipp’s Understanding Space Weather and the Physics Behind It
NASA Astrophysics Data System (ADS)
Moldwin, Mark
2012-08-01
Delores Knipp's textbook Understanding Space Weather and the Physics Behind It provides a comprehensive resource for space physicists teaching in a variety of academic departments to introduce space weather to advanced undergraduates. The book benefits from Knipp's extensive experience teaching introductory and advanced undergraduate physics courses at the U.S. Air Force Academy. The fundamental physics concepts are clearly explained and are connected directly to the space physics concepts being discussed. To expand upon the relevant basic physics, current research areas and new observations are highlighted, with many of the chapters including contributions from a number of leading space physicists.
Software engineering and the role of Ada: Executive seminar
NASA Technical Reports Server (NTRS)
Freedman, Glenn B.
1987-01-01
The objective was to introduce the basic terminology and concepts of software engineering and Ada. The life cycle model is reviewed. The application of the goals and principles of software engineering is applied. An introductory understanding of the features of the Ada language is gained. Topics addressed include: the software crises; the mandate of the Space Station Program; software life cycle model; software engineering; and Ada under the software engineering umbrella.
[Essential characteristics of qualitative research and its commonly used methods].
Zhang, Hong-wei
2008-02-01
The main objectives of qualitative research lies in exploring the opinion, attitude, behavior, and experience of a person as a social role, also a patient. This essay introduces the basic characteristics of qualitative research, including its natural property, inductive method adopted, open character and wholism concept; the results of qualitative research are presented in a text form; and its commonly used methods include observation, individual interview and focus group discussion.
Stable and low diffusive hybrid upwind splitting methods
NASA Technical Reports Server (NTRS)
Coquel, Frederic; Liou, Meng-Sing
1992-01-01
A new concept for upwinding is introduced, named the hybrid upwind splitting (HUS), which is achieved by combining the basically distinct flux vector splitting (FVS) and the flux difference splitting (FDS) approaches. The HUS approach yields upwind methods which share the robustness of the FVS schemes in the capture of nonlinear waves and the accuracy of some of the FDS schemes. Numerical illustrations are presented proving the relevance of the HUS methods for viscous calculations.
Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-08-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and basic scientists-in-training might play in the construction of preconstructed concept maps and the development of integrated curricula.
Order-of-magnitude physics of neutron stars. Estimating their properties from first principles
NASA Astrophysics Data System (ADS)
Reisenegger, Andreas; Zepeda, Felipe S.
2016-03-01
We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.
NASA Astrophysics Data System (ADS)
Buscema, Massimo; Massini, Giulia; Sacco, Pier Luigi
2018-02-01
This paper offers the first systematic presentation of the topological approach to the analysis of epidemic and pseudo-epidemic spatial processes. We introduce the basic concepts and proofs, at test the approach on a diverse collection of case studies of historically documented epidemic and pseudo-epidemic processes. The approach is found to consistently provide reliable estimates of the structural features of epidemic processes, and to provide useful analytical insights and interpretations of fragmentary pseudo-epidemic processes. Although this analysis has to be regarded as preliminary, we find that the approach's basic tenets are strongly corroborated by this first test and warrant future research in this vein.
TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots
NASA Technical Reports Server (NTRS)
Su, Renjeng
1990-01-01
In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.
Paykel, Eugene S.
2008-01-01
This paper reviews concepts of depression, including history and classification. The original broad concept of melancholia included all forms of quiet insanity. The term depression began to appear in the nineteenth century as did the modern concept of affective disorders, with the core disturbance now viewed as one of mood. The 1930s saw the introduction of defined criteria into official diagnostic schemes. The modern separation into unipolar and bipolar disorder was introduced following empirical research by Angst and Perris in the 1960s. The partially overlapping distinctions between psychotic and neurotic depression, and between endogenous and reactive depression, started to generate debate in the 1920s, with considerable multivariate research in the 1960s. The symptom element in endogenous depression currently survives in melancholia or somatic syndrome. Life stress is common in various depressive pictures. Dysthymia, a valuable diagnosis, represents a form of what was regarded earlier as neurotic depression. Other subtypes are also discussed. PMID:18979941
A brain-based account of “basic-level” concepts
Bauer, Andrew James; Just, Marcel Adam
2017-01-01
This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. PMID:28826947
A brain-based account of "basic-level" concepts.
Bauer, Andrew James; Just, Marcel Adam
2017-11-01
This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. Copyright © 2017 Elsevier Inc. All rights reserved.
Time management: a review for physicians.
Brunicardi, F. C.; Hobson, F. L.
1996-01-01
This article reviews the basic concepts and techniques of time management as they relate to a medical lifestyle. Essential tools are described to help the physician reassess and sharpen skills for handling intensifying demands and constraints of juggling patient care, research, teaching, and family responsibilities. The historical background and principles of time management for three popular "best selling" techniques are critiqued. In addition, a fourth technique, or model, of time management is introduced for physician use. PMID:8855650
None
2018-05-14
We will introduce and discuss in some detail the two main classes of jets: cone type and sequential-recombination type. We will discuss their basic properties, as well as more advanced concepts such as jet substructure, jet filtering, ways of optimizing the jet radius, ways of defining the areas of jets, and of establishing the quality measure of the jet-algorithm in terms of discriminating power in specific searches. Finally we will discuss applications for Higgs searches involving boosted particles.
The Nature of Metallurgical Reactions in Underwater Welding,
1987-04-01
Christensen continuous cooling transformation ( CCT ) diagram , as et. al. (7-10r)have introduced basic concepts for an instructional procedure to understand...experienced a 0.3 wt. pct. the final shape and position of nucleation curves on decrease from the surface composition at 30 bars the CCT diagram . Olson and...desired weld metal composition to form acicular ferrite and side plate ferrite S-XH20 P (eq. 7) resulted. Figure 7 is a schematic CCT diagram H20
Application of wireless sensor network technology in logistics information system
NASA Astrophysics Data System (ADS)
Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-04-01
This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.
Cajal and the Conceptual Weakness of Neural Sciences
Delgado-García, José M.
2015-01-01
The experimental and conceptual contributions of Santiago Ramón y Cajal remain almost as fresh and valuable as when his original proposals were published more than a century ago—a rare example, contrasting with other related sciences. His basic concepts on the neuron as the main building block of the central nervous system, the dynamic polarization principle as a way to understand how neurons deal with ongoing active processes, and brain local structural arrangements as a result of the functional specialization of selected neural circuits are concepts still surviving in present research papers dealing with brain function during the performance of cognitive and/or behavioral activities. What is more, the central dogma of the Neuroscience of today, i.e., brain plasticity as the morpho-functional substrate of memory and learning processes, was already proposed and documented with notable insights by Ramón y Cajal. From this background, I will try to discuss in this chapter which new functional and structural concepts have been introduced in contemporary Neuroscience and how we will be able to construct a set of basic principles underlying brain functions for the twenty-first century. PMID:26483644
Equilibrium control of nonlinear verticum-type systems, applied to integrated pest control.
Molnár, S; Gámez, M; López, I; Cabello, T
2013-08-01
Linear verticum-type control and observation systems have been introduced for modelling certain industrial systems, consisting of subsystems, vertically connected by certain state variables. Recently the concept of verticum-type observation systems and the corresponding observability condition have been extended by the authors to the nonlinear case. In the present paper the general concept of a nonlinear verticum-type control system is introduced, and a sufficient condition for local controllability to equilibrium is obtained. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems. Starting from the integrated pest control model of Rafikov and Limeira (2012) and Rafikov et al. (2012), a nonlinear verticum-type model has been set up an equilibrium control is obtained. Furthermore, a corresponding bioeconomical problem is solved minimizing the total cost of integrated pest control (combining chemical control with a biological one). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2011-01-01
An in-depth tutorial on the constitutive equations for elastic, anisotropic materials is presented. Basic concepts are introduced that are used to characterize materials, and notions about how anisotropic material deform are presented. Hooke s law and the Duhamel-Neuman law for isotropic materials are presented and discussed. Then, the most general form of Hooke s law for elastic anisotropic materials is presented and symmetry requirements are given. A similar presentation is also given for the generalized Duhamel-Neuman law for elastic, anisotropic materials that includes thermal effects. Transformation equations for stress and strains are presented and the most general form of the transformation equations for the constitutive matrices are given. Then, specialized transformation equations are presented for dextral rotations about the coordinate axes. Next, concepts of material symmetry are introduced and criteria for material symmetries are presented. Additionally, engineering constants of fully anisotropic, elastic materials are derived from first principles and the specialized to several cases of practical importance.
Evolutionary ethnobiology and cultural evolution: opportunities for research and dialog.
Santoro, Flávia Rosa; Nascimento, André Luiz Borba; Soldati, Gustavo Taboada; Ferreira Júnior, Washington Soares; Albuquerque, Ulysses Paulino
2018-01-09
The interest in theoretical frameworks that improve our understanding of social-ecological systems is growing within the field of ethnobiology. Several evolutionary questions may underlie the relationships between people and the natural resources that are investigated in this field. A new branch of research, known as evolutionary ethnobiology (EE), focuses on these questions and has recently been formally conceptualized. The field of cultural evolution (CE) has significantly contributed to the development of this new field, and it has introduced the Darwinian concepts of variation, competition, and heredity to studies that focus on the dynamics of local knowledge. In this article, we introduce CE as an important theoretical framework for evolutionary ethnobiological research. We present the basic concepts and assumptions of CE, along with the adjustments that are necessary for its application in EE. We discuss different ethnobiological studies in the context of this new framework and the new opportunities for research that exist in this area. We also propose a dialog that includes our findings in the context of cultural evolution.
[Nursing and marketing: an introduction to the subject].
de Moura, Gisela Maria Schebella Souto
2003-08-01
The administration of health care services is becoming more and more professional. New models and strategies used by service companies, in other areas, are being introduced in these organizations. Through this importation process of models, marketing concepts and tools have been incorporated. The objective of this theoretical essay is offering the nurses an introductory view about marketing. In order to reach this objective, the text was organized into sections that approach its history and basic concepts, social marketing, a few subjects under discussion currently and studies carried out in the marketing area, which involve nursing and health care services. In this way, it is expected to contribute to the professional improvement of nursing.
An improved task-role-based access control model for G-CSCW applications
NASA Astrophysics Data System (ADS)
He, Chaoying; Chen, Jun; Jiang, Jie; Han, Gang
2005-10-01
Access control is an important and popular security mechanism for multi-user applications. GIS-based Computer Supported Cooperative Work (G-CSCW) application is one of such applications. This paper presents an improved Task-Role-Based Access Control (X-TRBAC) model for G-CSCW applications. The new model inherits the basic concepts of the old ones, such as role and task. Moreover, it has introduced two concepts, i.e. object hierarchy and operation hierarchy, and the corresponding rules to improve the efficiency of permission definition in access control models. The experiments show that the method can simplify the definition of permissions, and it is more applicable for G-CSCW applications.
Teaching Vectors Through an Interactive Game Based Laboratory
NASA Astrophysics Data System (ADS)
O'Brien, James; Sirokman, Gergely
2014-03-01
In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.
Design of An Energy Efficient Hydraulic Regenerative circuit
NASA Astrophysics Data System (ADS)
Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar
2018-02-01
Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.
NASA Astrophysics Data System (ADS)
Arnold, T. E.; Henson, W.; Reijo, C. J.; Laing, J.; Weinkam, G.
2015-12-01
A cross-disciplinary hydrology course was developed that combined field and classroom based techniques to educate undergraduate level students on issues related to water resources in Florida, USA. Six instructors from separate departments brought a different perspective, research experience, and view on water quality and quantity issues. The course progressed by examining hydrologic processes at different spatio-temporal scales beginning with the geologic scale (the formation of aquifers) and ending with present-day water management and policy concerns. We were challenged to introduce students from various academic backgrounds and levels to the core concepts of hydrology and water chemistry. Additionally, the instructors faced the task of making our research fit together seamlessly, such that one topic would naturally progress to the next topic. We ensured that students' knowledge progressed enough so they could address complex management issues through critical thinking and application of basic field techniques. It is our objective to share the experiences and challenges in developing an interdisciplinary course that: 1) introduced new research ideas and concepts from six separate fields, 2) enhanced lecture concepts by hands-on, field-based activities, and 3) would keep students from science and non-science backgrounds engaged and challenged but not overwhelmed.
Science and Cooking: Motivating the Study of Freshman Physics
NASA Astrophysics Data System (ADS)
Weitz, David
2011-03-01
This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.
Physics of negative absolute temperatures.
Abraham, Eitan; Penrose, Oliver
2017-01-01
Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.
Molecular Phylogenetics: Concepts for a Newcomer.
Ajawatanawong, Pravech
Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.
Motivating first-year university students by interdisciplinary study projects
NASA Astrophysics Data System (ADS)
Koch, Franziska D.; Dirsch-Weigand, Andrea; Awolin, Malte; Pinkelman, Rebecca J.; Hampe, Manfred J.
2017-01-01
In order to increase student commitment from the beginning of students' university careers, the Technische Universität Darmstadt has introduced interdisciplinary study projects involving first-year students from the engineering, natural, social and history, economics and/or human sciences departments. The didactic concept includes sophisticated task design, individual responsibility and a differentiated support system. Using a self-determination theory framework, this study examined the effects of the projects based on survey findings from two projects with more than 1000 students. The results showed that the projects were successful in fulfilling students' basic psychological needs and in promoting students' academic engagement. Basic psychological needs were found to be significant predictors of academic engagement. These findings suggest that interdisciplinary study projects can potentially contribute to improving higher education as they fulfil students' basic psychological needs for competence, relatedness and autonomy and enhance students' academic engagement.
Principles of Induction Accelerators
NASA Astrophysics Data System (ADS)
Briggs*, Richard J.
The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)
NASA Astrophysics Data System (ADS)
Connolly, Joseph W.
The bicycle is a common, yet unique mechanical contraption in our world. In spite of this, the bike's physical and mechanical principles are understood by a select few. You do not have to be a genius to join this small group of people who understand the physics of cycling. This is your guide to fundamental principles (such as Newton's laws) and the book provides intuitive, basic explanations for the bicycle's behaviour. Each concept is introduced and illustrated with simple, everyday examples. Although cycling is viewed by most as a fun activity, and almost everyone acquires the basic skills at a young age, few understand the laws of nature that give magic to the ride. This is a closer look at some of these fun, exhilarating, and magical aspects of cycling. In the reading, you will also understand other physical principles such as motion, force, energy, power, heat, and temperature.
Fuzzy Hybrid Deliberative/Reactive Paradigm (FHDRP)
NASA Technical Reports Server (NTRS)
Sarmadi, Hengameth
2004-01-01
This work aims to introduce a new concept for incorporating fuzzy sets in hybrid deliberative/reactive paradigm. After a brief review on basic issues of hybrid paradigm the definition of agent-based fuzzy hybrid paradigm, which enables the agents to proceed and extract their behavior through quantitative numerical and qualitative knowledge and to impose their decision making procedure via fuzzy rule bank, is discussed. Next an example performs a more applied platform for the developed approach and finally an overview of the corresponding agents architecture enhances agents logical framework.
NASA Astrophysics Data System (ADS)
Kiese, Matthias; Schiek, Meike
2016-03-01
Firms assume increasing importance within co-operative modes of regional and urban governance. Further to just filling gaps left by the retreat of the welfare state, firms recognise the impact of their regional and local business environment on their performance, especially when it comes to attracting and retaining highly-skilled personnel. As an introduction to this issue, this contribution introduces the basic concept of corporate social responsibility and its regional variation, corporate regional responsibility.
Cancer metabolism: facts, fantasy, and fiction.
Zu, Xin Lin; Guppy, Michael
2004-01-16
The concept of a glycolytic cancer cell was introduced by Warburg over 70 years ago. This perception has since become the rationale that drives a considerable proportion of basic research on cancer, and it influences the current strategies for the diagnosis, monitoring, and treatment of cancer. Here we review the data from the last 40 years on this issue. We conclude that there is no evidence that cancer cells are inherently glycolytic, but that some tumours might indeed be glycolytic in vivo as a result of their hypoxic environment.
Review of the research on “structural bionic” method of large sculpture
NASA Astrophysics Data System (ADS)
Yin, Jiang; Yang, Wenchang
2017-09-01
This paper presented the basic concept of bionic sculpture and summarized the application status of “structural bionic”theory in large bionic sculpture field. Introduced the development trend and challenges of large bionic sculpture and pointed out that the sculpture's “structural bionic” can bring higher mechanical performance of the new structure and system, The evaluation method and structure design for large bionic sculpture are urgently needed.Finally prospected the market of the large bionic sculpture.
Software engineering from a Langley perspective
NASA Technical Reports Server (NTRS)
Voigt, Susan
1994-01-01
A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.
New framework of NGN web-based management system
NASA Astrophysics Data System (ADS)
Nian, Zhou; Jie, Yin; Qian, Mao
2007-11-01
This paper introduces the basic conceptions and key technology of the Ajax and some popular frameworks in the J2EE architecture, try to integrate all the frameworks into a new framework. The developers can develop web applications much more convenient by using this framework and the web application can provide a more friendly and interactive platform to the end users. At last an example is given to explain how to use the new framework to build a web-based management system of the softswitch network.
Local unitary invariants for N-qubit pure states
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2010-11-01
The concept of negativity font, a basic unit of multipartite entanglement, is introduced. Transformation properties of determinants of negativity fonts under local unitary (LU) transformations are exploited to obtain relevant N-qubit polynomial invariants and construct entanglement monotones from first principles. It is shown that entanglement monotones that detect the entanglement of specific parts of the composite system may be constructed to distinguish between states with distinct types of entanglement. The structural difference between entanglement monotones for an odd and even number of qubits is brought out.
Introduction to Modern Methods in Light Microscopy.
Ryan, Joel; Gerhold, Abby R; Boudreau, Vincent; Smith, Lydia; Maddox, Paul S
2017-01-01
For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.
Fundamentals of Modeling, Data Assimilation, and High-performance Computing
NASA Technical Reports Server (NTRS)
Rood, Richard B.
2005-01-01
This lecture will introduce the concepts of modeling, data assimilation and high- performance computing as it relates to the study of atmospheric composition. The lecture will work from basic definitions and will strive to provide a framework for thinking about development and application of models and data assimilation systems. It will not provide technical or algorithmic information, leaving that to textbooks, technical reports, and ultimately scientific journals. References to a number of textbooks and papers will be provided as a gateway to the literature.
Teaching Computational Geophysics Classes using Active Learning Techniques
NASA Astrophysics Data System (ADS)
Keers, H.; Rondenay, S.; Harlap, Y.; Nordmo, I.
2016-12-01
We give an overview of our experience in teaching two computational geophysics classes at the undergraduate level. In particular we describe The first class is for most students the first programming class and assumes that the students have had an introductory course in geophysics. In this class the students are introduced to basic Matlab skills: use of variables, basic array and matrix definition and manipulation, basic statistics, 1D integration, plotting of lines and surfaces, making of .m files and basic debugging techniques. All of these concepts are applied to elementary but important concepts in earthquake and exploration geophysics (including epicentre location, computation of travel time curves for simple layered media plotting of 1D and 2D velocity models etc.). It is important to integrate the geophysics with the programming concepts: we found that this enhances students' understanding. Moreover, as this is a 3 year Bachelor program, and this class is taught in the 2nd semester, there is little time for a class that focusses on only programming. In the second class, which is optional and can be taken in the 4th or 6th semester, but often is also taken by Master students we extend the Matlab programming to include signal processing and ordinary and partial differential equations, again with emphasis on geophysics (such as ray tracing and solving the acoustic wave equation). This class also contains a project in which the students have to write a brief paper on a topic in computational geophysics, preferably with programming examples. When teaching these classes it was found that active learning techniques, in which the students actively participate in the class, either individually, in pairs or in groups, are indispensable. We give a brief overview of the various activities that we have developed when teaching theses classes.
Machine learning for Big Data analytics in plants.
Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng
2014-12-01
Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Ontological Solution to Support Interoperability in the Textile Industry
NASA Astrophysics Data System (ADS)
Duque, Arantxa; Campos, Cristina; Jiménez-Ruiz, Ernesto; Chalmeta, Ricardo
Significant developments in information and communication technologies and challenging market conditions have forced enterprises to adapt their way of doing business. In this context, providing mechanisms to guarantee interoperability among heterogeneous organisations has become a critical issue. Even though prolific research has already been conducted in the area of enterprise interoperability, we have found that enterprises still struggle to introduce fully interoperable solutions, especially, in terms of the development and application of ontologies. Thus, the aim of this paper is to introduce basic ontology concepts in a simple manner and to explain the advantages of the use of ontologies to improve interoperability. We will also present a case study showing the implementation of an application ontology for an enterprise in the textile/clothing sector.
In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms.
Zeitler, J Axel; Gladden, Lynn F
2009-01-01
Tomographic imaging techniques offer new prospects for a better understanding of the quality, performance and release mechanisms of pharmaceutical solid dosage forms. It is only over the last fifteen years that tomography has been applied for the in-vitro characterisation of dosage forms. This review aims to introduce the concept of tomography in a pharmaceutical context, and describes the current state-of-the-art of the four most promising techniques: X-ray computed microtomography, magnetic resonance imaging, terahertz imaging and optical coherence tomography. The basic working principles of the techniques are introduced and the current pharmaceutical applications of the technologies are discussed, together with a comparison of their specific strengths and weaknesses. Possible future developments in these fields are also discussed.
Translational Epidemiology in Psychiatry
Weissman, Myrna M.; Brown, Alan S.; Talati, Ardesheer
2012-01-01
Translational research generally refers to the application of knowledge generated by advances in basic sciences research translated into new approaches for diagnosis, prevention, and treatment of disease. This direction is called bench-to-bedside. Psychiatry has similarly emphasized the basic sciences as the starting point of translational research. This article introduces the term translational epidemiology for psychiatry research as a bidirectional concept in which the knowledge generated from the bedside or the population can also be translated to the benches of laboratory science. Epidemiologic studies are primarily observational but can generate representative samples, novel designs, and hypotheses that can be translated into more tractable experimental approaches in the clinical and basic sciences. This bedside-to-bench concept has not been explicated in psychiatry, although there are an increasing number of examples in the research literature. This article describes selected epidemiologic designs, providing examples and opportunities for translational research from community surveys and prospective, birth cohort, and family-based designs. Rapid developments in informatics, emphases on large sample collection for genetic and biomarker studies, and interest in personalized medicine—which requires information on relative and absolute risk factors—make this topic timely. The approach described has implications for providing fresh metaphors to communicate complex issues in interdisciplinary collaborations and for training in epidemiology and other sciences in psychiatry. PMID:21646577
The development of the drive object concept in Freud's work: 1905-1915.
Compton, A
1985-01-01
In 1905 Freud established the idea of an object of an instinctual drive as the basic object concept of psychoanalysis. He also introduced the derivative concepts of object directedness, object choice, and object finding. While taking these steps he simultaneously deemphasized the importance of drive objects in sexual life, contradicted himself on whether drives are autoerotic or object-directed in infancy, and made incompatible statements about whether or not object choice occurs before puberty. Freud's clinical work, reflected especially in the major case reports and a series of papers on fantasy, led to an apparent recognition of complexity in the mental life of children far greater than had been described earlier. The increased attention to and appreciation of mental content in childhood especially augmented Freud's understanding of the role of drive objects, object directedness, and object choice in infancy. This, in turn, led him to postulate a sequence of organizations of sexual life, named according to the zonal drive source plus the mode of object directedness, a process of theory development that continued through 1924. Object choice and, to a lesser extent, object directedness are concepts derived from and dependent upon the concept of drive object. Both require, however, explanatory constructs besides drive constructs. In 1915 Freud defined the term "object" in the context of stating his drive theory. Freud used the term object with several new modifying words during this decade. No new object concept was introduced, however, in this work, although some steps in that direction appeared to be in progress.
A knowledge-based system for controlling automobile traffic
NASA Technical Reports Server (NTRS)
Maravas, Alexander; Stengel, Robert F.
1994-01-01
Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.
Precision medicine for nurses: 101.
Lemoine, Colleen
2014-05-01
To introduce the key concepts and terms associated with precision medicine and support understanding of future developments in the field by providing an overview and history of precision medicine, related ethical considerations, and nursing implications. Current nursing, medical and basic science literature. Rapid progress in understanding the oncogenic drivers associated with cancer is leading to a shift toward precision medicine, where treatment is based on targeting specific genetic and epigenetic alterations associated with a particular cancer. Nurses will need to embrace the paradigm shift to precision medicine, expend the effort necessary to learn the essential terminology, concepts and principles, and work collaboratively with physician colleagues to best position our patients to maximize the potential that precision medicine can offer. Copyright © 2014 Elsevier Inc. All rights reserved.
Finance for practicing radiologists.
Berlin, Jonathan W; Lexa, Frank James
2005-03-01
This article reviews basic finance for radiologists. Using the example of a hypothetical outpatient computed tomography center, readers are introduced to the concept of net present value. This concept refers to the current real value of anticipated income in the future, realizing that revenue in the future has less value than it does today. Positive net present value projects add wealth to a practice and should be pursued. The article details how costs and revenues for a hypothetical outpatient computed tomography center are determined and elucidates the difference between fixed costs and variable costs. The article provides readers with the steps used to calculate the break-even volume for an outpatient computed tomography center given situation-specific assumptions regarding staff, equipment lease rates, rent, and third-party payer mix.
Surface accommodation of molecular contaminants
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Hedgeland, Randy J.; Thomson, Shaun R.
1990-01-01
Theoretical consideration and supporting data are presented regarding the nature of the transport mechanisms which cause the adsorption of gases on spacecraft surfaces. Particular attention is given to the concept of a sticking coefficient which is the ratio of the thermally accommodated mass to the total incident mass. Existing molecular accommodation data are examined in terms of spacecraft applications and recent contamination-control data are introduced. Two distinct yet linked concepts emerge which are the accommodation and sticking coefficients, and surface roughness contributes significantly to both coefficients. A general equation regarding the coefficients is developed, and the data are found to fit the equation basically. It is concluded that a more precise characterization of the coefficients can be obtained through experimentation under simulated spacecraft conditions.
Blast waves and how they interact with structures.
Cullis, I G
2001-02-01
The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge.
Introducing evidence-based dentistry to dental students using histology.
Lallier, Thomas E
2014-03-01
The expansion of evidence-based dentistry (EBD) is essential to the continued growth and development of the dental profession. Expanding EBD requires increased emphasis on critical thinking skills during dental education, as noted in the American Dental Education Association's Competencies for the New General Dentist. In order to achieve this goal, educational exercises must be introduced to increase the use of critical thinking skills early in the dental curriculum, with continued reinforcement as students progress through subsequent years. Described in this article is one approach to increasing student exposure to critical thinking during the early basic science curriculum-specifically, within the confines of a traditional histology course. A method of utilizing the medical and dental research literature to reinforce and enliven the concepts taught in histology is described, along with an approach for using peer-to-peer presentations to demonstrate the tools needed to critically evaluate research studies and their presentation in published articles. This approach, which could be applied to any basic science course, will result in a stronger foundation on which students can build their EBD and critical thinking skills.
The availability and accessibility of basic concept vocabulary in AAC software: a preliminary study.
McCarthy, Jillian H; Schwarz, Ilsa; Ashworth, Morgan
2017-09-01
Core vocabulary lists obtained through the analyses of children's utterances include a variety of basic concept words. Supporting young children who use augmentative and alternative communication (AAC) to develop their understanding and use of basic concepts is an area of practice that has important ramifications for successful communication in a classroom environment. This study examined the availability of basic concept words across eight frequently used, commercially available AAC language systems, iPad© applications, and symbol libraries used to create communication boards. The accessibility of basic concept words was subsequently examined using two AAC language page sets and two iPad applications. Results reveal that the availability of basic concept words represented within the different AAC language programs, iPad applications, and symbol libraries varied but was limited across programs. However, there is no significant difference in the accessibility of basic concept words across the language program page sets or iPad applications, generally because all of them require sophisticated motor and cognitive plans for access. These results suggest that educators who teach or program vocabulary in AAC systems need to be mindful of the importance of basic concept words in classroom settings and, when possible, enhance the availability and accessibility of these words to users of AAC.
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
The Java seminar covers the fundamentals of Java programming language. No prior programming experience is required for participation in the seminar. The first part of the seminar covers introductory concepts in Java programming including data types (integer, character, ..), operators, functions and constants, casts, input, output, control flow, scope, conditional statements, and arrays. Furthermore, introduction to Object-Oriented programming in Java, relationships between classes, using packages, constructors, private data and methods, final instance fields, static fields and methods, and overloading are explained. The second part of the seminar covers extending classes, inheritance hierarchies, polymorphism, dynamic binding, abstract classes, protected access. The seminar conclude by introducing interfaces, properties of interfaces, interfaces and abstract classes, interfaces and cailbacks, basics of event handling, user interface components with swing, applet basics, converting applications to applets, the applet HTML tags and attributes, exceptions and debugging.
Classroom Use of Martial Arts Exhibitions
NASA Astrophysics Data System (ADS)
Landry, Shane Garrett; Denn, Grant R.
2006-10-01
Martial arts are becoming increasingly popular, and many of the techniques used by martial artists can provide effective demonstrations to showcase basic physics concepts. Many students have martial arts experience by the time they reach the senior level of high school or college. In one conceptual physics course, seven students out of 40 had studied some form of martial arts. Teachers can use experienced students as a resource and exploit the popularity of martial arts to demonstrate some basic points in Newtonian mechanics via martial arts demonstrations. This interactive mode of learning, we have found, is very popular and highly motivational for the students. In this paper we provide some of the possible examples of effective classroom demonstrations; there are many additional examples that your students may want to introduce.
Yu, Helen W H
2016-02-01
The current drug discovery and development process is stalling the translation of basic science into lifesaving products. Known as the 'Valley of Death', the traditional technology transfer model fails to bridge the gap between early-stage discoveries and preclinical research to advance innovations beyond the discovery phase. In addition, the stigma associated with 'commercialization' detracts from the importance of efficient translation of basic research. Here, I introduce a drug discovery model whereby the respective expertise of academia and industry are brought together to take promising discoveries through to proof of concept as a way to derisk the drug discovery and development process. Known as the 'integrated drug discovery model', I examine here the extent to which existing legal frameworks support this model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Goff, Eric E; Reindl, Katie M; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G; Schroeder, Noah L; White, Alan R
2017-05-01
The use of external representations (ERs) to introduce concepts in undergraduate biology has become increasingly common. Two of the most prevalent are static images and dynamic animations. While previous studies comparing static images and dynamic animations have resulted in somewhat conflicting findings in regards to learning outcomes, the benefits of each have been shown individually. Using ERs developed by the Virtual Cell Animation project, we aim to further investigate student learning using different ERs as part of an introductory biology lecture. We focus our study on the topic of photosynthesis as reports have noted that students struggle with a number of basic photosynthesis concepts. Students (n = 167) in ten sections of introductory biology laboratory were introduced to photosynthesis concepts by instructional lectures differing only in the format of the embedded ERs. Normalized gain scores were calculated, showing that students who learned with dynamic animations outperformed students who learned from static images on the posttest. The results of this study provide possible instructional guidelines for those delivering photosynthesis instruction in the introductory biology classroom. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):226-234, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Web-based elective courses for medical students: an example in pain.
Puljak, Livia; Sapunar, Damir
2011-06-01
Online learning is an efficient new educational method that is able to link teachers with geographically dispersed students and capture the interest of students with interactive materials. Our objective was to describe curricula of new Web-based electives about pain for undergraduate medical education. We created three interactive Web-based elective courses about pain targeted to medical and dental students. "The Puzzle of Pain" course introduced basic concepts of pain and neurobiology of pain. The humanities-based curriculum of "Empathy and Pain" taught students about emotional aspects of pain and empathetic responses. "The Cochrane Library and Pain" course introduced students to the concept of evidence-based medicine, critical appraisal of the literature, and the hierarchy of evidence in medicine. We measured program effectiveness with a pretest/posttest instrument and student satisfaction survey. Mean knowledge scores increased significantly after the program and overall evaluations were positive. Delivering the pain electives for medical students in an online format was an efficient educational method, with high student satisfaction scores. Medical educators should consider online electives for medical students in pain studies as well as in other content areas. Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Gibbs, Marilyn J.
1988-01-01
Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)
dc analysis and design of zero-voltage-switched multi-resonant converters
NASA Astrophysics Data System (ADS)
Tabisz, Wojciech A.; Lee, Fred C.
Recently introduced multiresonant converters (MRCs) provide zero-voltage switching (ZVS) of both active and passive switches and offer a substantial reduction of transistor voltage stress and an increase of load range, compared to their quasi-resonant converter counterparts. Using the resonant switch concept, a simple, generalized analysis of ZVS MRCs is presented. The conversion ratio and voltage stress characteristics are derived for basic ZVS MRCs, including buck, boost, and buck/boost converters. Based on the analysis, a design procedure that optimizes the selection of resonant elements for maximum conversion efficiency is proposed.
When cloud computing meets bioinformatics: a review.
Zhou, Shuigeng; Liao, Ruiqi; Guan, Jihong
2013-10-01
In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics. We then highlight some problems challenging the applications of cloud computing and MapReduce to bioinformatics. Finally, we give a brief guideline for using cloud computing in biology research.
James Clerk Maxwell, a precursor of system identification and control science
NASA Astrophysics Data System (ADS)
Bittanti, Sergio
2015-12-01
One hundred and fifty years ago James Clerk Maxwell published his celebrated paper 'Dynamical theory of electromagnetic field', where the interaction between electricity and magnetism eventually found an explanation. However, Maxwell was also a precursor of model identification and control ideas. Indeed, with the paper 'On Governors' of 1869, he introduced the concept of feedback control system; and moreover, with his essay on Saturn's rings of 1856 he set the basic principle of system identification. This paper is a tutorial exposition having the aim to enlighten these latter aspects of Maxwell's work.
Quantum Information in Non-physics Departments at Liberal Arts Colleges
NASA Astrophysics Data System (ADS)
Westmoreland, Michael
2012-02-01
Quantum information and quantum computing have changed our thinking about the basic concepts of quantum physics. These fields have also introduced exciting new applications of quantum mechanics such as quantum cryptography and non-interactive measurement. It is standard to teach such topics only to advanced physics majors who have completed coursework in quantum mechanics. Recent encounters with teaching quantum cryptography to non-majors and a bout of textbook-writing suggest strategies for teaching this interesting material to those without the standard quantum mechanics background. This talk will share some of those strategies.
A Linguistic Model in Component Oriented Programming
NASA Astrophysics Data System (ADS)
Crăciunean, Daniel Cristian; Crăciunean, Vasile
2016-12-01
It is a fact that the component-oriented programming, well organized, can bring a large increase in efficiency in the development of large software systems. This paper proposes a model for building software systems by assembling components that can operate independently of each other. The model is based on a computing environment that runs parallel and distributed applications. This paper introduces concepts as: abstract aggregation scheme and aggregation application. Basically, an aggregation application is an application that is obtained by combining corresponding components. In our model an aggregation application is a word in a language.
Management of raised intracranial pressure and hyperosmolar therapy.
Ropper, Allan H
2014-06-01
The management of raised intracranial pressure is undergoing rapid change. The choice of medical treatments to reduce intracranial pressure varies between institutions and regions of the world. The mainstay of therapy, however, continues to be the infusion of a hyperosmolar solution to achieve an osmotic gradient to force the exit of water from the brain. This review introduces the basic concepts of raised intracranial pressure, summarises several recent studies that have challenged dogma in the field, and provides practical advice on hyperosmolar treatment, based on personal experience and a critical reading of the literature.
Scaling phenomena in fatigue and fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barenblatt, G.I.
2004-12-01
The general classification of scaling laws will be presented and the basic concepts of modern similarity analysis--intermediate asymptotics, complete and incomplete similarity--will be introduced and discussed. The examples of scaling laws corresponding to complete similarity will be given. The Paris scaling law in fatigue will be discussed as an instructive example of incomplete similarity. It will be emphasized that in the Paris law the powers are not the material constants. Therefore, the evaluation of the life-time of structures using the data obtained from standard fatigue tests requires some precautions.
The DICOM Standard: A Brief Overview
NASA Astrophysics Data System (ADS)
Gibaud, Bernard
The DICOM standard has now become the uncontested standard for the exchange and management of biomedical images. Everyone acknowledges its prominent role in the emergence of multi-vendor Picture Archiving and Communication Systems (PACS), and their successful integration with Hospital Information Systems and Radiology Information Systems, thanks to the Integrating the Healthcare Enterprise (IHE) initiative. We introduce here the basic concepts retained for the definition of objects and services in DICOM, with the hope that it will help the reader to find his or her way in the vast DICOM documentation available on the web.
NASA Astrophysics Data System (ADS)
Raptis, Ioannis
2007-12-01
We summarize the twelve most important in our view novel concepts that have arisen, based on results that have been obtained, from various applications of Abstract Differential Geometry (ADG) to Quantum Gravity (QG). The present document may be used as a concise, yet informal, discursive and peripatetic conceptual guide- cum-terminological glossary to the voluminous technical research literature on the subject. In a bonus section at the end, we dwell on the significance of introducing new conceptual terminology in future QG research by means of ‘poetic language’.
Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry
NASA Astrophysics Data System (ADS)
Fabiani, Sergio
2018-05-01
The maturity of current detectors based on technologies that range from solid state to gases renewed the interest for X-ray polarimetry, raising the enthusiasm of a wide scientific community to improve the performance of polarimeters as well as to produce more detailed theoretical predictions. We will introduce the basic concepts about measuring the polarization of photons, especially in the X-rays, and we will review the current state of the art of polarimeters in a wide energy range from soft~to hard X-rays, from solar flares to distant astrophysical sources. We will introduce relevant examples of polarimeters developed from the recent past up to the panorama of upcoming space missions to show how the recent development of the technology is allowing reopening the observational window of X-ray polarimetry.
[Hazard function and life table: an introduction to the failure time analysis].
Matsushita, K; Inaba, H
1987-04-01
Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.
Research on the application of wisdom technology in smart city
NASA Astrophysics Data System (ADS)
Li, Juntao; Ma, Shuai; Gu, Weihua; Chen, Weiyi
2015-12-01
This paper first analyzes the concept of smart technology, the relationship between wisdom technology and smart city, and discusses the practical application of IOT(Internet of things) in smart city to explore a better way to realize smart city; then Introduces the basic concepts of cloud computing and smart city, and explains the relationship between the two; Discusses five advantages of cloud computing that applies to smart city construction: a unified and highly efficient, large-scale infrastructure software and hardware management, service scheduling and resource management, security control and management, energy conservation and management platform layer, and to promote modern practical significance of the development of services, promoting regional social and economic development faster. Finally, a brief description of the wisdom technology and smart city management is presented.
Wright, Fay; Fessele, Kristen
2017-10-01
As nurses begin to incorporate genetic and genomic sciences into clinical practice, education, and research, it is essential that they have a working knowledge of the terms foundational to the science. The first article in this primer series provided brief definitions of the basic terms (e.g., genetics and genomics) and introduced the concept of phenotype during the discussion of Mendelian inheritance. These terms, however, are inconsistently used in publications and conversations, and the linkage between genotype and phenotype requires clarification. The goal of this fifth article in the series is to elucidate these terms, provide an overview of the research methods used to determine genotype-phenotype associations, and discuss their significance to nursing through examples from the current nursing literature.
Angtuaco, Teresita L; Hopkins, Robert H; DuBose, Terry J; Bursac, Zoran; Angtuaco, Michael J; Ferris, Ernest J
2007-06-01
This project was designed to test the feasibility of introducing ultrasound to senior medical students as a primary diagnostic tool in the evaluation of patients. Specifically, its aim was to determine if it is possible for medical students untrained in sonography to gain basic competence in performing abdominal ultrasound with limited didactic and hands-on instructions. Registered sonographers provided the students with hands-on instructions on the use of a compact ultrasound system. They were likewise shown how to evaluate specific organs and perform measurements. The results of the student measurements and those obtained by the sonographers were compared. There was close correlation between the results obtained by sonographers and students on both normal and abnormal findings. This supports the concept that medical students can be taught basic ultrasound skills with limited didactic and hands-on instructions with the potential of using these skills in the patient clinics as an adjunct to routine physical diagnosis.
The Knaster-Kuratowski-Mazurkiewicz theorem and abstract convexities
NASA Astrophysics Data System (ADS)
Cain, George L., Jr.; González, Luis
2008-02-01
The Knaster-Kuratowski-Mazurkiewicz covering theorem (KKM), is the basic ingredient in the proofs of many so-called "intersection" theorems and related fixed point theorems (including the famous Brouwer fixed point theorem). The KKM theorem was extended from Rn to Hausdorff linear spaces by Ky Fan. There has subsequently been a plethora of attempts at extending the KKM type results to arbitrary topological spaces. Virtually all these involve the introduction of some sort of abstract convexity structure for a topological space, among others we could mention H-spaces and G-spaces. We have introduced a new abstract convexity structure that generalizes the concept of a metric space with a convex structure, introduced by E. Michael in [E. Michael, Convex structures and continuous selections, Canad. J. MathE 11 (1959) 556-575] and called a topological space endowed with this structure an M-space. In an article by Shie Park and Hoonjoo Kim [S. Park, H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996) 173-187], the concepts of G-spaces and metric spaces with Michael's convex structure, were mentioned together but no kind of relationship was shown. In this article, we prove that G-spaces and M-spaces are close related. We also introduce here the concept of an L-space, which is inspired in the MC-spaces of J.V. Llinares [J.V. Llinares, Unified treatment of the problem of existence of maximal elements in binary relations: A characterization, J. Math. Econom. 29 (1998) 285-302], and establish relationships between the convexities of these spaces with the spaces previously mentioned.
ERIC Educational Resources Information Center
Acar, Tulin; Voltan-Acar, Nilufer
2013-01-01
The aim of this study was to evaluate the basic concepts of multigenerational Family Therapy and to evaluate the scenes of the film ''My Father and My Son'' according to these concepts. For these purposes firstly basic concepts of Multigenerational Family Therapy such as differentiation of self, triangles/triangulation, nuclear family emotional…
Challenges in Commercializing Biomimetic Membranes
Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus
2015-01-01
The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes. PMID:26556379
Challenges in Commercializing Biomimetic Membranes.
Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus
2015-11-05
The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.
NASA Astrophysics Data System (ADS)
Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W. M.
2017-04-01
With CMOS scaling reaching physical limits in the next decade, new approaches are required to enhance the functionality of electronic systems. Reconfigurability on the device level promises to realize more complex systems with a lower device count. In the last five years a number of interesting concepts have been proposed to realize such a device level reconfiguration. Among these the reconfigurable field effect transistor (RFET), a device that can be configured between an n-channel and p-channel behavior by applying an electrical signal, can be considered as an end-of-roadmap extension of current technology with only small modifications and even simplifications to the process flow. This article gives a review on the RFET basics and current status. In the first sections state-of-the-art of reconfigurable devices will be summarized and the RFET will be introduced together with related devices based on silicon nanowire technology. The device optimization with respect to device symmetry and performance will be discussed next. The potential of the RFET device technology will then be shown by discussing selected circuit implementations making use of the unique advantages of this device concept. The basic device concept was also extended towards applications in flexible devices and sensors, also extending the capabilities towards so-called More-than-Moore applications where new functionalities are implemented in CMOS-based processes. Finally, the prospects of RFET device technology will be discussed.
The Terrestrial Planets - Edutainment and Science for Grades 7-9
NASA Astrophysics Data System (ADS)
Sornig, Manuela; Sonnabend, Guido; Pietsch-Lindt, Ursula; Stupar, Dusan; Morath, Frank; Bischoff, Sonja; Weiler, Sven
2010-05-01
Over the last years, public outreach has become an integral part of scientific work. In order to motivate the next generation of scientist and in cooperation with the JuniorUniversity program of the University of Cologne and the Cologne Science Adventure "Odysseum" we at the I. Physikalisches Institut developed a concept to introduce our up-to-date scientific work to teenagers between 13 and 15 years of age. The main idea was to motivate adolescents, to provide a cheerful contact with science and the local university, and to have fun. The focus of our scientific work are wind measurements in the upper atmospheres of Mars and Venus by high resolution infrared spectroscopy. The main concept of these observations is quite simple, just involving spectroscopic measurements of light and the well-known Doppler effect. This observational concept as well as general information on the planets were transported during one day consisting of various events. The morning was organized by the Odysseum. Two instructional workshops ("Venus, Earth, Mars", "Mission to Mars") with high "fun-factor" were offered providing an appropriate environment for the children and easy access to the subject. Basic information about the planets Mars and Venus was conveyed as well as some aspects on possible space missions to these planets. Based on that information the children visited our institute in the afternoon where two workshops with hands-on experiments provided deeper inside to the technique of spectroscopy ("Information from the Universe") and the problems of conducting astronomical observations ("Hitch-hiking through the universe"). The latter was also used to introduce the basic methods of how to write a scientific proposal for telescope observing time. Finally, to round up the day and to increase our targeted audience, parents and friends where invited to attend a presentation of the results of the day given by the participants as well as a brief introduction into our scientific work on investigations of dynamical properties on Mars and Venus expanding the knowledge gathered during the day.
NASA Astrophysics Data System (ADS)
Resor, P. G.; Cronin, V. S.; Hammond, W. C.; Pratt-Sitaula, B.; Olds, S. E.
2014-12-01
The August 24, 2014 M 6.0 South Napa Earthquake was the largest earthquake to occur in the San Francisco Bay Area, home to more than 7 million people, in almost 25 years. The event occurred within an area of dense GPS instrumentation including continuous stations from the EarthScope Plate Boundary Observatory, Bay Area Regional Deformation Network and other networks. Coseismic displacements of up to 3 cm were rapidly estimated within one day after the event, providing a map of Earth shape change at over one hundred stations around the epicenter. The earthquake thus presets as an excellent "teachable moment" to introduce students to basic geoscience concepts, modern geophysical methods, and the state of knowledge in earthquake science. We have developed an example exercise that uses GPS-derived interseismic velocities and coseismic offsets to explore deformation in the vicinity of the earthquake rupture. This exercise builds on the UNAVCO education resource "Infinitesimal Strain Analysis Using GPS Data" (http://www.unavco.org/education/resources/educational-resources/lesson/majors-gps-strain/majors-gps-strain.html), a module designed to introduce undergraduate geoscience majors to concepts of crustal deformation using GPS velocity data. In the module students build their intuition about infinitesimal strain through manipulation of physical models, apply this intuition to interpret maps of GPS velocity vectors, and ultimately calculate the instantaneous deformation rate of triangles on the Earth's surface defined by three GPS sites. The South Napa data sets provide an example with clear societal relevance that can be used to explore the basic concepts of deformation, but may also be extended to explore topics such as strain accumulation, release, and transfer associated with the earthquake cycle. The UNAVCO module could be similarly extended to create additional exercises in response to future events with clear geodetic signals.
On problems in defining abstract and metaphysical concepts--emergence of a new model.
Nahod, Bruno; Nahod, Perina Vukša
2014-12-01
Basic anthropological terminology is the first project covering terms from the domain of the social sciences under the Croatian Special Field Terminology program (Struna). Problems that have been sporadically noticed or whose existence could have been presumed during the processing of terms mainly from technical fields and sciences have finally emerged in "anthropology". The principles of the General Theory of Terminology (GTT), which are followed in Struna, were put to a truly exacting test, and sometimes stretched beyond their limits when applied to concepts that do not necessarily have references in the physical world; namely, abstract and metaphysical concepts. We are currently developing a new terminographical model based on Idealized Cognitive Models (ICM), which will hopefully ensure a better cross-filed implementation of various types of concepts and their relations. The goal of this paper is to introduce the theoretical bases of our model. Additionally, we will present a pilot study of the series of experiments in which we are trying to investigate the nature of conceptual categorization in special languages and its proposed difference form categorization in general language.
Horii, Ikuo
2016-01-01
Pharmaceutical (drug) safety assessment covers a diverse science-field in the drug discovery and development including the post-approval and post-marketing phases in order to evaluate safety and risk management. The principle in toxicological science is to be placed on both of pure and applied sciences that are derived from past/present scientific knowledge and coming new science and technology. In general, adverse drug reactions are presented as "biological responses to foreign substances." This is the basic concept of thinking about the manifestation of adverse drug reactions. Whether or not toxic expressions are extensions of the pharmacological effect, adverse drug reactions as seen from molecular targets are captured in the category of "on-target" or "off-target", and are normally expressed as a biological defense reaction. Accordingly, reactions induced by pharmaceuticals can be broadly said to be defensive reactions. Recent molecular biological conception is in line with the new, remarkable scientific and technological developments in the medical and pharmaceutical areas, and the viewpoints in the field of toxicology have shown that they are approaching toward the same direction as well. This paper refers to the basic concept of pharmaceutical toxicology, the differences for safety assessment in each stage of drug discovery and development, regulatory submission, and the concept of scientific considerations for risk assessment and management from the viewpoint of "how can multidisciplinary toxicology contribute to innovative drug discovery and development?" And also realistic translational research from preclinical to clinical application is required to have a significant risk management in post market by utilizing whole scientific data derived from basic and applied scientific research works. In addition, the significance for employing the systems toxicology based on AOP (Adverse Outcome Pathway) analysis is introduced, and coming challenges on precision medicine are to be addressed for the new aspect of efficacy and safety evaluation.
ERIC Educational Resources Information Center
Balat, Gülden Uyanik
2014-01-01
Most basic concepts are acquired during preschool period. There are studies indicating that the basic concept knowledge of children is related to language development, cognitive development, academic achievement and intelligence. The relationship between learning behaviors (sometime called learning or cognitive styles) and a child academic success…
ProgrammingRationalAgents in GOAL
NASA Astrophysics Data System (ADS)
Hindriks, Koen V.
The agent programming language GOAL is a high-level programming language to program rational agents that derive their choice of action from their beliefsand goals. The language provides the basic building blocks to design and implementrationalagents by meansofa setofprogramming constructs. These programming constructs allow and facilitate the manipulation of an agent’sbeliefs and goals and to structure its decision-making. GOAL agents are called rational because they satisfy a numberof basic rationality constraints and because they decide to perform actions to further their goals based uponareasoning scheme derived from practical reasoning. The programming concepts of belief and goal incorporated into GOAL provide the basis for this form of reasoning and are similarto their common sense counterparts used everyday to explain the actions that we perform. In addition, GOAL provides the means for agents to focus their attention on specic goals and to communicate at the knowledge level. This provides an intuitive basis for writing high-level agent programs. At the same time these concepts and programming constructs have a well-dened, formal semantics. The formal semantics provides the basis for deninga verication framework for GOAL for verifying and reasoning about GOAL agents whichis similar to some of the wellknownagent logics introduced in the literature.
Concept and design of super junction devices
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Wentong; Qiao, Ming; Zhan, Zhenya; Li, Zhaoji
2018-02-01
The super junction (SJ) has been recognized as the " milestone” of the power MOSFET, which is the most important innovation concept of the voltage-sustaining layer (VSL). The basic structure of the SJ is a typical junction-type VSL (J-VSL) with the periodic N and P regions. However, the conventional VSL is a typical resistance-type VSL (R-VSL) with only an N or P region. It is a qualitative change of the VSL from the R-VSL to the J-VSL, introducing the bulk depletion to increase the doping concentration and optimize the bulk electric field of the SJ. This paper firstly summarizes the development of the SJ, and then the optimization theory of the SJ is discussed for both the vertical and the lateral devices, including the non-full depletion mode, the minimum specific on-resistance optimization method and the equivalent substrate model. The SJ concept breaks the conventional " silicon limit” relationship of R on∝V B 2.5, showing a quasi-linear relationship of R on∝V B 1.03.
Articulation effects in lightness: historical background and theoretical implications.
Gilchrist, Alan L; Annan, Vidal
2002-01-01
The concept of articulation was first introduced by Katz [1935 The World of Colour (London: Kegan Paul, Trench, Trubner & Co)] to refer to the degree of complexity within a field. Katz, who created the basic research methods for studying lightness constancy, found that the greater the degree of articulation within a field of illumination, the greater the degree of constancy. Even though this concept has been largely forgotten, there is much empirical evidence for Katz's principle, and the effects on lightness are very strong. However, when articulation is increased within a framework that does not coincide with a region of illumination, constancy is weakened. Kardos (1934 Zeitschrift für Psychologie Ergänzungband 23) advanced the concept of co-determination, according to which the lightness of a surface is determined relative to more than one field of illumination. Gilchrist et al (1999 Psychological Review 106 795-834) argue that the fields concept should be replaced by the more operational frameworks concept and that a wide variety of lightness errors can be explained by a modification of the Katz principle: the greater the articulation within a perceptual framework, the stronger the anchoring of lightness values within that framework.
De-implementation: A concept analysis.
Upvall, Michele J; Bourgault, Annette M
2018-04-25
The purpose of this concept analysis is to explore the meaning of de-implementation and provide a definition that can be used by researchers and clinicians to facilitate evidence-based practice. De-implementation is a relatively unknown process overshadowed by the novelty of introducing new ideas and techniques into practice. Few studies have addressed the challenge of de-implementation and the cognitive processes involved when terminating harmful or unnecessary practices. Also, confusion exists regarding the myriad of terms used to describe de-implementation processes. Walker and Avant's method (2011) for describing concepts was used to clarify de-implementation. A database search limited to academic journals yielded 281 publications representing basic research, study protocols, and editorials/commentaries from implementation science experts. After applying exclusion criterion of English language only and eliminating overlap between databases, 41 articles were selected for review. Literature review and synthesis provided a concept analysis and a distinct definition of de-implementation. De-implementation was defined as the process of identifying and removing harmful, non-cost-effective, or ineffective practices based on tradition and without adequate scientific support. The analysis provided further refinement of de-implementation as a significant concept for ongoing theory development in implementation science and clinical practice. © 2018 Wiley Periodicals, Inc.
Schadow, Gunther
2005-01-01
Prescribing errors are an important cause of adverse events, and lack of knowledge of the drug is a root cause for prescribing errors. The FDA is issuing new regulations that will make the drug labels much more useful not only to physicians, but also to computerized order entry systems that support physicians to practice safe prescribing. For this purpose, FDA works with HL7 to create the Structured Product Label (SPL) standard that includes a document format as well as a drug knowledge representation, this poster introduces the basic concepts of SPL.
Quantum theory of continuum optomechanics
NASA Astrophysics Data System (ADS)
Rakich, Peter; Marquardt, Florian
2018-04-01
We present the basic ingredients of continuum optomechanics, i.e. the suitable extension of cavity-optomechanical concepts to the interaction of photons and phonons in an extended waveguide. We introduce a real-space picture and argue which coupling terms may arise in leading order in the spatial derivatives. This picture allows us to discuss quantum noise, dissipation, and the correct boundary conditions at the waveguide entrance. The connections both to optomechanical arrays as well as to the theory of Brillouin scattering in waveguides are highlighted. Among other examples, we analyze the ‘strong coupling regime’ of continuum optomechanics that may be accessible in future experiments.
[Bayesian statistics in medicine -- part II: main applications and inference].
Montomoli, C; Nichelatti, M
2008-01-01
Bayesian statistics is not only used when one is dealing with 2-way tables, but it can be used for inferential purposes. Using the basic concepts presented in the first part, this paper aims to give a simple overview of Bayesian methods by introducing its foundation (Bayes' theorem) and then applying this rule to a very simple practical example; whenever possible, the elementary processes at the basis of analysis are compared to those of frequentist (classical) statistical analysis. The Bayesian reasoning is naturally connected to medical activity, since it appears to be quite similar to a diagnostic process.
The economics of health insurance.
Jha, Saurabh; Baker, Tom
2012-12-01
Insurance plays an important role in the United States, most importantly in but not limited to medical care. The authors introduce basic economic concepts that make medical care and health insurance different from other goods and services traded in the market. They emphasize that competitive pricing in the marketplace for insurance leads, quite rationally, to risk classification, market segmentation, and market failure. The article serves as a springboard for understanding the basis of the reforms that regulate the health insurance market in the Patient Protection and Affordable Care Act. Copyright © 2012 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Some thoughts about consciousness: from a quantum mechanics perspective.
Gargiulo, Gerald J
2013-08-01
The article explores some of the basic findings of quantum physics and information theory and their possible usefulness in offering new vistas for understanding psychoanalysis and the patient-analyst interchange. Technical terms are explained and placed in context, and examples of applying quantum models to clinical experience are offered. Given the complexity of the findings of quantum mechanics and information theory, the article aims only to introduce some of the major concepts from these disciplines. Within this framework the article also briefly addresses the question of mind as well as the problematic of reducing the experience of consciousness to neurological brain functioning.
City of Huntsville Public Housing Areas STEM Initiative Project
NASA Astrophysics Data System (ADS)
Colon, Tomeka; Smith, Cydale; Pugh, Marcus; Budak, Satilmis; Muntele, Claudiu
2012-02-01
Students in high-poverty and high-minority schools are entering the classroom without the knowledge and skills they need to succeed. In order to bridge the gaps in opportunity and achievement that separate low-income students and students of color from other young Americans, we have introduced elementary and middle school students to the basic concepts of biology, chemistry, physics, and engineering. Within the project, we have provided students with excellent learning opportunities, engaging hands-on experiences, and outstanding advising and mentoring. We have assessed student development and impact before, during, and after the program.
Construction of databases: advances and significance in clinical research.
Long, Erping; Huang, Bingjie; Wang, Liming; Lin, Xiaoyu; Lin, Haotian
2015-12-01
Widely used in clinical research, the database is a new type of data management automation technology and the most efficient tool for data management. In this article, we first explain some basic concepts, such as the definition, classification, and establishment of databases. Afterward, the workflow for establishing databases, inputting data, verifying data, and managing databases is presented. Meanwhile, by discussing the application of databases in clinical research, we illuminate the important role of databases in clinical research practice. Lastly, we introduce the reanalysis of randomized controlled trials (RCTs) and cloud computing techniques, showing the most recent advancements of databases in clinical research.
Slice regular functions of several Clifford variables
NASA Astrophysics Data System (ADS)
Ghiloni, R.; Perotti, A.
2012-11-01
We introduce a class of slice regular functions of several Clifford variables. Our approach to the definition of slice functions is based on the concept of stem functions of several variables and on the introduction on real Clifford algebras of a family of commuting complex structures. The class of slice regular functions include, in particular, the family of (ordered) polynomials in several Clifford variables. We prove some basic properties of slice and slice regular functions and give examples to illustrate this function theory. In particular, we give integral representation formulas for slice regular functions and a Hartogs type extension result.
The Health Resources Allocation Model (HRAM) for the 21st century.
Maire, Nicolas; Hegnauer, Michael; Nguyen, Dana; Godelmann, Lucas; Hoffmann, Axel; de Savigny, Don; Tanner, Marcel
2012-05-01
The Health Resources Allocation Model (HRAM) is an eLearning tool for health cadres and scientists introducing basic concepts of sub-national, rational district-based health planning and systems thinking under resources constraint. HRAM allows the evaluation of resource allocation strategies in relation to key outcome measures such as coverage, equity of services achieved and number of deaths and disability-adjusted life years (DALYs) prevented. In addition, the model takes into account geographical and demographic characteristics and populations' health seeking behaviour. It can be adapted to different socio-ecological and health system settings.
Introduction to a special issue on concept mapping.
Trochim, William M; McLinden, Daniel
2017-02-01
Concept mapping was developed in the 1980s as a unique integration of qualitative (group process, brainstorming, unstructured sorting, interpretation) and quantitative (multidimensional scaling, hierarchical cluster analysis) methods designed to enable a group of people to articulate and depict graphically a coherent conceptual framework or model of any topic or issue of interest. This introduction provides the basic definition and description of the methodology for the newcomer and describes the steps typically followed in its most standard canonical form (preparation, generation, structuring, representation, interpretation and utilization). It also introduces this special issue which reviews the history of the methodology, describes its use in a variety of contexts, shows the latest ways it can be integrated with other methodologies, considers methodological advances and developments, and sketches a vision of the future of the method's evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Andersen, Morten; Sajid, Zamra; Pedersen, Rasmus K; Gudmand-Hoeyer, Johanne; Ellervik, Christina; Skov, Vibe; Kjær, Lasse; Pallisgaard, Niels; Kruse, Torben A; Thomassen, Mads; Troelsen, Jesper; Hasselbalch, Hans Carl; Ottesen, Johnny T
2017-01-01
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Staircase and fractional part functions
NASA Astrophysics Data System (ADS)
Amram, Meirav; Dagan, Miriam; Ioshpe, Michael; Satianov, Pavel
2016-10-01
The staircase and fractional part functions are basic examples of real functions. They can be applied in several parts of mathematics, such as analysis, number theory, formulas for primes, and so on; in computer programming, the floor and ceiling functions are provided by a significant number of programming languages - they have some basic uses in various programming tasks. In this paper, we view the staircase and fractional part functions as a classical example of non-continuous real functions. We introduce some of their basic properties, present some interesting constructions concerning them, and explore some intriguing interpretations of such functions. Throughout the paper, we use these functions in order to explain basic concepts in a first calculus course, such as domain of definition, discontinuity, and oddness of functions. We also explain in detail how, after researching the properties of such functions, one can draw their graph; this is a crucial part in the process of understanding their nature. In the paper, we present some subjects that the first-year student in the exact sciences may not encounter. We try to clarify those subjects and show that such ideas are important in the understanding of non-continuous functions, as a part of studying analysis in general.
NASA Astrophysics Data System (ADS)
Drachova-Strang, Svetlana V.
As computing becomes ubiquitous, software correctness has a fundamental role in ensuring the safety and security of the systems we build. To design and develop software correctly according to their formal contracts, CS students, the future software practitioners, need to learn a critical set of skills that are necessary and sufficient for reasoning about software correctness. This dissertation presents a systematic approach to both introducing these reasoning skills into the curriculum, and assessing how well the students have learned them. Specifically, it introduces a comprehensive Reasoning Concept Inventory (RCI) that captures the fine details of basic reasoning skills that are ideally learned across the undergraduate curriculum to reason about software correctness, to develop high quality software, and to understand why software works as specified. The RCI forms the basis for developing learning outcomes that help educators to assess the adequacy of current techniques and pinpoint necessary improvements. This dissertation contains results from experimentation and assessment over the past few years in multiple CS courses. The results show that the finer principles of mathematical reasoning of software correctness can be taught effectively and continuously improved with the help of the RCI using suitable teaching practices, and supporting methods and tools.
What is Basic Research? Insights from Historical Semantics.
Schauz, Désirée
2014-01-01
For some years now, the concept of basic research has been under attack. Yet although the significance of the concept is in doubt, basic research continues to be used as an analytical category in science studies. But what exactly is basic research? What is the difference between basic and applied research? This article seeks to answer these questions by applying historical semantics. I argue that the concept of basic research did not arise out of the tradition of pure science. On the contrary, this new concept emerged in the late 19th and early 20th centuries, a time when scientists were being confronted with rising expectations regarding the societal utility of science. Scientists used the concept in order to try to bridge the gap between the promise of utility and the uncertainty of scientific endeavour. Only after 1945, when United States science policy shaped the notion of basic research, did the concept revert to the older ideals of pure science. This revival of the purity discourse was caused by the specific historical situation in the US at that time: the need to reform federal research policy after the Second World War, the new dimension of ethical dilemmas in science and technology during the atomic era, and the tense political climate during the Cold War.
Craft-Art as a Basis for Human Activity
ERIC Educational Resources Information Center
Karppinen, Seija
2008-01-01
This article based on my doctoral thesis examines the Basic Arts Education system in Finland, focusing on Basic Crafts Education and its description through action concepts. The main task of the study was to create a concept model. In the first part of the study a concept map was created from the practice of Basic Crafts Education. The aim of the…
ERIC Educational Resources Information Center
Hansen, W. Lee; And Others
A concise framework of basic concepts and generalizations for teaching economics for K-12 students is presented. The guide summarizes the basic structure and substance of economics and lists and describes economic concepts. Standard guidelines are provided to help school systems integrate economics into their on-going courses of study. Designed to…
Ludwig von Bertalanffy's organismic view on the theory of evolution.
Drack, Manfred
2015-03-01
Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. © 2015 Wiley Periodicals, Inc.
Chemistry Cube Game - Exploring Basic Principles of Chemistry by Turning Cubes.
Müller, Markus T
2018-02-01
The Chemistry Cube Game invites students at secondary school level 1 and 2 to explore basic concepts of chemistry in a playful way, either as individuals or in teams. It consists of 15 different cubes, 9 cubes for different acids, their corresponding bases and precursors, and 6 cubes for different reducing and oxidising agents. The cubes can be rotated in those directions indicated. Each 'allowed' vertical or horizontal rotation of 90° stands for a chemical reaction or a physical transition. Two different games and playing modes are presented here: First, redox chemistry is introduced for the formation of salts from elementary metals and non-metals. Second, the speciation of acids and bases at different pH-values is shown. The cubes can be also used for games about environmental chemistry such as the carbon and sulphur cycle, covering the topic of acid rain, or the nitrogen cycle including ammoniac synthesis, nitrification and de-nitrification.
Basic Density-Functional Theory—an Overview
NASA Astrophysics Data System (ADS)
von Barth, U.
In these notes I have given a personally flavored exposA~© of static density-functional theory (DFT). I have started from standard many-body physics at a very elementary level and then gradually introduced the basic concepts of DFT. Successively more advanced topics are added and at the end I even discuss a few not yet published theories. The discussion represents many of the personal views of the author and there is no attempt at being comprehensive. I fully realize that I am often ‘unfair’ in treating the achievements of other researchers. Many topics of standard DFT are deliberately left out like, e.g., time-dependence, excitations, and magnetic or relativistic effects. These notes represent a compilation of a series of lectures given at at the EXC!TING Summer School DFT beyond the ground state at RiksgrA~¤nsen, Sweden in June of 2003.
Modeling a maintenance simulation of the geosynchronous platform
NASA Technical Reports Server (NTRS)
Kleiner, A. F., Jr.
1980-01-01
A modeling technique used to conduct a simulation study comparing various maintenance routines for a space platform is dicussed. A system model is described and illustrated, the basic concepts of a simulation pass are detailed, and sections on failures and maintenance are included. The operation of the system across time is best modeled by a discrete event approach with two basic events - failure and maintenance of the system. Each overall simulation run consists of introducing a particular model of the physical system, together with a maintenance policy, demand function, and mission lifetime. The system is then run through many passes, each pass corresponding to one mission and the model is re-initialized before each pass. Statistics are compiled at the end of each pass and after the last pass a report is printed. Items of interest typically include the time to first maintenance, total number of maintenance trips for each pass, average capability of the system, etc.
Boehm Test of Basic Concepts-Revised. Review.
ERIC Educational Resources Information Center
Padula, Janice
1988-01-01
The manual for the Boehm Test of Basic Concepts-Revised (1986) is reviewed. The test measures a child's knowledge of relational concepts. The revised version, eliminating some imperfections of the original, will continue to be a useful test of verbal concept acquisition. Cautions necessary while using the test are discussed. (SLD)
Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers
NASA Astrophysics Data System (ADS)
Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.
2003-12-01
An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical formulations as are necessary to express the concept clearly (Invention Phase). To further clarify the concept, exercises will be carried out using Web-accessible SEC mission data to develop facility in use of the mathematical formulations, stimulate a sense of participation in ongoing research, and expand on ways to introduce future pupils to the excitement of real-world exploration (Expansion Phase).
ERIC Educational Resources Information Center
Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-01-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri
2004-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.
NASA Astrophysics Data System (ADS)
Li, Shuhui; Chen, Shi; Gao, Chunqing; Willner, Alan E.; Wang, Jian
2018-02-01
Orbital angular momentum (OAM)-carrying beams have recently generated considerable interest due to their potential use in communication systems to increase transmission capacity and spectral efficiency. For OAM-based free-space optical (FSO) links, a critical challenge is the atmospheric turbulence that will distort the helical wavefronts of OAM beams leading to the decrease of received power, introducing crosstalk between multiple channels, and impairing link performance. In this paper, we review recent advances in turbulence effects compensation techniques for OAM-based FSO communication links. First, basic concepts of atmospheric turbulence and theoretical model are introduced. Second, atmospheric turbulence effects on OAM beams are theoretically and experimentally investigated and discussed. Then, several typical turbulence compensation approaches, including both adaptive optics-based (optical domain) and signal processing-based (electrical domain) techniques, are presented. Finally, key challenges and perspectives of compensation of turbulence-distorted OAM links are discussed.
Bioreactor concepts for cell culture-based viral vaccine production.
Gallo-Ramírez, Lilí Esmeralda; Nikolay, Alexander; Genzel, Yvonne; Reichl, Udo
2015-01-01
Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.
Frietze, Seth; Leatherman, Judith
2014-03-01
New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on navigating a genome database.
Quantum vision in three dimensions
NASA Astrophysics Data System (ADS)
Roth, Yehuda
We present four models for describing a 3-D vision. Similar to the mirror scenario, our models allow 3-D vision with no need for additional accessories such as stereoscopic glasses or a hologram film. These four models are based on brain interpretation rather than pure objective encryption. We consider the observer "subjective" selection of a measuring device and the corresponding quantum collapse into one of his selected states, as a tool for interpreting reality in according to the observer concepts. This is the basic concept of our study and it is introduced in the first model. Other models suggests "soften" versions that might be much easier to implement. Our quantum interpretation approach contribute to the following fields. In technology the proposed models can be implemented into real devices, allowing 3-D vision without additional accessories. Artificial intelligence: In the desire to create a machine that exchange information by using human terminologies, our interpretation approach seems to be appropriate.
The contribution of new findings and ideas to the old principles of teratology.
Jelínek, Richard
2005-01-01
Although the last generally accepted concept of principles of teratology was issued more than 30 years ago, the cause of less than 50% of all congenital anomalies is known and no substantial change in their incidence has been observed worldwide. In the meantime, powerful techniques of molecular biology as well as many sophisticated preventive measures have been introduced with marginal effects on the overall birth defects numbers. In this paper, we follow the history of basic concepts of teratology starting with Isidore Geoffroy Saint-Hilaire and Dareste, followed in the 20th century by James Wilson. Since that time no bright and completely new idea, which would deserve the name principle, has emerged. The advanced molecular studies support the long-existing principles and disclose the great variability of individuals and their responses to adverse exposures. In this way, the future of teratology counseling may be seen in a deep analysis of any individual case.
Split-ball resonator as a three-dimensional analogue of planar split-rings
NASA Astrophysics Data System (ADS)
Kuznetsov, Arseniy I.; Miroshnichenko, Andrey E.; Hsing Fu, Yuan; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Ying Pan, Zhen; Kivshar, Yuri; Pickard, Daniel S.; Luk'Yanchuk, Boris
2014-01-01
Split-ring resonators are basic elements of metamaterials, which can induce a magnetic response in metallic nanosctructures. Tunability of such response up to the visible frequency range is still a challenge. Here we introduce the concept of the split-ball resonator and demonstrate the strong magnetic response in the visible for both gold and silver spherical plasmonic nanoparticles with nanometre scale cuts. We realize this concept experimentally by employing the laser-induced transfer method to produce near-perfect metallic spheres and helium ion beam milling to make cuts with the clean straight sidewalls and nanometre resolution. The magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. This method can be applied to the structuring of arbitrary three-dimensional features on the surface of nanoscale resonators. It provides new ways for engineering hybrid resonant modes and ultra-high near-field enhancement.
Classification of proteins: available structural space for molecular modeling.
Andreeva, Antonina
2012-01-01
The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.
Demiris, A M; Meinzer, H P
1997-01-01
Whether or not a computerized system enhances the conditions of work in the application domain, very much demands on the user interface. Graphical user interfaces seem to attract the interest of the users but mostly ignore some basic rules of visual information processing thus leading to systems which are difficult to use, lowering productivity and increasing working stress (cognitive and work load). In this work we present some fundamental ergonomic considerations and their application to the medical image processing and archiving domain. We introduce the extensions to an existing concept needed to control and guide the development of GUIs with respect to domain specific ergonomics. The suggested concept, called Model-View-Controller Constraints (MVCC), can be used to programmatically implement ergonomic constraints, and thus has some advantages over written style guides. We conclude with the presentation of existing norms and methods to evaluate user interfaces.
[Preliminarily application of content analysis to qualitative nursing data].
Liang, Shu-Yuan; Chuang, Yeu-Hui; Wu, Shu-Fang
2012-10-01
Content analysis is a methodology for objectively and systematically studying the content of communication in various formats. Content analysis in nursing research and nursing education is called qualitative content analysis. Qualitative content analysis is frequently applied to nursing research, as it allows researchers to determine categories inductively and deductively. This article examines qualitative content analysis in nursing research from theoretical and practical perspectives. We first describe how content analysis concepts such as unit of analysis, meaning unit, code, category, and theme are used. Next, we describe the basic steps involved in using content analysis, including data preparation, data familiarization, analysis unit identification, creating tentative coding categories, category refinement, and establishing category integrity. Finally, this paper introduces the concept of content analysis rigor, including dependability, confirmability, credibility, and transferability. This article elucidates the content analysis method in order to help professionals conduct systematic research that generates data that are informative and useful in practical application.
Chinese-Cantonese Basic Course.
ERIC Educational Resources Information Center
Defense Language Inst., Washington, DC.
This nine-volume basic course in Cantonese Chinese is designed for 47 weeks of intense audiolingual instruction. The first book of the series introduces the pronunciation, with emphasis on the tone system, and the basic aspects of the grammar. Also introduced in this volume is the romanization system used in this series (the U.S. Army Language…
Roth, Jenny; Steffens, Melanie C; Vignoles, Vivian L
2018-01-01
The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility) as associative connections. The model builds on two cognitive principles, balance-congruity and imbalance-dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification) depends in part on the (in)compatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (in)compatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias.
Roth, Jenny; Steffens, Melanie C.; Vignoles, Vivian L.
2018-01-01
The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility) as associative connections. The model builds on two cognitive principles, balance–congruity and imbalance–dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification) depends in part on the (in)compatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (in)compatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias. PMID:29681878
Perosa, Alvise; Guidi, Sandro; Cattelan, Lisa
2016-01-01
Summary The use of ionic liquids (ILs) as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic) activation of reactants. PMID:27829898
LIANG, Kevin E; BERNSTEIN, Ilia; KATO, Yoko; KAWASE, Takeshi; HODAIE, Mojgan
2016-01-01
Low- and middle-income countries (LMICs) face a critical shortage of basic surgical services. Adequate neurosurgical services can have a far-reaching positive impact on society’s health care and, consequently, the economic development in LMICs. Yet surgery, and specifically neurosurgery has been a long neglected sector of global health. This article reviews the current efforts to enhance neurosurgery education in LMICs and outlines ongoing approaches for improvement. In addition, we introduce the concept of a sustainable and cost-effective model to enhance neurosurgical resources in LMICs and describe the process and methods of online curriculum development. PMID:27616319
Present situation and trend of precision guidance technology and its intelligence
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Liu, Tiandong
2017-11-01
This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.
The application of laser Doppler velocimetry to trailing vortex definition and alleviation
NASA Technical Reports Server (NTRS)
Orloff, K. L.; Grant, G. R.
1973-01-01
A laser Doppler velocimeter whose focal volume can be rapidly traversed through a flowfield has been used to overcome the problem introduced by excursions of the central vortex filament within a wind tunnel test section. The basic concepts of operation of the instrument are reviewed and data are presented which accurately define the trailing vortex from a square-tipped rectangular wing. Measured axial and tangential velocity distributions are given, both with and without a vortex dissipator panel installed at the wing tip. From the experimental data, circulation and vorticity distributions are obtained and the effect of turbulence injection into the vortex structure is discussed.
NASA Astrophysics Data System (ADS)
Pour Yousefian Barfeh, Davood; Ebron, Jonalyn G.; Pabico, Jaderick P.
2018-02-01
In this study researchers pay attention to the essence of Insertion Sort and propose a sorter in Membrane Computing. This research shows how a theoretical computing device same as Membrane Computing can perform the basic concepts same as sorting. In this regard, researches introduce conditional reproduction rule such that each membrane can reproduce another membrane having same structure with the original membrane. The researchers use the functionality of comparator P system as a basis in which two multisets are compared and then stored in two adjacent membranes. And finally, the researchers present the process of sorting as a collection of transactions implemented in four levels while each level has different steps.
PET kinetic analysis --pitfalls and a solution for the Logan plot.
Kimura, Yuichi; Naganawa, Mika; Shidahara, Miho; Ikoma, Yoko; Watabe, Hiroshi
2007-01-01
The Logan plot is a widely used algorithm for the quantitative analysis of neuroreceptors using PET because it is easy to use and simple to implement. The Logan plot is also suitable for receptor imaging because its algorithm is fast. However, use of the Logan plot, and interpretation of the formed receptor images should be regarded with caution, because noise in PET data causes bias in the Logan plot estimates. In this paper, we describe the basic concept of the Logan plot in detail and introduce three algorithms for the Logan plot. By comparing these algorithms, we demonstrate the pitfalls of the Logan plot and discuss the solution.
Electrochemistry, biosensors and microfluidics: a convergence of fields.
Rackus, Darius G; Shamsi, Mohtashim H; Wheeler, Aaron R
2015-08-07
Electrochemistry, biosensors and microfluidics are popular research topics that have attracted widespread attention from chemists, biologists, physicists, and engineers. Here, we introduce the basic concepts and recent histories of electrochemistry, biosensors, and microfluidics, and describe how they are combining to form new application-areas, including so-called "point-of-care" systems in which measurements traditionally performed in a laboratory are moved into the field. We propose that this review can serve both as a useful starting-point for researchers who are new to these topics, as well as being a compendium of the current state-of-the art for experts in these evolving areas.
On differential transformations between Cartesian and curvilinear (geodetic) coordinates
NASA Technical Reports Server (NTRS)
Soler, T.
1976-01-01
Differential transformations are developed between Cartesian and curvilinear orthogonal coordinates. Only matrix algebra is used for the presentation of the basic concepts. After defining the reference systems used the rotation (R), metric (H), and Jacobian (J) matrices of the transformations between cartesian and curvilinear coordinate systems are introduced. A value of R as a function of H and J is presented. Likewise an analytical expression for J(-1) as a function of H(-2) and R is obtained. Emphasis is placed on showing that differential equations are equivalent to conventional similarity transformations. Scaling methods are discussed along with ellipsoidal coordinates. Differential transformations between elipsoidal and geodetic coordinates are established.
Study on the tumor-induced angiogenesis using mathematical models.
Suzuki, Takashi; Minerva, Dhisa; Nishiyama, Koichi; Koshikawa, Naohiko; Chaplain, Mark Andrew Joseph
2018-01-01
We studied angiogenesis using mathematical models describing the dynamics of tip cells. We reviewed the basic ideas of angiogenesis models and its numerical simulation technique to produce realistic computer graphics images of sprouting angiogenesis. We examined the classical model of Anderson-Chaplain using fundamental concepts of mass transport and chemical reaction with ECM degradation included. We then constructed two types of numerical schemes, model-faithful and model-driven ones, where new techniques of numerical simulation are introduced, such as transient probability, particle velocity, and Boolean variables. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
The Effective Concepts on Students' Understanding of Chemical Reactions and Energy
ERIC Educational Resources Information Center
Ayyildiz, Yildizay; Tarhan, Leman
2012-01-01
The purpose of this study was to determine the relationship between the basic concepts related to the unit of "Chemical Reactions and Energy" and the sub-concepts underlying for meaningful learning of the unit and to investigate the effectiveness of them on students' learning achievements. For this purpose, the basic concepts of the unit…
Concept mapping enhances learning of biochemistry.
Surapaneni, Krishna M; Tekian, Ara
2013-03-05
Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.
Concept mapping enhances learning of biochemistry
Surapaneni, Krishna M.; Tekian, Ara
2013-01-01
Background Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Methods Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Results Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13–8.28 vs. 12.33–13.93, p<0.001). The students gave high positive ratings for the innovative course (93–100% agreement). Conclusion The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry. PMID:23464600
Quantum mechanical wavefunction: visualization at undergraduate level
NASA Astrophysics Data System (ADS)
Chhabra, Mahima; Das, Ritwick
2017-01-01
Quantum mechanics (QM) forms the most crucial ingredient of modern-era physical science curricula at undergraduate level. The abstract ideas involved in QM related concepts pose a challenge towards appropriate visualization as a consequence of their counter-intuitive nature and lack of experiment-assisted visualization tools. At the heart of the quantum mechanical formulation lies the concept of ‘wavefunction’, which forms the basis for understanding the behavior of physical systems. At undergraduate level, the concept of ‘wavefunction’ is introduced in an abstract framework using mathematical tools and therefore opens up an enormous scope for alternative conceptions and erroneous visualization. The present work is an attempt towards exploring the visualization models constructed by undergraduate students for appreciating the concept of ‘wavefunction’. We present a qualitative analysis of the data obtained from administering a questionnaire containing four visualization based questions on the topic of ‘wavefunction’ to a group of ten undergraduate-level students at an institute in India which excels in teaching and research of basic sciences. Based on the written responses, all ten students were interviewed in detail to unravel the exact areas of difficulty in visualization of ‘wavefunction’. The outcome of present study not only reveals the gray areas in students’ conceptualization, but also provides a plausible route to address the issues at the pedagogical level within the classroom.
Concept mapping enhances learning of biochemistry.
Surapaneni, KrishnaM; Tekian, Ara
2013-01-01
Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, p<0.001). The students gave high positive ratings for the innovative course (93-100% agreement). The new concept-mapping program resulted in higher academic performance compared to the traditional course and was perceived favorably by the students. They especially valued the use of concept mapping as learning tools to foster the relevance of biochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.
Contingency theoretic methodology for agent-based web-oriented manufacturing systems
NASA Astrophysics Data System (ADS)
Durrett, John R.; Burnell, Lisa J.; Priest, John W.
2000-12-01
The development of distributed, agent-based, web-oriented, N-tier Information Systems (IS) must be supported by a design methodology capable of responding to the convergence of shifts in business process design, organizational structure, computing, and telecommunications infrastructures. We introduce a contingency theoretic model for the use of open, ubiquitous software infrastructure in the design of flexible organizational IS. Our basic premise is that developers should change in the way they view the software design process from a view toward the solution of a problem to one of the dynamic creation of teams of software components. We postulate that developing effective, efficient, flexible, component-based distributed software requires reconceptualizing the current development model. The basic concepts of distributed software design are merged with the environment-causes-structure relationship from contingency theory; the task-uncertainty of organizational- information-processing relationships from information processing theory; and the concept of inter-process dependencies from coordination theory. Software processes are considered as employees, groups of processes as software teams, and distributed systems as software organizations. Design techniques already used in the design of flexible business processes and well researched in the domain of the organizational sciences are presented. Guidelines that can be utilized in the creation of component-based distributed software will be discussed.
Špelda, Daniel
2017-06-01
In the eighteenth century, the historiography of astronomy was part of a wider discussion concerning the history of the human spirit. The concept of the human spirit was very popular among Enlightenment authors because it gave the history of human knowledge continuity, unity and meaning. Using this concept, scientists and historians of science such as Montucla, Lalande, Bailly and Laplace could present the history of astronomy in terms of a progress towards contemporary science that was slow and could be interrupted at times, but was still constant, regular, and necessary. In my paper I intend to explain how the originally philosophical concept of the human spirit was transferred to the history of astronomy. I also introduce the basic principles to which the development of the spirit is subject in astronomy, according to historians of astronomy. The third part of the paper describes how historians of astronomy took into account the effect of social and natural factors on the history of astronomy. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the use of history of mathematics: an introduction to Galileo's study of free fall motion
NASA Astrophysics Data System (ADS)
Ponce Campuzano, Juan Carlos; Matthews, Kelly E.; Adams, Peter
2018-05-01
In this paper, we report on an experimental activity for discussing the concepts of speed, instantaneous speed and acceleration, generally introduced in first year university courses of calculus or physics. Rather than developing the ideas of calculus and using them to explain these basic concepts for the study of motion, we led 82 first year university students through Galileo's experiments designed to investigate the motion of falling bodies, and his geometrical explanation of his results, via simple dynamic geometric applets designed with GeoGebra. Our goal was to enhance the students' development of mathematical thinking. Through a scholarship of teaching and learning study design, we captured data from students before, during and after the activity. Findings suggest that the historical development presented to the students helped to show the growth and evolution of the ideas and made visible authentic ways of thinking mathematically. Importantly, the activity prompted students to question and rethink what they knew about speed and acceleration, and also to appreciate the novel concepts of instantaneous speed and acceleration at which Galileo arrived.
Radiological Dispersion Devices and Basic Radiation Science
ERIC Educational Resources Information Center
Bevelacqua, Joseph John
2010-01-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…
ERIC Educational Resources Information Center
Trumper, Ricardo
2006-01-01
In view of students' alternative conceptions about basic concepts in astronomy, we conducted a series of constructivist activities with future elementary and junior high school teachers aimed at changing their conceptions about the cause of seasonal changes, and of several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…
Survey and Method for Determination of Trajectory Predictor Requirements
NASA Technical Reports Server (NTRS)
Rentas, Tamika L.; Green, Steven M.; Cate, Karen Tung
2009-01-01
A survey of air-traffic-management researchers, representing a broad range of automation applications, was conducted to document trajectory-predictor requirements for future decision-support systems. Results indicated that the researchers were unable to articulate a basic set of trajectory-prediction requirements for their automation concepts. Survey responses showed the need to establish a process to help developers determine the trajectory-predictor-performance requirements for their concepts. Two methods for determining trajectory-predictor requirements are introduced. A fast-time simulation method is discussed that captures the sensitivity of a concept to the performance of its trajectory-prediction capability. A characterization method is proposed to provide quicker, yet less precise results, based on analysis and simulation to characterize the trajectory-prediction errors associated with key modeling options for a specific concept. Concept developers can then identify the relative sizes of errors associated with key modeling options, and qualitatively determine which options lead to significant errors. The characterization method is demonstrated for a case study involving future airport surface traffic management automation. Of the top four sources of error, results indicated that the error associated with accelerations to and from turn speeds was unacceptable, the error associated with the turn path model was acceptable, and the error associated with taxi-speed estimation was of concern and needed a higher fidelity concept simulation to obtain a more precise result
ERIC Educational Resources Information Center
Qudah, Ahmad Hassan
2016-01-01
The study aimed to detect the effect of using an educational site on the Internet in the collection of bachelor's students in the course of basic concepts in mathematics at Al al-Bayt University, and the study sample consisted of all students in the course basic concepts in mathematics in the first semester of the academic year 2014/2015 and the…
Development of a Multi-experience Approach in Introductory Soil and Vegetation Geography Courses.
ERIC Educational Resources Information Center
Limbird, Arthur
1982-01-01
Describes an introductory college level course in soil and vegetation which uses lecture, audiovisual tutorial, individualized instruction, field trips, films, and games. The course consists of three segments: basic concepts of soils, basic concepts of plants, and soil and vegetation concepts in a spatial context. (KC)
[Biometric bases: basic concepts of probability calculation].
Dinya, E
1998-04-26
The author gives or outline of the basic concepts of probability theory. The bases of the event algebra, definition of the probability, the classical probability model and the random variable are presented.
Identifying Students' Conceptions of Basic Principles in Sequence Stratigraphy
ERIC Educational Resources Information Center
Herrera, Juan S.; Riggs, Eric M.
2013-01-01
Sequence stratigraphy is a major research subject in the geosciences academia and the oil industry. However, the geoscience education literature addressing students' understanding of the basic concepts of sequence stratigraphy is relatively thin, and the topic has not been well explored. We conducted an assessment of 27 students' conceptions of…
Students' Conceptions of Function Transformation in a Dynamic Mathematical Environment
ERIC Educational Resources Information Center
Daher, Wajeeh; Anabousy, Ahlam
2015-01-01
The study of function transformations helps students understand the function concept which is a basic and main concept in mathematics, but this study is problematic to school students as well as college students, especially when transformations are performed on non-basic functions. The current research tried to facilitate grade 9 students'…
Outline of Basic Concepts in Anthropology. Publication No. 1.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Anthropology Curriculum Project.
This teaching aid outlines basic anthropological concepts described in the various units of the Anthropology Curriculum Project. The outline of important concepts to be learned is intended to be used by the teacher in conjunction with the other instructional materials in each unit. The introduction defines anthropology, its branches and purposes.…
A Concept Transformation Learning Model for Architectural Design Learning Process
ERIC Educational Resources Information Center
Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming
2016-01-01
Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…
NASA Astrophysics Data System (ADS)
Pearson, Richard L.
2016-10-01
We have developed Astronomy4Kids to help cultivate the next generation of scientists by using technology to reach every interested child in both formal and informal learning environments. This online video series fills the void of effective STEM education tools for children under the age of 8. Our first collection of videos discuss many planetary topics, including the following: planet and moon formation theories, solar and lunar eclipses, and the seasonal effect of the Earth's tilt. As education and outreach become a larger focus of groups such as AAS and NASA, it is imperative to include programs such as Astronomy4Kids to extend these initiatives to younger age groups.Traditionally, this age group has been viewed as too young to be introduced to physics and astronomy concepts. However, child development research is consistently demonstrating the amazing plasticity of a young child's mind: the younger one is introduced to a complex concept, the easier it is to grasp later on. Following the philosophies of Fred Rogers, we present children with a real, relatable, instructor allowing them to focus on the concepts being presented.The format of Astronomy4Kids includes short instruction video clips that usually include a hands-on activity that is easily reproduced at home or in the classroom. This permits flexibility in how the video series is utilized. Within formal classroom or after-school situations, teachers and instructors can lead the discussion and activity with help from the video and supplemental materials (e.g. worksheets, concept outlines, etc.). Informal environments permit the viewer to complete the tasks on their own or simply enjoy the presentation. The video series can be found on YouTube (under "Astronomy 4 Kids") or Facebook (at www.facebook.com/astronomy4kids); we have also expanded to Instagram (www.instragram.com/astronomy4kids) and Pinterest (www.pinterest.com/astronomy4kids).
Soekadar, Surjo R; Herring, Jim Don; McGonigle, David
2016-10-15
Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain. Copyright © 2016. Published by Elsevier Inc.
The Los Alamos universe: Using multimedia to promote laboratory capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kindel, J.
2000-03-01
This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists ofmore » three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.« less
Basic Measurement and Related Careers: Level C.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center for Vocational and Technical Education.
The teaching guide, part of a series of four, consists of learning experiences for use at the levels of grades 3 and 4 in mathematics. It focuses on the basic concepts of measurement and developing measurement skills in the early grades. It progresses to the concept of measurement by comparison and to developing basic volume measurement skills.…
The Effect of Home Related Science Activities on Students' Performance in Basic Science
ERIC Educational Resources Information Center
Obomanu, B. J.; Akporehwe, J. N.
2012-01-01
Our study investigated the effect of utilizing home related science activities on student's performance in some basic science concepts. The concepts considered were heart energy, ecology and mixtures. The sample consisted of two hundred and forty (240) basic junior secondary two (BJSS11) students drawn from a population of five thousand and…
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Kantak, A. V.
1979-01-01
The concept of the Master Slave Returnable Timing System (MSRTS) is presented which combines the advantages of the master slave (MS) and the Returnable Timing System (RTS) for time and frequency transfer. The basic idea of MSRTS is to send the time-frequency signal received at a particular node back to the sending node. The delay accumulated by this return signal is used to advance the phase of the master (sending) node thereby canceling the effect of the delay introduced by the path. The method can be used in highly accurate clock distribution systems required in avionics, computer communications, and large retrodirective phased arrays such as the Solar Power Satellite.
Some comments on particle image displacement velocimetry
NASA Technical Reports Server (NTRS)
Lourenco, L. M.
1988-01-01
Laser speckle velocimetry (LSV) or particle image displacement velocimetry, is introduced. This technique provides the simultaneous visualization of the two-dimensional streamline pattern in unsteady flows as well as the quantification of the velocity field over an entire plane. The advantage of this technique is that the velocity field can be measured over an entire plane of the flow field simultaneously, with accuracy and spatial resolution. From this the instantaneous vorticity field can be easily obtained. This constitutes a great asset for the study of a variety of flows that evolve stochastically in both space and time. The basic concept of LSV; methods of data acquisition and reduction, examples of its use, and parameters that affect its utilization are described.
Initiating a Reiki or CAM program in a healthcare organization--developing a business plan.
Vitale, Anne
2014-01-01
Complementary and alternative medicine (CAM) services, such as Reiki, continue to be offered to consumers in many hospitals and other health care organizations. There is growing interest among nurses, doctors, and other health care providers for the integration of CAM therapies into traditional settings. Health care organizations are responding to this need but may not know how to start CAM programs. Starting a Reiki program in a health care setting must be envisioned in a business model approach. This article introduces nurses and other health care providers to the basic concepts of business plan development and important steps to follow when starting a Reiki or CAM program.
Review of phase measuring deflectometry
Huang, Lei; Idir, Mourad; Zuo, Chao; ...
2018-04-07
As a low cost, full-field three-dimensional shape measurement technique with high dynamic range, Phase Measuring Deflectometry (PMD) has been studied and improved to be a simple and effective manner to inspect specular reflecting surfaces. In this review, the fundamental principle and the basic concepts of PMD technique are introduced and followed by a brief overview of its key developments since it was first proposed. In addition, the similarities and differences compared with other related techniques are discussed to highlight the distinguishing features of the PMD technique. In conclusion, we will address the major challenges, the existing solutions and the remainingmore » limitations in this technique to provide some suggestions for potential future investigations.« less
Rice-obot 1: An intelligent autonomous mobile robot
NASA Technical Reports Server (NTRS)
Defigueiredo, R.; Ciscon, L.; Berberian, D.
1989-01-01
The Rice-obot I is the first in a series of Intelligent Autonomous Mobile Robots (IAMRs) being developed at Rice University's Cooperative Intelligent Mobile Robots (CIMR) lab. The Rice-obot I is mainly designed to be a testbed for various robotic and AI techniques, and a platform for developing intelligent control systems for exploratory robots. Researchers present the need for a generalized environment capable of combining all of the control, sensory and knowledge systems of an IAMR. They introduce Lisp-Nodes as such a system, and develop the basic concepts of nodes, messages and classes. Furthermore, they show how the control system of the Rice-obot I is implemented as sub-systems in Lisp-Nodes.
NASA Astrophysics Data System (ADS)
Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.
2011-09-01
This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.
Napier, Bruce
2012-03-01
A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant.
Schultze-Lutter, F
2016-12-01
The early detection of psychoses has become increasingly relevant in research and clinic. Next to the ultra-high risk (UHR) approach that targets an immediate risk of developing frank psychosis, the basic symptom approach that targets the earliest possible detection of the developing disorder is being increasingly used worldwide. The present review gives an introduction to the development and basic assumptions of the basic symptom concept, summarizes the results of studies on the specificity of basic symptoms for psychoses in different age groups as well as on studies of their psychosis-predictive value, and gives an outlook on future results. Moreover, a brief introduction to first recent imaging studies is given that supports one of the main assumptions of the basic symptom concept, i. e., that basic symptoms are the most immediate phenomenological expression of the cerebral aberrations underlying the development of psychosis. From this, it is concluded that basic symptoms might be able to provide important information on future neurobiological research on the etiopathology of psychoses. © Georg Thieme Verlag KG Stuttgart · New York.
"Blame" Concept in Phraseology: Cognitive-Semantic Aspect (Based on the French Language)
ERIC Educational Resources Information Center
Zalavina, Tatyana Y.; Kisel, Olesya V.
2016-01-01
Phraseology is one of the basic and most important objects of study in cognitive linguistics. The article deals with verbal fixed phrases in their correlation with the cognitive structure of knowledge--a concept. The used definitional analysis method to identify the basic notions of the conceptual content of the concept of blame and basic…
ERIC Educational Resources Information Center
Trumper, Ricardo
2006-01-01
Bearing in mind students' misconceptions about basic concepts in astronomy, the present study conducted a series of constructivist activities aimed at changing future elementary and junior high school teachers' conceptions about the cause of seasonal changes, and several characteristics of the Sun-Earth-Moon relative movements like Moon phases,…
ERIC Educational Resources Information Center
Yücel, Elif Özata; Özkan, Mulis
2015-01-01
In this study, we determined cognitive structures and misconceptions about basic ecological concepts by using "word association" tests on secondary school students, age between 12-14 years. Eighty-nine students participated in this study. Before WAT was generated, basic ecological concepts that take place in the secondary science…
A New Critical State Model for Geomechanical Behavior of Methane Hydrate-Bearing Sands
NASA Astrophysics Data System (ADS)
Lin, J. S.; Xing, P.; Rutqvist, J.; Seol, Y.; Choi, J. H.
2014-12-01
Methane hydrate bearing sands behave like sands once the hydrate has dissociated, but could exhibit a substantial increase in the shear strength, stiffness and dilatancy as the degree of hydrate saturation increases. A new critical state model was developed that incorporates the spatially mobilized plane (SMP) concept, which has been proven effective in modeling mechanical behavior of sands. While this new model was built on the basic constructs of the critical state model, important enhancements were introduced. The model adopted the t-stress concept, which defined the normal and shear stress on the SMP, in describing the plastic behavior of the soil. In this connection the versatile Matsuoka-Nakai yield criterion was also employed, which defined the general three dimensional yield behavior. The resulting constitutive law was associated in the t-stress space, but became non-associated in the conventional p-q stress space as it should be for sands. The model also introduced a generalized degree of hydrate saturation concept that was modified from the pioneering work of the Cambridge group. The model gives stress change when the sands are subjected to straining, and/or to hydrate saturation changes. The performance of the model has been found satisfactory using data from laboratory triaxial tests on reconstituted samples and core samples taken from Nankai Trough, Japan. The model has been implemented into FLAC3D. A coupling example with the multiphase flow code, TOUGH+, is presented which simulates the mechanical behavior of a sample when the surrounding temperature has been raised, and the hydrate undergoes state change and no longer resides in the stability zone.
Conceptual Hierarchies in a Flat Attractor Network
O’Connor, Christopher M.; Cree, George S.; McRae, Ken
2009-01-01
The structure of people’s conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable
Hauge-Nilsen, Kristin; Keller, Detlef
2015-01-01
Starting from a single generic limit value, the threshold of toxicological concern (TTC) concept has been further developed over the years, e.g., by including differentiated structural classes according to the rules of Cramer et al. (Food Chem Toxicol 16: 255-276, 1978). In practice, the refined TTC concept of Munro et al. (Food Chem Toxicol 34: 829-867, 1996) is often applied. The purpose of this work was to explore the possibility of refining the concept by introducing additional structure-activity relationships and available toxicity data. Computer modeling was performed using the OECD Toolbox. No observed (adverse) effect level (NO(A)EL) data of 176 substances were collected in a basic data set. New subgroups were created applying the following criteria: extended Cramer rules, low bioavailability, low acute toxicity, no protein binding affinity, and consideration of predicted liver metabolism. The highest TTC limit value of 236 µg/kg/day was determined for a subgroup that combined the criteria "no protein binding affinity" and "predicted liver metabolism." This value was approximately eight times higher than the original Cramer class 1 limit value of 30 µg/kg/day. The results of this feasibility study indicate that inclusion of the proposed criteria may lead to improved TTC values. Thereby, the applicability of the TTC concept in risk assessment could be extended which could reduce the need to perform animal tests.
Modeling Spatial Dependencies and Semantic Concepts in Data Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju
Data mining is the process of discovering new patterns and relationships in large datasets. However, several studies have shown that general data mining techniques often fail to extract meaningful patterns and relationships from the spatial data owing to the violation of fundamental geospatial principles. In this tutorial, we introduce basic principles behind explicit modeling of spatial and semantic concepts in data mining. In particular, we focus on modeling these concepts in the widely used classification, clustering, and prediction algorithms. Classification is the process of learning a structure or model (from user given inputs) and applying the known model to themore » new data. Clustering is the process of discovering groups and structures in the data that are ``similar,'' without applying any known structures in the data. Prediction is the process of finding a function that models (explains) the data with least error. One common assumption among all these methods is that the data is independent and identically distributed. Such assumptions do not hold well in spatial data, where spatial dependency and spatial heterogeneity are a norm. In addition, spatial semantics are often ignored by the data mining algorithms. In this tutorial we cover recent advances in explicitly modeling of spatial dependencies and semantic concepts in data mining.« less
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri
2005-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.
2003-01-01
As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.
Stochik, A M; Zatravkin, S N
2015-01-01
The article affirms that onset of revision of picture of analyzed reality, methodological approaches to studying of vital activity of human organism and philosophical basics of medical science refers to 1878 and is related to publishing of "The course of general physiology" by French physiologist Claude Bernard. The implemented analysis of the text of this work permit to establish that C. Bernard undertook an attempt to introduce conception of human organism as a processing system being self-reproduced as. a result of interaction with environment due to mechanisms of self-regulation. The necessity was substantiated to make experiment the leading method of cognition of vital activity. The living wholeness (organism, cell) was proposed to be an object of experimentation. In this living wholeness its natural capacities to self-regulation of main vital processes can be preserved at its maximum. The new senses were introduced into ontological categories of thing, process, causality, portion and whole.
A Web simulation of medical image reconstruction and processing as an educational tool.
Papamichail, Dimitrios; Pantelis, Evaggelos; Papagiannis, Panagiotis; Karaiskos, Pantelis; Georgiou, Evangelos
2015-02-01
Web educational resources integrating interactive simulation tools provide students with an in-depth understanding of the medical imaging process. The aim of this work was the development of a purely Web-based, open access, interactive application, as an ancillary learning tool in graduate and postgraduate medical imaging education, including a systematic evaluation of learning effectiveness. The pedagogic content of the educational Web portal was designed to cover the basic concepts of medical imaging reconstruction and processing, through the use of active learning and motivation, including learning simulations that closely resemble actual tomographic imaging systems. The user can implement image reconstruction and processing algorithms under a single user interface and manipulate various factors to understand the impact on image appearance. A questionnaire for pre- and post-training self-assessment was developed and integrated in the online application. The developed Web-based educational application introduces the trainee in the basic concepts of imaging through textual and graphical information and proceeds with a learning-by-doing approach. Trainees are encouraged to participate in a pre- and post-training questionnaire to assess their knowledge gain. An initial feedback from a group of graduate medical students showed that the developed course was considered as effective and well structured. An e-learning application on medical imaging integrating interactive simulation tools was developed and assessed in our institution.
Jin, Hao; Huang, Hai; Dong, Wei; Sun, Jian; Liu, Anding; Deng, Meihong; Dirsch, Olaf; Dahmen, Uta
2012-08-01
As repeatedly operating rat liver transplantation (LTx) until animals survive is inefficient in respect to time and use of living animals, we developed a new training concept. METHODS AND CONCEPTS: Training was divided into four phases: pretraining-phase, basic-microsurgical-training phase, advanced-microsurgical-training phases, and expert-microsurgical-training phase. Two "productivity-phases" were introduced right after the basic- and advanced-microsurgical-training phases, respectively, to allow the trainee to accumulate experience and to be scientifically productive before proceeding to a more complex procedure. PDCA cycles and quality criteria were employed to control the learning-process and the surgical quality. Predefined quality criteria included survival rate, intraoperative, postoperative, and histologic parameters. Three trainees participated in the LTx training and achieved their first survival record within 4-10 operations. All of them completely mastered the LTx in fewer procedures (31, 60 and 26 procedures) as reported elsewhere, and the more complex arterialized or partial LTx were mastered by trainee A and B in additional 9 and 13 procedures, respectively. Fast progress was possible due to a high number of training in the 2 Productivity-phases. The stepwise and PDCA-based training program increased the efficiency of LTx training, whereas the constant application and development of predefined quality criteria guaranteed the quality of microsurgery. Copyright © 2012 Elsevier Inc. All rights reserved.
Autism: a transdiagnostic, dimensional, construct of reasoning?
Aggernaes, Bodil
2018-03-01
The concept of autism has changed across time, from the Bleulerian concept, which defined it as one of several symptoms of dementia praecox, to the present-day concept representing a pervasive development disorder. The present theoretical contribution to this special issue of EJN on autism introduces new theoretical ideas and discusses them in light of selected prior theories, clinical examples, and recent empirical evidence. The overall aim is to identify some present challenges of diagnostic practice and autism research and to suggest new pathways that may help direct future research. Future research must agree on the definitions of core concepts such as autism and psychosis. A possible redefinition of the concept of autism may be a condition in which the rationale of an individual's behaviour differs qualitatively from that of the social environment due to characteristic cognitive impairments affecting reasoning. A broad concept of psychosis could focus on deviances in the experience of reality resulting from impairments of reasoning. In this light and consistent with recent empirical evidence, it may be appropriate to redefine dementia praecox as a developmental disorder of reasoning. A future challenge of autism research may be to develop theoretical models that can account for the impact of complex processes acting at the social level in addition to complex neurobiological and psychological processes. Such models could profit from a distinction among processes related to (i) basic susceptibility, (ii) adaptive processes and (iii) decompensating factors involved in the development of manifest illness. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
System control of an autonomous planetary mobile spacecraft
NASA Technical Reports Server (NTRS)
Dias, William C.; Zimmerman, Barbara A.
1990-01-01
The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced.
[Introductory concepts of health economics and the social impact of alcohol abuse].
Moraes, Edilaine; Campos, Geraldo M; Figlie, Neliana B; Laranjeira, Ronaldo R; Ferraz, Marcos B
2006-12-01
Brazilian society bears high economic costs in view of the problems resulting from the alcohol consumption. There is a lack of economic studies into alcohol misuse or dependence in Brazil due to the limited financial resources, despite the huge health problems the country has been facing. This paper aims to introduce basic concepts of Heath Economics to health care practitioners, such as: Complete and Incomplete Economic Evaluation, Disease Costs, Cost Comparison, Types of Evaluation (cost-minimisation, cost-effectiveness, cost-utility, and cost-benefice), Point of View Analysis (from patient, health institution, Ministry of Health, or society), Types of Costs (direct, indirect and intangible), and other ones. In addition, research data on the impact of the alcohol consumption on the Brazilian society is described. We do not intend to exhaust the subjects addressed in this paper, but emphasise the need for more national researches that link the economic evaluation to the alcohol addiction issue in order to seek maximum efficiency by maximising the health care and minimising the scarce health system resources.
Investigation of advanced phase-shifting projected fringe profilometry techniques
NASA Astrophysics Data System (ADS)
Liu, Hongyu
1999-11-01
The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process. The techniques coping with two major effects of surface reflectivity variations are then introduced. Some fundamental problems in the proposed technique are studied through simulations. Chapter 6 briefly summarizes the major contributions of the current work and provides some suggestions for the future research.
Theoretical approach to society-wide environmental quality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayano, K.
1982-01-01
The study outlines the basis for a theory of societal control of environmental quality in the US based on the concepts and philosophy of company-wide quality control which has developed in Japan as a cross-disciplinary approach to problem-solving in the industrial realm. The basic concepts are: 1) every member of society, as a producer of environmental products and services for future generations, in principle has the responsibility to control the quality of his output; 2) environment quality is the quality of life, or the fitness of use of environment for humans; and 3) societal control is any activity necessary formore » quality production of environmental products and services continuously or in the long run. A motivator-hygiene theory of environmental quality is identified, and a proposal is made that the policy provision must be formulated differently between those aimed at hygiene factors of environmental quality and those aimed at motivators, the former in a collectivistic manner, the latter as an individual problem. The concept of societal cost of environmental quality is introduced. Based on the motivator-hygiene theory of environmental quality, the collectivistic and individual approaches are differentiated and discussed.« less
The Constellations of the Zodiac: Astronomy for Low Vision and Blind People
NASA Astrophysics Data System (ADS)
Garcia, B.; Cicero, A.; Farrando, M.; Bruno, P.
2006-08-01
One thinks, in general, there exist areas of the knowledge to which it is not possible to be acceded if one of the senses is diminished. Nevertheless, the reality is far from this false concept: it is not necessary to hear to compose music, nor to see to come near to the starred sky. This book has the purpose to introduce to the readers with visual difficulties the amazing world of astronomy, by means of the transmission of basic concepts of positional astronomy (cardinal points, Earth movements, apparent movement of the celestial sphere), with special emphasis in: movement of precession, the concept of stellar magnitude, its representation in celestial charts, and relation to mythology. On the other hand, the figures associated with the 13 constellations in the region of the plane of the ecliptic are described. The texts and the images are displayed in two formats: for visually diminished people, one worked on the basis of the original engravings of the Uranographia by Hevelius (1690). These were adapted and simplified for their better understanding, and a recommended font size. For blind people, we use tactile feature for the figures and Braille for the text.
Dark Skies, Bright Kids Year 6
NASA Astrophysics Data System (ADS)
Liss, Sandra; Troup, Nicholas William; Johnson, Kelsey E.; Barcos-Munoz, Loreto D.; Beaton, Rachael; Bittle, Lauren; Borish, Henry J.; Burkhardt, Andrew; Corby, Joanna; Dean, Janice; Hancock, Danielle; King, Jennie; Prager, Brian; Romero, Charles; Sokal, Kimberly R.; Stierwalt, Sabrina; Wenger, Trey; Zucker, Catherine
2015-01-01
Now entering our sixth year of operation, Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in central Virginia through fun, hands-on activities that introduce basic Astronomy concepts beyond Virginia's Standards of Learning. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.DSBK has amassed over 15,000 contact hours since 2009 and we continue to broaden our impact. One important step we have taken in the past year is to establish a graduate student led assessment program to identify and implement directed learning goals for DSBK outreach. The collection of student workbooks, observations, and volunteer surveys indicates broad scale success for the program both in terms of student learning and their perception of science. The data also reveal opportunities to improve our organizational and educational practices to maximize student achievement and overall volunteer satisfaction for DSBK's future clubs and outreach endeavors.
Dark Skies, Bright Kids Year 9
NASA Astrophysics Data System (ADS)
Burkhardt, Andrew Michael; Matthews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest
2018-01-01
We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.
Evaluation of natural language processing systems: Issues and approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guida, G.; Mauri, G.
This paper encompasses two main topics: a broad and general analysis of the issue of performance evaluation of NLP systems and a report on a specific approach developed by the authors and experimented on a sample test case. More precisely, it first presents a brief survey of the major works in the area of NLP systems evaluation. Then, after introducing the notion of the life cycle of an NLP system, it focuses on the concept of performance evaluation and analyzes the scope and the major problems of the investigation. The tools generally used within computer science to assess the qualitymore » of a software system are briefly reviewed, and their applicability to the task of evaluation of NLP systems is discussed. Particular attention is devoted to the concepts of efficiency, correctness, reliability, and adequacy, and how all of them basically fail in capturing the peculiar features of performance evaluation of an NLP system is discussed. Two main approaches to performance evaluation are later introduced; namely, black-box- and model-based, and their most important characteristics are presented. Finally, a specific model for performance evaluation proposed by the authors is illustrated, and the results of an experiment with a sample application are reported. The paper concludes with a discussion on research perspective, open problems, and importance of performance evaluation to industrial applications.« less
ERIC Educational Resources Information Center
Chu, Hye-Eun; Treagust, David F.; Chandrasegaran, A. L.
2009-01-01
A large scale study involving 1786 year 7-10 Korean students from three school districts in Seoul was undertaken to evaluate their understanding of basic optics concepts using a two-tier multiple-choice diagnostic instrument consisting of four pairs of items, each of which evaluated the same concept in two different contexts. The instrument, which…
Orthodontics for the dog. Bite evaluation, basic concepts, and equipment.
Ross, D L
1986-09-01
Evaluation of canine occlusion (an occlusal evaluation table is included), growth patterns of the head, basic concepts of orthodontics such as how teeth move, length of treatment, and limits to movements, and equipment and materials are considered in this article.
Chicano Alternative Education.
ERIC Educational Resources Information Center
Galicia, H. Homero; Almaguer, Clementina
Alternative schooling is challenging some basic notions of curriculum, operation, and structure of traditional schools; it is not challenging the basic concept of schooling. Chicano alternative education, an elusive concept, lacks a precise definition. Chicano alternative schools reflect a vast diversity in structure, focus, and goals. The Chicano…
Del Pinal, Guillermo; Reuter, Kevin
2017-04-01
The concepts expressed by social role terms such as artist and scientist are unique in that they seem to allow two independent criteria for categorization, one of which is inherently normative (Knobe, Prasada, & Newman, 2013). This study presents and tests an account of the content and structure of the normative dimension of these "dual character concepts." Experiment 1 suggests that the normative dimension of a social role concept represents the commitment to fulfill the idealized basic function associated with the role. Background information can affect which basic function is associated with each social role. However, Experiment 2 indicates that the normative dimension always represents the relevant commitment as an end in itself. We argue that social role concepts represent the commitments to basic functions because that information is crucial to predict the future social roles and role-dependent behavior of others. Copyright © 2016 Cognitive Science Society, Inc.
Introducing Optical Concepts in Electrical Engineering.
ERIC Educational Resources Information Center
Daneshvar, K.; Coleman, R.
The expansion in the fields of optical engineering and optoelectronics has made it essential to introduce optical engineering concepts into undergraduate courses and curricula. Because of limits on the number of course requirements for the BS degree, it is not clear how these topics should be introduced without replacing some of the traditional…
ERIC Educational Resources Information Center
Mercer County Community Coll., Trenton, NJ.
Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…
Skeletal muscle design to meet functional demands
Lieber, Richard L.; Ward, Samuel R.
2011-01-01
Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties. PMID:21502118
Characterization of complex networks by higher order neighborhood properties
NASA Astrophysics Data System (ADS)
Andrade, R. F. S.; Miranda, J. G. V.; Pinho, S. T. R.; Lobão, T. P.
2008-01-01
A concept of higher order neighborhood in complex networks, introduced previously [Phys. Rev. E 73, 046101 (2006)], is systematically explored to investigate larger scale structures in complex networks. The basic idea is to consider each higher order neighborhood as a network in itself, represented by a corresponding adjacency matrix, and to settle a plenty of new parameters in order to obtain a best characterization of the whole network. Usual network indices are then used to evaluate the properties of each neighborhood. The identification of high order neighborhoods is also regarded as intermediary step towards the evaluation of global network properties, like the diameter, average shortest path between node, and network fractal dimension. Results for a large number of typical networks are presented and discussed.
First principles for financial modeling in medicine.
Lexa, Frank James; Berlin, Jonathan W
2005-03-01
This article provides an overview of some of the core issues in business for physicians and is intended as an introduction. No prior understanding of business processes, finance, or accounting will be assumed or expected. The impetus for this work is the changing nature of medical practice in the United States in the past 20 years. Organizational changes and financial pressures challenge those of us in medicine as never before. For the vast majority of physicians, these realms are outside the scope of our traditional training and expertise. This article will provide an introduction to understanding these issues, starting with misconceptions about the overlap between medicine and finance. We will then introduce core concepts of cash vs. revenue, risk and uncertainty, and basic financial modeling.
Application of Contact Mode AFM to Manufacturing Processes
NASA Astrophysics Data System (ADS)
Giordano, Michael A.; Schmid, Steven R.
A review of the application of contact mode atomic force microscopy (AFM) to manufacturing processes is presented. A brief introduction to common experimental techniques including hardness, scratch, and wear testing is presented, with a discussion of challenges in the extension of manufacturing scale investigations to the AFM. Differences between the macro- and nanoscales tests are discussed, including indentation size effects and their importance in the simulation of processes such as grinding. The basics of lubrication theory are presented and friction force microscopy is introduced as a method of investigating metal forming lubrication on the nano- and microscales that directly simulates tooling/workpiece asperity interactions. These concepts are followed by a discussion of their application to macroscale industrial manufacturing processes and direct correlations are made.
What conceptual spaces can do for Carnap's late inductive logic.
Sznajder, Marta
2016-04-01
In the last published account of his late inductive logic, the Basic System of Inductive Logic, Rudolf Carnap introduced a new element to the systems of inductive logic, namely the so-called attribute spaces. These geometrical structures model the meanings of the predicates of the object language and have a similar structure as the conceptual spaces employed by cognitive scientists like Peter Gärdenfors. I show how the development of the theory of conceptual spaces helps us to see the addition of attribute spaces as a step forward in explicating the concept of confirmation. I discuss the differences and similarities of the two theories and investigate the possibilities for developing further connections. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lotz, Christoph; Wessarges, Yvonne; Hermsdorf, Jörg; Ertmer, Wolfgang; Overmeyer, Ludger
2018-04-01
Through the striving of humanity into space, new production processes and technologies for the use under microgravity will be essential in the future. Production of objects in space demands for new processes, like additive manufacturing. This paper presents the concept and the realization for a new machine to investigate microgravity production processes on earth. The machine is based on linear long stator drives and a vacuum chamber carrying up to 1000 kg. For the first time high repetition rate and associated low experimental costs can provide basic research. The paper also introduces the substrate-free additive manufacturing as a future research topic and one of our primary application.
XRayView: a teaching aid for X-ray crystallography.
Phillips, G N
1995-10-01
A software package, XRayView, has been developed that uses interactive computer graphics to introduce basic concepts of x-ray diffraction by crystals, including the reciprocal lattice, the Ewald sphere construction, Laue cones, the wavelength dependence of the reciprocal lattice, primitive and centered lattices and systematic extinctions, rotation photography. Laue photography, space group determination and Laue group symmetry, and the alignment of crystals by examination of reciprocal space. XRayView is designed with "user-friendliness" in mind, using pull-down menus to control the program. Many of the experiences of using real x-ray diffraction equipment to examine crystalline diffraction can be simulated. Exercises are available on-line to guide the users through many typical x-ray diffraction experiments.
Some thoughts concerning large load-carrying vehicles
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1983-01-01
Some implications relative to combat operations and force sustainability into the twenty-first century are discussed. The basic conjecture is that, sometime in the future, secure overseas basing may be denied to the United States by the Soviet Union or by unfriendly, unstable governments. In that event, the support of future battle itself, may be conducted from the continental U.S. and would introduce requirements for large, long-range, efficient, and sometimes, fast air vehicles. Some unusual design concepts and the technology requirements for such vehicles are suggested. It is concluded that, while much of the required technology is already being pursued, further advanced should be expected and sought in improved aerodynamics, propulsion, structures, and avionics with a view toward increased efficiency, utility, and affordability.
Diffusion in randomly perturbed dissipative dynamics
NASA Astrophysics Data System (ADS)
Rodrigues, Christian S.; Chechkin, Aleksei V.; de Moura, Alessandro P. S.; Grebogi, Celso; Klages, Rainer
2014-11-01
Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic continuous time random walk theory.
Some basic results on the sets of sequences with geometric calculus
NASA Astrophysics Data System (ADS)
Türkmen, Cengiz; Başar, Feyzi
2012-08-01
As an alternative to the classical calculus, Grossman and Katz [Non-Newtonian Calculus, Lee Press, Pigeon Cove, Massachusetts, 1972] introduced the non-Newtonian calculus consisting of the branches of geometric, anageometric and bigeometric calculus. Following Grossman and Katz, we construct the field C(G) of geometric complex numbers and the concept of geometric metric. Also we give the triangle and Minkowski's inequalities in the sense of geometric calculus. Later we respectively define the sets w(G), ℓ∞(G), c(G), c0(G) and ℓp(G) of all, bounded, convergent, null and p-absolutely summable sequences, in the sense of geometric calculus and show that each of the set forms a complete vector space on the field C(G).
Zhang, Jianhua
2015-01-01
Autophagy is a lysosomal mediated degradation activity providing an essential mechanism for recycling cellular constituents, and clearance of excess or damaged lipids, proteins and organelles. Autophagy involves more than 30 proteins and is regulated by nutrient availability, and various stress sensing signaling pathways. This article provides an overview of the mechanisms and regulation of autophagy, its role in health and diseases, and methods for its measurement. Hopefully this teaching review together with the graphic illustrations will be helpful for instructors teaching graduate students who are interested in grasping the concepts and major research areas and introducing recent developments in the field. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Assessment of microbiology students' progress with an audience response system.
Chaudhry, M Ahmad
2011-01-01
The development of new approaches to teaching of large lecture courses is needed. Today's classroom has a wide range of students including high-achieving motivated learners, students struggling to understand basic concepts, and learning-challenged students. Many of these students can be lost in large classes under the shadow of the high-achieving extroverted students who dominate classroom question-and-answer sessions. Measuring a student's understanding and achievement of content standards becomes difficult until an assessment has been done. To close this gap, an audience response system was introduced in an introductory Principles of Microbiology course. This technology specifically addressed the goal of individualizing instruction to the needs of the students. The evaluation of this project indicated an overall positive impact on student learning.
Teaching Individuals with Developmental Delays: Basic Intervention Techniques.
ERIC Educational Resources Information Center
Lovaas, O. Ivar
This teaching manual for treatment of children with developmental disabilities is divided into seven sections that address: (1) basic concepts; (2) transition into treatment; (3) early learning concepts; (4) expressive language; (5) strategies for visual learners; (6) programmatic considerations; and (7) organizational and legal issues. Among…
Environmental Education: Back to Basics.
ERIC Educational Resources Information Center
Warpinski, Robert
1984-01-01
Describes an instructional framework based on concepts of energy, ecosystems, carrying capacity, change, and stewardship. Stresses the importance of determining what is really important (basic) for each student to experience or learn in relation to each concept and grade level. Student-centered learning activities and sample lesson on energy…
Time-of-flight mass spectrometry: Introduction to the basics.
Boesl, Ulrich
2017-01-01
The intention of this tutorial is to introduce into the basic concepts of time-of-flight mass spectrometry, beginning with the most simple single-stage ion source with linear field-free drift region and continuing with two-stage ion sources combined with field-free drift regions and ion reflectors-the so-called reflectrons. Basic formulas are presented and discussed with the focus on understanding the physical relations of geometric and electric parameters, initial distribution of ionic parameters, ion flight times, and ion flight time incertitude. This tutorial is aimed to help the applicant to identify sources of flight time broadening which limit good mass resolution and sources of ion losses which limit sensitivity; it is aimed to stimulate creativity for new experimental approaches by discussing a choice of instrumental options and to encourage those who toy with the idea to build an own time-of-flight mass spectrometer. Large parts of mathematics are shifted into a separate chapter in order not to overburden the text with too many mathematical deviations. Rather, thumb-rule formulas are supplied for first estimations of geometry and potentials when designing a home-built instrument, planning experiments, or searching for sources of flight time broadening. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:86-109, 2017. © 2016 Wiley Periodicals, Inc.
Johnson, Elizabeth O; Troupis, Theodore; Soucacos, Panayotis N
2011-03-01
Bone grafts are an important part of orthopaedic surgeon's armamentarium. Despite well-established bone-grafting techniques, large bone defects still represent a challenge. Efforts have therefore been made to develop osteoconductive, osteoinductive, and osteogenic bone-replacement systems. The long-term clinical goal in bone tissue engineering is to reconstruct bony tissue in an anatomically functional three-dimensional morphology. Current bone tissue engineering strategies take into account that bone is known for its ability to regenerate following injury, and for its intrinsic capability to re-establish a complex hierarchical structure during regeneration. Although the tissue engineering of bone for the reconstruction of small to moderate sized bone defects technically feasible, the reconstruction of large defects remains a daunting challenge. The essential steps towards optimized clinical application of tissue-engineered bone are dependent upon recent advances in the area of neovascularization of the engineered construct. Despite these recent advances, however, a gap from bench to bedside remains; this may ultimately be bridged by a closer collaboration between basic scientists and reconstructive surgeons. The aim of this review is to introduce the basic principles of tissue engineering of bone, outline the relevant bone physiology, and discuss the recent concepts for the induction of vascularization in engineered bone tissue. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Bodin, M.; Habib, E. H.; Meselhe, E. A.; Visser, J.; Chimmula, S.
2014-12-01
Utilizing advances in hydrologic research and technology, learning modules can be developed to deliver visual, case-based, data and simulation driven educational experiences. This paper focuses on the development of web modules based on case studies in Coastal Louisiana, one of three ecosystems that comprise an ongoing hydrology education online system called HydroViz. The Chenier Plain ecosystem in Coastal Louisiana provides an abundance of concepts and scenarios appropriate for use in many undergraduate water resource and hydrology curricula. The modules rely on a set of hydrologic data collected within the Chenier Plain along with inputs and outputs of eco-hydrology and vegetation-change simulation models that were developed to analyze different restoration and protection projects within the 2012 Louisiana Costal Master Plan. The modules begin by investigating the basic features of the basin and it hydrologic characteristics. The eco-hydrology model is then introduced along with its governing equations, numerical solution scheme and how it represents the study domain. Concepts on water budget in a coastal basin are then introduced using the simulation model inputs, outputs and boundary conditions. The complex relationships between salinity, water level and vegetation changes are then investigated through the use of the simulation models and associated field data. Other student activities focus on using the simulation models to evaluate tradeoffs and impacts of actual restoration and protection projects that were proposed as part of 2012 Louisiana Master Plan. The hands-on learning activities stimulate student learning of hydrologic and water management concepts by providing real-world context and opportunity to build fundamental knowledge as well as practical skills. The modules are delivered through a carefully designed user interface using open source and free technologies which enable wide dissemination and encourage adaptation by others.
Money Matters for the Young Learner
ERIC Educational Resources Information Center
Hill, Andrew T.
2010-01-01
Children's economic reasoning follows a developmental sequence in which their ideas about money and other basic economic concepts are forming. Even children in the early primary grades can learn some basic economics and retain understanding of economic concepts if they are taught in developmentally appropriate ways. Given how important economic…
ECON 12: Teacher's Materials. Units I and II.
ERIC Educational Resources Information Center
Wiggins, Suzanne
The objectives of this experimental 12th grade economics course begin with an understanding that "economic analysis applies a set of basic concepts and their interrelationships to problems (involving) economic scarcity." Fifteen basic concepts are to be learned (e. g., want, markets, money, etc.) as well as the definition and vocabulary…
Teaching Young Children Basic Concepts of Geography: A Literature-Based Approach.
ERIC Educational Resources Information Center
Hannibal, Mary Anne Zeitler; Vasiliev, Ren; Lin, Qiuyun
2002-01-01
This article advocates a literature-based instructional approach as a way of promoting geographic awareness in early childhood classrooms. Instruction focuses on basic geography concepts of location, place, human- environment interaction, movement, and region. Examples of children's picture books are included to show what early childhood teachers…
Lifeline: A Tool for Logistics Professionals
2017-06-01
proof of concept study is designed to provide a basic understanding of the Supply Corps community, provide a comparative analysis of the organizational...concept study is designed to provide a basic understanding of the Supply Corps community, provide a comparative analysis of the organizational...APPLICATION) ......................................................................................63 G. DESIGN
Basic Concepts and Conservation Skill Training in Kindergarten Chilren.
ERIC Educational Resources Information Center
Wasik, Barbara H.; And Others
1980-01-01
The study investigated the effects of basic concepts training on conservation acquisition in 41 kindergarten children (17 White boys, 15 White girls, 6 Black girls, and 5 Black boys). Only the conservation training program resulted in significant effects, and that was for the White students alone. (Author)
Basic College-Level Pharmacology: Therapeutic Drug Range Lesson Plan.
ERIC Educational Resources Information Center
Laipply, Richelle S.
2000-01-01
Investigations of scientific concepts using inquiry can be included in the traditional college lecture. This lesson uses the Learning Cycle to demonstrate therapeutic drug range, a basic concept in pharmaceutical science. Students use graphing to discover patterns as a part of data analysis and interpretation of provided investigation data.…
Econosense: A Common Sense Approach to the Study of Economics.
ERIC Educational Resources Information Center
McPheron, Linda
This student activity book and teacher's guide address specific economic terms and concepts correlated to specific student learning objectives. The concepts presented are those essential to any student developing a basic understanding of economics. Each lesson follows a specific format with a basic core of information, comprehension questions,…
Basic Concepts of Intercultural Communication: Selected Readings.
ERIC Educational Resources Information Center
Bennett, Milton J., Ed.
This collection of articles, with a developmental learning focus, explores the core building blocks of intercultural communication. The articles in the collection represent the theory-into-practice school of intercultural communication. The collection's goal is to present basic concepts from a variety of perspectives which, when taken together,…
Ludwig von Bertalanffy's Organismic View on the Theory of Evolution
Drack, Manfred
2015-01-01
Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 77–90, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:25727202
Foundations of low-temperature plasma physics—an introduction
NASA Astrophysics Data System (ADS)
von Keudell, A.; Schulz-von der Gathen, V.
2017-11-01
The use of plasmas as a reactive mixture of ions, electrons and neutrals is at the core of numerous technologies in industry, enabling applications in microelectronics, automotives, packaging, environment and medicine. Recently, even the use of plasmas in medical applications has made great progress. The dominant character of a plasma is often its non equilibrium nature with different temperatures for the individual species in a plasma, the ions, electrons and neutrals. This opens up a multitude of reaction pathways which are inaccessible to conventional methods in chemistry, for example. The understanding of plasmas requires expertise in plasma physics, plasma chemistry and in electrical engineering. This first paper in a series of foundation papers on low temperature plasma science is intended to provide the very basics of plasmas as a common starting point for the more in-depth discussion of particular plasma generation methods, plasma modeling and diagnostics in the other foundation papers. In this first paper of the series, the common terminology, definitions and main concepts are introduced. The covered aspects start with the basic definitions and include further plasma equilibria, particle collisions and transport, sheaths and discharge breakdowns.
Distributed intelligence for ground/space systems
NASA Technical Reports Server (NTRS)
Aarup, Mads; Munch, Klaus Heje; Fuchs, Joachim; Hartmann, Ralf; Baud, Tim
1994-01-01
DI is short for Distributed Intelligence for Ground/Space Systems and the DI Study is one in a series of ESA projects concerned with the development of new concepts and architectures for future autonomous spacecraft systems. The kick-off of DI was in January 1994 and the planned duration is three years. The background of DI is the desire to design future ground/space systems with a higher degree of autonomy than seen in today's missions. The aim of introducing autonomy in spacecraft systems is to: (1) lift the role of the spacecraft operators from routine work and basic troubleshooting to supervision; (2) ease access to and increase availability of spacecraft resources; (3) carry out basic mission planning for users; (4) enable missions which have not yet been feasible due to eg. propagation delays, insufficient ground station coverage etc.; and (5) possibly reduce mission cost. The study serves to identify the feasibility of using state-of-the-art technologies in the area of planning, scheduling, fault detection using model-based diagnosis and knowledge processing to obtain a higher level of autonomy in ground/space systems.
A mechanism producing power law etc. distributions
NASA Astrophysics Data System (ADS)
Li, Heling; Shen, Hongjun; Yang, Bin
2017-07-01
Power law distribution is playing an increasingly important role in the complex system study. Based on the insolvability of complex systems, the idea of incomplete statistics is utilized and expanded, three different exponential factors are introduced in equations about the normalization condition, statistical average and Shannon entropy, with probability distribution function deduced about exponential function, power function and the product form between power function and exponential function derived from Shannon entropy and maximal entropy principle. So it is shown that maximum entropy principle can totally replace equal probability hypothesis. Owing to the fact that power and probability distribution in the product form between power function and exponential function, which cannot be derived via equal probability hypothesis, can be derived by the aid of maximal entropy principle, it also can be concluded that maximal entropy principle is a basic principle which embodies concepts more extensively and reveals basic principles on motion laws of objects more fundamentally. At the same time, this principle also reveals the intrinsic link between Nature and different objects in human society and principles complied by all.
Exploring the evolution of protein function in Archaea.
Goncearenco, Alexander; Berezovsky, Igor N
2012-05-30
Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. We analyzed distant evolutionary connections between protein functions in Archaea based on the EFLs comprising them. We show examples of the involvement of EFLs in new functional domains, as well as reutilization of EFLs and functional domains in building multidomain structures and protein complexes. Our analysis of the archaeal superkingdom yields the dominating mechanisms in different periods of protein evolution, which resulted in several levels of the organization of biochemical function. First, functional domains emerged as combinations of prebiotic peptides with the very basic functions, such as nucleotide/phosphate and metal cofactor binding. Second, domain recombination brought to the evolutionary scene the multidomain proteins and complexes. Later, reutilization and de novo design of functional domains and elementary functional loops complemented evolution of protein function.
Meeting Basic Needs Is Not beyond Our Reach.
ERIC Educational Resources Information Center
Haq, Mahbub ul
1978-01-01
Reviews the status of the continuing debate on the concept of "basic needs" in development policy for the world's poorest countries, reprinted from a World Bank report. Discusses "core" basic needs (food and nutrition, drinking water, basic health, shelter, and basic education) and possible operational policies. (MF)
Biclustering of gene expression data using reactive greedy randomized adaptive search procedure.
Dharan, Smitha; Nair, Achuthsankar S
2009-01-30
Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts.
Using the Tower of Hanoi Puzzle to Infuse Your Mathematics Classroom with Computer Science Concepts
ERIC Educational Resources Information Center
Marzocchi, Alison S.
2016-01-01
This article suggests that logic puzzles, such as the well-known Tower of Hanoi puzzle, can be used to introduce computer science concepts to mathematics students of all ages. Mathematics teachers introduce their students to computer science concepts that are enacted spontaneously and subconsciously throughout the solution to the Tower of Hanoi…
Using "Monopoly" to Introduce Concepts of Race and Ethnic Relations
ERIC Educational Resources Information Center
Waren, Warren
2011-01-01
In this paper I suggest a technique which uses the familiar Parker Brother's game "Monopoly" to introduce core concepts of race and ethnic relations. I offer anecdotes from my classes where an abbreviated version of the game is used as an analog to highlight the sociological concepts of direct institutional discrimination, the legacy of…
Three Short Films about Water: Presenting Basic Concepts to Students and Stakeholders
NASA Astrophysics Data System (ADS)
Arrigo, J. S.; Hooper, R. P.; Michel, A.; Wilde, P.; Lilienfeld, L.
2011-12-01
Three short form (3 - 5 minute) movies were produced for CUAHSI, to convey basic concepts such as a hydrologic budget, stores and fluxes of water, and the flowpaths and residence time of water. The films were originally intended to be used by scientists to explain the concepts behind potential environmental observatories, but evolved into serving a broader purpose. The films combine still photos, satellite images, animation and video clips, and interviews with CUAHSI members explaining hydrologic concepts in simple, accessible terms. In producing these films, we have found the importance of engaging scientists in conversation first, to develop a script around key accessible concepts and relevant information. Film and communication professionals play a critical role in distilling the scientific explanation and concepts into accessible, engaging film material. The films have been widely distributed through CD and online to educators for use in courses. Additionally, they provide a way to engage stakeholders, particularly land owners, by conveying basic concepts that are necessary to understand the hydrologic and earth science foundation of many of today's political and environmental issues. The films can be viewed online at the CUAHSI website, which also contains links to other film related resources and programs.
Pre-Service Teachers' Mental Models of Basic Astronomy Concepts
ERIC Educational Resources Information Center
Arslan, A. Saglam; Durikan, U.
2016-01-01
The aim of the present study is to determine pre-service teachers' mental models related to basic astronomy concepts. The study was conducted using a survey method with 293 pre-service teachers from 4 different departments; physics education, science education, primary teacher education and early childhood education. An achievement test with…
Item Response Theory: A Basic Concept
ERIC Educational Resources Information Center
Mahmud, Jumailiyah
2017-01-01
With the development in computing technology, item response theory (IRT) develops rapidly, and has become a user friendly application in psychometrics world. Limitation in classical theory is one aspect that encourages the use of IRT. In this study, the basic concept of IRT will be discussed. In addition, it will briefly review the ability…
Pima College Students' Knowledge of Selected Basic Physical Science Concepts.
ERIC Educational Resources Information Center
Iadevaia, David G.
In 1989 a study was conducted at Pima Community College (PCC) to assess students' knowledge of basic physical science concepts. A three-part survey instrument was administered to students in a second semester sociology class, a first semester astronomy class, a second semester Spanish class, and a first semester physics class. The survey…
Spanish Translation and Validation of the Bracken Basic Concept Scale.
ERIC Educational Resources Information Center
Bracken, Bruce A; Fouad, Nadya
1987-01-01
The Bracken Basic Concept Scale (BBCS) was translated into Spanish, and 32 preschool and primary age bilingual children were assessed in a counter-balanced format with the English and newly translated Spanish forms to assess the adequacy of the translation. Preliminary content validity of the Spanish BBCS was demonstrated. (Author/JAZ)
Multinational Validation of the Spanish Bracken Basic Concept Scale for Cross-Cultural Assessments.
ERIC Educational Resources Information Center
Bracken, Bruce A.; And Others
1990-01-01
Investigated construct validity of the Spanish translation of the Bracken Basic Concept Scale (BBCS) in Latino children (n=293) including monolingual Spanish-speaking children from Puerto Rico and Venezuela and Spanish-dominant bilingual Latino children from Texas. Results provided support for construct validity of the Spanish version of the…
ERIC Educational Resources Information Center
South Dakota Dept. of Environmental Protection, Pierre.
Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…
Teacher knowledge of basic language concepts and dyslexia.
Washburn, Erin K; Joshi, R Malatesha; Binks-Cantrell, Emily S
2011-05-01
Roughly one-fifth of the US population displays one or more symptoms of dyslexia: a specific learning disability that affects an individual's ability to process written language. Consequently, elementary school teachers are teaching students who struggle with inaccurate or slow reading, poor spelling, poor writing, and other language processing difficulties. Findings from studies have indicated that teachers lack essential knowledge needed to teach struggling readers, particularly children with dyslexia. However, few studies have sought to assess teachers' knowledge and perceptions about dyslexia in conjunction with knowledge of basic language concepts related to reading instruction. Thus, the purpose of the present study was to examine elementary school teachers' knowledge of basic language concepts and their knowledge and perceptions about dyslexia. Findings from the present study indicated that teachers, on average, were able to display implicit skills related to certain basic language concepts (i.e. syllable counting), but failed to demonstrate explicit knowledge of others (i.e. phonics principles). Also, teachers seemed to hold the common misconception that dyslexia is a visual processing deficit rather than phonological processing deficit. Copyright © 2011 John Wiley & Sons, Ltd.
Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1985-01-01
Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.
Chemical synthetic biology: a mini-review.
Chiarabelli, Cristiano; Stano, Pasquale; Luisi, Pier Luigi
2013-01-01
Chemical synthetic biology (CSB) is a branch of synthetic biology (SB) oriented toward the synthesis of chemical structures alternative to those present in nature. Whereas SB combines biology and engineering with the aim of synthesizing biological structures or life forms that do not exist in nature - often based on genome manipulation, CSB uses and assembles biological parts, synthetic or not, to create new and alternative structures. A short epistemological note will introduce the theoretical concepts related to these fields, whereas the text will be largely devoted to introduce and comment two main projects of CSB, carried out in our laboratory in the recent years. The "Never Born Biopolymers" project deals with the construction and the screening of RNA and peptide sequences that are not present in nature, whereas the "Minimal Cell" project focuses on the construction of semi-synthetic compartments (usually liposomes) containing the minimal and sufficient number of components to perform the basic function of a biological cell. These two topics are extremely important for both the general understanding of biology in terms of function, organization, and development, and for applied biotechnology.
Fundamental mechanisms of fatigue and fracture.
Christ, Hans-Jürgen
2008-01-01
A brief overview is given in this article on the main design philosophies and the resulting description concepts used for components which undergo monotonic and cyclic loading. Emphasis is put on a mechanistic approach avoiding a plain reproduction of empirical laws. After a short consideration of fracture as a result of monotonic loading using fracture mechanics basics, the phenomena taking place as a consequence of cyclic plasticity are introduced. The development of fatigue damage is treated by introducing the physical processes which (i) are responsible for microstructural changes, (ii) lead to crack initiation and (iii) determine crack propagation. From the current research topics within the area of metal fatigue, two aspects are dealt with in more detail because of their relevance to biomechanics. The first one is the growth behaviour of microstructural short cracks, which controls cyclic life of smooth parts at low stress amplitudes. The second issue addresses the question of the existence of a true fatigue limit and is of particular interest for components which must sustain a very high number of loading cycles (very high cycle fatigue).
Thermoelectric Polymers and their Elastic Aerogels.
Khan, Zia Ullah; Edberg, Jesper; Hamedi, Mahiar Max; Gabrielsson, Roger; Granberg, Hjalmar; Wågberg, Lars; Engquist, Isak; Berggren, Magnus; Crispin, Xavier
2016-06-01
Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Topological Materials: Weyl Semimetals
NASA Astrophysics Data System (ADS)
Yan, Binghai; Felser, Claudia
2017-03-01
Topological insulators and topological semimetals are both new classes of quantum materials, which are characterized by surface states induced by the topology of the bulk band structure. Topological Dirac or Weyl semimetals show linear dispersion around nodes, termed the Dirac or Weyl points, as the three-dimensional analog of graphene. We review the basic concepts and compare these topological states of matter from the materials perspective with a special focus on Weyl semimetals. The TaAs family is the ideal materials class to introduce the signatures of Weyl points in a pedagogical way, from Fermi arcs to the chiral magnetotransport properties, followed by hunting for the type-II Weyl semimetals in WTe2, MoTe2, and related compounds. Many materials are members of big families, and topological properties can be tuned. As one example, we introduce the multifunctional topological materials, Heusler compounds, in which both topological insulators and magnetic Weyl semimetals can be found. Instead of a comprehensive review, this article is expected to serve as a helpful introduction and summary by taking a snapshot of the quickly expanding field.
A confusing world: what to call histology of three-dimensional tumour margins?
Moehrle, M; Breuninger, H; Röcken, M
2007-05-01
Complete three-dimensional histology of excised skin tumour margins has a long tradition and, unfortunately, a multitude of names as well. Mohs, who introduced it, called it 'microscopically controlled surgery'. Others have described it as 'micrographic surgery', 'Mohs' micrographic surgery', or simply 'Mohs' surgery'. Semantic confusion became truly rampant when variant forms, each useful in its own way for detecting subclinical outgrowths of malignant skin tumours, were later introduced under such names as histographic surgery, systematic histologic control of the tumour bed, histological control of excised tissue margins, the square procedure, the perimeter technique, etc. All of these methods are basically identical in concept. All involve complete, three-dimensional histological visualization and evaluation of excision margins. Their common goal is to detect unseen tumour outgrowths. For greater clarity, the authors of this paper recommend general adoption of '3D histology' as a collective designation for all the above methods. As an added advantage, 3D histology can also be used in other medical disciplines to confirm true R0 resection of, for example, breast cancer or intestinal cancer.
Clinical caring science as a scientific discipline.
Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å
2017-09-01
Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.
Marques, J Frederico
2007-12-01
The deterioration of semantic memory usually proceeds from more specific to more general superordinate categories, although rarer cases of superordinate knowledge impairment have also been reported. The nature of superordinate knowledge and the explanation of these two semantic impairments were evaluated from the analysis of superordinate and basic-level feature norms. The results show that, in comparison to basic-level concepts, superordinate concepts are not generally less informative and have similar feature distinctiveness and proportion of individual sensory features, but their features are less shared by their members. Results are in accord with explanations based on feature connection weights and/or concept confusability for the superordinate advantage cases. Results especially support an explanation for superordinate impairments in terms of higher semantic control requirements as related to features being less shared between concept members. Implications for patients with semantic impairments are also discussed.
Concept confusion and concept discernment in basic magnetism using analogical reasoning
NASA Astrophysics Data System (ADS)
Lemmer, Miriam; Nicodimus Morabe, Olebogeng
2017-07-01
Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the consequences of this use in the teaching of magnetism with special reference to misconceptions. We begin by identifying concept confusion and associated misconceptions in magnetism due to in-service physics teachers’ spontaneous analogical reasoning. Two analogy-based experiments that can be used to convert such concept confusion to discernment are then described. These experiments focus on understanding basic principles about sources and interactions of magnetic fields and implement the constructivist learning processes of discrimination and generalization. Lastly, recommendations towards reinforcement of conceptual understanding of basic magnetism in its relation to electricity are proposed.
The Soccer Ball Model: A Useful Visualization Protocol for Scaling Concepts in Continua
ERIC Educational Resources Information Center
Arce, Pedro E.; Pascal, Jennifer; Torres, Cynthia
2010-01-01
When studying the physics of transport, it is necessary to develop conservation equations, and the concept of a continuum scale must be introduced. Most textbooks do not address this issue, assuming that the mathematical steps are familiar to the learner. In fact, students are introduced to physical concepts, such as mass, momentum, and energy for…
The strainrange conversion principle for treating cumulative fatigue damage in the creep range
NASA Technical Reports Server (NTRS)
Manson, S. S.
1983-01-01
A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.
NASA Astrophysics Data System (ADS)
Shirai, Yasuhiro; Minami, Kosuke; Nakanishi, Waka; Yonamine, Yusuke; Joachim, Christian; Ariga, Katsuhiko
2016-11-01
Nanomachine and molecular machines are state-of-the-art objects in current physics and chemistry. The operation and manufacturing of nanosize machines are top-level technologies that we have desired to accomplish for a long time. There have been extensive attempts to design and synthesize nanomachines. In this paper, we review the these attempts using the concept of nanoarchitectonics toward the design, synthesis, and testing of molecular machinery, especially at interfacial media. In the first half of this review, various historical attempts to design and prepare nanomachines are introduced as well as their operation mechanisms from their basic principles. Furthermore, in order to emphasize the importance and possibilities of this research field, we also give examples of two new challenging topics in the second half of this review: (i) a world wide nanocar race and (ii) new modes of nanomachine operation on water. The nanocar race event involves actual use of nanomachines and will take place in the near future, and nanomachine operation of a dynamic fluidic interface will enable future advances in nanomachine science and technology.
Rehm, Markus; Prehn, Jochen H M
2013-06-01
Systems biology and systems medicine, i.e. the application of systems biology in a clinical context, is becoming of increasing importance in biology, drug discovery and health care. Systems biology incorporates knowledge and methods that are applied in mathematics, physics and engineering, but may not be part of classical training in biology. We here provide an introduction to basic concepts and methods relevant to the construction and application of systems models for apoptosis research. We present the key methods relevant to the representation of biochemical processes in signal transduction models, with a particular reference to apoptotic processes. We demonstrate how such models enable a quantitative and temporal analysis of changes in molecular entities in response to an apoptosis-inducing stimulus, and provide information on cell survival and cell death decisions. We introduce methods for analyzing the spatial propagation of cell death signals, and discuss the concepts of sensitivity analyses that enable a prediction of network responses to disturbances of single or multiple parameters. Copyright © 2013 Elsevier Inc. All rights reserved.
Pulsed-High Field/High-Frequency EPR Spectroscopy
NASA Astrophysics Data System (ADS)
Fuhs, Michael; Moebius, Klaus
Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.
Gamarra, Soledad; Dudiuk, Catiana; Mancilla, Estefanía; Vera Garate, María Verónica; Guerrero, Sergio; Garcia-Effron, Guillermo
2013-01-01
Candida spp. includes more than 160 species but only 20 species pose clinical problems. C. albicans and C. parapsilosis account for more than 75% of all the fungemias worldwide. In 1995 and 2005, one C. albicans and two C. parapsilosis-related species were described, respectively. Using phenotypic traits, the identification of these newly described species is inconclusive or impossible. Thus, molecular-based procedures are mandatory. In the proposed educational experiment we have adapted different basic molecular biology techniques designed to identify these species including PCR, multiplex PCR, PCR-based restriction endonuclease analysis and nuclear ribosomal RNA amplification. During the classes, students acquired the ability to search and align gene sequences, design primers, and use bioinformatics software. Also, in the performed experiments, fungal molecular taxonomy concepts were introduced and the obtained results demonstrated that classic identification (phenotypic) in some cases needs to be complemented with molecular-based techniques. As a conclusion we can state that we present an inexpensive and well accepted group of classes involving important concepts that can be recreated in any laboratory. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Ethics in medical technologies: the Roman Catholic viewpoint.
Zyciński, Joseph
2006-06-01
New medical techniques and novel scientific discoveries bring many basic questions concerning the role of human dignity in medical research as well as in the society of the future. This paper presents the Roman Catholic approach to the use of new technologies, the research of human embryos, the ethical aspects of studies on the human genome. The concept of "human ecology", as proposed by John Paul II, is introduced to reconcile the academic freedom of research with insurmountable ethical barriers which must be recognized to defend human dignity. In critical appraisal of Peter Singer's concept of the quality of life the author points out that it is irrational to try to reduce this quality to the level of biological parameters. Human dignity as well as the sanctity of life express also a quality of life so important for the cultural growth of Homo sapiens. To protect human ecology it is our moral duty to defend human dignity and to recognize the importance of those values that are fundamental in the process of development of the human species.
Nuclear science and society: social inclusion through scientific education
NASA Astrophysics Data System (ADS)
Levy, Denise S.
2017-11-01
This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.
Generalization of the Poincare sphere to process 2D displacement signals
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Lamberti, Luciano
2017-06-01
Traditionally the multiple phase method has been considered as an essential tool for phase information recovery. The in-quadrature phase method that theoretically is an alternative pathway to achieve the same goal failed in actual applications. The authors in a previous paper dealing with 1D signals have shown that properly implemented the in-quadrature method yields phase values with the same accuracy than the multiple phase method. The present paper extends the methodology developed in 1D to 2D. This extension is not a straight forward process and requires the introduction of a number of additional concepts and developments. The concept of monogenic function provides the necessary tools required for the extension process. The monogenic function has a graphic representation through the Poincare sphere familiar in the field of Photoelasticity and through the developments introduced in this paper connected to the analysis of displacement fringe patterns. The paper is illustrated with examples of application that show that multiple phases method and the in-quadrature are two aspects of the same basic theoretical model.
Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education
Araújo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Cláudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Cláudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.
2004-01-01
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of structures and functions of living cells, to introduce people to the scientific method, to stimulate inquiry, and to analyze and synthesize concepts and paradigms. In this essay we present our experience in mixing science and education in Brazil. For two decades we have developed activities for the science education of teachers and undergraduate students, using microscopy images generated by our work as cell biologists. We describe open-air outreach education activities, games, cell modeling, and other practical and innovative activities presented in public squares and favelas. Especially in developing countries, science education is important, since it may lead to an improvement in quality of life while advancing understanding of traditional scientific ideas. We show that teaching and research can be mutually beneficial rather than competing pursuits in advancing these goals. PMID:15257338
Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Song, Tae-Won; Choi, Kyoung-Hwan; Kim, Ji-Rae; Yi, Jung S.
2011-05-01
Proton exchange membrane fuel cells (PEMFCs) have been considered for combined heat and power (CHP) applications, but cost reduction has remained an issue for commercialization. Among various types of PEMFC, the high-temperature (HT) PEMFC is gaining more attention due to the simplicity of the system, that will make the total system cost lower. A pumpless cooling concept is introduced to reduce the number of components of a HT PEMFC system even further and also decrease the parasitic power required for operating the system. In this concept, water is used as the coolant, and the buoyancy force caused by the density difference between vapour and liquid when operated above boiling temperate is utilized to circulate the coolant between the stack and the cooling device. In this study, the basic parameters required to design the cooling device are discussed, and the stable operation of the HT PEMFC stack in both the steady-state and during transient periods is demonstrated. It found that the pumpless cooling method provides more uniform temperature distribution within the stack, regardless of the direction of coolant flow.
Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy.
Bernhardt, Boris C; Bonilha, Leonardo; Gross, Donald W
2015-09-01
Recent years have witnessed a paradigm shift in the study and conceptualization of epilepsy, which is increasingly understood as a network-level disorder. An emblematic case is temporal lobe epilepsy (TLE), the most common drug-resistant epilepsy that is electroclinically defined as a focal epilepsy and pathologically associated with hippocampal sclerosis. In this review, we will summarize histopathological, electrophysiological, and neuroimaging evidence supporting the concept that the substrate of TLE is not limited to the hippocampus alone, but rather is broadly distributed across multiple brain regions and interconnecting white matter pathways. We will introduce basic concepts of graph theory, a formalism to quantify topological properties of complex systems that has recently been widely applied to study networks derived from brain imaging and electrophysiology. We will discuss converging graph theoretical evidence indicating that networks in TLE show marked shifts in their overall topology, providing insight into the neurobiology of TLE as a network-level disorder. Our review will conclude by discussing methodological challenges and future clinical applications of this powerful analytical approach. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
Strauman, Timothy J; Eddington, Kari M
2017-02-01
Self-regulation models of psychopathology provide a theory-based, empirically supported framework for developing psychotherapeutic interventions that complement and extend current cognitive-behavioral models. However, many clinicians are only minimally familiar with the psychology of self-regulation. The aim of the present manuscript is twofold. First, we provide an overview of self-regulation as a motivational process essential to well-being and introduce two related theories of self-regulation which have been applied to depression. Second, we describe how self-regulatory concepts and processes from those two theories have been translated into psychosocial interventions, focusing specifically on self-system therapy (SST), a brief structured treatment for depression that targets personal goal pursuit. Two randomized controlled trials have shown that SST is superior to cognitive therapy for depressed clients with specific self-regulatory deficits, and both studies found evidence that SST works in part by restoring adaptive self-regulation. Self-regulation-based psychotherapeutic approaches to depression hold significant promise for enhancing treatment efficacy and ultimately may provide an individualizable framework for treatment planning.
NASA Astrophysics Data System (ADS)
de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR
2014-12-01
Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.
Introducing Virological Concepts Using an Insect Virus.
ERIC Educational Resources Information Center
Sheppard, Roger F.
1980-01-01
A technique is presented which utilizes wax moth larvae in a laboratory investigation of an insect virus. Describes how an insect virus can be used to introduce undergraduate biology students to laboratory work on viruses and several virological concepts. (SA)
CognitionMaster: an object-based image analysis framework
2013-01-01
Background Automated image analysis methods are becoming more and more important to extract and quantify image features in microscopy-based biomedical studies and several commercial or open-source tools are available. However, most of the approaches rely on pixel-wise operations, a concept that has limitations when high-level object features and relationships between objects are studied and if user-interactivity on the object-level is desired. Results In this paper we present an open-source software that facilitates the analysis of content features and object relationships by using objects as basic processing unit instead of individual pixels. Our approach enables also users without programming knowledge to compose “analysis pipelines“ that exploit the object-level approach. We demonstrate the design and use of example pipelines for the immunohistochemistry-based cell proliferation quantification in breast cancer and two-photon fluorescence microscopy data about bone-osteoclast interaction, which underline the advantages of the object-based concept. Conclusions We introduce an open source software system that offers object-based image analysis. The object-based concept allows for a straight-forward development of object-related interactive or fully automated image analysis solutions. The presented software may therefore serve as a basis for various applications in the field of digital image analysis. PMID:23445542
Nontraditional approach to algebra-based general physics
NASA Astrophysics Data System (ADS)
Meltzer, David E.
1997-03-01
In order to improve the degree of conceptual learning in our algebra-based general physics course, the second semester (of a two-semester sequence) has been taught in a nontraditional format during the past year. The key characteristics of this course were: 1) Intense and continuous use of interactive-engagement methods and cooperative learning; 2) coverage of less than half of the conventional number of topics, 3) heavy emphasis on qualitative questions as opposed to quantitative problems, 4) adjustment of the pacing of the course based on continuous (twice per week) formative assessment. The students enrolled in the course were relatively poorly prepared, with weak mathematical skills. Open-book quizzes stressing qualitative concepts in electricity and magnetism were given twice per week; most were given in "group quiz" format, allowing collaboration. Exams (also open-book) were all done individually. Most of the class time was taken up by quizzes, and by interactive discussion and group work related to quiz questions. New topics were not introduced until a majority of the class demonstrated competence in the topic under discussion. Despite lengthy and intensive focus on qualitative, conceptual questions and simple quantitative problems, only a small minority of the class ultimately demonstrated mastery of the targeted concepts. Frequent testing and re-testing of the students on basic concepts disclosed tenacious persistence of misconceptions.
Radiation tests on optical fibres: good and bad practice
NASA Astrophysics Data System (ADS)
Kuhnhenn, J.
2017-11-01
Testing optical fibers for their response to ionizing radiation is unavoidable if their properties in radiation environments need to be known. So far, no model exists that would be able to predict the behavior of optical fibers in the presence of radiation, for example because too many, mostly unknown parameters influence the changes in the fiber. To obtain reliable results from irradiation tests of optical fibers a well-defined setup and thorough experience is needed to avoid erroneous data that might lead to wrong decisions for the final application. This presentation tries to introduce basic concepts of radiation testing of optical fibers, focusing on not so well known influences or typical errors. Focus will be laid on the measurement of radiation-induced attenuation (RIA) in optical fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lusk, Ewing; Butler, Ralph; Pieper, Steven C.
Here, we take a historical approach to our presentation of self-scheduled task parallelism, a programming model with its origins in early irregular and nondeterministic computations encountered in automated theorem proving and logic programming. We show how an extremely simple task model has evolved into a system, asynchronous dynamic load balancing (ADLB), and a scalable implementation capable of supporting sophisticated applications on today’s (and tomorrow’s) largest supercomputers; and we illustrate the use of ADLB with a Green’s function Monte Carlo application, a modern, mature nuclear physics code in production use. Our lesson is that by surrendering a certain amount of generalitymore » and thus applicability, a minimal programming model (in terms of its basic concepts and the size of its application programmer interface) can achieve extreme scalability without introducing complexity.« less
Medical imaging and registration in computer assisted surgery.
Simon, D A; Lavallée, S
1998-09-01
Imaging, sensing, and computing technologies that are being introduced to aid in the planning and execution of surgical procedures are providing orthopaedic surgeons with a powerful new set of tools for improving clinical accuracy, reliability, and patient outcomes while reducing costs and operating times. Current computer assisted surgery systems typically include a measurement process for collecting patient specific medical data, a decision making process for generating a surgical plan, a registration process for aligning the surgical plan to the patient, and an action process for accurately achieving the goals specified in the plan. Some of the key concepts in computer assisted surgery applied to orthopaedics with a focus on the basic framework and underlying technologies is outlined. In addition, technical challenges and future trends in the field are discussed.
Adaptive eLearning modules for cytopathology education: A review and approach.
Samulski, T Danielle; La, Teresa; Wu, Roseann I
2016-11-01
Clinical training imposes time and resource constraints on educators and learners, making it difficult to provide and absorb meaningful instruction. Additionally, innovative and personalized education has become an expectation of adult learners. Fortunately, the development of web-based educational tools provides a possible solution to these challenges. Within this review, we introduce the utility of adaptive eLearning platforms in pathology education. In addition to a review of the current literature, we provide the reader with a suggested approach for module creation, as well as a critical assessment of an available platform, based on our experience in creating adaptive eLearning modules for teaching basic concepts in gynecologic cytopathology. Diagn. Cytopathol. 2016;44:944-951. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Overview of artificial neural networks.
Zou, Jinming; Han, Yi; So, Sung-Sau
2008-01-01
The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter.
Assessment of Microbiology Students’ Progress With an Audience Response System
Chaudhry, M. Ahmad
2011-01-01
The development of new approaches to teaching of large lecture courses is needed. Today’s classroom has a wide range of students including high-achieving motivated learners, students struggling to understand basic concepts, and learning-challenged students. Many of these students can be lost in large classes under the shadow of the high-achieving extroverted students who dominate classroom question-and-answer sessions. Measuring a student’s understanding and achievement of content standards becomes difficult until an assessment has been done. To close this gap, an audience response system was introduced in an introductory Principles of Microbiology course. This technology specifically addressed the goal of individualizing instruction to the needs of the students. The evaluation of this project indicated an overall positive impact on student learning. PMID:23653765
Cardiac Point-of-Care Ultrasound: State of the Art in Medical School Education.
Johri, Amer M; Durbin, Joshua; Newbigging, Joseph; Tanzola, Robert; Chow, Ryan; De, Sabe; Tam, James
2018-03-14
The development of small, user friendly, handheld ultrasound devices has stimulated the growth of cardiac point-of-care ultrasound (POCUS) for the purpose of rapid, bedside cardiac assessment. Medical schools have begun integrating cardiac POCUS into their curricula. In this review the authors summarize the variable approaches taken by several medical training programs with respect to duration of POCUS training, prerequisite knowledge, and methods of delivering these skills (including e-learning, hands-on training, and simulation). The authors also address issues related to the need for competency evaluation and the limitations of the technology itself. The studies reviewed suggest that undergraduate education is a viable point at which to introduce basic POCUS concepts. Copyright © 2018 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
[Application of THz technology to nondestructive detection of agricultural product quality].
Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong
2014-08-01
With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain.
JASMINE Simulator - construction of framework
NASA Astrophysics Data System (ADS)
Yamada, Yoshiyuki; Ueda, Seiji; Kuwabara, Takashi; Yano, Taihei; Gouda, Naoteru
2004-10-01
JASMINE is an abbreviation of Japan Astrometry Satellite Mission for INfrared Exploration currently planned at National Astronomical Observatory of Japan. JASMINE stands at a stage where its basic design will be determined in a few years. Then it is very important for JASMINE to simulate the data stream generated by the astrometric fields in order to support investigations of accuracy, sampling strategy, data compression, data analysis, scientific performances, etc. It is found that the new software technologies of Object Oriented methodologies with Unified Modeling Language are ideal for the simulation system of JASMINE (JASMINE Simualtor). In this paper, we briefly introduce some concepts of such technologies and explain the framework of the JASMINE Simulator which is constructed by new technologies. We believe that these technologies are useful also for other future big projects of astronomcial research.
Elements of the cognitive universe
NASA Astrophysics Data System (ADS)
Topsøe, Flemming
2017-06-01
"The least biased inference, taking available information into account, is the one with maximum entropy". So we are taught by Jaynes. The many followers from a broad spectrum of the natural and social sciences point to the wisdom of this principle, the maximum entropy principle, MaxEnt. But "entropy" need not be tied only to classical entropy and thus to probabilistic thinking. In fact, the arguments found in Jaynes' writings and elsewhere can, as we shall attempt to demonstrate, profitably be revisited, elaborated and transformed to apply in a much more general abstract setting. The approach is based on game theoretical thinking. Philosophical considerations dealing with notions of cognition - basically truth and belief - lie behind. Quantitative elements are introduced via a concept of description effort. An interpretation of Tsallis Entropy is indicated.
NASA Astrophysics Data System (ADS)
Hanyu, Ryosuke; Tsuji, Toshiaki
This paper proposes a whole-body haptic sensing system that has multiple supporting points between the body frame and the end-effector. The system consists of an end-effector and multiple force sensors. Using this mechanism, the position of a contact force on the surface can be calculated without any sensor array. A haptic sensing system with a single supporting point structure has previously been developed by the present authors. However, the system has drawbacks such as low stiffness and low strength. Therefore, in this study, a mechanism with multiple supporting points was proposed and its performance was verified. In this paper, the basic concept of the mechanism is first introduced. Next, an evaluation of the proposed method, performed by conducting some experiments, is presented.
Strategic marketing: an introduction for medical specialists.
Lexa, Frank James; Berlin, Jonathan
2006-03-01
Marketing and branding are 2 of the most important factors for business success in the United States. They are particularly critical in service industries such as diagnostic imaging. However, in spite of their strategic importance in radiology success, a search of the peer-reviewed radiology literature reveals a paucity of published work that addresses marketing for imaging practices. In particular, there is a dearth of literature addressing the role (both direct and indirect) of radiologists in marketing efforts. In this article, the authors attempt to identify and correct some common misconceptions that physicians and other scientific and technical professionals have about marketing. Basic terms and preliminary concepts are introduced to provide a foundational understanding of the topic, allowing the interested reader to move forward and explore these critical issues in greater depth.
Generalizations of γ-open set in topological spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Baby, E-mail: babybhatt75@gmail.com; Paul, Arnab, E-mail: mrarnabpaul87@gmail.com
The main aim of this work is to study three generalized forms of γ-open set due to D. Andrijevic (D. Andrijevic, On the Topology Generated by pre-open sets, Presented at the Sixth Prague Topological Symposium, 39 (1987), 367-376)in a topological space. Out of which the dual appearance of one is the stronger form of b-locally closed set in the sense of Arafa A. Nasef (A. A Nasef,On b-locally closed sets and related topics, CHAOS SOLITONS & FRACTALS 12(2001) 1909-1915). Also, we introduce the concept of different types of continuity and study their basic properties by using these newly defined sets.more » Finally, we establish the interrelationships among themselves together with some already existing generalized forms of continuity.« less
Martínez-Martínez, Antonio J; Kennedy, Alan R; Mulvey, Robert E; O'Hara, Charles T
2014-11-14
The regioselectivity of deprotonation reactions between arene substrates and basic metalating agents is usually governed by the electronic and/or coordinative characteristics of a directing group attached to the benzene ring. Generally, the reaction takes place in the ortho position, adjacent to the substituent. Here, we introduce a protocol by which the metalating agent, a disodium-monomagnesium alkyl-amide, forms a template that extends regioselectivity to more distant arene sites. Depending on the nature of the directing group, ortho-meta' or meta-meta' dimetalation is observed, in the latter case breaking the dogma of ortho metalation. This concept is elaborated through the characterization of both organometallic intermediates and electrophilically quenched products. Copyright © 2014, American Association for the Advancement of Science.
Precision medicine for psychopharmacology: a general introduction.
Shin, Cheolmin; Han, Changsu; Pae, Chi-Un; Patkar, Ashwin A
2016-07-01
Precision medicine is an emerging medical model that can provide accurate diagnoses and tailored therapeutic strategies for patients based on data pertaining to genes, microbiomes, environment, family history and lifestyle. Here, we provide basic information about precision medicine and newly introduced concepts, such as the precision medicine ecosystem and big data processing, and omics technologies including pharmacogenomics, pharamacometabolomics, pharmacoproteomics, pharmacoepigenomics, connectomics and exposomics. The authors review the current state of omics in psychiatry and the future direction of psychopharmacology as it moves towards precision medicine. Expert commentary: Advances in precision medicine have been facilitated by achievements in multiple fields, including large-scale biological databases, powerful methods for characterizing patients (such as genomics, proteomics, metabolomics, diverse cellular assays, and even social networks and mobile health technologies), and computer-based tools for analyzing large amounts of data.
Evaluation readiness: improved evaluation planning using a data inventory framework.
Cohen, A B; Hall, K C; Cohodes, D R
1985-01-01
Factors intrinsic to many programs, such as ambiguously stated objectives, inadequately defined performance measures, and incomplete or unreliable databases, often conspire to limit the evaluability of these programs. Current evaluation planning approaches are somewhat constrained in their ability to overcome these obstacles and to achieve full preparedness for evaluation. In this paper, the concept of evaluation readiness is introduced as a complement to other evaluation planning approaches, most notably that of evaluability assessment. The basic products of evaluation readiness--the formal program definition and the data inventory framework--are described, along with a guide for assuring more timely and appropriate evaluation response capability to support the decision making needs of program managers. The utility of evaluation readiness for program planning, as well as for effective management, is also discussed.
Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.
Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio
2016-01-01
The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.
Effects of Concept Mapping Instruction Approach on Students' Achievement in Basic Science
ERIC Educational Resources Information Center
Ogonnaya, Ukpai Patricia; Okafor, Gabriel; Abonyi, Okechukwu S.; Ugama, J. O.
2016-01-01
The study investigated the effects of concept mapping on students' achievement in basic science. The study was carried out in Ebonyi State of Nigeria. The study employed a quasi-experimental design. Specifically the pretest posttest non-equivalent control group research design was used. The sample was 122 students selected from two secondary…
A Short Test for the Assessment of Basic Knowledge in Psychology
ERIC Educational Resources Information Center
Peter, Johannes; Leichner, Nikolas; Mayer, Anne-Kathrin; Krampen, Günter
2015-01-01
This paper reports the development of a fixed-choice test for the assessment of basic knowledge in psychology, for use with undergraduate as well as graduate students. Test content is selected based on a core concepts approach and includes a sample of concepts which are indexed most frequently in common introductory psychology textbooks. In a…
A Framework for Teaching Basic Economic Concepts with Scope and Sequence Guidelines K-12.
ERIC Educational Resources Information Center
Saunders, Phillip, Ed.; Gilliard, June V., Ed.
This publication is an updated, edited merger of two earlier National Council on Economic Education documents: "A Framework for Teaching the Basic Concepts" and "Economics: What and When." The combined publication is designed to aid those who construct curricula or who provide economics instruction in U.S. schools. The book…
The Vital Role of Basic Mathematics in Teaching and Learning the Mole Concept
ERIC Educational Resources Information Center
Mehrotra, Alka; Koul, Anjni
2016-01-01
This article focuses on the importance of activity-based teaching in understanding the mole concept and the vital role of basic mathematical operations. It describes needs-based training for teachers in a professional development programme in India. Analysis of test results before and after the training indicates that teachers improved their…
Master Curriculum Guide in Economics. A Framework for Teaching the Basic Concepts. Second Edition.
ERIC Educational Resources Information Center
Saunders, Phillip; And Others
Intended for curriculum developers, this revised Framework presents a set of basic concepts for teaching K-12 economics. The revision reflects the change and development which the field of economics has undergone and includes improvements suggested by users of the first edition. The purpose of teaching economics is to impart a general…
ERIC Educational Resources Information Center
Bockman, David Carl
The purpose of this study was to compare the conventional lecture-discussion method and an illustrated programed textbook method when teaching a unit of instruction on the basic concepts of metallurgy. The control group used a portion of a conventional textbook accompanied by lecture, chalkboard illustration, and class discussion. The experimental…
Spatial Thinking Concepts in Early Grade-Level Geography Standards
ERIC Educational Resources Information Center
Anthamatten, Peter
2010-01-01
Research in the cognition and learning sciences has demonstrated that the human brain contains basic structures whose functions are to perform a variety of specific spatial reasoning tasks and that children are capable of learning basic spatial concepts at an early age. There has been a call from within geography to recognize research on spatial…
Love, Power, and Conflict: A Systems Model of Interparty Negotiation.
ERIC Educational Resources Information Center
Slawski, Carl
Some basic hypotheses and corresponding definitions of concepts are presented in an effort to succinctly state the relationship between three of the most basic concepts of social science, namely love, power and conflict. This novel theory is an example of limited reduction. However, it is cast so as to be applicable to both micro and macro levels…
After Almost Half-Century Landing on the Moon and Still Countering Basic Astronomy Conceptions
ERIC Educational Resources Information Center
Türkmen, Hakan
2015-01-01
The purpose of study is to investigate the fifth graders' understandings of the basic astronomy concept and, if they have, to define their misconceptions and then to determine what reason/s behind them. For this purpose, two hundred seventy fifth grade students from 6 different schools participated. Randomly selected 45 students performing under…
The Etymology of Basic Concepts in the Experimental Analysis of Behavior
ERIC Educational Resources Information Center
Dinsmoor, James A.
2004-01-01
The origins of many of the basic concepts used in the experimental analysis of behavior can be traced to Pavlov's (1927/1960) discussion of unconditional and conditional reflexes in the dog, but often with substantial changes in meaning (e.g., stimulus, response, and reinforcement). Other terms were added by Skinner (1938/1991) to describe his…
ERIC Educational Resources Information Center
Adeleke, Ayobami Gideon
2017-01-01
This research paper specifically examined the impact of Geographic Information System (GIS) integration in a learning method and on the performance and retention of Environmental Education (EE) concepts in basic social studies. Non-equivalent experimental research design was employed. 126 pupils in four intact, computer-mediated classrooms were…
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
Basic BASIC; An Introduction to Computer Programming in BASIC Language.
ERIC Educational Resources Information Center
Coan, James S.
With the increasing availability of computer access through remote terminals and time sharing, more and more schools and colleges are able to introduce programing to substantial numbers of students. This book is an attempt to incorporate computer programming, using BASIC language, and the teaching of mathematics. The general approach of the book…
ERIC Educational Resources Information Center
Grenier-Boley, Nicolas
2014-01-01
Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…