Science.gov

Sample records for introducing modern bioenergy

  1. Introducing Nightlight: A New, Modern FITS Viewer

    NASA Astrophysics Data System (ADS)

    Muna, Demitri

    2016-01-01

    The field of astronomy distinguishes itself in having standardized on a single file format for the majority of data it produces. Visualization of FITS data, however, has not kept up with modern software design, user interfaces, or user interaction; the simple task of inspecting a file's structure or retrieving a particular value requires writing code. While the file format has its shortcomings, a significant reason many astronomers dislike FITS is not due to the organization of the bytes on disk, but rather the ease of use in accessing or visualizing them. Nightlight is a new desktop application whose aim is to bring a modern interface to FITS files with the polish and design people expect from applications like iTunes. By making it a native Macintosh application, one is able to leverage cutting edge frameworks not available in cross-platform environments that enable GPU acceleration, multithreading, interactive touch interfaces, real-time image processing, desktop metadata indexing, and more. Nightlight is designed to provide a common platform on top of which data or survey specific visualization needs can be built. The initial public release of Nightlight will soon be available; for more information visit http://www.nightlightapp.io.

  2. Bioenergy

    SciTech Connect

    2014-11-20

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  3. Bioenergy and African transformation.

    PubMed

    Lynd, Lee R; Sow, Mariam; Chimphango, Annie Fa; Cortez, Luis Ab; Brito Cruz, Carlos H; Elmissiry, Mosad; Laser, Mark; Mayaki, Ibrahim A; Moraes, Marcia Afd; Nogueira, Luiz Ah; Wolfaardt, Gideon M; Woods, Jeremy; van Zyl, Willem H

    2015-01-01

    Among the world's continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some important lessons. In Brazil, social development, agricultural development and food security, and bioenergy development have been synergistic rather than antagonistic. Realizing similar success in African countries will require clear vision, good governance, and adaptation of technologies, knowledge, and business models to myriad local circumstances. Strategies for integrated production of food crops, livestock, and bioenergy are potentially attractive and offer an alternative to an agricultural model featuring specialized land use. If done thoughtfully, there is considerable evidence that food security and economic development in Africa can be addressed more effectively with modern bioenergy than without it. Modern bioenergy can be an agent of African transformation, with potential social benefits accruing to multiple sectors and extending well beyond energy supply per se. Potential negative impacts also cut across sectors. Thus, institutionally inclusive multi-sector legislative structures will be more effective at maximizing the social benefits of bioenergy compared to institutionally exclusive, single-sector structures. PMID:25709714

  4. Agricultural chemistry and bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. Applications include feedstock characterization and quan...

  5. Bioenergy: America's Energy Future

    ScienceCinema

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  6. Bioenergy: America's Energy Future

    SciTech Connect

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  7. Preface: Biocatalysis and Bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book was assembled with the intent of bringing together current advances and in-depth review of biocatalysis and bioenergy with emphasis on biodiesel, bioethanol, biohydrogen and industrial products. Biocatalysis and bioenergy defined in this book include enzyme catalysis, biotransformation, b...

  8. Creating dedicated bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy is one of the current mechanisms of producing renewable energy to reduce our use of nonrenewable fossil fuels and to reduce carbon emissions into the atmosphere. Humans have been using bioenergy since we first learned to create and control fire - burning manure, peat, and wood to cook food...

  9. The Endurance Bioenergy Reactor

    SciTech Connect

    Laible, Philip

    2012-01-01

    Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor—a device that contains bacteria that can convert energy from the sun into fuel molecules.

  10. Bioenergy applications for DDGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last several years there has been growing interest in producing bioenergy from many biomass feedstocks, including ethanol coproducts. In fact, many have asked about the possibility of burning DDGS. More specifically, some have proposed that ethanol plant efficiencies and energy balances c...

  11. Bioenergy: Agricultural Crop Residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing cost of fossil fuels especially natural gas and petroleum as well as a desire to curtail greenhouse gas emissions are driving the expansion of bioenergy. Plant biomass (woody, grain and nongrain) is a potential energy source. Prior to the Industrial Revolution, plant biomass was a maj...

  12. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    SciTech Connect

    Woods J, Lynd LR; Laser, M; Batistella M, De Castro D; Kline, Keith L; Faaij, Andre

    2015-01-01

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr in 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.

  13. Bioenergy: Potentials and limitations

    NASA Astrophysics Data System (ADS)

    Schulze, E.-D.; Canadell, J. G.

    2015-08-01

    In this lecture we explain 1) the biochemical basis for photosynthesis and plant production and 2) the future demands on biomass for human use. Summing all physiological processes, the efficiency of converting solar energy into biomass is < 1.6% in the tropics, and between 0.4 and 0.8% for the temperate regions. In view of the present and future high demand on biomass for food, bioeconomics, fiber, construction material, only a relatively small fraction of plant production will be available for bioenergy. We estimate this fraction to be between 3 and 8% of the global energy demand by 2050. The contribution of bioenergy is at the higher end in tropical regions and in the less industrialized parts of the world, but may even be < 3% in industrialized nations.

  14. Communicating about bioenergy sustainability

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Perla, Dr. Donna; Lucier, Dr. Al

    2013-01-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives, including problems and opportunities in various bioenergy production pathways. Scientists also need to develop approaches that contribute information relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports, and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that nonscientists can understand; and (3) the implications of methods, assumptions and limitations should be clear. The scientists job is to analyze information in order to build a better understanding of environmental, cultural and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on Sustainability of Bioenergy Systems: Cradle to Grave because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the

  15. Joint BioEnergy Institute

    SciTech Connect

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2015-06-15

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  16. Communicating About Bioenergy Sustainability

    NASA Astrophysics Data System (ADS)

    Dale, Virginia H.; Kline, Keith L.; Perla, Donna; Lucier, Al

    2013-02-01

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which

  17. Our Commitment to Bioenergy Sustainability

    SciTech Connect

    2015-06-18

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.

  18. Introducing "Excel"

    ERIC Educational Resources Information Center

    Tyrrell, Sidney

    2006-01-01

    In this brief article, the author instructs teachers on how to produce an interactive spreadsheet from scratch in about 20 minutes and en route equip themselves and their students, with handy "Excel" skills. The aim is to introduce the basics of "Excel," plus some fun bits, speedily and with a purpose; producing something that is useful in its own…

  19. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  20. Introducing Summer Camp Students to Modern Cryptography

    ERIC Educational Resources Information Center

    Griffiths, Barry J.

    2015-01-01

    For countries to remain competitive in the global economy, it is important to cultivate the next generation of native mathematicians. However, this goal has been increasingly challenging in the United States where, despite the tremendous increase in university enrollment during recent decades, the number of students studying mathematics has…

  1. Our Commitment to Bioenergy Sustainability

    SciTech Connect

    2011-07-01

    This fact sheet describes how the Biomass Program and its partners combine advanced analysis with applied research to understand and address the potential environmental, economic, and social impacts of bioenergy production.

  2. Sustainable Forest Bioenergy Initiative

    SciTech Connect

    Breger, Dwayne; Rizzo, Rob

    2011-09-20

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact

  3. MODELING WORLD BIOENERGY CROP POTENTIAL

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kensuke; Hanasaki, Naota; Kanae, Shinjiro

    Bioenergy is regarded as clean energy due to its characteristics and expected to be a new support of world energy de¬mand, but there are few integrated assessments of the potential of bioenergy considering sustainable land use. We esti¬mated the global bioenergy potential with an integrated global water resources model, the H08. It can simulate the crop yields on global-scale at a spatial resolution of 0.50.5. Seven major crops in the world were considered; namely, maize, sugar beet, sugar cane, soybean, rapeseed, rice, and wheat, of which the first 5 are commonly used to produce biofuel now. Three different land-cover types were chosen as potential area for cultivation of biofuel-producing crop: fallow land, grassland, and portion of forests (excluding areas sensitive for biodiversity such as frontier forest). We attempted to estimate the maximum global bioenergy potential and it was estimated to be 1120EJ. Bioenergy potential depends on land-use limitations for the protection of bio-diversity and security of food. In another condition which assumed more land-use limitations, bioenergy potential was estimated to be 70-233EJ.

  4. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    scenario" under which more biomass feedstock can be produced and harvested, so that less area would be affected by harvesting and other management activities. Intensification through optimal forest management can lead to a substantial reduction of the area necessary for bioenergy feedstock supply. This in turn means that the "spared" area and the associated ecosystem services can be designated for conservation or other uses. This insight provides support to policy and decision makers in considering the optimal "mix" or "co-existence" of different ecosystem services and economic demands from a modern landscape management approach.

  5. Bioenergy Sustainability in China: Potential and Impacts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  6. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    SciTech Connect

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  7. Switchgrass for forage and bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is a native warm-season grass that has been used for hay, forage, and conservation purposes for decades and switchgrass research in Nebraska has been ongoing since 1936. Recently, switchgrass has been identified as a model perennial grass for bioenergy in the Great Plains and Midwest. Si...

  8. NREL National Bioenergy Center Overview

    SciTech Connect

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  9. NREL National Bioenergy Center Overview

    SciTech Connect

    2012-01-01

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  10. The Interplay of Bioenergy Crop Production and Water Resource Availability in the US

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.

    2014-12-01

    Large-scale growing of bioenergy crops, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus), may introduce new challenges for water resource availability in the US. However, the strength of the interplay between bioenergy crop production and water resource availability is highly uncertain at the spatial scale and determined by (1) the spatial distribution of land cover types; (2) availability of soil water resources; (3) climate conditions and (4) biophysical characteristics of different bioenergy crops, such as water use efficiency (WUE), tolerances to extreme water and thermal conditions (dry, high temperature, low temperature etc.) and photoperiod adaptability, etc. To address potential water availability concerns the spatial distribution of bioenergy crops needs to be optimized by considering the maximum WUE and the minimum dependence and impact on water resource availability. To address this objective, we apply a coupled biophysical and biogeochemical model (ISAM), to investigate spatial variability in the interplay between water resources and bioenergy crop production in the US. The bioenergy crops considered in this study include Miscanthus, Cave-in-Rock and Alamo switchgrasses, and corn (grain and stover). The interplay between bioenergy crop and corn production with water resources is quantitatively evaluated by calculating WUE and average water stress for different bioenergy crops and change in plant available soil water between bioenergy crops and natural vegetation. Our results indicate that low soil water availability limits production of bioenergy grasses in central and eastern Great Plains. Growing energy grasses here strengthens water depletion and limits its potential production. Miscanthus has the highest WUE in the central Midwest, followed by corn stover and Cave-in-Rock. However, growing Miscanthus and Cave-in-Rock here strengthens soil water depletion and induces water stress on their production. Though production

  11. Bioenergy as a Mitigation Measure

    NASA Astrophysics Data System (ADS)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  12. Land-Use Change and Bioenergy

    SciTech Connect

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  13. Grasses and Legumes for Cellulosic Bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human life has been dependent on renewable sources of bioenergy for many thousands of years, from the time that humans first learned to control fire and utilize wood as the earliest source of bioenergy. Ironically, forage crops represent the next major technological breakthrough in renewable bioene...

  14. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  15. The water footprint of bioenergy

    PubMed Central

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Y.; van der Meer, Theo H.

    2009-01-01

    All energy scenarios show a shift toward an increased percentage of renewable energy sources, including biomass. This study gives an overview of water footprints (WFs) of bioenergy from 12 crops that currently contribute the most to global agricultural production: barley, cassava, maize, potato, rapeseed, rice, rye, sorghum, soybean, sugar beet, sugar cane, and wheat. In addition, this study includes jatropha, a suitable energy crop. Since climate and production circumstances differ among regions, calculations have been performed by country. The WF of bioelectricity is smaller than that of biofuels because it is more efficient to use total biomass (e.g., for electricity or heat) than a fraction of the crop (its sugar, starch, or oil content) for biofuel. The WF of bioethanol appears to be smaller than that of biodiesel. For electricity, sugar beet, maize, and sugar cane are the most favorable crops [50 m3/gigajoule (GJ)]. Rapeseed and jatropha, typical energy crops, are disadvantageous (400 m3/GJ). For ethanol, sugar beet, and potato (60 and 100 m3/GJ) are the most advantageous, followed by sugar cane (110 m3/GJ); sorghum (400 m3/GJ) is the most unfavorable. For biodiesel, soybean and rapeseed show to be the most favorable WF (400 m3/GJ); jatropha has an adverse WF (600 m3/GJ). When expressed per L, the WF ranges from 1,400 to 20,000 L of water per L of biofuel. If a shift toward a greater contribution of bioenergy to energy supply takes place, the results of this study can be used to select the crops and countries that produce bioenergy in the most water-efficient way. PMID:19497862

  16. MATERIALS FOR MODERNIZATION.

    ERIC Educational Resources Information Center

    JACKSON, R. GRAHAM

    CHOICES AND ISSUES IN SELECTING MATERIALS FOR MODERNIZATION OF SCHOOL BUILDINGS ARE DISCUSSED IN THIS REPORT. BACKGROUND INFORMATION IS INTRODUCED IN TERMS OF REASONS FOR ABANDONMENT, THE CAUSES AND EFFECTS OF SCHOOL BUILDING OBSOLESCENCE, AND PROBLEMS IN THE MODERNIZATION PROCESS. INTERIOR PARTITIONS ARE DISCUSSED IN TERMS OF BUILDING MATERIALS,…

  17. Bioenergy for sustainable development: An African context

    NASA Astrophysics Data System (ADS)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  18. Microfabricated devices in microbial bioenergy sciences.

    PubMed

    Han, Arum; Hou, Huijie; Li, Lei; Kim, Hyun Soo; de Figueiredo, Paul

    2013-04-01

    Microbes provide a platform for the synthesis of clean energy from renewable resources. Significant investments in discovering new microbial systems and capabilities, discerning the molecular mechanisms that mediate microbial bioenergy production, and optimizing existing microbial bioenergy systems have been made. However, further development is needed to achieve the economically feasible large-scale production of value-added energy products. Microfabricated lab-on-a-chip systems provide cost- and time-efficient opportunities for analyzing microbe-mediated bioenergy synthesis. Here, we review developments in the application of lab-on-a-chip systems to the bioenergy sciences. We focus on systems that support the analysis of microbial generation of bioelectricity, biogas, and liquid transportation fuels. We conclude by suggesting possible future directions. PMID:23453527

  19. Soil carbon changes for bioenergy crops.

    SciTech Connect

    Andress, D.

    2004-04-22

    Bioenergy crops, which displace fossil fuels when used to produce ethanol, biobased products, and/or electricity, have the potential to further reduce atmospheric carbon levels by building up soil carbon levels, especially when planted on lands where these levels have been reduced by intensive tillage. The purpose of this study is to improve the characterization of the soil carbon (C) sequestration for bioenergy crops (switchgrass, poplars, and willows) in the Greenhouse gases, Regulated Emissions, and Energy Use in Transportation (GREET) model (Wang 1999) by using the latest results reported in the literature and by Oak Ridge National Laboratory (ORNL). Because soil carbon sequestration for bioenergy crops can play a significant role in reducing greenhouse gas (GHG) emissions for cellulosic ethanol, it is important to periodically update the estimates of soil carbon sequestration from bioenergy crops as new and better data become available. We used the three-step process described below to conduct our study.

  20. [Preface for special issue on bioenergy (2015)].

    PubMed

    Liu, Dehua; Li, Changzhu

    2015-10-01

    Research and industrial application of bioenergy have developed quickly with the systematic and multifocal trends in recent years. The 4th International Conference on Biomass Energy Technologies-8th World Bioenergy Symposium (ICBT-WBS 2014) and Joint Biomass Energy Symposium of Chinese Renewable Energy Society (CRES) were held in Changsha, China, 17-19 October, 2014, with American Institute of Chemical Engineers (AIChE), Biomass Energy Innovation Alliance, European Biomass Industry Association, AIChE and United Nations Development Programme (UNDP). This special issue on bioenergy is based on selected excellent papers from the submissions, together with free submissions. The special issue consists of reviews and original papers, mainly involving the aspects closely related to the bioenergy and related fields, including resource analyses, pretreatment, fuel/chemicals production, byproduct disposal and strategy investigation. PMID:26964331

  1. 2013 Bioenergy Technologies Office Peer Review Report

    SciTech Connect

    None, None

    2014-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2013 U.S. Department of Energy Bioenergy Technologies Office's Peer Review meeting.

  2. Uncertainty in projecting GHG emissions from bioenergy

    NASA Astrophysics Data System (ADS)

    Buchholz, Thomas; Prisley, Stephen; Marland, Gregg; Canham, Charles; Sampson, Neil

    2014-12-01

    The definition of baselines is a major step in determining the greenhouse-gas emissions of bioenergy systems. Accounting frameworks with a planning objective might require different baseline attributes and designs than those with a monitoring objective.

  3. Pacific Northwest and Alaska bioenergy program glossary

    NASA Astrophysics Data System (ADS)

    1985-02-01

    A glossary of terms for the bioenergy program of the Pacific Northwest and Alaska is presented. A table with physical constants for individual gases most frequently found in fuel gases is also presented in this publication.

  4. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives—reducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  5. Confessions of a bioenergy advocate.

    PubMed

    Bungay, Henry R

    2004-02-01

    Feedstocks that deserve serious consideration for fuels and chemicals are sugarcane, corn, trees and algae. Commercialization of biomass refining is imminent but the wild claims of those who think that bioenergy can replace much of our dependence on foreign oil are appalling. It is naive to view biomass as the panacea for the coming energy crisis because there is not enough in practical locations and the costs involved in retrieving and refining it will be relatively high. The world will not run out of energy, but cheap energy might disappear, with its economics clouded by a myriad of subsidies for the competing energy sources and by world politics. This assessment of biomass supply and conversion technologies provides global perspectives and exposes some alternatives to be so impractical that they are almost fraudulent. PMID:14757040

  6. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    United States (U.S.) energy policy includes an expectation that bioenergy will be a substantial future energy source. In particular, the Energy Independence and Security Act of 2007 (EISA) aims to increase annual U.S. biofuel (secondary bioenergy) production by more than 3-fold, from 40 to 136 billion liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2.9 to 7.4 EJ yr–1. However, our understanding of many of the factors used to establish such energy targets is far from complete, introducing significgant uncertainty into the feasibility of current estimates of bioenergy potential. Here, we utilized satellite-derived net primary productivity (NPP) data—measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S.—to estimate primary bioenergy potential (PBP). Our results indicate that PBP of the conterminous U.S. ranges from roughly 5.9 to 22.2 EJ yr–1, depending on land use. The low end of this range represents the potential when harvesting residues only, while the high end would require an annual biomass harvest over an area more than three times current U.S. agricultural extent. While EISA energy targets are theoretically achievable, we show that meeting these targets utilizing current technology would require either an 80% displacement of current crop harvest or the conversion of 60% of rangeland productivity. Accordingly, realistically constrained estimates of bioenergy potential are critical for effective incorporation of bioenergy into the national energy portfolio.

  7. Modeling Bioenergy Feedstock Supply: Impacts of Temporal and Spatial Variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A theoretical model is constructed illustrating how transportation costs and spatial and temporal variability in feedstock production influence farm production practices and resulting impacts on bioenergy feedstock supply and the environment. The model is constructed for a bioenergy producer minimiz...

  8. Lignin modification to improve sorghum for cellulosic and thermal bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modifying lignin content and composition are major targets for bioenergy feedstock improvement for both cellulosic and thermal bioenergy conversion. Sorghum (Sorghum bicolor) is currently being developed as a dedicated bio-energy feedstock. Our goals are to improve sorghum biomass for both biochemic...

  9. Life cycle greenhouse gas emissions from bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Life cycle greenhouse gas emissions from bioenergy crops Bioenergy cropping systems could help offset greenhouse gas emissions from energy use, but quantifying that offset is complex. We conducted a life cycle assessment of a range of bioenergy cropping systems to determine the impact on net greenho...

  10. Neutron Technologies for Bioenergy Research

    SciTech Connect

    Langan, Paul

    2012-01-01

    Neutron scattering is a powerful technique that can be used to probe the structures and dynamics of complex systems. It can provide a fundamental understanding of the processes involved in the production of biofuels from lignocellulosic biomass. A variety of neutron scattering technologies are available to elucidate both the organization and deconstruction of this complex composite material and the associations and morphology of the component polymers and the enzymes acting on them, across multiple length scales ranging from Angstroms to micrometers and time scales from microseconds to picoseconds. Unlike most other experimental techniques, neutron scattering is uniquely sensitive to hydrogen (and its isotope deuterium), an atom abundantly present throughout biomass and a key effector in many biological, chemical, and industrial processes for producing biofuels. Sensitivity to hydrogen, the ability to replace hydrogen with deuterium to alter scattering levels, the fact that neutrons cause little or no direct radiation damage, and the ability of neutrons to exchange thermal energies with materials, provide neutron scattering technologies with unique capabilities for bioenergy research. Further, neutrons are highly penetrating, making it possible to employ sample environments that are not suitable for other techniques. The true power of neutron scattering is realized when it is combined with computer simulation and modeling and contrast variation techniques enabled through selective deuterium labeling.

  11. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  12. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2004-07-28

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  13. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2005-01-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  14. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  15. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  16. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2003-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  17. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2004-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  18. Bioenergy Sustainability at the Regional-Scale

    SciTech Connect

    Dale, Virginia H; Mulholland, Patrick J; Lowrance, Richard; Robertson, G. Phillip

    2010-01-01

    The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide.

  19. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2002-07-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  20. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2002-11-01

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  1. Constraints to bio-energy development

    SciTech Connect

    Parsons, V.B.

    1980-01-01

    The energy crisis has prompted research and development of renewable, domestic, cost-effective and publicly acceptable energy alternatives. Among these are the bioconversion technologies. To date bio-energy research has been directed toward the mechanics of the conversion processes and technical assessment of the environmental impacts. However, there are other obstacles to overcome before biomass can be converted to more useful forms of energy that fit existing need. Barriers to bio-energy resource application in the US are identified. In addition, examples from several agricultural regions serve to illustrate site-specific resource problems.

  2. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect

    Kathryn Baskin

    2001-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  3. Global Climate Niche Estimates for Bioenergy Crops and Invasive Species of Agronomic Origin: Potential Problems and Opportunities

    PubMed Central

    Barney, Jacob N.; DiTomaso, Joseph M.

    2011-01-01

    The global push towards a more biomass-based energy sector is ramping up efforts to adopt regionally appropriate high-yielding crops. As potential bioenergy crops are being moved around the world an assessment of the climatic suitability would be a prudent first step in identifying suitable areas of productivity and risk. Additionally, this assessment also provides a necessary step in evaluating the invasive potential of bioenergy crops, which present a possible negative externality to the bioeconomy. Therefore, we provide the first global climate niche assessment for the major graminaceous (9), herbaceous (3), and woody (4) bioenergy crops. Additionally, we contrast these with climate niche assessments for North American invasive species that were originally introduced for agronomic purposes as examples of well-intentioned introductions gone awry. With few exceptions (e.g., Saccharum officinarum, Pennisetum purpureum), the bioenergy crops exhibit broad climatic tolerance, which allows tremendous flexibility in choosing crops, especially in areas with high summer rainfall and long growing seasons (e.g., southeastern US, Amazon Basin, eastern Australia). Unsurprisingly, the invasive species of agronomic origin have very similar global climate niche profiles as the proposed bioenergy crops, also demonstrating broad climatic tolerance. The ecoregional evaluation of bioenergy crops and known invasive species demonstrates tremendous overlap at both high (EI≥30) and moderate (EI≥20) climate suitability. The southern and western US ecoregions support the greatest number of invasive species of agronomic origin, especially the Southeastern USA Plains, Mixed Woods Plains, and Mediterranean California. Many regions of the world have a suitable climate for several bioenergy crops allowing selection of agro-ecoregionally appropriate crops. This model knowingly ignores the complex biotic interactions and edaphic conditions, but provides a robust assessment of the climate

  4. Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities.

    PubMed

    Barney, Jacob N; DiTomaso, Joseph M

    2011-01-01

    The global push towards a more biomass-based energy sector is ramping up efforts to adopt regionally appropriate high-yielding crops. As potential bioenergy crops are being moved around the world an assessment of the climatic suitability would be a prudent first step in identifying suitable areas of productivity and risk. Additionally, this assessment also provides a necessary step in evaluating the invasive potential of bioenergy crops, which present a possible negative externality to the bioeconomy. Therefore, we provide the first global climate niche assessment for the major graminaceous (9), herbaceous (3), and woody (4) bioenergy crops. Additionally, we contrast these with climate niche assessments for North American invasive species that were originally introduced for agronomic purposes as examples of well-intentioned introductions gone awry. With few exceptions (e.g., Saccharum officinarum, Pennisetum purpureum), the bioenergy crops exhibit broad climatic tolerance, which allows tremendous flexibility in choosing crops, especially in areas with high summer rainfall and long growing seasons (e.g., southeastern US, Amazon Basin, eastern Australia). Unsurprisingly, the invasive species of agronomic origin have very similar global climate niche profiles as the proposed bioenergy crops, also demonstrating broad climatic tolerance. The ecoregional evaluation of bioenergy crops and known invasive species demonstrates tremendous overlap at both high (EI≥30) and moderate (EI≥20) climate suitability. The southern and western US ecoregions support the greatest number of invasive species of agronomic origin, especially the Southeastern USA Plains, Mixed Woods Plains, and Mediterranean California. Many regions of the world have a suitable climate for several bioenergy crops allowing selection of agro-ecoregionally appropriate crops. This model knowingly ignores the complex biotic interactions and edaphic conditions, but provides a robust assessment of the climate

  5. Incorporating bioenergy into sustainable landscape designs

    DOE PAGESBeta

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.; Volk, Timothy A.; Smith, C. Tattersall; Stupak, Inge

    2015-12-30

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along themore » bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.« less

  6. Incorporating bioenergy into sustainable landscape designs

    SciTech Connect

    Dale, Virginia H.; Kline, Keith L.; Buford, Marilyn A.; Volk, Timothy A.; Smith, C. Tattersall; Stupak, Inge

    2015-12-30

    In this paper, we describe an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along the bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. In conclusion, devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.

  7. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  8. Social Aspects of Bioenergy Sustainability Workshop Report

    SciTech Connect

    Luchner, Sarah; Johnson, Kristen; Lindauer, Alicia; McKinnon, Taryn; Broad, Max

    2013-05-30

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on “Social Aspects of Bioenergy” on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.

  9. Lignocellulosic Biofuels: Bioenergy Research at ARS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth and long-term viability of bioenergy production in the Nation are impeded by a number of technical and commercial barriers. Agricultural Research Service (ARS) addresses technical barriers and does so by leveraging its strengths and unique capabilities to (1) pursue technical barriers th...

  10. Will Sulfur Limit Bioenergy Feedstock Production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The short- and long-term effects of striving for higher grain yields and removing crop residues for bioenergy feedstock production must be understood to provide more quantitative crop and soil management guidelines. Soil management studies focusing on tillage, fertilizer rates and placement, cover c...

  11. Balancing crop biomass for bioenergy and conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation benefits must be included in biomass assessments to prevent long-term environmental damage as the nation addresses short-term energy problems. Therefore, to develop an environmentally and economically sound bioenergy economy, the tradeoff between managing crop residues to...

  12. Insect pests and diseases in bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana sugarcane, Saccharum spp., and other grassy crops (e.g., grain sorghum, Sorghum bicolor (L.) Moench, and hybrids involving sugarcane; sorghum; sudangrass, Sorghum bicolor ssp. drummondii (Nees ex Steud.) de Wet and Harlan, and others) with potential for bioenergy production are susceptible...

  13. Water usage in southeastern bioenergy crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southeastern United States with its long growing season and mild winter temperatures has long been able to produce a variety of food, forage, and fiber crops. In addition to these crops, the Southeast is capable of producing a plethora of lignoceullosic-based bioenergy crops for conversion into ...

  14. Utilization of summer legumes as bioenergy feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume—cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield and subsequent energy yield. S...

  15. Livestock waste-to-bioenergy generation opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary object...

  16. The role of renewable bioenergy in carbon dioxide sequestration

    SciTech Connect

    Kinoshita, C.M.

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  17. Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm.

    PubMed

    Herman, Matthew R; Nejadhashemi, A Pouyan; Daneshvar, Fariborz; Abouali, Mohammad; Ross, Dennis M; Woznicki, Sean A; Zhang, Zhen

    2016-10-01

    The emission of greenhouse gases continues to amplify the impacts of global climate change. This has led to the increased focus on using renewable energy sources, such as biofuels, due to their lower impact on the environment. However, the production of biofuels can still have negative impacts on water resources. This study introduces a new strategy to optimize bioenergy landscapes while improving stream health for the region. To accomplish this, several hydrological models including the Soil and Water Assessment Tool, Hydrologic Integrity Tool, and Adaptive Neruro Fuzzy Inference System, were linked to develop stream health predictor models. These models are capable of estimating stream health scores based on the Index of Biological Integrity. The coupling of the aforementioned models was used to guide a genetic algorithm to design watershed-scale bioenergy landscapes. Thirteen bioenergy managements were considered based on the high probability of adaptation by farmers in the study area. Results from two thousand runs identified an optimum bioenergy crops placement that maximized the stream health for the Flint River Watershed in Michigan. The final overall stream health score was 50.93, which was improved from the current stream health score of 48.19. This was shown to be a significant improvement at the 1% significant level. For this final bioenergy landscape the most often used management was miscanthus (27.07%), followed by corn-soybean-rye (19.00%), corn stover-soybean (18.09%), and corn-soybean (16.43%). The technique introduced in this study can be successfully modified for use in different regions and can be used by stakeholders and decision makers to develop bioenergy landscapes that maximize stream health in the area of interest. PMID:27420165

  18. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    NASA Astrophysics Data System (ADS)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  19. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    SciTech Connect

    Negri, M. Cristina; Ssegane, H.

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  20. Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios

    PubMed Central

    Bennett, Ashley B.; Meehan, Timothy D.; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  1. Modeling pollinator community response to contrasting bioenergy scenarios.

    PubMed

    Bennett, Ashley B; Meehan, Timothy D; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  2. Modernity's Prometheus.

    ERIC Educational Resources Information Center

    Morris, Richard

    1993-01-01

    Argues for reframing and reforging the relationship between text and context. Argues that the silences that modernity's tribute to text invites are grotesque, untenable, and fundamentally anti-intellectual. (SR)

  3. Introducing electric fields

    NASA Astrophysics Data System (ADS)

    Roche, John

    2016-09-01

    The clear introduction of basic concepts and definitions is crucial for teaching any topic in physics. I have always found it difficult to teach fields. While searching for better explanations I hit on an approach of reading foundational texts and electromagnetic textbooks in ten year lots, ranging from 1840 to the present. By combining this with modern techniques of textual interpretation I attempt to clarify three introductory concepts: how the field is defined; the principle of superposition and the role of the electrostatic field in a circuit.

  4. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  5. INTRODUCED TERRESTRIAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all introduced mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. These data are available for both 8-digit HUCs and EMAP hexagons. The data are species counts for each spatial unit.

  6. Introducing the Blues.

    ERIC Educational Resources Information Center

    Sinclair, Bryan

    2000-01-01

    Discusses the history of the blues and presents a list of resources that are designed to introduce the blues, both as a feeling and as an influential part of American music and culture. Includes picture books and nonfiction for young readers, nonfiction for older readers, Web sites, and compact disks. (LRW)

  7. Selecting Metrics for Sustainable Bioenergy Feedstocks

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Mulholland, Patrick J; Downing, Mark; Graham, Robin Lambert; Wright, Lynn L

    2009-01-01

    Key decisions about land-use practices and dynamics in biofuel systems affect the long-term sustainability of biofuels. Choices about what crops are grown and how are they planted, fertilized, and harvested determine the effects of biofuels on native plant diversity, competition with food crops, and water and air quality. Those decisions also affect economic viability since the distance that biofuels must be transported has a large effect on the market cost of biofuels. The components of a landscape approach include environmental and socioeconomic conditions and the bioenergy features [type of fuel, plants species, management practices (e.g., fertilizer and pesticide applications), type and location of production facilities] and ecological and biogeochemical feedbacks. Significantly, while water (availability and quality) emerges as one of the most limiting factors to sustainability of bioenergy feedstocks, the linkage between water and bioenergy choices for land use and management on medium and large scales is poorly quantified. Metrics that quantify environmental and socioeconomic changes in land use and landscape dynamics provide a way to measure and communicate the influence of alternative bioenergy choices on water quality and other components of the environment. Cultivation of switchgrass could have both positive and negative environmental effects, depending on where it is planted and what vegetation it replaces. Among the most important environmental effects are changes in the flow regimes of streams (peak storm flows, base flows during the growing season) and changes in stream water quality (sediment, nutrients, and pesticides). Unfortunately, there have been few controlled studies that provide sufficient data to evaluate the hydrological and water quality impacts of conversion to switchgrass. In particular, there is a need for experimental studies that use the small watershed approach to evaluate the effects of growing a perennial plant as a biomass crop

  8. Impact of Bioenergy Crops in a Carbon Dioxide Constrained World: An Application of the MiniCAM Energy-Agriculture and Land Use Model

    SciTech Connect

    Gillingham, Kenneth; Smith, Steven J.; Sands, Ronald D.

    2007-10-01

    In the coming century, modern bioenergy crops have the potential to play a crucial role in the global energy mix, especially under policies to reduce carbon dioxide emissions as proposed by many in the international community. Previous studies have not fully addressed many of the dynamic interactions and effects of a policy-induced expansion of bioenergy crop production, particularly on crop yields and human food consumption. This study combines an updated agriculture and land use (AgLU) model with a well-developed energy-economic model to provide an analysis of the effects of bioenergy crops on energy, agricultural and land use systems. The results indicate that carbon mitigation policies can stimulate a large production of bioenergy crops, dependent on the severity of the policy. This production of bioenergy crops can lead to several impacts on the agriculture and land use system: decreases in forestland and unmanaged land, decreases in the average yield of food crops, increases in the prices of food crops, and decreases in the level of human consumption of calories.

  9. Teaching Modern Dance: A Conceptual Approach

    ERIC Educational Resources Information Center

    Enghauser, Rebecca Gose

    2008-01-01

    A conceptual approach to teaching modern dance can broaden the awareness and deepen the understanding of modern dance in the educational arena in general, and in dance education specifically. This article describes a unique program that dance teachers can use to introduce modern dance to novice dancers, as well as more experienced dancers,…

  10. Introducing CAML II

    SciTech Connect

    Pelaia II, Tom; Boyes, Matthew

    2009-01-01

    Channel Access Markup Language (CAML) is a XML based markup language and implementation for displaying EPICS channel access controls within a web browser. The CAML II project expanded upon the work of CAML I adding more features and greater integration with other web technologies. The most dramatic new feature introduced in CAML II is the introduction of a namespace so CAML controls can be embedded within XHTML documents. A repetition template with macro substitution allows for rapid coding of arbitrary XHTML repetitions. Enhancements have been made to several controls including more powerful plotting options. Advanced formatting options were introduced for text controls. Virtual process variables allow for custom calculations. An EDL to CAML translator eases the transition from EDM screens to CAML pages.

  11. A bioenergy feedstock/vegetable double-cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  12. Linearity between temperature peak and bioenergy CO2 emission rates

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Gasser, Thomas; Bright, Ryan M.; Ciais, Philippe; Strømman, Anders H.

    2014-11-01

    Many future energy and emission scenarios envisage an increase of bioenergy in the global primary energy mix. In most climate impact assessment models and policies, bioenergy systems are assumed to be carbon neutral, thus ignoring the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation. Here, we show that the temperature peak caused by CO2 emissions from bioenergy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR; ref. ) to fossil fuel emissions is approximately constant, the CCR to bioenergy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bioenergy CO2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO2 emissions from bioenergy matters. Under the international agreement to limit global warming to 2 °C by 2100, early emissions from bioenergy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bioenergy is sourced from biomass with medium (50-60 years) or long turnover times (100 years).

  13. No-till bioenergy cropping systems effect on soil aeration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on soil quality, such as the effects of maize stover harvesting on soil aeration and the relationships to soil structure and water, associated with bioenergy cropping systems has been l...

  14. A Geospatial Approach to Mapping Bioenergy Potential of Perennial Crops in North American Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Wang, S.; Fritschi, F. B.; Stacy, G.

    2009-12-01

    Biomass is the largest source of renewable energy in the United States and is expected to replace 30% of the domestic petroleum consumption by 2030. Corn ethanol currently constitutes 99% of the country’s biofuels. Extended annual crop planting for biofuel production, however, has raised concerns about long-term environmental, ecological and socio-economical consequences. More sustainable bioenergy resources might therefore be developed to meet the energy demand, food security and climate policy. The DOD has identified switchgrass (Panicum virgatum L.) as a model bioenergy crop. Switchgrass, along with other warm-season grasses, is native to the pre-colonial tallgrass prairie in North America. This study maps the spatial distributions of prairie grasses and marginal croplands in the tallgrass prairie with remote sensing and GIS techniques. In 2000-2008, the 8-day composition MODIS imagery was downloaded to calculate the normalized difference vegetation index (NDVI). With pixel-level temporal trajectory of NDVI, time-series trend analysis was performed to identify native prairie grasses based on their phenological uniqueness. In a case study in southwest Missouri, this trajectory approach distinguished more than 80% of warm-season prairie grasslands from row crops and cool-season pastures (Figure 1). Warm season grasses dominated in the 19 public prairies in the study area in a range of 45-98%. This study explores the geographic context of current and potential perennial bioenergy supplies in the tallgrass prairie. Beyond the current findings, it holds promise for further investigations to provide quantitative economic and environmental information in assisting bioenergy policy decision-making. Figure 1 The distribution of grasslands in the study area. The "WSG", "CSG" and “non-grass” represent warm-season prairie grasses, introduced cool-season grasses and crops and other non-grasses.

  15. Indicators to support environmental sustainability of bioenergy systems

    SciTech Connect

    McBride, Allen; Dale, Virginia H; Baskaran, Latha Malar; Downing, Mark; Eaton, Laurence M; Efroymson, Rebecca Ann; Garten Jr, Charles T; Kline, Keith L; Jager, Yetta; Mulholland, Patrick J; Parish, Esther S; Schweizer, Peter E; Storey, John Morse

    2011-01-01

    Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.

  16. Introducing electromagnetic field momentum

    NASA Astrophysics Data System (ADS)

    Yu-Kuang Hu, Ben

    2012-07-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional analysis and without using vector calculus identities or the need to evaluate integrals. I use this result to show that linear and angular momenta are conserved for a charge in the presence of a magnetic dipole when the dipole strength is changed.

  17. BioEnergy Feasibility in South Africa

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  18. Modern Spectroscopy

    ERIC Educational Resources Information Center

    Barrow, Gordon M.

    1970-01-01

    Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)

  19. Modern Languages.

    ERIC Educational Resources Information Center

    Ministry of Education, London (England).

    This survey of educational practices in Great Britain is intended to allow a comparative view of the state of modern language instruction as it exists within the country and abroad. Chapters focus on general principles, language selection, grammar and secondary schools, instructional materials, foreign relations, teacher training, and teaching…

  20. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed. PMID:26420094

  1. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided. PMID:27620098

  2. Heat transfer and flow in solar energy and bioenergy systems

    NASA Astrophysics Data System (ADS)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  3. Introducing the CTA concept

    NASA Astrophysics Data System (ADS)

    Acharya, B. S.; Actis, M.; Aghajani, T.; Agnetta, G.; Aguilar, J.; Aharonian, F.; Ajello, M.; Akhperjanian, A.; Alcubierre, M.; Aleksić, J.; Alfaro, R.; Aliu, E.; Allafort, A. J.; Allan, D.; Allekotte, I.; Amato, E.; Anderson, J.; Angüner, E. O.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Armstrong, T.; Arnaldi, H.; Arrabito, L.; Asano, K.; Ashton, T.; Asorey, H. G.; Awane, Y.; Baba, H.; Babic, A.; Baby, N.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balbo, M.; Balis, D.; Balkowski, C.; Bamba, A.; Bandiera, R.; Barber, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basili, A.; Basso, S.; Bastieri, D.; Bauer, C.; Baushev, A.; Becerra, J.; Becherini, Y.; Bechtol, K. C.; Becker Tjus, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Belluso, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernard, F.; Bernardino, T.; Bernlöhr, K.; Bhat, N.; Bhattacharyya, S.; Bigongiari, C.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Biteau, J.; Bitossi, M.; Blake, S.; Blanch Bigas, O.; Blasi, P.; Bobkov, A.; Boccone, V.; Boettcher, M.; Bogacz, L.; Bogart, J.; Bogdan, M.; Boisson, C.; Boix Gargallo, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Bonifacio, P.; Bonnoli, G.; Bordas, P.; Borgland, A.; Borkowski, J.; Bose, R.; Botner, O.; Bottani, A.; Bouchet, L.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M.; Bringmann, T.; Brook, P.; Brun, P.; Brunetti, L.; Buanes, T.; Buckley, J.; Buehler, R.; Bugaev, V.; Bulgarelli, A.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Camprecios, J.; Canestrari, R.; Cantu, S.; Capalbi, M.; Caraveo, P.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P.-H.; Casanova, S.; Casiraghi, M.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, M.; Chabanne, E.; Chadwick, P.; Champion, C.; Chen, A.; Chiang, J.; Chiappetti, L.; Chikawa, M.; Chitnis, V. R.; Chollet, F.; Chudoba, J.; Cieślar, M.; Cillis, A.; Cohen-Tanugi, J.; Colafrancesco, S.; Colin, P.; Colome, J.; Colonges, S.; Compin, M.; Conconi, P.; Conforti, V.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corona, P.; Corti, D.; Cortina, J.; Cossio, L.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Crimi, G.; Criswell, S. J.; Croston, J.; Cusumano, G.; Dafonseca, M.; Dale, O.; Daniel, M.; Darling, J.; Davids, I.; Dazzi, F.; De Angelis, A.; De Caprio, V.; De Frondat, F.; de Gouveia Dal Pino, E. M.; de la Calle, I.; De La Vega, G. A.; de los Reyes Lopez, R.; De Lotto, B.; De Luca, A.; de Mello Neto, J. R. T.; de Naurois, M.; de Oliveira, Y.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, G.; Decock, G.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Della Volpe, D.; Demange, P.; Depaola, G.; Dettlaff, A.; Di Paola, A.; Di Pierro, F.; Díaz, C.; Dick, J.; Dickherber, R.; Dickinson, H.; Diez-Blanco, V.; Digel, S.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Dohmke, M.; Domainko, W.; Dominis Prester, D.; Donat, A.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Drake, G.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Dumas, D.; Dumm, J.; Durand, D.; Dyks, J.; Dyrda, M.; Ebr, J.; Edy, E.; Egberts, K.; Eger, P.; Einecke, S.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Engelhaupt, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Evans, P.; Falcone, A.; Fantinel, D.; Farakos, K.; Farnier, C.; Fasola, G.; Favill, B.; Fede, E.; Federici, S.; Fegan, S.; Feinstein, F.; Ferenc, D.; Ferrando, P.; Fesquet, M.; Fiasson, A.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Fiorini, M.; Firpo Curcoll, R.; Flores, H.; Florin, D.; Focke, W.; Föhr, C.; Fokitis, E.; Font, L.; Fontaine, G.; Fornasa, M.; Förster, A.; Fortson, L.; Fouque, N.; Franckowiak, A.; Fransson, C.; Fraser, G.; Frei, R.; Albuquerque, I. F. M.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Fukui, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gabriele, R.; Gadola, A.; Galante, N.; Gall, D.; Gallant, Y.; Gámez-García, J.; García, B.; Garcia López, R.; Gardiol, D.; Garrido, D.; Garrido, L.; Gascon, D.; Gaug, M.; Gaweda, J.; Gebremedhin, L.; Geffroy, N.; Gerard, L.; Ghedina, A.; Ghigo, M.; Giannakaki, E.; Gianotti, F.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Gika, V.; Giommi, P.; Girard, N.; Giro, E.; Giuliani, A.; Glanzman, T.; Glicenstein, J.-F.; Godinovic, N.; Golev, V.; Gomez Berisso, M.; Gómez-Ortega, J.; Gonzalez, M. M.; González, A.; González, F.; González Muñoz, A.; Gothe, K. S.; Gougerot, M.; Graciani, R.; Grandi, P.; Grañena, F.; Granot, J.; Grasseau, G.; Gredig, R.; Green, A.; Greenshaw, T.; Grégoire, T.; Grimm, O.; Grube, J.; Grudzinska, M.; Gruev, V.; Grünewald, S.; Grygorczuk, J.; Guarino, V.; Gunji, S.; Gyuk, G.; Hadasch, D.; Hagiwara, R.; Hahn, J.; Hakansson, N.; Hallgren, A.; Hamer Heras, N.; Hara, S.; Hardcastle, M. J.; Harris, J.; Hassan, T.; Hatanaka, K.; Haubold, T.; Haupt, A.; Hayakawa, T.; Hayashida, M.; Heller, R.; Henault, F.; Henri, G.; Hermann, G.; Hermel, R.; Herrero, A.; Hidaka, N.; Hinton, J.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Holder, J.; Horns, D.; Horville, D.; Houles, J.; Hrabovsky, M.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Humensky, T. B.; Huovelin, J.; Ibarra, A.; Illa, J. M.; Impiombato, D.; Incorvaia, S.; Inoue, S.; Inoue, Y.; Ioka, K.; Ismailova, E.; Jablonski, C.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jean, P.; Jeanney, C.; Jimenez, J. J.; Jogler, T.; Johnson, T.; Journet, L.; Juffroy, C.; Jung, I.; Kaaret, P.; Kabuki, S.; Kagaya, M.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Karastergiou, A.; Kärcher, K.; Karczewski, M.; Karkar, S.; Kasperek, J.; Kastana, D.; Katagiri, H.; Kataoka, J.; Katarzyński, K.; Katz, U.; Kawanaka, N.; Kellner-Leidel, B.; Kelly, H.; Kendziorra, E.; Khélifi, B.; Kieda, D. B.; Kifune, T.; Kihm, T.; Kishimoto, T.; Kitamoto, K.; Kluźniak, W.; Knapic, C.; Knapp, J.; Knödlseder, J.; Köck, F.; Kocot, J.; Kodani, K.; Köhne, J.-H.; Kohri, K.; Kokkotas, K.; Kolitzus, D.; Komin, N.; Kominis, I.; Konno, Y.; Köppel, H.; Korohoda, P.; Kosack, K.; Koss, G.; Kossakowski, R.; Kostka, P.; Koul, R.; Kowal, G.; Koyama, S.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawzcynski, H.; Krennrich, F.; Krepps, A.; Kretzschmann, A.; Krobot, R.; Krueger, P.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; Kuznetsov, A.; La Barbera, A.; La Palombara, N.; La Parola, V.; La Rosa, G.; Lacombe, K.; Lamanna, G.; Lande, J.; Languignon, D.; Lapington, J.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lee, S.-H.; Lee, W. H.; Leigui de Oliveira, M. A.; Lelas, D.; Lenain, J.-P.; Leopold, D. J.; Lerch, T.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lipniacka, A.; Lockart, H.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lopez, M.; López-Coto, R.; López-Oramas, A.; Lorca, A.; Lorenz, E.; Lubinski, P.; Lucarelli, F.; Lüdecke, H.; Ludwin, J.; Luque-Escamilla, P. L.; Lustermann, W.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T. J.; Madejski, G. M.; Madhavan, A.; Mahabir, M.; Maier, G.; Majumdar, P.; Malaguti, G.; Maltezos, S.; Manalaysay, A.; Mancilla, A.; Mandat, D.; Maneva, G.; Mangano, A.; Manigot, P.; Mannheim, K.; Manthos, I.; Maragos, N.; Marcowith, A.; Mariotti, M.; Marisaldi, M.; Markoff, S.; Marszałek, A.; Martens, C.; Martí, J.; Martin, J.-M.; Martin, P.; Martínez, G.; Martínez, F.; Martínez, M.; Masserot, A.; Mastichiadis, A.; Mathieu, A.; Matsumoto, H.; Mattana, F.; Mattiazzo, S.; Maurin, G.; Maxfield, S.; Maya, J.; Mazin, D.; Mc Comb, L.; McCubbin, N.; McHardy, I.; McKay, R.; Medina, C.; Melioli, C.; Melkumyan, D.; Mereghetti, S.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mihailidis, A.; Mineo, T.; Minuti, M.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Mognet, I.; Molinari, E.; Molinaro, M.; Montaruli, T.; Monteiro, I.; Moore, P.; Moralejo Olaizola, A.; Mordalska, M.; Morello, C.; Mori, K.; Mottez, F.; Moudden, Y.; Moulin, E.; Mrusek, I.; Mukherjee, R.; Munar-Adrover, P.; Muraishi, H.; Murase, K.; Murphy, A.; Nagataki, S.; Naito, T.; Nakajima, D.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Naumann-Godo, M.; Nayman, P.; Nedbal, D.; Neise, D.; Nellen, L.; Neustroev, V.; Neyroud, N.; Nicastro, L.; Nicolau-Kukliński, J.; Niedźwiecki, A.; Niemiec, J.; Nieto, D.; Nikolaidis, A.; Nishijima, K.; Nolan, S.; Northrop, R.; Nosek, D.; Nowak, N.; Nozato, A.; O'Brien, P.; Ohira, Y.; Ohishi, M.; Ohm, S.; Ohoka, H.; Okuda, T.; Okumura, A.; Olive, J.-F.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J.; Ostrowski, M.; Otero, L. A.; Otte, N.; Ovcharov, E.; Oya, I.; Ozieblo, A.; Padilla, L.; Paiano, S.; Paillot, D.; Paizis, A.; Palanque, S.; Palatka, M.; Pallota, J.; Panagiotidis, K.; Panazol, J.-L.; Paneque, D.; Panter, M.; Paoletti, R.; Papayannis, A.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parks, G.; Parraud, J.-M.; Parsons, D.; Paz Arribas, M.; Pech, M.; Pedaletti, G.; Pelassa, V.; Pelat, D.; Perez, M. d. C.; Persic, M.; Petrucci, P.-O.; Peyaud, B.; Pichel, A.; Pita, S.; Pizzolato, F.; Platos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmanski, G.; Ponz, J. D.; Potter, W.; Poutanen, J.; Prandini, E.; Prast, J.; Preece, R.; Profeti, F.; Prokoph, H.; Prouza, M.; Proyetti, M.; Puerto-Gimenez, I.; Pühlhofer, G.; Puljak, I.; Punch, M.; Pyzioł, R.; Quel, E. J.; Quinn, J.; Quirrenbach, A.; Racero, E.; Rajda, P. J.; Ramon, P.; Rando, R.; Rannot, R. C.; Rataj, M.; Raue, M.; Reardon, P.; Reimann, O.; Reimer, A.; Reimer, O.; Reitberger, K.; Renaud, M.; Renner, S.; Reville, B.; Rhode, W.; Ribó, M.; Ribordy, M.; Richer, M. G.; Rico, J.; Ridky, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P. R.; Riviére, A.; Rivoire, S.; Rob, L.; Roeser, U.; Rohlfs, R.; Rojas, G.; Romano, P.; Romaszkan, W.; Romero, G. E.; Rosen, S.; Rosier Lees, S.; Ross, D.; Rouaix, G.; Rousselle, J.; Rousselle, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C.; Rupiński, M.; Russo, F.; Ryde, F.; Sacco, B.; Saemann, E. O.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Saito, Y.; Sakaki, N.; Sakonaka, R.; Salini, A.; Sanchez, F.; Sanchez-Conde, M.; Sandoval, A.; Sandaker, H.; Sant'Ambrogio, E.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Sartore, N.; Sasaki, H.; Satalecka, K.; Sawada, M.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schafer, J.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schovanek, P.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schure, K.; Schwab, T.; Schwanke, U.; Schwarz, J.; Schwarzburg, S.; Schweizer, T.; Schwemmer, S.; Segreto, A.; Seiradakis, J.-H.; Sembroski, G. H.; Seweryn, K.; Sharma, M.; Shayduk, M.; Shellard, R. C.; Shi, J.; Shibata, T.; Shibuya, A.; Shum, E.; Sidoli, L.; Sidz, M.; Sieiro, J.; Sikora, M.; Silk, J.; Sillanpää, A.; Singh, B. B.; Sitarek, J.; Skole, C.; Smareglia, R.; Smith, A.; Smith, D.; Smith, J.; Smith, N.; Sobczyńska, D.; Sol, H.; Sottile, G.; Sowiński, M.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Sterzel, M.; Stinzing, F.; Stodulski, M.; Straumann, U.; Strazzeri, E.; Stringhetti, L.; Suarez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K.-H.; Sun, S.; Supanitsky, A. D.; Suric, T.; Sutcliffe, P.; Sykes, J.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, G.; Tammi, J.; Tanaka, M.; Tanaka, S.; Tasan, J.; Tavani, M.; Tavernet, J.-P.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tezier, D.; Thuermann, D.; Tibaldo, L.; Tibolla, O.; Tiengo, A.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torii, K.; Tornikoski, M.; Torres, D. F.; Torres, M.; Tosti, G.; Totani, T.; Toussenel, F.; Tovmassian, G.; Travnicek, P.; Trifoglio, M.; Troyano, I.; Tsinganos, K.; Ueno, H.; Umehara, K.; Upadhya, S. S.; Usher, T.; Uslenghi, M.; Valdes-Galicia, J. F.; Vallania, P.; Vallejo, G.; van Driel, W.; van Eldik, C.; Vandenbrouke, J.; Vanderwalt, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V.; Veberic, D.; Vegas, I.; Vercellone, S.; Vergani, S.; Veyssiére, C.; Vialle, J. P.; Viana, A.; Videla, M.; Vincent, P.; Vincent, S.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; von Gunten, H.-P.; Vorobiov, S.; Vuerli, C.; Waegebaert, V.; Wagner, R.; Wagner, R. G.; Wagner, S.; Wakely, S. P.; Walter, R.; Walther, T.; Warda, K.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Werner, M.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wiesand, S.; Wilkinson, M.; Williams, D. A.; Willingale, R.; Winiarski, K.; Wischnewski, R.; Wiśniewski, Ł.; Wood, M.; Wörnlein, A.; Xiong, Q.; Yadav, K. K.; Yamamoto, H.; Yamamoto, T.; Yamazaki, R.; Yanagita, S.; Yebras, J. M.; Yelos, D.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zanin, R.; Zdziarski, A.; Zech, A.; Zhao, A.; Zhou, X.; Ziętara, K.; Ziolkowski, J.; Ziółkowski, P.; Zitelli, V.; Zurbach, C.; Żychowski, P.; CTA Consortium

    2013-03-01

    The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project.

  4. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin Lambert

    2011-01-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  5. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.

    PubMed

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin L

    2011-06-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels. PMID:21774412

  6. Bioenergy: how much can we expect for 2050?

    NASA Astrophysics Data System (ADS)

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Running, Steve; Searchinger, Timothy D.; Kolby Smith, W.

    2013-09-01

    Estimates of global primary bioenergy potentials in the literature span almost three orders of magnitude. We narrow that range by discussing biophysical constraints on bioenergy potentials resulting from plant growth (NPP) and its current human use. In the last 30 years, terrestrial NPP was almost constant near 54 PgC yr-1, despite massive efforts to increase yields in agriculture and forestry. The global human appropriation of terrestrial plant production has doubled in the last century. We estimate the maximum physical potential of the world’s total land area outside croplands, infrastructure, wilderness and denser forests to deliver bioenergy at approximately 190 EJ yr-1. These pasture lands, sparser woodlands, savannas and tundras are already used heavily for grazing and store abundant carbon; they would have to be entirely converted to bioenergy and intensive forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly double the global human biomass harvest, with far-reaching effects on biodiversity, ecosystems and food supply. Identifying sustainable levels of bioenergy and finding ways to integrate bioenergy with food supply and ecological conservation goals remains a huge and pressing scientific challenge.

  7. Bioenergy Sustainability at the Regional Scale

    SciTech Connect

    Kline, Keith L; Dale, Virginia H; Mulholland, Patrick J; Lowrance, Richard; Robertson, G. Phillip

    2010-11-01

    To meet national goals for biofuels production, there are going to be large increases in acreage planted to dedicated biofuels crops. These acreages may be in perennial grasses, annual crops, short rotation woody crops, or other types of vegetation and may involve use of existing cropland, marginal lands, abandoned lands or conversion of forest land. The establishment of bioenergy crops will affect ecological processes and their interactions and thus have an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social and economic aspects of sustainability. A regional-scale perspective provides the opportunity to make more informed choices about crop selection and management, particularly with regard to water quality and quantity issues, and also about other aspects of ecological, social, and economic sustainability. We give special attention to cellulosic feedstocks because of the opportunities they provide. Adopting an adaptive management approach for biofuels feedstock production planning will be possible to a certain extent if there is adequate monitoring data on the effects of changes in land use. Effects on water resources are used as an example and existing understanding of water resource effects are analyzed in detail. Current results indicate that there may be water quality improvements coupled with some decreases in available water for downstream uses.

  8. Perennial Forages as Second Generation Bioenergy Crops

    PubMed Central

    Sanderson, Matt A.; Adler, Paul R.

    2008-01-01

    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production. PMID:19325783

  9. Global warming potential impact of bioenergy systems

    NASA Astrophysics Data System (ADS)

    Tonini, D.; Hamelin, L.; Wenzel, H.; Astrup, T.

    2012-10-01

    Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction.

  10. Cyberspace modernization :

    SciTech Connect

    Keliiaa, Curtis M.; McLane, Victor N.

    2014-07-01

    A common challenge across the communications and information technology (IT) sectors is Internet + modernization + complexity + risk + cost. Cyberspace modernization and cyber security risks, issues, and concerns impact service providers, their customers, and the industry at large. Public and private sectors are struggling to solve the problem. New service opportunities lie in mobile voice, video, and data, and machine-to-machine (M2M) information and communication technologies that are migrating not only to predominant Internet Protocol (IP) communications, but also concurrently integrating IP, version 4 (IPv4) and IP, version 6 (IPv6). With reference to the Second Internet and the Internet of Things, next generation information services portend business survivability in the changing global market. The planning, architecture, and design information herein is intended to increase infrastructure preparedness, security, interoperability, resilience, and trust in the midst of such unprecedented change and opportunity. This document is a product of Sandia National Laboratories Tribal Cyber and IPv6 project work. It is a Cyberspace Modernization objective advisory in support of bridging the digital divide through strategic partnership and an informed path forward.

  11. How can land-use modelling tools inform bioenergy policies?

    PubMed Central

    Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.

    2011-01-01

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID

  12. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    SciTech Connect

    Myers, Aaron T; Movva, Sunil; Karthik, Rajasekar; Bhaduri, Budhendra L; White, Devin A; Thomas, Neil; Chase, Adrian S Z

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which is an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.

  13. How can land-use modelling tools inform bioenergy policies?

    PubMed

    Davis, Sarah C; House, Joanna I; Diaz-Chavez, Rocio A; Molnar, Andras; Valin, Hugo; Delucia, Evan H

    2011-04-01

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID

  14. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    PubMed Central

    Blank, Peter J.; Sample, David W.; Williams, Carol L.; Turner, Monica G.

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes. PMID:25299593

  15. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    NASA Astrophysics Data System (ADS)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  16. Introducing ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Henneken, E.; Grant, C. S.; Kurtz, M. J.; Di Milia, G.; Luker, J.; Thompson, D. M.; Bohlen, E.; Murray, S. S.

    2011-05-01

    ADS Labs is a platform that ADS is introducing in order to test and receive feedback from the community on new technologies and prototype services. Currently, ADS Labs features a new interface for abstract searches, faceted filtering of results, visualization of co-authorship networks, article-level recommendations, and a full-text search service. The streamlined abstract search interface provides a simple, one-box search with options for ranking results based on a paper relevancy, freshness, number of citations, and downloads. In addition, it provides advanced rankings based on collaborative filtering techniques. The faceted filtering interface allows users to narrow search results based on a particular property or set of properties ("facets"), allowing users to manage large lists and explore the relationship between them. For any set or sub-set of records, the co-authorship network can be visualized in an interactive way, offering a view of the distribution of contributors and their inter-relationships. This provides an immediate way to detect groups and collaborations involved in a particular research field. For a majority of papers in Astronomy, our new interface will provide a list of related articles of potential interest. The recommendations are based on a number of factors, including text similarity, citations, and co-readership information. The new full-text search interface allows users to find all instances of particular words or phrases in the body of the articles in our full-text archive. This includes all of the scanned literature in ADS as well as a select portion of the current astronomical literature, including ApJ, ApJS, AJ, MNRAS, PASP, A&A, and soon additional content from Springer journals. Fulltext search results include a list of the matching papers as well as a list of "snippets" of text highlighting the context in which the search terms were found. ADS Labs is available at http://adslabs.org

  17. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  18. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  19. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  20. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  1. Bioenergy electronic information, e-mail and bulletin board systems

    SciTech Connect

    Stanton, T.; Gronbeck, C.; Witham, L.

    1994-12-31

    Email, bulletin board systems, and electronic information retrieval are taking the world by storm. Thousands of new users go online every day. Anyone interested in bioenergy can take advantage of online systems to increase the frequency, quality, and speed of information retrieval and communications with colleagues, while simultaneously significantly decreasing communications costs. In particular, three free systems provide bioenergy online services. They include: (1) ERMIS, the Energy & Regulatory Matters Information Service operated by the Michigan Public Service Commission; (2) CREST, the Center for Renewable Energy and Sustainable Technology; and (3) EICBBS, the Energy Ideas Clearinghouse BBS operated by the Washington State Energy Office. In addition, new online bioenergy services will soon be offered by the U.S. Department of Energy. And, new or existing bioenergy email and bbs services are also invited to join and integrate with EICBBS and ERMIS, in order to allow broader, free access to their information resources.

  2. Bird communities in future bioenergy landscapes of the Upper Midwest.

    PubMed

    Meehan, Timothy D; Hurlbert, Allen H; Gratton, Claudio

    2010-10-26

    Mandates for biofuel and renewable electricity are creating incentives for biomass production in agricultural landscapes of the Upper Midwest. Different bioenergy crops are expected to vary in their effects on biodiversity and ecosystem services. Here, we use data from the North American Breeding Bird Survey to forecast the impact of potential bioenergy crops on avian species richness and the number of bird species of conservation concern in Midwestern landscapes. Our analysis suggests that expanded production of annual bioenergy crops (e.g., corn and soybeans) on marginal land will lead to declines in avian richness between 7% and 65% across 20% of the region, and will make managing at-risk species more challenging. In contrast, replacement of annual with diverse perennial bioenergy crops (e.g., mixed grasses and forbs) is expected to bring increases in avian richness between 12% and 207% across 20% of the region, and possibly aid the recovery of several species of conservation concern. PMID:20921398

  3. Global land and water grabbing for food and bioenergy

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.

    2014-12-01

    The increasing demand for food, fibers and biofuels, the consequently escalating prices of agricultural products, and the uncertainty of international food markets have recently drawn the attention of governments and corporations toward investments in productive agricultural land, mostly in developing countries. Since 2000 more than 37 million hectares of arable land have been purchased or leased by foreign investors worldwide. The targeted regions are typically located in areas where crop yields are relatively low because of lack of modern technology. It is expected that in the long run large scale investments in agriculture and the consequent development of commercial farming will bring the technology required to close the existing crop yield gaps. Recently, a number of studies and reports have documented the process of foreign land acquisition, while the associated appropriation of land based resources (e.g., water and crops) has remained poorly investigated. The amount of food this land can produce and the number of people it could feed still needs to be quantified. It is also unclear to what extent the acquired land will be used to for biofuel production and the role played by U.S. and E.U. bioenergy policies as drivers of the ongoing land rush. The environmental impacts of these investments in agriculture require adequate investigation. Here we provide a global quantitative assessment of the rates of water and crop appropriation potentially associated with large scale land acquisitions. We evaluate the associated impacts on the food and energy security of both target and investors' countries, and highlight the societal and environmental implications of the land rush phenomenon.

  4. Bioenergy Feedstock Development Program Status Report

    SciTech Connect

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  5. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    NASA Astrophysics Data System (ADS)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  6. Seasonal energy storage using bioenergy production from abandoned croplands

    NASA Astrophysics Data System (ADS)

    Campbell, J. Elliott; Lobell, David B.; Genova, Robert C.; Zumkehr, Andrew; Field, Christopher B.

    2013-09-01

    Bioenergy has the unique potential to provide a dispatchable and carbon-negative component to renewable energy portfolios. However, the sustainability, spatial distribution, and capacity for bioenergy are critically dependent on highly uncertain land-use impacts of biomass agriculture. Biomass cultivation on abandoned agriculture lands is thought to reduce land-use impacts relative to biomass production on currently used croplands. While coarse global estimates of abandoned agriculture lands have been used for large-scale bioenergy assessments, more practical technological and policy applications will require regional, high-resolution information on land availability. Here, we present US county-level estimates of the magnitude and distribution of abandoned cropland and potential bioenergy production on this land using remote sensing data, agriculture inventories, and land-use modeling. These abandoned land estimates are 61% larger than previous estimates for the US, mainly due to the coarse resolution of data applied in previous studies. We apply the land availability results to consider the capacity of biomass electricity to meet the seasonal energy storage requirement in a national energy system that is dominated by wind and solar electricity production. Bioenergy from abandoned croplands can supply most of the seasonal storage needs for a range of energy production scenarios, regions, and biomass yield estimates. These data provide the basis for further down-scaling using models of spatially gridded land-use areas as well as a range of applications for the exploration of bioenergy sustainability.

  7. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect

    Yin, Hengfu; Chen, Rick; Yang, Jun; Weston, David; Chen, Jay; Muchero, Wellington; Ye, Ning; Tschaplinski, Timothy J; Wullschleger, Stan D; Cheng, Zong-Ming; Tuskan, Gerald A; Yang, Xiaohan

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  8. Bioenergy and Biodiversity: Key Lessons from the Pan American Region.

    PubMed

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L; Medeiros, Rodrigo; Oliveira, Camila Ortolan F; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region. PMID:26105970

  9. BioEnergy Feasibility in South Africa

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  10. Introducing HEP to schools through educational scenaria

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, C.; Vourakis, S.

    2015-05-01

    Recent activities, towards the goal of introducing High Energy Physics in the school class, are reviewed. The most efficient method is a half or a full day workshop where the students are introduced to one of the large LHC experiments, follow a "virtual visit" to the experiment's Control Room and perform an interactive analysis of real data. Science cafes and visits to the CERN expositions are also very helpful, provided that the tours/discussions are led by an active scientist and/or a trained teacher. Several EU outreach projects provide databases rich with education scenaria and data analysis tools ready to be used by the teachers in order to bridge the gap between modern research and technology and school education.

  11. Yearbook 1993: Bioenergy Research Programme. Utilization of bioenergy and biomass conversion

    NASA Astrophysics Data System (ADS)

    Alakangas, Eija

    BIOENERGIA Research Programme is one of the energy technology programs of the Finnish Ministry of Trade and Industry. The aim of the program is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. R&D projects will also develop new economically competitive biofuels and new equipment and methods for production, handling, and utilization of biofuels. The total funding for 1993 was 45 million FIM and the number of projects 50. The research area of biomass conversion consists of 7 projects in 1993, and the research area of bioenergy utilization of 10 projects. The results of these projects carried out in 1993 and the plans for 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well as wood processing industry and power plants than it is possible at present day appliances. The conversion research in 1993 was pointed at refining of the waste liquors of pulping industry and the extraction of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and combustion tests. The target of the bioenergy utilization research is to demonstrate three to four new utilization technologies or methods. Each of these plants should have a potential of 0.2 - 0.3 million toe. The 1993 projects consisted of three main categories: reduction of emissions from small-scale combustion equipment, development of different equipment and methods for new power plant technologies, and the studies concerning additional usage of wood fuels in forest industry.

  12. Bioenergy crop models: Descriptions, data requirements and future challenges

    SciTech Connect

    Nair, S. Surendran; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Dr. R. Cesar; Post, Wilfred M; Dietze, Michael; Lynd, L.; Wullschleger, Stan D

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  13. Developing Switchgrass as a Bioenergy Crop

    SciTech Connect

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the

  14. Agronomic Suitability of Bioenergy Crops in Mississippi

    SciTech Connect

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: • Which areas in the state are best for bioenergy crop production? • How much could these areas produce sustainably? • How can bioenergy crops impact carbon sequestration and carbon credits? âÂÃÃÂ

  15. Modeling carbon dynamics and social drivers of bioenergy agroecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, Natalie D.

    Meeting society's energy needs through bioenergy feedstock production presents a significant and urgent challenge, as it can aid in achieving energy independence goals and mitigating climate change. With federal biofuel production standards to be met within the next decade, and with no commercial scale production or markets currently in place, many questions regarding the sustainability and social feasibility of bioenergy still persist. Clarifying these uncertainties requires the incorporation of biogeochemical, biophysical, and socioeconomic modeling tools. Chapter 2 validated the biogeochemical cycling model AGRO-BGC by comparing model estimates with empirical observations from corn and perennial C4 grass systems across Wisconsin and Illinois. AGRO-BGC, in its first application to an annual cropping system, was found to be a robust model for simulating carbon dynamics of an annual cropping system. Chapter 3 investigated the long-term implications of bioenergy feedstock harvest on soil productivity and erosion in annual corn and perennial switchgrass agroecosystems using AGRO-BGC and the soil erosion model RUSLE2. Modeling environments included biophysical landscape characteristics and management practices of bioenergy feedstock production systems. This study found that intensifying aboveground residue harvest reduces soil productivity over time, and the magnitude of these losses is greater in corn than in switchgrass systems. Results of this study will aid in the design of sustainable bioenergy feedstock management practices. Chapter 4 provided evidence that combining biophysical crop canopy characteristics with satellite-derived vegetation indices offers suitable estimates of crop canopy phenology for corn and soybeans in Southwest Wisconsin farms. LANDSAT based vegetation indices, when combined with a light use efficiency model, provide yield estimates in agreement with farmer reports, providing an efficient and accurate means of estimating crop yields from

  16. A life-cycle approach to low-invasion potential bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demand for energy has increased economic incentives to develop and deploy novel bioenergy crops for biomass production. Similarities in plant traits between many candidate bioenergy crops and known invasive species have raised concerns about the potential for bioenergy crops to escape pro...

  17. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    SciTech Connect

    Folk, Richard

    1991-12-31

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  18. Recent advances in membrane technologies for biorefining and bioenergy production.

    PubMed

    He, Yi; Bagley, David M; Leung, Kam Tin; Liss, Steven N; Liao, Bao-Qiang

    2012-01-01

    The bioeconomy, and in particular, biorefining and bioenergy production, have received considerable attention in recent years as a shift to renewable bioresources to produce similar energy and chemicals derived from fossil energy sources, represents a more sustainable path. Membrane technologies have been shown to play a key role in process intensification and products recovery and purification in biorefining and bioenergy production processes. Among the various separation technologies used, membrane technologies provide excellent fractionation and separation capabilities, low chemical consumption, and reduced energy requirements. This article presents a state-of-the-art review on membrane technologies related to various processes of biorefining and bioenergy production, including: (i) separation and purification of individual molecules from biomass, (ii) removal of fermentation inhibitors, (iii) enzyme recovery from hydrolysis processes, (iv) membrane bioreactors for bioenergy and chemical production, such as bioethanol, biogas and acetic acid, (v) bioethanol dehydration, (vi) bio-oil and biodiesel production, and (vii) algae harvesting. The advantages and limitations of membrane technologies for these applications are discussed and new membrane-based integrated processes are proposed. Finally, challenges and opportunities of membrane technologies for biorefining and bioenergy production in the coming years are addressed. PMID:22306168

  19. Towards optimizing wood development in bioenergy trees.

    PubMed

    Nieminen, Kaisa; Robischon, Marcel; Immanen, Juha; Helariutta, Ykä

    2012-04-01

    To secure a sustainable energy source for the future, we need to develop an alternative to fossil fuels. Cellulose-based biofuel production has great potential for development into a sustainable and renewable energy source. The thick secondary walls of xylem cells provide a natural source of cellulose. As a result of the extensive production of wood through cambial activity, massive amounts of xylem cells can be harvested from trees. How can we obtain a maximal cellulose biomass yield from these trees? Thus far, tree breeding has been very challenging because of the long generation time. Currently, new breeding possibilities are emerging through the development of high-throughput technologies in molecular genetics. What potential does our current knowledge on the regulation of cambial activity provide for the domestication of optimal bioenergy trees? We examine the hormonal and molecular regulation of wood development with the aim of identifying the key regulatory aspects. We describe traits, including stem morphology and xylem cell dimensions, that could be modified to enhance wood production. Finally, we discuss the potential of novel marker-assisted tree breeding technologies. PMID:22474686

  20. Livestock waste-to-bioenergy generation opportunities.

    PubMed

    Cantrell, Keri B; Ducey, Thomas; Ro, Kyoung S; Hunt, Patrick G

    2008-11-01

    The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary objective of this work is to present established and emerging energy conversion opportunities that can transform the treatment of livestock waste from a liability to a profit center. While biological production of methanol and hydrogen are in early research stages, anaerobic digestion is an established method of generating between 0.1 to 1.3m3m(-3)d(-1) of methane-rich biogas. The TCC processes of pyrolysis, direct liquefaction, and gasification can convert waste into gaseous fuels, combustible oils, and charcoal. Integration of biological and thermal-based conversion technologies in a farm-scale hybrid design by combining an algal CO2-fixation treatment requiring less than 27,000m2 of treatment area with the energy recovery component of wet gasification can drastically reduce CO2 emissions and efficiently recycle nutrients. These designs have the potential to make future large scale confined animal feeding operations sustainable and environmentally benign while generating on-farm renewable energy. PMID:18485701

  1. Potential environmental impacts of bioenergy crop production. Background paper

    SciTech Connect

    Not Available

    1993-09-01

    Bioenergy crops have the potential to improve the environment, increase rural incomes, and reduce Federal budget deficits and the U.S. trade imbalance. In the wake of the devastating Midwest floods, bioenergy crops may also offer a more robust crop for flood-prone regions. Bioenergy crops include annual row crops such as corn, herbaceous perennial grasses (herbaceous energy crops--HECs) such as switchgrass, and short-rotation woody crops (SRWCs) such as poplar. HECs are analogous to growing hay, harvesting the crop for energy rather than for forage. SRWCs typically consist of a plantation of closely spaced (2 to 3 meters apart on a grid) trees that are harvested on a cycle of 3 to 10 years.

  2. Challenges When Introducing Electronic Exam

    ERIC Educational Resources Information Center

    Kuikka, Matti; Kitola, Markus; Laakso, Mikko-Jussi

    2014-01-01

    Time pressures often necessitate the use of more efficient exam tools, such as electronic exams (e-exams), instead of traditional paper exams. However, teachers may face challenges when introducing e-exams in a higher education context. This paper describes what kinds of challenges teachers may face when introducing e-exams, based on experiences…

  3. [Modernization of ophthalmoscopic techniques].

    PubMed

    Pomerantzeff, O; Vallat, M

    1987-01-01

    The great principles of ophthalmoscopy have been known for many decades. This paper intends show the new possibilities allowed by modern technology, especially in two fields. First of all, it is possible, even in keeping basic principles, to improve previous machines with, for example, better magnification, new ophthalmoscopic lens, or to create new materials as telescopes for clinical practice or intra-ocular surgery, wide angle or high magnification fundus cameras for posterior pole examination. Secondary, by revolutionary principles, it is possible to introduce laser in the ophthalmoscopic field and to imagine new ophthalmoscopes: SLO i.e. Scanning Laser Ophthalmoscope or SLM i.e. Scanning Laser Microscope, which opens a window on the future. PMID:3598060

  4. Using corngrass1 to engineer poplar as a bioenergy crop

    DOEpatents

    Meilan, Richard; Rubinelli, Peter Marius; Chuck, George

    2016-05-10

    Embodiments of the present invention relate generally to new bioenergy crops and methods of creating new bioenergy crops. For example, genes encoding microRNAs (miRNAs) are used to create transgenic crops. In some embodiments, over-expression of miRNA is used to produce transgenic perennials, such as trees, with altered lignin content or composition. In some embodiments, the transgenic perennials are Populus spp. In some embodiments, the miRNA is a member of the miR156 family. In some embodiments, the gene is Zea mays Cg1.

  5. LANL capabilities towards bioenergy and biofuels programs

    SciTech Connect

    Olivares, Jose A; Park, Min S; Unkefer, Clifford J; Bradbury, Andrew M; Waldo, Geoffrey S

    2009-01-01

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and

  6. Bioenergy, the Carbon Cycle, and Carbon Policy

    NASA Astrophysics Data System (ADS)

    Kammen, D. M.

    2003-12-01

    The evolving energy and land-use policies across North America and Africa provide critical case studies in the relationship between regional development, the management of natural resources, and the carbon cycle. Over 50 EJ of the roughly 430 EJ total global anthropogenic energy budget is currently utilized in the form of direct biomass combustion. In North America 3 - 4 percent of total energy is derived from biomass, largely in combined heat and power (CHP) combustion applications. By contrast Africa, which is a major consumer of 'traditional' forms of biomass, uses far more total bioenergy products, but largely in smaller batches, with quantities of 0.5 - 2 tons/capita at the household level. Several African nations rely on biomass for well over 90 percent of household energy, and in some nations major portions of the industrial energy supply is also derived from biomass. In much of sub-Saharan Africa the direct combustion of biomass in rural areas is exceeded by the conversion of wood to charcoal for transport to the cities for household use there. There are major health, and environmental repercussions of these energy flows. The African, as well as Latin American and Asian charcoal trade has a noticeable signature on the global greenhouse gas cycles. In North America, and notably Scandinavia and India as well, biomass energy and emerging conversion technologies are being actively researched, and provide tremendous opportunities for the evolution of a sustainable, locally based, energy economy for many nations. This talk will examine aspects of these current energy and carbon flows, and the potential that gassification and new silvicultural practices hold for clean energy systems in the 21st century. North America and Africa will be examined in particular as both sources of innovation in this field, and areas with specific promise for application of these energy technologies and biomass/land use practices to further energy and global climate management.

  7. Introducing the Ginga FITS Viewer and Toolkit

    NASA Astrophysics Data System (ADS)

    Jeschke, E.; Inagaki, T.; Kackley, R.

    2013-10-01

    We introduce Ginga, a new open-source FITS viewer and toolkit based on Python astronomical packages such as pyfits, numpy, scipy, matplotlib, and pywcs. For developers, we present a set of Python classes for viewing FITS files under the modern Gtk and Qt widget sets and a more full-featured viewer that has a plugin architecture. We further describe how plugins can be written to extend the viewer with many different capabilities. The software may be of interest to software developers who are looking for a solution for integrating FITS visualization into their Python programs and end users interested in a new and different FITS viewer that is not based on Tcl/Tk widget technology. The software has been released under a BSD license.

  8. Introducing Chemical Formulae and Equations.

    ERIC Educational Resources Information Center

    Dawson, Chris; Rowell, Jack

    1979-01-01

    Discusses when the writing of chemical formula and equations can be introduced in the school science curriculum. Also presents ways in which formulae and equations learning can be aided and some examples for balancing and interpreting equations. (HM)

  9. Cob biomass supply for bioenergy in the north central USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a liquid biofuel. The objective of this study was to determine corn cob availability in north central U.S. (Minnesota, North Dakota, and South Dakota) using...

  10. Energycane production for biomass and bioenergy feedstocks in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poster discusses the results of the first two years of energycane production research conducted in Winnsboro, LA, and Houma, LA, as part of the USDA NIFA AFRI grant. Energycane can contribute greatly to a year around bioenergy industry in Louisiana and other areas of the SE United States. As par...

  11. Elemental concentrations in Triticale straw, a potential bioenergy feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticale (X Triticosecale Wittmack) is produced on more than three million ha world wide including 344,000 ha in the USA. Straw resulting from triticale production could provide feedstock for bioenergy production in many regions of the world, but high concentrations of certain elements, including s...

  12. The Biogeochemistry of Bioenergy Landscapes: Carbon, Nitrogen, and Water Considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well-known, increasingl...

  13. CO2 SEQUESTRATION POTENTIAL OF SWITCHGRASS MANAGED FOR BIOENERGY PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is an important bioenergy crop with the potential to provide a reliable supply of renewable energy while also removing carbon dioxide from the atmosphere and sequestering it in the soil. We conducted a four-year study to quantify carbon dioxide sequestration during the establishment and ...

  14. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    SciTech Connect

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  15. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect

    Turhollow Jr, Anthony F; Webb, Erin; Downing, Mark

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  16. A framework for selecting indicators of bioenergy sustainability

    SciTech Connect

    Dale, Virginia H; Efroymson, Rebecca Ann; Kline, Keith L; Davitt, Marcia S

    2015-01-01

    Abstract: A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The fi rst steps of the framework for indicator selection are defi ning the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selection can be developed. The user of the framework identifi es and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specifi c purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here.

  17. Soil aggregation response to harvesting corn stover for bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) stover has been identified as a primary feedstock for cellulosic bioenergy production in the U.S. Corn/Soybean Belt because of the vast area upon which the crop is grown. Developing sustainable cellulosic ethanol from corn stover residue has also been identified as a high priority...

  18. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... Program for Advanced Biofuels under criteria established in the prior NOCP, which was published in this publication on June 12, 2009 (74 FR 27998). All payments will be made based upon the terms and conditions... Rural Business-Cooperative Service Bioenergy Program for Advanced Biofuels AGENCY: Rural...

  19. Assessing the Global Potential and Regional Implications of Promoting Bioenergy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  20. Soil surface carbon dioxide efflux of bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on greenhouse gas emissions from such systems is needed to ensure environmental sustainability in the field. Since soil aeration properties are dynamic, high-resolution data are needed ...

  1. Bioenergy cropping systems for food, feed, fuel, and soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop production can meet multiple needs including food, livestock feed, and bioenergy or biofuels. Cropping systems can be developed to focus on meeting any one of these needs, or they can be developed to simultaneously meet multiple needs. In any case, these systems must also protect the soil resou...

  2. Nitrogen Management of Bioenergy of Miscanthus on Claypan Soil Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy crop Miscanthus x giganteus has been well studied for its yield in Europe and certain parts of the US Midwest but little has been done to investigate Miscanthus production in settings found to be economically marginal for grain production. This study was conducted to determine nitrogen (N)...

  3. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  4. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individualsÆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  5. A framework for selecting indicators of bioenergy sustainability

    DOE PAGESBeta

    Dale, Virginia H; Efroymson, Rebecca Ann; Kline, Keith L; Davitt, Marcia S

    2015-01-01

    Abstract: A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The fi rst steps of the framework for indicator selection are defi ning the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selectionmore » can be developed. The user of the framework identifi es and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specifi c purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here.« less

  6. Regional carbon dioxide implications of forest bioenergy production

    NASA Astrophysics Data System (ADS)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-11-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2-14% (46-405TgC) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30-60gCm-2yr-1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.

  7. Soil Biochar Applications Enhance Sustainability of Bioenergy Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues return plant nutrients to soils and are critically important for nutrient cycling, maintaining levels of soil organic matter, and stabilizing soil structure. Removal of crop residues for use as feedstock for bioenergy production could adversely impact soil quality, reduce net energy pr...

  8. Modeling nitrous oxide emissions from bioenergy cropping systems using DAYCENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) is the largest greenhouse gas source from crop systems and quantifying it for the U.S. Greenhouse Gas Inventory is important. The objective of this study was to validate the ability of DAYCENT to simulate N2O emissions from bioenergy cropping systems. From weather, soil-texture c...

  9. ESSENTIAL AGRONOMIC PRACTICES FOR MANAGING SWITCHGRASS FOR BIOENERGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective is to present the state of the art for establishing and managing switchgrass for Bioenergy. The best and most productive switchgrass stands have been no-till seeded into soybean stubble. It is crucial to select the proper cultivar for the specific plant adaptation region, purchase qu...

  10. Carbon Sequestration Potential of a Switchgrass Bioenergy Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is an important bioenergy crop with the potential to provide a reliable supply of renewable energy while also removing carbon dioxide from the atmosphere and sequestering it in the soil. We conducted a four-year study to quantify carbon dioxide sequestration during the establishment and ...

  11. Crop residue considerations for sustainable bioenergy feedstock supplies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The anticipated 2014 launch of three full-scale corn stover bioenergy conversion facilities is a strong U.S. market signal that cellulosic feedstock supplies must increase dramatically to supply the required biomass in a sustainable manner. This overview highlights research conducted by the USDA-ARS...

  12. Soil Carbon Storage by Switchgrass Grown for Bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Life-cycle assessments (LCAs) of bioenergy crops such as switchgrass (Panicum virgatum L.) require data on soil organic carbon (SOC) change and harvested C yields to accurately estimate net greenhouse gas emissions. To date, nearly all information on SOC change under switchgrass has been based on e...

  13. Designing selection criteria for reed canarygrass as a bioenergy feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reed canarygrass (Phalaris arundinacea L.) is a perennial C3 grass with a circumglobal distribution in the northern hemisphere and adaptation to a wide range of environmental conditions. This species is currently under development as a bioenergy feedstock in both North America and Europe. Thus, the ...

  14. Greenhouse gas mitigation potential with cellulosic and grain bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The land use impacts, such as nitrous oxide (N2O) emissions and soil carbon sequestration, are associated with the largest changes in life cycle greenhouse gases from growing bioenergy crops. The biogeochemical model DAYCENT simulates fluxes of carbon (C) and nitrogen (N) between the atmosphere, veg...

  15. Sorghum as a Versatile Feedstock for Bioenergy Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World economy development, population increase, and urban expansion accelerate the depletion of naturally preserved energy (fossil fuel), reduction in arable land, and trend of global climate change. Bioenergy, the forms of energy produced from materials of living organisms, holds special promise in...

  16. Managing for soil protection and bioenergy production on agricultural lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy systems are needed that can aid in meeting the growing energy demands of the expanding human population without sacrificing the long-term sustainability, productivity and quality of the underlying natural resources. Agriculture, like the forestry sector, will produce the feedstocks. While ...

  17. Thermal characterization of swine manure: Bioenergy feedstock potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trend toward larger concentrated animal feeding operations has generated a sustainable surplus of manure. In addition to its traditional use as a fertilizer, manure is a rich organic resource that can be used as a bioenergy feedstock. While thermochemical conversion of animal manure via combusti...

  18. Field windbreaks for bioenergy production and carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  19. Network technology for depot modernization

    SciTech Connect

    Hostick, C.J.

    1990-12-01

    This report was prepared by the Pacific Northwest Laboratory to summarize existing and emerging information system technology and standards applicable to Depot System Command (DESCOM) modernization efforts. The intent of this summarization is to provide the Revitalization of Army Depots for the Year 2000 (READY 2000) team a clear understanding of the enabling information system technologies required to support effective modernization activities. Much of the information contained in this report was acquired during the last year in support of the US Army Armament, Munitions, and Chemical Command (AMCCOM) Facility Integrated Manufacturing Management System (FIMMS) project at PNL, which is targeting the modernization of plant-wide information systems at Army Ammunition Plants. The objective of information system modernization is to improve the effectiveness of an organization in performing its mission. Information system modernization strives to meet this objective by creating an environment where data is electronically captured near the source and readily available to all areas of the organization. Advanced networks, together with related information system technology, are the enabling mechanisms that make modern information system infrastructures possible. The intent of this paper is to present an overview of advanced information system network technology to support depot modernization planners in making technology management decisions. Existing and emerging Open System Interconnection (OSI) and Government Open System Interconnection Profile (GOSIP) standards are explained, as well as a brief assessment of existing products compliant with these standards. Finally, recommendations for achieving plant-wide integration using existing products are presented, and migration strategies for full OSI compliance are introduced. 5 refs., 16 figs. (JF)

  20. Greenhouse gas fluxes during growth of different bioenergy crops

    NASA Astrophysics Data System (ADS)

    Walter, K.; Don, A.; Flessa, H.

    2012-04-01

    Bioenergy crops are expected to contribute to greenhouse gas mitigation by substituting fossil fuels. However, during production, processing and transport of bioenergy crops greenhouse gas emissions are generated that have to be taken into account when evaluating the role of bioenergy for climate mitigation. Especially nitrous oxide (N2O) emissions during feedstock production determine the greenhouse gas balance of bioenergy due to its strong global warming potential. This fact has often been ignored due to insufficient data and knowledge on greenhouse gas emission from cropland soils under bioenergy production. Therefore, we started to investigate the greenhouse gas emissions of major bioenergy crops maize, oil seed rape, grass (grass-clover, without N-fertilizer) and short rotation coppice (SRC, poplar hybrid) at two sites in Central Germany (near Göttingen and in Thuringia). The nitrous oxide and methane (CH4) fluxes from these sites have been determined by weekly chamber measurements since May 2011. The N2O emissions from all fields were low and without extreme peaks during the first five months of measurement (222 to 687 g N2O-N ha-1 for 5 months). The rape field near Göttingen emitted less N2O than the SRC, probably because SRC was newly established in spring 2011 and the rape has not been fertilized during the measurement period (cumulative emission over 5 months: rape seed 366 ± 188 g N2O-N ha-1, grassland 497 ± 153 g N2O-N ha-1, SRC 687 ± 124 g N2O-N ha-1). The maize field in Thuringia emitted more N2O than the SRC due to emission peaks related to the fertilization of maize (cumulative emission over 5 months: maize 492 ± 140 g N2O-N ha-1, grasslands 253 ± 87 and 361 ± 135 g N2O-N ha-1, new SRC 222 ± 90 g N2O-N ha-1, 4 years old SRC 340 ± 264 g N2O-N ha-1). All sites showed a net uptake of atmospheric methane throughout the summer season (104 to 862 g CH4-C ha-1 for 5 months). However, net-exchange of CH4 is of little importance for the greenhouse

  1. Bioenergy crop models: Descriptions, data requirements and future challenges

    SciTech Connect

    Surendran Nair, Sujith; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Roberto C.; Post, W. M.; Dietze, Michael; Lynd, Lee R.; Wullschleger, Stan D.

    2012-03-15

    Field studies that address the production of lignocellulosic biomass as a potential source of renewable energy are making available critical information for the development, validation, and use of bioenergy crop models. A literature survey revealed that 14 models have been developed and validated for herbaceous and woody bioenergy crops, and for Crassulacean acid metabolism (CAM) crops adapted to arid lands. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane as plant function types at regional scales (Agro-IBIS and LPJmL). A model of biomass production in CAM plants has been developed (EPI), but lacks the sophistication of the other models. Except for CAM plants, all the models include representations of leaf area dynamics, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few of the models are capable of simulating soil water, nutrient, and carbon cycle processes, making them especially useful for assessing environmental consequences (e.g., erosion and nutrient losses) associated with the field-scale deployment of bioenergy crops. Similar to other process-based models, simulations are challenged by computing and data management issues and an integrated framework for model testing and inter-comparison is needed. Considerable work remains concerning the development of models for unconventional bioenergy crops like CAM plants, generation and distribution of high-quality field data for model development and validation, and development of an integrated framework for efficient execution of large-scale simulations for use in planning regional to global sustainable bioenergy production systems.

  2. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  3. Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits

    PubMed Central

    2012-01-01

    For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities. PMID:23122416

  4. Introduce XBRL to Business Students

    ERIC Educational Resources Information Center

    Corkern, Sheree M.; Morgan, Mark I.

    2012-01-01

    This paper informs business instructors and educators about XBRL (Extensible Business Reporting Language) so that they can introduce it to their students and expand their students' understanding of how it relates to the accounting profession. Even though the financial community has entered a new age with this standardized reporting language, many…

  5. Prompting Strategies for Introducing Opera.

    ERIC Educational Resources Information Center

    Beck, Charles R.

    2002-01-01

    Describes how to introduce opera to students through the use of prompting strategies. Explains that these strategies encourage active participation by students and help to improve listening skills. Focuses on prompting strategies, such as matching characters to songs, identifying, and sequencing songs. (CMK)

  6. An Exercise to Introduce Power

    ERIC Educational Resources Information Center

    Seier, Edith; Liu, Yali

    2013-01-01

    In introductory statistics courses, the concept of power is usually presented in the context of testing hypotheses about the population mean. We instead propose an exercise that uses a binomial probability table to introduce the idea of power in the context of testing a population proportion. (Contains 2 tables, and 2 figures.)

  7. Introducing Synchrotrons Into the Classroom

    ScienceCinema

    None

    2013-07-22

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  8. Introducing Literature of the Minorities.

    ERIC Educational Resources Information Center

    Meeks, Elizabeth

    This paper discusses a thematic approach to introduce high school or college students to fiction that deals with minority groups. The author discusses how this thematic arrangement of novels may be a useful method for organizing a study of minority groups as represented in major works of American fiction. She discusses the initiation motif as a…

  9. Introducing Group Theory through Music

    ERIC Educational Resources Information Center

    Johnson, Craig M.

    2009-01-01

    The central ideas of postcalculus mathematics courses offered in college are difficult to introduce in middle and secondary schools, especially through the engineering and sciences examples traditionally used in algebra, geometry, and trigonometry textbooks. However, certain concepts in music theory can be used to expose students to interesting…

  10. Introducing Synchrotrons Into the Classroom

    SciTech Connect

    2011-05-20

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  11. Watershed scale impacts of bioenergy, landscape changes, and ecosystem response

    NASA Astrophysics Data System (ADS)

    Chaubey, Indrajeet; Cibin, Raj; Chiang, Li-Chi

    2013-04-01

    In recent years, high US gasoline prices and national security concerns have prompted a renewed interest in alternative fuel sources to meet increasing energy demands, particularly by the transportation sector. Food and animal feed crops, such as corn and soybean, sugarcane, residue from these crops, and cellulosic perennial crops grown specifically to produce bioenergy (e.g. switchgrass, Miscanthus, mixed grasses), and fast growing trees (e.g. hybrid poplar) are expected to provide the majority of the biofeedstock for energy production. One of the grand challenges in supplying large quantities of grain-based and lignocellulosic materials for the production of biofuels is ensuring that they are produced in environmentally sustainable and economically viable manner. Feedstock selection will vary geographically based on regional adaptability, productivity, and reliability. Changes in land use and management practices related to biofeedstock production may have potential impacts on water quantity and quality, sediments, and pesticides and nutrient losses, and these impacts may be exacerbated by climate variability and change. We have made many improvements in the currently available biophysical models (e.g. Soil and Water Assessment Tool or SWAT model) to evaluate sustainability of energy crop production. We have utilized the improved model to evaluate impacts of both annual (e.g. corn) and perennial bioenergy crops (e.g. Miscanthus and switchgrass at) on hydrology and water quality under the following plausible bioenergy crop production scenarios: (1) at highly erodible areas; (2) at agriculturally marginal areas; (3) at pasture areas; (4) crop residue (corn stover) removal; and (5) combinations of above scenarios. Overall results indicated improvement in water quality with introduction of perennial energy crops. Stream flow at the watershed outlet was reduced under energy crop production scenarios and ranged between 0.3% and 5% across scenarios. Erosion and sediment

  12. The Influence of Climate on Sustainable North American Bioenergy Potential

    NASA Astrophysics Data System (ADS)

    Bagley, J. E.; Cuadra, S.; Drewry, D.; VanLoocke, A. D.; Bernacchi, C.

    2013-12-01

    Bioenergy agroecosystems are increasingly being investigated and implemented as an important source of sustainable and secure liquid fuel. In the U.S. the current bioenergy market is dominated by ethanol derived from maize, which has limited carbon benefits and multiple environmental concerns. In 2012, a record ~40% of the maize crop went to ethanol production despite persistent drought conditions reducing yields across much of the growing region. This has led to questions of the future value of devoting such a large fraction of the most valuable arable land to ethanol production with the frequency of these extreme conditions expected to increase with climate change. A proposed solution is the development of 2nd-generation bioenergy crops including miscanthus, switchgrass, and energy cane on marginal or abandoned croplands that have limited value for food production. However, the future potential for these lands to provide sufficient bioenergy production has uncertainty associated with changing climate. In this study, we use a newly available suite of dynamically downscaled climate data sets, estimates of marginal and abandoned cropland derived in part from satellite observations, and an extended version of the Agro-IBIS LSM to estimate the impact of climate change on North American bioenergy potential. In particular, we assess how temperature and precipitation are likely to change over marginal and abandoned croplands, and how these changes may impact the range and yields of maize, miscanthus, switchgrass, and energy cane. We extend the Agro-IBIS model with mechanistic multilayer vegetation, and validate the model using published yield, leaf area, and surface flux observations. The extended Agro-IBIS model is driven with weather conditions from the near-past (1971-2000) and future (2041-2070) using 30-year dynamically downscaled climate estimates from the North American Regional Climate Change Assessment Program (NARCCAP), and CO2 concentrations specified from

  13. Qualitative research. Introducing focus groups.

    PubMed Central

    Kitzinger, J.

    1995-01-01

    This paper introduces focus group methodology, gives advice on group composition, running the groups, and analysing the results. Focus groups have advantages for researchers in the field of health and medicine: they do not discriminate against people who cannot read or write and they can encourage participation from people reluctant to be interviewed on their own or who feel they have nothing to say. Images p301-a PMID:7633241

  14. Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial

    NASA Astrophysics Data System (ADS)

    McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan

    2013-04-01

    Climate change impacts resulting from fossil fuel combustion and concerns about the diversity of energy supply are driving interest to find low-carbon energy alternatives. As a result bioenergy is receiving widespread scientific, political and media attention for its potential role in both supplying energy and mitigating greenhouse (GHG) emissions. It is estimated that the bioenergy contribution to EU 2020 renewable energy targets could require up to 17-21 million hectares of additional land in Europe (Don et al., 2012). There are increasing concerns that some transitions into bioenergy may not be as sustainable as first thought when GHG emissions from the crop growth and management cycle are factored into any GHG life cycle assessment (LCA). Bioenergy is complex and encapsulates a wide range of crops, varying from food crop based biofuels to dedicated second generation perennial energy crops and forestry products. The decision on the choice of crop for energy production significantly influences the GHG mitigation potential. It is recognised that GHG savings or losses are in part a function of the original land-use that has undergone change and the management intensity for the energy crop. There is therefore an urgent need to better quantify both crop and site-specific effects associated with the production of conventional and dedicated energy crops on the GHG balance. Currently, there is scarcity of GHG balance data with respect to second generation crops meaning that process based models and LCAs of GHG balances are weakly underpinned. Therefore, robust, models based on real data are urgently required. In the UK we have recently embarked on a detailed program of work to address this challenge by combining a large number of field studies with state-of-the-art process models. Through six detailed experiments, we are calculating the annual GHG balances of land use transitions into energy crops across the UK. Further, we are quantifying the total soil carbon gain or

  15. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes. PMID:19134546

  16. Ecological objectives can be achieved with wood-derived bioenergy

    SciTech Connect

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. The EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollution from power plants.

  17. Sweet sorghum as a model system for bioenergy crops.

    PubMed

    Calviño, Martín; Messing, Joachim

    2012-06-01

    Bioenergy is the reduction of carbon via photosynthesis. Currently, this energy is harvested as liquid fuel through fermentation. A major concern, however, is input cost, in particular use of excess water and nitrogen, derived from an energy-negative process, the Haber-Bosch method. Furthermore, the shortage of arable land creates competition between uses for food and fuel, resulting in increased living expenses. This review seeks to summarize recent knowledge in genetics, genomics, and gene expression of a rising model species for bioenergy applications, sorghum. Its diploid genome has been sequenced, it has favorable low-input cost traits, and genetic crosses between different cultivars can be used to study allelic variations of genes involved in stem sugar metabolism and incremental biomass. PMID:22204822

  18. Ecological objectives can be achieved with wood-derived bioenergy

    SciTech Connect

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollution from power plants.

  19. Ecological objectives can be achieved with wood-derived bioenergy

    DOE PAGESBeta

    Dale, Virginia H.; Kline, Keith L.; Marland, Gregg; Miner, Reid A.

    2015-08-01

    Renewable, biomass-based energy options can reduce the climate impacts of fossil fuels. However, calculating the effects of wood-derived bioenergy on greenhouse gases (GHGs), and thus on climate, is complicated (Miner et al. 2015). To clarify concerns and options about bioenergy, in November 2014, the US Environmental Protection Agency (EPA) produced a second draft of its Framework for Assessing Biogenic CO2 Emissions fromStationary Sources (http://1.usa.gov/1dikgHq), which considers the latest scientific information and input from stakeholders. Furthermore, the EPA is expected to make decisions soon about the use of woody biomass under the Clean Power Plan, which sets targets for carbon pollutionmore » from power plants.« less

  20. Research Explains Modern Art!

    ERIC Educational Resources Information Center

    Eickhorst, William S.

    1985-01-01

    This tongue-in-cheek article calls for the critical reexamination of the history of modern art. The author believes that modern art is neither an extension of the Renaissance aesthetic nor a collective by-product of artists possessed of creative genius. Creators of modern art were actually representational artists suffering from visual stuttering.…

  1. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  2. An Assessment of Bio-Energy Crops Use in Illinois

    NASA Astrophysics Data System (ADS)

    Jain, A.; Khanna, M.; Barman, R.; Yang, X.; Dhungana, B.; Chen, X.

    2007-12-01

    Growing concern about climate change and energy security has led to increasing interest in developing domestically available renewable energy sources for meeting the electricity, heating and fuel needs in the United States. Illinois has a significant potential to grow perennial grasses that can provide bio-energy. Two perennial grasses, Switchgrass and Miscanthus, have been identified as among the best choices for low input bio-energy production in the US and Europe. The purpose of this talk is two fold. First, we will examine the optimal areas in Illinois to locate perennial grasses as feedstocks. These areas will be determined based on biophysical conditions (such as heterogeneity in soil quality and climatic factors) and costs of production and costs of land that differ across locations. Second, we will determine the CO2 mitigation benefits to be provided by bioenergy crops, both in the form of soil carbon sequestration and displacement of carbon emissions from gasoline. This analysis will be undertaken using detailed GIS data on soil quality, climate and land use for 0.1deg by 0.1deg grid cells in Illinois. This data will be used together with the Integrated Science Assessment Model (ISAM), a terrestrial ecosystem model, to estimate the yields of Switchgrass and Miscanthus as well as their potential to sequester carbon in the soil. Yield for row crops will be based on historical data and will be used to determine the opportunity cost of converting land currently under corn and soybean production to perennial grasses. Costs of production for the alternative crops here include expenses incurred by farmers on fertilizer inputs, machinery, harvesting and transportation and will be used to determine the profitability of alternative land uses in each grid cell. The framework developed here will be used to examine the optimal locations to grow bio-energy crops to achieve various carbon mitigation targets cost-effectively.

  3. Tradeoffs in ecosystem services of prairies managed for bioenergy production

    NASA Astrophysics Data System (ADS)

    Jarchow, Meghann Elizabeth

    The use of perennial plant materials as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. Currently, the production of energy from agricultural products is primarily in the form of ethanol from corn grain, which used more than 45% of the domestic U.S. corn crop in 2011. Concomitantly, using corn grain to produce ethanol has promoted landscape simplification and homogenization through conversion of Conservation Reserve Program grasslands to annual row crops, and has been implicated in increasing environmental damage, such as increased nitrate leaching into water bodies and increased rates of soil erosion. In contrast, perennial prairie vegetation has the potential to be used as a bioenergy feedstock that produces a substantial amount of biomass as well as numerous ecosystem services. Reincorporating prairies to diversify the landscape of the Midwestern U.S. at strategic locations could provide more habitat for animals, including beneficial insects, and decrease nitrogen, phosphorus, and sediment movement into water bodies. In this dissertation, I present data from two field experiments that examine (1) how managing prairies for bioenergy production affects prairie ecology and agronomic performance and (2) how these prairie systems differ from corn systems managed for bioenergy production. Results of this work show that there are tradeoffs among prairie systems and between corn and prairie systems with respect to the amount of harvested biomass, root production, nutrient export, feedstock characteristics, growing season utilization, and species and functional group diversity. These results emphasize the need for a multifaceted approach to fully evaluate bioenergy feedstock production systems.

  4. Air-quality and Climatic Consequences of Bioenergy Crop Cultivation

    NASA Astrophysics Data System (ADS)

    Porter, William Christian

    Bioenergy is expected to play an increasingly significant role in the global energy budget. In addition to the use of liquid energy forms such as ethanol and biodiesel, electricity generation using processed energy crops as a partial or full coal alternative is expected to increase, requiring large-scale conversions of land for the cultivation of bioenergy feedstocks such as cane, grasses, or short rotation coppice. With land-use change identified as a major contributor to changes in the emission of biogenic volatile organic compounds (BVOCs), many of which are known contributors to the pollutants ozone (O 3) and fine particulate matter (PM2.5), careful review of crop emission profiles and local atmospheric chemistry will be necessary to mitigate any unintended air-quality consequences. In this work, the atmospheric consequences of bioenergy crop replacement are examined using both the high-resolution regional chemical transport model WRF/Chem (Weather Research and Forecasting with Chemistry) and the global climate model CESM (Community Earth System Model). Regional sensitivities to several representative crop types are analyzed, and the impacts of each crop on air quality and climate are compared. Overall, the high emitting crops (eucalyptus and giant reed) were found to produce climate and human health costs totaling up to 40% of the value of CO 2 emissions prevented, while the related costs of the lowest-emitting crop (switchgrass) were negligible.

  5. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  6. Global spatially explicit CO2 emission metrics for forest bioenergy

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; van Zelm, Rosalie; van der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-02-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2-1 for GTP, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales.

  7. The power of bioenergy-related standards to protect biodiversity.

    PubMed

    Hennenberg, K J; Dragisic, C; Haye, S; Hewson, J; Semroc, B; Savy, C; Wiegmann, K; Fehrenbach, H; Fritsche, U R

    2010-04-01

    The sustainable production of bioenergy is vital to avoiding negative impacts on environmental goods such as climate, soil, water, and especially biodiversity. We propose three key issues that should be addressed in any biodiversity risk-mitigation strategy: conservation of areas of significant biodiversity value; mitigation of negative effects related to indirect land-use change; and promotion of agricultural practices with few negative impacts on biodiversity. Focusing on biodiversity concerns, we compared principles and criteria set to address biodiversity and other environmental and social issues in seven standards (defined here as commodity-based standards or roundtables, or relevant European legislation): five voluntary initiatives related to bioenergy feedstocks, the Renewable Transport Fuel Obligation (United Kingdom), and the European Renewable Energy Source Directive. Conservation of areas of significant biodiversity value was fairly well covered by these standards. Nevertheless, mitigation of negative impacts related to indirect land-use change was underrepresented. Although the EU directive, with its bonus system for the use of degraded land and a subquota system for noncrop biofuels, offered the most robust standards to mitigate potential negative effects, all of the standards fell short in promoting agricultural practices with low negative impacts on biodiversity. We strongly recommend that each standard be benchmarked against related standards, as we have done here, and that efforts should be made to strengthen the elements that are weak or missing. This would be a significant step toward achieving a bioenergy industry that safeguards Earth's living heritage. PMID:20028415

  8. Threshold dynamics in soil carbon storage for bioenergy crops.

    PubMed

    Woo, Dong K; Quijano, Juan C; Kumar, Praveen; Chaoka, Sayo; Bernacchi, Carl J

    2014-10-21

    Because of increasing demands for bioenergy, a considerable amount of land in the midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. The foliar carbon/nitrogen ratio (C/N) in these bioenergy crops at harvest is significantly higher than the ratios in replaced crops, such as corn or soybean. We show that there is a critical soil organic matter C/N ratio, where microbial biomass can be impaired as microorganisms become dependent upon net immobilization. The simulation results show that there is a threshold effect in the amount of aboveground litter input in the soil after harvest that will reach a critical organic matter C/N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes, such as decomposition and mineralization. These thresholds are approximately 25 and 15% of aboveground biomass for switchgrass and miscanthus, respectively. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which, in turn, would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared to a corn-corn-soybean rotation. PMID:25207669

  9. Introducing Locality-Aware Computation into OpenMP

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Jin, Haoqiang; Chapman, Barbara

    2010-01-01

    This paper presents our idea to introduce data locality feature into OpenMP. Given the facts that the memory systems are hierarchical while OpenMP is at, we believe that it is important to introduce new features to OpenMF to provide Open MP programmer capability to manage the data layout and align tasks and data as close as possible in modern architectures. We present the syntax and examples of the proposed features in this paper, and hope to enable further discussion of useful language features to keep OpenMP scalable in emerging architectures.

  10. Introduced species as evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.

    2005-01-01

    Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.

  11. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  12. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    SciTech Connect

    Karp, Peter D.

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  13. Potential Air Quality Impacts of Global Bioenergy Crop Cultivation

    NASA Astrophysics Data System (ADS)

    Porter, W. C.; Rosenstiel, T. N.; Barsanti, K. C.

    2012-12-01

    The use of bioenergy crops as a replacement for traditional coal-powered electricity generation will require large-scale land-use change, and the resulting changes in emissions of biogenic volatile organic compounds (BVOCs) may have negative impacts on local to regional air quality. BVOCs contribute to the formation of both ozone (O3) and fine particulate matter (PM2.5), with magnitudes of specific compound emissions governed largely by plant speciation and land coverage. For this reason, large-scale land-use change has the potential to markedly alter regional O3 and PM2.5 levels, especially if there are large differences between the emission profiles of the replacement bioenergy crops (many of which are high BVOC emitters) and the previous crops or land cover. In this work, replacement areas suitable for the cultivation of the bioenergy crops switchgrass (Panicum virgatum) and giant reed (Arundo donax) were selected based on existing global inventories of under-utilized cropland and local climatological conditions. These two crops are among the most popular current candidates for bioenergy production, and provide contrasting examples of energy densities and emissions profiles. While giant reed has been selected in an ongoing large-scale coal-to-biocharcoal conversion in the Northwestern United States due to its high crop yields and energy density, it is also among the highest biogenic emitters of isoprene. On the other hand, switchgrass produces less biomass per acre, but also emits essentially no isoprene and low total BVOCs. The effects of large-scale conversion to these crops on O3 and PM2.5 were simulated using version 1.1 of the Community Earth System Model (CESM) coupled with version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGAN). By comparing crop replacement scenarios involving A. donax and P. virgatum, the sensitivities of O3 and PM2.5 levels to worldwide increases in bioenergy production were examined, providing an initial

  14. Introducing heifers to freestall housing.

    PubMed

    von Keyserlingk, M A G; Cunha, G E; Fregonesi, J A; Weary, D M

    2011-04-01

    Little work to date has assessed how dairy cattle respond when first introduced to freestall housing. In this study we carried out 2 experiments. The aim of experiment 1 was to assess the behavioral responses of naïve heifers to pens fitted with freestalls. Holstein heifers (n=7 groups, each containing 3 heifers, 3 mo of age), with no previous experience with freestalls, were initially housed on a sawdust bedded pack and fed through a fixed feed barrier for at least 6 wk and then moved to a freestall pen fitted with a head-locking feed barrier. When kept on the bedded pack, the heifers' lying time averaged 14.2 h/d. On the day heifers were moved to the freestall pen, lying times declined by 2.9 h, but recovered on the following days. The time spent lying down on the barn floor (i.e., outside the lying area) increased by 2.5 h on the day heifers were introduced to freestalls and remained higher during subsequent days. Heifers spent 46 min/d less time feeding on the day they were switched to the head-locking barrier, but recovered on the following days. In experiment 2 we assessed the behavioral responses of naïve heifers introduced to pens fitted with freestalls with or without a neck rail. Holstein heifers (n=12 groups, each containing 2 heifers, 3 mo of age), with no previous experience with freestalls, were initially housed on a sawdust bedded pack and then moved to a freestall pen with or without neck rails. Heifers spent 4.2 h/d less time lying down in the 24 h following introduction into the freestall pen; the neck rail treatment had no effect on lying time but heifers spent more time standing with just their front 2 hooves in the stall when a neck rail was in the stall. In summary, lying and feeding behavior of naïve heifers is altered following introduction to new housing. PMID:21426979

  15. Effects of bioenergy production on European nature conservation options

    NASA Astrophysics Data System (ADS)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    To increase security of energy supply and reduce greenhouse gas (GHG) emissions the European Commission set out a long-term strategy for renewable energy in the European Union (EU). Bioenergy from forestry and agriculture plays a key role for both. Since the last decade a significant increase of biomass energy plantations has been observed in Europe. Concurrently, the EU agreed to halt the loss of biodiversity within its member states. One measure is the Natura2000 network of important nature sites that actually covers about 20% of the EU land surface. However, to fulfil the biodiversity target more nature conservation and restoration sites need to be designated. There are arising concerns that an increased cultivation of bioenergy crops will decrease the land available for nature reserves and for "traditional" agriculture and forestry. In the following the economic and ecological impacts of structural land use changes are demonstrated by two examples. First, a case study of land use changes on the Eiderstedt peninsula in Schleswig-Holstein/Germany evaluates the impacts of grassland conversion into bioenergy plantations under consideration of selected meadow birds. Scenarios indicate not only a quantitative loss of habitats but also a reduction of habitat quality. The second study assesses the role of bioenergy production in light of possible negative impacts on potential wetland conservation sites in Europe. By coupling the spatial wetland distribution model "SWEDI" (cf. SCHLEUPNER 2007) to the European Forest and Agricultural Sector Optimization Model (EUFASOM; cf. SCHNEIDER ET AL. 2008) economic and environmental aspects of land use are evaluated simultaneously. This way the costs and benefits of the appropriate measures and its consequences for agriculture and forestry are investigated. One aim is to find the socially optimal balance between alternative wetland uses by integrating biological benefits - in this case wetlands - and economic opportunities - here

  16. A Dynamical Successor to Modernism and Postmodernism

    ERIC Educational Resources Information Center

    MacDonald, Don

    2008-01-01

    The author introduces an emerging worldview that could affect counseling concepts and methods greatly in the relatively near future. The worldview, dynamicalism, incorporates essential features of modernism and postmodernism. It also incorporates cutting-edge concepts from physics and philosophy. The synthesis of these ideas provides a conceptual…

  17. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production.

    PubMed

    Ookawa, Taiichiro; Inoue, Kazuya; Matsuoka, Makoto; Ebitani, Takeshi; Takarada, Takeshi; Yamamoto, Toshio; Ueda, Tadamasa; Yokoyama, Tadashi; Sugiyama, Chisato; Nakaba, Satoshi; Funada, Ryo; Kato, Hiroshi; Kanekatsu, Motoki; Toyota, Koki; Motobayashi, Takashi; Vazirzanjani, Mehran; Tojo, Seishu; Hirasawa, Tadashi

    2014-01-01

    Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, 'Leaf Star', with superior lodging resistance and a gh phenotype similar to one of its parents, 'Chugoku 117'. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety. PMID:25298209

  18. Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production

    PubMed Central

    Ookawa, Taiichiro; Inoue, Kazuya; Matsuoka, Makoto; Ebitani, Takeshi; Takarada, Takeshi; Yamamoto, Toshio; Ueda, Tadamasa; Yokoyama, Tadashi; Sugiyama, Chisato; Nakaba, Satoshi; Funada, Ryo; Kato, Hiroshi; Kanekatsu, Motoki; Toyota, Koki; Motobayashi, Takashi; Vazirzanjani, Mehran; Tojo, Seishu; Hirasawa, Tadashi

    2014-01-01

    Lignin modification has been a breeding target for the improvements of forage digestibility and energy yields in forage and bioenergy crops, but decreased lignin levels are often accompanied by reduced lodging resistance. The rice mutant gold hull and internode2 (gh2) has been identified to be lignin deficient. GH2 has been mapped to the short arm of chromosome 2 and encodes cinnamyl-alcohol dehydrogenase (CAD). We developed a long-culm variety, ‘Leaf Star’, with superior lodging resistance and a gh phenotype similar to one of its parents, ‘Chugoku 117’. The gh loci in Leaf Star and Chugoku 117 were localized to the same region of chromosome 2 as the gh2 mutant. Leaf Star had culms with low lignin concentrations due to a natural mutation in OsCAD2 that was not present in Chugoku 117. However, this variety had high culm strength due to its strong, thick culms. Additionally, this variety had a thick layer of cortical fiber tissue with well-developed secondary cell walls. Our results suggest that rice can be improved for forage and bioenergy production by combining superior lodging resistance, which can be obtained by introducing thick and stiff culm traits, with low lignin concentrations, which can be obtained using the gh2 variety. PMID:25298209

  19. Fostering the Bioeconomic Revolution in Biobased Products and Bioenergy: An Environmental Approach

    SciTech Connect

    none,

    2001-01-01

    This document is a product of the Biomass Research and Development Board and presents a high-level summary of the emerging national strategy for biobased products and bioenergy. It provides the first integrated approach to policies and procedures that will promote R&D and demonstration leading to accelerated production of biobased products and bioenergy.

  20. Land-Use and Environmental Pressures Resulting from Current and Future Bioenergy Crop Expansion: A Review

    ERIC Educational Resources Information Center

    Miyake, Saori; Renouf, Marguerite; Peterson, Ann; McAlpine, Clive; Smith, Carl

    2012-01-01

    Recent energy and climate policies, particularly in the developed world, have increased demand for bioenergy as an alternative, which has led to both direct and indirect land-use changes and an array of environmental and socio-economic concerns. A comprehensive understanding of the land-use dynamics of bioenergy crop production is essential for…

  1. Mitigation of greenhouse gas emissions with cellulosic and grain bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems could help offset GHG emissions, but quantifying that offset is complex. Bioenergy crops offset CO2 emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit N2O and vary in their effects on soil oxidation of methane. Growing the cro...

  2. Preliminary assessment of dual use bioenergy-forage potential of exotic and native grasses in Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some bioenergy grasses may have dual use potential as livestock feed or bioenergy feedstock. We conducted two studies on exotic and native grasses thought to have primary use as either livestock forage [‘Bumpers’ eastern gamagrass (Tripsacum dactyloides) and ‘Alamo’ switchgrass (Panicum virgatum)] ...

  3. 75 FR 45112 - Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ...: Corrections EPA published a Call for Information in the Federal Register (75 FR 41173) on July 15, 2010. In... AGENCY Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other... greenhouse gas emissions from bioenergy and other biogenic sources. Inadvertently, incorrect text...

  4. Cellulosic and Grain Bioenergy Crops Reduce Net Greenhouse Gas Emissions Associated with Transportation Fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems could help offset GHG emissions, but quantifying that offset is complex. Bioenergy crops offset CO2 emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit N2O and vary in their effects on soil oxidation of methane. Growing the cro...

  5. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNL’s capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  6. Genomic selection and genome-wide association analyses for bioenergy traits in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass, a relatively high-yielding and environmentally sustainable biomass crop, has been chosen by the USDA and the USDOE as one of the main sources of bioenergy in the US. However, further genetic gains in biomass yield and quality must be achieved to make it an economically viable bioenergy ...

  7. Cellulosic and grain bioenergy crops reduce net greenhouse gas emissions associated with transportation fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems could help offset GHG emissions, but quantifying that offset is complex. Adler et al. (2007, Ecol. Appl. 17:675-691) conducted a life cycle assessment of the net greenhouse gas flux from bioenergy cropping systems. Compared with the life cycle of gasoline and diesel, ethan...

  8. Multi-utilization of swine manure as a bioenergy feedstock: Carbonization and combustion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of animal manure and other organic-based waste products as bioenergy feedstocks is gaining interest for waste-to-bioenergy conversion processes. While thermochemical conversion of animal manure via combustion, pyrolysis, and gasification is becoming a new frontier of manure treatment; there ...

  9. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for b...

  10. Water use efficiency of perennial and annual bioenergy crops in central Illinois

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable bioenergy production depends upon the efficiency with which crops use available water to produce biomass and store carbon belowground. Therefore, water use efficiency (WUE; productivity vs. annual evapotranspiration, ET) is a key metric of bioenergy crop performance. We evaluate WUE of t...

  11. Nuclear weapons modernizations

    SciTech Connect

    Kristensen, Hans M.

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  12. Nuclear weapons modernizations

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2014-05-01

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  13. Introducing the Moon's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2014-11-01

    I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a guided exercise, rather than just telling them the facts.1 The inclination and nodes may be found by direct observation, monitoring carefully the position of the Moon among the stars. Even the regression of the nodes may be discovered in this way2 To find the eccentricity from students' observations is also possible,3 but that requires considerable time and effort. if a whole class should discover it in a short time, here is a method more suitable for a one-day class or home assignment. The level I aim at is, more or less, advanced high school or first-year college students. I assume them to be acquainted with celestial coordinates and the lunar phases, and to be able to use algebra and trigonometry.

  14. Minerals Bill introduced in House

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A bill that aims to strengthen a national minerals policy and to establish a three-member White-House-level council to coordinate the development of this policy was introduced in the House of Representatives on April 30 by James D. Santini (D-Nev.). Entitled the National Minerals Security Act (NMSA), the legislation, if passed, also would amend tax laws to assist the mining industry to make capital investments to locate and produce strategic minerals; it would provide the means for the Secretary of the Interior to make withdrawn public lands available for mineral development; and it would create a revolving fund for the sale and purchase of strategic minerals.Santini estimates that 4 billion tons of minerals are needed annually to sustain the nation's economy. Much of the minerals are supplied by other nations, however; Santini wants to see an end to the United States' dependence on foreign countries, especially those that seem relatively unstable politically. ‘The U.S. has placed its national security in the hands of a few foreign nations,’ Santini said in a recent press conference. ‘We are heavily dependent on the region of southern Africa for 76% of our cobalt, 93% of our platinum, 48% of our chromium, and a host of other strategic and critical minerals. Without these minerals, we cannot build jet aircraft, weapons, or other military hardware vitally important to our national security.’

  15. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    SciTech Connect

    McLaughlin, S.B.

    1995-12-31

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  16. Global spatially explicit CO2 emission metrics for forest bioenergy.

    PubMed

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; Van Zelm, Rosalie; Van Der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-01-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2(-1) (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2(-1) for GTP, and 2.14·10(-14) ± 0.11·10(-14) °C (kg yr(-1))(-1) for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales. PMID:26830755

  17. Switchgrass yield on reclaimed surface mines for bioenergy production.

    PubMed

    Marra, Michael; Keene, Travis; Skousen, Jeff; Griggs, Thomas

    2013-01-01

    The high cost of transportation fuels and the environmental risks associated with acquiring and using nonrenewable energy sources have created a demand for developing renewable bioenergy crops. Switchgrass ( L.), a warm-season perennial grass, is a promising feedstock due to its high biomass production under a wide range of growing conditions and its satisfactory forage quality and chemical composition. West Virginia contains vast expanses of reclaimed surface mine lands that could be used to produce switchgrass as a bioenergy feedstock. This study determined dry matter yields of three switchgrass varieties (Cave-In-Rock, Shawnee, and Carthage) during the second to fourth years of production. Two research sites were established on reclaimed surface mines in southern West Virginia: Hobet and Hampshire. The Hobet site was prepared using crushed, unweathered sandstone as the soil material, and yields were significantly lower at 803 kg ha averaged across varieties and years than annual yields at Hampshire. The highest yield at Hobet, with Shawnee in the third year, was 1964 kg ha. The Hamphire site, which was reclaimed in the late 1990s using topsoil and treated municipal sludge, averaged 5760 kg ha of switchgrass across varieties and years. The highest yield, obtained with Cave-in-Rock during the third year, was 9222 kg ha. Switchgrass yields on agricultural lands in this region averaged 12,000 kg ha. Although average switchgrass yields at Hampshire were about 50% lower than agricultural lands, they were greater than a target yield of 5000 kg ha, a threshold for economically feasible production. Yields during the fourth year from a two-harvest per year system were not significantly different from a single, end-of-year harvest at both sites. Reclaimed lands show promise for growing bioenergy crops such as switchgrass on areas where topsoil materials are replaced and amended like that at the Hampshire site. PMID:23673936

  18. Global spatially explicit CO2 emission metrics for forest bioenergy

    PubMed Central

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; Van Zelm, Rosalie; Van Der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-01-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2−1 (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2−1 for GTP, and 2.14·10−14 ± 0.11·10−14 °C (kg yr−1)−1 for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales. PMID:26830755

  19. The Dynamic Bioenergy of Animals with a Digestive Tract

    NASA Astrophysics Data System (ADS)

    Moxnes, John F.; Hausken, Kjell

    This paper provides a mathematical dynamic description of the bioenergetic time history of bilataria (multicellular animals with a digestive tract) during feeding, growth and activity. We analyze the dynamics of bioenergy using ordinary differential equations on a compartment model, which we believe could constitute a mathematical foundation. Allometric scaling laws of the quarter type are assumed for all scaling relations in accordance with fractal theory. The paper demonstrates the dynamics by which bilataria respond to activity and feeding. The model is tested against some well-known experiments for fishes.

  20. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    SciTech Connect

    Wallace Tyner

    2012-05-30

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  1. ART MODERN/DIALOG.

    ERIC Educational Resources Information Center

    Sheng, Katharine K.

    1979-01-01

    Reviews ART MODERN, an on-line data base which provides comprehensive coverage of current worldwide literature on modern art and design since 1800. Areas described include scope, coverage, arrangement of printed and on-line indexes, characteristics of basic index and code searching; also search hints, search negotiation, searchguide, and data base…

  2. Myth and Modern Man.

    ERIC Educational Resources Information Center

    Patai, Raphael

    Various theories about the purpose of myth are described briefly, and then the place of myth in modern life is explored. Modern man is found to still create his own myths, and his life is still influenced by mythical prototypes and images. Myths, mythical beliefs, and mythical thinking are discovered in socialist, Communist, and totalitarian…

  3. Astronomy in Modern Turkey

    NASA Astrophysics Data System (ADS)

    Eker, Zeki; Demircan, Osman, Kirbiyik, Halil; Bilir, Selcuk

    2013-01-01

    Present-day astronomy and its development in the recent history of Turkey are described. Current astronomy education in modern-day Turkish Republic from primary to high schools, including modern-day university education is discussed. Astronomical and space research together with the existing observatories and present-day Turkish astronomy in the global state is presented.

  4. Introducing the Atmospheric Visualization Collection

    NASA Astrophysics Data System (ADS)

    Klaus, C. M.; Andrew, K.; Mace, G. G.; McCollum, T.; Gobble, T.

    2002-12-01

    The Atmospheric Visualization Collection is a digital library collection, a section in the NSF's National Science Digital Library. The collection has two essential components. The first is an archive of images based on data from the Atmospheric Radiation Measurement (ARM) program. The second is a collection of educational material based on atmospheric science concepts that use these data images. The data image archive focuses on the ARM Southern Great Plains (SGP) site, which has the largest collection of ground-based remote-sensing atmospheric instruments. Our visualization tools are automated to create the data images for both archival and real-time uses. ARM instrument mentors and ARM scientist as well as other scientists involved in campaigns at the ARM SGP site review our visualization work for scientific quality. While the archive of weather images was initially created for scientists, collaboration with teachers has identified many of the barriers to educational use. This revealed the need for more educationally friendly interfaces into our weather images and the need for greater documentation. One of the results is our geophysical focus area interface, allowing teachers and students to access these data images. The visualization tools used to produce these data images are available through an open source repository. Testing with undergraduate students has demonstrated the usability of these tools with data from the ARM Archive for class projects. While the task of reviewing and improving user interfaces continues, we have reached a stage where educators and students can easily access our atmospheric data images. An initial set of peer reviewed lesson plans based on these data images has been the basis for workshops to introduce teachers to the AVC. To further involve these teachers a Lesson Plan Sandbox. The Lesson Plan Sandbox allows teachers to submit their lesson plans to share with others, to review lesson plans submitted by other teachers, and to add

  5. Successful Innovative Methods in Introducing Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Chattejee, T. K. C.

    2006-08-01

    Innovating new informative methods to induce interest in students has permitted us to introduce astronomy in several universities and institutes in Mexico. As a prelude, we gave a popular course in the history of astronomy. This was very easy as astronomy seems to be the most ancient of sciences and relating the achievements of the ancient philosophers/scientists was very enlightening. Then we put up an amateur show of the sky every week (subject to climatic conditions for observability). We showed how to take photographs and make telescopic observations. We enlightened the students of the special missions of NASA and took them to museums for space exploration. We gave a popular seminar on "Astrodynamics," highlighting its importance. We gave a series of introductory talks in radio and T.V. Finally we exposed them to electronic circulars, like "Universe Today" and "World Science." The last mentioned strategy had the most electrifying effect. We may not have been successful without it, as the students began to take the matter seriously only after reading numerous electronic circulars. In this respect, these circulars are not only informative about the latest news in astronomy, but highlight the role of astronomy in the modern world. Without it, students seem to relate astronomy to astrology; it is due to this misconception that they are not attracted to astronomy. Students were hardly convinced of the need for an astronomy course, as they did not know about the scope and development of the subject. This awakened the interests of students and they themselves proposed the initiation of an elementary course in astronomy to have a feel of the subject. Later on they proposed a course on "Rocket Dynamics." We will discuss our methods and their impact in detail.

  6. The theory of bio-energy transport in the protein molecules and its properties

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-feng

    2011-10-01

    The bio-energy transport is a basic problem in life science and related to many biological processes. Therefore to establish the mechanism of bio-energy transport and its theory have an important significance. Based on different properties of structure of α-helical protein molecules some theories of bio-energy transport along the molecular chains have been proposed and established, where the energy is released by hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories of bio-energy, including Davydov's, Takeno's, Yomosa's, Brown et al.'s, Schweitzer's, Cruzeiro-Hansson's, Forner's and Pang's models were first stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties, thermal stability and lifetimes of the carriers (solitons) transporting the bio-energy at physiological temperature 300 K in Pang's and Davydov's theories. From these investigations we know that the carrier (soliton) of bio-energy transport in the α-helical protein molecules in Pang's model has a higher binding energy, higher thermal stability and larger lifetime at 300 K relative to those of Davydov's model, in which the lifetime of the new soliton at 300 K is enough large and belongs to the order of 10 -10 s or τ/τ⩾700. Thus we can conclude that the soliton in Pang's model is exactly the carrier of the bio-energy transport, Pang's theory is appropriate to α-helical protein molecules.

  7. Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

    SciTech Connect

    Pacific Northwest and Alaska Bioenergy Program

    1991-02-01

    This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

  8. The global technical potential of bio-energy in 2050 considering sustainability constraints

    PubMed Central

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-01-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets (‘technical potential’). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160–270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization (‘cascade utilization’) of biomass flows. PMID:24069093

  9. SRWC bioenergy productivity and economic feasibility on marginal lands.

    PubMed

    Ghezehei, Solomon B; Shifflett, Shawn D; Hazel, Dennis W; Nichols, Elizabeth Guthrie

    2015-09-01

    Evolving bioenergy markets necessitate consideration of marginal lands for woody biomass production worldwide particularly the southeastern U.S., a prominent wood pellet exporter to Europe. Growing short rotation woody crops (SRWCs) on marginal lands minimizes concerns about using croplands for bioenergy production and reinforces sustainability of wood supply to existing and growing global biomass markets. We estimated mean annual aboveground green biomass increments (MAIs) and assessed economic feasibility of various operationally established (0.5 ha-109 ha) SRWC stands on lands used to mitigate environmental liabilities of municipal wastewater, livestock wastewater and sludge, and subsurface contamination by petroleum and pesticides. MAIs (Mg ha(-1) yr(-1)) had no consistent relationship with stand density or age. Non-irrigated Populus, Plantanus occidentalis L. and Pinus taeda L. stands produced 2.4-12.4 Mg ha(-1) yr(-1). Older, irrigated Taxodium distchum L., Fraxinus pennsylvanica L., and coppiced P. occidentalis stands had higher MAIs (10.6-21.3 Mg ha(-1) yr(-1)) than irrigated Liquidambar styraciflua L. and non-coppiced, irrigated P. occidentalis (8-18 Mg ha(-1) yr(-1)). Natural hardwood MAIs at 20-60 years were less than hardwood and P. taeda productivities at 5-20 years. Unlike weed control, irrigation and coppicing improved managed hardwood productivity. Rotation length affected economic outcomes although the returns were poor due to high establishment and maintenance costs, low productivities and low current stumpage values, which are expected to quickly change with development of robust global markets. PMID:26087365

  10. Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.; Bernacchi, C.

    2014-12-01

    Due to increasing demands for bioenergy, a considerable amount of land in the Midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. In this study, we attempt to explore and analyze how different amounts of above-ground biomass returned to the soil at harvest affect the below-ground dynamics of carbon and nitrogen as a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation. The simulation results show that there is a threshold effect in the amount of above-ground litter input in the soil after harvest that will reach a critical organic matter C:N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes such as decomposition and mineralization. These thresholds are approximately 25% and 15% of above-ground biomass for switchgrass and miscanthus, respectively. However, we do not observe such threshold effects for corn-corn-soybean rotation. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which in turn would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared with a corn-corn-soybean rotation.

  11. Scenarios of bioenergy development impacts on regional groundwater withdrawals

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    Irrigation increases agricultural productivity, but it also stresses water resources (Huffaker and Hamilton 2007). Drought and the potential for drier conditions resulting from climate change could strain water supplies in landscapes where human populations rely on finite groundwater resources for drinking, agriculture, energy, and industry (IPCC 2007). For instance, in the North American Great Plains, rowcrops are utilized for livestock feed, food, and bioenergy production (Cassman and Liska 2007), and a large portion is irrigated with groundwater from the High Plains aquifer system (McGuire 2011). Under projected future climatic conditions, greater crop water use requirements and diminished groundwater recharge rates could make rowcrop irrigation less feasible in some areas (Rosenberg et al. 1999; Sophocleous 2005). The Rainwater Basin region of south central Nebraska, United States, is an intensively farmed and irrigated Great Plains landscape dominated by corn (Zea mays L.) and soybean (Glycine max L.) production (Bishop and Vrtiska 2008). Ten starch-based ethanol plants currently service the region, producing ethanol from corn grain (figure 1). In this study, we explore the potential of switchgrass (Panicum virgatum L.), a drought-tolerant alternative bioenergy feedstock, to impact regional annual groundwater withdrawals for irrigation under warmer and drier future conditions. Although our research context is specific to the Rainwater Basin and surrounding North American Great Plains, we believe the broader research question is internationally pertinent and hope that this study simulates similar research in other areas.

  12. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    PubMed Central

    Dickson, Timothy L.; Gross, Katherine L.

    2015-01-01

    Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments

  13. Genomics:GTL Bioenergy Research Centers White Paper

    SciTech Connect

    Mansfield, Betty Kay; Alton, Anita Jean; Andrews, Shirley H; Bownas, Jennifer Lynn; Casey, Denise; Martin, Sheryl A; Mills, Marissa; Nylander, Kim; Wyrick, Judy M; Drell, Dr. Daniel; Weatherwax, Sharlene; Carruthers, Julie

    2006-08-01

    In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is

  14. Computational characterization of DNA/peptide/nanotube self assembly for bioenergy applications

    NASA Astrophysics Data System (ADS)

    Ortiz, Vanessa; Araki, Ruriko; Collier, Galen

    2012-02-01

    Multi-enzyme pathways have become a subject of increasing interest for their role in the engineering of biomimetic systems for applications including biosensors, bioelectronics, and bioenergy. The efficiencies found in natural metabolic pathways partially arise from biomolecular self-assembly of the component enzymes in an effort to avoid transport limitations. The ultimate goal of this effort is to design and build biofuel cells with efficiencies similar to those of native systems by introducing biomimetic structures that immobilize multiple enzymes in specific orientations on a bioelectrode. To achieve site-specific immobilization, the specificity of DNA-binding domains is exploited with an approach that allows any redox enzyme to be modified to site-specifically bind to double stranded (ds) DNA while retaining activity. Because of its many desirable properties, the bioelectrode of choice is single-wall carbon nanotubes (SWNTs), but little is known about dsDNA/SWNT assembly and how this might affect the activity of the DNA-binding domains. Here we evaluate the feasibility of the proposed assembly by performing atomistic molecular dynamics simulations to look at the stability and conformations adopted by dsDNA when bound to a SWNT. We also evaluate the effects of the presence of a SWNT on the stability of the complex formed by a DNA-binding domain and DNA.

  15. BOOK REVIEW: Modern Supersymmetry

    NASA Astrophysics Data System (ADS)

    Kulish, Petr P.

    2006-12-01

    We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the Ad

  16. Facility Modernization Report

    SciTech Connect

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  17. A modern trends retrospective.

    PubMed

    Wallach, Edward E

    2011-06-01

    Editorship of the Modern Trends section has been a great ride. The section raised the level of interest and readership of Fertility and Sterility, while providing important, up-to-date material for students, scientists and practitioners. PMID:21496803

  18. The Use of Modern Pedagogical Techniques When Introducing Information Technology Students to Entrepreneurship

    ERIC Educational Resources Information Center

    Pardede, Eric

    2015-01-01

    This paper describes the design of teaching and learning activities (TLAs) in an entrepreneurship subject offered to Information Technology (IT) students. We describe the challenges that we have encountered. Within one teaching semester, the students are expected to achieve a high level of applied knowledge in an area where they have little…

  19. Accounting for Carbon Dioxide Emissions from Bioenergy Systems

    SciTech Connect

    Marland, Gregg

    2010-12-01

    Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not

  20. Trade-offs of different land and bioenergy policies on the path to achieving climate targets

    SciTech Connect

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page; Patel, Pralit L.; Clarke, Leon E.; Edmonds, James A.

    2013-10-16

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument—the carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.

  1. Biomass for energy in the European Union - a review of bioenergy resource assessments.

    PubMed

    Bentsen, Niclas Scott; Felby, Claus

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  2. Root biomass and soil carbon response to growing perennial grasses for bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dedicated bioenergy crops such as switchgrass (Panicum virgatum L.), miscanthus [Miscanthus x giganteus (Mxg)], indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) can provide cellulosic feedstock for biofuel production while maintaining or improving soil and en...

  3. National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010

    SciTech Connect

    Schell, D.

    2010-12-01

    Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

  4. A model for deploying switchgrass for bioenergy in an intensive agricultural landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass bioenergy research has been conducted in Nebraska since 1990. In that time, significant progress has been made in switchgrass breeding and genetics, molecular genetics, establishment, fertility management, production economics, production energetics, harvest and storage management, ecos...

  5. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010

    SciTech Connect

    Schell, D.

    2010-04-01

    January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

  6. Biomass production from native warm-season grass monocultures and polycultures managed for bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass monocultures grown for Bioenergy lack plant species diversity and may not optimize ecosystem services. However, switchgrass monocultures are generally perceived to be more productive and provide fewer establishment and management challenges than polycultures. Our objective was to compare...

  7. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity.

    PubMed

    Gell, Kealan; van Groenigen, JanWillem; Cayuela, Maria Luz

    2011-02-28

    The current shift towards bioenergy production increases streams of bioenergy rest-products (RPs), which are likely to end-up as soil amendments. However, their impact on soil remains unclear. In this study we evaluated crop phytotoxicity of 15 RPs from common bioenergy chains (biogas, biodiesel, bioethanol and pyrolysis). The RPs were mixed into a sandy soil and the seedling root and shoot elongation of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and wheat (Triticum aestivum L.) were measured. Immediate phytotoxic effects were observed with biodiesel and bioethanol RPs (root elongation reduced to 14-60% for the three crops; P<0.05). However, phytotoxicity was no longer significant after seven days. Digestates had no phytotoxic effect whereas biochars ranged from beneficial to detrimental depending on the original feedstock and temperature of pyrolysis. Biochar amendment alleviated phytotoxicity of bioethanol by-products for wheat and radish. Phytotoxicity assessment is critical for successful soil amendment with bioenergy RPs. PMID:21256672

  8. Uncertainty in Bioenergy Scenarios for California: Lessons Learned in Communicating with Different Stakeholder Groups

    NASA Astrophysics Data System (ADS)

    Youngs, H.

    2013-12-01

    Projecting future bioenergy use involves incorporating several critical inter-related parameters with high uncertainty. Among these are: technology adoption, infrastructure and capacity building, investment, political will, and public acceptance. How, when, where, and to what extent the various bioenergy options are implemented has profound effects on the environmental impacts incurred. California serves as an interesting case study for bioenergy implementation because it has very strong competing forces that can influence these critical factors. The state has aggressive greenhouse gas reduction goals, which will require some biofuels, and has invested accordingly on new technology. At the same time, political will and public acceptance of bioenergy has wavered, seriously stalling bioenergy expansion efforts. We have constructed scenarios for bioenergy implementation in California to 2050, in conjunction with efforts to reach AB32 GHG reduction goals of 80% below 1990 emissions. The state has the potential to produce 3 to 10 TJ of biofuels and electricity; however, this potential will be severely limited in some scenarios. This work examines sources of uncertainty in bioenergy implementation, how uncertainty is or is not incorporated into future bioenergy scenarios, and what this means for assessing environmental impacts. How uncertainty is communicated and perceived also affects future scenarios. Often, there is a disconnect between scenarios for widespread implementation and the actual development of individual projects, resulting in "artificial uncertainty" with very real impacts. Bringing stakeholders to the table is only the first step. Strategies to tailor and stage discussions of uncertainty to stakeholder groups is equally important. Lessons learned in the process of communicating the Calfornia's Energy Future biofuels assessment will be discussed.

  9. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields

    PubMed Central

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.

    2011-01-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply

  10. Modern NMR spectroscopy: a guide for chemists

    SciTech Connect

    Sanders, J.K.M.; Hunter, B.K.

    1988-01-01

    The aim of the authors of Modern NMR Spectroscopy is to bridge the communication gap between the chemist and the spectroscopist. The approach is nonmathematical, descriptive, and pictorial. To illustrate the ideas introduced in the text, the authors provide original spectra obtained specially for this purpose. Examples include spectroscopy of protons, carbon, and less receptive nuclei of interest to inorganic chemists. The authors succeed in making high-resolution NMR spectroscopy comprehensible for the average student or chemist.

  11. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications.

    PubMed

    Lewin, Gina R; Carlos, Camila; Chevrette, Marc G; Horn, Heidi A; McDonald, Bradon R; Stankey, Robert J; Fox, Brian G; Currie, Cameron R

    2016-09-01

    The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels. PMID:27607553

  12. Molecular Breeding for Improved Second Generation Bioenergy Crops.

    PubMed

    Allwright, Mike R; Taylor, Gail

    2016-01-01

    There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future. PMID:26541073

  13. Standard Flow Liquid Chromatography for Shotgun Proteomics in Bioenergy Research

    PubMed Central

    González Fernández-Niño, Susana M.; Smith-Moritz, A. Michelle; Chan, Leanne Jade G.; Adams, Paul D.; Heazlewood, Joshua L.; Petzold, Christopher J.

    2015-01-01

    Over the past 10 years, the bioenergy field has realized significant achievements that have encouraged many follow on efforts centered on biosynthetic production of fuel-like compounds. Key to the success of these efforts has been transformational developments in feedstock characterization and metabolic engineering of biofuel-producing microbes. Lagging far behind these advancements are analytical methods to characterize and quantify systems of interest to the bioenergy field. In particular, the utilization of proteomics, while valuable for identifying novel enzymes and diagnosing problems associated with biofuel-producing microbes, is limited by a lack of robustness and limited throughput. Nano-flow liquid chromatography coupled to high-mass accuracy, high-resolution mass spectrometers has become the dominant approach for the analysis of complex proteomic samples, yet such assays still require dedicated experts for data acquisition, analysis, and instrument upkeep. The recent adoption of standard flow chromatography (ca. 0.5 mL/min) for targeted proteomics has highlighted the robust nature and increased throughput of this approach for sample analysis. Consequently, we assessed the applicability of standard flow liquid chromatography for shotgun proteomics using samples from Escherichia coli and Arabidopsis thaliana, organisms commonly used as model systems for lignocellulosic biofuels research. Employing 120 min gradients with standard flow chromatography, we were able to routinely identify nearly 800 proteins from E. coli samples; while for samples from Arabidopsis, over 1,000 proteins could be reliably identified. An examination of identified peptides indicated that the method was suitable for reproducible applications in shotgun proteomics. Standard flow liquid chromatography for shotgun proteomics provides a robust approach for the analysis of complex samples. To the best of our knowledge, this study represents the first attempt to validate the standard

  14. Indicators for assessing socioeconomic sustainability of bioenergy systems. A short list of practical measures

    SciTech Connect

    Dale, Virginia H.; Efroymson, Rebecca Ann; Kline, Keith L.; Langholtz, Matthew H.; Leiby, Paul Newsome; Oladosu, Gbadebo A.; Davis, Maggie R.; Downing, Mark E.; Hilliard, Michael R.

    2012-10-16

    Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, calibrated with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement, and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten of those 16 indicators are proposed to be the minimum list of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally-prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.

  15. Advancing Sustainable Bioenergy: Evolving Stakeholder Interests and the Relevance of Research

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence; Bielicki, Jeffrey M.; Dodder, Rebecca S.; Hilliard, Michael R.; Ozge Kaplan, P.; Andrew Miller, C.

    2013-02-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different—and potentially conflicting—values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote "sustainable" bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  16. Synergistic Microbial Consortium for Bioenergy Generation from Complex Natural Energy Sources

    PubMed Central

    Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1 : 9 (v : v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs. PMID:25097866

  17. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect

    Johnson, Timothy L; Bielicki, Dr Jeffrey M; Dodder, Rebecca; Hilliard, Michael R; Kaplan, Ozge; Miller, C. Andy

    2013-01-01

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  18. Expanding the modern synthesis.

    PubMed

    Wallace, Rodrick

    2010-10-01

    The Modern Evolutionary Synthesis formalizes the role of variation, heredity, differential reproduction and mutation in population genetics. Here we explore a mathematical structure, based on the asymptotic limit theorems of communication theory, that instantiates the punctuated dynamic relations of organisms with their embedding environments, including the possibility of the transfer of heritage information between different classes of organism. The approach applies a standard coevolutionary argument to genes, environment, and gene expression reconfigured as interacting information sources. In essence, we provide something of a formal roadmap for the modernization of the Modern Synthesis, making applications to both relatively rapid evolutionary punctuated equilibrium and to the conservation of ecological interactions across deep evolutionary time. PMID:20965439

  19. Modern Chinese: History and Sociolinguistics.

    ERIC Educational Resources Information Center

    Chen, Ping

    This book presents a comprehensive and up-to-date account of the development of modern Chinese from the late 19th century up to the 1990s, concentrating on three major aspects: modern spoken Chinese, modern written Chinese, and the modern Chinese writing system. It describes and analyzes in detail, from historical and sociolinguistic perspectives,…

  20. Modern Regression Discontinuity Analysis

    ERIC Educational Resources Information Center

    Bloom, Howard S.

    2012-01-01

    This article provides a detailed discussion of the theory and practice of modern regression discontinuity (RD) analysis for estimating the effects of interventions or treatments. Part 1 briefly chronicles the history of RD analysis and summarizes its past applications. Part 2 explains how in theory an RD analysis can identify an average effect of…

  1. Modern Biotechnology in China

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  2. Modernizing Mechanical Services.

    ERIC Educational Resources Information Center

    Rutgers, Norman L.

    Some of the problems of renovating school buildings and in particular the modernization of mechanical services in existing facilities are discussed. According to school management publications, approximately 42 per cent of our elementary and 59 per cent of our secondary schools are 15 years old or older. School plants, which were built 12 to 15…

  3. Principles of Modern Soccer.

    ERIC Educational Resources Information Center

    Beim, George

    This book is written to give a better understanding of the principles of modern soccer to coaches and players. In nine chapters the following elements of the game are covered: (1) the development of systems; (2) the principles of attack; (3) the principles of defense; (4) training games; (5) strategies employed in restarts; (6) physical fitness…

  4. Modern splinting bandages.

    PubMed

    Wytch, R; Ashcroft, G P; Ledingham, W M; Wardlaw, D; Ritchie, I K

    1991-01-01

    We have assessed the current range of synthetic splinting bandages, using physical and mechanical tests and the subjective opinions of patients, volunteers and orthopaedic staff. Modern bandages have some better properties than standard plaster bandage but do not conform as well, are more expensive, and potentially more hazardous. PMID:1991785

  5. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  6. Modern biotechnology in China.

    PubMed

    Wang, Qing-Zhao; Zhao, Xue-Ming

    2010-01-01

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned. PMID:19626302

  7. A Modern Periodic Table.

    ERIC Educational Resources Information Center

    Herrenden-Harker, B. D.

    1997-01-01

    Presents a modern Periodic Table based on the electron distribution in the outermost shell and the order of filling of the sublevels within the shells. Enables a student to read off directly the electronic configuration of the element and the order in which filling occurs. (JRH)

  8. Modern programming language

    NASA Technical Reports Server (NTRS)

    Feldman, G. H.; Johnson, J. A.

    1980-01-01

    Structural-programming language is especially-tailored for producing assembly language programs for MODCOMP II and IV mini-computes. Modern programming language consists of set of simple and powerful control structures that include sequencing alternative selection, looping, sub-module linking, comment insertion, statement continuation, and compilation termination capabilities.

  9. [Modern wound dressings].

    PubMed

    Triller, Ciril; Huljev, Dubravko; Planinsek Rucigaj, Tanja

    2013-10-01

    Chronic wounds are, due to the slow healing, a major clinical problem. In addition to classic materials, a great number of supportive wound dressings for chronic wound treatment, developed on the basis of new knowledge about the pathophysiological events in non-healing wounds, are available on the market. Today we know that modern wound dressings provide the best local environment for optimal healing (moisture, warmth, appropriate pH). Wound dressings control the amount of exudate from the wound and bacterial load, thus protecting local skin from the wound exudate and the wound from secondary infections from the environment. Using supportive wound dressings makes sense only when the wound has been properly assessed, the etiologic factors have been clarified and the obstacles making the wound chronic identified. The choice of dressing is correlated with the characteristics of the wound, the knowledge and experience of the medical staff, and the patient's needs. We believe that the main advantage of modern wound dressing versus conventional dressing is more effective wound cleaning, simple dressing application, painless bandaging owing to reduced adhesion to the wound, and increased absorption of the wound exudate. Faster wound granulation shortens the length of patient hospitalization, and eventually facilitates the work of medical staff. The overall cost of treatment is a minor issue due to faster wound healing despite the fact that modern supportive wound dressings are more expensive than conventional bandaging. The article describes different types of modern supportive wound dressings, as well as their characteristics and indications for use. PMID:24371980

  10. Gnotobiology in modern medicine

    NASA Technical Reports Server (NTRS)

    Podoprigora, G. I.

    1980-01-01

    A review is given of currently accepted theories and applications of gnotobiology. A brief history of gnotobiology is supplied. Problems involved in creating germ-free gnotobiota and the use of these animals in experimental biology are cited. Examples of how gnotobiology is used in modern medical practice illustrate the future prospects for this area of science.

  11. Teaching Modern Languages.

    ERIC Educational Resources Information Center

    Richardson, G., Ed.

    Key areas of modern language teaching are addressed in 10 articles. In addition to a general overview of methods and aims of foreign language teaching, attention is directed to the audiolingual and audiovisual revolution, language study for the slow-learning child and for the child with above average ability, imaginative learning activities for…

  12. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water

  13. English Clubs: Introducing English to Young Learners

    ERIC Educational Resources Information Center

    Afia, Jawida Ben

    2006-01-01

    This article introduces an approach taken in Tunisia to introduce English as a foreign language to children in primary school classrooms. The author states that in Tunisia, children in primary schools are first taught Arabic and then French. The government does not want to overburden the students with English learning. Then, the author describes…

  14. Introducing Optical Concepts in Electrical Engineering.

    ERIC Educational Resources Information Center

    Daneshvar, K.; Coleman, R.

    The expansion in the fields of optical engineering and optoelectronics has made it essential to introduce optical engineering concepts into undergraduate courses and curricula. Because of limits on the number of course requirements for the BS degree, it is not clear how these topics should be introduced without replacing some of the traditional…

  15. Undetectable Firearms Modernization Act

    THOMAS, 113th Congress

    Rep. Israel, Steve [D-NY-3

    2013-04-10

    04/30/2013 Referred to the Subcommittee on Crime, Terrorism, Homeland Security, and Investigations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. School Food Modernization Act

    THOMAS, 113th Congress

    Rep. Latham, Tom [R-IA-3

    2013-04-26

    07/08/2013 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Microbial nitrogen cycling response to forest-based bioenergy production.

    PubMed

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  18. Introducing Large-Scale Innovation in Schools

    ERIC Educational Resources Information Center

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-01-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school…

  19. Bioenergy potential of the United States constrained by satellite observations of existing productivity

    USGS Publications Warehouse

    Reed, Sasha C.; Smith, William K.; Cleveland, Cory C.; Miller, Norman L.; Running, Steven W.

    2012-01-01

    Background/Question/Methods Currently, the United States (U.S.) supplies roughly half the world’s biofuel (secondary bioenergy), with the Energy Independence and Security Act of 2007 (EISA) stipulating an additional three-fold increase in annual production by 2022. Implicit in such energy targets is an associated increase in annual biomass demand (primary bioenergy) from roughly 2.9 to 7.4 exajoules (EJ; 1018 Joules). Yet, many of the factors used to estimate future bioenergy potential are relatively unresolved, bringing into question the practicality of the EISA’s ambitious bioenergy targets. Here, our objective was to constrain estimates of primary bioenergy potential (PBP) for the conterminous U.S. using satellite-derived net primary productivity (NPP) data (measured for every 1 km2 of the 7.2 million km2 of vegetated land in the conterminous U.S) as the most geographically explicit measure of terrestrial growth capacity. Results/Conclusions We show that the annual primary bioenergy potential (PBP) of the conterminous U.S. realistically ranges from approximately 5.9 (± 1.4) to 22.2 (± 4.4) EJ, depending on land use. The low end of this range represents current harvest residuals, an attractive potential energy source since no additional harvest land is required. In contrast, the high end represents an annual harvest over an additional 5.4 million km2 or 75% of vegetated land in the conterminous U.S. While we identify EISA energy targets as achievable, our results indicate that meeting such targets using current technology would require either an 80% displacement of current croplands or the conversion of 60% of total rangelands. Our results differ from previous evaluations in that we use high resolution, satellite-derived NPP as an upper-envelope constraint on bioenergy potential, which removes the need for extrapolation of plot-level observed yields over large spatial areas. Establishing realistically constrained estimates of bioenergy potential seems a

  20. Modern Anaesthesia Vapourisers

    PubMed Central

    Chakravarti, Sucharita; Basu, Srabani

    2013-01-01

    Inhalational anaesthetic agents are usually liquids at room temperature and barometric pressure and need to be converted to vapour before being used and this conversion is effected using a vapouriser. Vapourisers have evolved from very basic devices to more complicated ones. Anaesthetists should understand the basic principles of anaesthetic vapouriser, including the principles that affect vapouriser output and how they influence vapouriser design. Most of the modern vapourisers in use are designed to be used between the flow meter and the common gas outlet on the anaesthesia machine. Modern vapourisers are flow and temperature compensated, concentration calibrated, direct reading, dial controlled and are unaffected by positive-pressure ventilation. Safety features include an anti-spill and a select-a-tec mechanism and a specific vapouriser filling device. Desflurane has unique physical properties requiring the use of a specific desflurane vapouriser. The most recently designed vapourisers are controlled by a central processing unit in the anaesthetic machine. The concentration of vapour is continuously monitored and adjusted by altering fresh gas flow through the vapouriser. This article looks at the basic design and functioning of the modern vapourisers. PMID:24249879

  1. Assembly of a Vacuum Chamber: A Hands-On Approach to Introduce Mass Spectrometry

    ERIC Educational Resources Information Center

    Bussie`re, Guillaume; Stoodley, Robin; Yajima, Kano; Bagai, Abhimanyu; Popowich, Aleksandra K.; Matthews, Nicholas E.

    2014-01-01

    Although vacuum technology is essential to many aspects of modern physical and analytical chemistry, vacuum experiments are rarely the focus of undergraduate laboratories. We describe an experiment that introduces students to vacuum science and mass spectrometry. The students first assemble a vacuum system, including a mass spectrometer. While…

  2. Introducing the Notion of Bare and Effective Mass via Newton's Second Law of Motion

    ERIC Educational Resources Information Center

    Pinto, Marcus Benghi

    2007-01-01

    The concepts of bare and effective mass are widely used within modern physics. Their meaning is discussed in advanced undergraduate and graduate courses such as solid state physics, nuclear physics and quantum field theory. Here I discuss how these concepts may be introduced together with the discussion of Newton's second law of motion. The…

  3. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    PubMed

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research. PMID:25813630

  4. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas

    NASA Astrophysics Data System (ADS)

    Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  5. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes.

    PubMed

    Werling, Ben P; Dickson, Timothy L; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L; Liere, Heidi; Malmstrom, Carolyn M; Meehan, Timothy D; Ruan, Leilei; Robertson, Bruce A; Robertson, G Philip; Schmidt, Thomas M; Schrotenboer, Abbie C; Teal, Tracy K; Wilson, Julianna K; Landis, Douglas A

    2014-01-28

    Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands--farmland suboptimal for food crops--could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks--primarily annual grain crops--on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services. PMID:24474791

  6. Simulation of Biomass Yield and Soil Organic Carbon under Bioenergy Sorghum Production

    PubMed Central

    Dou, Fugen; Wight, Jason P.; Wilson, Lloyd T.; Storlien, Joseph O.; Hons, Frank M.

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management. PMID:25531758

  7. Redesigning photosynthesis to sustainably meet global food and bioenergy demand

    PubMed Central

    Ort, Donald R.; Merchant, Sabeeha S.; Alric, Jean; Barkan, Alice; Blankenship, Robert E.; Bock, Ralph; Croce, Roberta; Hanson, Maureen R.; Hibberd, Julian M.; Long, Stephen P.; Moore, Thomas A.; Moroney, James; Niyogi, Krishna K.; Parry, Martin A. J.; Peralta-Yahya, Pamela P.; Prince, Roger C.; Redding, Kevin E.; Spalding, Martin H.; van Wijk, Klaas J.; Vermaas, Wim F. J.; von Caemmerer, Susanne; Weber, Andreas P. M.; Yeates, Todd O.; Yuan, Joshua S.; Zhu, Xin Guang

    2015-01-01

    The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production. PMID:26124102

  8. Cover crops for erosion control in bioenergy hardwood plantations

    SciTech Connect

    Malik, R.K.; Green, T.H.; Mays, D.

    1996-12-31

    The use of cover crops between tree rows has been suggested as a means of reducing soil erosion in short-rotation woody crops (SRWC) plantations for bioenergy production. This study is designed to test whether cover crops could reduce erosion without significantly reducing the growth and biomass yield of sweetgum (Liquidambar styraciflua L.) planted as the SRWC at a 1.5 X 3 in spacing. Four cover crops, winter rye grass (Lolium multigeonum L., a winter annual grass); tall fescue (Fescuta eliator L., a winter perennial grass); crimson clover (Trifolium incarnatum L., a winter annual legume); and interstate sericea (Lespedeza ameata L., a growing season perennial legume), are tested at two different strip widths (1.22 and 2.44 m) as well as a control with complete competition control. Small berms were built to direct runoff to a sediment fence installed at the down slope ends of each plot. Soil erosion is measured by sediment accumulation near the fence. Height, ground-line diameter and crown width of trees were measured on a monthly basis. During the first growing season all cover crops reduced growth of trees. There were some significant differences among cover crop regimes. Slight differences in soil erosion were detected during the first growing season. The control plots lost more soil per hectare than cover crops, however, strip widths and cover crops did not show any significant difference.

  9. Bioenergy research: a new paradigm in multidisciplinary research

    PubMed Central

    Kalluri, Udaya C.; Keller, Martin

    2010-01-01

    The field of biology is becoming increasingly interdisciplinary and cross-cutting. This changing research atmosphere is creating the way for a new kind of enquiry that while building upon the traditional research establishment is providing a new multidisciplinary framework to more effectively address scientific grand challenges. Using the US Department of Energy sponsored BioEnergy Science Center as an example, we highlight how impactful breakthroughs in biofuel science can be achieved within a large cross-disciplinary team environment. Such transformational insights are key to furthering our understanding and in generating models, theories and processes that can be used to overcome recalcitrance of biomass for sustainable biofuel production. Multidisciplinary approaches have an increasingly greater role to play in meeting rising demands for food, fibre, energy, clean environment and good health. Discoveries achieved by diverse minds and cross-applications of tools and analytical approaches have tremendous potential to fill existing knowledge gaps, clear roadblocks and facilitate translation of basic sciences discoveries as solutions towards addressing some of the most pressing global issues. PMID:20542958

  10. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  11. Redesigning photosynthesis to sustainably meet global food and bioenergy demand.

    PubMed

    Ort, Donald R; Merchant, Sabeeha S; Alric, Jean; Barkan, Alice; Blankenship, Robert E; Bock, Ralph; Croce, Roberta; Hanson, Maureen R; Hibberd, Julian M; Long, Stephen P; Moore, Thomas A; Moroney, James; Niyogi, Krishna K; Parry, Martin A J; Peralta-Yahya, Pamela P; Prince, Roger C; Redding, Kevin E; Spalding, Martin H; van Wijk, Klaas J; Vermaas, Wim F J; von Caemmerer, Susanne; Weber, Andreas P M; Yeates, Todd O; Yuan, Joshua S; Zhu, Xin Guang

    2015-07-14

    The world's crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production. PMID:26124102

  12. Bioenergy from willow. 1995 Annual report, November 1987--December 1995

    SciTech Connect

    White, E.H.; Abrahamson, L.P.

    1997-07-01

    Experiments were established at Tully, New York, by the State University of New York College of Environmental Science and Forestry, in cooperation with the University of Toronto and the Ontario Ministry of Natural Resources, to assess the potential of willows for wood biomass production. Specific objectives included determining the effects of clone type, fertilization, spacing, cutting cycle, and irrigation on biomass production. Production was high, with willow clone SV1 yielding nearly 32 oven dry tons per acre (odt ac{sup -1}) with three-year harvest cycle, irrigation, and fertilization. Clone type, fertilization, spacing, cutting cycle, and irrigation all significantly affected biomass production. Willow clone-site trials planted at Massena, and Tully, NY in 1993 grew well during 1994 and 1995, but some clones in the Massena trial were severely damaged by deer browse. Several new cooperators joined the project, broadening the funding base, and enabling establishment of additional willow plantings. Willow clone-site trials were planted at Himrod, King Ferry, Somerset, and Tully, NY, during 1995. A willow cutting orchard was planted during 1995 at the NYS Department of Environmental Conservation Saratoga Tree Nursery in Saratoga, NY. Plans are to begin site preparation for a 100+ acre willow bioenergy demonstration farm in central New York, and additional clone-site trials, in 1996.

  13. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014—United States

    SciTech Connect

    Hess, J. Richard; Lamers, Patrick; Roni, Mohammad S.; Jacobson, Jacob J.; Heath, Brendi

    2015-01-01

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long

  14. Production of napiergrass (Pennisetum purpureum Schum) for bioenergy under organic versus inorganic fertilization in the southeast USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Napiergrass (Pennisetum purpureum Schum.) is being considered for use as a feedstock for the emerging bioenergy industry in the Southeast USA. However, research is needed to determine the most efficient and sustainable means of producing this crop for bioenergy in this region. Poultry litter is a...

  15. Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agave species are known as high-yielding crassulacean acid metabolism (CAM) plants, some of which have been grown commercially in the past and are recognized as potential bioenergy species for dry regions of the world. This study is the first field trial of Agave species for bioenergy in the United ...

  16. Ecological Modernisation and Discourses on Rural Non-Wood Bioenergy Production in Finland from 1980 to 2005

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2009-01-01

    Rural bioenergy production is currently a much debated question worldwide. It is closely connected to questions of environmental protection and rural development in both developing and industrial world. In Finland, rural bioenergy production has traditionally meant the production of wood fuels for heating purposes. The utilisation of forest…

  17. Introducing Virological Concepts Using an Insect Virus.

    ERIC Educational Resources Information Center

    Sheppard, Roger F.

    1980-01-01

    A technique is presented which utilizes wax moth larvae in a laboratory investigation of an insect virus. Describes how an insect virus can be used to introduce undergraduate biology students to laboratory work on viruses and several virological concepts. (SA)

  18. Introducing Relativity: Less May Be More

    ERIC Educational Resources Information Center

    Ogborn, Jon

    2005-01-01

    This article shows how relativity can be introduced in four stages, each building on those before it, but the teacher can choose to stop after whichever stage he/she believes the pupils are capable of tackling.

  19. Introducing High School Students To Neurophysiology.

    ERIC Educational Resources Information Center

    Schmidt, Bonnie; Stavraky, Tom

    1997-01-01

    Describes a project launched by graduate student volunteers of Let's Talk Science at the University of Western Ontario that introduces senior high school students to research presentations given by undergraduate physiology students. (Author/AIM)

  20. Introducing Solar Observation to Elementary Students

    NASA Astrophysics Data System (ADS)

    Dyck, G. P.

    2013-06-01

    (Abstract only) I will demonstrate the presentation I have developed for introducing solar observation to elementary students in Dartmouth, Massachusetts, and surrounding public schools. Copies of my program will be available for AAVSO members who would like to use it.

  1. Introducing Abstraction to Junior High Students.

    ERIC Educational Resources Information Center

    Costanzo, Nancy

    1981-01-01

    Suggests a way to introduce abstract art to junior high school students who, more than students of any other age, emphasize realism both in their artwork and in their appreciation of works of art. (Author/SJL)

  2. A review of biogeophysical impacts of bioenergy-induced LULCC and associated climate metrics

    NASA Astrophysics Data System (ADS)

    Bright, R. M.; O'Halloran, T. L.

    2015-12-01

    In addition to aerosols, carbon, and other trace gases, land use and land cover changes (LULCC) affect fluxes of heat, moisture, and momentum exchanged between the land surface and atmosphere which in turn affects climate. Although long recognized scientifically as being important, these so-called biogeophysical climate forcings are rarely included in climate policies for bioenergy and other land management projects due to challenges involved in their quantification, and, in some cases, due to their large uncertainties. Here, I review observation- and modeling-based studies linking biogeophysical impacts to bioenergy policies, identifying the dominant physical mechanism(s) and the temporal and spatial scale and extent of the impact(s). Quantitative methods and/or metrics for characterizing and attributing biogeophysical climate impacts to bioenergy systems are also reviewed and evaluated in terms of their complexity, scientific uncertainty, and policy relevancy.

  3. Irrigation with Treated Urban Wastewater for Bioenergy Crop Production in the Far West Texas

    NASA Astrophysics Data System (ADS)

    Ganjegunte, G. K.; Clark, J. A.; Wu, Y.

    2011-12-01

    In the recent years, interest in biobased fuels is increasing and the congressionally mandated goal is to use at least 36 billion gallons of bio-based transportation fuels by 2022. However, in 2009 the U.S. produced about 10.75 billion gallons of ethanol, primarily as corn starch ethanol and 550 million gallons of biodiesel. Thus, there is a huge gap between the current capacity and the mandated goal. USDA estimates that about 27 million acres of land has to be brought under bioenergy crops to produce 36 billion gallons of bio-based fuels. Meeting the challenge of bridging this huge gap requires a comprehensive regional strategy that includes bringing addition area from different regions within the country under bioenergy crops. In the southwest U.S. region such as west Texas or southern New Mexico, bringing vast abandoned crop lands and areas having permeable soils under bioenergy crops can be a part of such a regional strategy. While the region has adequate supply of land, finding reliable source of water to produce bioenergy crops is the main challenge. This challenge can be met by developing marginal quality water sources for bioenergy crops production. Use of marginal quality waters such as treated urban wastewater/saline groundwater to irrigate bioenergy crops may prove beneficial, if the bioenergy crops can grow under elevated salinity and the effects on soil and shallow groundwater can be minimized by appropriate management. The region has enormous potential for marginal quality water irrigation to produce bioenergy crops for a greater farm return. For example, at present, in El Paso alone, the total volume of treated municipal and industrial wastewater is about 65,000 acre-feet/year, of which only 13% is being reused for industrial processes and irrigating urban landscapes. The major concern associated with treated wastewater irrigation is its salinity (electrical conductivity or EC which measures salinity ranges from 1.8 to 2.1 dS m-1) and sodicity

  4. Bioenergy Watershed Restoration in Regions of the West: What are the Environmental/Community Issues?

    SciTech Connect

    Graham, R.L.; Huff, D.D.; Kaufmann, M.R.; Shepperd, W.D.; Sheehan, J.

    1999-07-01

    Throughout the western mountainous regions, wildfire risks are elevated due to both fire suppression activities which have changed the forest structure making it more susceptible to stand-killing fires and the expansion of human structures (houses, light commercial) into these same forests, By providing a market for currently noncommercial but flammable materials (small trees, tops, and branches), new and existing bioenergy industries could be a key factor in reducing the regional forest fuel loads. Although bioenergy would appear to be an ideal answer to the problem in many ways, the situation is complicated and numerous issues need resolution. A public fearful of logging in these regions needs assurance that harvesting for bioenergy is an environmentally and socially responsible solution to the current fuel build up in these forests. This is especially important given that biomass harvesting cannot pay its own way under current energy market conditions and would have to be supported in some fashion.

  5. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.

    PubMed

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik; Astrup, Thomas

    2012-12-18

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four conversion pathways were assessed against a fossil fuel reference: (I) anaerobic co-digestion with manure, (II) gasification, (III) combustion in small-to-medium scale biomass combined heat and power (CHP) plants and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO₂-eq. ha⁻¹, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO₂-eq. ha⁻¹, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty analysis confirmed the results robustness and highlighted the indirect land use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA results. PMID:23126612

  6. Modern plasma fractionation.

    PubMed

    Burnouf, Thierry

    2007-04-01

    Protein products fractionated from human plasma are an essential class of therapeutics used, often as the only available option, in the prevention, management, and treatment of life-threatening conditions resulting from trauma, congenital deficiencies, immunologic disorders, or infections. Modern plasma product production technology remains largely based on the ethanol fractionation process, but much has evolved in the last few years to improve product purity, to enhance the recovery of immunoglobulin G, and to isolate new plasma proteins, such as alpha1-protease inhibitor, von Willebrand factor, and protein C. Because of the human origin of the starting material and the pooling of 10,000 to 50,000 donations required for industrial processing, the major risk associated to plasma products is the transmission of blood-borne infectious agents. A complete set of measures--and, most particularly, the use of dedicated viral inactivation and removal treatments--has been implemented throughout the production chain of fractionated plasma products over the last 20 years to ensure optimal safety, in particular, and not exclusively, against HIV, hepatitis B virus, and hepatitis C virus. In this review, we summarize the practices of the modern plasma fractionation industry from the collection of the raw plasma material to the industrial manufacture of fractionated products. We describe the quality requirements of plasma for fractionation and the various treatments applied for the inactivation and removal of blood-borne infectious agents and provide examples of methods used for the purification of the various classes of plasma protein therapies. We also highlight aspects of the good manufacturing practices and the regulatory environment that govern the whole chain of production. In a regulated and professional environment, fractionated plasma products manufactured by modern processes are certainly among the lowest-risk therapeutic biological products in use today. PMID:17397761

  7. Modern Physics Simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Douglas; Hiller, John R.; Moloney, Michael J.

    1995-10-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  8. Our Modern Stone Age

    NASA Astrophysics Data System (ADS)

    Lowry, W. D.

    Unlike most books dealing with industrial minerals and rocks, Our Modern Stone Age is a pleasure to read. Within a matter of several hours, one can get an excellent introduction to nonmetallic mineral resources and industries exclusive o f the mineral fuels. The book is very well written and well illustrated with photographs and drawings; although pitched for the intelligent layman, it is in no way dull reading for even a well-versed economic geologist. Nearly every geologist, mining engineer, mineral economist, planner, and politician will find points of interest in this book.

  9. Pest-Suppression Potential of Midwestern Landscapes under Contrasting Bioenergy Scenarios

    PubMed Central

    Meehan, Timothy D.; Werling, Ben P.; Landis, Douglas A.; Gratton, Claudio

    2012-01-01

    Biomass crops grown on marginal soils are expected to fuel an emerging bioenergy industry in the United States. Bioenergy crop choice and position in the landscape could have important impacts on a range of ecosystem services, including natural pest-suppression (biocontrol services) provided by predatory arthropods. In this study we use predation rates of three sentinel crop pests to develop a biocontrol index (BCI) summarizing pest-suppression potential in corn and perennial grass-based bioenergy crops in southern Wisconsin, lower Michigan, and northern Illinois. We show that BCI is higher in perennial grasslands than in corn, and increases with the amount of perennial grassland in the surrounding landscape. We develop an empirical model for predicting BCI from information on energy crop and landscape characteristics, and use the model in a qualitative assessment of changes in biocontrol services for annual croplands on prime agricultural soils under two contrasting bioenergy scenarios. Our analysis suggests that the expansion of annual energy crops onto 1.2 million ha of existing perennial grasslands on marginal soils could reduce BCI between −10 and −64% for nearly half of the annual cropland in the region. In contrast, replacement of the 1.1 million ha of existing annual crops on marginal land with perennial energy crops could increase BCI by 13 to 205% on over half of the annual cropland in the region. Through comparisons with other independent studies, we find that our biocontrol index is negatively related to insecticide use across the Midwest, suggesting that strategically positioned, perennial bioenergy crops could reduce insect damage and insecticide use on neighboring food and forage crops. We suggest that properly validated environmental indices can be used in decision support systems to facilitate integrated assessments of the environmental and economic impacts of different bioenergy policies. PMID:22848582

  10. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments

    PubMed Central

    2014-01-01

    Background Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Results Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Conclusion Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production. PMID:25187788

  11. Is a substantial global bioenergy system feasible? A spatial analysis using a dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Erbrecht, T.; Lucht, W.; Lotze-Campem, H.

    2007-12-01

    Avoiding dangerous climate change requires drastic reductions in greenhouse gas emissions. However, the global demand for energy is projected to grow by more than 50 % until 2030 (IEA, 2006) and therefore actions are urgently required to decarbonize the global economy. Second generation bioenergy systems are promoted as a way forward to displace large amounts of fossil fuels with renewable materials, thereby increasing energy security and stabilizing atmospheric greenhouse gas concentrations. At the same time, concerns are being raised regarding the sustainability of large-scale dedicated biomass plantations with regard to extensive mono- cultures, irrigation and fertilization requirements. We use a dynamic global vegetation model (DGVM) including current agriculture to simulate the effects of rising competition for land when an additional spatially extensive production system for a new commodity, bioenergy, is added to the global land use mix under continued increase in global population size as well as per capita energy consumption. How much land is needed for a significant bioenergy generation if sufficient food production is warranted and what are the consequences for the terrestrial biosphere? To assess the potential impacts of a significant global bioenergy sector, we produced a selection of scenarios based on prior assumptions of total bioenergy demand, progress in conversion technologies and the availability of cultivable land limited by food requirements and biodiversity protection. We present the corresponding land use patterns as well as their impacts on the terrestrial carbon balance, evapotranspiration fluxes and irrigation demand. We find that an area of up to 50 % the size of current agricultural land is needed for the cultivation of ligno-cellulosic crops to satisfy high bioenergy demands. Carbon fluxes into the atmosphere caused by the removal of natural vegetation can equal those of 8 years of fossil fuel combustion.

  12. Modern Romanian. Limba Romana.

    ERIC Educational Resources Information Center

    Augerot, James E.; Popescu, Florin D.

    This manual is intended for advanced university students in America who are learning Romanian as a third language. Part One is based upon an oral approach, each lesson containing a preparatory section in which the student is simultaneously introduced to pronunciation, intonation, and new semantic and syntactic structures. The second portion of the…

  13. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect

    Pacific Northwest and Alaska Bioenergy Program; United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  14. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    PubMed Central

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  15. Heliotropism in modern stromatolites

    SciTech Connect

    Awramik, S.M.

    1985-01-01

    Three different examples of modern microbial mats and stromatolites have been discovered that exhibit a preferred orientation towards specular sunlight. In Hamelin Pool of Shark Bay, Western Australia, subtidal decimeter-sized discrete columns and intertidal centimeter-sized tufts were found pointing north. In thermal spring effluents and pools of Yellowstone National Park, columnar and conical centimeter-sized microbial structures were found to be inclined to the south. None of these inclined structures show growth orientation in response to prevailing fluid directions. Each example occurs in markedly different environments and each has different photosynthetic microbes: (1) the subtidal Shark Bay columns are dominated by surficial diatoms: (2) the intertidal Shark Bay tufts constructed by a filamentous cyanobacterium; and (3) the cones and columns in Yellowstone are built by filamentous flexibacteria and cyanobacteria. Sunlight must be considered a major driving force in stromatolite morphogenesis. Extrapolation of these modern heliotropic columnar stromatolites to fossil examples supports the paleolatitude hypothesis of Vologdin (1961) and of Nordeng (1963) and the days per year hypothesis of Vanyo and Awramik (1982). Taken together, and especially when combined with paleomagnetic analyses, the procedures yield an impressive array of data on Earth and Earth-Sun-Moon histories.

  16. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  17. Global bioenergy potential from high-lignin agricultural residue.

    PubMed

    Mendu, Venugopal; Shearin, Tom; Campbell, J Elliott; Stork, Jozsef; Jae, Jungho; Crocker, Mark; Huber, George; DeBolt, Seth

    2012-03-01

    Almost one-quarter of the world's population has basic energy needs that are not being met. Efforts to increase renewable energy resources in developing countries where per capita energy availability is low are needed. Herein, we examine integrated dual use farming for sustained food security and agro-bioenergy development. Many nonedible crop residues are used for animal feed or reincorporated into the soil to maintain fertility. By contrast, drupe endocarp biomass represents a high-lignin feedstock that is a waste stream from food crops, such as coconut (Cocos nucifera) shell, which is nonedible, not of use for livestock feed, and not reintegrated into soil in an agricultural setting. Because of high-lignin content, endocarp biomass has optimal energy-to-weight returns, applicable to small-scale gasification for bioelectricity. Using spatial datasets for 12 principal drupe commodity groups that have notable endocarp byproduct, we examine both their potential energy contribution by decentralized gasification and relationship to regions of energy poverty. Globally, between 24 million and 31 million tons of drupe endocarp biomass is available per year, primarily driven by coconut production. Endocarp biomass used in small-scale decentralized gasification systems (15-40% efficiency) could contribute to the total energy requirement of several countries, the highest being Sri Lanka (8-30%) followed by Philippines (7-25%), Indonesia (4-13%), and India (1-3%). While representing a modest gain in global energy resources, mitigating energy poverty via decentralized renewable energy sources is proposed for rural communities in developing countries, where the greatest disparity between societal allowances exist. PMID:22355123

  18. Short-rotation woody crops for bioenergy and biofuels applications.

    PubMed

    Hinchee, Maud; Rottmann, William; Mullinax, Lauren; Zhang, Chunsheng; Chang, Shujun; Cunningham, Michael; Pearson, Leslie; Nehra, Narender

    2009-12-01

    Purpose-grown trees will be part of the bioenergy solution in the United States, especially in the Southeast where plantation forestry is prevalent and economically important. Trees provide a "living biomass inventory" with existing end-use markets and associated infrastructure, unlike other biomass species such as perennial grasses. The economic feasibility of utilizing tree biomass is improved by increasing productivity through alternative silvicultural systems, improved breeding and biotechnology. Traditional breeding and selection, as well as the introduction of genes for improved growth and stress tolerance, have enabled high growth rates and improved site adaptability in trees grown for industrial applications. An example is the biotechnology-aided improvement of a highly productive tropical Eucalyptus hybrid, Eucalyptus grandis x Eucalyptus urophylla. This tree has acquired freeze tolerance by the introduction of a plant transcription factor that up-regulates the cold-response pathways and makes possible commercial plantings in the Southeastern United States. Transgenic trees with reduced lignin, modified lignin, or increased cellulose and hemicellulose will improve the efficiency of feedstock conversion into biofuels. Reduced lignin trees have been shown to improve efficiency in the pre-treatment step utilized in fermentation systems for biofuels production from lignocellulosics. For systems in which thermochemical or gasification approaches are utilized, increased density will be an important trait, while increased lignin might be a desired trait for direct firing or co-firing of wood for energy. Trees developed through biotechnology, like all transgenic plants, need to go through the regulatory process, which involves biosafety and risk assessment analyses prior to commercialization. PMID:19936031

  19. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  20. Global bioenergy potential from high-lignin agricultural residue

    PubMed Central

    Mendu, Venugopal; Shearin, Tom; Campbell, J. Elliott; Stork, Jozsef; Jae, Jungho; Crocker, Mark; Huber, George; DeBolt, Seth

    2012-01-01

    Almost one-quarter of the world's population has basic energy needs that are not being met. Efforts to increase renewable energy resources in developing countries where per capita energy availability is low are needed. Herein, we examine integrated dual use farming for sustained food security and agro-bioenergy development. Many nonedible crop residues are used for animal feed or reincorporated into the soil to maintain fertility. By contrast, drupe endocarp biomass represents a high-lignin feedstock that is a waste stream from food crops, such as coconut (Cocos nucifera) shell, which is nonedible, not of use for livestock feed, and not reintegrated into soil in an agricultural setting. Because of high-lignin content, endocarp biomass has optimal energy-to-weight returns, applicable to small-scale gasification for bioelectricity. Using spatial datasets for 12 principal drupe commodity groups that have notable endocarp byproduct, we examine both their potential energy contribution by decentralized gasification and relationship to regions of energy poverty. Globally, between 24 million and 31 million tons of drupe endocarp biomass is available per year, primarily driven by coconut production. Endocarp biomass used in small-scale decentralized gasification systems (15–40% efficiency) could contribute to the total energy requirement of several countries, the highest being Sri Lanka (8–30%) followed by Philippines (7–25%), Indonesia (4–13%), and India (1–3%). While representing a modest gain in global energy resources, mitigating energy poverty via decentralized renewable energy sources is proposed for rural communities in developing countries, where the greatest disparity between societal allowances exist. PMID:22355123

  1. Carbon balances during land conversion in early bioenergy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Chen, J.; Gelfand, I.; Robertson, G. P.; Hamilton, S. K.

    2012-12-01

    In this study, we established a field experiment and deployed seven eddy-covariance towers to quantify the roles of land use change and the subsequent carbon (C) balances of three different bioenergy systems (corn, switchgrass, and mixed prairie species) that were developed from two historical land use types: monocultural grasslands dominated by smooth brome (Bromus inermis Leyss) and lands in the Conservation Reserve Program (CRP). Three CRP fields and three cropland fields were converted to soybean in 2009 (conversion year) before establishing the cellulosic biofuel cropping systems in 2010 (establishment year). A CRP perennial grassland site was kept undisturbed as a reference. Conversion of CRP to soybean induced net C emissions during the conversion year (134 -262 g C m-2 yr-1), while in the same year the net C balance at the CRP grassland reference was -35 g C m-2 yr-1 (i.e., net C sequestration). The establishment of switchgrass and mixed prairie induced a cumulative C balance of -113 g C m-2 (switchgrass from CRP), 250 g C m-2 (switchgrass from cropland), 706 g C m-2 (mixed prairie from CRP), and 59 g C m-2 (mixed prairie from cropland) over the three-year study period. The cumulative three-year C balance of corn converted from CRP and from cropland was -151 g C m-2 and -183 g C m-2, respectively. Eddy flux measurements during cellulosic biofuel crop establishment reveal annual changes in C balance that cannot be detected using conventional mass balance approaches. When end-use of harvested biomass was considered, the C balances for all studied systems, except the reference site, exhibited large C emissions ranging from 150 to 990 g C m-2 over the three-year conversion phase.

  2. Potential Environmental Benefits from Increased Use of Bioenergy in China

    NASA Astrophysics Data System (ADS)

    Fan, Shuyang; Freedman, Bill; Gao, Jixi

    2007-09-01

    Because of its large population and rapidly growing economy, China is confronting a serious energy shortage and daunting environmental problems. An increased use of fuels derived from biomass could relieve some demand for nonrenewable sources of energy while providing environmental benefits in terms of cleaner air and reduced emissions of greenhouse gases. In 2003, China generated about 25.9 × 108 metric tons of industrial waste (liquid + solid), 14.7 × 108 metric tons/year (t/y) of manure (livestock + human), 7.1 × 108 t/y of crop residues and food-processing byproducts, 2 × 108 t/y of fuelwood and wood manufacturing residues, and 1.5 × 108 t/y of municipal waste. Biofuels derived from these materials could potentially displace the use of about 4.12 × 108 t/y of coal and 3.75 × 106 t/y of petroleum. An increased bioenergy use of this magnitude would help to reduce the emissions of key air pollutants: SO2 by 11.6 × 106 t/y, NOX by 1.48 × 106 t/y, CO2 by 1.07 × 109 t/y, and CH4 by 50 × 106 t/y. The reduced SO2 emissions would be equivalent to 54% of the national emissions in 2003, whereas those for CO2 are 30%. It is important to recognize, however, that large increases in the use of biomass fuels also could result in socioeconomic and environmental problems such as less production of food and damage caused to natural habitats.

  3. Potential environmental benefits from increased use of bioenergy in China.

    PubMed

    Fan, Shuyang; Freedman, Bill; Gao, Jixi

    2007-09-01

    Because of its large population and rapidly growing economy, China is confronting a serious energy shortage and daunting environmental problems. An increased use of fuels derived from biomass could relieve some demand for nonrenewable sources of energy while providing environmental benefits in terms of cleaner air and reduced emissions of greenhouse gases. In 2003, China generated about 25.9 x 10(8) metric tons of industrial waste (liquid + solid), 14.7 x 10(8) metric tons/year (t/y) of manure (livestock + human), 7.1 x 10(8) t/y of crop residues and food-processing byproducts, 2 x 10(8) t/y of fuelwood and wood manufacturing residues, and 1.5 x 10(8) t/y of municipal waste. Biofuels derived from these materials could potentially displace the use of about 4.12 x 10(8) t/y of coal and 3.75 x 10(6) t/y of petroleum. An increased bioenergy use of this magnitude would help to reduce the emissions of key air pollutants: SO(2 )by 11.6 x 10(6) t/y, NO(X) by 1.48 x 10(6) t/y, CO2 by 1.07 x 10(9) t/y, and CH4 by 50 x 10(6) t/y. The reduced SO(2) emissions would be equivalent to 54% of the national emissions in 2003, whereas those for CO2 are 30%. It is important to recognize, however, that large increases in the use of biomass fuels also could result in socioeconomic and environmental problems such as less production of food and damage caused to natural habitats. PMID:17638052

  4. Preparing to introduce personal health budgets.

    PubMed

    Porter, Zoe; Simpson, Bernadette

    2013-10-01

    A large-scale study ( Forder et al 2012 ) piloting personal health budgets for people with long-term conditions found that they improved patients' quality of life and psychological wellbeing. They were cost-effective and reduced the use of other healthcare services. From April next year, people receiving NHS continuing healthcare funding will have the right to ask for personal health budgets. Some clinical commissioning groups are also introducing them for mental health service users and patients with other long-term conditions. This article outlines the benefits and challenges of introducing personal health budgets, and suggests how nursing managers can begin to consider their role in implementing them. PMID:24063340

  5. Bioenergy costs and potentials with special attention to implications for the land system

    NASA Astrophysics Data System (ADS)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for

  6. Modern problems of thermodynamics

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.

    2012-12-01

    The role of energy and methods of its saving for the development of human society and life are analyzed. The importance of future use of space energy flows and energy of water and air oceans is emphasized. The authors consider the idea of the unit for production of electric energy and pure substances using sodium chloride which reserves are limitless on the planet. Looking retrospectively at the development of power engineering from the elementary fire to modern electric power station, we see that the used method of heat production, namely by direct interaction of fuel and oxidizer, is the simplest. However, it may be possible to combust coal, i.e., carbon in salt melt, for instance, sodium chloride that would be more rational and efficient. If the stated problems are solved positively, we would master all energy properties of the substance; and this is the main problem of thermodynamics being one of the sciences on energy.

  7. Similitude in modern pharmacology.

    PubMed

    Teixeira, M Z

    1999-07-01

    The principle of the similitude, the basis of homeopathy, has correspondences in the clinical studies of secondary effects of many modern pharmaceutical agents through the observation of the rebound effects of these drugs. Through clinical pharmacology, I proposed a model on which to base the scientificism of the homeopathic model. We have studied the effects of the drugs in the human body using pharmacological compendia and recent scientific works, confirming the mechanism of the homeopathic medicines' action through the verification of the primary action of the drugs and the consequent secondary reaction of the organism in hundreds of pharmaceutical agents. Treatment exploiting the "rebound" effect (curative vital reaction) may also be observed. This work suggests a research methodology to scientifically base the therapeutic principle of similitude. PMID:10449051

  8. Modern carbonate environments

    SciTech Connect

    Bhattacharyya, A.; Friedman, G.M.

    1983-01-01

    This book offers help in evaluating potential sites for oil and gas accumulations. Pointing the way to discovery of hydrocarbons in carbonate reservoirs, this volume discusses modern carbonate depositional environments in different geomorphic settings. It compiles papers by scientists whose observations have revolutionized current thinking on facies relationships in ancient carbonate rock. Contents include: Selected carbonate regions --The Algal Sediments on Androa Island in the Bahamas, Sedimentary Facies, Interaction of Genetic Processes in Holocene Reefs off North Eleuthera Island in the Bahamas, Recent Anhydrite, Holocene Shallow-Water Carbonate and Evaporite Sediments of Khor al Bazam; Carbonate production--On the Origin of Aragonite in the Dead Sea, Carbonate Production by Coral Reefs; Cold-water carbonates--Contributions on the Geology of the Northwestern Peninsula of Iceland, Evaluation of Cold-Water Carbonates as a Possible Paleoclimatic Indicator.

  9. Modernizing sports facilities

    SciTech Connect

    Dustin, R.

    1996-09-01

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team to meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.

  10. Breazeale Reactor Modernization Program

    SciTech Connect

    Davison, C. C.

    2003-04-16

    The Penn State Breazeale Nuclear Reactor is the longest operating licensed research reactor in the nation. The facility has played a key role in educating scientists, engineers and in providing facilities and services to researchers in many different disciplines. In order to remain a viable and effective research and educational institution, a multi-phase modernization project was proposed. Phase I was the replacement of the 25-year old reactor control and safety system along with associated wiring and hardware. This phase was fully funded by non-federal funds. Tasks identified in Phases II-V expand upon and complement the work done in Phase I to strategically implement state-of-the-art technologies focusing on identified national needs and priorities of the future.

  11. Modern Brain Tumor Imaging

    PubMed Central

    Barajas, Ramon F.; Cha, Soonmee

    2015-01-01

    The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients. PMID:25977902

  12. A "Handy" Way to Introduce Research Methods.

    ERIC Educational Resources Information Center

    Johnson, David E.

    1996-01-01

    Provides an exercise for introducing research methods to undergraduates. The students view a graph revealing that left-handed people are underrepresented in older age groups. Small group discussions attempt to explain this phenomenon. A follow-up class discussion focuses on the different approaches and methods available for interpreting the data.…

  13. Introducing Giovanni Gentile, the "Philosopher of Fascism"

    ERIC Educational Resources Information Center

    Clayton, Thomas

    2009-01-01

    This essay aims to introduce Giovanni Gentile to scholars of Gramsci studies broadly and Gramsci-education studies more specifically. The largest part of the essay explores Gentile's academic life, his philosophical agenda, and his political career. Having established a basis for understanding the educational reform Gentile enacted as Mussolini's…

  14. Introducing Simulation via the Theory of Records

    ERIC Educational Resources Information Center

    Johnson, Arvid C.

    2011-01-01

    While spreadsheet simulation can be a useful method by which to help students to understand some of the more advanced concepts in an introductory statistics course, introducing the simulation methodology at the same time as these concepts can result in student cognitive overload. This article describes a spreadsheet model that has been…

  15. Introducing Michaelis-Menten Kinetics through Simulation

    ERIC Educational Resources Information Center

    Halkides, Christopher J.; Herman, Russell

    2007-01-01

    We describe a computer tutorial that introduces the concept of the steady state in enzyme kinetics. The tutorial allows students to produce graphs of the concentrations of free enzyme, enzyme-substrate complex, and product versus time in order to learn about the approach to steady state. By using a range of substrate concentrations and rate…

  16. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  17. Introducing Literary Arabic, Volume II: Grammatical Notes.

    ERIC Educational Resources Information Center

    Hanna, Sami A.; Greis, Naguib

    This volume, designed as a companion to "Introducing Literary Arabic" provides basic grammatical explanations essential in first-year courses. Each of the 15 units, with the exception of the first, contains related grammatical notes, paradigms, and illustrations. The grammatical rules are intended to make explicit general underlying structures.…

  18. 21 CFR 870.1340 - Catheter introducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Catheter introducer. 870.1340 Section 870.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... the skin into a vein or artery. (b) Classification. Class II (performance standards)....

  19. Using Simulation to Introduce Engineering Concepts

    ERIC Educational Resources Information Center

    Stier, Kenneth; Laingen, Mark

    2010-01-01

    Today's engineers and technologists are more frequently thrust into the role of problem solver. Some would argue that, if this is the case, then using simulation is a more acceptable way to educate students for the work environment they will enter. The authors wanted to introduce entry-level university students to advanced engineering concepts…

  20. Introducing Economics: A Critical Guide for Teaching

    ERIC Educational Resources Information Center

    Maier, Mark H.; Nelson, Julie A.

    2007-01-01

    Make economics resonate to high school students. This practical handbook will help economics and social studies teachers foster critical thinking by introducing students to the real-life dimensions of the major controversies in contemporary economics. Filled with useful teaching tips and user-friendly information on finding engaging materials and…

  1. Introducing the Classics to Reluctant Readers.

    ERIC Educational Resources Information Center

    Lazarus, Lissa J.

    Using the pocket classics can be a painless way to introduce the classics to eighth-grade students. Condensed versions of the classics can take the sting out of the reading, stimulate students' interest, and help prepare them for high school. To offer students in one eighth-grade class some control over their own learning, a contract system was…

  2. Introducing Educational Technologies to Teachers: Experience Report

    ERIC Educational Resources Information Center

    Thota, Neena; Negreiros, Joao G. M.

    2015-01-01

    The dramatic rise in use of digital media has changed the way learning is taking place and has led to new ways to teach with digital technologies. In this article, we describe the experiences of teaching a course that introduces educational technologies to teachers in Macau. The course design is based on connectivism, a learning theory for the…

  3. Introducing Abelian Groups Using Bullseyes and Jenga

    ERIC Educational Resources Information Center

    Smith, Michael D.

    2016-01-01

    The purpose of this article is to share a new approach for introducing students to the definition and standard examples of Abelian groups. The definition of an Abelian group is revised to include six axioms. A bullseye provides a way to visualize elementary examples and non-examples of Abelian groups. An activity based on the game of Jenga is used…

  4. Introducing a High Bounce Ball Unit

    ERIC Educational Resources Information Center

    Bernardo, Pat

    2004-01-01

    Those growing up in the 1950s, 60s or 70s are familiar with how physically active children were before computers and video games were introduced. Each neighborhood had its own version of the various games that were played. Many of these games involved a pink rubber ball called a Spaldeen. They were everywhere and almost everyone had one. These…

  5. Tissue Barriers: Introducing an exciting new journal

    PubMed Central

    Ivanov, Andrei I

    2014-01-01

    This Editorial is written to introduce Tissue Barriers, a new Taylor & Francis journal, to the readers of Temperature. It describes the role of temperature in the regulation of different tissue barriers under normal and disease conditions. It also highlights the most interesting articles published in the first volume of Tissue Barriers.

  6. Introducing Exclusion Logic as a Deontic Logic

    NASA Astrophysics Data System (ADS)

    Evans, Richard

    This paper introduces Exclusion Logic - a simple modal logic without negation or disjunction. We show that this logic has an efficient decision procedure. We describe how Exclusion Logic can be used as a deontic logic. We compare this deontic logic with Standard Deontic Logic and with more syntactically restricted logics.

  7. Introducing Technology Education at the Elementary Level

    ERIC Educational Resources Information Center

    McKnight, Sean

    2012-01-01

    Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…

  8. Rice blast evaluation of newly introduced germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic resistance to the rice blast fungus, Magnaporthe oryzae (anamorph Pyricularia grisea oryzae) was identified in newly introduced rice germplasm through quarantine when tested in artificially inoculated greenhouse and field nursery tests during the 2007 growing season. Of 229 accessions, 31 we...

  9. Classroom Activities for Introducing Equivalence Relations

    ERIC Educational Resources Information Center

    Brandt, Jim

    2013-01-01

    Equivalence relations and partitions are two interconnected ideas that play important roles in advanced mathematics. While students encounter the informal notion of equivalence in many courses, the formal definition of an equivalence relation is typically introduced in a junior level transition-to-proof course. This paper reports the results of a…

  10. Introducing the Emerging Discipline of Statistics Education

    ERIC Educational Resources Information Center

    Ben-Zvi, Dani; Garfield, Joan

    2008-01-01

    Increasing attention has been given over the last decade by the statistics, mathematics and science education communities to the development of statistical literacy and numeracy skills of all citizens and the enhancement of statistics education at all levels. This paper introduces the emerging discipline of statistics education and considers its…

  11. A beginner's guide to the modern theory of polarization

    SciTech Connect

    Spaldin, Nicola A.

    2012-11-15

    The so-called Modern Theory of Polarization, which rigorously defines the spontaneous polarization of a periodic solid and provides a route for its computation in electronic structure codes through the Berry phase, is introduced in a simple qualitative discussion. - Graphical abstract: Cartoon of Wannier functions in a covalent solid shifting to contribute to the ferroelectric polarization.

  12. Bildung as a Powerful Tool in Modern University Teaching

    ERIC Educational Resources Information Center

    Olesen, Mogens Noergaard

    2009-01-01

    In this paper we will demonstrate how powerful "Bildung" is as a tool in modern university teaching. The concept of "Bildung" was originally introduced by the German philosopher Immanuel Kant (Kant 1787, 1798, 1804) and the Prussian lawyer and politician Wilhelm von Humboldt (Humboldt 1792, Bohlin 2008). From 1810 "Bildung" was a key concept in…

  13. An Introduction to Modern Asian Economics. Asian Studies Instructional Module.

    ERIC Educational Resources Information Center

    Wasson, George

    This curriculum outline presents the components of a course which introduces students to the modern economies of Asia and their relationship and interdependence with the United States economy. First, the goals and student objectives of the course are listed. Next, the course outline and assignments are presented, emphasizing the following basic…

  14. Modern operative hysteroscopy.

    PubMed

    Centini, Gabriele; Troia, Libera; Lazzeri, Lucia; Petraglia, Felice; Luisi, Stefano

    2016-04-01

    Hysteroscopy is an endoscopic surgical procedure that has become an important tool to evaluate intrauterine pathology. It offers a direct visualization of the entire uterine cavity and provides the possibility of performing biopsy of suspected lesions that can be missed by dilatation and curettage (D&C). In most cases, the intrauterine pathologies can be diagnosed and treated at the same setting as office hysteroscopy ("see and treat approach"). For example, endometrial polyps can be diagnosed and removed; similarly, intrauterine adhesions can be liberated in the outpatient setting without the need for an operating theatre. Today, many hysteroscopic procedures can be performed in the office or outpatient setting. This is due to the feasibility of operative hysteroscopy using saline as a distending medium, the vaginoscopic approach of hysteroscopy and the availability of mini-hysteroscopic endoscopes. There is good evidence to suggest that hysteroscopy in an ambulatory setting is preferable for the patient, and that it avoids complications, allows a quicker recovery time and lowers cost. Advances in technology have led to miniaturization of high-definition hysteroscopes without compromising optical performance, thereby making hysteroscopy a simple, safe and well-tolerated office procedure. The new surgical technology such as bipolar electrosurgery, endometrial ablation devices, hysteroscopic sterilization, and morcellators has revolutionized this surgical modality. The modern development of hysteroscopy completely transformed the approach to the uterine intracavitary pathologies moving from a blind procedure under general anesthesia to an outpatient procedure performed under direct visualization, offering therapeutic and irreplaceable possibilities of treatment that should belong to every modern gynecologist. PMID:26930389

  15. The Interplay Between Bioenergy Grass Production and Water Resources in the United States of America.

    PubMed

    Song, Yang; Cervarich, Matthew; Jain, Atul K; Kheshgi, Haroon S; Landuyt, William; Cai, Ximing

    2016-03-15

    We apply a land surface model to evaluate the interplay between potential bioenergy grass (Miscanthus, Cave-in-Rock, and Alamo) production, water quantity, and nitrogen leaching (NL) in the Central and Eastern U.S. Water use intensity tends to be lower where grass yields are modeled to be high, for example in the Midwest for Miscanthus and Cave-in-Rock and the upper southeastern U.S. for Alamo. However, most of these regions are already occupied by crops and forests and substitution of these biome types for ethanol production implies trade-offs. In general, growing Miscanthus consumes more water, Alamo consumes less water, and Cave-in-Rock consumes approximately the same amount of water as existing vegetation. Bioenergy grasses can maintain high productivity over time, even in water limited regions, because their roots can grow deeper and extract the water from the deep, moist soil layers. However, this may not hold where there are frequent and intense drought events, particularly in regions with shallow soil depths. One advantage of bioenergy grasses is that they mitigate nitrogen leaching relative to row crops and herbaceous plants when grown without applying N fertilizer; and bioenergy grasses, especially Miscanthus, generally require less N fertilizer application than row crops and herbaceous plants. PMID:26866460

  16. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  17. Forage and bioenergy feedstock production from hybrid forage sorghum and sorghum x sudangrass hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the bioenergy industry expands, producers choosing to shift current forage crop production to dedicated biomass crops will find it advantageous to grow low risk multi-purpose crops that maximize management options. Hybrid forage sorghums (HFS) and sorghum by sudangrass hybrids (SSG) are capable...

  18. Topographic and soil influences on root productivity of three bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this challenge by quantifying annual root production of three bioenergy cropping systems (continuous corn, sorghum-triticale, switchgrass) arrayed acro...

  19. Conservation Considerations for Sustainable Bioenergy Feedstock Production: If, What, Where, and How Much?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased awareness of the need to achieve energy independence and security has resulted in many questions regarding the use of agricultural products as feedstock for bioenergy production. Initial efforts with grain crops, though successful, raised many more questions regarding sustainability and po...

  20. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    SciTech Connect

    none,

    2015-03-01

    This is the March 2015 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  1. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    NASA Astrophysics Data System (ADS)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  2. Sustainability of perennial grass yields as bioenergy feedstock for the southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warm-season perennial grasses will be part of the biomass production system in the Southeast for the emerging bioenergy industry. Among the candidates for dedicated feedstocks are energy cane (Sacchurum sp.), Miscanthus x gigantius, switchgrass (Panicum virgatum), and napiergrass (Pennistem purpure...

  3. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    PubMed Central

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K.; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy. PMID:23576835

  4. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.

    PubMed

    Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M

    2010-10-01

    Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters. PMID:20873876

  5. Land conversion to bioenergy production: water budget and sediment output in a semiarid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass based bioenergy production has been considered a feasible alternative of land use for the mixed-grass prairie and marginal croplands in the High Plains. However, little is known of the effect of this land use change on the water cycle and associated sediment output in this water controll...

  6. Assessing the global potential and regional implications of promoting bio-energy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  7. Fluid fertilizer's role in sustaining soils used for bio-energy feedstock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of corn (Zea mays L.) as a bio-energy feedstock has attracted the attention of many producers. Recently, the focus has shifted from grain-based to cellulose-based ethanol production. In addition to biological conversion of corn stover to ethanol, thermal conversion (pyrolysis) of stover is b...

  8. Gene Flow in Genetically Engineered Perennial Grasses: Lessons for Modification of Dedicated Bioenergy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic modification of dedicated bioenergy crops, such as switchgrass, will play a major role in crop improvement for a wide range of beneficial traits specific to biofuels. One obstacle that arises regarding transgenic improvement of perennials used for biofuels is the propensity of these plants t...

  9. MODELING GREENHOUSE GAS EMISSIONS FROM BIOENERGY CROPPING SYSTEMS IN PENNSYLVANIA USING DAYCENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing the net global warming potential (GWP) of energy use is a major factor driving interest in biofuels. Bioenergy cropping systems vary in contribution to the GWP due to the crop yield and resulting quantity of fossil fuels displaced, quantity and quality of C added to the soil, feedstock conv...

  10. Progress toward evaluating the sustainability of switchgrass production as a bioenergy crop using the SWAT model

    SciTech Connect

    Baskaran, Latha Malar; Jager, Yetta; Schweizer, Peter E; Srinivasan, Raghavan

    2010-01-01

    Adding bioenergy to the US energy portfolio requires long-term profitability for bioenergy producers and the long-term protection of affected ecosystems. In this study, we present steps along the path towards evaluating both sides of the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a regional scale. To quantify feedstock production, we compared lowland switchgrass yields simulated by SWAT with estimates from a model based on empirical data for the eastern US. Geographic patterns were very similar. Average yields reported in field trials tended to be higher than average SWAT-predicted yields, which may nevertheless be more representative of production-scale yields. As a preliminary step toward quantifying bioenergy-related changes in water quality, we evaluated flow predictions by the SWAT model for the Arkansas-Red-White river basin. Monthly SWAT flow predictions were compared to USGS measurements from 86 subbasins across the region. Although agreement was good, analysis of residuals (functional validation) identified patterns to guide future improvements. Our next step will be to continue model improvement, after which we will forecast changes in water quality associated with incorporating bioenergy crops into future landscapes. This analysis will help us, in future, to identify areas with the highest economic and environmental potential for feedstock production.

  11. Candidate perennial bioenergy grasses have a higher albedo than annual row crops in the Midwestern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observati...

  12. Babassu nut residues: potential for bioenergy use in the North and Northeast of Brazil.

    PubMed

    de Paula Protásio, Thiago; Fernando Trugilho, Paulo; da Silva César, Antônia Amanda; Napoli, Alfredo; Alves de Melo, Isabel Cristina Nogueira; Gomes da Silva, Marcela

    2014-01-01

    Babassu is considered the largest native oil resource worldwide and occurs naturally in Brazil. The purpose of this study was to evaluate the potential of babassu nut residues (epicarp, mesocarp and endocarp) for bioenergy use, especially for direct combustion and charcoal production. The material was collected in the rural area of the municipality of Sítio Novo do Tocantins, in the state of Tocantins, Brazil. Analyses were performed considering jointly the three layers that make up the babassu nut shell. The following chemical characterizations were performed: molecular (lignin, total extractives and holocellulose), elemental (C, H, N, S and O), immediate (fixed carbon, volatiles and ash), energy (higher heating value and lower heating value), physical (basic density and energy density) and thermal (thermogravimetry and differential thermal analysis), besides the morphological characterization by scanning electron microscopy. Babassu nut residues showed a high bioenergy potential, mainly due to their high energy density. The use of this biomass as a bioenergy source can be highly feasible, given their chemical and thermal characteristics, combined with a low ash content. Babassu nut shell showed a high basic density and a suitable lignin content for the sustainable production of bioenergy and charcoal, capable of replacing coke in Brazilian steel plants. PMID:24741469

  13. Potential for using the ARS switchgrass bioenergy NIRS calibrations on C4 tropical grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research at USDA-ARS Forage, Grain and Bioenergy Research Unit (GFBRU) has demonstrated that Near-Infrared Spectroscopy (NIRS) can be used to determine soluble and cell wall sugars of switchgrass biomass in addition to traditional forage quality traits. Composition data on cell wall and soluble suga...

  14. Yield Response to Mexican Rice Borer (Lepidoptera: Crambidae) Injury in Bioenergy and Conventional Sugarcane and Sorghum.

    PubMed

    Vanweelden, M T; Wilson, B E; Beuzelin, J M; Reagan, T E; Way, M O

    2015-10-01

    The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae) is an invasive stem borer of sugarcane, Saccharum spp., and sorghum, Sorghum bicolor (L.), and poses a threat against the production of dedicated bioenergy feedstocks in the U.S. Gulf Coast region. A 2-yr field study was conducted in Jefferson County, TX, to evaluate yield losses associated with E. loftini feeding on bioenergy and conventional cultivars of sugarcane and sorghum under natural and artificially established E. loftini infestations. Bioenergy sugarcane (energycane) 'L 79-1002' and 'Ho 02-113' and sweet sorghum 'M81E' exhibited reduced E. loftini injury; however, these cultivars, along with high-biomass sorghum cultivar 'ES 5140', sustained greater losses in fresh stalk weight. Negative impacts to sucrose concentration from E. loftini injury were greatest in energycane, high-biomass sorghum, and sweet sorghum cultivars. Even under heavy E. loftini infestations, L 79-1002, Ho 02-113, and 'ES 5200' were estimated to produce more ethanol than all other cultivars under suppressed infestations. ES 5200, Ho 02-113, and L 79-1002 hold the greatest potential as dedicated bioenergy crops for production of ethanol in the Gulf Coast region; however, E. loftini management practices will need to be continued to mitigate yield losses. PMID:26453718

  15. Cover crop effects on soil carbon and nitrogen under bioenergy sorghum crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can increase soil C and N storage and reduce the potential for N leaching under agronomic crops, but information on their benefits under bioenergy crops is scanty due to the removal of aboveground biomass. The objective of the study was to evaluate the effect of cover crops on soil organ...

  16. Dissecting the genetics of rhizomatousness: Towards sustainable food, forage, and bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizomatousness is a key trait influencing both the perenniality and biomass partitioning of plants. Increased understanding of the genetic control of rhizome growth offers potential towards the creation of more sustainable grain, forage, and bioenergy cropping systems. It is also applicable to th...

  17. Comparison of simulated and observed N2O gas emission rates from bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide is the largest greenhouse gas source from crop systems. DAYCENT was used to compare N2O emissions from the following 3 bioenergy cropping systems: switchgrass, reed canarygrass, and a rotation of 3 yr corn, 1 yr soybeans, and 4 yr alfalfa. Although DAYCENT did not always capture the ob...

  18. Bioenergy crops grown for hyperaccumulation of phosphorus in the delmarva peninsula and their biofuels potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous bioenergy crops, including sorghum, switchgrass, and miscanthus, were evaluated for their potential as phytoremedators for the uptake of phosphorus in the Delmarva Peninsula and their subsequent conversion to biofuel intermediates (bio-oil) by fast pyrolysis using pyrolysis-gas chromatogr...

  19. Management factors affecting establishment and yield of bioenergy miscanthus on claypan soil landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy crop Miscanthus x giganteus has been well studied for its establishment and yield in Europe and certain parts of the US Midwest but little has been done to investigate these properties when grown on degraded soils, which are typified as being less productive, and consequently, economically...

  20. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    SciTech Connect

    2014-11-01

    This is the November 2014 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  1. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.; Landuyt, W.

    2015-12-01

    The bioenergy crops, Corn, Miscanthus and switchgrass have a potential to meet future energy demands in the US and mitigate climate change by partially replacing fossil fuels. However, the large-scale cultivation of these bioenergy crops may also impact climate change through changes in albedo, evapotranspiration (ET), and greenhouse gas (GHG) emissions. Whether these climate effects will mitigate or exacerbate climate change in the short and long terms is uncertain. The uncertainties come from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data- modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  2. Field-scale soil property changes under switchgrass managed for bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capacity of perennial grasses to affect change in soil properties is well documented but soil property information on switchgrass (Panicum virgatum L.) managed for bioenergy is limited. Potential improvements in near-surface soil function are important should switchgrass be included as a perenn...

  3. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011

    SciTech Connect

    Schell, D. J.

    2011-04-01

    Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

  4. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010

    SciTech Connect

    Schell, D.

    2010-07-01

    April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

  5. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect

    Not Available

    2011-09-01

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  6. Genetic Modification in Dedicated Bioenergy Crops and Strategies for Gene Confinement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic modification of dedicated bioenergy crops is in its infancy; however, there are numerous advantages to the use of these tools to improve crops used for biofuels. Potential improved traits through genetic engineering (GE) include herbicide resistance, pest, drought, cold and salt tolerance, l...

  7. Dedicated bioenergy crop impacts on soil wind erodibility and organic carbon in Kansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dedicated bioenergy crops such as perennial warm-season grasses (WSGs) may reduce soil erosion and improve soil properties while providing biomass feedstock for biofuel. We quantified impacts of perennial WSGs and row crops on soil wind erodibility parameters (erodible fraction, geometric mean diame...

  8. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study was to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed perennial grasses from Conservation Reserve Program de...

  9. The importance of pre-conversion technologies for coupling sustainable bioenergy land use to biomass trade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large scale bioenergy development will shift current land use dynamics in the agricultural sector. The establishment of biofuel and biopower feedstock markets has great potential for encouraging more sustainable land use practices. Work has been done showing that strategically integrating food, feed...

  10. Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net environmental benefits of bioenergy crops including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. In 1998, a long-term SOC study was established in eastern Nebraska for switchgrass and maize ...

  11. Establishment and yield of perennial grass monocultures and binary mixtures for bioenergy in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop appropriate bioenergy production systems to match site-specific situations, establishment and yield were evaluated for switchgrass, intermediate wheatgrass, tall wheatgrass, and three binary mixtures at four sites in North Dakota from 2006 to 2011. Canopy cover at harvest for intermediat...

  12. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...

  13. N fertilizer and harvest impacts on bioenergy crop contributions to SOC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant contributions to belowground biomass and soil C stocks are important for developing accurate bioenergy lifecycle models. Switchgrass (Panicum virgatum L.) is a native perennial, cellulosic biofuel feedstock with greater root production compared to corn (Zea mays L.,) and potentially contribute...

  14. Age-dependent population dynamics of the bioenergy crop Miscanthus x giganteus in Illinois

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising global demand for liquid fuels, coupled with new technologies for converting biomass to ethanol, have generated intense interest in the development of herbaceous perennial bioenergy crops. Some plant species being considered as biofeedstocks share traits with invasive species and have histori...

  15. Best management practices: Managing cropping systems for soil protection and bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  16. Enhancing biomass utilization for bioenergy-crop rotation systems and alternative conversion processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass for bioenergy has a great deal of potential for decreasing our dependence upon fossil fuels and decreasing the net CO2 accumulation in the atmosphere. Crop residues are often promoted as a means of meeting the total biomass goals to provide sufficient amounts of materials for liquid fuel pro...

  17. Carbon dioxide and water fluxes from switchgrass managed for bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is an important bioenergy crop with the potential to provide a reliable supply of renewable energy while also removing CO2 from the atmosphere and sequestering it in the soil. The purpose of this study was to use micrometeorological techniques to quantify CO2 fluxes...

  18. Can we balance biomass harvest for bioenergy and protect soil quality?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in bioenergy is exploding. The numbers of plants fermenting corn grain for ethanol are expanding. In addition, crop biomass is being considered as feedstock for ethanol production as a replacement for natural gas and other thermochemical platforms. Utilization of biomass for energy presents...

  19. Improvement of perennial forage species as feedstock for bio-energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both native and non-native forage grasses other than switchgrass are less commonly considered as potential lignocellulosic biomass feedstocks for bioenergy in the United States. The forage grasses consist of temperate cool-season (most commonly C3) grasses as well as the tropical or sub-tropical an...

  20. Improving Sugarcane as a Bioenergy Crop in the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane is one of the world’s most important crops. Large-scale sugarcane-based ethanol production in Brazil, together with an impressive energy balance reported therein, has helped to generate interest in sugarcane as a bioenergy crop in the U.S. An advantage of sugarcane is the production of f...

  1. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison

    SciTech Connect

    Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

    2014-01-01

    Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

  2. [On the origins of modern science].

    PubMed

    de Micheli-Serra, Alfredo

    2003-01-01

    The Renaissance savants essentially repelled the scholastic translations and commentaries of the ancient writings. Nevertheless, they did not reach a modern vision of experimental science. Moreover, education at the universities was not credited for the development of science. In fact, academic training of students was rather precarious. The first professional associations, such as the "Royal College of Physicians" of London, were not any better. Regarding the hermetic influence on Renaissance thought, the cultured and philosophical reformed magic (so-called white magic) was the equivalent of science at the time. Once the animistic universe, operated by magic, was transformed into the mathematical universe operated by mechanics, the era of science came into being. This movement began during the post-Renaissance age and gradually progressed following the physical-mathematical orientation of Galileo and his pupils: Borelli; Fabrizi; Santorio; Harvey, etc. They initiated physiological studies and introduced the quantitative method into the research field. Harvey's doctrine was the first adequate explanation of an organic phenomenon and a starting point for the way toward experimental physiology. However, the English physician did not completely leave the pre-scientific era, as can be inferred from his monography on animals reproduction. In this work, some points suggesting the birth of modern scientific reasoning alternate with confused, vague, and capricious assertions. In fact, modern science did not arise suddenly, but was elaborated and sustained slowly starting in the XVII century: Galileo's century. PMID:14635572

  3. From Hippocrates to modern medicine.

    PubMed

    Orfanos, C E

    2007-07-01

    Hippocrates was the first to introduce the concept of 'physis' and to transform hieratic or theocratic medicine into rational medicine. The overall construction of the Asclepieion on Kos clearly indicates that he and his school followed a holistic concept, combining scientific thought with drug therapy, diet schedules, and physical and mental exercise, also asking for God's help. Hippocrates also formulated the first standards and ethical rules to be followed in medical profession, which are still valid today. The knowledge of Graeco-Roman medicine has been transferred by Arab scholars into the West, whereas renaissance, urbanization, and industrialisation have changed its face over the centuries. With the entrance of molecular technology and economy, modern medicine now faces the risk of becoming itself industrialized. Correct use of new scientific knowledge, individualized management with a Hippocratic holistic approach and compassionate sympathy for the patient who suffers, should be considered in the years to come for maintaining the level of medical profession. The venue of our European Congress in Rhodes is very close to Kos, another historic Aegean island, the place where Hippocrates has given the first professional standards in European medicine and in medicine in general. They were established 2600 years ago and are still valid today.(1,2) If one draws a red line and marks some cornerstones of the evolution that has taken place in medicine over the past centuries, it is evident that these first rules formulated by Hippocrates and his school also reveal the future responsibilities for our profession and make them better recognizable and more conclusive. PMID:17567335

  4. Teaching Modern Literature: Poetry and Fiction.

    ERIC Educational Resources Information Center

    Damashek, Richard

    This monograph, part of a series for language arts teachers, discusses the essential components for teaching modern poetry and modern fiction. The section on modern poetry considers traditional versus modern poetry, modernism in poetry, imagism, the function of poetry in modern times, social change in poetry, and offers a brief list of recommended…

  5. How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise

    PubMed Central

    Clarke, Donna; Jablonski, Sophie; Moran, Brighid; Anandarajah, Gabrial; Taylor, Gail

    2009-01-01

    Background This work explores the potential contribution of bioenergy technologies to 60% and 80% carbon reductions in the UK energy system by 2050, by outlining the potential for accelerated technological development of bioenergy chains. The investigation was based on insights from MARKAL modelling, detailed literature reviews and expert consultations. Due to the number and complexity of bioenergy pathways and technologies in the model, three chains and two underpinning technologies were selected for detailed investigation: (1) lignocellulosic hydrolysis for the production of bioethanol, (2) gasification technologies for heat and power, (3) fast pyrolysis of biomass for bio-oil production, (4) biotechnological advances for second generation bioenergy crops, and (5) the development of agro-machinery for growing and harvesting bioenergy crops. Detailed literature searches and expert consultations (looking inter alia at research and development needs and economic projections) led to the development of an 'accelerated' dataset of modelling parameters for each of the selected bioenergy pathways, which were included in five different scenario runs with UK-MARKAL (MED). The results of the 'accelerated runs' were compared with a low-carbon (LC-Core) scenario, which assesses the cheapest way to decarbonise the energy sector. Results Bioenergy was deployed in larger quantities in the bioenergy accelerated technological development scenario compared with the LC-Core scenario. In the electricity sector, solid biomass was highly utilised for energy crop gasification, displacing some deployment of wind power, and nuclear and marine to a lesser extent. Solid biomass was also deployed for heat in the residential sector from 2040 in much higher quantities in the bioenergy accelerated technological development scenario compared with LC-Core. Although lignocellulosic ethanol increased, overall ethanol decreased in the transport sector in the bioenergy accelerated technological

  6. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.

    PubMed

    Graves, Rose A; Pearson, Scott M; Turner, Monica G

    2016-03-01

    Rural landscapes face changing climate, shifting development pressure, and loss of agricultural land. Perennial bioenergy crops grown on existing agricultural land may provide an opportunity to conserve rural landscapes while addressing increased demand for biofuels. However, increased bioenergy production and changing land use raise concerns for tradeoffs within the food-energy-environment trilemma. Heterogeneity of climate, soils, and land use complicate assessment of bioenergy potential in complex landscapes, creating challenges to evaluating future tradeoffs. The hypothesis addressed herein is that perennial bioenergy production can provide an opportunity to avoid agricultural land conversion to development. Using a process-based crop model, we assessed potential bioenergy crop growth through 2100 in a southern Appalachian Mountain region and asked: (1) how mean annual yield differed among three crops (switchgrass Panicum virgatum, giant miscanthus Miscanthus x giganteus, and hybrid poplar Populus x sp.) under current climate and climate change scenarios resulting from moderate and very high greenhouse gas emissions; (2) how maximum landscape yield, spatial allocation of crops, and bioenergy hotspots (areas with highest potential yield) varied among climate scenarios; and (3) how bioenergy hotspots overlapped with current crop production or lands with high development pressure. Under both climate change scenarios, mean annual yield of perennial grasses decreased (-4% to -39%), but yield of hybrid poplar increased (+8% to +20%) which suggests that a switch to woody crops would maximize bioenergy crop production. In total, maximum landscape yield increased by up to 90 000 Mg/yr (6%) in the 21st century due to increased poplar production. Bioenergy hotspots (> 18 Mg x ha(-1) x yr(-1)) consistently overlapped with high suburban/exurban development likelihood and existing row crop production. If bioenergy production is constrained to marginal (non-crop) lands

  7. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  8. Global land-use and market interactions between climate and bioenergy policies

    NASA Astrophysics Data System (ADS)

    Golub, A.; Hertel, T. W.; Rose, S. K.

    2011-12-01

    Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG

  9. Bioenergy residues as novel sorbents to clean up pesticide pollution

    NASA Astrophysics Data System (ADS)

    Mukherjee, Santanu

    2016-04-01

    Worldwide, water contamination from agricultural use of pesticides has received increasing attention within the last decades. In general, sources of pesticide water pollution are categorized into diffuse (stemming from treated fields) and point sources (stemming from farmyards and spillages). Research has demonstrated that 40 to 90% of surface water pesticide contamination is due to point source pollution. To reduce point pollution from farm yards, where the spray equipment is washed, biobed or biofilter systems are used to treat the washing water. The organic material usually used in these systems is often not environmentally sustainable (e.g. peat) and incorporated organic material such as straw leads to a highly heterogeneous water flow, with negative effects on the retention and degradation behavior of the pesticides. Therefore, the objective of this study was to assess the suitability of alternative materials based on bioenergy residues (biochar and digestate) for use in biofilters. To this aim the sorption-desorption potential of three contrasting pesticides (bentazone, boscalid, and pyrimethanil) on mixtures of soil with digestate and/or biochar were investigated in laboratory batch equilibrium experiments. The results indicate that the mixture of digestate and biochar increased pesticide sorption potential, whereby in all cases, the Kd des / Kf des values were lower than the Kd ads / Kf ads values indicating that the retention of the pesticides was weak. Thus, as Kf des were lower than the Kf ads values and H values were below 1, it can be concluded that the biomixtures presented negative desorption (higher hysteresis) in those cases. A higher Kd (>78 L kg-1), Kf (>400 μM1-1/nf L1/nfkg-1) and KL (>40 L kg-1) was obtained for all pesticides for the digestate and biochar based mixtures, which had a higher organic matter content. However, lower sorption of the pesticides was observed in blank soil compared to the other biomixtures, which was attributed to the

  10. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    2001-01-01

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.

  11. Introducing thermodynamics through energy and entropy

    NASA Astrophysics Data System (ADS)

    de Abreu, Rodrigo; Guerra, Vasco

    2012-07-01

    We suggest a simple approach to introducing thermodynamics, beginning with the concept of internal energy of deformable bodies. From a series of thought experiments involving ideal gases, we show that the internal energy depends on the volume and on a second parameter, leading to the development of the concept of entropy. By introducing entropy before the notions of temperature and heat, the proposed approach avoids some of the major conceptual difficulties with the traditional presentation. The relationship between mechanics and thermodynamics naturally emerges, mechanics corresponding to isentropic thermodynamics. The questions of evolution to equilibrium and irreversibility are studied under the light of the action of the "dynamic force" and its dissipative character, evincing the benefits of keeping in mind the microscopic picture.

  12. Dialogue on Modernity and Modern Education in Dispute

    ERIC Educational Resources Information Center

    Baker, Michael; Peters, Michael A.

    2012-01-01

    This is a dialogue or conversation between Michael Baker (MB) and Michael A. Peters (MP) on the concept of modernity and its significance for educational theory. The dialogue took place originally as a conversation about a symposium on modernity held at the American Educational Studies Association meeting 2010. It was later developed for…

  13. [Effects of introducing Eucalyptus on indigenous biodiversity].

    PubMed

    Ping, Liang; Xie, Zong-Qiang

    2009-07-01

    Eucalyptus is well-known as an effective reforestation tree species, due to its fast growth and high adaptability to various environments. However, the introduction of Eucalyptus could have negative effects on the local environment, e. g., inducing soil degradation, decline of groundwater level, and decrease of biodiversity, and especially, there still have controversies on the effects of introduced Eucalyptus on the understory biodiversity of indigenous plant communities and related mechanisms. Based on a detailed analysis of the literatures at home and abroad, it was considered that the indigenous plant species in the majority of introduced Eucalyptus plantations were lesser than those in natural forests and indigenous species plantations but more than those in other exotic species plantations, mainly due to the unique eco-physiological characteristics of Eucalyptus and the irrational plantation design and harvesting techniques, among which, anthropogenic factors played leading roles. Be that as it may, the negative effects of introducing Eucalyptus on local plant biodiversity could be minimized via more rigorous scientific plantation design and management based on local plant community characteristics. To mitigate the negative effects of Eucalyptus introduction, the native trees and understory vegetation in plantations should be kept intact during reforestation with Eucalyptus to favor the normal development of plant community and regeneration. At the same time, human disturbance should be minimized to facilitate the natural regeneration of native species. PMID:19899483

  14. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy

    PubMed Central

    Brenton, Zachary W.; Cooper, Elizabeth A.; Myers, Mathew T.; Boyles, Richard E.; Shakoor, Nadia; Zielinski, Kelsey J.; Rauh, Bradley L.; Bridges, William C.; Morris, Geoffrey P.; Kresovich, Stephen

    2016-01-01

    With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production

  15. Global impacts of U.S. bioenergy production and policy: A general equilibrium perspective

    NASA Astrophysics Data System (ADS)

    Evans, Samuel Garner

    The conversion of biomass to energy represents a promising pathway forward in efforts to reduce fossil fuel use in the transportation and electricity sectors. In addition to potential benefits, such as greenhouse gas reductions and increased energy security, bioenergy production also presents a unique set of challenges. These challenges include tradeoffs between food and fuel production, distortions in energy markets, and terrestrial emissions associated with changing land-use patterns. Each of these challenges arises from market-mediated responses to bioenergy production, and are therefore largely economic in nature. This dissertation directly addresses these opportunities and challenges by evaluating the economic impacts of U.S. bioenergy production and policy, focusing on both existing and future biomass-to-energy pathways. The analysis approaches the issue from a global, economy-wide perspective, reflecting two important facts. First, that large-scale bioenergy production connects multiple sectors of the economy due to the use of agricultural land resources for biomass production, and competition with fossil fuels in energy markets. Second, markets for both agricultural and energy commodities are highly integrated globally, causing domestic policies to have international effects. The reader can think of this work as being comprised of three parts. Part I provides context through an extensive review of the literature on the market-mediated effects of conventional biofuel production (Chapter 2) and develops a general equilibrium modeling framework for assessing the extent to which these phenomenon present a challenge for future bioenergy pathways (Chapter 3). Part II (Chapter 4) explores the economic impacts of the lignocellulosic biofuel production targets set in the U.S. Renewable Fuel Standard on global agricultural and energy commodity markets. Part III (Chapter 5) extends the analysis to consider potential inefficiencies associated with policy

  16. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains.

    PubMed

    Vadrevu, Krishna; Lasko, Kristofer

    2015-01-15

    Agricultural fires in the Indo-Gangetic Plains (IGP) are a major cause of air pollution. In this study, we evaluate fire regimes and quantify the potential of agricultural residues in generating bioenergy that otherwise are subject to burning by local farmers in the region. For characterizing the fire regimes, we used MODIS satellite datasets in conjunction with IRS-AWiFS classified data. We collected crop statistical data for area, production, and yield for 31 different crops and mapped the bioenergy potential of agricultural residues. We also tested the MODIS net primary production (NPP) dataset potential for crop yield estimation and thereby bioenergy calculations. Results from land use-fire analysis suggested that 88.13% of fires occurred in agricultural areas. Relatively more fires and burnt areas were recorded during the winter rice residue burning season than the summer wheat residue burning season. Monte Carlo analysis suggested that nearly 16.5 Tg of crop residues are burned at 60% probability. MODIS NPP data could explain 62% of variation in field-level crop yield estimates. Our analysis revealed that in the IGP nearly 73.28 Tg of crop residue biomass is available for recycling. The energy equivalent from these residues is estimated to be 1110.77 PJ. From the residues, the biogas potential production is estimated to be 1165.1098 million m(3), the electric power potential at 20% efficiency is estimated at 61698.9 kWh, and the total bioethanol production potential at 21.0 billion liters. Results also highlight geographic locations of bioenergy resources in the IGP useful for energy planning. Controlling agricultural residue burning and promoting the bioenergy sector is an attractive "win-win" strategy in the IGP. PMID:24502932

  17. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect

    Bright, Ryan M. Cherubini, Francesco; Stromman, Anders H.

    2012-11-15

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black

  18. Modernity and Empire: A Modest Analysis of Early Colonial Writing Practices

    ERIC Educational Resources Information Center

    Jeyaraj, Joseph

    2009-01-01

    During colonial times, various British Indian educational institutions and practices, including writing pedagogies at these institutions, introduced modernity to British India. This essay explains the manner in which some students internalized modernity and in their writings used modernist beliefs and premises to critique some precolonial Indian…

  19. IGISOL control system modernization

    NASA Astrophysics Data System (ADS)

    Koponen, J.; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  20. Modern Written Arabic, Volume II.

    ERIC Educational Resources Information Center

    Naja, A. Nashat; Snow, James A.

    This second volume of Modern Written Arabic builds on the previous volume and is the second step designed to teach members of the Foreign Service to read the modern Arabic press. The student will gain recognitional mastery of an extensive set of vocabulary items and will be more intensively exposed to wider and more complex morphological and…

  1. Mendel in the Modern Classroom

    ERIC Educational Resources Information Center

    Smith, Mike U.; Gericke, Niklas M.

    2015-01-01

    Mendel is an icon in the history of genetics and part of our common culture and modern biology instruction. The aim of this paper is to summarize the place of Mendel in the modern biology classroom. In the present article we will identify key issues that make Mendel relevant in the classroom today. First, we recount some of the historical…

  2. When and What to Modernize.

    ERIC Educational Resources Information Center

    Price, D. Dana

    After a brief discussion of when a school board should consider modernizing mechanical and electrical equipment the speaker explored the specifics of lighting, heating, and ventilation. Technical data on foot candles, types of light fixtures, and the importance of air conditioning in modern school buildings are presented. The presentation…

  3. Modernizing medical photography, part 1.

    PubMed

    Crompton, Paul

    2004-12-01

    Government, media and public focus on waiting times in the National Health Service in the United Kingdom has forced the organization to look closely at the process by which a patient progresses through an increasingly complex and ever changing system. In an effort to streamline the patient journey or care pathway, modernizers have turned to business and manufacturing for solutions. Whilst medical photographers need to recognize their role in this context, they are also facing major technological modernization through the development of digital photography. Part 1 of this paper looks at the origins of some of the techniques presently being used to modernize the patient journey. Part 2 shows how these tools of modernization can be utilized to harness the advantages of digital technology to provide a modern and appropriate medical photography service in a large, disparate teaching hospital. PMID:15805027

  4. Quantifying tradeoffs between water availability, water quality, food production and bioenergy production in a Central German Catchment

    NASA Astrophysics Data System (ADS)

    Volk, M.; Lautenbach, S.; Strauch, M.; Whittaker, G. W.

    2012-04-01

    Worldwide increasing bioenergy production is on the political agenda. It is well known that bioenergy production comes at a cost - several trade-offs with food production, water quality and quantity issues, biodiversity and ecosystem services are known. However, a quantification of these trade-offs is still missing. Hence, our study presents an analysis of trade-offs between water availability, water quality, bioenergy production and production in a Central German agricultural catchment. Our analysis is based on using SWAT and a multi-objective genetic algorithm (NSGA II). The genetic algorithm is used to find Pareto optimal configurations of crop rotation schemes. The Pareto-optimality describes solutions in which an objective cannot be improved without decreasing other objectives. This allows us to quantify the costs at which several levels of increase in bioenergy production come and to derive recommendations for policy makers.

  5. Introducing Stereochemistry to Non-science Majors

    NASA Astrophysics Data System (ADS)

    Luján-Upton, Hannia

    2001-04-01

    Stereochemistry is often a difficult topic for both science and non-science majors to learn. The topics covered in most undergraduate textbooks, although fundamental, seem very abstract to most students. This manuscript describes two simple exercises that can be used to introduce concepts associated with stereochemistry such as "sameness", superimposability, chirality, enantiomers, optical activity, polarimetry, and racemic mixtures. One exercise compares chirality in hands with the achiral nature of two textbooks. The other exercise involves a murder mystery, the solution of which hinges upon understanding the concept of optical activity, specifically in natural products such as toxins from poisonous mushrooms.

  6. Kinesiophobia – Introducing a New Diagnostic Tool

    PubMed Central

    Knapik, Andrzej; Saulicz, Edward; Gnat, Rafał

    2011-01-01

    Technical development of human civilisation brings about a decrease of adaptation potential of an individual, which is directly linked to deficient motor activity. Only precise identification of factors leading to hypokinesia would make prophylactic and therapeutic actions possible. In this article, authors would like to introduce a new, original tool aiming at diagnosing limitations of motor activity in adults. They propose a synthetic diagnosis of hypokinesia in two domains: biological and psycho-social, which is based on the contemporary model of health. PMID:23487514

  7. Kinesiophobia - introducing a new diagnostic tool.

    PubMed

    Knapik, Andrzej; Saulicz, Edward; Gnat, Rafał

    2011-06-01

    Technical development of human civilisation brings about a decrease of adaptation potential of an individual, which is directly linked to deficient motor activity. Only precise identification of factors leading to hypokinesia would make prophylactic and therapeutic actions possible. In this article, authors would like to introduce a new, original tool aiming at diagnosing limitations of motor activity in adults. They propose a synthetic diagnosis of hypokinesia in two domains: biological and psycho-social, which is based on the contemporary model of health. PMID:23487514

  8. [Modern mitral valve surgery].

    PubMed

    Bothe, W; Beyersdorf, F

    2016-04-01

    At the beginning of the 20th century, Cutler and Levine performed the first successful surgical treatment of a stenotic mitral valve, which was the only treatable heart valve defect at that time. Mitral valve surgery has evolved significantly since then. The introduction of the heart-lung machine in 1954 not only reduced the surgical risk, but also allowed the treatment of different mitral valve pathologies. Nowadays, mitral valve insufficiency has become the most common underlying pathomechanism of mitral valve disease and can be classified into primary and secondary mitral insufficiency. Primary mitral valve insufficiency is mainly caused by alterations of the valve (leaflets and primary order chords) itself, whereas left ventricular dilatation leading to papillary muscle displacement and leaflet tethering via second order chords is the main underlying pathomechanism for secondary mitral valve regurgitation. Valve reconstruction using the "loop technique" plus annuloplasty is the surgical strategy of choice and normalizes life expectancy in patients with primary mitral regurgitation. In patients with secondary mitral regurgitation, implanting an annuloplasty is not superior to valve replacement and results in high rates of valve re-insufficiency (up to 30 % after 3 months) due to ongoing ventricular dilatation. In order to improve repair results in these patients, we add a novel subvalvular technique (ring-noose-string) to the annuloplasty that aims to prevent ongoing ventricular remodeling and re-insufficiency. In modern mitral surgery, a right lateral thoracotomy is the approach of choice with excellent repair and cosmetic results. PMID:26907868

  9. Modern biofuels life-cycle effects on black carbon emissions and impacts

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Spak, S.; Mena-Carrasco, M.; Carmichael, G. R.; Chen, Y.; Tsao, C.

    2010-12-01

    The rapid growth of modern biofuels production (primarily ethanol) contributes to increased black carbon and co-pollutant emissions, particularly due to the field burning of agriculture wastes and the indirect land use impacts of forest clearing. U.S. bioenergy policy has already mandated life-cycle emissions thresholds for greenhouse gases from biofuels but there is still a need to incorporate black carbon and other short-lived climate forcers into these metrics. Thus, an understanding of the biofuels sector for black carbon and co-pollutant emissions and impacts remains a critical knowledge gap. Here we combine high-resolution agronomic data and regional chemical transport modeling to consider the life-cycle emissions of black carbon from sugarcane ethanol production in Brazil. Furthermore, we explore the potential for significant radiative forcing from the pre-harvest burning of sugarcane fields and the indirect land use emissions associated with deforestation.

  10. [Financial impact of introducing filmless CRT diagnosis].

    PubMed

    Kusakabe, Yukihiro

    2002-09-01

    There has been a great deal of discussion as to the cost and benefit of introducing filmless CRT diagnosis for radiological exams. Although the various advantages of the filmless system tend to be highlighted, very few studies have attempted to provide a quantitative estimate of the degree of impact. We analyzed the potential financial impact on the cost of film management (film development, maintenance, and transportation) if CRT diagnosis were to be introduced in Seirei Hamamatsu Hospital. In conducting this analysis, we assumed that CRT diagnosis initially would be limited to CT and MR. The analysis demonstrated that the actual yearly cost of managing films amounts to about 240 million yen. As individual items, the cost of film materials, labor, and depreciation of assets were the three largest cost sectors, with the cost of film accounting for more than 30% of the total. The expense attributable to CT and MR exams was roughly half of the total cost. Against this level of expense, the expected savings in the first year after shifting to the filmless system would be 100 million yen, or a 36% reduction in current expenses. This savings reflects various effects of system change, including lack of need for related materials, reduction in staff workload, elimination of unnecessary equipment, etc. Under the simulation we conducted, 70% of savings occurred in the area of variable costs and 30% in the area of fixed costs. PMID:12520224

  11. Introducing Dialogic Teaching to Science Student Teachers

    NASA Astrophysics Data System (ADS)

    Lehesvuori, Sami; Viiri, Jouni; Rasku-Puttonen, Helena

    2011-12-01

    It is commonly believed that science teachers rely on language that allows only minor flexibility when it comes to taking into account contrasting views and pupil thoughts. Too frequently science teachers either pose questions that target predefined answers or simply lecture through lessons, a major concern from a sociocultural perspective. This study reports the experiences of science student teachers when introduced to the Communicative Approach to science education drawing on dialogic teacher-talk in addition to authoritative teacher-talk. This approach was introduced to the students in an interventional teaching program running parallel to the student teachers' field practice. The practical implications of this approach during initial teacher education are the central focus of this study. The data consisting of videos of lessons and interviews indicate that the student teacher awareness of teacher-talk and alternative communicative options did increase. Student teachers reported greater awareness of the different functions of teacher-talk as well as the challenges when trying to implement dialogic teaching.

  12. Introducing GFWED: The Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  13. SORGHUM BIOMASS/FEEDSTOCK GENOMICS RESEARCH FOR BIOENERGY

    SciTech Connect

    Rooney, William L.; Mullet, John E.; Klein, Patricia; Kresovich, Steven; Ware, Doreen

    2010-01-01

    Objectives: The specific objectives of this project were to: (1) annotate genes, pathways and regulatory networks identified in the sorghum genome sequence that are important for biomass generation, and (2) identify, map and clarify the function of trait loci that modulate accumulation and quality of biomass in sorghum. Approach: Objective 1: Genes encoding proteins involved in biochemical pathways important for biomass generation and plant composition related to biofuel production (i.e., starch, lignin, sugar, cellulose and hemicellulose) were identified and projected onto biochemical pathways using the database MetaCyc (SorgCyc). The pathway projections provide a baseline of information on sorghum genes involved in biochemical pathways thus aiding our downstream analysis of QTL and traits. In addition, the information on sorghum biochemical pathways in Gramene can be readily compared to information on other cereals and other organisms via Gramene’s comparative mapping tools. This information helped identify gaps in the current knowledge of sorghum biochemistry and identified pathways and genes that may be useful to deploy in sorghum for biomass/bioenergy generation. Objective 2: Grain, biomass, and carbohydrate yields were measured in germplasm and a population consisting of 175 recombinant inbred lines (RILs) (F5:6) from the cross of BTx623 (a high yielding early flowering grain sorghum) × Rio (a high biomass sweet sorghum). Plant growth parameters were analyzed to obtain a baseline for downstream meta-analysis including plant height, flowering time and tillering, traits that likely modulate carbohydrate partitioning in various tissues and total biomass. Traits that affect grain yield, biomass (i.e. the tissue harvest index and distribution of grain, stem, and leaf weight), the composition of structural and non-structural carbohydrates, and the overall energy gain of the plant were evaluated. A genetic map of this population was created and QTL analysis will

  14. Bioenergy and Biodiversity: Key Lessons from the Pan American Region to be part of Special Issue on Biofuels in the Americas

    SciTech Connect

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camilia Ortolan F.; Sparovek, Gerd; Walter, Arnaldo Cesar de Silva; Venier, Lisa A.

    2015-01-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  15. [Alkaloids of Vinca rosea L. introduced to Western Georgia].

    PubMed

    Vachnadze, N S; Kintsurashvili, L G; Suladze, T Sh; Bakuridze, A D; Vachnadze, V Iu

    2013-11-01

    Vinca roseae L. (Саtharanthus rosea (L.) G. Don) was introduced at Kobuleti experimental station of medical plants. The object of investigation was the plant material of Vinca roseae L. collected in May, 2005., September, 2006 and October, 2009. Total alkaloids were obtained in accordance with Atta- ur-Rachman method. The variability of the quantitative and qualitative composition of total alkaloids and vincaleikoblastin (VLB) fraction during vegetation was studied. It was established that the maximal content of total alkaloids and VLB fraction of Vinca roseae L. is accumulated in the phase of secondary flowering, hence the collecting of a plant material is recommended to be made during the aforesaid vegetation phase as for this period it is a rather high output of a raw material, alkaloid complex and VLB faction. Alkaloids vinkaleikoblastin, ajmalicine and new epimer tetrahydroalstonine with С3Н-α- orientation were yielded, separated and identified using modern physical-chemical and spectral methods (13С NMR). PMID:24323972

  16. Introducing large color displays in the Gripen fighter

    NASA Astrophysics Data System (ADS)

    Sundgren, Mats; Brandtberg, Hans

    1998-09-01

    Cockpit design is about communication between the aircraft system and the pilot. The information available on-board is very large and increases with on-going development of the systems. New functions for integration and fusion will, together with decision support and automation, set requirements on the displays to transfer information to the pilot. Information overload, mental workload and flight safety are always important areas to put efforts in. The present version of the Swedish JAS 39 Gripen aircraft has three monochrome multi-function displays. The displays are fairly large for a small aircraft, 5' X 6', giving a good situation awareness for the pilot. A new version of the Gripen cockpit featuring large color displays is now under development and will be introduced to the Swedish air force and ready for export market in the end of 2001. Display size, resolution, graphics capability and color have great impact on the pilots ability to acquire and understand the presented information. These factors are very important when designing an improved cockpit. By utilizing the most modern flat panel AMLCD techniques we have succeeded in integrating three 6.2' X 8.3' full-color multi-function displays in the Gripen aircraft.

  17. An Introduced Insect Biological Control Agent Preys on an Introduced Weed Biological Control Agent.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotic interference, especially by generalist predators, has been implicated in preventing establishment or limiting the impact of introduced weed biological control agents. Boreioglycaspis melaleucae Moore (Homoptera: Psyllidae) was released into Florida in 2002 as part of a classical biological c...

  18. Introducing fear of crime to risk research.

    PubMed

    Jackson, Jonathan

    2006-02-01

    This article introduces the fear of crime to risk research, noting a number of areas for future interdisciplinary study. First, the article analyzes both the career of the concept of fear of crime and the politics of fear. Second, it considers research and theory on the psychology of risk, particularly the interplay between emotion and cognition, and what might be called the risk as image perspective. Third, the article speculates how people learn about risk and suggests how to customize a social amplification of risk framework to fear of crime. Finally, the article advances the argument that fear of crime may be an individual response to community social order and a generalized attitude toward the moral trajectory of society. Each of these areas of discussion has implications for future theoretical developments within risk research; each highlights how risk research can contribute to the social scientific understanding of an important issue of the day. PMID:16492196

  19. Introducing Astronomy Through Solar and Lunar Calendar

    NASA Astrophysics Data System (ADS)

    Raharto, Moedji

    Lack of competence teachers to educate basic science astronomy and space science in Indonesia implies that knowledge of astronomy and space science will be transmitted to the young generation improperly. Priority in curriculum of basic science include only small amount of general astronomy and public perception that astronomy is less importance than basic science both are disadvantage for developing astronomical community in Indonesia a country with more than 230 million people. Muslim community in Indonesia has a tradition to use a lunar calendar and a tradition to determine the first day the important month Ramadhan Syawal and Dzulhijjah. Recent disputeof determining the first day of the three important month partly due to the lack of knowledge the first visibility of lunar crescent. The challenge of introducing astronomy on wider community with less background on astronomical education will be discussed in this paper

  20. Introducing Ergonomics in Two US Elementary Schools

    SciTech Connect

    Bennett, C L; Tien, D

    2003-06-25

    The increasing presence of computers and other forms of information and communications technology (ICT) in schools has raised concerns in the United States (US) and elsewhere. Children are using computers more than any other age group in the US. It is not known whether early intensive use of ICT predisposes children to future injury. Ergonomics is not included in state curriculum standards or requirements but can be supported by some of the existing standards. Some who believe that children are better off being educated early about ergonomics are taking action to bring ergonomics into elementary and secondary schools. This paper describes the process used to introduce ergonomics into two elementary schools in two different states by initiators with two different roles.

  1. How to introduce yourself to patients.

    PubMed

    Guest, Mags

    2016-06-01

    Rationale and key points This article explores the process of introducing yourself to patients. This is an essential interaction because it forms the basis of the therapeutic nurse-patient relationship. ▶ Effective communication skills are essential to foster therapeutic nurse-patient relationships based on mutual trust and respect. ▶ It is important to consider both verbal and non-verbal communication in patient interactions. Reflective activity Clinical skills articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How this article will change your practice when meeting patients for the first time. 2. How you could use this article to educate your colleagues. Subscribers can upload their reflective accounts at: rcni.com/portfolio . PMID:27286624

  2. Towards Introducing Space Science in Uganda

    NASA Astrophysics Data System (ADS)

    Anguma, S.; Ayikoru, J.

    This paper discusses the strategies and importance of introducing space science in Uganda. It proposes that Mbarara University, as a new university focusing on science and technology, would be ideally situated to spearhead the introduction of space science in Uganda. It is our expectation that this will have a spin-off effect to other higher institutions of learning and that consequently space science will become fully incorporated into the national teaching curriculum for all schools in Uganda. Based on the fact that the Government has a deliberate policy of popularizing science and technology to accelerate national economic development, the introduction of space science in the school system is to be enhanced by these efforts. We have charted the way forward for space science in Uganda and outlined the conceptual framework illustrating the spin-off effect into the education system.

  3. Radiofrequency Cauterization with Biopsy Introducer Needle

    PubMed Central

    Pritchard, William F.; Wray-Cahen, Diane; Karanian, John W.; Hilbert, Stephen; Wood, Bradford J.

    2014-01-01

    PURPOSE The principal risks of needle biopsy are hemorrhage and implantation of tumor cells in the needle tract. This study compared hemorrhage after liver and kidney biopsy with and without radiofrequency (RF) ablation of the needle tract. MATERIALS AND METHODS Biopsies of liver and kidney were performed in swine through introducer needles modified to allow RF ablation with the distal 2 cm of the needle. After each biopsy, randomization determined whether the site was to undergo RF ablation during withdrawal of the introducer needle. Temperature was measured with a thermistor stylet near the needle tip, with a target temperature of 70°C–100°C with RF ablation. Blood loss was measured as grams of blood absorbed in gauze at the puncture site for 2 minutes after needle withdrawal. Selected specimens were cut for gross examination. RESULTS RF ablation reduced bleeding compared with absence of RF ablation in liver and kidney (P < .01), with mean blood loss reduced 63% and 97%, respectively. Mean amounts of blood loss (±SD) in the liver in the RF and no-RF groups were 2.03 g ± 4.03 (CI, 0.53–3.54 g) and 5.50 g ± 5.58 (CI, 3.33–7.66 g), respectively. Mean amounts of blood loss in the kidney in the RF and no-RF groups were 0.26 g ± 0.32 (CI, −0.01 to 0.53 g) and 8.79 g ± 7.72 (CI, 2.34–15.24 g), respectively. With RF ablation, thermal coagulation of the tissue surrounding the needle tract was observed. CONCLUSION RF ablation of needle biopsy tracts reduced hemorrhage after biopsy in the liver and kidney and may reduce complications of hemorrhage as well as implantation of tumor cells in the tract. PMID:14963187

  4. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  5. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-02-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  6. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available

  7. Willow biomass-bioenergy industry development in New York: Sustainability and environmental benefits

    SciTech Connect

    White, E.H.; Robison, D.J.; Abrahamson, L.P.

    1996-12-31

    Biomass-for-bioenergy cropping and production systems based on willow (and poplar) planted and managed at high densities and short (3 to 4 year) coppice harvest cycles, providing fuel for co-firing with coal (or other types of energy conversion) can be economically, ecologically and environmentally sustainable. All of these areas are crucial to the successful commercialization of this biomass-bioenergy system. Current knowledge and ongoing research and development indicate that the production and utilization systems involved are environmentally and ecologically acceptable. Therefore two of the primary constraints to commercialization have been met. The remaining constraint is economic viability based on cost of production and use, the value of environmental externalities (such as atmospheric emissions), and potential government public policy actions to promote this system of providing a locally produced and renewable farm crop and fuel. Developments needed to overcome the economic constraints are known, and should be bolstered by the environmental and ecological quality of the system.

  8. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    PubMed

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. PMID:27030440

  9. CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.

    2012-04-01

    CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems Terenzio Zenone1-2, Jiquan Chen1-2, Ilya Gelfand3-4, G. Philip Robertson3-4 1 Department of Environmental Sciences, University of Toledo, Toledo, OH USA 2 Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA 3 W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI USA 4Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI USA Environmental sustainability of bioenergy crop cultivation represents an important challenge and is a topic of intensive scientific and political debate worldwide due to increasing societal needs for renewable energy. Despite the increasing knowledge related to potential bioenergy systems, the effect of land use change (LUC) on GHG fluxes during the conversion remains poorly understood but is likely to be substantial. In order to tackle this issue the Great lake Bioenergy Research Center (GLBRC) of the US Department of Energy (DOE) has established a field experiment and deployed a cluster of eddy-covariance towers to quantify the magnitude and changes of ecosystem carbon assimilation, loss, and balance during the conversion and establishment years in a permanent prairie and four types of candidate biofuel systems [Conservation Reserve Program (CRP) grassland, switchgrass, mixed-species restored prairie and corn]. Six sites were converted to soybean in 2009 before establishing the bioenergy systems in 2010 while one site was kept grassland as reference. Soil N2O and CH4 fluxes were measured biweekly with static chambers in four replicate locations in each fields, within the footprint of the eddy covariance tower using static chamber GHG flux protocols of the KBS LTER site. Our field observations, made between January 2009 through December 2010, showed that conversion of CRP to soybean induced net C emissions during the conversion year that ranging from 288 g C m-2, to 173 g C m-2 . while

  10. Global climate impacts of bioenergy from forests: implications from biogenic CO2 fluxes and surface albedo

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Bright, Ryan; Strømman, Anders

    2013-04-01

    Production of biomass for bioenergy can alter biogeochemical and biogeophysical mechanisms, thus affecting local and global climate. Recent scientific developments mainly embraced impacts from land use changes resulting from area-expanded biomass production, with several extensive insights available. Comparably less attention, however, is given to the assessment of direct land surface-atmosphere climate impacts of bioenergy systems under rotation such as in plantations and forested ecosystems, whereby land use disturbances are only temporary. In this work, we assess bioenergy systems representative of various biomass species (spruce, pine, aspen, etc.) and climatic regions (US, Canada, Norway, etc.), for both stationary and vehicle applications. In addition to conventional greenhouse gas (GHG) emissions through life cycle activities (harvest, transport, processing, etc.), we evaluate the contributions to global warming of temporary effects resulting from the perturbation in atmospheric carbon dioxide (CO2) concentration caused by the timing of biogenic CO2 fluxes and in surface reflectivity (albedo). Biogenic CO2 fluxes on site after harvest are directly measured through Net Ecosystem Productivity (NEP) chronosequences from flux towers established at the interface between the forest canopy and the atmosphere and are inclusive of all CO2 exchanges occurring in the forest (e.g., sequestration of CO2 in growing trees, emissions from soil respiration and decomposition of dead organic materials). These primary data based on empirical measurements provide an accurate representation of the forest carbon sink behavior over time, and they are used in the elaboration of high-resolution IRFs for biogenic CO2 emissions. Chronosequence of albedo values from clear-cut to pre-harvest levels are gathered from satellite data (MODIS black-sky shortwave broadband, Collection 5, MCD43A). Following the cause-effect chain from emissions to damages, through radiative forcing and changes

  11. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?†

    PubMed Central

    Sattler, Scott E.; Funnell-Harris, Deanna L.

    2013-01-01

    Lignin is a ubiquitous polymer present in cell walls of all vascular plants, where it rigidifies and strengthens the cell wall structure through covalent cross-linkages to cell wall polysaccharides. The presence of lignin makes the cell wall recalcitrant to conversion into fermentable sugars for bioenergy uses. Therefore, reducing lignin content and modifying its linkages have become major targets for bioenergy feedstock development through either biotechnology or traditional plant breeding. In addition, lignin synthesis has long been implicated as an important plant defense mechanism against pathogens, because lignin synthesis is often induced at the site of pathogen attack. This article explores the impact of lignin modifications on the susceptibility of a range of plant species to their associated pathogens, and the implications for development of feedstocks for the second-generation biofuels industry. Surprisingly, there are some instances where plants modified in lignin synthesis may display increased resistance to associated pathogens, which is explored in this article. PMID:23577013

  12. Modernizing Fortran 77 Legacy Codes

    NASA Technical Reports Server (NTRS)

    Decyk, Viktor; Norton, Charles

    2003-01-01

    An incremental approach to modernization of scientific software written in the Fortran 77 computing language has been developed. This approach makes it possible to preserve the investment in legacy Fortran software while augmenting the software with modern capabilities to satisfy expanded requirements. This approach could be advantageous (1) in situations in which major rewriting of application programs is undesirable or impossible, or (2) as a means of transition to major rewriting.

  13. European greenhouse gas fluxes from land use: the impact of expanding the use of dedicated bioenergy crops.

    NASA Astrophysics Data System (ADS)

    Hastings, Astley; Böttcher, Hannes; Clifton-Brown, John; Fuchs, Richard; Hillier, Jon; Jones, Ed; Obersteiner, Michael; Pogson, Mark; Richards, Mark; Smith, Pete

    2013-04-01

    Bioenergy derived from vegetation cycles carbon to and from the atmosphere using the chemical energy fixed by the plants by photosynthesis using solar energy. However bioenergy is not carbon neutral as energy is used and greenhouse gasses (GHG) are emitted in the process of growing bioenergy feeedstocks and processing them into a usable fuel, whether it is biomass or liquid fuel such as biodiesel or bioethanol. Using bio instead of fossil fuels replaces greenhouse gas emissions from coal, oil and gas by those of the biofuel. To estimate the impact on European greenhouse gas fluxes of expanding the use of bioenergy, it is necessary to quantify the difference between the GHG emissions associated with producing and using the biofuel and the fossil fuel it replaces, and to take into account any emissions associated with the change from the original land use to that of growing the bioenergy feedstock. This involves estimating any displacement of food, fibre and timber production to other geographical areas. Here we report on a study of the GHG emissions from the potential increasing use of a variety of biofuels produced from feedstocks grown in the EU countries. The GHG emissions of the historical land use of EU27 have been modelled using ECOSSE on a 1 km grid to estimate the impact the agriculture intensification and land use change of the last 50 years and the associated crop yield gains. The excess land made available from the yield gains is considered to be available for use for bioenergy, and the yields of potential bioenergy feedstocks are estimated from EUROSTAT data or modelled using the bioenergy crop growth model MISCANFOR. These yields are used to calculate the energy used and GHG emissions associated with the use of the resulting biofuel using a life cycle analysis, and to estimate the organic matter input into the soil. The ECOSSE model is then used to estimate the soil carbon change and GHG emissions associated with the land use change to growing the

  14. Introducing Python tools for magnetotellurics: MTpy

    NASA Astrophysics Data System (ADS)

    Krieger, L.; Peacock, J.; Inverarity, K.; Thiel, S.; Robertson, K.

    2013-12-01

    Within the framework of geophysical exploration techniques, the magnetotelluric method (MT) is relatively immature: It is still not as widely spread as other geophysical methods like seismology, and its processing schemes and data formats are not thoroughly standardized. As a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, which are sometimes highly adapted to the respective local specifications. Although tools for the estimation of the frequency dependent MT transfer function, as well as inversion and modelling codes, are available, the standards and software for handling MT data are generally not unified throughout the community. To overcome problems that arise from missing standards, and to simplify the general handling of MT data, we have developed the software package "MTpy", which allows the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for various tasks within the standard MT data processing and handling scheme. Besides pure Python classes and functions, MTpy provides wrappers and convenience scripts to call external software, e.g. modelling and inversion codes. Even though still under development, MTpy already contains ca. 250 functions that work on raw and preprocessed data. However, as our aim is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended in the future. It then has the potential to help standardise processing procedures and at same time be a versatile supplement for existing algorithms. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilising MTpy on an example data set collected over a geothermal exploration site in South

  15. Development and use of bioenergy feedstocks for semi-arid and arid lands.

    PubMed

    Cushman, John C; Davis, Sarah C; Yang, Xiaohan; Borland, Anne M

    2015-07-01

    Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient. PMID:25873672

  16. Hydrological and sedimentation implications of landscape changes in a Himalayan catchment due to bioenergy cropping

    NASA Astrophysics Data System (ADS)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    There is a global effort to focus on the development of bioenergy and energy cropping, due to the generally increasing demand for crude oil, high oil price volatility and climate change mitigation challenges. Second generation energy cropping is expected to increase greatly in India as the Government of India has recently approved a national policy of 20 % biofuel blending by 2017; furthermore, the country's biomass based power generation potential is estimated as around ~24GW and large investments are expected in coming years to increase installed capacity. In this study, we have modelled the environmental influences (e.g.: hydrology and sediment) of scenarios of increased biodiesel cropping (Jatropha curcas) using the Soil and Water Assessment Tool (SWAT) in a northern Indian river basin. SWAT has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for daily river flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). The study has applied two land use change scenarios of (1) increased bioenergy cropping in marginal (grazing) lands in the lower and middle regions of catchment (2) increased bioenergy cropping in low yielding areas of row crops in the lower and middle regions of the catchment. The presentation will describe the improved understanding of the hydrological, erosion and sediment delivery and food production impacts arising from the introduction of a new cropping variety to a marginal area; and illustrate the potential prospects of bioenergy production in Himalayan valleys.

  17. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production

    PubMed Central

    Pujol Pereira, Engil Isadora; Suddick, Emma C.; Six, Johan

    2016-01-01

    By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration. PMID:26963623

  18. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production.

    PubMed

    Gaunt, John L; Lehmann, Johannes

    2008-06-01

    The implications for greenhouse gas emissions of optimizing a slow pyrolysis-based bioenergy system for biochar and energy production rather than solely for energy production were assessed. Scenarios for feedstock production were examined using a life-cycle approach. We considered both purpose grown bioenergy crops (BEC) and the use of crop wastes (CW) as feedstocks. The BEC scenarios involved a change from growing winter wheat to purpose grown miscanthus, switchgrass, and corn as bioenergy crops. The CW scenarios consider both corn stover and winter wheat straw as feedstocks. Our findings show that the avoided emissions are between 2 and 5 times greater when biochar is applied to agricultural land (2--19 Mg CO2 ha(-1) y(-1)) than used solely for fossil energy offsets. 41--64% of these emission reductions are related to the retention of C in biochar, the rest to offsetting fossil fuel use for energy, fertilizer savings, and avoided soil emissions other than CO2. Despite a reduction in energy output of approximately 30% where the slow pyrolysis technology is optimized to produce biochar for land application, the energy produced per unit energy input at 2--7 MJ/MJ is greater than that of comparable technologies such as ethanol from corn. The C emissions per MWh of electricity production range from 91-360 kg CO2 MWh(-1), before accounting for C offset due to the use of biochar are considerably below the lifecycle emissions associated with fossil fuel use for electricity generation (600-900 kg CO2 MWh(-1)). Low-temperature slow pyrolysis offers an energetically efficient strategy for bioenergy production, and the land application of biochar reduces greenhouse emissions to a greater extent than when the biochar is used to offset fossil fuel emissions. PMID:18589980

  19. U.S. Department of Energy's Genomics: GTL Bioenergy Research Centers White Paper

    SciTech Connect

    none,

    2006-08-01

    The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy’s mission and goals.

  20. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops.

    PubMed

    Mao, Yuejian; Yannarell, Anthony C; Mackie, Roderick I

    2011-01-01

    Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community. PMID:21935454

  1. Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production.

    PubMed

    Pujol Pereira, Engil Isadora; Suddick, Emma C; Six, Johan

    2016-01-01

    By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration. PMID:26963623

  2. On the failure of modern species concepts.

    PubMed

    Hey, Jody

    2006-08-01

    The modern age of species concepts began in 1942, when Ernst Mayr gave concept names to several different approaches to species identification. A long list of species concepts then followed, as well as a complex literature on their merits, motivations and uses. Some of these complexities arose as a consequence of the semantic shift that Mayr introduced, in which procedures for identifying species were elevated to concepts. Much of the debate in recent decades over concepts, and over pluralism versus monism, can be seen as an unnecessary consequence of treating species identification criteria as if they were more fundamental concepts. Recently, biologists have begun to recognize both the shortcomings of a lexicon of multiple species concepts and a common evolutionary idea that underlies them. PMID:16762447

  3. The Modern Temperature-Accelerated Dynamics Approach.

    PubMed

    Zamora, Richard J; Uberuaga, Blas P; Perez, Danny; Voter, Arthur F

    2016-06-01

    Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, these enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. We review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD. PMID:26979413

  4. Human performance in the modern cockpit

    NASA Technical Reports Server (NTRS)

    Dismukes, R. K.; Cohen, M. M.

    1992-01-01

    This panel was organized by the Aerospace Human Factors Committee to illustrate behavioral research on the perceptual, cognitive, and group processes that determine crew effectiveness in modern cockpits. Crew reactions to the introduction of highly automated systems in the cockpit will be reported on. Automation can improve operational capabilities and efficiency and can reduce some types of human error, but may also introduce entirely new opportunities for error. The problem solving and decision making strategies used by crews led by captains with various personality profiles will be discussed. Also presented will be computational approaches to modeling the cognitive demands of cockpit operations and the cognitive capabilities and limitations of crew members. Factors contributing to aircrew deviations from standard operating procedures and misuse of checklist, often leading to violations, incidents, or accidents will be examined. The mechanisms of visual perception pilots use in aircraft control and the implications of these mechanisms for effective design of visual displays will be discussed.

  5. Introducing systems biology for nursing science.

    PubMed

    Founds, Sandra A

    2009-07-01

    Systems biology expands on general systems theory as the "omics'' era rapidly progresses. Although systems biology has been institutionalized as an interdisciplinary framework in the biosciences, it is not yet apparent in nursing. This article introduces systems biology for nursing science by presenting an overview of the theory. This framework for the study of organisms from molecular to environmental levels includes iterations of computational modeling, experimentation, and theory building. Synthesis of complex biological processes as whole systems rather than isolated parts is emphasized. Pros and cons of systems biology are discussed, and relevance of systems biology to nursing is described. Nursing research involving molecular, physiological, or biobehavioral questions may be guided by and contribute to the developing science of systems biology. Nurse scientists can proactively incorporate systems biology into their investigations as a framework for advancing the interdisciplinary science of human health care. Systems biology has the potential to advance the research and practice goals of the National Institute for Nursing Research in the National Institutes of Health Roadmap initiative. PMID:19221104

  6. Introducing tropical lianas in a vegetation model

    NASA Astrophysics Data System (ADS)

    Verbeeck, Hans; De Deurwaerder, Hannes; Brugnera, Manfredo di Procia e.; Krshna Moorthy Paravathi, Sruthi; Pausenberger, Nancy; Roels, Jana; kearsley, elizabeth

    2016-04-01

    Tropical forests are essential components of the earth system and play a critical role for land surface feedbacks to climate change. These forests are currently experiencing large-scale structural changes, including the increase of liana abundance and biomass. This liana proliferation might have large impacts on the carbon cycle of tropical forests. However no single global vegetation model currently accounts for lianas. The TREECLIMBERS project (ERC starting grant) aims to introduce for the first time lianas into a vegetation model. The project attempts to reach this challenging goal by performing a global meta-analysis on liana data and by collecting new data in South American forests. Those new and existing datasets form the basis of a new liana plant functional type (PFT) that will be included in the Ecosystem Demography model (ED2). This presentation will show an overview of the current progress of the TREECLIMBERS project. Liana inventory data collected in French Guiana along a forest disturbance gradient show the relation between liana abundance and disturbance. Xylem water isotope analysis indicates that trees and lianas can rely on different soil water resources. New modelling concepts for liana PFTs will be presented and in-situ leaf gas exchange and sap flow data are used to parameterize water and carbon fluxes for this new PFT. Finally ongoing terrestrial LiDAR observations of liana infested forest will be highlighted.

  7. Introducing The Newtonian Gravity Concept Inventory

    NASA Astrophysics Data System (ADS)

    Williamson, Kathryn; Willoughby, S.

    2013-01-01

    Multiple-choice Concept Inventories (CIs) have become important tools in the Astronomy Education Research community for assessing student learning and the effects of instructional interventions. We introduce for the first time the Newtonian Gravity Concept Inventory (NGCI), a 26-item research validated instrument to quickly and effectively assess introductory college astronomy students’ understanding of gravity. The conceptual focus of the NGCI covers four conceptual domains: (1) Independence of gravity from other factors (such as air pressure, magnetism, and rotation), (2) Application of the force law (including mass and distance proportionality relationships), (3) Behavior at certain thresholds (such as low mass and high distance limits, as well as atmospheric boundaries), and (4) Directionality (for objects on Earth or orbiting, and including superposition. After three iterations of testing and refining, the NGCI has proven to be both a reliable and valid instrument. As evidence, we present a full statistical analysis of overall instrument reliability, item difficulty and item discriminatory power, supplemented with qualitative information from think-aloud student interviews and expert review

  8. Introducing the Virtual Astronomy Multimedia Project

    NASA Astrophysics Data System (ADS)

    Wyatt, Ryan; Christensen, L. L.; Gauthier, A.; Hurt, R.

    2008-05-01

    The goal of the Virtual Astronomy Multimedia Project (VAMP) is to promote and vastly multiply the use of astronomy multimedia resources—from images and illustrations to animations, movies, and podcasts—and enable innovative future exploitation of a wide variety of outreach media by systematically linking resource archives worldwide. High-quality astronomical images, accompanied by rich caption and background information, abound on the web and yet prove notoriously difficult to locate efficiently using existing search tools. The Virtual Astronomy Multimedia Project offers a solution via the Astronomy Visualization Metadata (AVM) standard. Due to roll out in time for IYA2009, VAMP manages the design, implementation, and dissemination of the AVM standard for the education and public outreach astronomical imagery that observatories publish. VAMP will support implementations in World Wide Telescope, Google Sky, Portal to the Universe, and 365 Days of Astronomy, as well as Uniview and DigitalSky software designed specifically for planetariums. The VAMP workshop will introduce the AVM standard and describe its features, highlighting sample image tagging processes using diverse tools—the critical first step in getting media into VAMP. Participants with laptops will have an opportunity to experiment first hand, and workshop organizers will update a web page with system requirements and software options in advance of the conference (see http://virtualastronomy.org/ASP2008/ for links to resources). The workshop will also engage participants in a discussion and review of the innovative AVM image hierarchy taxonomy, which will soon be extended to other types of media.

  9. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect

    Nair, S. Surendran; Nichols, Jeff A. {Cyber Sciences}; Post, Wilfred M; Wang, Dali; Wullschleger, Stan D; Kline, Keith L; Wei, Yaxing; Singh, Nagendra; Kang, Shujiang

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  10. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    PubMed

    Ramamurthi, Pooja Vijay; Fernandes, Maria Cristina; Nielsen, Per Sieverts; Nunes, Clemente Pedro

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. PMID:25444887

  11. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    SciTech Connect

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran; Nichols, Dr Jeff A; Post, Wilfred M; Brandt, Craig C; Wullschleger, Stan D; Wei, Yaxing; Singh, Nagendra

    2013-01-01

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

  12. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    SciTech Connect

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    2012-10-06

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10–100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

  13. Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee

    DOE PAGESBeta

    Parish, Esther S.; Dale, Virginia H.; English, Burton C.; Jackson, Samuel W.; Tyler, Donald D.

    2016-02-26

    This paper connects the science of sustainability theory with applied aspects of sustainability deployment. A suite of 35 sustainability indicators spanning six environmental, three economic, and three social categories has been proposed for comparing the sustainability of bioenergy production systems across different feedstock types and locations. A recent demonstration-scale switchgrass-to-ethanol production system located in East Tennessee is used to assess the availability of sustainability indicator data and associated measurements for the feedstock production and logistics portions of the biofuel supply chain. Knowledge pertaining to the available indicators is distributed within a hierarchical decision tree framework to generate an assessment ofmore » the overall sustainability of this no-till switchgrass production system relative to two alternative business-as-usual scenarios of unmanaged pasture and tilled corn production. The relative contributions of the social, economic and environmental information are determined for the overall trajectory of this bioenergy system s sustainability under each scenario. Within this East Tennessee context, switchgrass production shows potential for improving environmental and social sustainability trajectories without adverse economic impacts, thereby leading to potential for overall enhancement in sustainability within this local agricultural system. Given the early stages of cellulosic ethanol production, it is currently difficult to determine quantitative values for all 35 sustainability indicators across the entire biofuel supply chain. This case study demonstrates that integration of qualitative sustainability indicator ratings may increase holistic understanding of a bioenergy system in the absence of complete information.« less

  14. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry. PMID:20863690

  15. The impact of cultivar diversity in bioenergy feedstock production systems on soil carbon sequestration rates

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.

    2013-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.

  16. More food, more bioenergy and fewer greenhouse gas emissions (GHGe) - is it possible?

    NASA Astrophysics Data System (ADS)

    Long, S. P.

    2012-12-01

    Global demand for our four major food and feed crops is beginning to out-strip supply, at a time when year-on-year yield per unit area increases are stagnating and while emerging climate trends may further threaten supply. In this context it seems unlikely that in the medium term the continued use of land suited to food and feed production for bioenergy will be either socially acceptable or economically viable. It will be argued that the use of food crops, which have been developed to meet nutritional needs, for bioenergy is environmentally flawed and sub-optimal with respect to net GHGe. It will be shown that using Miscanthus, canes, agave and poplars as examples, there are many opportunities, some partially realized, to achieve very substantial quantities of bioenergy on abandoned or non-agricultural land, globally, with positive GHGe benefits and without unsustainable impacts on food production. Achieving all three goals will depend on new policies based on a holistic view of these demands on land rather than the disaggregated policy development based on single issues, which has characterised this arena in recent years.

  17. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, S. E.; Shurpali, N. J.; Peltola, O.; Mammarella, I.; Hyvönen, N.; Maljanen, M.; Räty, M.; Virkajärvi, P.; Martikainen, P. J.

    2015-10-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinaceae L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured during three years using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the studied period, cumulative NEE was -575 g C m-2. When compared to the published data for RCG on an organic soil, the cultivation of this crop on a mineral soil had higher capacity to take up CO2 from the atmosphere.

  18. Greenhouse gas implications of a 32 billion gallon bioenergy landscape in the US

    NASA Astrophysics Data System (ADS)

    DeLucia, E. H.; Hudiburg, T. W.; Wang, W.; Khanna, M.; Long, S.; Dwivedi, P.; Parton, W. J.; Hartman, M. D.

    2015-12-01

    Sustainable bioenergy for transportation fuel and greenhouse gas (GHGs) reductions may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Here, we implemented an integrated approach to planning bioenergy landscapes by combining spatially-explicit ecosystem and economic models to predict a least-cost land allocation for a 32 billion gallon (121 billion liter) renewable fuel mandate in the US. We find that 2022 GHG transportation emissions are decreased by 7% when 3.9 million hectares of eastern US land are converted to perennial grasses supplemented with corn residue to meet cellulosic ethanol requirements, largely because of gasoline displacement and soil carbon storage. If renewable fuel production is accompanied by a cellulosic biofuel tax credit, CO2 equivalent emissions could be reduced by 12%, because it induces more cellulosic biofuel and land under perennial grasses (10 million hectares) than under the mandate alone. While GHG reducing bioenergy landscapes that meet RFS requirements and do not displace food are possible, the reductions in GHG emissions are 50% less compared to previous estimates that did not account for economically feasible land allocation.

  19. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  20. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil.

    PubMed

    Mao, Yuejian; Yannarell, Anthony C; Davis, Sarah C; Mackie, Roderick I

    2013-03-01

    Biomass production for bioenergy may change soil microbes and influence ecosystem properties. To explore the impact of different bioenergy cropping systems on soil microorganisms, the compositions and quantities of soil microbial communities (16S rRNA gene) and N-cycling functional groups (nifH, bacterial amoA, archaeal amoA and nosZ genes) were assessed under maize, switchgrass and Miscanthus x giganteus at seven sites representing a climate gradient (precipitation and temperature) in Illinois, USA. Overall, the site-to-site variation in community composition surpassed the variation due to plant type, and microbial communities under each crop did not converge on a 'typical' species assemblage. Fewer than 5% of archaeal amoA, bacterial amoA, nifH and nosZ OTUs were significantly different among these crops, but the largest differences observed at each site were found between maize and the two perennial grasses. Quantitative PCR revealed that the abundance of the nifH gene was significantly higher in the perennial grasses than in maize, and we also found significantly higher total N in the perennial grass soils than in maize. Thus, we conclude that cultivation of these perennial grasses, instead of maize, as bioenergy feedstocks can improve soil ecosystem nitrogen sustainability by increasing the population size of N-fixing bacteria. PMID:22891790