CMSC-130 Introductory Computer Science, Lecture Notes
1993-07-01
Introductory Computer Science lecture notes are used in the classroom for teaching CMSC 130, an introductory computer science course , using the ...Unit Testing 2. The Syntax Of Subunits Will Be Studied In The Subsequent Course CMSC130 -5- Lecture 11 TOP-DOWN TESTING Data Processor Procedure...used in the preparation of these lecture notes: Reference Manual For The Ada Prosramming Language, ANSI/MIL-STD
A Web of Resources for Introductory Computer Science.
ERIC Educational Resources Information Center
Rebelsky, Samuel A.
As the field of Computer Science has grown, the syllabus of the introductory Computer Science course has changed significantly. No longer is it a simple introduction to programming or a tutorial on computer concepts and applications. Rather, it has become a survey of the field of Computer Science, touching on a wide variety of topics from digital…
The Metamorphosis of an Introduction to Computer Science.
ERIC Educational Resources Information Center
Ben-Jacob, Marion G.
1997-01-01
Introductory courses in computer science at colleges and universities have undergone significant changes in 20 years. This article provides an overview of the history of introductory computer science (FORTRAN, ANSI flowchart symbols, BASIC, data processing concepts, and PASCAL) and its future (robotics and C++). (PEN)
ERIC Educational Resources Information Center
Benda, Klara; Bruckman, Amy; Guzdial, Mark
2012-01-01
We present the results of an interview study investigating student experiences in two online introductory computer science courses. Our theoretical approach is situated at the intersection of two research traditions: "distance and adult education research," which tends to be sociologically oriented, and "computer science education…
Integrating Mathematics into the Introductory Biology Laboratory Course
ERIC Educational Resources Information Center
White, James D.; Carpenter, Jenna P.
2008-01-01
Louisiana Tech University has an integrated science curriculum for its mathematics, chemistry, physics, computer science, biology-research track and secondary mathematics and science education majors. The curriculum focuses on the calculus sequence and introductory labs in biology, physics, and chemistry. In the introductory biology laboratory…
ERIC Educational Resources Information Center
Pon-Barry, Heather; Packard, Becky Wai-Ling; St. John, Audrey
2017-01-01
A dilemma within computer science departments is developing sustainable ways to expand capacity within introductory computer science courses while remaining committed to inclusive practices. Training near-peer mentors for peer code review is one solution. This paper describes the preparation of near-peer mentors for their role, with a focus on…
Graphical User Interface Programming in Introductory Computer Science.
ERIC Educational Resources Information Center
Skolnick, Michael M.; Spooner, David L.
Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…
Correlates of Success in Introductory Programming: A Study with Middle School Students
ERIC Educational Resources Information Center
Qian, Yizhou; Lehman, James D.
2016-01-01
The demand for computing professionals in the workplace has led to increased attention to computer science education, and introductory computer science courses have been introduced at different levels of education. This study investigated the relationship between gender, academic performance in non-programming subjects, and programming learning…
ERIC Educational Resources Information Center
Ahmad, Khuloud Nasser
2012-01-01
A reexamination of the traditional instruction of introductory computer science (CS) courses is becoming a necessity. Introductory CS courses tend to have high attrition rates and low success rates. In many universities, the CS department suffered from low enrollment for several years compared to other majors. Multiple studies have linked these…
ERIC Educational Resources Information Center
van Merrienboer, Jeroen J. G.
The contributions of instructional design to cognitive science are discussed. It is argued that both sciences have their own object of study, but share a common interest in human cognition and performance as part of instructional systems. From a case study based on experience in teaching introductory computer programming, it is concluded that both…
NASA Astrophysics Data System (ADS)
Pon-Barry, Heather; Packard, Becky Wai-Ling; St. John, Audrey
2017-01-01
A dilemma within computer science departments is developing sustainable ways to expand capacity within introductory computer science courses while remaining committed to inclusive practices. Training near-peer mentors for peer code review is one solution. This paper describes the preparation of near-peer mentors for their role, with a focus on regular, consistent feedback via peer code review and inclusive pedagogy. Introductory computer science students provided consistently high ratings of the peer mentors' knowledge, approachability, and flexibility, and credited peer mentor meetings for their strengthened self-efficacy and understanding. Peer mentors noted the value of videotaped simulations with reflection, discussions of inclusion, and the cohort's weekly practicum for improving practice. Adaptations of peer mentoring for different types of institutions are discussed. Computer science educators, with hopes of improving the recruitment and retention of underrepresented groups, can benefit from expanding their peer support infrastructure and improving the quality of peer mentor preparation.
ERIC Educational Resources Information Center
Avancena, Aimee Theresa; Nishihara, Akinori; Vergara, John Paul
2012-01-01
This paper presents the online cognitive and algorithm tests, which were developed in order to determine if certain cognitive factors and fundamental algorithms correlate with the performance of students in their introductory computer science course. The tests were implemented among Management Information Systems majors from the Philippines and…
The Time-Sharing Computer In Introductory Earth Science.
ERIC Educational Resources Information Center
MacDonald, William D.; MacDonald, Geraldine E.
Time-sharing computer-assisted instructional (CAI) programs employing the APL language are being used in support of introductory earth science laboratory exercises at the State University of New York at Binghamton. Three examples are sufficient to illustrate the variety of applications to which these programs are put. The BRACH program is used in…
ERIC Educational Resources Information Center
Rolka, Christine; Remshagen, Anja
2015-01-01
Contextualized learning is considered beneficial for student success. In this article, we assess the impact of context-based learning tools on student grade performance in an introductory computer science course. In particular, we investigate two central questions: (1) does the use context-based learning tools, robots and animations, affect…
ERIC Educational Resources Information Center
Hawi, N.
2010-01-01
The purpose of this research is to identify the causal attributions of business computing students in an introductory computer programming course, in the computer science department at Notre Dame University, Louaize. Forty-five male and female undergraduates who completed the computer programming course that extended for a 13-week semester…
ERIC Educational Resources Information Center
Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.
2016-01-01
Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…
Introductory Life Science Mathematics and Quantitative Neuroscience Courses
ERIC Educational Resources Information Center
Duffus, Dwight; Olifer, Andrei
2010-01-01
We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…
ERIC Educational Resources Information Center
Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…
Introductory life science mathematics and quantitative neuroscience courses.
Duffus, Dwight; Olifer, Andrei
2010-01-01
We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.
ERIC Educational Resources Information Center
Heiner, Cecily
2009-01-01
Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This dissertation analyzes 411 questions from an introductory Java programming course by reducing the…
A Brief Look at Introductory Information Science in Library Schools, 1980.
ERIC Educational Resources Information Center
Davis, Charles H.; Shaw, Debora
1981-01-01
Reports the extent and content of introductory information science instruction at 79 of the 105 member schools of the Association of American Library Schools (AALS). Of the 58 schools offering computer programming instruction, 38 teach BASIC; 18, PL/I-PL/C; 15, COBOL; and 12, FORTRAN. Twelve references are listed. (RAA)
Teaching Computer Science: A Problem Solving Approach that Works.
ERIC Educational Resources Information Center
Allan, V. H.; Kolesar, M. V.
The typical introductory programming course is not an appropriate first computer science course for many students. Initial experiences with programming are often frustrating, resulting in a low rate of successful completion, and focus on syntax rather than providing a representative picture of computer science as a discipline. The paper discusses…
ERIC Educational Resources Information Center
Cheryan, Sapna; Meltzoff, Andrew N.; Kim, Saenam
2011-01-01
Three experiments examined whether the design of virtual learning environments influences undergraduates' enrollment intentions and anticipated success in introductory computer science courses. Changing the design of a virtual classroom--from one that conveys current computer science stereotypes to one that does not--significantly increased…
A One-Year Introductory Robotics Curriculum for Computer Science Upperclassmen
ERIC Educational Resources Information Center
Correll, N.; Wing, R.; Coleman, D.
2013-01-01
This paper describes a one-year introductory robotics course sequence focusing on computational aspects of robotics for third- and fourth-year students. The key challenges this curriculum addresses are "scalability," i.e., how to teach a robotics class with a limited amount of hardware to a large audience, "student assessment,"…
Introductory Life Science Mathematics and Quantitative Neuroscience Courses
Olifer, Andrei
2010-01-01
We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses. PMID:20810971
ERIC Educational Resources Information Center
Merrick, K. E.
2010-01-01
This correspondence describes an adaptation of puzzle-based learning to teaching an introductory computer programming course. Students from two offerings of the course--with and without the puzzle-based learning--were surveyed over a two-year period. Empirical results show that the synthesis of puzzle-based learning concepts with existing course…
ERIC Educational Resources Information Center
Fridge, Evorell; Bagui, Sikha
2016-01-01
The goal of this research was to investigate the effects of automated testing software on levels of student reflection and student performance. This was a self-selecting, between subjects design that examined the performance of students in introductory computer programming classes. Participants were given the option of using the Web-CAT…
Girls in computer science: A female only introduction class in high school
NASA Astrophysics Data System (ADS)
Drobnis, Ann W.
This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.
ERIC Educational Resources Information Center
Shell, Duane F.; Soh, Leen-Kiat
2013-01-01
The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at…
ERIC Educational Resources Information Center
Hubbard, Aleata Kimberly
2017-01-01
In this dissertation, I explored the pedagogical content knowledge of in-service high school educators recently assigned to teach computer science for the first time. Teachers were participating in a professional development program where they co-taught introductory computing classes with tech industry professionals. The study was motivated by…
ERIC Educational Resources Information Center
Bennedsen, Jens; Caspersen, Michael E.
2008-01-01
In order to better understand predictors of success and, when possible, improve the design of the first year computer science courses at university to increase the likelihood of success, we study a number of factors that may potentially indicate students' computer science aptitude. Based on findings in general education, we have studied the…
A meta-analysis of pedagogical tools used in introductory programming courses
NASA Astrophysics Data System (ADS)
Trees, Frances P.
Programming is recognized as being challenging for teachers to teach and difficult for students to learn. For decades, computer science educators have looked at innovative approaches by creating pedagogical software tools that attempt to facilitate both the teaching of and the learning of programming. This dissertation investigates the motivations for the integration of pedagogical tools in introductory programming courses and the characteristics that are perceived to contribute to the effectiveness of these tools. The study employs three research stages that examine the tool characteristics and their use. The first stage surveys teachers who use pedagogical tools in an introductory programming course. The second interviews teachers to explore the survey results in more detail and to add greater depth into the choice and use of pedagogical tools in the introductory programming class. The third interviews tool developers to provide an explanatory insight of the tool and the motivation for its creation. The results indicate that the pedagogical tools perceived to be effective share common characteristics: They provide an environment that is manageable, flexible and visual; they provide for active engagement in learning activities and support programming in small pieces; they allow for an easy transition to subsequent courses and more robust environments; they provide technical support and resource materials. The results of this study also indicate that recommendations from other computer science educators have a strong impact on a teacher's initial tool choice for an introductory programming course. This study informs present and future tool developers of the characteristics that the teachers perceive to contribute to the effectiveness of a pedagogical tool and how to present their tools to encourage a more efficient and more effective widespread adoption of the tool into the teacher's curriculum. The teachers involved in this study are actively involved in the computer science education community. The results of this study, based on the perceptions of these computer science educators, provide guidance to those educators choosing to introduce a new pedagogical tool into their programming course.
ERIC Educational Resources Information Center
Veley, Victor F.; And Others
This report presents a master plan for the development of computer science and computer-related programs at Los Angeles Trade-Technical College for 1982 through 1985. Introductory material outlines the main elements of the plan: to analyze existing computer courses, to create new courses in Laser Technology, Genetic Engineering, and Robotics; and…
ERIC Educational Resources Information Center
Howles, Trudy
2009-01-01
Student attrition and low graduation rates are critical problems in computer science education. Disappointing graduation rates and declining student interest have caught the attention of business leaders, researchers and universities. With weak graduation rates and little interest in scientific computing, many are concerned about the USA's ability…
Designing for Deeper Learning in a Blended Computer Science Course for Middle School Students
ERIC Educational Resources Information Center
Grover, Shuchi; Pea, Roy; Cooper, Stephen
2015-01-01
The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course…
Ethics across the computer science curriculum: privacy modules in an introductory database course.
Appel, Florence
2005-10-01
This paper describes the author's experience of infusing an introductory database course with privacy content, and the on-going project entitled Integrating Ethics Into the Database Curriculum, that evolved from that experience. The project, which has received funding from the National Science Foundation, involves the creation of a set of privacy modules that can be implemented systematically by database educators throughout the database design thread of an undergraduate course.
Ada in Introductory Computer Science Courses
1993-01-01
Ada by Daniel F. Stubbs and Neil W. Webre Course Objective: To introduce the students to the basic classical data structures of computer science...Introduction to Ada, Chapman & Hall, 1993, London Dale/Weems/McCormick, Programming and Problem Solving with Ada, D. C. Heath and Company, 1994, MA Feldman...Daniel F. Stubbs and Neil W. Webre - Course Objective: To introduce the students to the basic classical data structures of computer science
A Model for Teaching an Introductory Programming Course Using ADRI
ERIC Educational Resources Information Center
Malik, Sohail Iqbal; Coldwell-Neilson, Jo
2017-01-01
High failure and drop-out rates from introductory programming courses continue to be of significant concern to computer science disciplines despite extensive research attempting to address the issue. In this study, we include the three entities of the didactic triangle, instructors, students and curriculum, to explore the learning difficulties…
Formal Methods, Design, and Collaborative Learning in the First Computer Science Course.
ERIC Educational Resources Information Center
Troeger, Douglas R.
1995-01-01
A new introductory computer science course at City College of New York builds on a foundation of logic to teach programming based on a "design idea," a strong departure from conventional programming courses. Reduced attrition and increased student and teacher enthusiasm have resulted. (MSE)
Using Arduino to Teach Programming to First-Year Computer Science Students
ERIC Educational Resources Information Center
Tan, Wee Lum; Venema, Sven; Gonzalez, Ruben
2017-01-01
Transitioning to university is recognised as a challenging endeavour for commencing students. For commencing Computer Science students specifically, evidence suggests a link between poor performance in introductory technical courses, such as programming, and high attrition rates. Building resilience in students, particularly at the start of their…
Toward using games to teach fundamental computer science concepts
NASA Astrophysics Data System (ADS)
Edgington, Jeffrey Michael
Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.
Formal Operations and Learning Style Predict Success in Statistics and Computer Science Courses.
ERIC Educational Resources Information Center
Hudak, Mary A.; Anderson, David E.
1990-01-01
Studies 94 undergraduate students in introductory statistics and computer science courses. Applies Formal Operations Reasoning Test (FORT) and Kolb's Learning Style Inventory (LSI). Finds that substantial numbers of students have not achieved the formal operation level of cognitive maturity. Emphasizes need to examine students learning style and…
Probing End-User IT Security Practices--Through Homework
ERIC Educational Resources Information Center
Smith, Sean W.
2004-01-01
At Dartmouth College, the author teaches a course called "Security and Privacy." Its early position in the overall computer science curriculum means the course needs to be introductory, and the author can't assume the students possess an extensive computer science background. These constraints leave the author with a challenge: to construct…
Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction
ERIC Educational Resources Information Center
Muller, Orna; Haberman, Bruria
2008-01-01
Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…
A Placement Test for Computer Science: Design, Implementation, and Analysis
ERIC Educational Resources Information Center
Nugent, Gwen; Soh, Leen-Kiat; Samal, Ashok; Lang, Jeff
2006-01-01
An introductory CS1 course presents problems for educators and students due to students' diverse background in programming knowledge and exposure. Students who enroll in CS1 also have different expectations and motivations. Prompted by the curricular guidelines for undergraduate programmes in computer science released in 2001 by the ACM/IEEE, and…
CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.
ERIC Educational Resources Information Center
Skrein, Dale
1994-01-01
CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)
Teaching an Introductory Programming Language in a General Education Course
ERIC Educational Resources Information Center
Ali, Azad; Smith, David
2014-01-01
A department of computer science (CS) has faced a peculiar situation regarding their selection of introductory programming course. This course is a required course for the students enrolled in the CS program and is a prerequisite to their other advanced programming courses. At the same time, the course can be considered a general education course…
Using Visual Technologies in the Introductory Programming Courses for Computer Science Majors
ERIC Educational Resources Information Center
Price, Kellie W.
2013-01-01
Decreasing enrollments, lower rates of student retention and changes in the learning styles of today's students are all issues that the Computer Science (CS) academic community is currently facing. As a result, CS educators are being challenged to find the right blend of technology and pedagogy for their curriculum in order to help students…
minimUML: A Minimalist Approach to UML Diagramming for Early Computer Science Education
ERIC Educational Resources Information Center
Turner, Scott A.; Perez-Quinones, Manuel A.; Edwards, Stephen H.
2005-01-01
In introductory computer science courses, the Unified Modeling Language (UML) is commonly used to teach basic object-oriented design. However, there appears to be a lack of suitable software to support this task. Many of the available programs that support UML focus on developing code and not on enhancing learning. Programs designed for…
DiSalvo, Betsy
2014-01-01
To determine appropriate computer science curricula, educators sought to better understand the different affordances of teaching with a visual programming language (Alice) or a text-based language (Jython). Although students often preferred one language, that language wasn't necessarily the one from which they learned the most.
ERIC Educational Resources Information Center
Khan, Samia
2005-01-01
How do instructors motivate students to participate in computer-mediated discussion? If they do participate, how can the quality of their interactions be assessed? This study speaks to these questions by examining online participation and discourse in a science course for preservice teachers. The instructor of an introductory entomology course for…
Impact of Giving Students a Choice of Homework Assignments in an Introductory Computer Science Class
ERIC Educational Resources Information Center
Fulton, Steven; Schweitzer, Dino
2011-01-01
Student assignments have long been an integral part of many university level computer science courses to reinforce material covered in class with practical exercises. For years, researchers have studied ways to improve such student assignments by making them more interesting, applicable, and valuable to the student with a goal of improving…
A Bioinformatics Module for Use in an Introductory Biology Laboratory
ERIC Educational Resources Information Center
Alaie, Adrienne; Teller, Virginia; Qiu, Wei-gang
2012-01-01
Since biomedical science has become increasingly data-intensive, acquisition of computational and quantitative skills by science students has become more important. For non-science students, an introduction to biomedical databases and their applications promotes the development of a scientifically literate population. Because typical college…
ERIC Educational Resources Information Center
Ruiz-Iniesta, Almudena; Jiménez-Díaz, Guillermo; Gómez-Albarrán, Mercedes
2014-01-01
This paper describes a knowledge-based strategy for recommending educational resources-worked problems, exercises, quiz questions, and lecture notes-to learners in the first two courses in the introductory sequence of a computer science major (CS1 and CS2). The goal of the recommendation strategy is to provide support for personalized access to…
Some Experience with Interactive Computing in Teaching Introductory Statistics.
ERIC Educational Resources Information Center
Diegert, Carl
Students in two biostatistics courses at the Cornell Medical College and in a course in applications of computer science given in Cornell's School of Industrial Engineering were given access to an interactive package of computer programs enabling them to perform statistical analysis without the burden of hand computation. After a general…
A Computer-Assisted Instruction in Teaching Abstract Statistics to Public Affairs Undergraduates
ERIC Educational Resources Information Center
Ozturk, Ali Osman
2012-01-01
This article attempts to demonstrate the applicability of a computer-assisted instruction supported with simulated data in teaching abstract statistical concepts to political science and public affairs students in an introductory research methods course. The software is called the Elaboration Model Computer Exercise (EMCE) in that it takes a great…
The Computer, the Discipline and the Classroom: Two Perspectives.
ERIC Educational Resources Information Center
Thurber, Bart; Pope, Jack
The authors present two case studies in the use of computers in the classroom, one involving an introductory computer science class, the other an upper division literature class. After describing each case, the differences are discussed, showing that pedagogical models developed for one discipline may not transfer to another, and that the…
Are Case Studies a Good Teaching Tool for CS1?
1995-01-01
old AP/CS tests to compare our students’ performance against the results obtained by ETS. Currently, the introductory courses at CMU are taught using...Carrasquel, J., Goldenson, D. & Miller, P. L. (1985). Competency Testing in Introductory Computer Science: The Mastery Examination at Carnegie Mellon... courses is that many places do not have enough facilities (or the necessary time) required for long programming assignments. In our opinion, using case
ERIC Educational Resources Information Center
Dowling, John, Jr.
1972-01-01
Discusses the use of a set of computer programs (FORTRAN IV) in an introductory mechanics course for science majors. One laboratory activity is described for determining the coefficient of restitution of a glider on an air track. A student evaluation for the lab is included in the appendix. (Author/TS)
Improving Student Achievement in Introductory Computer Science Courses Using Peer-Led Team Learning
ERIC Educational Resources Information Center
Dennis, Sonya Maria
2013-01-01
There has been a steady decline of majors in the disciplines of science, technology, engineering, and mathematics ("STEM majors"). In an effort to improve recruitment and retention in "STEM" majors, an active-learning methodology--"peer-led team learning" ("PLTL")--was implemented by the participating…
Effects of Using Alice and Scratch in an Introductory Programming Course for Corrective Instruction
ERIC Educational Resources Information Center
Chang, Chih-Kai
2014-01-01
Scratch, a visual programming language, was used in many studies in computer science education. Most of them reported positive results by integrating Scratch into K-12 computer courses. However, the object-oriented concept, one of the important computational thinking skills, is not represented well in Scratch. Alice, another visual programming…
ERIC Educational Resources Information Center
Velez-Rubio, Miguel
2013-01-01
Teaching computer programming to freshmen students in Computer Sciences and other Information Technology areas has been identified as a complex activity. Different approaches have been studied looking for the best one that could help to improve this teaching process. A proposed approach was implemented which is based in the language immersion…
A CS1 Pedagogical Approach to Parallel Thinking
ERIC Educational Resources Information Center
Rague, Brian William
2010-01-01
Almost all collegiate programs in Computer Science offer an introductory course in programming primarily devoted to communicating the foundational principles of software design and development. The ACM designates this introduction to computer programming course for first-year students as CS1, during which methodologies for solving problems within…
Impact of Multimedia and Network Services on an Introductory Level Course
NASA Technical Reports Server (NTRS)
Russ, John C.
1996-01-01
We will demonstrate and describe the impact of our use of multimedia and network connectivity on a sophomore-level introductory course in materials science. This class services all engineering students, resulting in large (more than 150) class sections with no hands-on laboratory. In 1990 we began to develop computer graphics that might substitute for some laboratory or real-world experiences, and demonstrate relationships hard to show with static textbook images or chalkboard drawings. We created a comprehensive series of modules that cover the entire course content. Called VIMS (Visualizations in Materials Science), these are available in the form of a CD-ROM and also via the internet.
MLeXAI: A Project-Based Application-Oriented Model
ERIC Educational Resources Information Center
Russell, Ingrid; Markov, Zdravko; Neller, Todd; Coleman, Susan
2010-01-01
Our approach to teaching introductory artificial intelligence (AI) unifies its diverse core topics through a theme of machine learning, and emphasizes how AI relates more broadly with computer science. Our work, funded by a grant from the National Science Foundation, involves the development, implementation, and testing of a suite of projects that…
Narrating Data Structures: The Role of Context in CS2
ERIC Educational Resources Information Center
Yarosh, Svetlana; Guzdial, Mark
2008-01-01
Learning computing with respect to the context of its use has been linked in previous reports to student motivation in introductory Computer Science (CS) courses. In this report, we consider the role of context in a second course. We present a case study of a CS2 data structures class that uses a media computation context. In this course, students…
P3: a practice focused learning environment
NASA Astrophysics Data System (ADS)
Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.
2017-09-01
There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.
Using Robotics to Improve Retention and Increase Comprehension in Introductory Programming Courses
ERIC Educational Resources Information Center
Pullan, Marie
2013-01-01
Several college majors, outside of computer science, require students to learn computer programming. Many students have difficulty getting through the programming sequence and ultimately change majors or drop out of college. To deal with this problem, active learning techniques were developed and implemented in a freshman programming logic and…
Computational Modeling and Mathematics Applied to the Physical Sciences.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
One aim of this report is to show and emphasize that in the computational approaches to most of today's pressing and challenging scientific and technological problems, the mathematical aspects cannot and should not be considered in isolation. Following an introductory chapter, chapter 2 discusses a number of typical problems leading to…
Smolarski, D C; Whitehead, T
2000-04-01
In this paper, we describe our recent approaches to introducing students in a beginning computer science class to the study of ethical issues related to computer science and technology. This consists of three components: lectures on ethics and technology, in-class discussion of ethical scenarios, and a reflective paper on a topic related to ethics or the impact of technology on society. We give both student reactions to these aspects, and instructor perspective on the difficulties and benefits in exposing students to these ideas.
of NREL's Computational Science Center, where he uses electronic structure calculations and other introductory chemistry and physical chemistry. Research Interests Electronic structure and dynamics in the quantum/classical molecular dynamics simulation|Coupling of molecular electronic structure to
Using computers to overcome math-phobia in an introductory course in musical acoustics
NASA Astrophysics Data System (ADS)
Piacsek, Andrew A.
2002-11-01
In recent years, the desktop computer has acquired the signal processing and visualization capabilities once obtained only with expensive specialized equipment. With the appropriate A/D card and software, a PC can behave like an oscilloscope, a real-time signal analyzer, a function generator, and a synthesizer, with both audio and visual outputs. In addition, the computer can be used to visualize specific wave behavior, such as superposition and standing waves, refraction, dispersion, etc. These capabilities make the computer an invaluable tool to teach basic acoustic principles to students with very poor math skills. In this paper I describe my approach to teaching the introductory-level Physics of Musical Sound at Central Washington University, in which very few science students enroll. Emphasis is placed on how vizualization with computers can help students appreciate and apply quantitative methods for analyzing sound.
Interdisciplinary Introductory Course in Bioinformatics
ERIC Educational Resources Information Center
Kortsarts, Yana; Morris, Robert W.; Utell, Janine M.
2010-01-01
Bioinformatics is a relatively new interdisciplinary field that integrates computer science, mathematics, biology, and information technology to manage, analyze, and understand biological, biochemical and biophysical information. We present our experience in teaching an interdisciplinary course, Introduction to Bioinformatics, which was developed…
LINUX, Virtualization, and the Cloud: A Hands-On Student Introductory Lab
ERIC Educational Resources Information Center
Serapiglia, Anthony
2013-01-01
Many students are entering Computer Science education with limited exposure to operating systems and applications other than those produced by Apple or Microsoft. This gap in familiarity with the Open Source community can quickly be bridged with a simple exercise that can also be used to strengthen two other important current computing concepts,…
NASA Astrophysics Data System (ADS)
Chen, Jean Chi-Jen
Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were positively related to performance. No significant performance differences were found between male and female students. However, there were significant gender differences in physics learning perceptions. Female participants tended to try to understand physics materials and relate the physics problems to real world situations while their male counterparts tended to rely on rote learning and equation application. This study found that participants performed better by trying to understand the physics material and relate physics problems to real world situations. Participants who relied on rote learning did not perform well.
Using Computers in Introductory Astronomy Courses
NASA Astrophysics Data System (ADS)
Deming, Grace L.
1995-12-01
Computer literacy is fast becoming a focal point in undergraduate education. Scientific literacy has been a continuing goal of undergraduate programs across the nation and a course in introductory astronomy is often used to satisfy such science requirements. At U. MD an introduction to computer skills is being integrated into our astronomy curriculum for non-science majors. The campus is adequately equipped with computer labs, yet many students enter college without basic computer skills. In Astronomy 101 (General Astronomy) students are introduced to electronic mail, a Listserver, and the world wide web. Students in this course are required to register for a free campus computer account. Their first assignment is to use e-mail to subscribe to the class Listserver, Milkyway. Through Milkyway, students have access to weekly lecture summaries, questions to review for exams, and copies of previous exams. Using e-mail students may pose questions, provide comments, or exchange opinions using Milkyway, or they may e-mail the instructor directly. Studies indicate that using e-mail is less intimidating to a student than asking a question in a class of 200 students. Monitoring e-mail for student questions has not been a problem. Student reaction has been favorable to using e-mail, since instructor office hours are not always convenient, especially to commuting or working students. Through required assignments, students receive an introduction to accessing information on the world wide web using Netscape. Astronomy has great resources available on the Internet which can be used to supplement and reinforce introductory material. Assignments are structured so that students will gain the techniques necessary to access available information. It is hoped that students will successfully apply the computer skills they learn in astronomy class to their own fields and as life-long learners. We have found that students comfortable with computers are willing to share their knowledge with others. The computer activities have been structured to promote cooperation between students. These skills are also necessary for success.
NASA Astrophysics Data System (ADS)
Kurkovsky, Stan
2013-06-01
Computer games have been accepted as an engaging and motivating tool in the computer science (CS) curriculum. However, designing and implementing a playable game is challenging, and is best done in advanced courses. Games for mobile devices, on the other hand, offer the advantage of being simpler and, thus, easier to program for lower level students. Learning context of mobile game development can be used to reinforce many core programming topics, such as loops, classes, and arrays. Furthermore, it can also be used to expose students in introductory computing courses to a wide range of advanced topics in order to illustrate that CS can be much more than coding. This paper describes the author's experience with using mobile game development projects in CS I and II, how these projects were integrated into existing courses at several universities, and the lessons learned from this experience.
ERIC Educational Resources Information Center
Gratz, Zandra S.; And Others
A study was conducted at a large, state-supported college in the Northeast to establish a mechanism by which a popular software package, Statistical Package for the Social Sciences (SPSS), could be used in psychology program statistics courses in such a way that no prior computer expertise would be needed on the part of the faculty or the…
A Framework for CS1 Closed Laboratories
ERIC Educational Resources Information Center
Soh, Leen-Kiat; Samal, Ashok; Nugent, Gwen
2005-01-01
Closed laboratories are becoming an increasingly popular approach to teaching introductory computer science courses, as they facilitate structured problem-solving and cooperation. However, most closed laboratories have been designed and implemented without embedded instructional research components for constant evaluation of the laboratories'…
NASA Astrophysics Data System (ADS)
Hazari, Zahra Sana
The attrition of females studying physics after high school is a concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is necessary for students to progress to higher levels of science study. Success also influences attitudes; if females are well-prepared, feel confident, and do well in introductory physics, they may be inclined to study physics further. This quantitative study using multilevel modeling focused on determining factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that influenced female and male performance in introductory university physics. The study controlled for some university/course level characteristics as well as student demographic and academic background characteristics. The data consisted of 1973 surveys from 54 introductory physics courses within 35 universities across the US. The results highlight high school physics and affective experiences that differentially influenced female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects, cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believed that high school physics would help in university physics. There were also experiences that had a similar influence on female and male performance. Positively related to performance were: covering fewer topics for longer periods of time, the history of physics as a recurring topic, physics-related videos, and test/quiz questions that involved calculations and/or were drawn from standardized tests. Negatively related to performance were: student-designed projects, reading/discussing labs the day before performing them, microcomputer based laboratories, discussion after demonstrations, and family's belief that science is a series of courses to pass. This study is a unique and noteworthy addition to the literature. The results paint a dynamic picture of the factors from high school physics and within the affective domain that influence students' future physics performance. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be beneficial to females and males in university.
Pair Programming in Education: A Literature Review
ERIC Educational Resources Information Center
Hanks, Brian; Fitzgerald, Sue; McCauley, Renee; Murphy, Laurie; Zander, Carol
2011-01-01
This article provides a review of educational research literature focused on pair programming in the undergraduate computer science curriculum. Research suggests that the benefits of pair programming include increased success rates in introductory courses, increased retention in the major, higher quality software, higher student confidence in…
One of My Favorite Assignments: Automated Teller Machine Simulation.
ERIC Educational Resources Information Center
Oberman, Paul S.
2001-01-01
Describes an assignment for an introductory computer science class that requires the student to write a software program that simulates an automated teller machine. Highlights include an algorithm for the assignment; sample file contents; language features used; assignment variations; and discussion points. (LRW)
Studying the Earth's Environment from Space: Computer Laboratory Exercised and Instructor Resources
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A.; Alfultis, Michael
1998-01-01
Studying the Earth's Environment From Space is a two-year project to develop a suite of CD-ROMs containing Earth System Science curriculum modules for introductory undergraduate science classes. Lecture notes, slides, and computer laboratory exercises, including actual satellite data and software, are being developed in close collaboration with Carla Evans of NASA GSFC Earth Sciences Directorate Scientific and Educational Endeavors (SEE) project. Smith and Alfultis are responsible for the Oceanography and Sea Ice Processes Modules. The GSFC SEE project is responsible for Ozone and Land Vegetation Modules. This document constitutes a report on the first year of activities of Smith and Alfultis' project.
NASA Astrophysics Data System (ADS)
Hundley, Stacey A.
In recent years there has been a national call for reform in undergraduate science education. The goal of this reform movement in science education is to develop ways to improve undergraduate student learning with an emphasis on developing more effective teaching practices. Introductory science courses at the college level are generally taught using a traditional lecture format. Recent studies have shown incorporating active learning strategies within the traditional lecture classroom has positive effects on student outcomes. This study focuses on incorporating interactive teaching methods into the traditional lecture classroom to enhance student learning for non-science majors enrolled in introductory geology courses at a private university. Students' experience and instructional preferences regarding introductory geology courses were identified from survey data analysis. The information gained from responses to the questionnaire was utilized to develop an interactive lecture introductory geology course for non-science majors. Student outcomes were examined in introductory geology courses based on two teaching methods: interactive lecture and traditional lecture. There were no significant statistical differences between the groups based on the student outcomes and teaching methods. Incorporating interactive lecture methods did not statistically improve student outcomes when compared to traditional lecture teaching methods. However, the responses to the survey revealed students have a preference for introductory geology courses taught with lecture and instructor-led discussions and students prefer to work independently or in small groups. The results of this study are useful to individuals who teach introductory geology courses and individuals who teach introductory science courses for non-science majors at the college level.
Online Bioinformatics Tutorials | Office of Cancer Genomics
Bioinformatics is a scientific discipline that applies computer science and information technology to help understand biological processes. The NIH provides a list of free online bioinformatics tutorials, either generated by the NIH Library or other institutes, which includes introductory lectures and "how to" videos on using various tools.
Teaching Hypertext and Hypermedia through the Web.
ERIC Educational Resources Information Center
de Bra, Paul M. E.
This paper describes a World Wide Web-based introductory course titled "Hypermedia Structures and Systems," offered as an optional part of the curriculum in computing science at the Eindhoven University of Technology (Netherlands). The technical environment for the current (1996) edition of the course is presented, which features…
Crossword Puzzles as Learning Tools in Introductory Soil Science
ERIC Educational Resources Information Center
Barbarick, K. A.
2010-01-01
Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…
Global Issues in an Introductory Earth Science Course.
ERIC Educational Resources Information Center
Pierce, James P.
Information is provided explaining the incorporation of global issues units into an introductory earth science course at Skagit Valley Community College (Mount Vernon, Washington). First, a short description is provided of the original format of the earth science course, which was designed as an introductory level survey course covering topics in…
Educational Software for First Order Logic Semantics in Introductory Logic Courses
ERIC Educational Resources Information Center
Mauco, María Virginia; Ferrante, Enzo; Felice, Laura
2014-01-01
Basic courses on logic are common in most computer science curricula. Students often have difficulties in handling formalisms and getting familiar with them. Educational software helps to motivate and improve the teaching-learning processes. Therefore, incorporating these kinds of tools becomes important, because they contribute to gaining…
GUIDE-0: An Experimental Information System.
ERIC Educational Resources Information Center
Murai, Shinnichi
A description is provided of GUIDE-0, an experimental information system. The system serves as a bibliographic aid for students who are taking introductory computer science courses whose material is at least partially implemented via PLATO-IV lessons. Following a brief introduction to the system in Chapter I, the second Chapter describes the…
Towards Architecture for Pedagogical and Game Scenarios Adaptation in Serious Games
ERIC Educational Resources Information Center
Debabi, Wassila; Champagnat, Ronan
2017-01-01
Serious games seem to be a promising alternative to traditional practices for learning. Recently, their use in computer science education and learning programming became more widespread. Actually, many students in programming courses have difficulties to master all required competencies and skills especially at introductory level and games have…
Reasoning with Atomic-Scale Molecular Dynamic Models
ERIC Educational Resources Information Center
Pallant, Amy; Tinker, Robert F.
2004-01-01
The studies reported in this paper are an initial effort to explore the applicability of computational models in introductory science learning. Two instructional interventions are described that use a molecular dynamics model embedded in a set of online learning activities with middle and high school students in 10 classrooms. The studies indicate…
Introduction to Autonomous Mobile Robotics Using "Lego Mindstorms" NXT
ERIC Educational Resources Information Center
Akin, H. Levent; Meriçli, Çetin; Meriçli, Tekin
2013-01-01
Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the…
Introductory Programming Subject in European Higher Education
ERIC Educational Resources Information Center
Aleksic, Veljko; Ivanovic, Mirjana
2016-01-01
Programming is one of the basic subjects in most informatics, computer science mathematics and technical faculties' curricula. Integrated overview of the models for teaching programming, problems in teaching and suggested solutions were presented in this paper. Research covered current state of 1019 programming subjects in 715 study programmes at…
A basic recursion concept inventory
NASA Astrophysics Data System (ADS)
Hamouda, Sally; Edwards, Stephen H.; Elmongui, Hicham G.; Ernst, Jeremy V.; Shaffer, Clifford A.
2017-04-01
Recursion is both an important and a difficult topic for introductory Computer Science students. Students often develop misconceptions about the topic that need to be diagnosed and corrected. In this paper, we report on our initial attempts to develop a concept inventory that measures student misconceptions on basic recursion topics. We present a collection of misconceptions and difficulties encountered by students when learning introductory recursion as presented in a typical CS2 course. Based on this collection, a draft concept inventory in the form of a series of questions was developed and evaluated, with the question rubric tagged to the list of misconceptions and difficulties.
Research and Teaching: Reenvisioning the Introductory Science Course as a Cognitive Apprenticeship
ERIC Educational Resources Information Center
Thompson, Meredith M.; Pastorino, Lucia; Lee, Star; Lipton, Paul
2016-01-01
Introductory science courses play a critical role in the recruitment and retention of undergraduate science majors. In particular, first-year courses are opportunities to engage students in scientific practices and motivate them to consider scientific careers. We developed an introductory course using a semester-long series of established…
ERIC Educational Resources Information Center
Hazari, Zahra; Tai, Robert H.; Sadler, Philip M.
2007-01-01
The attrition of females studying physics after high school is a growing concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is usually necessary for students to progress to higher levels of science study. Success also influences attitudes;…
NASA Astrophysics Data System (ADS)
Smith, Kendra Leigh
This study had four purposes: (1) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and their accompanying laboratory courses, (2) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's gender, (3) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's major, and (4) to investigate the relationship between performance in introductory biology or introductory chemistry lecture courses and a student's ACT scores. The sample consisted of 195 first--time freshmen who enrolled in and completed an introductory biology or an introductory chemistry lecture and laboratory courses during the fall semesters of 2007-2012. Of the 195 students, 61 were enrolled in introductory chemistry and 134 were enrolled in introductory biology courses. Logistic regression, via the Statistical Package for the Social Sciences (SPSS), was utilized to analyze several variables as they related to success in the lecture courses. Data were extracted from the university's student information system (BANNER), and analyses were conducted on biology and chemistry separately. The dependent variable for this study was a dichotomous variable for success and nonsuccess in introductory biology or introductory chemistry lecture course. The independent variables analyzed were student's gender, major, final grade in an accompanying biology or chemistry laboratory course, and ACT test scores (composite, mathematics, and science). Results indicate that concurrent enrollment in a biology laboratory course increased the likelihood of success by 15.64 times in the lecture course. Gender was found to not be a significant predictor of success for either introductory biology or introductory chemistry lecture courses. STEM majors were 9.6 times more likely to be successful than non-STEM majors in introductory chemistry lecture course. It was also found that the higher the given ACT score (composite, science, mathematics), the higher the rate of success (between a 1.19-1.44 odds increase for every one point increase in ACT score) in both introductory biology and introductory chemistry lecture courses.
ERIC Educational Resources Information Center
Lim, Billy; Hosack, Bryan; Vogt, Paul
2012-01-01
This paper describes a framework for measuring student learning gains and engagement in a Computer Science 1 (CS 1) / Information Systems 1 (IS 1) course. The framework is designed for a CS1/IS1 course as it has been traditionally taught over the years as well as when it is taught using a new pedagogical approach with Web services. It enables the…
NASA Astrophysics Data System (ADS)
Cervato, C.; Jach, J. Y.; Ridky, R.
2003-12-01
Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms of student demographics and socioeconomic variables (e.g., year in school, gender).
ERIC Educational Resources Information Center
Lee, Mark J. W.; Pradhan, Sunam; Dalgarno, Barney
2008-01-01
Modern information technology and computer science curricula employ a variety of graphical tools and development environments to facilitate student learning of introductory programming concepts and techniques. While the provision of interactive features and the use of visualization can enhance students' understanding and assist them in grasping…
Techniques: Coach, Consultant, Critic, Counselor: The Multiple Roles of the Responsive Facilitator.
ERIC Educational Resources Information Center
Keenan, Thomas P.; Braxton-Brown, Greg
1991-01-01
Responsive facilitation is an interactive orientation to formal learning that requires an individual to assume a variety of roles and to be comfortable with diverse methodologies. The major roles assumed are coach, consultant, critic, and counselor. As illustrated by the redesign of an introductory computer science course, these practices can be…
Whatever Happened to Richard Reid's List of First Programming Languages?
ERIC Educational Resources Information Center
Siegfried, Robert M.; Greco, Daniel M.; Miceli, Nicholas G.; Siegfried, Jason P.
2012-01-01
Throughout the 1990s, Richard Reid of Michigan State University maintained a list showing the first programming language used in introductory programming courses taken by computer science and information systems majors; it was updated for several years afterwards by Frances Van Scoy of West Virginia University. However, it has been 5 years since…
A Functional Programming Approach to AI Search Algorithms
ERIC Educational Resources Information Center
Panovics, Janos
2012-01-01
The theory and practice of search algorithms related to state-space represented problems form the major part of the introductory course of Artificial Intelligence at most of the universities and colleges offering a degree in the area of computer science. Students usually meet these algorithms only in some imperative or object-oriented language…
News clippings for introductory astronomy
NASA Astrophysics Data System (ADS)
Bobrowsky, Matthew
1999-09-01
Most students entering our introductory astronomy course for nonscience majors arrive not merely lacking scientific facts-they also have misconceptions about the nature of science, and many have a handicapping ``science anxiety'' (in addition to math anxiety). So I have added a ``current science'' requirement to our introductory course. Each student must compile a file of five astronomy news articles taken from readily available sources.
Recent Evolution of the Introductory Curriculum in Computing.
ERIC Educational Resources Information Center
Tucker, Allen B.; Garnick, David K.
1991-01-01
Traces the evolution of introductory computing courses for undergraduates based on the Association for Computing Machinery (ACM) guidelines published in "Curriculum 78." Changes in the curricula are described, including the role of discrete mathematics and theory; and the need for a broader model for designing introductory courses is…
Developing a Technology Enhanced CS0 Course for Engineering Students
ERIC Educational Resources Information Center
Lokkila, Erno; Kaila, Erkki; Lindén, Rolf; Laakso, Mikko-Jussi; Sutinen, Erkki
2016-01-01
The CS0 course in the curriculum typically has the role of introducing students into basic concepts and terminology of computer science. Hence, it is used to form a base on which the subsequent programming courses can build on. However, much of the effort to build better methodologies for courses is spent on introductory programming courses…
ERIC Educational Resources Information Center
Haudek, Kevin C.; Prevost, Luanna B.; Moscarella, Rosa A.; Merrill, John; Urban-Lurain, Mark
2012-01-01
Students' writing can provide better insight into their thinking than can multiple-choice questions. However, resource constraints often prevent faculty from using writing assessments in large undergraduate science courses. We investigated the use of computer software to analyze student writing and to uncover student ideas about chemistry in an…
A Longitudinal Analysis of the Reid List of First Programming Languages
ERIC Educational Resources Information Center
Siegfried, Robert M.; Siegfried, Jason P.; Alexandro, Gina
2016-01-01
Throughout the 1990s, Richard Reid of Michigan State University maintained a list showing the first programming language used in introductory programming courses taken by computer science and information systems majors; it was updated for several years afterwards with the most recent update done in 2011. This is a follow-up to that last update of…
Learning to Program with Personal Robots: Influences on Student Motivation
ERIC Educational Resources Information Center
McGill, Monica M.
2012-01-01
One of the goals of using robots in introductory programming courses is to increase motivation among learners. There have been several types of robots that have been used extensively in the classroom to teach a variety of computer science concepts. A more recently introduced robot designed to teach programming to novice students is the Institute…
NASA Astrophysics Data System (ADS)
Fredrick, L. Denise
The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science educational experiences and (d) students recalled laboratory activities and lectures linking practical application of science knowledge as meaningful to their college introductory science education experiences.
Visual Activities for Assessing Non-science Majors’ Understanding in Introductory Astronomy
NASA Astrophysics Data System (ADS)
Loranz, Daniel; Prather, E. E.; Slater, T. F.
2006-12-01
One of the most ardent challenges for astronomy teachers is to deeply and meaningfully assess students’ conceptual and quantitative understanding of astronomy topics. In an effort to uncover students’ actual understanding, members and affiliates of the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona and Truckee Meadows Community College are creating and field-testing innovative approaches to assessment. Leveraging from the highly successful work on interactive lecture demonstrations from astronomy and physics education research, we are creating a series of conceptually rich questions that are matched to visually captivating and purposefully interactive astronomical animations. These conceptually challenging tasks are being created to span the entire domain of topics in introductory astronomy for non-science majoring undergraduates. When completed, these sorting tasks and vocabulary-in-context activities will be able to be delivered via a drag-and-drop computer interface.
NASA Astrophysics Data System (ADS)
Selkin, P. A.; Cline, E. T.; Beaufort, A.
2008-12-01
In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.
Quantum computation for solving linear systems
NASA Astrophysics Data System (ADS)
Cao, Yudong
Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.
Alternative Models for Large-Group Introductory Earth Science Courses: Dual-Structured Model
ERIC Educational Resources Information Center
Carpenter, John R.; And Others
1978-01-01
An introductory college course in which both the instructional staff and students have input into the content has been successfully implemented into a spectrum of instructor-centered to student-centered introductory earth science courses. Grading by point accumulation method reduced the grade threat and induced student responsibility for learning.…
Introduction to Computational Physics for Undergraduates
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Weber, Fridolin
2018-03-01
This is an introductory textbook on computational methods and techniques intended for undergraduates at the sophomore or junior level in the fields of science, mathematics, and engineering. It provides an introduction to programming languages such as FORTRAN 90/95/2000 and covers numerical techniques such as differentiation, integration, root finding, and data fitting. The textbook also entails the use of the Linux/Unix operating system and other relevant software such as plotting programs, text editors, and mark up languages such as LaTeX. It includes multiple homework assignments.
ERIC Educational Resources Information Center
Murray, Joelle L.; Atkinson, Elizabeth J. O.; Gilbert, Brian D.; Kruchten, Anne E.
2014-01-01
Successfully creating and implementing interdisciplinary curricula in introductory science, technology, engineering, and mathematics (STEM) courses is challenging, but doing so is increasingly more important as current problems in science become more interdisciplinary. Opening up the silos between science disciplines and overcoming common…
Choices in higher education: Majoring in and changing from the sciences
NASA Astrophysics Data System (ADS)
Minear, Nancy Ann
This dissertation addresses patterns of retention of undergraduate science, engineering and mathematics (SEM) students, with special attention paid to female and under represented minority students. As such, the study is focused on issues related to academic discipline and institutional retention, rather than the retention of students in the overall system of higher education. While previous retention studies have little to say about rates of retention that are specific to the sciences (or any other specific area of study) or employ models that rely on students' performance at the college level, this work address both points by identifying the post secondary academic performance characteristics of persisters and non-persisters in the sciences by gender, ethnicity and matriculating major as well as identifying introductory SEM course requirements that prevent students from persisting in sciencegender, ethnicity and matriculating major as well as identifying introductory SEM course requirements that prevent students from persisting in science majors. A secondary goal of investigating the usefulness of institutional records for retention research is addressed. Models produced for the entire population and selected subpopulations consistently classified higher-performing (both SEM and non-SEM grade point averages) students into Bachelor of Science categories using the number of Introductory Chemistry courses attempted at the university. For lower performing students, those with more introductory chemistry courses were classified as changing majors out of the sciences, and in general as completing a Bachelor of Arts degree. Performance in gatekeeper courses as a predictor of terminal academic status was limited to Introductory Physics for a small number of cases. Performance in Introductory Calculus and Introductory Chemistry were not consistently utilized as predictor variables. The models produced for various subpopulations (women, ethnic groups and matriculation major) utilized the same set of predictor variables with varying cutpoints for classification.
ERIC Educational Resources Information Center
Royal Melbourne Inst. of Tech. (Australia).
This guide to the core curricula for the training of microcomputer technicians is designed for school leavers after 10 or more years of general/vocational education with a science and mathematics background. The 2-year course is to be administered in four semesters. An introductory outline of course design and curricula provides the rationale,…
ERIC Educational Resources Information Center
Polo, Blanca J.
2013-01-01
Much research has been done in regards to student programming errors, online education and studio-based learning (SBL) in computer science education. This study furthers this area by bringing together this knowledge and applying it to proactively help students overcome impasses caused by common student programming errors. This project proposes a…
Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course
ERIC Educational Resources Information Center
Moss, Elizabeth; Cervato, Cinzia
2016-01-01
As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…
ERIC Educational Resources Information Center
Steinberg, Richard; Cormier, Sebastien
2013-01-01
This study reports on a content course for science immersion teacher candidates that emphasized authentic practice of science and thinking scientifically in the context of introductory astrophysics. We explore how 122 science teacher candidates spanning three cohorts did and did not reason scientifically and how this evolved in our program. Our…
ERIC Educational Resources Information Center
Demaray, Bryan
Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…
NASA Astrophysics Data System (ADS)
Cutrim, E. M.; Rudge, D.; Kits, K.; Mitchell, J.; Nogueira, R.
2006-06-01
Responding to the call for reform in science education, changes were made in an introductory meteorology and climate course offered at a large public university. These changes were a part of a larger project aimed at deepening and extending a program of science content courses that model effective teaching strategies for prospective middle school science teachers. Therefore, revisions were made to address misconceptions about meteorological phenomena, foster deeper understanding of key concepts, encourage engagement with the text, and promote inquiry-based learning. Techniques introduced include: use of a flash cards, student reflection questionnaires, writing assignments, and interactive discussions on weather and forecast data using computer technology such as Integrated Data Viewer (IDV). The revision process is described in a case study format. Preliminary results (self-reflection by the instructor, surveys of student opinion, and measurements of student achievement), suggest student learning has been positively influenced. This study is supported by three grants: NSF grant No. 0202923, the Unidata Equipment Award, and the Lucia Harrison Endowment Fund.
Land Use Planning Experiment for Introductory Earth Science Courses
ERIC Educational Resources Information Center
Fetter, C. W., Jr.; Hoffman, James I.
1975-01-01
Describes an activity which incorporates topographic map interpretation, soils analysis, hydrogeology, and local geology in a five-week series of exercises for an introductory college earth science class. (CP)
ERIC Educational Resources Information Center
Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann
2018-01-01
In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…
NASA Astrophysics Data System (ADS)
Ghyam, Massoud
This study investigates if providing delayed webcast of college lectures would improve the retention of students enrolled in an introductory computer science class over a span of six semesters. The population for this study was undergraduate engineering students enrolled in the same course at a major research university in a western state in six different semesters. The same instructor taught all sections of the course, the same textbook and software were used, and the number of lab/teaching assistants were also exactly the same. Assignments and exams were changed but were kept at the same level of difficulty. Some students were enrolled in the courses where webcasting was not utilized as a tool, while others took the same course where delayed webcasting was used. The research question that guided the study was: Will use of the delayed webcast and the availability of the course lectures on line improve students' grades and therefore the success ratio in the Introduction to Computer Science and Programming course? For the purposes of this study successful completion is defined as the number of students who did not drop the course, and who passed the course with a grade of C- or better. Grade improvement of students who completed the course was also examined. Result of the study showed providing delayed webcast of the lectures did not improve retention, but neither did it harm the student's learning. Future study is recommended to include coding for gender and student's field of study.
Multiple-Choice Exams: An Obstacle for Higher-Level Thinking in Introductory Science Classes
ERIC Educational Resources Information Center
Stanger-Hall, Kathrin F.
2012-01-01
Learning science requires higher-level (critical) thinking skills that need to be practiced in science classes. This study tested the effect of exam format on critical-thinking skills. Multiple-choice (MC) testing is common in introductory science courses, and students in these classes tend to associate memorization with MC questions and may not…
ERIC Educational Resources Information Center
Chang, Chun-Yeh; Chang, Yueh-Hsia
2010-01-01
This study used an instrument to examine undergraduate students' preferred and actual learning environment perceptions in an introductory earth science course. The results show that science students expect to learn in a learning environment combining teacher-centred and student-centred approaches. However, an expectation incongruence was found in…
Implementing and Assessing Computational Modeling in Introductory Mechanics
ERIC Educational Resources Information Center
Caballero, Marcos D.; Kohlmyer, Matthew A.; Schatz, Michael F.
2012-01-01
Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term, 1357 students in this course solved a suite of 14 computational…
Mathematics Preparation and Success in Introductory College Science Courses
NASA Astrophysics Data System (ADS)
Avallone, L. M.; Geiger, L. C.; Luebke, A. E.
2008-12-01
It is a long-held belief that adequate mathematics preparation is a key to success in introductory college science courses. Indeed, a number of recent studies have tested mathematics "fluency" and compared that to performance in introductory physics or chemistry courses. At the University of Colorado at Boulder, we administered a twenty-question math assessment to incoming first-year students as part of orientation registration. The intent of this tool was to provide information for advising new college students about their readiness for college-level science courses, both those for science majors and those for non-scientists. In this presentation we describe the results of the mathematics assessment for two incoming classes in the College of Arts and Sciences at CU-Boulder (about 9,000 students) and its predictive capabilities for success in introductory science courses. We also analyze student performance in these courses (i.e., course grade) with respect to ACT and/or SAT scores. We will present data on the relative success of students in college science courses both with and without prior college-level mathematics courses as well.
An EVS Clicker Based Hybrid Assessment to Engage Students with Marking Criteria
ERIC Educational Resources Information Center
Bennett, Steve; Barker, Trevor; Lilley, Mariana
2014-01-01
Over 4 iterations of a large course (>180 students) in introductory emedia design in a first year computer science course we have seen a year on year improvement. We believe this is due to the use of EVS clickers for feed-forward assessment: that is to say a method of getting the whole class to evaluate previous cohorts' submissions in public…
Artificial neural networks in biology and chemistry: the evolution of a new analytical tool.
Cartwright, Hugh M
2008-01-01
Once regarded as an eccentric and unpromising algorithm for the analysis of scientific data, the neural network has been developed in the last decade into a powerful computational tool. Its use now spans all areas of science, from the physical sciences and engineering to the life sciences and allied subjects. Applications range from the assessment of epidemiological data or the deconvolution of spectra to highly practical applications, such as the electronic nose. This introductory chapter considers briefly the growth in the use of neural networks and provides some general background in preparation for the more detailed chapters that follow.
NASA Astrophysics Data System (ADS)
Linn, Marcia C.
1995-06-01
Designing effective curricula for complex topics and incorporating technological tools is an evolving process. One important way to foster effective design is to synthesize successful practices. This paper describes a framework called scaffolded knowledge integration and illustrates how it guided the design of two successful course enhancements in the field of computer science and engineering. One course enhancement, the LISP Knowledge Integration Environment, improved learning and resulted in more gender-equitable outcomes. The second course enhancement, the spatial reasoning environment, addressed spatial reasoning in an introductory engineering course. This enhancement minimized the importance of prior knowledge of spatial reasoning and helped students develop a more comprehensive repertoire of spatial reasoning strategies. Taken together, the instructional research programs reinforce the value of the scaffolded knowledge integration framework and suggest directions for future curriculum reformers.
ERIC Educational Resources Information Center
Miller, John; Weil, Gordon
1986-01-01
The interactive feature of computers is used to incorporate a guided inquiry method of learning introductory economics, extending the Computer Assisted Instruction (CAI) method beyond drills. (Author/JDH)
A Semantic Differential Evaluation of Attitudinal Outcomes of Introductory Physical Science.
ERIC Educational Resources Information Center
Hecht, Alfred Roland
This study was designed to assess the attitudinal outcomes of Introductory Physical Science (IPS) curriculum materials used in schools. Random samples of 240 students receiving IPS instruction and 240 non-science students were assigned to separate Solomon four-group designs with non-equivalent control groups. Random samples of 60 traditional…
ERIC Educational Resources Information Center
Mason, Andrew J.; Bertram, Charles A.
2018-01-01
When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics…
Science Fiction and Introductory Sociology: The "Handmaid" in the Classroom.
ERIC Educational Resources Information Center
Laz, Cheryl
1996-01-01
Focuses on the uses of science fiction to teach sociology and develop critical and creative thinking. Maintains that in the last 20 years science fiction has become concerned increasingly with social themes. Concludes with a detailed description of the use of "The Handmaid's Tale" in an introductory sociology course. (MJP)
A Problem-Based Learning Approach to Teaching Introductory Soil Science
ERIC Educational Resources Information Center
Amador, Jose A.; Gorres, Josef H.
2004-01-01
At most land-grant universities in the USA, Introduction to Soil Science is traditionally taught using a combination of lecture and laboratory formats. To promote engagement, improve comprehension, and enhance retention of content by students, we developed a problem-based learning (PBL) introductory soil science course. Students work in groups to…
ERIC Educational Resources Information Center
Hosack, Bryan; Lim, Billy; Vogt, W. Paul
2012-01-01
An introduction to programming course can be a challenge for both students and instructors. This paper describes a study that introduced Web services (WS) and Service-Oriented Architecture in Information Systems 1 (IS 1) and Computer Science 1 (CS 1) programming courses over a two-year period. WS were used as an instruction tool based on their…
Dragonfly: strengthening programming skills by building a game engine from scratch
NASA Astrophysics Data System (ADS)
Claypool, Mark
2013-06-01
Computer game development has been shown to be an effective hook for motivating students to learn both introductory and advanced computer science topics. While games can be made from scratch, to simplify the programming required game development often uses game engines that handle complicated or frequently used components of the game. These game engines present the opportunity to strengthen programming skills and expose students to a range of fundamental computer science topics. While educational efforts have been effective in using game engines to improve computer science education, there have been no published papers describing and evaluating students building a game engine from scratch as part of their course work. This paper presents the Dragonfly-approach in which students build a fully functional game engine from scratch and make a game using their engine as part of a junior-level course. Details on the programming projects are presented, as well as an evaluation of the results from two offerings that used Dragonfly. Student performance on the projects as well as student assessments demonstrates the efficacy of having students build a game engine from scratch in strengthening their programming skills.
Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.
ERIC Educational Resources Information Center
Baldwin, Kathryn A.
2014-01-01
This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…
NASA Astrophysics Data System (ADS)
DiSalvo, Elizabeth Betsy
The implementation of a learning environment for young African American males, called the Glitch Game Testers, was launched in 2009. The development of this program was based on formative work that looked at the contrasting use of digital games between young African American males and individuals who chose to become computer science majors. Through analysis of cultural values and digital game play practices, the program was designed to intertwine authentic game development practices and computer science learning. The resulting program employed 25 African American male high school students to test pre-release digital games full-time in the summer and part-time in the school year, with an hour of each day dedicated to learning introductory computer science. Outcomes for persisting in computer science education are remarkable; of the 16 participants who had graduated from high school as of 2012, 12 have gone on to school in computing-related majors. These outcomes, and the participants' enthusiasm for engaging in computing, are in sharp contrast to the crisis in African American male education and learning motivation. The research presented in this dissertation discusses the formative research that shaped the design of Glitch, the evaluation of the implementation of Glitch, and a theoretical investigation of the way in which participants navigated conflicting motivations in learning environments.
On-line and Mobil Learning Activities
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Whittaker, T. M.; Jasmin, T.; Mooney, M. E.
2012-12-01
Introductory college-level science courses for non-majors are critical gateways to imparting not only discipline-specific information, but also the basics of the scientific method and how science influences society. They are also indispensable for student success to degree. On-line, web-based homework (whether on computers or mobile devices) is a rapidly growing use of the Internet and is becoming a major component of instruction in science, replacing delayed feedback from a few major exams. Web delivery and grading of traditional textbook-type questions is equally effective as having students write them out for hand grading, as measured by student performance on conceptual and problem solving exams. During this presentation we will demonstrate some of the interactive on-line activities used to teach concepts and how scientists approach problem solving, and how these activities have impacted student learning. Evaluation of the activities, including formative and summative, will be discussed and provide evidence that these interactive activities significantly enhance understanding of introductory meteorological concepts in a college-level science course. More advanced interactive activities are also used in our courses for department majors, some of these will be discussed and demonstrated. Bring your mobile devices to play along! Here is an example on teaching contouring: http://profhorn.aos.wisc.edu/wxwise/contour/index.html
Cloud computing applications for biomedical science: A perspective.
Navale, Vivek; Bourne, Philip E
2018-06-01
Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Cloud computing applications for biomedical science: A perspective
2018-01-01
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176
ERIC Educational Resources Information Center
Kazimoglu, Cagin; Kiernan, Mary; Bacon, Liz; MacKinnon, Lachlan
2011-01-01
This paper outlines an innovative game-based approach to learning introductory programming that is grounded in the development of computational thinking at an abstract conceptual level, but also provides a direct contextual relationship between game-play and learning traditional introductory programming. The paper proposes a possible model for,…
Geological applications and training in remote sensing
NASA Technical Reports Server (NTRS)
Sabins, F. F., Jr.
1981-01-01
Some of the experiences, methods, and opinions developed during 15 years of teaching an introductory course in remote sensing at several universities in the Southern California area are related. Although the course is offered in Geology departments, every class includes significant numbers of students from other disciplines including geography, computer science, biology, and environmental science. The instructor or teaching assistant provides a few hours of tutorial lectures (outside of regular class time) on basic geology for these nongeologists. This approach is successful because the grade distribution for nongeologists is similar to that for geologists. The schedule for a typical one-semester course is given.
Gasiewski, Josephine A; Eagan, M Kevin; Garcia, Gina A; Hurtado, Sylvia; Chang, Mitchell J
2012-03-01
The lack of academic engagement in introductory science courses is considered by some to be a primary reason why students switch out of science majors. This study employed a sequential, explanatory mixed methods approach to provide a richer understanding of the relationship between student engagement and introductory science instruction. Quantitative survey data were drawn from 2,873 students within 73 introductory science, technology, engineering, and mathematics (STEM) courses across 15 colleges and universities, and qualitative data were collected from 41 student focus groups at eight of these institutions. The findings indicate that students tended to be more engaged in courses where the instructor consistently signaled an openness to student questions and recognizes her/his role in helping students succeed. Likewise, students who reported feeling comfortable asking questions in class, seeking out tutoring, attending supplemental instruction sessions, and collaborating with other students in the course were also more likely to be engaged. Instructional implications for improving students' levels of academic engagement are discussed.
ERIC Educational Resources Information Center
Lane-Getaz, Sharon
2017-01-01
In reaction to misuses and misinterpretations of p-values and confidence intervals, a social science journal editor banned p-values from its pages. This study aimed to show that education could address misuse and abuse. This study examines inference-related learning outcomes for social science students in an introductory course supplemented with…
ERIC Educational Resources Information Center
Ratniyom, Jadsada; Boonphadung, Suttipong; Unnanantn, Thassanant
2016-01-01
This study examined the effects of the introductory organic chemistry online homework on first year pre-service science teachers' learning achievements. The online homework was created using a web-based Google form in order to enhance the pre-service science teachers' learning achievements. The steps for constructing online homework were…
Dorm Room Labs for Introductory Large-Lecture Science Classes for Nonscience Majors
ERIC Educational Resources Information Center
Moldwin, Mark B.
2018-01-01
Many large-lecture introductory science courses for nonscience majors do not have a lab component and hence do not provide much opportunity for students to engage in the practice of science. I have developed a new instructional activity called Dorm Room Labs that enables students to conduct hands-on activities as homework (or dorm room work) to…
Science Outcomes Assessment Plan (SOAP): Design phase
NASA Astrophysics Data System (ADS)
Webster, Zodiac T.; Gurkas, P.; Shaw, K.
2009-01-01
Columbus State University is under pressure to reduce the number of "unproductive grades” in its introductory science classes, to increase the number of STEM majors, and to assess the level of attainment of science outcomes in its general education courses for accreditation documentation. The authors designed a study to examine affective, cognitive, social, and classroom factors as predictors of success in science while also attempting to document the link between introductory "gateway to science major” course outcomes and the general education program. One of the factors probed is the match between students’ understanding of important learning outcomes of the course and the instructor's stated priorities. A very real risk in content focused courses (e.g., astronomy) is the mismatch between the university's stated outcomes for a general education science course (e.g., critical thinking) and the instructor's content related outcomes. This mismatch may become a barrier for students taking `required’ courses as they may not comprehend the rationale for the requirement, fail to engage in the course, and consequently receive a failing grade. Another possible factor affecting student success in science is the student reasoning level. Students who are concrete thinkers may not be as successful in introductory science classes that require advanced logical thinking about unfamiliar concepts. The authors hope to use the results of this study to help inform university practices such as placement into introductory science courses and for future faculty development.
Computer Literacy and Non-IS Majors
ERIC Educational Resources Information Center
Thomas, Jennifer D. E.; Blackwood, Martina
2010-01-01
This paper presents an investigation of non-Information Systems (IS) major's perceptions and performance when enrolled in a required introductory Computer Information Systems course. Students of various academic backgrounds were taught Excel, Hypertext Markup Language (HTML), JavaScript and computer literacy in a 14-week introductory course, in…
NUCLEAR SCIENCE, AN INTRODUCTORY COURSE.
ERIC Educational Resources Information Center
SULCOSKI, JOHN W.
THIS CURRICULUM GUIDE DESCRIBES A TWELFTH-GRADE INTERDISCIPLINARY, INTRODUCTORY NUCLEAR SCIENCE COURSE. IT IS BELIEVED TO FILL THE NEED FOR AN ADVANCED COURSE THAT IS TIMELY, CHALLENGING, AND APPROPRIATE AS A SEQUENTIAL ADDITION TO THE BIOLOGY-CHEMISTRY-PHYSICS SEQUENCE. PRELIMINARY INFORMATION COVERS SUCH MATTERS AS (1) RADIOISOTOPE WORK AREAS,…
An Integrative Landscape-Scale Exercise for Introductory Soil Science Classes.
ERIC Educational Resources Information Center
Levy, D. B.; Graham, R. C.
1993-01-01
Describes how teachers can improve introductory soil science courses by applying concepts taught in the classroom to actual field situations. Presents a specific example of a field exercise designed to illustrate soil properties and processes with respect to their environmental settings. (11 references) (Author/MCO)
Three Conceptions of Thermodynamics: Technical Matrices in Science and Engineering
ERIC Educational Resources Information Center
Christiansen, Frederik V.; Rump, Camilla
2008-01-01
Introductory thermodynamics is a topic which is covered in a wide variety of science and engineering educations. However, very different teaching traditions have evolved within different scientific specialties. In this study we examine three courses in introductory thermodynamics within three different scientific specialties: physics, chemical…
Introductory Statistics Education and the National Science Foundation
ERIC Educational Resources Information Center
Hall, Megan R.; Rowell, Ginger Holmes
2008-01-01
This paper describes 27 National Science Foundation supported grant projects that have innovations designed to improve teaching and learning in introductory statistics courses. The characteristics of these projects are compared with the six recommendations given in the "Guidelines for Assessment and Instruction in Statistics Education (GAISE)…
Computer Based Collaborative Problem Solving for Introductory Courses in Physics
NASA Astrophysics Data System (ADS)
Ilie, Carolina; Lee, Kevin
2010-03-01
We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.
Computer Assisted Problem Solving in an Introductory Statistics Course. Technical Report No. 56.
ERIC Educational Resources Information Center
Anderson, Thomas H.; And Others
The computer assisted problem solving system (CAPS) described in this booklet administered "homework" problem sets designed to develop students' computational, estimation, and procedural skills. These skills were related to important concepts in an introductory statistics course. CAPS generated unique data, judged student performance,…
Student-Designed Experiments: A Pedagogical Design for Introductory Science Labs
ERIC Educational Resources Information Center
Coker, Jeffrey Scott
2017-01-01
Despite numerous calls for science education to be driven by authentic investigation, many laboratory experiences continue to consist of disconnected weekly units during which students carry out instructions that lead to some predetermined finding. This study developed and evaluated a pedagogical design for introductory biology labs where students…
Polymerization Simulator for Introductory Polymer and Material Science Courses
ERIC Educational Resources Information Center
Chirdon, William M.
2010-01-01
This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…
Math + Science: A Solution. Introductory Investigations. Book 1.
ERIC Educational Resources Information Center
Wiebe, Arthur, Ed.; And Others
Developed for use primarily with middle school age students, this introductory booklet provides a sample of innovative activities that integrate mathematics skills with science processes. The investigations employ a wide variety of readily available and easily understood materials. The 25 activities are sequenced from simple to complex according…
The Importance of Attendance in an Introductory Textile Science Course
ERIC Educational Resources Information Center
Marcketti, Sara B.; Wang, Xinxin; Greder, Kate
2013-01-01
At Iowa State University, the introductory textile science course is a required 4-credit class for all undergraduate students enrolled in the Apparel, Merchandising, and Design Program. Frustrated by a perceived gap between students who easily comprehended course material and those who complained and struggled, the instructor implemented an…
Use of a Laboratory Field Project in an Introductory Crop Science Course.
ERIC Educational Resources Information Center
Lane, Robert A.
1986-01-01
Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…
ERIC Educational Resources Information Center
Arons, A. B.
1976-01-01
Describes special factors and procedures which are utilized in an introductory physical science course for nonscience majors. It is designed to enable students who are at a concrete or transitional stage to attain the formal operational level of development. (Author/SL)
Equity Investigation of Attitudinal Shifts in Introductory Physics
ERIC Educational Resources Information Center
Traxler, Adrienne; Brewe, Eric
2015-01-01
We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI) sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages…
Advances in Machine Learning and Data Mining for Astronomy
NASA Astrophysics Data System (ADS)
Way, Michael J.; Scargle, Jeffrey D.; Ali, Kamal M.; Srivastava, Ashok N.
2012-03-01
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
Introducing the Cloud in an Introductory IT Course
ERIC Educational Resources Information Center
Woods, David M.
2018-01-01
Cloud computing is a rapidly emerging topic, but should it be included in an introductory IT course? The magnitude of cloud computing use, especially cloud infrastructure, along with students' limited knowledge of the topic support adding cloud content to the IT curriculum. There are several arguments that support including cloud computing in an…
Computer Managed Instruction: An Application in Teaching Introductory Statistics.
ERIC Educational Resources Information Center
Hudson, Walter W.
1985-01-01
This paper describes a computer managed instruction package for teaching introductory or advanced statistics. The instructional package is described and anecdotal information concerning its performance and student responses to its use over two semesters are given. (Author/BL)
Genetics Content in Introductory Biology Courses for Non-Science Majors: Theory and Practice.
ERIC Educational Resources Information Center
Hott, Adam M.; Huether, Carl A.; McInerney, Joseph D.; Christianson, Carol; Fowler, Robert; Bender, Harvey; Jenkins, John; Wysocki, Annette; Markle, Glenn; Karp, Richard
2002-01-01
Presents the recommendations of the Human Genetic Education Subcommittee of the American Society of Human Genetics (ASHG) on the development of introductory biology courses for non-science majors addressing the list of concepts including evolution, transmission, gene expression, gene regulation, and genetics and society. Used an online survey to…
Greenhouse Effect in the Classroom: A Project- and Laboratory-Based Curriculum.
ERIC Educational Resources Information Center
Lueddecke, Susann B.; Pinter, Nicholas; McManus, Scott A.
2001-01-01
Tests a multifaceted curriculum for use in introductory earth science classes from the secondary school to the introductory undergraduate level. Simulates the greenhouse effect with two fish tanks, heat lamps, and thermometers. Uses a hands-on science approach to develop a deeper understanding of the climate system among students. (Contains 28…
The Influence of an Introductory Environmental Science Class on Environmental Perceptions
ERIC Educational Resources Information Center
Gerstenberger, Shawn L.; Kelly, William E.; Cross, Chad L.
2004-01-01
An environmental concern scale (ECS) was administered to a group of college students before and after completion of an introductory environmental science class. A significant increase in the level of concern was seen in questions related to overall environmental awareness and personal responsibility. Specifically, concern was raised on questions…
Class Size and Academic Achievement in Introductory Political Science Courses
ERIC Educational Resources Information Center
Towner, Terri L.
2016-01-01
Research on the influence of class size on student academic achievement is important for university instructors, administrators, and students. The article examines the influence of class size--a small section versus a large section--in introductory political science courses on student grades in two comparable semesters. It is expected that…
Ditching the Script: Moving beyond "Automatic Thinking" in Introductory Political Science Courses
ERIC Educational Resources Information Center
Glover, Robert W.; Tagliarina, Daniel
2011-01-01
Political science is a challenging field, particularly when it comes to undergraduate teaching. If we are to engage in something more than uncritical ideological instruction, it demands from the student a willingness to approach alien political ideas with intellectual generosity. Yet, students within introductory classes often harbor inherited…
Using Data from Climate Science to Teach Introductory Statistics
ERIC Educational Resources Information Center
Witt, Gary
2013-01-01
This paper shows how the application of simple statistical methods can reveal to students important insights from climate data. While the popular press is filled with contradictory opinions about climate science, teachers can encourage students to use introductory-level statistics to analyze data for themselves on this important issue in public…
Do College Introductory Biology Courses Increase Student Ecological Literacy?
ERIC Educational Resources Information Center
Cheruvelil, Kendra Spence; Ye, Xuemei
2012-01-01
College introductory biology educators have an opportunity to increase ecological literacy. This research used a pre-/postsurvey design to ask the following questions: (a) What level of ecological literacy do underclass science majors have? (b) What demographic factors are related to ecological literacy? and (c) Does taking introductory organismal…
The Memorability of Introductory Psychology Revisited
ERIC Educational Resources Information Center
Landrum, R. Eric; Gurung, Regan A. R.
2013-01-01
Almost 2 million students enroll in introductory psychology each year in the United States, making it the second most popular undergraduate course in the nation. Introductory psychology not only serves as a prerequisite for other courses in the discipline but for some students this course provides their only exposure to psychological science.…
NASA Astrophysics Data System (ADS)
Samson, P. J.
2010-12-01
There is a large and growing body of research indicating that post-secondary education in science, technology, engineering, and mathematics (STEM) fields is failing to prepare citizens for the 21st century economy. Introductory STEM courses are vital for preparing science majors for their fields of study and are the only exposure to science many college students will receive, but the quality of teaching in these courses is often not informed by research on teaching and learning. Research universities play an especially prominent role in the design of introductory courses. While research and doctoral universities account for only about 6% of all higher education institutions, they confer 32 per cent of the baccalaureate degrees, and 56 per cent of the baccalaureates earned by recent recipients of science and engineering doctorates. By assuming that larger introductory classes occur at research institutions one can estimate that a dominant number of students receiving introductory instruction in the geosciences are probably occurring at research institutions. Moreover, research universities produce the majority of tenure-track faculty who will later teach at four-year colleges, so the role of research institutions in the influence of introductory course design is expected to be disproportionately large. While introductory courses at research universities play a influential role in how such courses are designed, the teaching of introductory courses is too often viewed as an undesirable assignment for instructors at those institutions. The effort seems unrewarding with incentives for improving teaching at research institutions perceived as modest at best, if not negative. It is commonly perceived that teaching introductory courses will decrease opportunities for teaching higher-level courses to graduate students and/or to conduct research. Furthermore, even for those interested in improving their pedagogical methods, current approaches to professional development are generally difficult to scale and/or costly to institutions and outside instructors' normal workflow. This presentation reports on the results of surveys of research university instructors in an attempt to quantify the state of the introductory course. The surveys attempt to identify common barriers to improvement. Based on these surveys strategies for how to best implement systemic change in introductory courses at research universities are presented in the hope of stimulating discussion and a call to action.
ERIC Educational Resources Information Center
Jameson, A. Keith
Presented are the teacher's guide and student materials for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on Le Chatelier's principle includes objectives, prerequisites, pretest, instructions for executing the computer program, and…
Examining issues of underrepresented minority students in introductory physics
NASA Astrophysics Data System (ADS)
Watkins, Jessica Ellen
In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.
Students' conceptions of evidence during a university introductory forensic science course
NASA Astrophysics Data System (ADS)
Yeshion, Theodore Elliot
Students' Conceptions of Science, Scientific Evidence, and Forensic Evidence during a University Introductory Forensic Science Course This study was designed to examine and understand what conceptions undergraduate students taking an introductory forensic science course had about scientific evidence. Because the relationships between the nature of science, the nature of evidence, and the nature of forensic evidence are not well understood in the science education literature, this study sought to understand how these concepts interact and affect students' understanding of scientific evidence. Four participants were purposefully selected for this study from among 89 students enrolled in two sections of an introductory forensic science course taught during the fall 2005 semester. Of the 89 students, 84 were criminal justice majors with minimal science background and five were chemistry majors with academic backgrounds in the natural and physical sciences. All 89 students completed a biographical data sheet and a pre-instruction Likert scale survey consisting of twenty questions relating to the nature of scientific evidence. An evaluation of these two documents resulted in a purposeful selection of four varied student participants, each of whom was interviewed three times throughout the semester about the nature of science, the nature of evidence, and the nature of forensic evidence. The same survey was administered to the participants again at the end of the semester-long course. This study examined students' assumptions, prior knowledge, their understanding of scientific inference, scientific theory, and methodology. Examination of the data found few differences with regard to how the criminal justice majors and the chemistry majors responded to interview questions about forensic evidence. There were qualitative differences, however, when the same participants answered interview questions relating to traditional scientific evidence. Furthermore, suggestions are offered for undergraduate science teachers, science teaching programs, and future research.
ERIC Educational Resources Information Center
Purvis-Roberts, Kathleen L.; Edwalds-Gilbert, Gretchen; Landsberg, Adam S.; Copp, Newton; Ulsh, Lisa; Drew, David E.
2009-01-01
A new interdisciplinary, introductory science course was offered for the first time during the 2007-2008 school year. The purpose of the course is to introduce students to the idea of working at the intersections of biology, chemistry, and physics and to recognize interconnections between the disciplines. Interdisciplinary laboratories are a key…
ERIC Educational Resources Information Center
Journal of Geography, 2018
2018-01-01
This article presents the findings of a study to determine the degree of consistency in what is taught and learned in high school and college-level introductory courses in geographic information science and technology (GIS&T). A content analysis identified sixteen topics that are generally representative of the knowledge, skills, and abilities…
ERIC Educational Resources Information Center
French, Debbie A.; Burrows, Andrea C.
2017-01-01
Increases in student-centered pedagogy have been more prevalent in K-12 education than in collegiate undergraduate science education. The purpose of this study was to determine the effects of using student-centered pedagogy advocated in K-12 education on introductory astronomy students' content knowledge, interest, and recall of content taught in…
ERIC Educational Resources Information Center
Slater, Timothy F.; Jones, Lauren V.
2004-01-01
This project explores the effectiveness of learner-centered education (LCE) principles and practices on student learning and attitudes in an online interactive introductory astronomy course for non-science majors by comparing a high-quality Internet-delivered course with a high-quality on-campus course, both of which are based on the principles of…
An Infiltration Exercise for Introductory Soil Science
ERIC Educational Resources Information Center
Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.
2005-01-01
One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…
ERIC Educational Resources Information Center
Sullivan, John P.
2008-01-01
This study examined how photographs in six introductory environmental science texts portrayed the urban environments in which most U.S. students lived. All photographs from all texts were coded to determine whether they depicted urban areas. The urban photographs were then coded to determine what they communicated about the urban environment. The…
From "F = ma" to Flying Squirrels: Curricular Change in an Introductory Physics Course
ERIC Educational Resources Information Center
O'Shea, Brian; Terry, Laura; Benenson, Walter
2013-01-01
We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on…
Attitude Formation in Introductory Science Courses: An Application of Dissonance Theory.
ERIC Educational Resources Information Center
Crawley, Frank E.
This paper describes the results and implications of an investigation, based on dissonance theory, into attitude formation in introductory college science courses. The results of the study show that students who learned in ways they preferred registered a more positive attitude toward the course than did those who learned in ways they did not…
ERIC Educational Resources Information Center
Wiebold, W. J.; Slaughter, Leon
1986-01-01
Reviews a study that examined the effects of laboratories on the grade performance of undergraduates in an introductory crop science course. Results indicated that students enrolled in lecture and laboratory concurrently did not receive higher lecture grades than students enrolled solely in lecture, but did have higher laboratory grades. (ML)
ERIC Educational Resources Information Center
Camfield, Eileen Kogl; McFall, Eileen Eckert; Land, Kirkwood M.
2016-01-01
Introductory biology courses are supposed to serve as gateways for many majors, but too often they serve instead as gatekeepers. Reliance on lectures, large classes, and multiple-choice tests results in high drop and failure rates. Critiques of undergraduate science education are clear about the problems with conventional introductory science…
ERIC Educational Resources Information Center
Hoskins, Tyler D.; Gantz, J. D.; Chaffee, Blake R.; Arlinghaus, Kel; Wiebler, James; Hughes, Michael; Fernandes, Joyce J.
2017-01-01
Institutions have developed diverse approaches that vary in effectiveness and cost to improve student performance in introductory science, technology, engineering, and mathematics courses. We developed a low-cost, graduate student-led, metacognition-based study skills course taught in conjunction with the introductory biology series at Miami…
Sociocultural Influences On Undergraduate Women's Entry into a Computer Science Major
NASA Astrophysics Data System (ADS)
Lyon, Louise Ann
Computer science not only displays the pattern of underrepresentation of many other science, technology, engineering, and math (STEM) fields, but has actually experienced a decline in the number of women choosing the field over the past two decades. Broken out by gender and race, the picture becomes more nuanced, with the ratio of females to males receiving bachelor's degrees in computer science higher for non-White ethnic groups than for Whites. This dissertation explores the experiences of university women differing along the axis of race, class, and culture who are considering majoring in computer science in order to highlight how well-prepared women are persuaded that they belong (or not) in the field and how the confluence of social categories plays out in their decision. This study focuses on a university seminar entitled "Women in Computer Science and Engineering" open to women concurrently enrolled in introductory programming and uses an ethnographic approach including classroom participant observation, interviews with seminar students and instructors, observations of students in other classes, and interviews with parents of students. Three stand-alone but related articles explore various aspects of the experiences of women who participated in the study using Rom Harre's positioning theory as a theoretical framework. The first article uses data from twenty-two interviews to uncover how interactions with others and patterns in society position women in relation to a computer science major, and how these women have arrived at the point of considering the major despite messages that they do not belong. The second article more deeply explores the cases of three women who vary greatly along the axes of race, class, and culture in order to uncover pattern and interaction differences for women based on their ethnic background. The final article focuses on the attitudes and expectations of the mothers of three students of contrasting ethnicities and how reported interactions between mothers and daughters either constrain or afford opportunities for the daughters to choose a computer science major.
Introductory science and mathematics education for 21st-Century biologists.
Bialek, William; Botstein, David
2004-02-06
Galileo wrote that "the book of nature is written in the language of mathematics"; his quantitative approach to understanding the natural world arguably marks the beginning of modern science. Nearly 400 years later, the fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that has come to define the physical sciences and engineering. This strikes us as particularly inopportune at a time when opportunities for quantitative thinking about biological systems are exploding. We propose that a way out of this dilemma is a unified introductory science curriculum that fully incorporates mathematics and quantitative thinking.
Multiple-Choice Exams: An Obstacle for Higher-Level Thinking in Introductory Science Classes
Stanger-Hall, Kathrin F.
2012-01-01
Learning science requires higher-level (critical) thinking skills that need to be practiced in science classes. This study tested the effect of exam format on critical-thinking skills. Multiple-choice (MC) testing is common in introductory science courses, and students in these classes tend to associate memorization with MC questions and may not see the need to modify their study strategies for critical thinking, because the MC exam format has not changed. To test the effect of exam format, I used two sections of an introductory biology class. One section was assessed with exams in the traditional MC format, the other section was assessed with both MC and constructed-response (CR) questions. The mixed exam format was correlated with significantly more cognitively active study behaviors and a significantly better performance on the cumulative final exam (after accounting for grade point average and gender). There was also less gender-bias in the CR answers. This suggests that the MC-only exam format indeed hinders critical thinking in introductory science classes. Introducing CR questions encouraged students to learn more and to be better critical thinkers and reduced gender bias. However, student resistance increased as students adjusted their perceptions of their own critical-thinking abilities. PMID:22949426
Impacting Society through Astronomy Undergraduate Courses
NASA Astrophysics Data System (ADS)
Schleigh, Sharon
2015-04-01
A high percentage of non-science majors enroll in undergraduate, introductory astronomy courses across the country. The perception of the astronomy course as being easier than the ``hard sciences'' and the idea that the course will focus on ``pretty pictures'', influences the interests of the non-science majors. Often the students that enroll in these courses will not take other science courses, resulting in the only opportunity to teach college students about basic scientific concepts that impact their lives. Vast misconceptions about the nature of science, the role of science and scientists in society, and social issues embedded in scientific information, impact the decisions that individuals make about every day events. In turn, these decisions influence the policies that construct our society. This talk will provide an overview of the common misconceptions and discuss how they impact our society as a whole. The research presented provides evidence of the impact that introductory college astronomy courses have on changing these everyday misconceptions and influencing non-science majors' ideas about science in society. The research suggests that introductory courses designed for non-science majors are extremely important in impacting our society, and begs for a stronger understanding and implementation of best practices for teaching and learning in the college classroom environment.
The role of a clinically based computer department of instruction in a school of medicine.
Yamamoto, W S
1991-10-01
The evolution of activities and educational directions of a department of instruction in medical computer technology in a school of medicine are reviewed. During the 18 years covered, the society at large has undergone marked change in availability and use of computation in every aspect of medical care. It is argued that a department of instruction should be clinical and develop revenue sources based on patient care, perform technical services for the institution with a decentralized structure, and perform both health services and scientific research. Distinction should be drawn between utilization of computing in medical specialties, library function, and instruction in computer science. The last is the proper arena for the academic content of instruction and is best labelled as the philosophical basis of medical knowledge, in particular, its epistemology. Contemporary pressures for teaching introductory computer skills are probably temporary.
ERIC Educational Resources Information Center
Buxner, Sanlyn R.; Impey, Chris D.; Romine, James; Nieberding, Megan
2018-01-01
[This paper is part of the Focused Collection on Astronomy Education Research.] We report on a study of almost 13 000 undergraduate students enrolled in introductory astronomy courses at the University of Arizona. From 1989 to 2016, students completed a basic science knowledge, beliefs, and attitudes survey. From 2014 to 2016, a subset of the…
ERIC Educational Resources Information Center
Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf
2016-01-01
We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…
ERIC Educational Resources Information Center
Zhang, Ping; Ding, Lin; Mazur, Eric
2017-01-01
This paper analyzes pre-post matched gains in the epistemological views of science students taking the introductory physics course at Beijing Normal University (BNU) in China. In this study we examined the attitudes and beliefs of science majors (n = 441) in four classes, one taught using traditional (lecture) teaching methods, and the other three…
ERIC Educational Resources Information Center
Evans, Heather K.
2012-01-01
In this article, the author addresses both the costs and benefits of implementing clickers into an introductory political science course. Comparing student responses to a mid-semester survey in both a clicker and non-clicker course, the results show that students have higher satisfaction of the course and instructor, higher exam scores, and feel…
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Loranz, D.; Prather, E. E.
2006-12-01
One of the most ardent challenges for astronomy teachers is to deeply and meaningfully assess students’ conceptual and quantitative understanding of astronomy topics. In an effort to uncover students’ actual understanding, members and affiliates of the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona and Truckee Meadows Community College are creating and field-testing innovative approaches to assessment. Leveraging from the highly successful work from physics education research, we are creating a series of tasks where students categorize a list describing common astronomical events or phenomenon; or vocabulary terms into context rich categories or conceptually rich sentences. These intellectually challenging tasks are being created to span the entire domain of topics in introductory astronomy for non-science majoring undergraduates. When completed, these sorting tasks and vocabulary-in-context activities will be able to be delivered via a drag-and-drop computer interface.
ERIC Educational Resources Information Center
Scott, Amy N.; McNair, Delores E.; Lucas, Jonathan C.; Land, Kirkwood M.
2017-01-01
Introductory science, math, and engineering courses often have problems related to student engagement, achievement, and course completion. To begin examining these issues in greater depth, this pilot study compared student engagement, achievement, and course completion in a small and large section of an introductory biology class. Results based on…
Faraday's Principle and Air Travel in the Introductory Labs
ERIC Educational Resources Information Center
Abdul-Razzaq, Wathiq; Thakur, Saikat Chakraborty
2017-01-01
We all know that we must improve the quality of teaching in science at all levels. Not only physicists but also many students from other areas of study take the introductory physics courses in college. Physics introductory laboratories (labs) can be one of the best tools to help these students understand applications of scientific principles that…
ERIC Educational Resources Information Center
Hassad, Rossi A.
2009-01-01
This study examined the teaching practices of 227 college instructors of introductory statistics (from the health and behavioral sciences). Using primarily multidimensional scaling (MDS) techniques, a two-dimensional, 10-item teaching practice scale, TISS (Teaching of Introductory Statistics Scale), was developed and validated. The two dimensions…
Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course
ERIC Educational Resources Information Center
Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff
2010-01-01
Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…
Integrating Computer Interfaced Videodisc Systems in Introductory College Biology.
ERIC Educational Resources Information Center
Ebert-Zawasky, Kathleen; Abegg, Gerald L.
This study was designed as a systematic investigation of the feasibility and effectiveness of student authored videodisc presentations in a non-major introductory level college biology course. Students (n=66) used a quick-learn authoring system, the Macintosh computer, and videodisc player with color monitor. Results included: (1) students managed…
Teaching Perspectives among Introductory Computer Programming Faculty in Higher Education
ERIC Educational Resources Information Center
Mainier, Michael J.
2011-01-01
This study identified the teaching beliefs, intentions, and actions of 80 introductory computer programming (CS1) faculty members from institutions of higher education in the United States using the Teacher Perspectives Inventory. Instruction method used inside the classroom, categorized by ACM CS1 curriculum guidelines, was also captured along…
Computer Mediated Communication and Student Learning in Large Introductory Sociology Classes
ERIC Educational Resources Information Center
Wright, Eric R.; Lawson, Anthony H.
2005-01-01
Over the past several years, scholars of teaching and learning have demonstrated the potential of collaborative learning strategies for improving student learning. This paper examines the use of computer-mediated communication to promote collaborative student learning in large introductory sociology courses. Specifically, we summarize a project we…
Macromod: Computer Simulation For Introductory Economics
ERIC Educational Resources Information Center
Ross, Thomas
1977-01-01
The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)
Computational Inquiry in Introductory Statistics
ERIC Educational Resources Information Center
Toews, Carl
2017-01-01
Inquiry-based pedagogies have a strong presence in proof-based undergraduate mathematics courses, but can be difficult to implement in courses that are large, procedural, or highly computational. An introductory course in statistics would thus seem an unlikely candidate for an inquiry-based approach, as these courses typically steer well clear of…
Fish: A New Computer Program for Friendly Introductory Statistics Help
ERIC Educational Resources Information Center
Brooks, Gordon P.; Raffle, Holly
2005-01-01
All introductory statistics students must master certain basic descriptive statistics, including means, standard deviations and correlations. Students must also gain insight into such complex concepts as the central limit theorem and standard error. This article introduces and describes the Friendly Introductory Statistics Help (FISH) computer…
ERIC Educational Resources Information Center
Owhoso, Vincent; Malgwi, Charles A.; Akpomi, Margaret
2014-01-01
The authors examine whether students who completed a computer-based intervention program, designed to help them develop abilities and skills in introductory accounting, later declared accounting as a major. A sample of 1,341 students participated in the study, of which 74 completed the intervention program (computer-based assisted learning [CBAL])…
ERIC Educational Resources Information Center
Spicer-Sutton, Jama; Lampley, James; Good, Donald W.
2014-01-01
The purpose of this study was to determine a student's computer knowledge upon course entry and if there was a difference in college students' improvement scores as measured by the difference in pretest and post-test scores of new or novice users, moderate users, and expert users at the end of a college level introductory computing class. This…
ERIC Educational Resources Information Center
Spicer-Sutton, Jama
2013-01-01
The purpose of this study was to determine a student's computer knowledge upon course entry and if there was a difference in college students' improvement scores as measured by the difference in pretest and posttest scores of new or novice users, moderate users, and expert users at the end of a college-level introductory computing class. This…
Birkett, Melissa; Shelton, Kerisa
2011-01-01
To determine whether participation in a neuroscience course reduced neuroscience anxiety, a modified version of the Science Anxiety Scale was administered to students at the beginning and end of an introductory course. Neuroscience anxiety scores were significantly reduced at the end of the course and correlated with higher final grades. Reduced neuroscience anxiety did not correlate with reduced science anxiety, suggesting that neuroscience anxiety is a distinct subtype of anxiety. PMID:23626491
NASA Astrophysics Data System (ADS)
Shell, Duane F.; Soh, Leen-Kiat
2013-12-01
The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.
Future of the Introductory Psychology Textbook: A Survey of College Publishers.
ERIC Educational Resources Information Center
Buskit, William; Cush, David T.
1997-01-01
Examines aspects of the introductory psychology textbook market through a publishing house survey. Aspects covered are the current and future number of introductory texts, fewer textbook publishers, custom publishing, changing content, and computer technologies. Discusses the results of the publishers' responses and provides statistical tables of…
ERIC Educational Resources Information Center
Debb, Scott M.; Debb, Sharon M.
2012-01-01
Enrolling in an introductory course in psychology is a staple of many community college students' core curriculum. For those students who plan to pursue social science and humanities-related majors in particular, introductory psychology helps provide a solid base upon which future coursework at all academic levels will be built. The goal of any…
Humor to the Rescue: How to Make Introductory Economics an Appealing Social Science for Non-Majors
ERIC Educational Resources Information Center
Jones, George H.
2014-01-01
Despite efforts made over the past few years to improve upon the way introductory economics is taught, these efforts have unfortunately done very little to change student perception of economics as a dry, difficult and boring subject. Since the introductory economics course for many nonmajors may be their only economics course in college, it is…
ERIC Educational Resources Information Center
Lang, Guido; O'Connell, Stephen D.
2015-01-01
We investigate the relationship between learning styles, online content usage and exam performance in an undergraduate introductory Computer Information Systems class comprised of both online video tutorials and in-person classes. Our findings suggest that, across students, (1) traditional learning style classification methodologies do not predict…
ERIC Educational Resources Information Center
Felts, Renee R.
2013-01-01
As increasing numbers of students enroll in introductory computer application courses, instructors have difficulty providing the needed assistance in the traditional laboratory setting. Simulators have been used to facilitate college instruction, but the effectiveness of using a simulator in an introductory computer application course had not yet…
Introductory Biophysics Course: Presentation of Physics in a Biological Context
ERIC Educational Resources Information Center
Henderson, B. J.; Henderson, M. A.
1976-01-01
An introductory biophysics course for science students who have previously taken two quarters of noncalculus physics is described. Material covered emphasizes the physical principles of sound, light, electricity, energy, and information. (Author/CP)
Introductory Oceanography Taught as a Laboratory Science--An Experiment That Worked.
ERIC Educational Resources Information Center
Anderson, Franz E.
1979-01-01
Describes a college level introductory oceanography course that incorporates a hands-on laboratory component. The activities include the determination of density and buoyancy, light transmission in sea water, and wave refraction. (MA)
Using Solar System Topics to Teach the Scientific Method in an Age of Science Denial
NASA Astrophysics Data System (ADS)
Lo Presto, M. C.
2013-04-01
A number of excellent opportunities to remind students of the scientific method and how the process of science works come about during coverage of common topics in a Solar System “unit” in an introductory college astronomy course. With the tremendous amount of misinformation about science that students are exposed to through the Internet and other forms of media, this is now more important than ever. If non-science majors can leave introductory astronomy, often the only science course they will take, with a decent appreciation of, or at least an exposure to, how science works, they will then be better able to judge the validity of what they hear about science in the media throughout their lives.
NASA Astrophysics Data System (ADS)
House, M.; Nagy-Shadman, E.; Wilbur, B.
2010-12-01
Using real-time data or near-real-time data in the classroom is an exciting prospect in Introductory Physical Geology courses, especially since it promises to offer students a chance to experience the excitement and uncertainty associated with the study of the natural world that appeals to so many of their instructors. However, there are several obstacles to this approach in the community college. Namely, many introductory level community college earth science courses have no mathematics prerequisites; as such, a typical classroom may include a wide range of mathematical skills and many students may be unable to participate in the analysis of “real” data. Further, reliable computer access to websites offering real-time data can be spotty at some institutions and for some students on home computers. In response to this problem we have created a multipart volcano monitoring activity based on the USGS Volcano Exploration Project: Pu`u `O`o (VEPP) website. This activity is designed for freshman or sophomore level courses in Introductory Geology or Geological Hazards for non-majors. No prior math skills are assumed; the activity can be completed without prior knowledge of GPS data, volcano monitoring or Hawaiian geology. The activity consists of three parts: (1) a background lecture on basic geology of volcanoes like Kilauea and use of GPS in volcano monitoring; (2) a lab activity or a homework assignment based on near real-time data downloaded from the VEPP website; and (3) a group wrap-up that focuses on real-time data by exploring other aspects of the VEPP website. The lab activity requires examination of downloaded GPS time series data for a specified time period (this can be modified as desired by the instructor), computation of displacements, graphing of displacement vectors for identified time intervals and determination of actual motion vectors, followed by a discussion of the displacements observed. These activities are interspersed by guided questions. This activity will be tested for the first time in Introductory Physical Geology courses at Pasadena City College during Fall 2010.
NASA Astrophysics Data System (ADS)
Buxner, S.; Meinke, B. K.; Brain, D.; Schneider, N. M.; Schultz, G. R.; Smith, D. A.; Grier, J.; Shipp, S. S.
2014-12-01
The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms. The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach Forum is coordinating the development of a pilot series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The "Astro 101 slide sets" are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (discoveries not yet in their textbooks) into the broader context of the course. In a similar effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed the Discovery slide sets, which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the Discovery slides and connect them to NASA mission science.
Multicultural Science Education and Curriculum Materials
ERIC Educational Resources Information Center
Atwater, Mary M.
2010-01-01
This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".
Engaging Students In Modeling Instruction for Introductory Physics
NASA Astrophysics Data System (ADS)
Brewe, Eric
2016-05-01
Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.
NASA Astrophysics Data System (ADS)
1996-06-01
Eight awards in chemistry curriculum development for FY1996 have been announced. One award, to a consortium centered at the University of California-Los Angeles, represents the fifth award in the Systemic Changes in the Undergraduate Chemistry Curriculum program. Although no proposals will be accepted in this program for either planning or full grants for FY1997, it is anticipated that proposals will be accepted in June of 1997 for projects that would adapt and adopt materials developed by the five funded consortia: Molecular Science centered at the University of California-Los Angeles; ChemLinks centered at Beloit College; MolecularChem Consortium centered at the University of California-Berkeley; Workshop Chemistry centered at CUNY City College; and New Traditions centered at the University of Wisconsin-Madison. Seven awards have been made in the Course and Curriculum Development program. This ongoing program continues to accept proposals in chemistry as usual. Systemic Changes in the Undergraduate Chemistry Curriculum Program Award. Molecular Science. Orville L. Chapman University of California-Los Angeles DUE 9555605 FY96 725,000 FY97 575,000, FY98 575,000 FY99 275,000, FY00 275,000 The UCLA-CSUF-Community College Alliance (24 area community colleges that have worked together for more than 15 years) proposes a sweeping restructuring of the lower division chemistry curriculum and the auxiliary learning and assessment processes. In forming our new curriculum, we reject the positivist approach to science education in favor of a constructivist approach that emphasizes problem solving and exploratory learning. We make this change in order to focus on the developing key skills, traits, and abilities of our students. Our new curriculum, the Molecular Science Curriculum, cuts across departments and disciplines to embrace all activities that involve the study of atoms and molecules. In particular, environmental science, materials science, and molecular life science have important positions in the lower-division chemistry curriculum. The new curriculum reflects accurately current practice in research and the chemical industry where growth is occurring in these new fields. Today information-technology-based learning enables a practical approach to discovery learning, which educational theorists have long favored. Students can learn science by doing science. In particular, we will produce problem-based modular learning units that define the molecular science curriculum; data sets organized for exploratory learning; prepackaged molecular, mathematical, and schematic models illustrating important principles and phenomena; and a client/server system that manages education. Client/server technology enables individualized courses and frees students from rigid time constraints. The learning units will be used immediately by several of the community colleges in technology programs, such as those for science technicians and hazardous materials technicians at Mount San Antonio CC. New assessment vehicles including cumulative electronic portfolios of group and individual work provide new insight into student development and potential. The project also addresses the preparation of primary and secondary science teachers by involving them as active participants in the lower division courses of the molecular science curriculum. At both UCLA and CSUF, these students will gain experience with the modules, associated learning methods, and electronic delivery system. These experiences should result in teachers with a practical perspective on science teaching as well as the ability to utilize current technology to direct learning activities. The electronic delivery system will allow students at UCLA to work with the science education faculty at CSUF to obtain certification. Since 1990 two high schools (Aliso Niguel and Crossroads) have become members of the Alliance. These schools have the facilities to expose students, experienced teachers, and future teachers to both the content and learning methods of the molecular science curriculum. Course and Curriculum Development Program Awards. Studio General Chemistry with Full Merging of the Laboratory and Classroom Experiences. Thomas M. Apple Rensselaer Polytechnic Institute DUE 9555069 114,000 A workshop general chemistry class is being developed that includes experimental work during every meeting. Lab work is merged with classroom discussion. Students working in groups are challenged to link their macroscopic observations to chemical principles. The merger of thirty-minute, concept-based discovery labs with discussion and lateral development material provides a unique perspective of chemistry. In modernizing the general chemistry curriculum, fewer topics are treated and the more esoteric aspects of physical chemistry that are inappropriate for freshmen are eliminated. More time is allocated to materials chemistry, organic and biological chemistry, and environmental science. The course material is organized into modules or case-studies that contain material that is developed with the specific aim of showing the relevance of the material to problems to which the students already have been exposed. Societal relevance is built into every module of the syllabus by incorporating laboratories, discussion and "lateral development" problems for each topic. Dynamic Visualization in Chemistry. James P. Birk Arizona State University DUE 9555098 175,000 This project will produce real images of chemical and physical changes occurring at the microscopic and atomic levels. These images, from different instruments (optical, electron, and scanning probe microscopes), will be captured electronically (video tapes and CD ROMs) and used in conjunction with molecular modeling as instructional aids in introductory chemistry courses. The objective is to introduce students to the relationships between macroscopic changes in materials and the corresponding changes in the arrangements of their atoms and molecules. The graphic images will be combined with interactive benchtop demonstrations and computer animations to produce dynamic visual instructional components (dynamic visualization modules, DVMs) for introductory chemistry courses. The existing instrumentation and modeling facilities required for the project are currently in place. Once developed the DVMs will be tested with approximately 4000 general chemistry students at Arizona State University and the Maricopa Community College system. There is a goal of national dissemination by a commercial publisher once the DVMs have been tested in the local environment. An Introductory Course in Modeling Dynamic Chemical and Ecological Systems. Joseph E. Earley Georgetown University DUE 9554932 99,996 An introductory course in modeling of dynamic systems, with special emphasis on chemical and ecological problems, will be developed. The target student population will be first- and second-year social science and humanities students, but upper division students and interested science majors will not be excluded. Rather than placing emphasis on mathematical methods and techniques used in modeling, attention will be centered on salient aspects of complex-system behavior as illustrated by models constructed using the commercially available software-package STELLA II. Relatively straightforward models dealing with chemical reactions will be used to introduce fundamental features of complex-system dynamics. Problems of ecological and demographic interest, at moderate level of difficulty, will then be covered. The origin and behavior of "deterministic chaos" will be treated using examples from both chemistry and ecology. In the last third of the course, students will work in small groups (or individually) developing their own models, each related to a specific problem of current interest, preferably in fields of the students' major academic interest. Opportunity will be provided for some outstanding students to use less "user-friendly" software such as ODEPACK to deal with models involving "stiff" differential equations. The last exercise of the course will be a poster session, at which individuals and groups will present their project models to other members of the class and to guests. The main aims of the course will be to facilitate development of the students' insight with respect to types of functioning to be expected of complex networks of relationships, and therefore in important natural systems, and also to engender an appreciation of the power and limitations of modeling techniques. VizChem-Visualizing Chemistry. Leonard W. Fine Columbia University DUE 9555122 209,000 Multimedia computer modules suitable for undergraduate chemistry lecture and laboratory courses are being designed. The modules are both content and skills oriented, interdisciplinary and multidimensional, and take full advantage of the benefits of simulation, computation, and visualization. They are being designed and created as tools for the teacher and for the student and are primarily directed at general chemistry, organic chemistry, physical chemistry, inorganic chemistry, and materials science. Module topics will include the next version of IR Tutor and applicable and important spectroscopies and diagnostic devices such as electronic absorption (UV-vis) and electronic emission (fluorescence and phosphorescence); proton and carbon-13 nuclear magnetic resonance; atomic absorption; thermal analysis; topics in polymer chemistry and materials science; and PCR technology. Secondary objectives of the project include: a broadening of the chemistry curriculum beyond traditional disciplinary boundaries, new undergraduate courses, enhanced effectiveness of teaching assistants, an expanded role for postdoctoral students in undergraduate education, and improved performance by classes of students. Connecting Undergraduate/Analytical Courses to Modern Analytical Chemistry. Thomas R. Gilbert Northeastern University DUE 9554906 200,000 Application modules in the form of projects and active learning techniques to provide a strong foundation in the principles of chemical measurement and to pique the interest of both chemistry majors and nonmajors will be developed for use in introductory analytical courses. The modules will address an analytical problem drawn from current research in biological, environmental, or materials science. Students will be responsible for proposing and evaluating analytical protocols to solve the problems: they will conduct workshops and design their own laboratory experiments. A multidisciplinary Advisory Council will guide the PIs in problem selection and module development. A two-week faculty workshop will provide training in the use of these modules. A World Wide Web home page will be used to distribute information about the modules and will allow users to share experiences using them. Modules will ultimately be distributed by a commercial publisher. Process Workshops for General Chemistry. David M. Hanson SUNY at Stony Brook DUE 9555142 150,000 The process skills needed by students will be addressed by developing innovations in both content and methodology to replace recitation sessions associated with large lecture courses by process workshops, specifically for introductory chemistry courses. The novel format involves process skills, student participation, and active learning at the forefront. Students will work in cooperative-learning groups on lessons that involve discovery learning, critical thinking, problem solving, reporting, and assessment. Computer-based technology will be used to provide personalized quizzes, and the workshop lessons will be transported to a computer network, multi-media format. The objectives of this project are to develop teaching strategies that support a successful cooperative-learning environment, develop lessons that enhance the understanding of concepts and promote learning and problem solving through the use of higher order thinking skills, develop lessons incorporating interdisciplinary and real world perspectives, enhance learning with computer-driven technology, develop process skills in key areas, promote positive attitudes toward chemistry and science, help students develop confidence in their ability to learn and perform well, create a supportive social environment that will encourage students to involve themselves seriously and successfully in learning, and promote a culture where the university is a community of learners. The transformation of recitation sessions into workshops introduces the missing element in large lecture courses. The lectures structure information and make it available to the students, and the workshops complement that component by facilitating the construction of understanding, the application of knowledge, and the development of process skills. Such development is extremely significant because introductory chemistry courses involve large numbers of students early in their college careers. Among other things, summer teaching and authoring institutes will be held to excite the interest of others in this approach and to share ideas on the methodology, strategies, and lesson content. Forensic Science: An Interactive Multimedia Laboratory Program to Enhance Introductory Chemistry (Science) Courses. Lawrence J. Kaplan Williams College DUE 9554875 234,539 While major changes have taken place in all areas of the natural sciences, introductory instruction in both the lecture hall and the laboratory has not changed significantly in many years. The PI instituted innovative teaching techniques in an elementary chemistry course called "Chemistry and Crime: From Sherlock Holmes to Modern Forensic Science" for the nonscience major. The techniques used in the laboratory have received national attention and many colleagues have instituted similar innovations. However, many institutions do not have the resources to develop laboratory programs along these lines and, as times have changed, are increasingly concerned with exposing the students to situations now recognized as potentially dangerous. Since the PI has proven that forensics can be used to spark interest in science and since it is given that young people are intrigued by computer graphics, it was decided to use computer-animated simulations to allow extensive, intensive investigation of scientific evidence collected at simulated crime scenes and studied using simulated scientific instruments. These animated modules will enhance not only the laboratory program in the forensic science course but also the programs in introductory science courses for majors. The PI will guide the development of the computer-animated modules, develop the story board and oversee the computer interfacing and the integration of the components into the curriculum. The actual modules will be created by Engineering Animation, Inc. EAI, using their Vislab software, is one of the premier computer animation companies in the world. It is anticipated that implementing this innovative and creative approach, as part of an overall multimedia program including actual laboratory experience, will enhance science education by stimulating interest and engendering enthusiasm instead of promoting the stereotype that science is boring and hard.
NEXUS/Physics: An interdisciplinary repurposing of physics for biologists
NASA Astrophysics Data System (ADS)
Redish, E. F.; Bauer, C.; Carleton, K. L.; Cooke, T. J.; Cooper, M.; Crouch, C. H.; Dreyfus, B. W.; Geller, B. D.; Giannini, J.; Gouvea, J. S.; Klymkowsky, M. W.; Losert, W.; Moore, K.; Presson, J.; Sawtelle, V.; Thompson, K. V.; Turpen, C.; Zia, R. K. P.
2014-05-01
In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life-science students, with the goal of helping students build general, multi-discipline scientific competencies. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this: it extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy and includes a serious discussion of random vs coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.
ERIC Educational Resources Information Center
Keating, Thomas; Barnett, Michael; Barab, Sasha A.; Hay, Kenneth E.
2002-01-01
Describes the Virtual Solar System (VSS) course which is one of the first attempts to integrate three-dimensional (3-D) computer modeling as a central component of introductory undergraduate education. Assesses changes in student understanding of astronomy concepts as a result of participating in an experimental introductory astronomy course in…
NASA Astrophysics Data System (ADS)
Maddrey, Elizabeth
Research in academia and industry continues to identify a decline in enrollment in computer science. One major component of this decline in enrollment is a shortage of female students. The primary reasons for the gender gap presented in the research include lack of computer experience prior to their first year in college, misconceptions about the field, negative cultural stereotypes, lack of female mentors and role models, subtle discriminations in the classroom, and lack of self-confidence (Pollock, McCoy, Carberry, Hundigopal, & You, 2004). Male students are also leaving the field due to misconceptions about the field, negative cultural stereotypes, and a lack of self-confidence. Analysis of first year attrition revealed that one of the major challenges faced by students of both genders is a lack of problem-solving skills (Beaubouef, Lucas & Howatt, 2001; Olsen, 2005; Paxton & Mumey, 2001). The purpose of this study was to investigate whether specific, non-mathematical problem-solving instruction as part of introductory programming courses significantly increased computer programming self-efficacy and achievement of students. The results of this study showed that students in the experimental group had significantly higher achievement than students in the control group. While this shows statistical significance, due to the effect size and disordinal nature of the data between groups, care has to be taken in its interpretation. The study did not show significantly higher programming self-efficacy among the experimental students. There was not enough data collected to statistically analyze the effect of the treatment on self-efficacy and achievement by gender. However, differences in means were observed between the gender groups, with females in the experimental group demonstrating a higher than average degree of self-efficacy when compared with males in the experimental group and both genders in the control group. These results suggest that the treatment from this study may provide a gender-based increase in self-efficacy and future research should focus on exploring this possibility.
NASA Astrophysics Data System (ADS)
Hazari, Zahra
2006-12-01
The attrition of females studying physics after high school has been a continuing concern for the physics education community. If females are well prepared, feel confident, and do well in introductory college physics, they may be inclined to study physics further. This quantitative study uses HLM to identify factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that predict female and male performance in introductory college physics. The study includes controls for student demographic and academic background characteristics, and the final dataset consists of 1973 surveys from 54 introductory college physics classes. The results highlight high school physics and affective experiences that differentially predict female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believe that high school physics would help in university physics. There were also experiences that similarly predict female and male performance. The results paint a dynamic picture of the factors from high school physics and the affective domain that influence the future physics performance of females and males. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be fully beneficial to females and/or males in college.
NASA Astrophysics Data System (ADS)
Loehr, John Francis
The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.
NASA Astrophysics Data System (ADS)
Crouch, Catherine H.; Heller, Kenneth
2014-05-01
We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.
NASA Astrophysics Data System (ADS)
Mitchell, Willyetta Adele
2009-11-01
The purpose of the study was to investigate the views of the nature of science and the classroom practices of instructors who teach introductory physics at a research intensive university. A study of this nature is necessary because calls to change how science is taught have been made since the 1800's, yet the methods of instruction have remained virtually unchanged. The conflict between how science is taught and how students learn science can be remedied by effective professional development at the university. However, training on the change process is virtually nonexistent in teacher education programs and in teacher professional development workshops at all levels. The Views About Science Survey (VASS) was first administered to a sample of twenty-nine physics instructors and graduate assistants who have taught introductory physics courses within the last five years. To assess instructional practices in introductory physics at a research extensive university, a purposeful, stratified sample of 56 classes was observed. The interactions between the students and teachers were analyzed using the Flanders Interaction Analysis. The findings suggest that the physics instructors hold a mixed view of the nature of science. The instructors' views do not necessarily indicate how they teach physics. The results also showed that the professors reported that they use elements of effective teaching practices throughout their instruction. The results of the classroom observations revealed that non interactive lecture is the dominate instructional method used. The Flander's confirms that the majority of the class time is spent with the teacher talking and the student passively listening.
Cultivating Citizen Scientists in the Undergraduate Science Classroom
NASA Astrophysics Data System (ADS)
Egger, A. E.
2007-12-01
Several studies indicate a strong correlation between the number of college science courses and science literacy. It is not surprising, then, that the majority of participants in citizen science projects are college graduates who enrolled in at least two science courses. If one goal of citizen science projects is to increase civic science literacy, research suggests that most are preaching to the choir. Attracting a wider audience to citizen science is, therefore, a key challenge. One way to address this challenge is to attract students to enroll and succeed in science courses in college, even if they do not pursue a major in the science, technology, engineering, and mathematics (STEM) disciplines. In fact, only 20% of students receive a degree in STEM, yet virtually all undergraduates are required to take at least one science course. Introductory science courses are therefore critical to cultivating citizen scientists, as they include a large proportion of non- STEM majors. Indeed, a major thrust of recent undergraduate STEM educational reform has been the promotion of 'science for all'. The science for all concept goes beyond recruiting students into the STEM disciplines to promoting a level of scientific literacy necessary to make informed decisions. A clear implication of this inclusive attitude is the need to redesign introductory science courses to make them accessible and explicitly related to scientific literacy. This does not mean dumbing down courses; on the contrary, it means engaging students in real scientific investigations and incorporating explicit teaching about the process of science, thus fostering a lifelong appreciation for (and, hopefully, participation in) science. Unfortunately, many students enter college with minimal understanding of the process of science. And when they arrive in their introductory classes, science is presented to them as a system of facts to be memorized - comparable to memorizing a poem in a foreign language without understanding the vocabulary. New resources available through the Visionlearning project (http://www.visionlearning.com) provide the means to incorporate teaching about the process of science into disciplinary content, thus facilitating the reform the way that undergraduate students are taught science at the introductory level. This kind of educational reform may be a long-term approach to developing citizen scientists, but research from several different disciplines and perspectives suggests it is a critical step in building scientific literacy and lifelong participation in science.
ERIC Educational Resources Information Center
Bader, Morris
Presented are the teacher's guide and student manual for one of a series of self-instructional, computer-based learning modules for an introductory, undergraduate chemistry course. The student manual for this unit on the colligative properties of solutions includes objectives, prerequisites, pretest, discussion, and 20 problem sets. Included in…
Adams, Peter; Goos, Merrilyn
2010-01-01
Modern biological sciences require practitioners to have increasing levels of knowledge, competence, and skills in mathematics and programming. A recent review of the science curriculum at the University of Queensland, a large, research-intensive institution in Australia, resulted in the development of a more quantitatively rigorous undergraduate program. Inspired by the National Research Council's BIO2010 report, a new interdisciplinary first-year course (SCIE1000) was created, incorporating mathematics and computer programming in the context of modern science. In this study, the perceptions of biological science students enrolled in SCIE1000 in 2008 and 2009 are measured. Analysis indicates that, as a result of taking SCIE1000, biological science students gained a positive appreciation of the importance of mathematics in their discipline. However, the data revealed that SCIE1000 did not contribute positively to gains in appreciation for computing and only slightly influenced students' motivation to enroll in upper-level quantitative-based courses. Further comparisons between 2008 and 2009 demonstrated the positive effect of using genuine, real-world contexts to enhance student perceptions toward the relevance of mathematics. The results support the recommendation from BIO2010 that mathematics should be introduced to biology students in first-year courses using real-world examples, while challenging the benefits of introducing programming in first-year courses. PMID:20810961
Parallel programming of industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, M; Koniges, A; Simon, H
1998-07-21
In the introductory material, we overview the typical MPP environment for real application computing and the special tools available such as parallel debuggers and performance analyzers. Next, we draw from a series of real applications codes and discuss the specific challenges and problems that are encountered in parallelizing these individual applications. The application areas drawn from include biomedical sciences, materials processing and design, plasma and fluid dynamics, and others. We show how it was possible to get a particular application to run efficiently and what steps were necessary. Finally we end with a summary of the lessons learned from thesemore » applications and predictions for the future of industrial parallel computing. This tutorial is based on material from a forthcoming book entitled: "Industrial Strength Parallel Computing" to be published by Morgan Kaufmann Publishers (ISBN l-55860-54).« less
Soils: An Introduction, Fifth Edition
NASA Astrophysics Data System (ADS)
Baisden, W. Troy
Understanding the links among global biogeochemical cycles, ecology, hydrology and climate demands a knowledge base that has traditionally been considered soil science. However, for soil science to play a role in this understanding, geologists, hydrologists, ecologists, climatologists, and many others must have a fundamental understanding of soil science. Do introductory soil science texts speak to this audience?To address this question, I reviewed the fifth edition of a textbook that set out in its original edition to accomplish just this goal—to be the introductory soil science text for students outside the discipline of soil science. As such, Singer and Munns' Soils:An Introduction must be compared to The Nature and Properties of Soils by N.C. Brady and R.R. Weil, a standard text directly descended from a first edition published in 1922.
Metacognition: computation, biology and function
Fleming, Stephen M.; Dolan, Raymond J.; Frith, Christopher D.
2012-01-01
Many complex systems maintain a self-referential check and balance. In animals, such reflective monitoring and control processes have been grouped under the rubric of metacognition. In this introductory article to a Theme Issue on metacognition, we review recent and rapidly progressing developments from neuroscience, cognitive psychology, computer science and philosophy of mind. While each of these areas is represented in detail by individual contributions to the volume, we take this opportunity to draw links between disciplines, and highlight areas where further integration is needed. Specifically, we cover the definition, measurement, neurobiology and possible functions of metacognition, and assess the relationship between metacognition and consciousness. We propose a framework in which level of representation, order of behaviour and access consciousness are orthogonal dimensions of the conceptual landscape. PMID:22492746
Integrated Circuits in the Introductory Electronics Laboratory
ERIC Educational Resources Information Center
English, Thomas C.; Lind, David A.
1973-01-01
Discusses the use of an integrated circuit operational amplifier in an introductory electronics laboratory course for undergraduate science majors. The advantages of this approach and the implications for scientific instrumentation are identified. Describes a number of experiments suitable for the undergraduate laboratory. (Author/DF)
Vision and change in introductory physics for the life sciences
NASA Astrophysics Data System (ADS)
Mochrie, S. G. J.
2016-07-01
Since 2010, our physics department has offered a re-imagined calculus-based introductory physics sequence for the life sciences. These courses include a selection of biologically and medically relevant topics that we believe are more meaningful to undergraduate premedical and biological science students than those found in a traditional course. In this paper, we highlight new aspects of the first-semester course, and present a comparison of student evaluations of this course versus a more traditional one. We also present the effect on student perception of the relevance of physics to biology and medicine after having taken this course.
ERIC Educational Resources Information Center
Tsaparlis, Georgios; Kolioulis, Dimitrios; Pappa, Eleni
2010-01-01
We present a programme for a novel introductory lower-secondary chemistry course (seventh or eighth grade) that aims at the application of theories of science education, and in particular of conceptual/meaningful learning and of teaching methodology that encourages active and inquiry forms of learning The approach is rigorous with careful use of…
Microbiology in Introductory Biology.
ERIC Educational Resources Information Center
Callery, Michael L.; And Others
1980-01-01
Describes a microbiology unit developed for an introductory college biology course in which the identity of an unknown bacterium is determined. Also described is an interactive taxonomy computer program which aids in the identity of the unknown organism. (CS)
Black Holes: A Selected Bibliography.
ERIC Educational Resources Information Center
Fraknoi, Andrew
1991-01-01
Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…
Haudek, Kevin C; Prevost, Luanna B; Moscarella, Rosa A; Merrill, John; Urban-Lurain, Mark
2012-01-01
Students' writing can provide better insight into their thinking than can multiple-choice questions. However, resource constraints often prevent faculty from using writing assessments in large undergraduate science courses. We investigated the use of computer software to analyze student writing and to uncover student ideas about chemistry in an introductory biology course. Students were asked to predict acid-base behavior of biological functional groups and to explain their answers. Student explanations were rated by two independent raters. Responses were also analyzed using SPSS Text Analysis for Surveys and a custom library of science-related terms and lexical categories relevant to the assessment item. These analyses revealed conceptual connections made by students, student difficulties explaining these topics, and the heterogeneity of student ideas. We validated the lexical analysis by correlating student interviews with the lexical analysis. We used discriminant analysis to create classification functions that identified seven key lexical categories that predict expert scoring (interrater reliability with experts = 0.899). This study suggests that computerized lexical analysis may be useful for automatically categorizing large numbers of student open-ended responses. Lexical analysis provides instructors unique insights into student thinking and a whole-class perspective that are difficult to obtain from multiple-choice questions or reading individual responses.
Haudek, Kevin C.; Prevost, Luanna B.; Moscarella, Rosa A.; Merrill, John; Urban-Lurain, Mark
2012-01-01
Students’ writing can provide better insight into their thinking than can multiple-choice questions. However, resource constraints often prevent faculty from using writing assessments in large undergraduate science courses. We investigated the use of computer software to analyze student writing and to uncover student ideas about chemistry in an introductory biology course. Students were asked to predict acid–base behavior of biological functional groups and to explain their answers. Student explanations were rated by two independent raters. Responses were also analyzed using SPSS Text Analysis for Surveys and a custom library of science-related terms and lexical categories relevant to the assessment item. These analyses revealed conceptual connections made by students, student difficulties explaining these topics, and the heterogeneity of student ideas. We validated the lexical analysis by correlating student interviews with the lexical analysis. We used discriminant analysis to create classification functions that identified seven key lexical categories that predict expert scoring (interrater reliability with experts = 0.899). This study suggests that computerized lexical analysis may be useful for automatically categorizing large numbers of student open-ended responses. Lexical analysis provides instructors unique insights into student thinking and a whole-class perspective that are difficult to obtain from multiple-choice questions or reading individual responses. PMID:22949425
Kramer, IJsbrand M.; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia
2012-01-01
The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students’ learning, we incorporated image tests into our introductory cell biology course. Groups of students used a single text dealing with signal transduction, which was supplemented with images made in one of three iconographic styles. Typically, we employed realistic renderings, using computer-generated Protein Data Bank (PDB) structures; realistic-schematic renderings, using shapes inspired by PDB structures; or schematic renderings, using simple geometric shapes to represent cellular components. The control group received a list of keywords. When students were asked to draw and describe the process in their own style and to reply to multiple-choice questions, the three iconographic approaches equally improved the overall outcome of the tests (relative to keywords). Students found the three approaches equally useful but, when asked to select a preferred style, they largely favored a realistic-schematic style. When students were asked to annotate “raw” realistic images, both keywords and schematic representations failed to prepare them for this task. We conclude that supplementary images facilitate the comprehension process and despite their visual clutter, realistic representations do not hinder learning in an introductory course. PMID:23222839
Kramer, Ijsbrand M; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia
2012-01-01
The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students used a single text dealing with signal transduction, which was supplemented with images made in one of three iconographic styles. Typically, we employed realistic renderings, using computer-generated Protein Data Bank (PDB) structures; realistic-schematic renderings, using shapes inspired by PDB structures; or schematic renderings, using simple geometric shapes to represent cellular components. The control group received a list of keywords. When students were asked to draw and describe the process in their own style and to reply to multiple-choice questions, the three iconographic approaches equally improved the overall outcome of the tests (relative to keywords). Students found the three approaches equally useful but, when asked to select a preferred style, they largely favored a realistic-schematic style. When students were asked to annotate "raw" realistic images, both keywords and schematic representations failed to prepare them for this task. We conclude that supplementary images facilitate the comprehension process and despite their visual clutter, realistic representations do not hinder learning in an introductory course.
Metz, Anneke M
2008-01-01
There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study.
A Coherent Content Storyline Approach for Introductory Astronomy
NASA Astrophysics Data System (ADS)
Palma, Christopher; Flarend, A.; McDonald, S.; Kregenow, J. M.
2014-01-01
The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Part of the multi-faceted ESSP effort includes revising the curriculum of university science classes known to be taken by large numbers of elementary pre-service teachers. By adopting research-based pedagogical approaches in our courses, we hope to expose these pre-service teachers to excellent examples of science teaching. In this presentation, we will discuss changes made in a pilot study to one section of our introductory astronomy survey course. There have been many articles published in the Astronomy Education Review and elsewhere that detail research-based pedagogical practices for introductory astronomy courses. Many of those practices (such as from the Center for Astronomy Education) have been incorporated into introductory astronomy courses at Penn State. However, our work with middle-grades teachers in the ESSP project is based on two key practices: a Claims, Evidence, and Reasoning (CER) framework (McNeill & Krajcik 2012) and a coherent science content storyline (Roth,et. al., 2011). As a first step in modeling these practices in our University courses, we reorganized our Astro course using a content storyline approach. We plan to incorporate CER activities into the course next year that advance the storyline described. In this poster, we present the storyline developed by our team, which we believe was successful in its pilot, and was built around a conceptually coherent presentation of the diverse set of phenomena typical of an introductory astronomy course. We adopted as our main learning goal a statement based on the cosmological principle that the physical laws throughout the Universe are identical everywhere. In addition, we organized the class schedule to connect the work done in each class to this storyline. We suggest that a coherent content storyline is a useful tool for others who teach broad survey astronomy courses similar to ours at Penn State. We gratefully acknowledge support from the NSF MSP program award DUE#0962792.
ERIC Educational Resources Information Center
Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence
2013-01-01
The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…
NASA Astrophysics Data System (ADS)
Mason, Andrew J.; Bertram, Charles A.
2018-06-01
When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.
Hands-on-Entropy, Energy Balance with Biological Relevance
NASA Astrophysics Data System (ADS)
Reeves, Mark
2015-03-01
Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.
Teaming introductory biology and research labs in support of undergraduate education.
Heitz, Jean G; Giffen, Cynthia J
2010-09-01
Numerous studies have indicated the need to improve the general level of science literacy among students and to increase the number of students electing science as a career. One mechanism for doing this is to involve undergraduates in research. This article reports how our Introductory Biology 152 course has worked synergistically with mentors in research labs on the University of Wisconsin-Madison campus to increase undergraduate retention in research and at the same time improve their higher order inquiry and communication skills.
Student Interpretations of Phylogenetic Trees in an Introductory Biology Course
ERIC Educational Resources Information Center
Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa
2014-01-01
Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…
Using Astrology to Teach Research Methods to Introductory Psychology Students.
ERIC Educational Resources Information Center
Ward, Roger A.; Grasha, Anthony F.
1986-01-01
Provides a classroom demonstration designed to test an astrological hypothesis and help teach introductory psychology students about research design and data interpretation. Illustrates differences between science and nonscience, the role of theory in developing and testing hypotheses, making comparisons among groups, probability and statistical…
Introduction to autonomous mobile robotics using Lego Mindstorms NXT
NASA Astrophysics Data System (ADS)
Akın, H. Levent; Meriçli, Çetin; Meriçli, Tekin
2013-12-01
Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the Lego Mindstorms NXT kits are used as the robot platform. The aims, scope and contents of the course are presented, and the design of the laboratory sessions as well as the term projects, which address several core problems of robotics and artificial intelligence simultaneously, are explained in detail.
Methods in Astronomical Image Processing
NASA Astrophysics Data System (ADS)
Jörsäter, S.
A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew
2018-01-01
Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.
Introductory Biology Labs... They Just Aren't Sexy Enough!
ERIC Educational Resources Information Center
Cotner, Sehoya; Gallup, Gordon G., Jr.
2011-01-01
The typical introductory biology curriculum includes the nature of science, evolution and genetics. Laboratory activities are designed to engage students in typical subject areas ranging from cell biology and physiology, to ecology and evolution. There are few, if any, laboratory classes exploring the biology and evolution of human sexual…
Teaching Introductory Weather and Climate Using Popular Movies
ERIC Educational Resources Information Center
Yow, Donald M.
2014-01-01
Addressing the need for an introductory atmospheric science course for nonscience majors, a course was developed that provides a general understanding of atmospheric processes by examining how meteorological events are portrayed in movies. The course also uses films to study the causes of, impacts associated with, and potential adaptations to…
"The Scientific Method" as Myth and Ideal
ERIC Educational Resources Information Center
Woodcock, Brian A.
2014-01-01
"The Scientific Method" as it has been portrayed in popular and introductory contexts has been declared a myth. The variation that one finds in introductory presentations of "The Scientific Method" is explained by the fact that there is no canonical account among historians and philosophers of science. What, in particular, is…
A Tutorial Design Process Applied to an Introductory Materials Engineering Course
ERIC Educational Resources Information Center
Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine
2013-01-01
We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…
Effectiveness of "Tutorials for Introductory Physics" in Argentinean High Schools
ERIC Educational Resources Information Center
Benegas J.; Flores, J. Sirur
2014-01-01
This longitudinal study reports the results of a replication of "Tutorials in Introductory Physics" in high schools of a Latin-American country. The main objective of this study was to examine the suitability of "Tutorials" for local science education reform. Conceptual learning of simple resistive electric circuits was…
Rapid Conversion of Traditional Introductory Physics Sequences to an Activity-Based Format
ERIC Educational Resources Information Center
Yoder, Garett; Cook, Jerry
2014-01-01
The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…
ERIC Educational Resources Information Center
Kanin, Maralee R.; Pontrello, Jason K.
2016-01-01
Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology…
Clinical Application Projects (CAPs) for Health Science Students in Introductory Microbiology.
ERIC Educational Resources Information Center
Halyard, Rebecca A.
Clinical Application Projects (CAPs) have been developed that allow dental hygiene and nursing students to apply introductory microbiology principles and skills learned in lecture and laboratory to a problem in an appropriate clinical situation. CAPs therefore substitute for the traditional study of "unknowns". Principles and processes emphasized…
Characterizing Teaching in Introductory Geology Courses: Measuring Classroom Practices
ERIC Educational Resources Information Center
Budd, D. A.; van der Hoeven Kraft, K. J.; McConnell, D. A.; Vislova, T.
2013-01-01
Most research about reformed teaching practices in the college science classroom is based on instructor self-report. This research describes what is happening in some introductory geology courses at multiple institutions across the country using external observers. These observations are quantified using the Reformed Teaching Observation Protocol…
ERIC Educational Resources Information Center
McNeal, Karen S.; Spry, Jacob M.; Mitra, Ritayan; Tipton, Jamie L.
2014-01-01
This research examines a semester-long introductory environmental geology course, which emphasized climate science using an Earth systems approach and employed a multipronged teaching strategy comprising lecture, movie viewing, class dialogues, and journaling. Evidence of student engagement during various pedagogical approaches (e.g., movie…
An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores
ERIC Educational Resources Information Center
O'Connor, Kim C.
2007-01-01
Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…
MRI Experiments for Introductory Physics
ERIC Educational Resources Information Center
Taghizadeh, Sanaz; Lincoln, James
2018-01-01
The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly…
Climate and History-An Alternative Science Distribution Course
ERIC Educational Resources Information Center
Moran, Joseph M.
1976-01-01
Describes an introductory college science course for nonscience majors concentrating on climatology and meteorology. Student apathy and discontent with science is overcome through a historically relevant presentation of the subjects. Results indicate a significant stimulation of student interest in science. (SL)
NASA Astrophysics Data System (ADS)
Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann
2018-06-01
In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.
Microcomputers in the Introductory Laboratory.
ERIC Educational Resources Information Center
Bare, John K.
1982-01-01
A microcomputer was used successfully to replicate Sternberg's 1966 study of retrieval from short-term memory and Sperling's 1960 study on sensory or iconic memory. Computers with a capacity for measuring reaction time are useful in the laboratory for introductory psychology courses. (SR)
On equivalent resistance of electrical circuits
NASA Astrophysics Data System (ADS)
Kagan, Mikhail
2015-01-01
While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.
Introductory animal science-based instruction influences attitudes on animal agriculture issues.
Bobeck, E A; Combs, D K; Cook, M E
2014-02-01
The demographics of incoming university animal science majors have shifted from students with a farm background to urban students with no history of direct livestock contact. Research completed before the Internet was a central source of information indicated that incoming urban students tend to express no opinion or a neutral opinion regarding livestock agriculture issues. Due to the changing background of incoming students enrolled in introductory university-level animal science classes, we sought to determine 1) if livestock background (self-identified as raised in a farm or urban setting), sex, or animal science career interest influenced the opinions of incoming students regarding critical issues involving livestock farming practices and 2) if 15 wk of introductory animal science instruction changed student opinions. A total of 224 students were given 2 identical anonymous surveys (start and end of 15 wk) with 5 demographic questions and 9 animal issue statements. For each statement, students marked their opinion by placing a vertical line on a continuous 130 mm horizontal line, where a vertical line placed at 0 mm = strongly agree and 130 mm = strongly disagree. Data were analyzed by ANOVA to determine any significant effects of instruction, background, sex, and future career preference on survey responses. Before instruction, urban students were less agreeable than farm students that animal farming was moral and humane and that farmers are concerned about animal welfare and livestock are of value to society (P ≤ 0.05). Urban students were more likely than farm students to purchase organic foods or food based on environmental/welfare standards (P ≤ 0.05). Introductory animal science instruction resulted in students becoming more agreeable that animal farming was humane, farmers are concerned about animal welfare, and animal agriculture is a value to society (P ≤ 0.05). Postinstruction, students were more likely to buy food products based on price (P ≤ 0.05). Males found farm practices more humane than females (P ≤ 0.05), but sex differences were not evident for other questions. Future professional career plans did not affect student opinions. Data showed that incoming urban students tend to be more neutral with regards to animal farming issues, and introductory animal science instruction fosters a more agreeable attitude towards animal farming practices, especially in students with urban backgrounds.
2008-01-01
There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study. PMID:18765754
NASA Astrophysics Data System (ADS)
Reeves, Mark
2014-03-01
Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.
SCIENCE AND TECHNOLOGY AS DEVELOPMENT FACTORS.
ERIC Educational Resources Information Center
LENGYEL, PETER
PROCEEDINGS FROM A MEETING OF UNESCO'S ADVISORY COUNCIL TO ITS OFFICE OF ECONOMIC ANALYSIS AND ITS DIVISION OF SCIENCE POLICY ARE REPORTED. THE CENTRAL THEME OF THE CONFERENCE IS SCIENCE AND TECHNOLOGY IN ECONOMIC DEVELOPMENT. AN INTRODUCTORY PAPER DEALS WITH RESOURCES IN SCIENCE AND TECHNOLOGY, THE INFLUENCE OF SCIENCE AND TECHNOLOGY ON…
Modern astronomy labs and the new digital sky
NASA Astrophysics Data System (ADS)
Pollock, Joseph T.
2000-12-01
My colleagues in the other physical and biological sciences often comment on how ``easy'' it is to draw students into our introductory astronomy courses. There seems to be a universal, so to speak, appeal for the subject. We astronomers have it made, right? Well, not in the introductory laboratories. We face a real dilemma as to how to provide our students with an ``experimental'' experience, equivalent to that in the other sciences, where they obtain their own data, analyze it, and learn something about the natural phenomenon they are studying. The complications are significant.
Cases of Science Professors' Use of Nature of Science
ERIC Educational Resources Information Center
Karakas, Mehmet
2009-01-01
This study provides qualitative analysis of data that answers the following research question: how do college science faculty teach science and NOS and incorporate aspects of NOS and the history of science into their undergraduate courses? The study concentrates on four cases and more specifically on three introductory science classes and on four…
Peer Support Networks in a Large Introductory Psychology Class.
ERIC Educational Resources Information Center
Slotnick, Robert S.; And Others
Networks have emerged as a major topic of interest in the behavioral sciences, and network concepts have recently been extended by community psychologists to higher education. To examine the effectiveness of peer networks within an introductory psychology class, networks of four students each met weekly in place of a lecture to review material and…
ERIC Educational Resources Information Center
Drury, Sara A. Mehltretter
2015-01-01
The author argues that deliberation is an innovative method for teaching communication skills, particularly group communication, in the undergraduate science, technology, engineering, and math (STEM) curriculum. A case study using a deliberation activity on global climate change in an introductory biology course demonstrates how deliberative…
ERIC Educational Resources Information Center
Pontrello, Jason K.
2016-01-01
Introductory organic laboratory courses frequently begin with a set of activities built around developing basic experimental skills and techniques, often with guided-inquiry components. A sequence of skill-based activities is described to promote reflection, analysis of, and interpersonal communication around science. A multistage process was used…
Introduction of Interactive Learning into French University Physics Classrooms
ERIC Educational Resources Information Center
Rudolph, Alexander L.; Lamine, Brahim; Joyce, Michael; Vignolles, Hélène; Consiglio, David
2014-01-01
We report on a project to introduce interactive learning strategies (ILS) to physics classes at the Université Pierre et Marie Curie, one of the leading science universities in France. In Spring 2012, instructors in two large introductory classes, first-year, second-semester mechanics, and second-year introductory electricity and magnetism,…
Exploring the Relationship between Self-Efficacy and Retention in Introductory Physics
ERIC Educational Resources Information Center
Sawtelle, Vashti; Brewe, Eric; Kramer, Laird H.
2012-01-01
The quantitative results of Sources of Self-Efficacy in Science Courses-Physics (SOSESC-P) are presented as a logistic regression predicting the passing of students in introductory Physics with Calculus I, overall as well as disaggregated by gender. Self-efficacy as a theory to explain human behavior change [Bandura [1977] "Psychological…
ERIC Educational Resources Information Center
Sebesta, Amanda J.; Speth, Elena Bray
2017-01-01
In college introductory science courses, students are challenged with mastering large amounts of disciplinary content while developing as autonomous and effective learners. Self-regulated learning (SRL) is the process of setting learning goals, monitoring progress toward them, and applying appropriate study strategies. SRL characterizes…
"Measuring Me": Using Nutrition Education Curriculum Activities to Teach Elementary Mathematics
ERIC Educational Resources Information Center
McLeod, Sara; Carraway-Stage, Virginia; Hovland, Jana; Duffrin, Melani
2012-01-01
"Measuring Me" is an introductory activity developed to be used while collecting pre-study anthropometric data for the Food Math and Science Teacher Enhancement Resource (FoodMASTER) Initiative. Using "Measuring Me" as an introductory activity for collecting anthropometric measurements in the classroom was feasible and well received by students…
ERIC Educational Resources Information Center
Gappa, Judith M.; Pearce, Janice
Developed to help faculty teaching introductory courses in microeconomics, psychology, and sociology in colleges and universities incorporate existing knowledge about women into their course content and teaching practices, this report is organized into two sets of guidelines. The first, "Content Guidelines: Sex and Gender in the Introductory…
What Motivates Introductory Geology Students to Study for an Exam?
ERIC Educational Resources Information Center
Lukes, Laura A.; McConnell, David A.
2014-01-01
There is a need to understand why some students succeed and persist in STEM fields and others do not. While numerous studies have focused on the positive results of using empirically validated teaching methods in introductory science, technology, engineering, and math (STEM) courses, little data has been collected about the student experience in…
Personality Types and Student Performance in an Introductory Physics Course
ERIC Educational Resources Information Center
Harlow, Jason J. B.; Harrison, David M.; Justason, Michael; Meyertholen, Andrew; Wilson, Brian
2017-01-01
We measured the personality type of the students in a large introductory physics course of mostly life science students using the True Colors instrument. We found large correlations of personality type with performance on the precourse Force Concept Inventory (FCI), both term tests, the postcourse FCI, and the final examination. We also saw…
ERIC Educational Resources Information Center
Ryker, Katherine Dameron Almquist
2014-01-01
The incorporation of reformed, inquiry-based pedagogies in introductory courses has been shown to improve content knowledge, student retention, interest and attitudes towards science. However, there is evidence that suggests these techniques are not being widely used by the geoscience community. This research focuses on the incorporation of…
"Reverse Engineering" in Introductory Physics Education
ERIC Educational Resources Information Center
Badraslioglu, Duruhan
2016-01-01
One of the intermediate goals of STEM education has been turning our students into problem solvers and critical thinkers who are equipped with better scientific analysis skills. In light of this initiative, it is imperative that we, the educators, modify the way we teach classic introductory physics topics, and in the long run all sciences, and…
ERIC Educational Resources Information Center
Kouh, Minjoon; Merz, River
2013-01-01
We piloted a semester-long, interdisciplinary, introductory science course using recently developed optogenetic technique as a main context. In neuroscience application, this technique introduces the gene of light-sensitive membrane protein into a targeted class of neurons, whose activity then can be modulated with a laser of specific wavelength.…
Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics
ERIC Educational Resources Information Center
Anupam, Aditya; Gupta, Ridhima; Naeemi, Azad; JafariNaimi, Nassim
2018-01-01
Quantum mechanics (QMs) is a foundational subject in many science and engineering fields. It is difficult to teach, however, as it requires a fundamental revision of the assumptions and laws of classical physics and probability. Furthermore, introductory QM courses and texts predominantly focus on the mathematical formulations of the subject and…
ERIC Educational Resources Information Center
Wu, Yun; Sankar, Chetan S.
2013-01-01
Although students in Introductory Information Systems courses are taught new technology concepts, the complexity and constantly changing nature of these technologies makes it challenging to deliver the concepts effectively. Aiming to improve students' learning experiences, this research utilized the five phases of design science methodology to…
What's Love Got to Do with It? Rethinking Common Sense Assumptions
ERIC Educational Resources Information Center
Trachman, Matthew; Bluestone, Cheryl
2005-01-01
One of the most basic tasks in introductory social science classes is to get students to reexamine their common sense assumptions concerning human behavior. This article introduces a shared assignment developed for a learning community that paired an introductory sociology and psychology class. The assignment challenges students to rethink the…
Looking for the Core in the Wrong Place
ERIC Educational Resources Information Center
Schweingruber, David
2005-01-01
This article presents the author's comments on the article by Keith and Ender on sociology's disciplinary core being reflected in introductory sociology textbooks. The author mentions that Keith and Ender claim that if sociology has a disciplinary core, it "would logically be located in the introductory textbook." Furthermore, since a science is…
ERIC Educational Resources Information Center
Toomey, Thomas; Richardson, Deborah; Hammock, Georgina
2017-01-01
Many students who declare a psychology major are unaware that they are studying a scientific discipline, precipitating a need for exercises and experiences that help students understand the scientific nature of the discipline. The present study explores aspects of an introductory psychology class that may contribute to students' understanding of…
NASA Astrophysics Data System (ADS)
Pelch, Michael Anthony
STEM educational reform encourages a transition from instructor-centered passive learning classrooms to student-centered, active learning environments. Instructors adopting these changes incorporate research-validated teaching practices that improve student learning. Professional development that trains faculty to implement instructional reforms plays a key role in supporting this transition. Effective professional development features authentic, rigorous experiences of sufficient duration. We investigated changes in the teaching beliefs of college faculty resulting from their participation in InTeGrate project that guided them in the development of reformed instructional materials for introductory college science courses. A convergent parallel mixed methods design was employed using the Teacher Belief Interview, the Beliefs About Reformed Science Teaching and Learning survey and participants' reflections on their experience to characterize pedagogical beliefs at different stages of their professional development. Qualitative and quantitative data show a congruent change toward reformed pedagogical beliefs for the majority of participants. The majority of participants' TBI scores improved toward more student-centered pedagogical beliefs. Instructors who began with the most traditional pedagogical beliefs showed the greatest gains. Interview data and participants' reflections aligned with the characteristics of effective professional development. Merged results suggest that the most significant changes occurred in areas strongly influenced by situational classroom factors. Introductory geoscience courses play a crucial role in recruiting new geoscience majors but we know relatively little about how students' attitudes and motivations are impacted by their experiences in geoscience classes. Students' attitudes toward science and its relevance are complex and are dependent upon the context in which they encounter science. Recent investigations into the attitudes of geoscience students have provided evidence to support this observation. We sought to expand this data set to provide a broader characterization of students' attitudes. We examined students' attitudes about the nature of science and its relevance before and after taking an introductory geology course. To characterize students' attitudes, we employed two quantitative instruments: the revised Scientific Attitude Inventory and the Changes in Attitudes about the Relevance of Science survey. Results show a negative trend in students' attitudes about the nature of science while their attitudes about the relevance of science were more variable. Our data support the findings of previous studies showing only minimal change in students' attitudes about the nature of science and its relevance after taking an introductory science course. The data also highlighted several misconceptions about the nature of science that could have implications toward future investigations of how geoscience courses impact student attitudes about science. There is consensus among industrialized nations that it is important for its citizens and leaders to be scientifically literate. Therefore, it is important for the educational system to provide students with pertinent scientific knowledge, an understanding of the scientific processes, and the ability to evaluate scientific claims. Students' attitudes toward science and its relevance are important aspects of science literacy. We sought to determine if the repeated and explicit exposure to socioscientific issues through the use of InTeGrate course materials would result in positive changes to students' attitudes about the nature and relevance of science. We collected data on student attitudes using the revised Scientific Attitude Inventory and the Changes in Attitude about the Relevance of Science survey in a quasi-experimental design over four semesters of an introductory physical geology course. Results show that the emphasis of socioscientific issues can influence both students' attitudes about the nature of science and their perceptions on the relevance of science. Changes were observed in data from both STEM and non-STEM majors. These findings have implications about how we select content for introductory science courses in general, and proves the utility of designing geoscience lessons based around socioscientific issues.
NASA Astrophysics Data System (ADS)
Donnelly, Suzanne M.
This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations
Assessment of Factors that Influence the Recruitment of Majors from Introductory Geology Classes
NASA Astrophysics Data System (ADS)
Hoisch, T. D.; Bowie, J. I.
2009-12-01
In order to guide the formulation of strategies for recruiting undergraduates taking introductory geology courses into the geology program at Northern Arizona University, we surveyed 783 students in introductory geology classes and 23 geology majors in their junior and senior years. Our introductory courses (GLG100, Introduction to Geology; GLG101, Physical Geology; and GLG112, Geologic Disasters) typically enroll ~600 students each semester. The majority of students in these classes are non-majors who take them in order to satisfy a university general education requirement (called “Liberal Studies requirements” at NAU). A large proportion of these students are freshmen (51%) and sophomores (30%), and many have not yet decided on a major or are uncertain about the major they have chosen. Our analysis shows that ~7% of students in the introductory classes are possible candidates for recruitment. Although a small percentage, it represents a large number of individuals, in fact more than could be accommodated were they all to decide to major in geology. Influential factors that weigh in favor of majoring in geology include good employability, good salary potential, and opportunities for working outdoors, field work, observing nature, travel, and environmentally friendly employment. In addition, students view a career as a geologist as potentially the most fulfilling of the different science occupations (biologist, chemist, geologist, environmental scientist, physicist) and among the more environmentally friendly. However, students perceive geology to be the least difficult of the sciences, and geology occupations to be low-paying and low in prestige relative to the other sciences. These negative perceptions could be countered by providing data to introductory students showing the starting salaries of geologists in comparison to other science occupations, and by communicating the rigorous nature of the more advanced classes in the geology degree program. A preliminary finding of this study is that administering surveys may have the beneficial unintended consequence of inspiring students in introductory classes to reconsider their choice of major. From the Fall 2007 semester to the Spring 2008 semester, 14 of 573 introductory students or 2.4% continued into a geology course that can serve as the second course in the major, whereas from the Fall 2008 semester to the Spring 2009 semester, 24 of 609 students or 4.0% continued, a 67% increase in the rate of continuation. One possible explanation for the dramatic increase is that surveys were administered to students in the introductory classes in Fall 2008 but not in Fall 2007. If administering surveys was in fact the cause of the increase in the continuation rate, then we may have encountered a “Hawthorne effect;” that is, a situation in which the condition of being studied causes subjects to change their behavior. The process of taking the survey may have caused students to reconsider their choice of major, although this was not the intended purpose or design of the surveys.
NASA Technical Reports Server (NTRS)
Olsen, Lola
1992-01-01
In addition to the discussions, Ocean Climate Data Workshop hosts gave participants an opportunity to hear about, see, and test for themselves some of the latest computer tools now available for those studying climate change and the oceans. Six speakers described computer systems and their functions. The introductory talks were followed by demonstrations to small groups of participants and some opportunities for participants to get hands-on experience. After this familiarization period, attendees were invited to return during the course of the Workshop and have one-on-one discussions and further hands-on experience with these systems. Brief summaries or abstracts of introductory presentations are addressed.
Social Science Curriculum Guide and Selected Multi-Media, 10-12.
ERIC Educational Resources Information Center
Gaydosh, Ronald
GRADES OR AGES: Grades 10-12. SUBJECT MATTER: Social science. ORGANIZATION AND PHYSICAL APPEARANCE: The extensive introductory material includes rationale, definitions of the social science core disciplines, glossary of terms, and descriptions of concepts. The course material includes political science, history, economics, geography, sociology,…
Building Bridges between Science Courses Using Honors Organic Chemistry Projects
ERIC Educational Resources Information Center
Hickey, Timothy; Pontrello, Jason
2016-01-01
Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…
ERIC Educational Resources Information Center
Green, Muriel; And Others
This document was developed to provide primary level school teachers in New York City with specific materials and suggestions for organizing effective learning experiences in the science area. The program is designed to emphasize both science knowledge and science processes. An introductory section presents ideas related to the overall philosophy…
Evolving Roles For Teaching Assistants In Introductory Courses
NASA Astrophysics Data System (ADS)
Dunbar, R. W.; Egger, A. E.; Schwartz, J. K.
2008-12-01
As we bring new research-based learning approaches, curricular innovations, and student engagement practices into the introductory science classroom, expectations of teaching assistants (TAs) should have, and have, changed. Similarly, the 21st century teaching assistant has different expectations of us. Maintaining relevance in this context means bringing TAs into an integrated teaching team that supports effective learning for students and provides structured professional development opportunities for TAs. A number of support efforts on our campus, with counterparts at many other universities, seek to optimize the instructional impact of faculty and teaching assistants, thus opening the door to enhanced student engagement (e.g. the quality of effort students put forth, their persistence in science and/or engineering courses, and their perception of scientific relevance in everyday life). Among these efforts, School of Earth Sciences course development TAs work 1:1 in advance of the term with introductory course faculty to design exercises and course materials that meet clearly articulated student learning goals or pedagogical challenges. Throughout the process, TAs are mentored by the faculty as well as science pedagogy experts. Initially funded by a major teaching award, the School is now moving to institutionalize this successful program which has broadened the definition of the TA role. Another area of optimization, reflecting Shulman's concept of pedagogical content knowledge, is our campus mandate that TA development take place within a departmental, as well as general, context. Both Chemistry and Physics expect introductory course TAs to lead interactive, guided-inquiry or tutorial-style sections. Integrating these sections with lecture and positively reinforcing course goals requires TA buy-in and a set of pedagogical facilitation skills cultivated through course-specific training and active mentoring while teaching. To better support the mentoring process in these and other departments, the MinT (Mentors in Teaching) program provides resources and a learning community for advanced graduate students who mentor TAs. There is clearly more to do, but we have come a long way from sink or swim toward an enriched infrastructure of support for teaching and learning in the introductory science classroom.
Matsumura, Mina; Nakayama, Takuto; Sozu, Takashi
2016-01-01
A survey of introductory statistics courses at Japanese medical schools was published as a report in 2014. To obtain a complete understanding of the way in which statistics is taught at the university level in Japan, it is important to extend this survey to related fields, including pharmacy, dentistry, and nursing. The current study investigates the introductory statistics courses offered by faculties of pharmaceutical sciences (six-year programs) at Japanese universities, comparing the features of these courses with those studied in the survey of medical schools. We collected relevant data from the online syllabi of statistics courses published on the websites of 71 universities. The survey items included basic course information (for example, the course names, the targeted student grades, the number of credits, and course classification), textbooks, handouts, the doctoral subject and employment status of each lecturer, and course contents. The period surveyed was July-September 2015. We found that these 71 universities offered a total of 128 statistics courses. There were 67 course names, the most common of which was "biostatistics (iryou toukeigaku)." About half of the courses were designed for first- or second-year students. Students earned fewer than two credits. There were 62 different types of textbooks. The lecturers held doctoral degrees in 18 different subjects, the most common being a doctorate in pharmacy or science. Some course content differed, reflecting the lecturers' academic specialties. The content of introductory statistics courses taught in pharmaceutical science programs also differed slightly from the equivalent content taught in medical schools.
Nuclear War and Science Teaching.
ERIC Educational Resources Information Center
Hobson, Art
1983-01-01
Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)
Using Science Fiction Movie Scenes to Support Critical Analysis of Science
ERIC Educational Resources Information Center
Barnett, Michael; Kafka, Alan
2007-01-01
This paper discusses pedagogical advantages and challenges of using science-fiction movies and television shows in an introductory science class for elementary teachers. The authors describe two instructional episodes in which scenes from the movies "Red Planet" and "The Core" were used to engage students in critiquing science as presented in…
How Pre-Service Teachers' Understand and Perform Science Process Skills
ERIC Educational Resources Information Center
Chabalengula, Vivien Mweene; Mumba, Frackson; Mbewe, Simeon
2012-01-01
This study explored pre-service teachers' conceptual understanding and performance on science process skills. A sample comprised 91 elementary pre-service teachers at a university in the Midwest of the USA. Participants were enrolled in two science education courses; introductory science teaching methods course and advanced science methods course.…
The Ballantine Teachers' Guide to Science Fiction.
ERIC Educational Resources Information Center
Allen, L. David
A guide for teaching science fiction in secondary and college classrooms, this book contains an introductory essay that covers a variety of points about teaching science fiction, with a discussion of the audience, the correlation between science and fiction, and the changing role of science fiction. In a second essay, four categories of science…
Basu, Alo C.; Mondoux, Michelle A.; Whitt, Jessica L.; Isaacs, André K.; Narita, Tomohiko
2017-01-01
Neuroscience is an integrative discipline for which students must achieve broad-based proficiency in many of the sciences. We are motivated by the premise that student pursuit of proficiency in science, technology, engineering, and mathematics (STEM) can be supported by awareness of the application of knowledge and tools from the various disciplines for solving complex problems. We refer to this awareness as “interdisciplinary awareness.” Faculty from biology, chemistry, mathematics/computer science, physics, and psychology departments contributed to a novel integrative introductory neuroscience course with no pre-requisites. STEM concepts were taught in “flipped” class modules throughout the semester: Students viewed brief videos and completed accompanying homework assignments independently. In subsequent class meetings, students applied the STEM concepts to understand nervous system structure and function through engaged learning activities. The integrative introduction to neuroscience course was compared to two other courses to test the hypothesis that it would lead to greater gains in interdisciplinary awareness than courses that overlap in content but were not designed for this specific goal. Data on interdisciplinary awareness were collected using previously published tools at the beginning and end of each course, enabling within-subject analyses. Students in the integrative course significantly increased their identification of scientific terms as relevant to neuroscience in a term-discipline relevance survey and increased their use of terms related to levels of analysis (e.g., molecular, cellular, systems) in response to an open-ended prompt. These gains were seen over time within the integrative introduction to neuroscience course as well as relative to the other two courses. PMID:29371849
ERIC Educational Resources Information Center
Clough, Michael P.
2011-01-01
With funding from the United States National Science Foundation, 30 historical short stories designed to teach science content and draw students' attention to the nature of science (NOS) have been created for post-secondary introductory astronomy, biology, chemistry, geology, and physics courses. The project rationale, story development and…
ERIC Educational Resources Information Center
Soja, Constance M.; Huerta, Deborah
2001-01-01
Describes an interactive internet exercise that enables students to engage in cooperative library and web research on a controversial topic in science, specifically the cloning of extinct lifeforms. Creates a dynamic learning environment in a large introductory geology course and demonstrates the importance of scientific literacy. (Author/SAH)
ERIC Educational Resources Information Center
Rhodes, Ashley; Rozell, Tim; Shroyer, Gail
2014-01-01
Many students who have the ability to succeed in science, technology, engineering and math (STEM) disciplines are often alienated by the traditional instructional methods encountered within introductory courses; as a result, attrition from STEM fields is highest after completion of these courses. This is especially true for females. The present…
ERIC Educational Resources Information Center
Gultice, Amy; Witham, Ann; Kallmeyer, Robert
2015-01-01
High failure rates in introductory college science courses, including anatomy and physiology, are common at institutions across the country, and determining the specific factors that contribute to this problem is challenging. To identify students at risk for failure in introductory physiology courses at our open-enrollment institution, an online…
Students Own Their Introductory Chemistry Experience: Becoming an Element for a Semester
ERIC Educational Resources Information Center
Fautch, Jessica M.; Foresman, James B.
2017-01-01
Introductory science courses serve a population of students in the major (i.e., chemistry) as well as those students outside the discipline (i.e., premed, biology, engineering). In an effort to help this diverse population of students connect personally with the content of the course, we sought ways to include student-centered activities, provide…
ERIC Educational Resources Information Center
Elliott, Emily R.; Reason, Robert D.; Coffman, Clark R.; Gangloff, Eric J.; Raker, Jeffrey R.; Powell-Coffman, Jo Anne; Ogilvie, Craig A.
2016-01-01
Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture…
What Do Conceptual Holes in Assessment Say about the Topics We Teach in General Chemistry?
ERIC Educational Resources Information Center
Luxford, Cynthia J.; Holme, Thomas A.
2015-01-01
Introductory chemistry has long been considered a service course by various departments that entrust chemistry departments with teaching their students. As a result, most introductory courses include a majority of students who are not chemistry majors, and many are health and science related majors who are required to take chemistry. To identify…
ERIC Educational Resources Information Center
Breckler, Jennifer; Teoh, Chia Shan; Role, Kemi
2011-01-01
Academic success in first-year college science coursework can strongly influence future career paths and usually includes a solid performance in introductory biology. We wanted to know whether factors affecting biology student performance might include learning style preferences and one's ability and confidence in self-assessing those learning…
ERIC Educational Resources Information Center
Wienhold, Caroline J.; Branchaw, Janet
2018-01-01
The transition to college is challenging for most students, especially those who aspire to major in the science, technology, engineering, or mathematics disciplines, in which introductory courses can be large and instruction less than optimal. This paper describes a novel, disciplinary first-year seminar (FYS) course, Exploring Biology, designed…
ERIC Educational Resources Information Center
Batz, Zachary; Olsen, Brian J.; Dumont, Jonathan; Dastoor, Farahad; Smith, Michelle K.
2015-01-01
The high attrition rate among science, technology, engineering, and mathematics (STEM) majors has long been an area of concern for institutions and educational researchers. The transition from introductory to advanced courses has been identified as a particularly "leaky" point along the STEM pipeline, and students who struggle early in…
The Use of Facebook in an Introductory MIS Course: Social Constructivist Learning Environment
ERIC Educational Resources Information Center
Ractham, Peter; Kaewkitipong, Laddawan; Firpo, Daniel
2012-01-01
The major objective of this article is to evaluate via a Design Science Research Methodology (DSRM) the implementation of a Social Constructivist learning framework for an introductory Management Information System (MIS) course. Facebook was used as a learning artifact to build and foster a learning environment, and a series of features and…
ERIC Educational Resources Information Center
Hartley, Laurel M.; Momsen, Jennifer; Maskiewicz, April; D'Avanzo, Charlene
2012-01-01
Biology majors often take introductory biology, chemistry, and physics courses during their first two years of college. The various and sometimes conflicting discourse about and explanations of matter and energy in these courses may contribute to confusion and alternative conceptions (those that differ from scientific consensus) in biology…
ERIC Educational Resources Information Center
Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh
2005-01-01
A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…
OkCupid Data for Introductory Statistics and Data Science Courses
ERIC Educational Resources Information Center
Kim, Albert Y.; Escobedo-Land, Adriana
2015-01-01
We present a data set consisting of user profile data for 59,946 San Francisco OkCupid users (a free online dating website) from June 2012. The data set includes typical user information, lifestyle variables, and text responses to 10 essay questions. We present four example analyses suitable for use in undergraduate introductory probability and…
ERIC Educational Resources Information Center
Hassad, Rossi A.
2009-01-01
There is widespread emphasis on reform in the teaching of introductory statistics at the college level. Underpinning this reform is a consensus among educators and practitioners that traditional curricular materials and pedagogical strategies have not been effective in promoting statistical literacy, a competency that is becoming increasingly…
Science Curriculum. Kindergarten through Grade Twelve.
ERIC Educational Resources Information Center
Fitchburg State Coll., MA. Dept. of Special Education.
This science curriculum guide provides a framework for science teachers of grades K-12 in the Leominster Public School System, Massachusetts. It represents the efforts of teachers and higher education faculty. An introductory section provides a philosophical statement on the nature of science and perspectives in the learning and teaching of…
Making Together: An Interdisciplinary, Inter-institutional Assistive-Technology Project.
Reiser, Susan; Bruce, Rebecca; Martin, Jackson; Skidmore, Brent
2017-01-01
Faculty at the University of North Carolina Asheville partnered with local healthcare professionals and retirement home residents and administrators on an assistive-technology project. The Creative Fabrication introductory computer science course incorporated subject-matter experts from the healthcare community, older and differently abled "users," medical students, and sculpture faculty. Over the semester, the class students created assistive devices to meet the needs of the retirement home residents. They prototyped their designs in foam and 3D modeling software and cast parts of their design in bronze or aluminum. User-centered design, the design process, and the importance of form and function were emphasized throughout the project.
Using Bad Science to Teach Good Chemistry.
ERIC Educational Resources Information Center
Epstein, Michael S.
1998-01-01
Describes the integration of topics dealing with "bad science"--pseudo, pathological, or deviant science--into introductory undergraduate courses in general and analytical chemistry, and provides extensive references for the chemistry instructor interested in these topics. The approach is to incorporate specific cases that address…
A Self-Paced Introductory Programming Course
ERIC Educational Resources Information Center
Gill, T. Grandon; Holton, Carolyn F.
2006-01-01
In this paper, a required introductory programming course being taught to MIS undergraduates using the C++ programming language is described. Two factors make the objectives of the course--which are to provide students with an exposure to the logical organization of the computer in addition to teaching them basic programming logic--particularly…
Inference and the Introductory Statistics Course
ERIC Educational Resources Information Center
Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross
2011-01-01
This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…
ERIC Educational Resources Information Center
Johnson, Donald M.; Ferguson, James A.; Lester, Melissa L.
1999-01-01
Of 175 freshmen agriculture students, 74% had prior computer courses, 62% owned computers. The number of computer topics studied predicted both computer self-efficacy and computer knowledge. A substantial positive correlation was found between self-efficacy and computer knowledge. (SK)
Examining Physics Career Interests: Recruitment and Persistence into College
NASA Astrophysics Data System (ADS)
Lock, R. M.; Hazari, Z.; Sadler, P. M.; Sonnert, G.
2012-03-01
Compared to the undergraduate population, the number of students obtaining physics degrees has been declining since the 1960s. This trend continues despite the increasing number of students taking introductory physics courses in high school and college. Our work uses an ex-post facto design to study the factors that influence students' decision to pursue a career in physics at the beginning of college. These factors include high school physics classroom experiences, other science-related experiences, and students' career motivations. The data used in this study is drawn from the Persistence Research in Science and Engineering (PRiSE) Project, a large-scale study that surveyed a nationally representative sample of college/university students enrolled in introductory English courses about their interests and prior experiences in science.
NASA Astrophysics Data System (ADS)
Philbrick, C. Russell
2005-08-01
The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.
ERIC Educational Resources Information Center
Drane, Denise; Smith, H. David; Light, Greg; Pinto, Larry; Swarat, Su
2005-01-01
Minority student attrition and underachievement is a long-standing and widespread concern in higher education. It is especially acute in introductory science courses which are prerequisites for students planning to pursue science-related careers. Poor performance in these courses often results in attrition of minorities from the science fields.…
Courses About Computers--For Secondary School Students
ERIC Educational Resources Information Center
Mattei, K. C.
1974-01-01
Goals and guidelines for teaching courses about computers to secondary school students are discussed. A method of teaching introductory ideas of computer operations through the use of a programmable calculator is suggested. (DT)
Computer Corner: Computer Graphics for the Vibrating String.
ERIC Educational Resources Information Center
Smith, David A.; Cunningham, R. Stephen
1986-01-01
Computer graphics are used to display the sum of the first few terms of the series solution for the problem of the vibrating string frequently discussed in introductory courses on differential equations. (MNS)
Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A.; Siwicki, Kathleen K.
2016-01-01
Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students’ engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge problems. During the eight semesters assessed in this study, URM students and those with less preparation attended SGMs with equal or greater frequency than their counterparts. Most agreed that SGMs enhanced their comprehension of biology and ability to articulate solutions. The historical grade gap between URM and non-URM students narrowed slightly in Biology 2, but not in other biology and science, technology, engineering, and mathematics courses. Nonetheless, URM students taking introductory biology after program implementation have graduated with biology majors or minors at the same rates as non-URM students, and have enrolled in postcollege degree programs at equal or greater rates. These results suggest that improved performance as measured by science grade point average may not be necessary to improve the persistence of students from underrepresented groups as life sciences majors. PMID:27496361
NASA Astrophysics Data System (ADS)
Gordon, E. S.
2011-12-01
Fitchburg State University has a diverse student population comprised largely of students traditionally underrepresented in higher education, including first-generation, low-income, and/or students with disabilities. Approximately half of our incoming students require developmental math coursework, but often enroll in science classes prior to completing those courses. Since our introductory geoscience courses (Oceanography, Meteorology, Geology, Earth Systems Science) do not have prerequisites, many students who take them lack basic math skills, but are taking these courses alongside science majors. In order to provide supplemental math instruction without sacrificing time for content, "The Math You Need, When You Need It (TMYN), a set of online math tutorials placed in a geoscience context, will be implemented in three of our introductory courses (Oceanography, Meteorology, and Earth Systems Science) during Fall, 2011. Students will complete 5-6 modules asynchronously, the topics of which include graphing skills, calculating rates, unit conversions, and rearranging equations. Assessment of quantitative skills will be tracked with students' pre- and post-test results, as well as individual module quiz scores. In addition, student assessment results from Oceanography will be compared to student data from Academic Year 2010-11, during which quantitative skills were evaluated with pre- and post-test questions, but students did not receive online supplemental instruction.
Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.
2013-01-01
We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton's laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629
Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D
2013-06-01
We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.
Simurda, Maryanne C
2012-01-01
As biology education is being redesigned toward an interdisciplinary focus and as pedagogical trends move toward active-learning strategies and investigative experiences, a restructuring of the course content for the Introductory Biology course is necessary. The introductory course in biology has typically been a survey of all the biosciences. If the total number of topics covered is reduced, is the students' overall knowledge of biology also reduced? Our introductory course has been substantially modified away from surveying the biological sciences and toward providing a deep understanding of a particular biological topic, as well as focusing on developing students' analytical and communication skills. Because of this shift to a topic-driven approach for the introductory course, we were interested in assessing our graduating students' overall knowledge of the various biological disciplines. Using the Major Field Test - Biology (Educational Testing Service (ETS), Princeton, NJ), we compared the test performance of graduating students who had a traditional lecture-based introductory course to those who had a topic-driven active-learning introductory course. Our results suggest that eliminating the traditional survey of biology and, instead, focusing on quantitative and writing skills at the introductory level do not affect our graduating students' overall breadth of knowledge of the various biosciences.
ERIC Educational Resources Information Center
Fencl, Heidi; Butler, Angie Huenink
2007-01-01
Classical physics has a long history of using demonstrations and experiments to develop ideas in introductory courses. The purpose of this exploration is to examine the effectiveness of a desk-top activity for helping students develop abstract reasoning. In the pilot exploration, students in three laboratory sections of a single physics course…
ERIC Educational Resources Information Center
Novick, Laura R.; Catley, Kefyn M.
2016-01-01
The ability to interpret and reason from Tree of Life (ToL) diagrams has become a vital component of science literacy in the 21st century. This article reports on the effectiveness of a research-based curriculum, including an instructional booklet, laboratory, and lectures, to teach the fundamentals of such tree thinking in an introductory biology…
ERIC Educational Resources Information Center
Loehr, John F.; Almarode, John T.; Tai, Robert H.; Sadler, Philip M.
2012-01-01
In a climate where increasing numbers of students are encouraged to pursue post-secondary education, the level of preparedness students have for college-level coursework is not far from the minds of all educators, especially high school teachers. Specifically within the biological sciences, introductory biology classes often serve as the…
CURRICULUM GUIDE FOR SCIENCE, PRIMARY 2-3.
ERIC Educational Resources Information Center
GRAHAM, KATHRYN A.; AND OTHERS
COURSE CONTENT, ACTIVITIES, AND REFERENCE INFORMATION FOR TEACHING SCIENCE IN SECOND AND THIRD GRADES ARE INCLUDED IN THIS VOLUME. INTRODUCTORY REMARKS DISCUSS AN APPROACH TO THE TEACHING OF SCIENCE AND THE GENERAL OBJECTIVES OF THE SCIENCE PROGRAM. SIX UNITS OF STUDY ARE PRESENTED FOR SECOND GRADE--(1) DIFFERENCES BETWEEN PLANTS AND ANIMALS, (2)…
ERIC Educational Resources Information Center
Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary
2016-01-01
Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical…
The George Engelmann Mathematics & Science Institute. 1993 Annual Report Science Scholar Program.
ERIC Educational Resources Information Center
Missouri Univ., St. Louis. George Englemann Mathematics & Science Inst.
This publication is a comprehensive report on the George Engelmann Mathematics and Science Institute's Science Scholar program (SSP) and its activities in 1993. The SSP provides high achieving high school students an introductory, 4-week summer curriculum designed to demonstrate the connecting thread running through all scientific thought. The 52…
A First Course in Biostatistics for Health Sciences Students.
ERIC Educational Resources Information Center
Harraway, J. A.; Sharples, K. J.
2001-01-01
Describes the content of a course on introductory biostatistics for health science students. Emphasizes the way in which study design and critical evaluation of research are developed in tandem with statistical methodology. (Author/MM)
The mass-luminosity relation in an introductory astronomy lab
NASA Astrophysics Data System (ADS)
LoPresto, Michael C.
2016-11-01
Exposing students in general education science courses of lower mathematical levels to experiments that make use of quantitative skills such as collecting and analyzing data is very important because they provide examples of how science is actually done. Experiments with relatively simple procedures that are also interesting and engaging which serve this purpose can be hard to find. This can especially be true for introductory college astronomy courses; however, courses of this type often do still have a laboratory component because most students, regardless of major, are required to take at least one laboratory science course. When required to work with data in a quantitative fashion, the difficulty students with lower mathematical skills often have is that any actual physical meaning of an experiment can become completely lost in a procedure that, to them, seems to be purely an exercise in complex mathematics and for which they have resorted to simply following by rote, from which, perhaps needless to say, they are likely to learn little or nothing. I have seen this happen numerous times and it has inspired me to focus on attempting to develop meaningful laboratory experiences for students of lower mathematical level courses, such as introductory astronomy and conceptual physics, that involve both the gathering and analysis of numerical data. What follows is a simple experiment of this type on the mass-luminosity relation for stars on the main sequence of the Hertzsprung-Russell diagram that has proven useful for an introductory astronomy laboratory course.
NASA Astrophysics Data System (ADS)
Follette, Katherine B.; McCarthy, D. W.
2012-01-01
We present preliminary results from a student survey designed to test whether the all-important life skill of numeracy/quantitative literacy can be fostered and improved upon in college students through the vehicle of non-major introductory courses in Astronomy. Many instructors of introductory science courses for non-majors would state that a major goal of our classes is to teach our students to distinguish between science and pseudoscience, truth and fiction, in their everyday lives. It is difficult to believe that such a skill can truly be mastered without a fair amount of mathematical sophistication in the form of arithmetic, statistical and graph reading skills that many American college students unfortunately lack when they enter our classrooms. In teaching what is frequently their "terminal science course in life” can we instill in our students the numerical skills that they need to be savvy consumers, educated citizens and discerning interpreters of the ever-present polls, studies and surveys in which our society is awash? In what may well be their final opportunity to see applied mathematics in the classroom, can we impress upon them the importance of mathematical sophistication in interpreting the statistics that they are bombarded with by the media? Our study is in its second semester, and is designed to investigate to what extent it is possible to improve important quantitative skills in college students through a single semester introductory Astronomy course.
NASA Astrophysics Data System (ADS)
Duncan, Douglas K.; Arthurs, L.; CATS
2009-01-01
Surveys of those who teach Astro 101 say that increasing students’ understanding of the nature and process of science is an important goal. It is also one of the justifications for the "breadth requirement” that supports most of the Astro 101 enterprise in the US. However, little work has been done to measure if this goal is achieved. We interviewed 60 students drawn from two introductory astronomy classes at the beginning and end of the course. Each student was asked 9 questions concerning the nature of science and how it is applied. One of the two introductory classes made a special point of explicitly discussing the nature of science and "science vs. pseudoscience.” Otherwise the two classes were similar. We are investigating how students changed in 4 areas: 1. Do they understand what science is? 2. Do they have the ability to think scientifically themselves? 3. Can they distinguish believable scientific results from bogus ones? 4. Do students develop "basic science literacy?" In addition to the interviews we gave the Epistemological Beliefs Assessment for Physical Science (EBAPS, Elby et al. 2001; www.flaguide.org) to approximately 300 students. Initial results will be reported in our poster, and full results in a publication expected in early 2009. In addition, the results of this study are being used to develop a survey instrument designed specifically for use with Astro 101 students to evaluate the effectiveness of instruction on their scientific attitudes and beliefs as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.
The Proposed Model of Collaborative Virtual Learning Environment for Introductory Programming Course
ERIC Educational Resources Information Center
Othman, Mahfudzah; Othman, Muhaini
2012-01-01
This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the "Think-Pair-Share". The main objective of this study is to design a model for an online learning system that facilitates the…
ERIC Educational Resources Information Center
Theoret, Julie M.; Luna, Andrea
2009-01-01
This action research combined qualitative and quantitative techniques to investigate two different types of writing assignments in an introductory undergraduate statistics course. The assignments were written in response to the same set of prompts but in two different ways: homework journal assignments or initial posts to a computer discussion…
Computer-Automated Approach for Scoring Short Essays in an Introductory Statistics Course
ERIC Educational Resources Information Center
Zimmerman, Whitney Alicia; Kang, Hyun Bin; Kim, Kyung; Gao, Mengzhao; Johnson, Glenn; Clariana, Roy; Zhang, Fan
2018-01-01
Over two semesters short essay prompts were developed for use with the Graphical Interface for Knowledge Structure (GIKS), an automated essay scoring system. Participants were students in an undergraduate-level online introductory statistics course. The GIKS compares students' writing samples with an expert's to produce keyword occurrence and…
Using R in Introductory Statistics Courses with the pmg Graphical User Interface
ERIC Educational Resources Information Center
Verzani, John
2008-01-01
The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)
Geomagnetism and Induced Voltage
ERIC Educational Resources Information Center
Abdul-Razzaq, W.; Biller, R. D.
2010-01-01
Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Science and Engineering Education.
The National Science Foundation (NSF) provides awards for education and research in the sciences, mathematics, and engineering. This publication contains information on fiscal year 1986 awards. An introductory section reviews the goals of NSF's education program and the long-range goals of the Directorate for Science and Engineering Education.…
Seventh Grade Interdisciplinary Packet (Science-Social Studies).
ERIC Educational Resources Information Center
Madison Public Schools, WI. Dept. of Curriculum Development.
GRADES OR AGES: Grade 7. SUBJECT MATTER: Science and Social Studies. ORGANIZATION AND PHYSICAL APPEARANCE: This guide presents a series of earth sciences units which would have interdisciplinary potential specifically in the area of social studies. Introductory material includes a rationale, evaluation procedures, 44 "key" environmental concepts,…
Facilitating Long-Term Changes in Student Approaches to Learning Science
ERIC Educational Resources Information Center
Buchwitz, Brian J.; Beyer, Catharine H.; Peterson, Jon E.; Pitre, Emile; Lalic, Nevena; Sampson, Paul D.; Wakimoto, Barbara T.
2012-01-01
Undergraduates entering science curricula differ greatly in individual starting points and learning needs. The fast pace, high enrollment, and high stakes of introductory science courses, however, limit students' opportunities to self-assess and modify learning strategies. The University of Washington's Biology Fellows Program (BFP) intervenes…
Science of Food and Cooking: A Non-Science Majors Course
ERIC Educational Resources Information Center
Miles, Deon T.; Bachman, Jennifer K.
2009-01-01
Recent emphasis on the science of food and cooking has been observed in our popular literature and media. As a result of this, a new non-science majors course, The Science of Food and Cooking, is being taught at our institution. We cover basic scientific concepts, which would normally be discussed in a typical introductory chemistry course, in the…
Deep learning for computational chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav
The rise and fall of artificial neural networks is well documented in the scientific literature of both the fields of computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on “deep” neural networks. Within the last few years, we have seen the transformative impact of deep learning the computer science domain, notably in speech recognition and computer vision, to the extent that the majority of practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. Inmore » this review, we provide an introductory overview into the theory of deep neural networks and their unique properties as compared to traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure modeling, QM calculations, materials synthesis and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non neural networks state-of-the-art models across disparate research topics, and deep neural network based models often exceeded the “glass ceiling” expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a useful tool and may grow into a pivotal role for various challenges in the computational chemistry field.« less
The Student-Teacher-Computer Team: Focus on the Computer.
ERIC Educational Resources Information Center
Ontario Inst. for Studies in Education, Toronto.
Descriptions of essential computer elements, logic and programing techniques, and computer applications are provided in an introductory handbook for use by educators and students. Following a brief historical perspective, the organization of a computer system is schematically illustrated, functions of components are explained in non-technical…
Sources of self-efficacy in an undergraduate introductory astronomy course for non-science majors
NASA Astrophysics Data System (ADS)
Carter, Brooke L.
The role of the astronomy laboratory on non-science major student self-efficacy is investigated through combining quantitative and qualitative methodologies. The Astronomy Diagnostic Test 2.0 is distributed to an introductory astronomy laboratory for non-science major class in the Spring of 2005. The ADT 2.0 is used to draw comparisons between interview subjects and the remaining class. Eight subjects were interviewed three times throughout the semester in order to determine the important contributing factors to the subjects' self-efficacy beliefs. Results of the quantitative data suggest that the interview participants' general science self-efficacy did not significantly increase over the course of the semester. Results of the quantitative data suggest the most important contributor to the subjects' self-efficacy in the laboratory is verbal persuasion. The results of this limited study suggest that the astronomy laboratory experience is a strong contributor to student self-efficacy beliefs.
Few Fractional Order Derivatives and Their Computations
ERIC Educational Resources Information Center
Bhatta, D. D.
2007-01-01
This work presents an introductory development of fractional order derivatives and their computations. Historical development of fractional calculus is discussed. This paper presents how to obtain computational results of fractional order derivatives for some elementary functions. Computational results are illustrated in tabular and graphical…
ERIC Educational Resources Information Center
Wise, Michael J.
2017-01-01
With the goal of increasing the immediacy of the relationship between tenure-track professors and students, science departments in liberal arts colleges may try to arrange their curriculum so that students have the same professor in both the lecture and the lab section of introductory courses. While this goal seems laudable, empirical data are…
ERIC Educational Resources Information Center
Frohock, Bram H.; Winterrowd, Samantha T.; Gallardo-Williams, Maria T.
2018-01-01
Students in a large introductory organic chemistry class were given the freedom to choose an organic compound of interest and were challenged to develop an educational object (physical or digital) designed to be shared with the broader public via social media. Analysis of the project results shows that most students appreciated the open nature of…
ERIC Educational Resources Information Center
Teten, Ryan Lee
2010-01-01
This article draws from different experiences in teaching Introduction to American Politics classes over a six-year period. It examines the value of using nontraditional texts in introductory political science classes that may also fulfill general education requirements, in order to engage as many students as possible in the subject matter. It…
Modeling the Water Balloon Slingshot
NASA Astrophysics Data System (ADS)
Bousquet, Benjamin D.; Figura, Charles C.
2013-01-01
In the introductory physics courses at Wartburg College, we have been working to create a lab experience focused on the scientific process itself rather than verification of physical laws presented in the classroom or textbook. To this end, we have developed a number of open-ended modeling exercises suitable for a variety of learning environments, from non-science major classes to algebra-based and calculus-based introductory physics classes.
Social Science Curriculum Guide and Selected Multi-Media, 7-9.
ERIC Educational Resources Information Center
Gaydosh, Ronald; And Others
GRADES OR AGES: Grades 7-9. SUBJECT MATTER: Social science; history. ORGANIZATION AND PHYSICAL APPEARANCE: The extensive introductory material includes rationale, definitions of the social science core disciplines, glossary of terms, guidelines for teaching, behavioral and long-range objectives, guide format, and descriptions of concepts. The…
Directory of Awards. Fiscal Years 1987 and 1988.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Science and Engineering Education.
The National Science Foundation (NSF) provides awards for education and research in the sciences, mathematics, and engineering. This publication contains information about awards for the 1987 and 1988 fiscal years. An introductory section reviews the goals of NSF's education program and the long-range goals of the Directorate for Science and…
Evaluation of an Environmental Science Laboratory Curriculum.
ERIC Educational Resources Information Center
Berger, Toby Esther
The curriculum evaluated in this study is a series of innovative exercises offered as part of an introductory science course at Barnard College. It was hypothesized that students receiving the experimental treatment in the laboratory would show significant changes in cognitive achievement in environmental science and in their attitudes towards…
A Non-Traditional Natural Science Course for Off-Campus Locations.
ERIC Educational Resources Information Center
Payez, Joseph
Science faculty at small community colleges often face the problem of teaching courses at off-campus locations without laboratory facilities or equipment. An introductory physical science course offered at Southampton Correctional Center in Capron, Virginia, illustrates one approach to this problem. First, the instructor met with students prior to…
Nutrition and Food Science. Teacher's Instructional Guide.
ERIC Educational Resources Information Center
Hays, Tricia
This teaching, guide for a high school nutrition and food science course, includes introductory information about the course, course design, facilities and equipment, Future Homemakers of America, and use of the guide. The course addresses nutrition and food science from the perspective of food habits and wellness; menu planning; special dietary…
Kids Can Make a Difference! Environmental Science Activities.
ERIC Educational Resources Information Center
Dashefsky, H. Steven
This book of more than 160 environmental science activities is designed to help students understand environmental issues, ask questions, and find solutions to the problems. Introductory sections address: (1) the nature of major global problems and a history of environmental concern; (2) basic environmental science terminology and scientific study…
Enhanced Resource Descriptions Help Learning Matrix Users.
ERIC Educational Resources Information Center
Roempler, Kimberly S.
2003-01-01
Describes the Learning Matrix digital library which focuses on improving the preparation of math and science teachers by supporting faculty who teach introductory math and science courses in two- and four-year colleges. Suggests it is a valuable resource for school library media specialists to support new science and math teachers. (LRW)
Marine Science Exploration. Practical Arts. Instructor's Manual. Competency-Based Education.
ERIC Educational Resources Information Center
Keeton, Martha; McKinley, Douglas
This manual provides curriculum materials for implementing a career exploration class in marine science occupations within a Practical Arts Education program for middle/junior high school students. Introductory materials include the program master sequence, a list of marine science occupations, and an overview of the competency-based instructional…
Computer problem-solving coaches for introductory physics: Design and usability studies
NASA Astrophysics Data System (ADS)
Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew
2016-06-01
The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how effective such coaches might be, they will only be useful if they are attractive to students. We describe the design and testing of a set of web-based computer programs that act as personal coaches to students while they practice solving problems from introductory physics. The coaches are designed to supplement regular human instruction, giving students access to effective forms of practice outside class. We present results from large-scale usability tests of the computer coaches and discuss their implications for future versions of the coaches.
CURRICULUM GUIDE FOR SCIENCE, GRADES 4-5-6.
ERIC Educational Resources Information Center
GRAHAM, KATHRYN A.; AND OTHERS
COURSE CONTENT, ACTIVITIES, AND REFERENCE INFORMATION FOR TEACHING SCIENCE IN GRADES 4, 5, AND 6 ARE INCLUDED IN THIS VOLUME. INTRODUCTORY REMARKS RELATE TO AN APPROACH TO TEACHING SCIENCE AND THE GENERAL OBJECTIVES OF THE SCIENCE PROGRAM. THE FIVE UNITS INCLUDED FOR GRADE 4 ARE (1) INSECTS AND SPIDERS, (2) LIVING THINGS OF SIMILAR AREAS, (3) THE…
CURRICULUM GUIDE FOR SCIENCE FOR GRADES 7 AND 8.
ERIC Educational Resources Information Center
GRAHAM, KATHRYN A.; AND OTHERS
COURSE CONTENT, ACTIVITIES, AND REFERENCE INFORMATION FOR TEACHING SCIENCE IN GRADES 7 AND 8 ARE INCLUDED IN THIS VOLUME. INTRODUCTORY REMARKS RELATE TO AN APPROACH TO TEACHING SCIENCE AND THE GENERAL OBJECTIVES OF THE SCIENCE PROGRAM. SEVEN UNITS OF STUDY ARE INCLUDED FOR GRADE 7--(1) THE NATURE OF THE ATMOSPHERE, (2) SIMPLE MECHANICS OF SOLIDS,…
Adding a Bit More History to Science Courses
ERIC Educational Resources Information Center
DeBuvitz, William
2011-01-01
The usual science course is not meant to be a history course and the usual science book is not meant to be a history book. However, most science books do include some historical information. Unfortunately, the history part is usually so brief that it is far from interesting and often so oversimplified that it is totally wrong. Introductory physics…
Batz, Zachary; Olsen, Brian J; Dumont, Jonathan; Dastoor, Farahad; Smith, Michelle K
2015-01-01
The high attrition rate among science, technology, engineering, and mathematics (STEM) majors has long been an area of concern for institutions and educational researchers. The transition from introductory to advanced courses has been identified as a particularly "leaky" point along the STEM pipeline, and students who struggle early in an introductory STEM course are predominantly at risk. Peer-tutoring programs offered to all students in a course have been widely found to help STEM students during this critical transition, but hiring a sufficient number of tutors may not be an option for some institutions. As an alternative, this study examines the viability of an optional peer-tutoring program offered to students who are struggling in a large-enrollment, introductory biology course. Struggling students who regularly attended peer tutoring increased exam performance, expert-like perceptions of biology, and course persistence relative to their struggling peers who were not attending the peer-tutoring sessions. The results of this study provide information to instructors who want to design targeted academic assistance for students who are struggling in introductory courses. © 2015 Z. Batz et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Fairley, J. P.; Hinds, J. J.
2003-12-01
The advent of the World Wide Web in the early 1990s not only revolutionized the exchange of ideas and information within the scientific community, but also provided educators with a new array of teaching, informational, and promotional tools. Use of computer graphics and animation to explain concepts and processes can stimulate classroom participation and student interest in the geosciences, which has historically attracted students with strong spatial and visualization skills. In today's job market, graduates are expected to have knowledge of computers and the ability to use them for acquiring, processing, and visually analyzing data. Furthermore, in addition to promoting visibility and communication within the scientific community, computer graphics and the Internet can be informative and educational for the general public. Although computer skills are crucial for earth science students and educators, many pitfalls exist in implementing computer technology and web-based resources into research and classroom activities. Learning to use these new tools effectively requires a significant time commitment and careful attention to the source and reliability of the data presented. Furthermore, educators have a responsibility to ensure that students and the public understand the assumptions and limitations of the materials presented, rather than allowing them to be overwhelmed by "gee-whiz" aspects of the technology. We present three examples of computer technology in the earth sciences classroom: 1) a computer animation of water table response to well pumping, 2) a 3-D fly-through animation of a fault controlled valley, and 3) a virtual field trip for an introductory geology class. These examples demonstrate some of the challenges and benefits of these new tools, and encourage educators to expand the responsible use of computer technology for teaching and communicating scientific results to the general public.
Designing for deeper learning in a blended computer science course for middle school students
NASA Astrophysics Data System (ADS)
Grover, Shuchi; Pea, Roy; Cooper, Stephen
2015-04-01
The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course on Stanford's OpenEdX MOOC platform for blended in-class learning. Unique aspects of FACT include balanced pedagogical designs that address the cognitive, interpersonal, and intrapersonal aspects of "deeper learning"; a focus on pedagogical strategies for mediating and assessing for transfer from block-based to text-based programming; curricular materials for remedying misperceptions of computing; and "systems of assessments" (including formative and summative quizzes and tests, directed as well as open-ended programming assignments, and a transfer test) to get a comprehensive picture of students' deeper computational learning. Empirical investigations, accomplished over two iterations of a design-based research effort with students (aged 11-14 years) in a public school, sought to examine student understanding of algorithmic constructs, and how well students transferred this learning from Scratch to text-based languages. Changes in student perceptions of computing as a discipline were measured. Results and mixed-method analyses revealed that students in both studies (1) achieved substantial learning gains in algorithmic thinking skills, (2) were able to transfer their learning from Scratch to a text-based programming context, and (3) achieved significant growth toward a more mature understanding of computing as a discipline. Factor analyses of prior computing experience, multivariate regression analyses, and qualitative analyses of student projects and artifact-based interviews were conducted to better understand the factors affecting learning outcomes. Prior computing experiences (as measured by a pretest) and math ability were found to be strong predictors of learning outcomes.
Worldviews of Introductory Astronomy Students
NASA Astrophysics Data System (ADS)
Green, Chrystin; Wallace, C. S.; Brissenden, G.; Prather, E. E.; Collaboration of Astronomy Teaching Scholars (CATS)
2014-01-01
As a part of a larger project to study introductory astronomy students’ worldviews and beliefs about the role of science in society, we examined students’ responses to a subset of questions designed to probe students’ worldviews and how they change after taking a general education, introductory astronomy course (Astro 101). Specifically, we looked at about 400 students’ choices for the top ten scientific discoveries in the past 150 years. We collected students’ rankings twice: Once at the start of their Astro 101 class and once at the end. We created a rubric that we used to categorize the responses and we established the inter-rater reliability of the rubric. Our results show that students preferentially answered with topics related to technology and health and medicine. The data also show that there was an increase, pre- to post-instruction, in the number of responses in the technology and health and medicine categories. We also saw a decrease in the number of responses in the science category. These results imply that an aspect of the course specifically implemented to broaden student’s views on science in relation to society was successful. This material is based upon work supported by the National Science Foundation under Grant No. AST-0847170, for the California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
A Model Computer Literacy Course.
ERIC Educational Resources Information Center
Orndorff, Joseph
Designed to address the varied computer skill levels of college students, this proposed computer literacy course would be modular in format, with modules tailored to address various levels of expertise and permit individualized instruction. An introductory module would present both the history and future of computers and computing, followed by an…
ERIC Educational Resources Information Center
Mikula, Brendon D.; Heckler, Andrew F.
2017-01-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…
ERIC Educational Resources Information Center
Sung, K.; Hillyard, C.; Angotti, R. L.; Panitz, M. W.; Goldstein, D. S.; Nordlinger, J.
2011-01-01
Despite the proven success of using computer video games as a context for teaching introductory programming (CS1/2) courses, barriers including the lack of adoptable materials, required background expertise (in graphics/games), and institutional acceptance still prevent interested faculty members from experimenting with this approach. Game-themed…
ERIC Educational Resources Information Center
Campbell, Donald P.
2013-01-01
This study investigated the effect of student prior knowledge and feedback type on student achievement and satisfaction in an introductory managerial accounting course using computer-based formative assessment tools. The study involved a redesign of the existing Job Order Costing unit using the ADDIE model of instructional design. The…
Topics in Computer Literacy as Elements of Two Introductory College Mathematics Courses.
ERIC Educational Resources Information Center
Spresser, Diane M.
1986-01-01
Explains the integrated approach implemented by James Madison University, Virginia, in enhancing computer literacy. Reviews the changes in the mathematics courses and provides topical listings and outlines of the courses that emphasize computer applications. (ML)
Personality types and student performance in an introductory physics course
NASA Astrophysics Data System (ADS)
Harlow, Jason J. B.; Harrison, David M.; Justason, Michael; Meyertholen, Andrew; Wilson, Brian
2017-12-01
We measured the personality type of the students in a large introductory physics course of mostly life science students using the True Colors instrument. We found large correlations of personality type with performance on the precourse Force Concept Inventory (FCI), both term tests, the postcourse FCI, and the final examination. We also saw correlations with the normalized gain on the FCI. The personality profile of the students in this course is very different from the profile of the physics faculty and graduate students, and also very different from the profile of students taking the introductory physics course intended for physics majors and specialists.
ERIC Educational Resources Information Center
Braden, Roberts A., Ed.; And Others
Following an introductory paper on Pittsburgh and the arts, 57 conference papers are presented under the following four major categories: (1) "Imagery, Science and the Arts," including discovery in art and science, technology and art, visual design of newspapers, multimedia science education, science learning and interactive videodisc technology,…
Collaborative Testing as a Model for Addressing Equity in Student Success in STEM Classes
NASA Astrophysics Data System (ADS)
Dileonardo, C.; James, B. R.
2016-12-01
Introductory Earth science classes at two-year colleges play a critical role as "gateway courses" for underrepresented student populations into undergraduate STEM programs. Students entering college underprepared in math and science typically receive their only exposure to science at the undergraduate level in introductory courses in the Earth and space sciences. In many colleges a huge disparity exists in these classes between success rates amongst students from groups traditionally represented in the STEM fields and those from underrepresented populations. Closing the equity gap in success in these courses is a major focus of many pilot projects nationally. This concern has also led to the adoption of new teaching and learning practices, based on research in learning, in introductory Earth science pedagogy. Models of teaching practices including greater engagement, active learning approaches, and collaborative learning structures seem to help with student achievement in introductory courses. But, whereas these practices might increase overall student success they have not proven to close the equity gap in achievement. De Anza a two-year college in the San Francisco bay area has a long history in the geology department of incorporating and testing teaching practices developed out of research in learning. Collaborative learning has infused every aspect of our learning approaches in the Earth sciences, including laboratory, fieldwork, and test preparation. Though these approaches seemed to have educational benefit the huge equity gap department-wide persisted between targeted and non-targeted populations. Three years ago collaborative testing models were introduced into our geology and meteorology classes. The mechanism included methods for directly comparing collaborative to individual testing. The net result was that targeted populations including African Americans, Latinos, and Filipinos increased steadily at around 3.5% per year from 66% to 73%. The overall success rates of the non-targeted groups remained between 84% and 86%. Preliminary analysis suggests that for disengaged students in the targeted populations the opportunity to collaborate on a portion of the actual test got them more involved in the collaborative process as it offers immediate tangible return on in-class success.
ERIC Educational Resources Information Center
Anderson, Steven W.; Libarkin, Julie C.
2016-01-01
Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.
This two-part document comprises an introductory statement and final report of a meeting that promoted the harmonized development, at regional and national levels, of theoretical and practical training programs for all kinds of information specialists. The meeting was attended by 19 experts from 17 countries--Brazil, Ethiopia, France, India,…
DOT National Transportation Integrated Search
1976-03-01
This introductory portion of a system science for tranportation planning, which is based on the statistical physics of ensembles, a foundations laid on how statistical mechanics, equilibrium thermodynamics, and near equilbrium thermodynamics can be u...
Homeostatic Systems--Mechanisms for Survival. Science IV.
ERIC Educational Resources Information Center
Pfeiffer, Carl H.
The two student notebooks in this set provide the basic outline and assignments for the fourth and last year of a senior high school unified science program which builds on the technical third year course, Science IIIA (see SE 012 149). An introductory section considers the problems of survival inherent in living systems, matter-energy…
More than Magnets: Exploring the Wonders of Science in Preschool and Kindergarten.
ERIC Educational Resources Information Center
Moomaw, Sally; Hieronymus, Brenda
Science curricula typically do not capitalize on the hands-on, self-initiated learning style of young children. This book provides a comprehensive, developmentally appropriate approach to science education with young children, with special attention to physics and chemistry. The book's introductory chapter is followed by chapters on: (1) science…
Scottish Schools Science Equipment Research Centre, Bulletin No. 64, July, 1973.
ERIC Educational Resources Information Center
Scottish Schools Science Equipment Research Centre, Edinburgh.
This bulletin of the Scottish Schools Science Equipment Research Centre provides information to teachers on a variety of topics relating to the use of equipment in science instruction. The introductory remarks deal with an assessment of electronic calculators suitable for use in schools. The section entitled "Physics Notes" lists surplus…
Social Science Curriculum Guide and Selected Multi-Media, K-6.
ERIC Educational Resources Information Center
Gaydosh, Ronald; And Others
GRADES OR AGES: K-6. SUBJECT MATTER: Social science. ORGANIZATION AND PHYSICAL APPEARANCE: The introductory material includes an explanation of the rationale, definitions of the social science core disciplines, glossary of terms, guidelines for teaching, and descriptions of concepts. The main body of the guide is designed in a five-column…
ERIC Educational Resources Information Center
Wallace, Colin S.; Prather, Edward E.; Mendelsohn, Benjamin M.
2013-01-01
What are the underlying worldviews and beliefs about the role of science in society held by students enrolled in a college-level, general education, introductory astronomy course (Astro 101)--and are those beliefs affected by active engagement instruction shown to significantly increase students' conceptual knowledge and reasoning abilities…
ERIC Educational Resources Information Center
Metzenberg, Stan
2015-01-01
Stan Metzenberg offers a critical analysis of the draft "Massachusetts Science and Technology/Engineering Standards," which are for pre-Kindergarten to Grade 8 and introductory high school courses. Metzenberg claims that the document reveals significant, unacceptable gaps in science content, as well as some notable errors and…
Teaching Gifted Students Social Sciences in Grades Seven Through Nine.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Office of Curriculum Services.
Intended for use by teachers, consultants and administrators, the booklet discusses social science instruction for gifted students in grades 7-9. An introductory section provides an overview of goals and parameters of the social sciences (psychology, sociology, and anthropology). The scientific research process is described in terms of five steps,…
Balancing the Equation: Where Are Women and Girls in Science, Engineering and Technology?
ERIC Educational Resources Information Center
Thom, Mary
This report presents strategies for ensuring full participation and achievement in the sciences by women and girls, calling upon all adults to support the interest and persistence of females in science, engineering, and technology. After two introductory special reports, "International Efforts through Beijing +5" and "Toward Equity…
Classroom-Based Science Research at the Introductory Level: Changes in Career Choices and Attitude
Harrison, Melinda; Dunbar, David; Ratmansky, Lisa; Lopatto, David
2011-01-01
Our study, focused on classroom-based research at the introductory level and using the Phage Genomics course as the model, shows evidence that first-year students doing research learn the process of science as well as how scientists practice science. A preliminary but notable outcome of our work, which is based on a small sample, is the change in student interest in considering different career choices such as graduate education and science in general. This is particularly notable, as previous research has described research internships as clarifying or confirming rather than changing undergraduates’ decisions to pursue graduate education. We hypothesize that our results differ from previous studies of the impact of engaging in research because the students in our study are still in the early stages of their undergraduate careers. Our work builds upon the classroom-based research movement and should be viewed as encouraging to the Vision and Change in Undergraduate Biology Education movement advocated by the American Association for the Advancement of Science, the National Science Foundation, and other undergraduate education stakeholders. PMID:21885824
Classroom-based science research at the introductory level: changes in career choices and attitude.
Harrison, Melinda; Dunbar, David; Ratmansky, Lisa; Boyd, Kimberly; Lopatto, David
2011-01-01
Our study, focused on classroom-based research at the introductory level and using the Phage Genomics course as the model, shows evidence that first-year students doing research learn the process of science as well as how scientists practice science. A preliminary but notable outcome of our work, which is based on a small sample, is the change in student interest in considering different career choices such as graduate education and science in general. This is particularly notable, as previous research has described research internships as clarifying or confirming rather than changing undergraduates' decisions to pursue graduate education. We hypothesize that our results differ from previous studies of the impact of engaging in research because the students in our study are still in the early stages of their undergraduate careers. Our work builds upon the classroom-based research movement and should be viewed as encouraging to the Vision and Change in Undergraduate Biology Education movement advocated by the American Association for the Advancement of Science, the National Science Foundation, and other undergraduate education stakeholders.
ERIC Educational Resources Information Center
Budano, Christopher
2012-01-01
This study investigated the disciplinary knowledge and nature of expertise among political science experts studying American political science. A comparison group of students who had completed an introductory undergraduate course in American political science also participated in the study. Numerous research studies have found that civics and…
ERIC Educational Resources Information Center
Kindfield, Ann C. H.; Singer-Gabella, Marcy
2010-01-01
Inscriptions play a critical role in the creation and communication of scientific knowledge, yet are afforded little status in traditional science education research and practice. In the vast majority of science classrooms, K-12 and university alike, inscriptions are treated as transparent, unproblematic illustrations of the "content" rather than…
Computer Languages: A Practical Guide to the Chief Programming Languages.
ERIC Educational Resources Information Center
Sanderson, Peter C.
All the most commonly-used high-level computer languages are discussed in this book. An introductory discussion provides an overview of the basic components of a digital computer, the general planning of a computer programing problem, and the various types of computer languages. Each chapter is self-contained, emphasizes those features of a…
NASA Astrophysics Data System (ADS)
Potter, Wendell H.; Lynch, Robert B.
2013-01-01
The introductory physics course taken by biological science majors at UC Davis, Physics 7, was radically reformed 16 years ago in order to explicitly emphasize the development of scientific reasoning skills in all elements of the course. We have previously seen evidence of increased performance on the biological and physical science portions of the MCAT exam, in a rigorous systemic physiology course, and higher graduating GPAs for students who took Physics 7 rather than a traditionally taught introductory physics course. We report here on the increased performance by a group of biological-science majors in a general chemistry course who took the first quarter of Physics 7 prior to beginning the chemistry course sequence compared to a similar group who began taking physics after completing the first two quarters of general chemistry.
Understanding student use of mathematics in IPLS with the Math Epistemic Games Survey
NASA Astrophysics Data System (ADS)
Eichenlaub, Mark; Hemingway, Deborah; Redish, Edward F.
2017-01-01
We present the Math Epistemic Games Survey (MEGS), a new concept inventory on the use of mathematics in introductory physics for the life sciences. The survey asks questions that are often best-answered via techniques commonly-valued in physics instruction, including dimensional analysis, checking special or extreme cases, understanding scaling relationships, interpreting graphical representations, estimation, and mapping symbols onto physical meaning. MEGS questions are often rooted in quantitative biology. We present preliminary data on the validation and administration of the MEGS in a large, introductory physics for the life sciences course at the University of Maryland, as well as preliminary results on the clustering of questions and responses as a guide to student resource activation in problem solving. This material is based upon work supported by the US National Science Foundation under Award No. 15-04366.
Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course
NASA Astrophysics Data System (ADS)
Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel
2018-03-01
Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.
Problem-Based Labs and Group Projects in an Introductory University Physics Course
ERIC Educational Resources Information Center
Kohnle, Antje; Brown, C. Tom A.; Rae, Cameron F.; Sinclair, Bruce D.
2012-01-01
This article describes problem-based labs and analytical and computational project work we have been running at the University of St Andrews in an introductory physics course since 2008/2009. We have found the choice of topics, scaffolding of the process, timing in the year and facilitator guidance decisive for the success of these activities.…
ERIC Educational Resources Information Center
Adamo-Villani, Nicoletta; Oania, Marcus; Cooper, Stephen
2013-01-01
We report the development and initial evaluation of a serious game that, in conjunction with appropriately designed matching laboratory exercises, can be used to teach secure coding and Information Assurance (IA) concepts across a range of introductory computing courses. The IA Game is a role-playing serious game (RPG) in which the student travels…
Enhancing Lecture Presentations in Introductory Biology with Computer-Based Multimedia.
ERIC Educational Resources Information Center
Fifield, Steve; Peifer, Rick
1994-01-01
Uses illustrations and text to discuss convenient ways to organize and present computer-based multimedia to students in lecture classes. Includes the following topics: (1) Effects of illustrations on learning; (2) Using computer-based illustrations in lecture; (3) MacPresents-Multimedia Presentation Software; (4) Advantages of computer-based…
Role of Computer Assisted Instruction (CAI) in an Introductory Computer Concepts Course.
ERIC Educational Resources Information Center
Skudrna, Vincent J.
1997-01-01
Discusses the role of computer assisted instruction (CAI) in undergraduate education via a survey of related literature and specific applications. Describes an undergraduate computer concepts course and includes appendices of instructions, flowcharts, programs, sample student work in accounting, COBOL instructional model, decision logic in a…
Integration of Ausubelian Learning Theory and Educational Computing.
ERIC Educational Resources Information Center
Heinze-Fry, Jane A.; And Others
1984-01-01
Examines possible benefits when Ausubelian learning approaches are integrated into computer-assisted instruction, presenting an example of this integration in a computer program dealing with introductory ecology concepts. The four program parts (tutorial, interactive concept mapping, simulations, and vee-mapping) are described. (JN)
ERIC Educational Resources Information Center
Roberts, Douglas A.
This booklet is designed to supplement the study of introductory chemistry. It deals particularly with the mole concept but also includes ideas for analyzing the kinds of statements that appear in all science textbooks and scientific writing. The material in the booklet should be studied after the completion of an introductory textbook study of…
Making sense of biologists' teaching: Two case studies of beliefs and discourse practices
NASA Astrophysics Data System (ADS)
Fifield, Steven James
1999-09-01
Undergraduate science courses are often criticized for their overemphasis of content coverage, neglect of inquiry approaches, and misrepresentation of the nature of science. Because conventional courses are influential models for future science teachers, they are often viewed as impediments to K--12 science education reform. To effectively modify how professors teach, we first need to better understand their beliefs and practices as teachers. This is an interpretive study of how two biology professors (Jim and Sue) make sense of their classroom practices in an introductory undergraduate course. Interviews are used to analyze their beliefs about teaching, learning, and science. Discourse analysis of lectures on classical genetics is used to examine their classroom practices as situated constructions of scientific knowledge. The two professors' held distinct beliefs about teaching and learning that were intricately interwoven with their beliefs about science. Jim's beliefs were largely consistent with conventional approaches to introductory science courses. He thought that introductory courses support the development of knowledge and skills that students need before they can engage in scientific inquiry. Sarah was critical of these conventional approaches. She valued courses that foster active learning and focus on applications of biology that are relevant to students' lives. But she could not enact many of her beliefs due to situational constraints associated with the course. Instead she viewed her efforts to help students succeed in a conventional course as a way to resist her colleagues' expectations that most students cannot do well in science. Discourse analysis of the professors' lectures revealed that they both relied on narratives to represent concepts in classical genetics. These narratives of concepts were distinct from other narrative forms in technical and popular presentations of biology. The relationship among these professors' beliefs and classroom practices suggest that what scientists' believe and do as teachers should be understood as dimensions of the nature of science. From this perspective, for some science professors, science education reform may entail not simply using different instructional strategies, but doing and thinking about science in radically new ways. The implications of this perspective for educational reform are discussed.
"The Scientific Method" as Myth and Ideal
NASA Astrophysics Data System (ADS)
Woodcock, Brian A.
2014-10-01
"The Scientific Method" as it has been portrayed in popular and introductory contexts has been declared a myth. The variation that one finds in introductory presentations of "The Scientific Method" is explained by the fact that there is no canonical account among historians and philosophers of science. What, in particular, is wrong with "The Scientific Method"? This essay provides a fairly comprehensive survey of shortcomings of "The Scientific Method". Included are corrections to several misconceptions that often accompany such presentations. Rather than treating "The Scientific Method" as a useful approximation or an ideal, the myth should be discarded. Lessons can be learned for introductory pedagogical contexts from considering the shortcomings of the myth.
An Approach to Teaching General Chemistry II that Highlights the Interdisciplinary Nature of Science
ERIC Educational Resources Information Center
Sumter, Takita Felder; Owens, Patrick M.
2011-01-01
The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to…
ERIC Educational Resources Information Center
Jardine, Hannah E.; Levin, Daniel M.; Quimby, B. Booth; Cooke, Todd J.
2017-01-01
"Vision and Change in Undergraduate Education: A Call to Action," published by the American Association for the Advancement of Science in 2011, suggested cultivating biological literacy and practicing more student-centered learning in undergraduate life sciences education. We report here on the use of Group Active Engagement (GAE)…
ERIC Educational Resources Information Center
Ulsh, Lisa S.
2011-01-01
Numerous reports cite the need to improve the quality of undergraduate STEM education in order to attract and train a diverse pool of talented students prepared to meet the scientific and technological challenges of the 21st century. A growing body of research reveals that the nature and quality of science instruction in introductory college…
College Student Perceptions of Psychology as a Science as a Function of Psychology Course Enrollment
ERIC Educational Resources Information Center
Pettijohn, Terry F., II; Pettijohn, Terry F.; Brenneman, Miranda M.; Glass, Jamie N.; Brito, Gabriela R.; Terranova, Andrew M.; Kim, JongHan; Meyersburg, C. A.; Piroch, Joan
2015-01-01
College students (N = 297) completed a perceptions of psychology as a science survey before and after completion of psychology courses. Psychology as a science scores increased significantly from the beginning to the end of the research methods courses, but scores in introductory psychology courses did not change and scores for students in…
ERIC Educational Resources Information Center
Brant, Herman G.
This volume, the second of a two part evaluation report, is devoted exclusively to the presentation of detailed course outlines representing an Animal Science Technology curriculum. Arranged in 6 terms of study (2 academic years), outlines are included on such topics as: (1) Introductory Animal Science, (2) General Microbiology, (3) Zoonoses, (4)…
Science Seeker: A New Model for Teaching Information Literacy to Entry-Level Biology Undergraduates
ERIC Educational Resources Information Center
Petzold, Jacquelyn; Winterman, Brian; Montooth, Kristi
2010-01-01
In order to integrate library instruction seamlessly into an introductory biology course, two librarians collaborated with a biology faculty member to create a three-part series of instruction sessions known as the Science Seeker. The Science Seeker taught students about the structure of scientific information by tracing the path that discoveries…
ERIC Educational Resources Information Center
Dreyden, Julia I., Ed.; And Others
An introductory chapter, "Contemporary Issues in Gifted Education" by Julia Dreyden and Shelagh Gallagher, summarizes National Science Foundation policy concerning development of new science and mathematics curricula and the work of the Talent Identification Program. Major conference papers and responses are then presented: "Developing Academic…
Dancing Flies: A Guided Discovery Illustration of the Nature of Science.
ERIC Educational Resources Information Center
Nissani, M.
1996-01-01
Presents a guided discovery activity that uses fruit flies and can be implemented in introductory biology and nature of science classes to flesh out abstract lectures about life cycles, insect morphology, patterns and causes of animal behavior, and the nature of science. Discusses strengths and drawbacks and results of student evaluations of the…
Crossing over...Markov meets Mendel.
Mneimneh, Saad
2012-01-01
Chromosomal crossover is a biological mechanism to combine parental traits. It is perhaps the first mechanism ever taught in any introductory biology class. The formulation of crossover, and resulting recombination, came about 100 years after Mendel's famous experiments. To a great extent, this formulation is consistent with the basic genetic findings of Mendel. More importantly, it provides a mathematical insight for his two laws (and corrects them). From a mathematical perspective, and while it retains similarities, genetic recombination guarantees diversity so that we do not rapidly converge to the same being. It is this diversity that made the study of biology possible. In particular, the problem of genetic mapping and linkage-one of the first efforts towards a computational approach to biology-relies heavily on the mathematical foundation of crossover and recombination. Nevertheless, as students we often overlook the mathematics of these phenomena. Emphasizing the mathematical aspect of Mendel's laws through crossover and recombination will prepare the students to make an early realization that biology, in addition to being experimental, IS a computational science. This can serve as a first step towards a broader curricular transformation in teaching biological sciences. I will show that a simple and modern treatment of Mendel's laws using a Markov chain will make this step possible, and it will only require basic college-level probability and calculus. My personal teaching experience confirms that students WANT to know Markov chains because they hear about them from bioinformaticists all the time. This entire exposition is based on three homework problems that I designed for a course in computational biology. A typical reader is, therefore, an instructional staff member or a student in a computational field (e.g., computer science, mathematics, statistics, computational biology, bioinformatics). However, other students may easily follow by omitting the mathematically more elaborate parts. I kept those as separate sections in the exposition.
Crossing Over…Markov Meets Mendel
Mneimneh, Saad
2012-01-01
Chromosomal crossover is a biological mechanism to combine parental traits. It is perhaps the first mechanism ever taught in any introductory biology class. The formulation of crossover, and resulting recombination, came about 100 years after Mendel's famous experiments. To a great extent, this formulation is consistent with the basic genetic findings of Mendel. More importantly, it provides a mathematical insight for his two laws (and corrects them). From a mathematical perspective, and while it retains similarities, genetic recombination guarantees diversity so that we do not rapidly converge to the same being. It is this diversity that made the study of biology possible. In particular, the problem of genetic mapping and linkage—one of the first efforts towards a computational approach to biology—relies heavily on the mathematical foundation of crossover and recombination. Nevertheless, as students we often overlook the mathematics of these phenomena. Emphasizing the mathematical aspect of Mendel's laws through crossover and recombination will prepare the students to make an early realization that biology, in addition to being experimental, IS a computational science. This can serve as a first step towards a broader curricular transformation in teaching biological sciences. I will show that a simple and modern treatment of Mendel's laws using a Markov chain will make this step possible, and it will only require basic college-level probability and calculus. My personal teaching experience confirms that students WANT to know Markov chains because they hear about them from bioinformaticists all the time. This entire exposition is based on three homework problems that I designed for a course in computational biology. A typical reader is, therefore, an instructional staff member or a student in a computational field (e.g., computer science, mathematics, statistics, computational biology, bioinformatics). However, other students may easily follow by omitting the mathematically more elaborate parts. I kept those as separate sections in the exposition. PMID:22629235
Reciprocal Questioning and Computer-based Instruction in Introductory Auditing: Student Perceptions.
ERIC Educational Resources Information Center
Watters, Mike
2000-01-01
An auditing course used reciprocal questioning (Socratic method) and computer-based instruction. Separate evaluations by 67 students revealed a strong aversion to the Socratic method; students expected professors to lecture. They showed a strong preference for the computer-based assignment. (SK)
Applied Educational Computing: Putting Skills to Practice.
ERIC Educational Resources Information Center
Thomerson, J. D.
The College of Education at Valdosta State University (Georgia) developed a followup course to their required entry-level educational computing course. The introductory course covers word processing, spreadsheet, database, presentation, Internet, electronic mail, and operating system software and basic computer concepts. Students expressed a need…
Science and technology integration for increased human potential and societal outcomes.
Roco, Mihail C
2004-05-01
Unifying science based on the material unity of nature at the nanoscale provides a new foundation for knowledge, innovation, and integration of technology. Revolutionary and synergistic advances at the interfaces between previously separated fields of science, engineering and areas of relevance are ready to create nano-bio-info-cogno (NBIC) transforming tools. Developments in systems approach, mathematics, and computation in conjunction with NBIC allow us to understand the natural world and scientific research as closely coupled, complex, hierarchical entities. At this unique moment of scientific and technical achievement, improvement of human performance at individual and group levels, as well as development of suitable revolutionary products, becomes possible and these are primary goals for converging new technologies. NBIC addresses long-term advances in key areas of human activity, including working, learning, aging, group interaction, organizations, and human evolution ((Roco and Bainbridge, 2003)). Fundamentally new tools, technologies, and products will be integrated into individual and social human architecture. This introductory chapter of the Annals outlines research and education trends, funding activities, and the potential of development of revolutionary products and services.
NASA Astrophysics Data System (ADS)
Webb, Angela W.; Bunch, J. C.; Wallace, Maria F. G.
2015-12-01
In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based learning in an introductory animal science course. From interviews with agriscience teachers on their experiences with the game, three themes emerged: (1) the constraints of inadequate and inappropriate technologies, and time to game implementation; (2) the shift in teacher and student roles necessitated by implementing the game; and (3) the inherent competitive nature of learning through the game. Based on these findings, we recommend that pre-service and in-service professional development opportunities be developed for teachers to learn how to implement digital game-based learning effectively. Additionally, with the potential for simulations that address cross-cutting concepts in the next generation science standards, digital game-based learning should be explored in various science teaching and learning contexts.
A Computer-Based Subduction-Zone-Earthquake Exercise for Introductory-Geology Classes.
ERIC Educational Resources Information Center
Shea, James Herbert
1991-01-01
Describes the author's computer-based program for a subduction-zone-earthquake exercise. Instructions for conducting the activity and obtaining the program from the author are provided. Written in IBM QuickBasic. (PR)
NASA Astrophysics Data System (ADS)
Kelly, Jacquelyn
Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.
ERIC Educational Resources Information Center
Bishop, Amy Renee
2010-01-01
The purpose of this research was to determine the effect of computer-based instruction on student mathematics achievement and students' attitudes toward mathematics in developmental and introductory mathematics courses, namely Elementary Algebra, Intermediate Algebra, and College Algebra, at a community college. The researcher also examined the…
ERIC Educational Resources Information Center
Necessary, James R.; Wilhite, Stephen C.
This study was designed to assess the effects of a specific cooperative learning strategy in an introductory college business information systems course. The cooperative approach's impact on student achievement and on a number of personal and social attributes was examined. A total of 117 college sophomores and freshmen enrolled in 3 sections of…
Batz, Zachary; Olsen, Brian J.; Dumont, Jonathan; Dastoor, Farahad; Smith, Michelle K.
2015-01-01
The high attrition rate among science, technology, engineering, and mathematics (STEM) majors has long been an area of concern for institutions and educational researchers. The transition from introductory to advanced courses has been identified as a particularly “leaky” point along the STEM pipeline, and students who struggle early in an introductory STEM course are predominantly at risk. Peer-tutoring programs offered to all students in a course have been widely found to help STEM students during this critical transition, but hiring a sufficient number of tutors may not be an option for some institutions. As an alternative, this study examines the viability of an optional peer-tutoring program offered to students who are struggling in a large-enrollment, introductory biology course. Struggling students who regularly attended peer tutoring increased exam performance, expert-like perceptions of biology, and course persistence relative to their struggling peers who were not attending the peer-tutoring sessions. The results of this study provide information to instructors who want to design targeted academic assistance for students who are struggling in introductory courses. PMID:25976652
Computer Utilization in Industrial Arts/Technology Education. Curriculum Guide.
ERIC Educational Resources Information Center
Connecticut Industrial Arts Association.
This guide is intended to assist industrial arts/technology education teachers in helping students in grades K-12 understand the impact of computers and computer technology in the world. Discussed in the introductory sections are the ways in which computers have changed the face of business, industry, and education and training; the scope and…
An Introductory Course on Service-Oriented Computing for High Schools
ERIC Educational Resources Information Center
Tsai, W. T.; Chen, Yinong; Cheng, Calvin; Sun, Xin; Bitter, Gary; White, Mary
2008-01-01
Service-Oriented Computing (SOC) is a new computing paradigm that has been adopted by major computer companies as well as government agencies such as the Department of Defense for mission-critical applications. SOC is being used for developing Web and electronic business applications, as well as robotics, gaming, and scientific applications. Yet,…
NASA Astrophysics Data System (ADS)
Furht, Borko
In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.
NASA Astrophysics Data System (ADS)
Sell, K. S.; Heather, M. R.; Herbert, B. E.
2004-12-01
Exposing earth system science (ESS) concepts into introductory geoscience courses may present new and unique cognitive learning issues for students including understanding the role of positive and negative feedbacks in system responses to perturbations, spatial heterogeneity, and temporal dynamics, especially when systems exhibit complex behavior. Implicit learning goals of typical introductory undergraduate geoscience courses are more focused on building skill-sets and didactic knowledge in learners than developing a deeper understanding of the dynamics and processes of complex earth systems through authentic inquiry. Didactic teaching coupled with summative assessment of factual knowledge tends to limit student¡¦s understanding of the nature of science, their belief in the relevancy of science to their lives, and encourages memorization and regurgitation; this is especially true among the non-science majors who compose the majority of students in introductory courses within the large university setting. Students organize scientific knowledge and reason about earth systems by manipulating internally constructed mental models. This pilot study focuses on characterizing the impact of inquiry-based learning with multiple representations to foster critical thinking and mental model development about authentic environmental issues of coastal systems in an introductory geoscience course. The research was conducted in nine introductory physical geology laboratory sections (N ˜ 150) at Texas A&M University as part of research connected with the Information Technology in Science (ITS) Center. Participants were randomly placed into experimental and control groups. Experimental groups were exposed to multiple representations including both web-based learning materials (i.e. technology-supported visualizations and analysis of multiple datasets) and physical models, whereas control groups were provided with the traditional ¡workbook style¡" laboratory assignments. Assessment of pre- and post-test results was performed to provide indications of content knowledge and mental model expression improvements between groups. A rubric was used as the assessment instrument to evaluate student products (Cronbach alpha: 0.84 ¡V 0.98). Characterization of student performance based on a Student¡¦s t-test indicates that significant differences (p < 0.05) in pre-post achievement occurred primarily within the experimental group; this illustrates that the use of multiple representations had an impact on student learning of ESS concepts, particularly in regard to mental model constructions. Analysis of variance also suggests that student mental model constructions were significantly different (p < 0.10) between test groups. Factor analysis extracted three principle components (eigenvalue > 1) which show similar clustering of variables that influence cognition, indicating that the cognitive processes driving student understanding of geoscience do not vary among student test groups. Categories of cognition include critical thinking skills (percent variance = 22.16%), understanding of the nature of science (percent variance = 25.16%), and ability to interpret results (percent variance = 28.89%). Lower numbers of students completed all of the required assignments of this research than expected (65.3%), restricting the quality of the results and therefore the ability to make more significant interpretations; this was likely due to the non-supportive learning environment in which the research was implemented.
Exams disadvantage women in introductory biology
Cotner, Sehoya
2017-01-01
The gender gap in STEM fields has prompted a great deal of discussion, but what factors underlie performance deficits remain poorly understood. We show that female students underperformed on exams compared to their male counterparts across ten large introductory biology course sections in fall 2016 (N > 1500 students). Females also reported higher levels of test anxiety and course-relevant science interest. Results from mediation analyses revealed an intriguing pattern: for female students only, and regardless of their academic standing, test anxiety negatively impacted exam performance, while interest in the course-specific science topics increased exam performance. Thus, instructors seeking equitable classrooms can aim to decrease test anxiety and increase student interest in science course content. We provide strategies for mitigating test anxiety and suggestions for alignment of course content with student interest, with the hope of successfully reimagining the STEM pathway as one that is equally accessible to all. PMID:29049334
Enhancing Instruction through Technology.
ERIC Educational Resources Information Center
Greenleaf, Connie; Gee, Mary Kay
Following an introductory section that provides a rationale for using computers in workplace literacy classes, this guide reviews six computer programs and provides activities that teachers can use with the programs in teaching workplace literacy classes. The six computer programs reviewed are as follows: "Grammar Games,""Spell It 3,""The Way…
29 CFR 548.100 - Introductory statement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... simplify bookkeeping and computation of overtime pay. 1 The regular rate is the average hourly earnings of... AUTHORIZATION OF ESTABLISHED BASIC RATES FOR COMPUTING OVERTIME PAY Interpretations Introduction § 548.100... requirements of computing overtime pay at the regular rate, 1 and to allow, under specific conditions, the use...
Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade, J.D.; Scheer, R.
1994-12-31
A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less
Brief introductory guide to agent-based modeling and an illustration from urban health research.
Auchincloss, Amy H; Garcia, Leandro Martin Totaro
2015-11-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.
Brief introductory guide to agent-based modeling and an illustration from urban health research
Auchincloss, Amy H.; Garcia, Leandro Martin Totaro
2017-01-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364
Favorite Demonstrations for College Science
ERIC Educational Resources Information Center
Shmaefsky, Brian
2004-01-01
Peer-reviewed, classroom-tested, and tailored specifically for introductory science courses, Favorite Demonstrations is a complement to every college instructor's lesson plans. The book is an all-in-one compilation of 36 popular classroom demonstrations published since 1993 in the "Favorite Demonstration" column of NSTA's Journal of College …
Science Laboratory Exercises for Vocational Agriculture Students.
ERIC Educational Resources Information Center
Thompson, Dale E.
This manual provides learning activities for use in two vocational agriculture courses--ornamental horticulture I and agricultural technology I. These activities are intended as aids in the teaching of application of science principles. An introductory chart gives a summary of how vocational agriculture objectives match objectives of specific…
Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers
ERIC Educational Resources Information Center
More, Michelle B.
2007-01-01
A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.
Pitfalls and Successes of Developing an Interdisciplinary Watershed Field Science Course
ERIC Educational Resources Information Center
Pearce, Andrea R.; Bierman, Paul R.; Druschel, Gregory K.; Massey, Christine; Rizzo, Donna M.; Watzin, Mary C.; Wemple, Beverly C.
2010-01-01
At the University of Vermont, an interdisciplinary faculty team developed an introductory watershed science field course. This course honed field skills and catalyzed communication across water-related disciplines without requiring specific prerequisites. Five faculty (geology, engineering, geography, natural resources) taught the four-credit…
Assessing and Analyzing Behavior Strategies of Instructors in College Science Laboratories.
ERIC Educational Resources Information Center
Kyle, William C., Jr.; And Others
1980-01-01
Analyzed are university instructor behaviors in introductory and advanced level laboratories of botany, chemistry, geology, physics and zoology. Science Laboratory Interaction Categories--Teacher (SLIC) was used to assess 15 individual categories of teacher behaviors in the areas of questioning, giving directions, transmitting information,…
Introducing Managers to Expert Systems.
ERIC Educational Resources Information Center
Finlay, Paul N.; And Others
1991-01-01
Describes a short course to expose managers to expert systems, consisting of (1) introductory lecture; (2) supervised computer tutorial; (3) lecture and discussion about knowledge structuring and modeling; and (4) small group work on a case study using computers. (SK)
Fundamentals of computer graphics for artists and designers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, B.A.
1986-01-01
This tutorial provides introductory information about computer graphics slanted towards novice users from artist/designer backgrounds. The goal is to describe the applications and terminology sufficiently to provide a base of knowledge for discussions with vendors.
A Paperless Lab Manual - Lessons Learned
NASA Astrophysics Data System (ADS)
Hatten, Daniel L.; Hatten, Maggie W.
1999-10-01
Every freshman entering Rose-Hulman Institute of Technology is equipped with a laptop computer and a software package that allow classroom and laboratory instructors the freedom to make computer-based assignments, publish course materials in electronic form, etc. All introductory physics laboratories and many of our classrooms are networked, and students routinely take their laptop computers to class/lab. The introductory physics laboratory manual was converted to HTML in the summer of 1997 and was made available to students over the Internet vice printing a paper manual during the 1998-99 school year. The aim was to reduce paper costs and allow timely updates of the laboratory experiments. A poll conducted at the end of the school year showed a generally positive student response to the online laboratory manual, with some reservations.
Laboratory Sequence in Computational Methods for Introductory Chemistry
NASA Astrophysics Data System (ADS)
Cody, Jason A.; Wiser, Dawn C.
2003-07-01
A four-exercise laboratory sequence for introductory chemistry integrating hands-on, student-centered experience with computer modeling has been designed and implemented. The progression builds from exploration of molecular shapes to intermolecular forces and the impact of those forces on chemical separations made with gas chromatography and distillation. The sequence ends with an exploration of molecular orbitals. The students use the computers as a tool; they build the molecules, submit the calculations, and interpret the results. Because of the construction of the sequence and its placement spanning the semester break, good laboratory notebook practices are reinforced and the continuity of course content and methods between semesters is emphasized. The inclusion of these techniques in the first year of chemistry has had a positive impact on student perceptions and student learning.
ERIC Educational Resources Information Center
Badar, Lawrence J.
This report, in the form of a teacher's guide, presents materials for a ninth grade introductory course on Introduction to Quantitative Science (IQS). It is intended to replace a traditional ninth grade general science with a process oriented course that will (1) unify the sciences, and (2) provide a quantitative preparation for the new science…
NASA Astrophysics Data System (ADS)
Rudolph, Alexander; Prather, E. E.; Brissenden, G.; Consiglio, D.; Gonzaga, V.
2010-01-01
This is the second in a series of reports on a national study of the teaching and learning of astronomy in general education, non-science major, introductory college astronomy courses (Astro 101). The results show dramatic improvement in student learning with increased use of interactive learning strategies even after controlling for individual student characteristics. In addition, we find that the positive effects of interactive learning strategies apply equally to men and women, across ethnicities, for students with all levels of prior mathematical preparation and physical science course experience, independent of GPA, and regardless of primary language. These results powerfully illustrate that all categories of students can benefit from the effective implementation of interactive learning strategies.
ERIC Educational Resources Information Center
McDermott, Lillian C.
2013-01-01
Research on the learning and teaching of science is an important field for scholarly inquiry by faculty in science departments. Such research has proved to be an efficient means for improving the effectiveness of instruction in physics. A basic topic in introductory physics is used to illustrate how discipline-based education research has helped…
Using Project- and Theme-Based Learning to Encourage Creativity in Science
ERIC Educational Resources Information Center
Vaidya, Ashwin
2015-01-01
In this article, the authors describe a project that was developed for an introductory-level physics course. The aim of the project was to encourage the creative process in science, as science is seldom mentioned in discussions about creativity. They sought to engage students in the creative process by posing a collective challenge to the class.…
ERIC Educational Resources Information Center
Koenig, Kathleen; Schen, Melissa; Bao, Lei
2012-01-01
Development of a scientifically literate citizenry has become a national focus and highlights the need for K-12 students to develop a solid foundation of scientific reasoning abilities and an understanding of nature of science, along with appropriate content knowledge. This implies that teachers must also be competent in these areas; but…
ERIC Educational Resources Information Center
Biddulph, Fred; McMinn, Bill
An alternative approach for teaching primary school science has been proposed by the Learning in Science Project (Primary--LISP(P). This study investigated the use of the approach during three series of lessons on the topic "metals." Each series followed the same general pattern: (1) an introductory session to stimulate children to ask…
Resources and approaches for teaching physics to pre-health and life science majors
NASA Astrophysics Data System (ADS)
Widenhorn, Ralf
2014-03-01
As science is advancing, the skill set for a physician or medical researcher today and in the future is very different than it has been in the past. As an example, the American Association of Medical Colleges revised the Medical College Admissions Test (MCAT) to reflect this dynamic environment. Because of these changes, the needs of students entering into these professions are often not met by a traditional physics course. Developing curriculum for an introductory physics course that helps to prepare life science and pre-health students can be challenging for many physics instructors who lack a strong foundation in biology or medicine. This presentation will address various approaches that physics instructors without a background in life sciences can use to successfully teach an introductory physics course for life science and pre-heath students. For these courses, an online resource may be a useful tool. Online resources already exist today, but their utility relies on active engagement and sharing of teaching material by physics instructors possessing a background in both physics and the life sciences. This talk will address ways for the biomedical physics community to contribute to this effort.
Cardiovascular Physiology Teaching: Computer Simulations vs. Animal Demonstrations.
ERIC Educational Resources Information Center
Samsel, Richard W.; And Others
1994-01-01
At the introductory level, the computer provides an effective alternative to using animals for laboratory teaching. Computer software can simulate the operation of multiple organ systems. Advantages of software include alteration of variables that are not easily changed in vivo, repeated interventions, and cost-effective hands-on student access.…
Computer-Based Self-Instructional Modules. Final Technical Report.
ERIC Educational Resources Information Center
Weinstock, Harold
Reported is a project involving seven chemists, six mathematicians, and six physicists in the production of computer-based, self-study modules for use in introductory college courses in chemistry, physics, and mathematics. These modules were designed to be used by students and instructors with little or no computer backgrounds, in institutions…
ERIC Educational Resources Information Center
Shelly, Gary B.; Cashman, Thomas J.; Gunter, Randolph E.; Gunter, Glenda A.
Intended for use in an introductory computer course for educators, this textbook contains the following chapters: (1) "Introduction to Using Computers in Education"; (2) "Communications, Networks, the Internet, and the World Wide Web"; (3) "Software Applications for Education,"; (4) "Hardware Applications for…
Computer Problem-Solving Coaches for Introductory Physics: Design and Usability Studies
ERIC Educational Resources Information Center
Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew
2016-01-01
The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how…
NASA Astrophysics Data System (ADS)
Oien, R. P.; Anders, A. M.; Long, A.
2014-12-01
We present the initial results of transitioning laboratory activities in an introductory physical geology course from passive to active learning. Educational research demonstrates that student-driven investigations promote increased engagement and better retention of material. Surveys of students in introductory physical geology helped us identify lab activities which do not engage students. We designed new lab activities to be more collaborative, open-ended and "hands-on". Student feedback was most negative for lab activities which are computer-based. In response, we have removed computers from the lab space and increased the length and number of activities involving physical manipulation of samples and models. These changes required investment in lab equipment and supplies. New lab activities also include student-driven exploration of data with open-ended responses. Student-evaluations of the new lab activities will be compiled during Fall 2014 and Spring 2015 to allow us to measure the impact of the changes on student satisfaction and we will report on our findings to date. Modification of this course has been sponsored by NSF's Widening Implementation & Demonstration of Evidence Based Reforms (WIDER) program through grant #1347722 to the University of Illinois. The overall goal of the grant is to increase retention and satisfaction of STEM students in introductory courses.
Geology in the Movies: Using Hollywood Films as a Teaching Tool in Introductory Geosciences Courses
NASA Astrophysics Data System (ADS)
Lawrence, K. T.; Malinconico, L. L.
2008-12-01
A common challenge in introductory Geoscience courses is engaging students who often do not have a long- standing interest in science. In recent years Hollywood has produced a number of geoscience-themed films (Dante's Peak, Deep Impact, Day After Tomorrow, Inconvenient Truth), most of which contain kernels of scientific truth as well as gross misrepresentations of scientific reality. In our introductory courses (Geological Disasters: Agents of Chaos and Earth's Climate: Past Present and Future) we have had great success using these films as a way of both engaging students and accomplishing many of our course goals. Even though most of the students in these courses will not become geoscience majors, it is important for them to realize that they can make informed judgments about concepts portrayed in the popular media. We have incorporated short written movie critiques into our suite of introductory course laboratory exercises. Through these movie-critique labs, students have an opportunity to apply their new geoscience expertise to examining the validity of the scientific concepts presented in the film. Along the way, students start to see the relevance of course materials to their everyday lives, think more critically about how science is portrayed by non-scientists, synthesize what they have learned by applying their knowledge to a new problem, and improve their ability to communicate what they have learned. Despite the fact that these movie-critique labs require significantly more out-of-lab effort that our other introductory lab assignments, in our course evaluations many students rate the movie critiques as not only one of the most interesting lab exercises of the semester, but also the lab exercise containing the most educational value.
ERIC Educational Resources Information Center
Fredricks, Susan M.; Tierney, John; Bodek, Matthew; Fredericks, Margaret
2016-01-01
The objective of this article is to explain and provide rubrics for science and communication faculty as a means to help nonscience students, in basic science classes, understand that proper communication and presentation skills are a necessity in all courses and future walks of life.
Blazing the Trail for Astronomy Education Research
ERIC Educational Resources Information Center
Bailey, Janelle M.; Lombardi, Doug
2015-01-01
Education research has long considered student learning of topics in astronomy and the space sciences, but astronomy education research as a sub-field of discipline-based education research is relatively new. Driven by a growing interest among higher education astronomy educators in improving the general education, introductory science survey…
Who Needs Plants? Science (Experimental).
ERIC Educational Resources Information Center
Ropeik, Bernard H.; Kleinman, David Z.
The basic elective course in introductory botany is designed for secondary students who probably will not continue study in plant science. The objectives of the course are to help the student 1) identify, compare and differentiate types of plants; 2) identify plant cell structures; 3) distinguish between helpful and harmful plants; 4) predict…
Agricultural Science Lab Activities. Instructor Guide. Volume 27, Number 2.
ERIC Educational Resources Information Center
Thompson, Gregory W.; And Others
This instructor guide contains 20 laboratory activities for grades 9-10 Agricultural Science I-II classes. The activities are cross-referenced to Missouri Core Competencies and Key Skills. The activities are organized into the following areas: introductory (microscope use); animal nutrition (absorption of nutrients, bacteria and disease, enzyme…
ERIC Educational Resources Information Center
Gilbert, Amy; Wade, Katherine
2014-01-01
For an introductory engineering class at an all-girls urban high school in the Southeast, the authors planned an experience that would align with the engineering aspects of the "Next Generation Science Standards" (NGSS Lead States 2013). The goal was to better relate science, technology, engineering, and mathematics (STEM) to everyday…
ERIC Educational Resources Information Center
Galliher, Renee V.; Rivas-Drake, Deborah; Dubow, Eric F.
2017-01-01
This introductory summary provides an overview of the content of the special issue entitled "Identity Development Process and Content: Toward an Integrated and Contextualized Science of Identity." The 16 theoretical and empirical articles that comprise this special issue were selected to highlight innovative methodologies, theoretical…
Exploring the Science--Society Interface with a Bridging Research Course
ERIC Educational Resources Information Center
Boltax, Ariana L.; Kosinski-Collins, Melissa S.; Pontrello, Jason K.
2016-01-01
This article describes the development of a model for an optional, research-based course that bridges two existing, traditionally separate, introductory science courses. This research course provided freedom for students to design and implement new experiments on the basis of technical foundations built from enrollment in separate introductory…
Radiological Dispersion Devices and Basic Radiation Science
ERIC Educational Resources Information Center
Bevelacqua, Joseph John
2010-01-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…
An Astronomical Misconceptions Survey
ERIC Educational Resources Information Center
LoPresto, Michael C.; Murrell, Steven R.
2011-01-01
Misconceptions that students bring with them to the introductory science classroom plague every area of science and are especially prevalent in astronomy. One way to identify and possibly dispel some of these misconceptions is through the use of a misconceptions survey. The following is a report on the development, implementation, and some early…
ERIC Educational Resources Information Center
Gardner, Grant; Jones, Gail
2011-01-01
Graduate teaching assistants (GTAs) are gaining increasing responsibility for the instruction of undergraduate science students, yet little is known about their beliefs about science pedagogy or subsequent classroom practices. This study looked at six GTAs who were primary instructors in an introductory biology laboratory course. Teaching…
A Course for the Non-Science Major in an Open Admissions Urban Community College
ERIC Educational Resources Information Center
Jaffe, Marvin R.; And Others
1975-01-01
Describes an introductory chemistry course for non-science majors with poor backgrounds in mathematics and English. The course goal was to develop an appreciation of the importance of chemistry to everyday life experiences and to the major area of the student. (GS)
Bubbles: Films, Foams & Fizz. Ideas in Science. Notes for Teachers.
ERIC Educational Resources Information Center
Murphy, Pat, Ed.
Five activities dealing with bubbles are presented. Information provided with the activities includes introductory and/or background information; notes on pre-activity preparations; lists of science themes and skills fostered; time frame; list of materials needed; student procedures; and instructional strategies. A teaching guide with detailed…
Harmonization of Training in Librarianship, Information Science and Archives.
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.
This pamphlet is designed to show why there are many advantages in a harmonized approach to the training of archivists, librarians, and specialists in information science and what these advantages are. Following introductory discussions of the concept of harmonization, a brief history traces Unesco's role in training information professionals in…
Changing Epistemological Beliefs with Nature of Science Implementations
ERIC Educational Resources Information Center
Johnson, Keith; Willoughby, Shannon
2018-01-01
This article discusses our investigation regarding nature of science (NOS) implementations and epistemological beliefs within an undergraduate introductory astronomy course. The five year study consists of two years of baseline data in which no explicit use of NOS material was implemented, then three years of subsequent data in which specific NOS…
ERIC Educational Resources Information Center
Galle, Gillian; Meredith, Dawn
2014-01-01
A few years ago we began to revamp our introductory physics course for life science students. We knew that this cohort would be less prepared and less adventurous mathematically than engineering, physical science, or mathematics majors. Moreover, from our own experience and the mathematics education literature, we knew that trigonometry would be…
Teaching Writing and Critical Thinking in Large Political Science Classes
ERIC Educational Resources Information Center
Franklin, Daniel; Weinberg, Joseph; Reifler, Jason
2014-01-01
In the interest of developing a combination of teaching techniques designed to maximize efficiency "and" quality of instruction, we have experimentally tested three separate and relatively common teaching techniques in three large introductory political science classes at a large urban public university. Our results indicate that the…
NASA Astrophysics Data System (ADS)
Fisher, J. A.; Brewer, C.; O'Brien, G.
2017-12-01
Computing and programming are rapidly becoming necessary skills for earth and environmental scientists. Scientists in both academia and industry must be able to manipulate increasingly large datasets, create plots and 3-D visualisations of observations, and interpret outputs from complex numerical models, among other tasks. However, these skills are rarely taught as a compulsory part of undergraduate earth science curricula. In 2016, the School of Earth & Environmental Sciences at the University of Wollongong began a pilot program to integrate introductory programming and modelling skills into the required first-year core curriculum for all undergraduates majoring in earth and environmental science fields. Using Python, a popular teaching language also widely used by professionals, a set of guided exercises were developed. These exercises use interactive Jupyter Notebooks to introduce students to programming fundamentals and simple modelling problems relevant to the earth system, such as carbon cycling and population growth. The exercises are paired with peer review activities to expose students to the multitude of "correct" ways to solve computing problems. In the last weeks of the semester, students work in groups to creatively adapt their new-found skills to selected problems in earth system science. In this presentation, I will report on outcomes from delivering the new curriculum to the first two cohorts of 120-150 students, including details of the implementation and the impacts on both student aptitude and attitudes towards computing. While the first cohort clearly developed competency, survey results suggested a drop in student confidence over the course of the semester. To address this confidence gap for the second cohort, the in-class activities are now being supplemented with low-stakes open-book review quizzes that provide further practice with no time pressure. Research into the effectiveness of these review quizzes is ongoing and preliminary findings will be discussed, along with lessons learned in the process and plans for the future.
Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A; Siwicki, Kathleen K
2016-01-01
Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students' engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge problems. During the eight semesters assessed in this study, URM students and those with less preparation attended SGMs with equal or greater frequency than their counterparts. Most agreed that SGMs enhanced their comprehension of biology and ability to articulate solutions. The historical grade gap between URM and non-URM students narrowed slightly in Biology 2, but not in other biology and science, technology, engineering, and mathematics courses. Nonetheless, URM students taking introductory biology after program implementation have graduated with biology majors or minors at the same rates as non-URM students, and have enrolled in postcollege degree programs at equal or greater rates. These results suggest that improved performance as measured by science grade point average may not be necessary to improve the persistence of students from underrepresented groups as life sciences majors. © 2016 P. Kudish et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Intervention activities to improve the reasoning ability of students at risk in introductory physics
NASA Astrophysics Data System (ADS)
Coletta, Vincent P.; Phillips, J.
2006-12-01
We describe a number of activities we have begun using in interventions targeting students who are at risk in introductory college physics courses. Some are adaptations of the work of others with pre-high school children, including Philip Adey in Great Britain (Cognitive Acceleration though Science Education), Reuven Feuerstein in Israel (Instrumental Enrichment), and Kurtz and Karplus in the U. S. in the 70’s (Numerical Relationships). We have also added some other activities, including Sudoku strategy development.
Space physics education via examples in the undergraduate physics curriculum
NASA Astrophysics Data System (ADS)
Martin, R.; Holland, D. L.
2011-12-01
The field of space physics is rich with examples of basic physics and analysis techniques, yet it is rarely seen in physics courses or textbooks. As space physicists in an undergraduate physics department we like to use research to inform teaching, and we find that students respond well to examples from magnetospheric science. While we integrate examples into general education courses as well, this talk will focus on physics major courses. Space physics examples are typically selected to illustrate a particular concept or method taught in the course. Four examples will be discussed, from an introductory electricity and magnetism course, a mechanics/nonlinear dynamics course, a computational physics course, and a plasma physics course. Space physics provides examples of many concepts from introductory E&M, including the application of Faraday's law to terrestrial magnetic storm effects and the use of the basic motion of charged particles as a springboard to discussion of the inner magnetosphere and the aurora. In the mechanics and nonlinear dynamics courses, the motion of charged particles in a magnetotail current sheet magnetic field is treated as a Newtonian dynamical system, illustrating the Poincaré surface-of-section technique, the partitioning of phase space, and the KAM theorem. Neural network time series analysis of AE data is used as an example in the computational physics course. Finally, among several examples, current sheet particle dynamics is utilized in the plasma physics course to illustrate the notion of adiabatic/guiding center motion and the breakdown of the adiabatic approximation. We will present short descriptions of our pedagogy and student assignments in this "backdoor" method of space physics education.
Cheyney University Curriculum and Infrastructure Enhamcement in STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eva, Sakkar Ara
Cheyney University is the oldest historically Black educational institution in America. Initially established as a “normal” school emphasizing the matriculation of educators, Cheyney has become a comprehensive university, one of 14 state universities comprising the Pennsylvania State System of Higher Education (PASSHE). Cheyney University graduates still become teachers, but they also enter such fields as journalism, medicine, science, mathematics, law, communication and government. Cheyney University is a small state owned HBCU with very limited resource. At present the university has about a thousand students with 15% in STEM. The CUCIES II grant made significant contribution in saving the computer sciencemore » program from being a discontinued program in the university. The grant enabled the university to hire a temporary faculty to teach in and update the computer science program. The program is enhanced with three tracks; cyber security, human computer interaction and general. The updated and enhanced computer science program will prepare professionals in the area of computer science with the knowledge, skills, and professional ethic needed for the current market. The new curriculum was developed for a professional profile that would focus on the technologies and techniques currently used in the industry. With faculty on board, the university worked with the department to bring back the computer science program from moratorium. Once in the path of being discontinued and loosing students, the program is now growing. Currently the student number has increased from 12 to 30. University is currently in the process of hiring a tenure track faculty in the computer science program. Another product of the grant is the proposal for introductory course in nanotechnology. The course is intended to generate interest in the nanotechnology field. The Natural and Applied Science department that houses all of the STEM programs in Cheyney University, is currently working to bring back environmental science program from moratorium. The university has been working to improve minority participation in STEM and made significant stride in terms of progressing students toward graduate programs and into professoriate track. This success is due to faculty mentors who work closely with students to guiding them through the application processes for research internship and graduate programs; it is also due to the university forming collaborative agreements with research intensive institutions, federal and state agencies and industry. The grant assisted in recruiting and retaining students in STEM by offering tuition scholarship, research scholarship and travel awards. Faculty professional development was supported by the grant by funding travel to conferences, meetings and webinar. As many HBCU Cheyney University is also trying to do more with less. As the STEM programs are inherently expensive, these are the ones that suffer more when resources are scarce. One of the goals of Cheyney University strategic plan is to strengthen STEM programs that is coherent with the critical skill need of Department of Energy. All of the Cheyney University STEM programs are now located in the new science building funded by Pennsylvania state.« less