Science.gov

Sample records for intrusion detection system

  1. Interior intrusion detection systems

    SciTech Connect

    Rodriguez, J.R.; Matter, J.C. ); Dry, B. )

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  2. A Radiating Cable Intrusion Detection System

    DTIC Science & Technology

    1980-06-01

    RtADC-Th40O1"ř June 1930 A RADIATING CABLE INTRUSION 0 DETECTION SYSTEM Northeastern University Spencer d. Rochefort Raimundas Sukys Norman C...J.7[ochefortF168R. Raimundas/ Sukys SADDROSSAMfELEMENT,.PROJECT. TASK Electronics Research Labe.*&tory 11. CONTROLLING OFFICE NAME AND ADDRESS Hanscom...stable threshold levels. -a- -22- REFERENCES 1. Rochefort, J.S., Sukys , R. and Poirier, N.C. (1978), "An Area Intrusion Detection and Alarm System

  3. A system for distributed intrusion detection

    SciTech Connect

    Snapp, S.R.; Brentano, J.; Dias, G.V.; Goan, T.L.; Heberlein, L.T.; Ho, Che-Lin; Levitt, K.N.; Mukherjee, B. . Div. of Computer Science); Grance, T. ); Mansur, D.L.; Pon, K.L. ); Smaha, S.E. )

    1991-01-01

    The study of providing security in computer networks is a rapidly growing area of interest because the network is the medium over which most attacks or intrusions on computer systems are launched. One approach to solving this problem is the intrusion-detection concept, whose basic premise is that not only abandoning the existing and huge infrastructure of possibly-insecure computer and network systems is impossible, but also replacing them by totally-secure systems may not be feasible or cost effective. Previous work on intrusion-detection systems were performed on stand-alone hosts and on a broadcast local area network (LAN) environment. The focus of our present research is to extend our network intrusion-detection concept from the LAN environment to arbitarily wider areas with the network topology being arbitrary as well. The generalized distributed environment is heterogeneous, i.e., the network nodes can be hosts or servers from different vendors, or some of them could be LAN managers, like our previous work, a network security monitor (NSM), as well. The proposed architecture for this distributed intrusion-detection system consists of the following components: a host manager in each host; a LAN manager for monitoring each LAN in the system; and a central manager which is placed at a single secure location and which receives reports from various host and LAN managers to process these reports, correlate them, and detect intrusions. 11 refs., 2 figs.

  4. An automatically tuning intrusion detection system.

    PubMed

    Yu, Zhenwei; Tsai, Jeffrey J P; Weigert, Thomas

    2007-04-01

    An intrusion detection system (IDS) is a security layer used to detect ongoing intrusive activities in information systems. Traditionally, intrusion detection relies on extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining and machine learning techniques have been deployed for intrusion detection. An IDS is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current systems depends on the system operators in working out the tuning solution and in integrating it into the detection model. In this paper, an automatically tuning IDS (ATIDS) is presented. The proposed system will automatically tune the detection model on-the-fly according to the feedback provided by the system operator when false predictions are encountered. The system is evaluated using the KDDCup'99 intrusion detection dataset. Experimental results show that the system achieves up to 35% improvement in terms of misclassification cost when compared with a system lacking the tuning feature. If only 10% false predictions are used to tune the model, the system still achieves about 30% improvement. Moreover, when tuning is not delayed too long, the system can achieve about 20% improvement, with only 1.3% of the false predictions used to tune the model. The results of the experiments show that a practical system can be built based on ATIDS: system operators can focus on verification of predictions with low confidence, as only those predictions determined to be false will be used to tune the detection model.

  5. Dynamic immune intrusion detection system for IPv6

    NASA Astrophysics Data System (ADS)

    Yao, Li; Li, Zhi-tang; Hao, Tu

    2005-03-01

    We have set up a project aimed at developing a dynamical immune intrusion detection system for IPv6 and protecting the next generation Internet from intrusion. We focus on investigating immunelogical principles in designing a dynamic multi-agent system for intrusion detection in IPv6 environment, instead of attempting to describe all that is intrusion in the network try and describe what is normal use and define "non-self" as intrusion. The proposed intrusion detection system is designed as flexible, extendible, and adaptable in order to meet the needs and preferences of network administrators for IPv6 environment.

  6. Characterizing and Improving Distributed Intrusion Detection Systems.

    SciTech Connect

    Hurd, Steven A; Proebstel, Elliot P.

    2007-11-01

    Due to ever-increasing quantities of information traversing networks, network administrators are developing greater reliance upon statistically sampled packet information as the source for their intrusion detection systems (IDS). Our research is aimed at understanding IDS performance when statistical packet sampling is used. Using the Snort IDS and a variety of data sets, we compared IDS results when an entire data set is used to the results when a statistically sampled subset of the data set is used. Generally speaking, IDS performance with statistically sampled information was shown to drop considerably even under fairly high sampling rates (such as 1:5). Characterizing and Improving Distributed Intrusion Detection Systems4AcknowledgementsThe authors wish to extend our gratitude to Matt Bishop and Chen-Nee Chuah of UC Davis for their guidance and support on this work. Our thanks are also extended to Jianning Mai of UC Davis and Tao Ye of Sprint Advanced Technology Labs for their generous assistance.We would also like to acknowledge our dataset sources, CRAWDAD and CAIDA, without which this work would not have been possible. Support for OC48 data collection is provided by DARPA, NSF, DHS, Cisco and CAIDA members.

  7. The architecture of a network level intrusion detection system

    SciTech Connect

    Heady, R.; Luger, G.; Maccabe, A.; Servilla, M.

    1990-08-15

    This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  8. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    NASA Astrophysics Data System (ADS)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  9. An Adaptive Database Intrusion Detection System

    ERIC Educational Resources Information Center

    Barrios, Rita M.

    2011-01-01

    Intrusion detection is difficult to accomplish when attempting to employ current methodologies when considering the database and the authorized entity. It is a common understanding that current methodologies focus on the network architecture rather than the database, which is not an adequate solution when considering the insider threat. Recent…

  10. In-situ trainable intrusion detection system

    DOEpatents

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob; Potok, Thomas E.

    2016-11-15

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such that the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.

  11. Intrusion Detection in Control Systems using Sequence Characteristics

    NASA Astrophysics Data System (ADS)

    Kiuchi, Mai; Onoda, Takashi

    Intrusion detection is considered effective in control systems. Sequences of the control application behavior observed in the communication, such as the order of the control device to be controlled, are important in control systems. However, most intrusion detection systems do not effectively reflect sequences in the application layer into the detection rules. In our previous work, we considered utilizing sequences for intrusion detection in control systems, and demonstrated the usefulness of sequences for intrusion detection. However, manually writing the detection rules for a large system can be difficult, so using machine learning methods becomes feasible. Also, in the case of control systems, there have been very few observed cyber attacks, so we have very little knowledge of the attack data that should be used to train the intrusion detection system. In this paper, we use an approach that combines CRF (Conditional Random Field) considering the sequence of the system, thus able to reflect the characteristics of control system sequences into the intrusion detection system, and also does not need the knowledge of attack data to construct the detection rules.

  12. An expert system application for network intrusion detection

    SciTech Connect

    Jackson, K.A.; Dubois, D.H.; Stallings, C.A.

    1991-01-01

    The paper describes the design of a prototype intrusion detection system for the Los Alamos National Laboratory's Integrated Computing Network (ICN). The Network Anomaly Detection and Intrusion Reporter (NADIR) differs in one respect from most intrusion detection systems. It tries to address the intrusion detection problem on a network, as opposed to a single operating system. NADIR design intent was to copy and improve the audit record review activities normally done by security auditors. We wished to replace the manual review of audit logs with a near realtime expert system. NADIR compares network activity, as summarized in user profiles, against expert rules that define network security policy, improper or suspicious network activities, and normal network and user activity. When it detects deviant (anomalous) behavior, NADIR alerts operators in near realtime, and provides tools to aid in the investigation of the anomalous event. 15 refs., 2 figs.

  13. Configurable Middleware-Level Intrusion Detection for Embedded Systems

    SciTech Connect

    Naess, Eivind; Frincke, Deborah A.; McKinnon, A. D.; Bakken, David E.

    2005-06-20

    Embedded systems have become integral parts of a diverse range of systems from automobiles to critical infrastructure applications such as gas and electric power distribution. Unfortunately, research on computer security in general and intrusion detection in particular, has not kept pace. Furthermore, embedded systems, by their very nature, are application specific and therefore frameworks for developing application-specific intrusion detection systems for distributed embedded systems must be researched, designed, and implemented. In this paper, we present a configurable middleware-based intrusion detection framework. In particular, this paper presents a system model and a concrete implementation of a highly configurable intrusion detection framework that is integrated into MicroQoSCORBA, a highly configurable middleware framework developed for embedded systems. By exploiting the application-specific logic available to a middleware framework (e.g., object interfaces and method signatures), our integrated framework is able to autogenerate application-specific intrusion detection systems. Next, a set of configurable intrusion detection mechanisms suitable for embedded systems is presented. A performance evaluation of these mechanisms, run on two hardware platforms, is presented at the end of the paper.

  14. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    PubMed Central

    Kaliappan, Jayakumar; Thiagarajan, Revathi; Sundararajan, Karpagam

    2015-01-01

    An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate. PMID:26295058

  15. Implementing a Patternless Intrusion Detection System; A Methodology for Zippo

    DTIC Science & Technology

    2005-09-01

    A methodology for the implementation of Zippo, a patternless intrusion detection system is presented in this thesis. This methodology approaches the...... based on those of Therminator and understanding the ideas of buckets and balls, thermal canyons and towers, decision trees, slidelength and windowlength

  16. Anomaly-based intrusion detection for SCADA systems

    SciTech Connect

    Yang, D.; Usynin, A.; Hines, J. W.

    2006-07-01

    Most critical infrastructure such as chemical processing plants, electrical generation and distribution networks, and gas distribution is monitored and controlled by Supervisory Control and Data Acquisition Systems (SCADA. These systems have been the focus of increased security and there are concerns that they could be the target of international terrorists. With the constantly growing number of internet related computer attacks, there is evidence that our critical infrastructure may also be vulnerable. Researchers estimate that malicious online actions may cause $75 billion at 2007. One of the interesting countermeasures for enhancing information system security is called intrusion detection. This paper will briefly discuss the history of research in intrusion detection techniques and introduce the two basic detection approaches: signature detection and anomaly detection. Finally, it presents the application of techniques developed for monitoring critical process systems, such as nuclear power plants, to anomaly intrusion detection. The method uses an auto-associative kernel regression (AAKR) model coupled with the statistical probability ratio test (SPRT) and applied to a simulated SCADA system. The results show that these methods can be generally used to detect a variety of common attacks. (authors)

  17. Enterprise network intrusion detection and prevention system (ENIDPS)

    NASA Astrophysics Data System (ADS)

    Akujuobi, C. M.; Ampah, N. K.

    2007-04-01

    Securing enterprise networks comes under two broad topics: Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). The right combination of selected algorithms/techniques under both topics produces better security for a given network. This approach leads to using layers of physical, administrative, electronic, and encrypted systems to protect valuable resources. So far, there is no algorithm, which guarantees absolute protection for a given network from intruders. Intrusion Prevention Systems like IPSec, Firewall, Sender ID, Domain Keys Identified Mail (DKIM) etc. do not guarantee absolute security just like existing Intrusion Detection Systems. Our approach focuses on developing an IDS, which will detect all intruders that bypass the IPS and at the same time will be used in updating the IPS, since the IPS fail to prevent some intruders from entering a given network. The new IDS will employ both signature-based detection and anomaly detection as its analysis strategy. It should therefore be able to detect known and unknown intruders or attacks and further isolate those sources of attack within the network. Both real-time and off-line IDS predictions will be applied under the analysis and response stages. The basic IDS architecture will involve both centralized and distributed/heterogeneous architecture to ensure effective detection. Pro-active responses and corrective responses will be employed. The new security system, which will be made up of both IDS and IPS, should be less expensive to implement compared to existing ones. Finally, limitations of existing security systems have to be eliminated with the introduction of the new security system.

  18. A Partially Distributed Intrusion Detection System for Wireless Sensor Networks

    PubMed Central

    Cho, Eung Jun; Hong, Choong Seon; Lee, Sungwon; Jeon, Seokhee

    2013-01-01

    The increasing use of wireless sensor networks, which normally comprise several very small sensor nodes, makes their security an increasingly important issue. They can be practically and efficiently secured using intrusion detection systems. Conventional security mechanisms are not usually applicable due to the sensor nodes having limitations of computational power, memory capacity, and battery power. Therefore, specific security systems should be designed to function under constraints of energy or memory. A partially distributed intrusion detection system with low memory and power demands is proposed here. It employs a Bloom filter, which allows reduced signature code size. Multiple Bloom filters can be combined to reduce the signature code for each Bloom filter array. The mechanism could then cope with potential denial of service attacks, unlike many previous detection systems with Bloom filters. The mechanism was evaluated and validated through analysis and simulation.

  19. Neural Network Based Intrusion Detection System for Critical Infrastructures

    SciTech Connect

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  20. Thutmose - Investigation of Machine Learning-Based Intrusion Detection Systems

    DTIC Science & Technology

    2016-06-01

    goal of the experiment was to learn how susceptible an HMM is to a targeted causative integrity attack. In the first set of trials, the adversary...to a Targeted Causative attack against the Integrity of the learning system. In such an attack, an adversary chooses a specific anomalous point and...THUTMOSE – INVESTIGATION OF MACHINE LEARNING -BASED INTRUSION DETECTION SYSTEMS BAE SYSTEMS INFORMATION AND SECURITY JUNE 2016

  1. Detecting Signs of Intrusion.

    DTIC Science & Technology

    1997-08-01

    your systems, you should investigate any warnings they sound. Although monitors are not fool- proof, they can be part of an effective early warning ...Carnegie Mellon University Software Engineering Institute Detecting Signs of Intrusion Robert Firth Gary Ford Barbara Fräser John Kochmar...1997 Detecting Signs of Intrusion Robert Firth Gary Ford Barbara Fräser John Kochmar Suresh Konda John Richael Derek Simmel Networked Systems

  2. Usefulness of DARPA dataset for intrusion detection system evaluation

    NASA Astrophysics Data System (ADS)

    Thomas, Ciza; Sharma, Vishwas; Balakrishnan, N.

    2008-03-01

    The MIT Lincoln Laboratory IDS evaluation methodology is a practical solution in terms of evaluating the performance of Intrusion Detection Systems, which has contributed tremendously to the research progress in that field. The DARPA IDS evaluation dataset has been criticized and considered by many as a very outdated dataset, unable to accommodate the latest trend in attacks. Then naturally the question arises as to whether the detection systems have improved beyond detecting these old level of attacks. If not, is it worth thinking of this dataset as obsolete? The paper presented here tries to provide supporting facts for the use of the DARPA IDS evaluation dataset. The two commonly used signature-based IDSs, Snort and Cisco IDS, and two anomaly detectors, the PHAD and the ALAD, are made use of for this evaluation purpose and the results support the usefulness of DARPA dataset for IDS evaluation.

  3. Developing a Cooperative Intrusion Detection System for Wireless Sensor Networks

    DTIC Science & Technology

    2010-11-01

    security measures out. AWISSENET (Ad-hoc personal area network & WIreless Sensor SEcure NETwork) is a project funded by the European Union...Information and Communication Technologies Program that is focused on security and resilience across ad-hoc personal area networks and wireless sensor networks...and provides a security toolbox for trusted route selection, secure service discovery and intrusion detection. This paper deals with intrusion

  4. A Survey of Artificial Immune System Based Intrusion Detection

    PubMed Central

    Li, Tao; Hu, Xinlei; Wang, Feng; Zou, Yang

    2014-01-01

    In the area of computer security, Intrusion Detection (ID) is a mechanism that attempts to discover abnormal access to computers by analyzing various interactions. There is a lot of literature about ID, but this study only surveys the approaches based on Artificial Immune System (AIS). The use of AIS in ID is an appealing concept in current techniques. This paper summarizes AIS based ID methods from a new view point; moreover, a framework is proposed for the design of AIS based ID Systems (IDSs). This framework is analyzed and discussed based on three core aspects: antibody/antigen encoding, generation algorithm, and evolution mode. Then we collate the commonly used algorithms, their implementation characteristics, and the development of IDSs into this framework. Finally, some of the future challenges in this area are also highlighted. PMID:24790549

  5. An evaluation of fiber optic intrusion detection systems in interior applications

    SciTech Connect

    Vigil, J.T.

    1994-03-01

    This report discusses the testing and evaluation of four commercially available fiber optic intrusion detection systems. The systems were tested under carpet-type matting and in a vaulted ceiling application. This report will focus on nuisance alarm data and intrusion detection results. Tests were conducted in a mobile office building and in a bunker.

  6. Characterizing and Managing Intrusion Detection System (IDS) Alerts with Multi-Server/Multi-Priority Queuing Theory

    DTIC Science & Technology

    2014-12-26

    CHARACTERIZING AND MANAGING INTRUSION DETECTION SYSTEM (IDS) ALERTS WITH MULTI-SERVER/MULTI-PRIORITY...subject to copyright protection in the United States. AFIT-ENV-MS-14-D-24 CHARACTERIZING AND MANAGING INTRUSION DETECTION SYSTEM (IDS) ALERTS WITH...IDS) ALERTS WITH MULTI-SERVER/MULTI-PRIORITY QUEUING THEORY Christopher C. Olsen, BS Captain, USAF Approved

  7. Optimization of detection sensitivity for a Fiber Optic Intrusion Detection System (FOIDS) using design of experiments.

    SciTech Connect

    Miller, Larry D.; Mack, Thomas Kimball; Mitchiner, Kim W.; Varoz, Carmella A.

    2010-06-01

    The Fiber Optic Intrusion Detection System (FOIDS)1 is a physical security sensor deployed on fence lines to detect climb or cut intrusions by adversaries. Calibration of detection sensitivity can be time consuming because, for example, the FiberSenSys FD-332 has 32 settings that can be adjusted independently to provide a balance between a high probability of detection and a low nuisance alarm rate. Therefore, an efficient method of calibrating the FOIDS in the field, other than by trial and error, was needed. This study was conducted to: x Identify the most significant settings for controlling detection x Develop a way of predicting detection sensitivity for given settings x Develop a set of optimal settings for validation The Design of Experiments (DoE) 2-4 methodology was used to generate small, planned test matrixes, which could be statistically analyzed to yield more information from the test data. Design of Experiments is a statistical methodology for quickly optimizing performance of systems with measurable input and output variables. DoE was used to design custom screening experiments based on 11 FOIDS settings believed to have the most affect on WKH types of fence perimeter intrusions were evaluated: simulated cut intrusions and actual climb intrusions. Two slightly different two-level randomized fractional factorial designed experiment matrixes consisting of 16 unique experiments were performed in the field for each type of intrusion. Three repetitions were conducted for every cut test; two repetitions were conducted for every climb test. Total number of cut tests analyzed was 51; the total number of climb tests was 38. This paper discusses the results and benefits of using Design of Experiments (DoE) to calibrate and optimize the settings for a FOIDS sensor

  8. Efficient pattern matching on GPUs for intrusion detection systems

    SciTech Connect

    Villa, Oreste; Tumeo, Antonino; Sciuto, Donatella

    2010-05-17

    Pattern matching is at the core of many security applications, like Network Intrusion Detection Systems (NIDS), spam filters and virus scanner. The always growing traffic on networks requires the ability to recognize potentially malicious signatures effectively, fastly and possibly in real time, without afftecting the performance and the latencies of the connections. Unfortunately, pattern matching is a computationally intensive procedure which poses significant challenges on current software and hardware implementations. Graphic Processing Units (GPU) have become an interesting target for such high-througput applications, but the algorithms and the data structures need to be redesigned to be parallelized and adapted to the underlining hardware, coping with the limitations imposed by these architectures. In this paper we present an efficient implementation of the Aho-Corasick pattern matching algorithm on GPU, showing how we progressively redesigned the algorithm and the data structures to fit on the architecture and comparing it with equivalent implementations on the CPU and with previous work. We show that with realistic TCP-IP workloads and signatures, our implementation obtains a speedup of 6.5 with respect to CPU implementations and of two times when compared to previous GPU solutions.

  9. An Intrusion Detection System Based on Multi-Level Clustering for Hierarchical Wireless Sensor Networks

    PubMed Central

    Butun, Ismail; Ra, In-Ho; Sankar, Ravi

    2015-01-01

    In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915

  10. Network intrusion detection by the coevolutionary immune algorithm of artificial immune systems with clonal selection

    NASA Astrophysics Data System (ADS)

    Salamatova, T.; Zhukov, V.

    2017-02-01

    The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.

  11. A Distributed Signature Detection Method for Detecting Intrusions in Sensor Systems

    PubMed Central

    Kim, Ilkyu; Oh, Doohwan; Yoon, Myung Kuk; Yi, Kyueun; Ro, Won Woo

    2013-01-01

    Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on the Wu–Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors. PMID:23529146

  12. A distributed signature detection method for detecting intrusions in sensor systems.

    PubMed

    Kim, Ilkyu; Oh, Doohwan; Yoon, Myung Kuk; Yi, Kyueun; Ro, Won Woo

    2013-03-25

    Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on the Wu-Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors.

  13. A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    DTIC Science & Technology

    2011-03-01

    for a new, self-organized, multi agent, flow-based intrusion detection system; and 2 ) a network simulation envi- ronment suitable for evaluating an...six years of service in the Air Force, and I am indebted to him for his efforts. I also thank Dr. Gilbert Peterson and Dr. Barry Mullins for valuable...1 1.1 The Generic Intrusion Detection Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Scope of Investigative Domain

  14. Implementation of an intrusion detection system based on wireless positioning

    NASA Astrophysics Data System (ADS)

    Akopian, David; Chen, Philip; Gunturu, Maheedhar; Sagiraju, Phani K.

    2008-04-01

    WLAN networks are widely deployed and can be used for testbed and application developments in academic environments. This paper presents wireless positioning testbed and a related application implementation methodology as a case study. Nowadays state-of-the-art WLAN positioning systems achieve high location estimation accuracy. In designated areas the signal profile map can be designed and used for such a positioning. Coverage of WLAN networks is typically wider than the authorized areas and there might be network intrusion attempts from the vicinity areas such as parking lots, cafeterias, etc. In addition to conventional verification and authorization methods, the network can locate the user, verify if his location is in the authorized area and apply additional checks to find the violators.

  15. Anomaly-Based Intrusion Detection Systems Utilizing System Call Data

    DTIC Science & Technology

    2012-03-01

    HLLW.Raleka.A, Alasrou.A, Kassbot, Shelp.A, Blaster, Francette) • E-mail worms – 9 instances (5 variants of w32.Netsky and 4 variants of w32. Beagle ...For instance, the Beagle worm drops itself into the system folder, and then it e-mails its dropper. However, our prototype system 56

  16. A prototype implementation of a network-level intrusion detection system. Technical report number CS91-11

    SciTech Connect

    Heady, R.; Luger, G.F.; Maccabe, A.B.; Servilla, M.; Sturtevant, J.

    1991-05-15

    This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  17. Functional requirements with survey results for integrated intrusion detection and access control annunciator systems

    SciTech Connect

    Arakaki, L.H.; Monaco, F.M.

    1995-09-01

    This report contains the guidance Functional Requirements for an Integrated Intrusion Detection and Access Control Annunciator System, and survey results of selected commercial systems. The survey questions were based upon the functional requirements; therefore, the results reflect which and sometimes how the guidance recommendations were met.

  18. Windows NT Attacks for the Evaluation of Intrusion Detection Systems

    DTIC Science & Technology

    2000-06-01

    Neptune and Smurf. These attacks are fully documented in [10]. In addition, two denial-of-service attacks, CrashIIS and DoSNuke, were developed to...in the Netscape browser. NetBus and NetCat use trojan programs to establish back doors on the victim system. PPMacro inserts malicious macro code...detecting the attack. 51 7.2 Netbus R-s-U Description The attacker uses a trojan program to install and run the Netbus server, version 1.7, on

  19. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    PubMed Central

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  20. A Multilevel Secure Constrained Intrusion Detection System Prototype

    DTIC Science & Technology

    2010-12-01

    components consist of a packet classifier, an IP defragmenter and a TCP reassembler, a portscan processor and a detection engine [9]. The packet... portscan processor watches for portscans and the detection engine performs protocol normalization, rule matching, and other detection functions to

  1. Evaluating Machine Learning Classifiers for Hybrid Network Intrusion Detection Systems

    DTIC Science & Technology

    2015-03-26

    13 2.3.2 Anomaly-Based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 Stateful Protocol Analysis...1 TCP Transmission Control Protocol ...3 IP Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 VFT Value-Focused Thinking

  2. Design and implementation of an intrusion detection system based on IPv6 protocol

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Li, Zhitang; Li, Yao; Li, Zhanchun

    2005-11-01

    Network intrusion detection systems (NIDS) are important parts of network security architecture. Although many NIDS have been proposed, there is little effort to expand the current set of NIDS to support IPv6 protocol. This paper presents the design and implementation of a Network-based Intrusion Detection System that supports both IPv6 protocol and IPv4 protocol. It characters rules based logging to perform content pattern matching and detect a variety of attacks and probes from IPv4 and IPv6.There are four primary subsystems to make it up: packet capture, packet decoder, detection engine, and logging and alerting subsystem. A new approach to packet capture that combined NAPI with MMAP is proposed in this paper. The test results show that the efficiency of packet capture can be improved significantly by this method. Several new attack tools for IPv6 have been developed for intrusion detection evaluation. Test shows that more than 20 kinds of IPv6 attacks can be detected by this system and it also has a good performance under heavy traffic load.

  3. A Protocol Specification-Based Intrusion Detection System for VoIP and Its Evaluation

    NASA Astrophysics Data System (ADS)

    Phit, Thyda; Abe, Kôki

    We propose an architecture of Intrusion Detection System (IDS) for VoIP using a protocol specification-based detection method to monitor the network traffics and alert administrator for further analysis of and response to suspicious activities. The protocol behaviors and their interactions are described by state machines. Traffic that behaves differently from the standard specifications are considered to be suspicious. The IDS has been implemented and simulated using OPNET Modeler, and verified to detect attacks. It was found that our system can detect typical attacks within a reasonable amount of delay time.

  4. Implementing an Intrusion Detection System in the Mysea Architecture

    DTIC Science & Technology

    2008-06-01

    33 B. CONCEPT OF OPERATION.............................................................. 33 1. Multiple IDSes...Architecture [24] ............................................................... 18 Figure 5: Concept of Operations...environment. Proving the concepts will first take place by conducting experiments on Linux systems that are similar to the XTS400 system [3]. These

  5. Adapting safety requirements analysis to intrusion detection

    NASA Technical Reports Server (NTRS)

    Lutz, R.

    2001-01-01

    Several requirements analysis techniques widely used in safety-critical systems are being adapted to support the analysis of secure systems. Perhaps the most relevant system safety techique for Intrusion Detection Systems is hazard analysis.

  6. Resilient Control and Intrusion Detection for SCADA Systems

    DTIC Science & Technology

    2014-05-01

    14 2.6.3 Application Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6.4 Attacks on Implementation of Protocols ...Establish prudent and plausible threat models, • Characterize the system architecture, protocol use, network topology, and network activity of...Ethernet and transmission control protocol /Internet protocol TCP/IP for process control networks and wireless technologies such as IEEE 802.x and

  7. A Multi Agent System for Flow-Based Intrusion Detection

    DTIC Science & Technology

    2013-03-01

    training and online testing execution paths . . . . . . . . . . 106 3.13 Add and Del Mutations...The basis of a centralized approach is the same as that of online rating systems employed for shopping [147]. Following an interaction, a witness...allow the centralized evaluator to determine the resulting reputation. This reputation can then be used as a criterion by which other agents or online

  8. Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems

    NASA Astrophysics Data System (ADS)

    Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.

    2017-01-01

    The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.

  9. Idaho National Laboratory Supervisory Control and Data Acquisition Intrusion Detection System (SCADA IDS)

    SciTech Connect

    Jared Verba; Michael Milvich

    2008-05-01

    Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting malicious activity.

  10. An Intrusion Detection System for the Protection of Railway Assets Using Fiber Bragg Grating Sensors

    PubMed Central

    Catalano, Angelo; Bruno, Francesco Antonio; Pisco, Marco; Cutolo, Antonello; Cusano, Andrea

    2014-01-01

    We demonstrate the ability of Fiber Bragg Gratings (FBGs) sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology. PMID:25268920

  11. An intrusion detection system for the protection of railway assets using Fiber Bragg Grating sensors.

    PubMed

    Catalano, Angelo; Bruno, Francesco Antonio; Pisco, Marco; Cutolo, Antonello; Cusano, Andrea

    2014-09-29

    We demonstrate the ability of Fiber Bragg Gratings (FBGs) sensors to protect large areas from unauthorized activities in railway scenarios such as stations or tunnels. We report on the technological strategy adopted to protect a specific depot, representative of a common scenario for security applications in the railway environment. One of the concerns in the protection of a railway area centers on the presence of rail-tracks, which cannot be obstructed with physical barriers. We propose an integrated optical fiber system composed of FBG strain sensors that can detect human intrusion for protection of the perimeter combined with FBG accelerometer sensors for protection of rail-track access. Several trials were carried out in indoor and outdoor environments. The results demonstrate that FBG strain sensors bonded under a ribbed rubber mat enable the detection of intruder break-in via the pressure induced on the mat, whereas the FBG accelerometers installed under the rails enable the detection of intruders walking close to the railroad tracks via the acoustic surface waves generated by footsteps. Based on a single enabling technology, this integrated system represents a valuable intrusion detection system for railway security and could be integrated with other sensing functionalities in the railway field using fiber optic technology.

  12. A Multiagent-based Intrusion Detection System with the Support of Multi-Class Supervised Classification

    NASA Astrophysics Data System (ADS)

    Shyu, Mei-Ling; Sainani, Varsha

    The increasing number of network security related incidents have made it necessary for the organizations to actively protect their sensitive data with network intrusion detection systems (IDSs). IDSs are expected to analyze a large volume of data while not placing a significantly added load on the monitoring systems and networks. This requires good data mining strategies which take less time and give accurate results. In this study, a novel data mining assisted multiagent-based intrusion detection system (DMAS-IDS) is proposed, particularly with the support of multiclass supervised classification. These agents can detect and take predefined actions against malicious activities, and data mining techniques can help detect them. Our proposed DMAS-IDS shows superior performance compared to central sniffing IDS techniques, and saves network resources compared to other distributed IDS with mobile agents that activate too many sniffers causing bottlenecks in the network. This is one of the major motivations to use a distributed model based on multiagent platform along with a supervised classification technique.

  13. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System

    SciTech Connect

    Chen, Yan

    2013-12-05

    Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm is significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.

  14. A Hypergraph and Arithmetic Residue-based Probabilistic Neural Network for classification in Intrusion Detection Systems.

    PubMed

    Raman, M R Gauthama; Somu, Nivethitha; Kirthivasan, Kannan; Sriram, V S Shankar

    2017-02-17

    Over the past few decades, the design of an intelligent Intrusion Detection System (IDS) remains an open challenge to the research community. Continuous efforts by the researchers have resulted in the development of several learning models based on Artificial Neural Network (ANN) to improve the performance of the IDSs. However, there exists a tradeoff with respect to the stability of ANN architecture and the detection rate for less frequent attacks. This paper presents a novel approach based on Helly property of Hypergraph and Arithmetic Residue-based Probabilistic Neural Network (HG AR-PNN) to address the classification problem in IDS. The Helly property of Hypergraph was exploited for the identification of the optimal feature subset and the arithmetic residue of the optimal feature subset was used to train the PNN. The performance of HG AR-PNN was evaluated using KDD CUP 1999 intrusion dataset. Experimental results prove the dominance of HG AR-PNN classifier over the existing classifiers with respect to the stability and improved detection rate for less frequent attacks.

  15. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security

    PubMed Central

    Kang, Min-Joo

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus. PMID:27271802

  16. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    PubMed

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  17. Non-intrusive gesture recognition system combining with face detection based on Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Wang, Yuanqing; Xu, Liujing; Cao, Liqun; Han, Lei; Zhou, Biye; Li, Minggao

    2014-11-01

    A non-intrusive gesture recognition human-machine interaction system is proposed in this paper. In order to solve the hand positioning problem which is a difficulty in current algorithms, face detection is used for the pre-processing to narrow the search area and find user's hand quickly and accurately. Hidden Markov Model (HMM) is used for gesture recognition. A certain number of basic gesture units are trained as HMM models. At the same time, an improved 8-direction feature vector is proposed and used to quantify characteristics in order to improve the detection accuracy. The proposed system can be applied in interaction equipments without special training for users, such as household interactive television

  18. TAD2: the first truly non-intrusive lie detection system deployed in real crime cases

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun; Somboonkaew, Armote

    2010-11-01

    Interrogation is an important step for seeking truth from the suspect. With the limit of the intrusive nature of the current polygraph, we show here a highly-sought-after non-intrusive lie detection system with a user-friendly interface called TAD2. The key idea behind our TAD2 is based on the analysis of far-infrared data obtained remotely from the periorbital and nostril areas of the suspect during the interrogation. In this way, measured change in skin temperature around two periorbital areas is converted to a relative blood flow velocity while a respiration pattern is simultaneously determined from the measured change in temperature around the nostril region. In addition, TAD2 is embedded with our automatic baseline assignment that is used for distinguishing the subject's response into normal or abnormal stage. In our TAD2, the officer can choose to perform one of the three standard lie detection tests, namely, a modified zone comparison test, a modified general question test, and an irrelevant & relevant test. Field test results from suspects in real crime cases are discussed.

  19. Alerts Analysis and Visualization in Network-based Intrusion Detection Systems

    SciTech Connect

    Yang, Dr. Li

    2010-08-01

    The alerts produced by network-based intrusion detection systems, e.g. Snort, can be difficult for network administrators to efficiently review and respond to due to the enormous number of alerts generated in a short time frame. This work describes how the visualization of raw IDS alert data assists network administrators in understanding the current state of a network and quickens the process of reviewing and responding to intrusion attempts. The project presented in this work consists of three primary components. The first component provides a visual mapping of the network topology that allows the end-user to easily browse clustered alerts. The second component is based on the flocking behavior of birds such that birds tend to follow other birds with similar behaviors. This component allows the end-user to see the clustering process and provides an efficient means for reviewing alert data. The third component discovers and visualizes patterns of multistage attacks by profiling the attacker s behaviors.

  20. Autonomous Rule Creation for Intrusion Detection

    SciTech Connect

    Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-04-01

    Many computational intelligence techniques for anomaly based network intrusion detection can be found in literature. Translating a newly discovered intrusion recognition criteria into a distributable rule can be a human intensive effort. This paper explores a multi-modal genetic algorithm solution for autonomous rule creation. This algorithm focuses on the process of creating rules once an intrusion has been identified, rather than the evolution of rules to provide a solution for intrusion detection. The algorithm was demonstrated on anomalous ICMP network packets (input) and Snort rules (output of the algorithm). Output rules were sorted according to a fitness value and any duplicates were removed. The experimental results on ten test cases demonstrated a 100 percent rule alert rate. Out of 33,804 test packets 3 produced false positives. Each test case produced a minimum of three rule variations that could be used as candidates for a production system.

  1. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zhang, Guogang; Dong, Jinlong; Liu, Wanying; Geng, Yingsan

    2014-07-01

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc.

  2. AIDE - Advanced Intrusion Detection Environment

    SciTech Connect

    Smith, Cathy L.

    2013-04-28

    Would you like to know when someone has dropped an undesirable executable binary on our system? What about something less malicious such as a software installation by a user? What about the user who decides to install a newer version of mod_perl or PHP on your web server without letting you know beforehand? Or even something as simple as when an undocumented config file change is made by another member of the admin group? Do you even want to know about all the changes that happen on a daily basis on your server? The purpose of an intrusion detection system (IDS) is to detect unauthorized, possibly malicious activity. The purpose of a host-based IDS, or file integrity checker, is check for unauthorized changes to key system files, binaries, libraries, and directories on the system. AIDE is an Open Source file and directory integrity checker. AIDE will let you know when a file or directory has been added, deleted, modified. It is included with the Red Hat Enterprise 6. It is available for other Linux distros. This is a case study describing the process of configuring AIDE on an out of the box RHEL6 installation. Its goal is to illustrate the thinking and the process by which a useful AIDE configuration is built.

  3. A harmful-intrusion detection method based on background reconstruction and two-dimensional K-S test in an optical fiber pre-warning system

    NASA Astrophysics Data System (ADS)

    Bi, Fukun; Zheng, Tong; Qu, Hongquan; Pang, Liping

    2016-06-01

    The key technology and main difficulty for optical fiber intrusion pre-warning systems (OFIPS) is the extraction of harmful-intrusion signals. After being processed by a phase-sensitive optical time-domain reflectometer (Φ-OTDR), vibration signals can be preliminarily extracted. Generally, these include noises and intrusions. Here, intrusions can be divided into harmful and harmless intrusions. With respect to the close study of signal characteristics, an effective extraction method of harmful intrusion is proposed in the paper. Firstly, in the part of the background reconstruction, all intrusion signals are first detected by a constant false alarm rate (CFAR). We then reconstruct the backgrounds by extracting two-part information of alarm points, time and amplitude. This ensures that the detection background consists of intrusion signals. Secondly, in the part of the two-dimensional Kolmogorov-Smirnov (K-S) test, in order to extract harmful ones from all extracted intrusions, we design a separation method. It is based on the signal characteristics of harmful intrusion, which are shorter time interval and higher amplitude. In the actual OFIPS, the detection method is used in some typical scenes, which includes a lot of harmless intrusions, for example construction sites and busy roads. Results show that we can effectively extract harmful intrusions.

  4. Optimal sensor placement for detecting organophosphate intrusions into water distribution systems.

    PubMed

    Ohar, Ziv; Lahav, Ori; Ostfeld, Avi

    2015-04-15

    Placement of water quality sensors in a water distribution system is a common approach for minimizing contamination intrusion risks. This study incorporates detailed chemistry of organophosphate contaminations into the problem of sensor placement and links quantitative measures of the affected population as a result of such intrusions. The suggested methodology utilizes the stoichiometry and kinetics of the reactions between organophosphate contaminants and free chlorine for predicting the number of affected consumers. This is accomplished through linking a multi-species water quality model and a statistical dose-response model. Three organophosphates (chlorpyrifos, malathion, and parathion) are tested as possible contaminants. Their corresponding by-products were modeled and accounted for in the affected consumers impact calculations. The methodology incorporates a series of randomly generated intrusion events linked to a genetic algorithm for minimizing the contaminants impact through a sensors system. Three example applications are explored for demonstrating the model capabilities through base runs and sensitivity analyses.

  5. Multi-pattern string matching algorithms comparison for intrusion detection system

    NASA Astrophysics Data System (ADS)

    Hasan, Awsan A.; Rashid, Nur'Aini Abdul; Abdulrazzaq, Atheer A.

    2014-12-01

    Computer networks are developing exponentially and running at high speeds. With the increasing number of Internet users, computers have become the preferred target for complex attacks that require complex analyses to be detected. The Intrusion detection system (IDS) is created and turned into an important part of any modern network to protect the network from attacks. The IDS relies on string matching algorithms to identify network attacks, but these string matching algorithms consume a considerable amount of IDS processing time, thereby slows down the IDS performance. A new algorithm that can overcome the weakness of the IDS needs to be developed. Improving the multi-pattern matching algorithm ensure that an IDS can work properly and the limitations can be overcome. In this paper, we perform a comparison between our three multi-pattern matching algorithms; MP-KR, MPHQS and MPH-BMH with their corresponding original algorithms Kr, QS and BMH respectively. The experiments show that MPH-QS performs best among the proposed algorithms, followed by MPH-BMH, and MP-KR is the slowest. MPH-QS detects a large number of signature patterns in short time compared to other two algorithms. This finding can prove that the multi-pattern matching algorithms are more efficient in high-speed networks.

  6. Hybrid Modified K-Means with C4.5 for Intrusion Detection Systems in Multiagent Systems

    PubMed Central

    Laftah Al-Yaseen, Wathiq; Ali Othman, Zulaiha; Ahmad Nazri, Mohd Zakree

    2015-01-01

    Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modified K-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modified K-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy. PMID:26161437

  7. A system for the non-intrusive detection of damage in underground power cables: Damage modeling and sensor system design

    NASA Astrophysics Data System (ADS)

    Gorgen, Marvin Alexander

    A system for non-intrusive sensing of underground power cable impedance is presented. The impedance sensor is used for the detection of damage to underground power cables. The system is capable of taking measurements without the need to interrupt power service. To isolate the impedance measurement from the effects of customer loading, a blocking unit is proposed which presents an open circuit to the impedance sensor in the transmission line at the point where the blocker is clamped onto the cable. Both of the proposed devices are prototyped and evaluated. The impedance sensor is demonstrated to be capable of accurate impedance measurements within a 2% error over a range from 50 to 1000 Ohms. The blocker is demonstrated to provide approximately 30 dB of attenuation over the designed ranged of measurement frequencies. The system can detect impedance changes resulting from corrosion or damage in underground power cables.

  8. A research using hybrid RBF/Elman neural networks for intrusion detection system secure model

    NASA Astrophysics Data System (ADS)

    Tong, Xiaojun; Wang, Zhu; Yu, Haining

    2009-10-01

    A hybrid RBF/Elman neural network model that can be employed for both anomaly detection and misuse detection is presented in this paper. The IDSs using the hybrid neural network can detect temporally dispersed and collaborative attacks effectively because of its memory of past events. The RBF network is employed as a real-time pattern classification and the Elman network is employed to restore the memory of past events. The IDSs using the hybrid neural network are evaluated against the intrusion detection evaluation data sponsored by U.S. Defense Advanced Research Projects Agency (DARPA). Experimental results are presented in ROC curves. Experiments show that the IDSs using this hybrid neural network improve the detection rate and decrease the false positive rate effectively.

  9. Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array.

    PubMed

    Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-03-04

    Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively.

  10. Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array

    PubMed Central

    Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-01-01

    Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively. PMID:28273838

  11. Detection of DoS attacks using intrusion detection sensors

    NASA Astrophysics Data System (ADS)

    Ramakrishna, Pathmenanthan; Maarof, Mohd A.

    2002-09-01

    Intrusion detection systems have usually been developed using large host-based components. These components impose an extra load on the system where they run (sometimes even requiring a dedicated system) and are subject to tampering or disabling by an intruder. Additionally, intrusion detection systems have usually obtained information about host behavior through indirect means, such as audit trails or network packet traces. This potentially allows intruders to modify the information before the intrusion detection system obtains it and slows down the detection and prevention of DoS attacks, making it possible for an intruder to hide his activities. In this paper we propose work that will attempt to show that it is possible to perform intrusion detection mechanism of DoS attacks using small sensors embedded in a computer system. These sensors will look for signs of specific intrusions. They will perform target monitoring by observing the behavior of the through an audit trail or other indirect means in real time while the Snort IDS running. Furthermore, by being built into the computer system it could provide a flexible alert sensor which may not impose a considerable extra load on the host they monitor.

  12. Intrusion detection using secure signatures

    DOEpatents

    Nelson, Trent Darnel; Haile, Jedediah

    2014-09-30

    A method and device for intrusion detection using secure signatures comprising capturing network data. A search hash value, value employing at least one one-way function, is generated from the captured network data using a first hash function. The presence of a search hash value match in a secure signature table comprising search hash values and an encrypted rule is determined. After determining a search hash value match, a decryption key is generated from the captured network data using a second hash function, a hash function different form the first hash function. One or more of the encrypted rules of the secure signatures table having a hash value equal to the generated search hash value are then decrypted using the generated decryption key. The one or more decrypted secure signature rules are then processed for a match and one or more user notifications are deployed if a match is identified.

  13. A Survey on Intrusion Detection in MANETs.

    NASA Astrophysics Data System (ADS)

    BakeyaLakshmi, P.; Santhi, K.

    2012-10-01

    A mobile ad hoc network is an infrastructureless network that changes its links dynamically, which makes routing in MANET a difficult process. As Mobile Ad-Hoc Network (MANET) has become a very important technology, research concerning its security problem, especially, in intrusion detection has attracted many researchers. Feature selection methodology plays a vital role in the data analysis process. PCA is used to analyze the selected features. This is because, redundant and irrelevant features often reduce performance of the intrusion detection system. It performs better in increasing speed and predictive accuracy. This survey aims to select and analyze the network features using principal component analysis. While performing various experiments, normal and attack states are simulated and the results for the selected features are analyzed.

  14. From Intrusion Detection to Self Protection

    SciTech Connect

    Frincke, Deb; Wespi, Andreas; Zamboni, Diego

    2007-04-11

    Modern computer systems have become so complex and interdependent that the traditional model of system defense, utilizing layers and including an intrusion detection system that provides alerts to a human who responds to them, is becoming unfeasible. Effective human-guided real-time responses are no longer a reasonable expectation for large scale systems--this is particularly troublesome because a failure to respond correctly and rapidly can have disastrous consequences. In an ideal world, our systems would automatically detect and respond to threats of all kinds, including but not limited to automated attacks, human-guided attacks, and the constant onslaught of unsolicited email (spam). Traditionally, these threats have been dealt with by separate communities--the anti-virus community, the intrusion-detection/firewall community, and the anti-spam community. Today however, we see an increasing need for integrating different technologies toward achieving a common goal. In this special issue, we surveyed the research community with the intent of identifying novel, multidisciplinary and integrated approaches to system defense that contribute towards development of true self-protecting and self-healing systems. The result is reflected in the articles we selected.

  15. Intelligent detection and identification in fiber-optical perimeter intrusion monitoring system based on the FBG sensor network

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Li, Hanyu; Xie, Xin

    2015-12-01

    A real-time intelligent fiber-optic perimeter intrusion detection system (PIDS) based on the fiber Bragg grating (FBG) sensor network is presented in this paper. To distinguish the effects of different intrusion events, a novel real-time behavior impact classification method is proposed based on the essential statistical characteristics of signal's profile in the time domain. The features are extracted by the principal component analysis (PCA), which are then used to identify the event with a K-nearest neighbor classifier. Simulation and field tests are both carried out to validate its effectiveness. The average identification rate (IR) for five sample signals in the simulation test is as high as 96.67%, and the recognition rate for eight typical signals in the field test can also be achieved up to 96.52%, which includes both the fence-mounted and the ground-buried sensing signals. Besides, critically high detection rate (DR) and low false alarm rate (FAR) can be simultaneously obtained based on the autocorrelation characteristics analysis and a hierarchical detection and identification flow.

  16. An improved unsupervised clustering-based intrusion detection method

    NASA Astrophysics Data System (ADS)

    Hai, Yong J.; Wu, Yu; Wang, Guo Y.

    2005-03-01

    Practical Intrusion Detection Systems (IDSs) based on data mining are facing two key problems, discovering intrusion knowledge from real-time network data, and automatically updating them when new intrusions appear. Most data mining algorithms work on labeled data. In order to set up basic data set for mining, huge volumes of network data need to be collected and labeled manually. In fact, it is rather difficult and impractical to label intrusions, which has been a big restrict for current IDSs and has led to limited ability of identifying all kinds of intrusion types. An improved unsupervised clustering-based intrusion model working on unlabeled training data is introduced. In this model, center of a cluster is defined and used as substitution of this cluster. Then all cluster centers are adopted to detect intrusions. Testing on data sets of KDDCUP"99, experimental results demonstrate that our method has good performance in detection rate. Furthermore, the incremental-learning method is adopted to detect those unknown-type intrusions and it decreases false positive rate.

  17. Host-Based Multivariate Statistical Computer Operating Process Anomaly Intrusion Detection System (PAIDS)

    DTIC Science & Technology

    2009-03-01

    Jeffrey W. Humphries , Lt Col, PhD, USAF (Reader) Date iv AFIT/GOR/ENS/09-15 Abstract Most intrusion...Linear Discriminant Analysis (LDA) developed by Sir Ronald A. Fisher, in The Use of Multiple Measurements in Taxonomic Problems (1936) finds a...Agency. National Institue of Standards and Technology. Merkle, L. D., Carlisle, M. C., Humphries , J. W., & Lopez, D. W. (2002). EA-Based Approach for

  18. Application of a Hidden Bayes Naive Multiclass Classifier in Network Intrusion Detection

    ERIC Educational Resources Information Center

    Koc, Levent

    2013-01-01

    With increasing Internet connectivity and traffic volume, recent intrusion incidents have reemphasized the importance of network intrusion detection systems for combating increasingly sophisticated network attacks. Techniques such as pattern recognition and the data mining of network events are often used by intrusion detection systems to classify…

  19. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  20. Cold Regions Performance of Optical-Fiber and Pulsed Near-Infrared Intrusion Detection Systems

    DTIC Science & Technology

    1994-05-01

    8 Doc 1992 were a direct consequence of (29 Jun). flu P011)6 reliably detected a Fperonr cross- the gravel layer being harri -furozn Once the ice ing...was the poter - FOLDS alarms is wind-induced motion of the ply- tial for twice as many alarms to occur as were re- wood panel to which the enclosure

  1. Using Relational Schemata in a Computer Immune System to Detect Multiple-Packet Network Intrusions

    DTIC Science & Technology

    2002-03-01

    used to perform portscans on between one and ten computers using SYN scanning, FIN scanning, and UDP scanning of victim machines. Both sequential and...for Computing Machinery, 1997. [Stan00] Staniford, Stuart, et al. “Practical Automated Detection of Stealthy Portscans .” Proceedings of the 7th ACM

  2. A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems

    DTIC Science & Technology

    1999-06-01

    Mailbomb R-a-Deny(Administrative) .................................................................44 6.5 SYN Flood ( Neptune ) R-a-Deny(Temporary...a system which is actually a trojan horse containing malicious code that gives the attacker system access. Implementation Bug: Bugs in trusted...including many forms of malicious code such as trojan horses, viruses, attacks that take advantage of race conditions, and attacks that take advantage

  3. Intrusion detection using rough set classification.

    PubMed

    Zhang, Lian-hua; Zhang, Guan-hua; Zhang, Jie; Bai, Ying-cai

    2004-09-01

    Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of "IF-THEN" rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set).

  4. Extremely Lightweight Intrusion Detection (ELIDe)

    DTIC Science & Technology

    2013-12-01

    conventional computing platform (Dell Inspiron 15N laptop running Mint Maya as the operating system, dual-core Core i5 CPU, 8 GB RAM ), Snort exhibited a peak... RAM usage of approximately 1.2 GB as measured by the Massif memory profiler within the Valgrind suite (3). While this is very reasonable for...equipped with only 512 MB of RAM and would, therefore, be overwhelmed by the runtime demands of Snort. Consequently, any packet analysis solution in the

  5. Distributed fiber optic moisture intrusion sensing system

    DOEpatents

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  6. Subsurface Intrusion Detection System

    DTIC Science & Technology

    2014-02-25

    vibrations with a first sensor positioned at a first depth relative to a surface of the earth to generate a first signal and receiving vibrations...with a second sensor positioned at a second depth relative to the surface of the earth to generate a second signal. The second depth is greater than...to measure vibrations of the earth . The plurality of vibration sensors comprise at least an upper sensor and lower sensor at a location. Each signal

  7. Data mining approach to web application intrusions detection

    NASA Astrophysics Data System (ADS)

    Kalicki, Arkadiusz

    2011-10-01

    Web applications became most popular medium in the Internet. Popularity, easiness of web application script languages and frameworks together with careless development results in high number of web application vulnerabilities and high number of attacks performed. There are several types of attacks possible because of improper input validation: SQL injection Cross-site scripting, Cross-Site Request Forgery (CSRF), web spam in blogs and others. In order to secure web applications intrusion detection (IDS) and intrusion prevention systems (IPS) are being used. Intrusion detection systems are divided in two groups: misuse detection (traditional IDS) and anomaly detection. This paper presents data mining based algorithm for anomaly detection. The principle of this method is the comparison of the incoming HTTP traffic with a previously built profile that contains a representation of the "normal" or expected web application usage sequence patterns. The frequent sequence patterns are found with GSP algorithm. Previously presented detection method was rewritten and improved. Some tests show that the software catches malicious requests, especially long attack sequences, results quite good with medium length sequences, for short length sequences must be complemented with other methods.

  8. Intrusion Detection With Quantum Mechanics: A Photonic Quantum Fence

    DTIC Science & Technology

    2008-12-01

    computing and quantum key distribution (QKD). Some of the most remarkable examples include quantum teleportation for the non-local transfer of...1 INTRUSION DETECTION WITH QUANTUM MECHANICS: A PHOTONIC QUANTUM FENCE T. S. Humble*, R. S. Bennink, and W. P. Grice Oak Ridge National...use of quantum -mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no

  9. APHID: Anomaly Processor in Hardware for Intrusion Detection

    DTIC Science & Technology

    2007-03-01

    APHID : Anomaly Processor in Hardware for Intrusion Detection THESIS Samuel Hart, Captain, USAF AFIT/GCE/ENG/07-04 DEPARTMENT OF THE AIR FORCE AIR...the United States Government. AFIT/GCE/ENG/07-04 APHID : Anomaly Processor in Hardware for Intrusion Detection THESIS Presented to the Faculty...Captain, USAF March 2007 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GCE/ENG/07-04 APHID : Anomaly Processor in Hardware for Intrusion

  10. AdaBoost-based algorithm for network intrusion detection.

    PubMed

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  11. Realistic computer network simulation for network intrusion detection dataset generation

    NASA Astrophysics Data System (ADS)

    Payer, Garrett

    2015-05-01

    The KDD-99 Cup dataset is dead. While it can continue to be used as a toy example, the age of this dataset makes it all but useless for intrusion detection research and data mining. Many of the attacks used within the dataset are obsolete and do not reflect the features important for intrusion detection in today's networks. Creating a new dataset encompassing a large cross section of the attacks found on the Internet today could be useful, but would eventually fall to the same problem as the KDD-99 Cup; its usefulness would diminish after a period of time. To continue research into intrusion detection, the generation of new datasets needs to be as dynamic and as quick as the attacker. Simply examining existing network traffic and using domain experts such as intrusion analysts to label traffic is inefficient, expensive, and not scalable. The only viable methodology is simulation using technologies including virtualization, attack-toolsets such as Metasploit and Armitage, and sophisticated emulation of threat and user behavior. Simulating actual user behavior and network intrusion events dynamically not only allows researchers to vary scenarios quickly, but enables online testing of intrusion detection mechanisms by interacting with data as it is generated. As new threat behaviors are identified, they can be added to the simulation to make quicker determinations as to the effectiveness of existing and ongoing network intrusion technology, methodology and models.

  12. Organizational coevolutionary classifiers with fuzzy logic used in intrusion detection

    NASA Astrophysics Data System (ADS)

    Chen, Zhenguo

    2009-07-01

    Intrusion detection is an important technique in the defense-in-depth network security framework and a hot topic in computer security in recent years. To solve the intrusion detection question, we introduce the fuzzy logic into Organization CoEvolutionary algorithm [1] and present the algorithm of Organization CoEvolutionary Classification with Fuzzy Logic. In this paper, we give an intrusion detection models based on Organization CoEvolutionary Classification with Fuzzy Logic. After illustrating our model with a representative dataset and applying it to the real-world network datasets KDD Cup 1999. The experimental result shown that the intrusion detection based on Organizational Coevolutionary Classifiers with Fuzzy Logic can give higher recognition accuracy than the general method.

  13. Appliance of Independent Component Analysis to System Intrusion Analysis

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshikazu; Takagi, Tarou; Nakai, Kouji

    In order to analyze the output of the intrusion detection system and the firewall, we evaluated the applicability of ICA(independent component analysis). We developed a simulator for evaluation of intrusion analysis method. The simulator consists of the network model of an information system, the service model and the vulnerability model of each server, and the action model performed on client and intruder. We applied the ICA for analyzing the audit trail of simulated information system. We report the evaluation result of the ICA on intrusion analysis. In the simulated case, ICA separated two attacks correctly, and related an attack and the abnormalities of the normal application produced under the influence of the attach.

  14. Visual behavior characterization for intrusion and misuse detection

    NASA Astrophysics Data System (ADS)

    Erbacher, Robert F.; Frincke, Deborah

    2001-05-01

    As computer and network intrusions become more and more of a concern, the need for better capabilities, to assist in the detection and analysis of intrusions also increase. System administrators typically rely on log files to analyze usage and detect misuse. However, as a consequence of the amount of data collected by each machine, multiplied by the tens or hundreds of machines under the system administrator's auspices, the entirety of the data available is neither collected nor analyzed. This is compounded by the need to analyze network traffic data as well. We propose a methodology for analyzing network and computer log information visually based on the analysis of the behavior of the users. Each user's behavior is the key to determining their intent and overriding activity, whether they attempt to hide their actions or not. Proficient hackers will attempt to hide their ultimate activities, which hinders the reliability of log file analysis. Visually analyzing the users''s behavior however, is much more adaptable and difficult to counteract.

  15. WiFi Miner: An Online Apriori-Infrequent Based Wireless Intrusion System

    NASA Astrophysics Data System (ADS)

    Rahman, Ahmedur; Ezeife, C. I.; Aggarwal, A. K.

    Intrusion detection in wireless networks has become a vital part in wireless network security systems with wide spread use of Wireless Local Area Networks (WLAN). Currently, almost all devices are Wi-Fi (Wireless Fidelity) capable and can access WLAN. This paper proposes an Intrusion Detection System, WiFi Miner, which applies an infrequent pattern association rule mining Apriori technique to wireless network packets captured through hardware sensors for purposes of real time detection of intrusive or anomalous packets. Contributions of the proposed system includes effectively adapting an efficient data mining association rule technique to important problem of intrusion detection in a wireless network environment using hardware sensors, providing a solution that eliminates the need for hard-to-obtain training data in this environment, providing increased intrusion detection rate and reduction of false alarms.

  16. Non-intrusive cooling system

    DOEpatents

    Morrison, Edward F.; Bergman, John W.

    2001-05-22

    A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

  17. Design of an Evolutionary Approach for Intrusion Detection

    PubMed Central

    2013-01-01

    A novel evolutionary approach is proposed for effective intrusion detection based on benchmark datasets. The proposed approach can generate a pool of noninferior individual solutions and ensemble solutions thereof. The generated ensembles can be used to detect the intrusions accurately. For intrusion detection problem, the proposed approach could consider conflicting objectives simultaneously like detection rate of each attack class, error rate, accuracy, diversity, and so forth. The proposed approach can generate a pool of noninferior solutions and ensembles thereof having optimized trade-offs values of multiple conflicting objectives. In this paper, a three-phase, approach is proposed to generate solutions to a simple chromosome design in the first phase. In the first phase, a Pareto front of noninferior individual solutions is approximated. In the second phase of the proposed approach, the entire solution set is further refined to determine effective ensemble solutions considering solution interaction. In this phase, another improved Pareto front of ensemble solutions over that of individual solutions is approximated. The ensemble solutions in improved Pareto front reported improved detection results based on benchmark datasets for intrusion detection. In the third phase, a combination method like majority voting method is used to fuse the predictions of individual solutions for determining prediction of ensemble solution. Benchmark datasets, namely, KDD cup 1999 and ISCX 2012 dataset, are used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover individual solutions and ensemble solutions thereof with a good support and a detection rate from benchmark datasets (in comparison with well-known ensemble methods like bagging and boosting). In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting

  18. Anomaly detection enhanced classification in computer intrusion detection

    SciTech Connect

    Fugate, M. L.; Gattiker, J. R.

    2002-01-01

    This report describes work with the goal of enhancing capabilities in computer intrusion detection. The work builds upon a study of classification performance, that compared various methods of classifying information derived from computer network packets into attack versus normal categories, based on a labeled training dataset. This previous work validates our classification methods, and clears the ground for studying whether and how anomaly detection can be used to enhance this performance, The DARPA project that initiated the dataset used here concluded that anomaly detection should be examined to boost the performance of machine learning in the computer intrusion detection task. This report investigates the data set for aspects that will be valuable for anomaly detection application, and supports these results with models constructed from the data. In this report, the term anomaly detection means learning a model from unlabeled data, and using this to make some inference about future data. Our data is a feature vector derived from network packets: an 'example' or 'sample'. On the other hand, classification means building a model from labeled data, and using that model to classify unlabeled (future) examples. There is some precedent in the literature for combining these methods. One approach is to stage the two techniques, using anomaly detection to segment data into two sets for classification. An interpretation of this is a method to combat nonstationarity in the data. In our previous work, we demonstrated that the data has substantial temporal nonstationarity. With classification methods that can be thought of as learning a decision surface between two statistical distributions, performance is expected to degrade significantly when classifying examples that are from regions not well represented in the training set. Anomaly detection can be seen as a problem of learning the density (landscape) or the support (boundary) of a statistical distribution so that

  19. Non-intrusive practitioner pupil detection for unmodified microscope oculars.

    PubMed

    Fuhl, Wolfgang; Santini, Thiago; Reichert, Carsten; Claus, Daniel; Herkommer, Alois; Bahmani, Hamed; Rifai, Katharina; Wahl, Siegfried; Kasneci, Enkelejda

    2016-12-01

    Modern microsurgery is a long and complex task requiring the surgeon to handle multiple microscope controls while performing the surgery. Eye tracking provides an additional means of interaction for the surgeon that could be used to alleviate this situation, diminishing surgeon fatigue and surgery time, thus decreasing risks of infection and human error. In this paper, we introduce a novel algorithm for pupil detection tailored for eye images acquired through an unmodified microscope ocular. The proposed approach, the Hough transform, and six state-of-the-art pupil detection algorithms were evaluated on over 4000 hand-labeled images acquired from a digital operating microscope with a non-intrusive monitoring system for the surgeon eyes integrated. Our results show that the proposed method reaches detection rates up to 71% for an error of ≈3% w.r.t the input image diagonal; none of the state-of-the-art pupil detection algorithms performed satisfactorily. The algorithm and hand-labeled data set can be downloaded at:: www.ti.uni-tuebingen.de/perception.

  20. Towards Reliable Evaluation of Anomaly-Based Intrusion Detection Performance

    NASA Technical Reports Server (NTRS)

    Viswanathan, Arun

    2012-01-01

    This report describes the results of research into the effects of environment-induced noise on the evaluation process for anomaly detectors in the cyber security domain. This research was conducted during a 10-week summer internship program from the 19th of August, 2012 to the 23rd of August, 2012 at the Jet Propulsion Laboratory in Pasadena, California. The research performed lies within the larger context of the Los Angeles Department of Water and Power (LADWP) Smart Grid cyber security project, a Department of Energy (DoE) funded effort involving the Jet Propulsion Laboratory, California Institute of Technology and the University of Southern California/ Information Sciences Institute. The results of the present effort constitute an important contribution towards building more rigorous evaluation paradigms for anomaly-based intrusion detectors in complex cyber physical systems such as the Smart Grid. Anomaly detection is a key strategy for cyber intrusion detection and operates by identifying deviations from profiles of nominal behavior and are thus conceptually appealing for detecting "novel" attacks. Evaluating the performance of such a detector requires assessing: (a) how well it captures the model of nominal behavior, and (b) how well it detects attacks (deviations from normality). Current evaluation methods produce results that give insufficient insight into the operation of a detector, inevitably resulting in a significantly poor characterization of a detectors performance. In this work, we first describe a preliminary taxonomy of key evaluation constructs that are necessary for establishing rigor in the evaluation regime of an anomaly detector. We then focus on clarifying the impact of the operational environment on the manifestation of attacks in monitored data. We show how dynamic and evolving environments can introduce high variability into the data stream perturbing detector performance. Prior research has focused on understanding the impact of this

  1. An ethernet/IP security review with intrusion detection applications

    SciTech Connect

    Laughter, S. A.; Williams, R. D.

    2006-07-01

    Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IP networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)

  2. Scheduling Randomly-Deployed Heterogeneous Video Sensor Nodes for Reduced Intrusion Detection Time

    NASA Astrophysics Data System (ADS)

    Pham, Congduc

    This paper proposes to use video sensor nodes to provide an efficient intrusion detection system. We use a scheduling mechanism that takes into account the criticality of the surveillance application and present a performance study of various cover set construction strategies that take into account cameras with heterogeneous angle of view and those with very small angle of view. We show by simulation how a dynamic criticality management scheme can provide fast event detection for mission-critical surveillance applications by increasing the network lifetime and providing low stealth time of intrusions.

  3. Data Mining Approaches for Intrusion Detection

    DTIC Science & Technology

    2007-11-02

    a trace. We applied RIPPER [Coh95], a rule learning program, to our training data. The following learning tasks were formulated to induce the rule...remote attack The testing data includes both normal and abnormal traces not used in the training data. RIPPER outputs a set of if-then rules for the...minority” classes, and a default “true” rule for the remaining class. The following exemplar RIPPER rules were generated from the system call data

  4. Dynamic Probing for Intrusion Detection under Resource Constraints

    DTIC Science & Technology

    2013-06-01

    performance measure of regret, defined as the performance loss compared to that of a genie who knows the entire attack processes a priori and probes...performance as that of the omniscient genie . Index Terms—Intrusion detection, dynamic probing, non- stochastic multi-armed bandit, regret. I...dynamic probing strategy under the performance measure of regret, de ned as the performance loss compared to that of a genie who knows the entire attack

  5. Software Decoys: Intrusion Detection and Countermeasures

    DTIC Science & Technology

    2002-06-01

    TCP is a fre- quently called component and known to be susceptible to certain types of attacks, such as that of the “ Cheese ” worm [7] that attempts...calls resulting from the shell commands, the events at other components may need to be instrumented; this is the case for the Cheese worm . Some of...haviors of components of the Unix operating system with the Morris Internet worm . More recent worms , such as “Code Red” and “ Cheese ,” are variants of the

  6. Evaluation of Two Host-Based Intrusion Prevention Systems

    DTIC Science & Technology

    2005-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited. AN EVALUATION OF TWO...HOST BASED INTRUSION PREVENTION SYSTEMS by Keith Labbe June 2005 Thesis Advisors: Neil Rowe J.D. Fulp...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Evaluation of Two Host-Based Intrusion Prevention Systems 6. AUTHOR(S) Keith Labbe 5

  7. Nuclear-power-plant perimeter-intrusion alarm systems

    SciTech Connect

    Halsey, D.J.

    1982-04-01

    Timely intercept of an intruder requires the examination of perimeter barriers and sensors in terms of reliable detection, immediate assessment and prompt response provisions. Perimeter security equipment and operations must at the same time meet the requirements of the Code of Federal Regulations, 10 CFR 73.55 with some attention to the performance and testing figures of Nuclear Regulatory Guide 5.44, Revision 2, May 1980. A baseline system is defined which recommends a general approach to implementing perimeter security elements: barriers, lighting, intrusion detection, alarm assessment. The baseline approach emphasizes cost/effectiveness achieved by detector layering and logic processing of alarm signals to produce reliable alarms and low nuisance alarm rates. A cost benefit of layering along with video assessment is reduction in operating expense. The concept of layering is also shown to minimize testing costs where detectability performance as suggested by Regulatory Guide 5.44 is to be performed. Synthesis of the perimeter intrusion alarm system and limited testing of CCTV and Video Motion Detectors (VMD), were performed at E-Systems, Greenville Division, Greenville, Texas during 1981.

  8. Preventing Point-of-Sale System Intrusions

    DTIC Science & Technology

    2014-06-01

    month Crimina l intent may be more focused on identity theft than payme nt card fraud 37 Unknown Zero day or custom keylogger TBD TBD 4...Several major United States retailers have suffered large-scale thefts of payment card information as the result of intrusions against point-of-sale...ABSTRACT Several major United States retailers have suffered large-scale thefts of payment card information as the result of intrusions against point

  9. Assessment of Mitigation Systems on Vapor Intrusion ...

    EPA Pesticide Factsheets

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor environments are often negatively pressurized with respect to outdoor air and soil gas (for example, from exhaust fans or the stack effect), and this pressure difference allows soil gas containing subsurface vapors to flow into indoor air through advection. In addition, concentration differentials cause VOCs and radon to migrate from areas of higher to lower concentrations through diffusion, which is another cause of vapor intrusion. Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evidence is considered definitive, and direct measurements of vapor intrusion can be costly, especially where significant spatial and temporal variability require repeated measurements at multiple locations to accurately assess the chronic risks of long-term exposure to volatile organic compounds (VOCs) like chloroform, perchloroethylene (PCE), and trichloroethylene (TCE).

  10. Phase-sensitive optical time domain reflectometer for distributed fence-perimeter intrusion detection

    NASA Astrophysics Data System (ADS)

    Yu, Xuhui; Zhou, Deliang; Lu, Bin; Liu, Sufang; Pan, Ming

    2015-10-01

    In this paper, we demonstrate a distributed fence-perimeter intrusion detection system using a phase-sensitive optical time domain reflectometer (Φ-OTDR) with several advantages, such as high spatial resolution, large detection range, single-end measurement and immunity from electromagnetic interference. By the effort of generating a high-extinction-ratio optical pulse, optimizing the incident optical power and utilizing a differential algorithm, a home-made Φ-OTDR system, as a distributed vibration sensor, is implemented with a spatial resolution of 10 meter. Nowadays, a fence-perimeter intrusion detection system is desired for the security monitor. We set up a fence perimeter using a fiber cable containing only one fiber and a field experiment is carried out based on our Φ-OTDR system. Various vibration events are recorded and analyzed, including wind blowing, personal climbing and knocking. The experiment results reveal unique vibration characteristics of different events in the frequency domain and confirm the effectiveness of the homemade Φ-OTDR system in the application of the distributed fence-perimeter intrusion detection.

  11. Detection of deep stratospheric intrusions by cosmogenic 35S

    PubMed Central

    Su, Lin; Shaheen, Robina; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-01-01

    The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic 35S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high 35S concentrations (7,390 atoms m−3; ∼16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced 35S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that 35S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level. PMID:27655890

  12. Detection of deep stratospheric intrusions by cosmogenic 35S.

    PubMed

    Lin, Mang; Su, Lin; Shaheen, Robina; Fung, Jimmy C H; Thiemens, Mark H

    2016-10-04

    The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic (35)S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high (35)S concentrations (7,390 atoms m(-3); ∼16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced (35)S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that (35)S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level.

  13. Detection of deep stratospheric intrusions by cosmogenic 35S

    NASA Astrophysics Data System (ADS)

    Lin, Mang; Su, Lin; Shaheen, Robina; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-10-01

    The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic 35S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high 35S concentrations (7,390 atoms m-3; ˜16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced 35S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that 35S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level.

  14. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks

    PubMed Central

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-01-01

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks. PMID:27754380

  15. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    PubMed

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  16. Smart container UWB sensor system for situational awareness of intrusion alarms

    DOEpatents

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  17. Detecting Aseismic Fault Slip and Magmatic Intrusion From Seismicity Data

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; McGuire, J. J.

    2007-12-01

    Seismicity triggered by aseismic deformation, such as magmatic intrusions or afterslip, can be used to detect the occurrence of these otherwise difficult to observe processes. Recent studies suggest that aseismic deformation can trigger large amounts of seismicity in a variety of plate tectonic settings. We have developed a new technique that takes advantage of this triggered seismicity to estimate the time-history of aseismic stressing rate on a fault- zone by combining the rate and state dependent friction and the Epidemic Type Aftershock Sequence (ETAS) models of seismicity-rate [ Dieterich, 1994; Ogata, 1988]. In the rate-state model, the integration of an observed seismicity rate results in an estimate of the stress rate acting in a given space-time window. However, the seismicity rate observed in any catalog comes from 3 primary sources: coseismically-triggered seismicity (aftershocks), tectonically-triggered seismicity (i.e., from long-term tectonic loading), and aseismically-triggered seismicity (e.g., from dike intrusion, aseismic slip transients, or fluid migration). In catalogs dominated by directly triggered aftershocks (i.e., ETAS branching ratios >~0.7), the coseismically-triggered seismicity rate will be much larger than the aseismically-triggered rate and will dominate the estimate of stressing-rate, obscuring the aseismic transient of interest if the rate-state method is applied directly. The challenge therefore lies in isolating the aseismically-triggered seismicity rate from the coseismically-triggered seismicity rate. The ETAS model [ Ogata, 1988] provides a natural way to separate the aseismic and coseismic seismicity rates, as the ETAS parameter μ essentially reflects the aseismically-triggered rate (as well as the background tectonically-triggered rate). To develop a method that can resolve the magnitude and time history of aseismic stress transients even in high branching ratio regions, we combine the rate-state and ETAS models into a

  18. Hybrid TDM/WDM based fiber-optic sensor network for perimeter intrusion detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolei; Sun, Qizhen; Sun, Zhifeng; Wo, Jianghai; Zhang, Manliang; Liu, Deming

    2011-05-01

    A distributed fiber-optic sensor system is proposed and demonstrated for long-distance intrusion-detection, which employs the hybrid time/wavelength division multiplexing (TDM/WDM) architecture. By utilizing 20 time zones and 6 wavelengths, the system contains up to 120 fiber sensing units (OSU), of which the distributed sensing distance is from 0 to 500m. So the whole sensing distance of this system could reach 60 km. The system has been demonstrated to run stably exceed six months with the false alarm rate of less than 4%.

  19. Data Randomization and Cluster-Based Partitioning for Botnet Intrusion Detection.

    PubMed

    Al-Jarrah, Omar Y; Alhussein, Omar; Yoo, Paul D; Muhaidat, Sami; Taha, Kamal; Kim, Kwangjo

    2016-08-01

    Botnets, which consist of remotely controlled compromised machines called bots, provide a distributed platform for several threats against cyber world entities and enterprises. Intrusion detection system (IDS) provides an efficient countermeasure against botnets. It continually monitors and analyzes network traffic for potential vulnerabilities and possible existence of active attacks. A payload-inspection-based IDS (PI-IDS) identifies active intrusion attempts by inspecting transmission control protocol and user datagram protocol packet's payload and comparing it with previously seen attacks signatures. However, the PI-IDS abilities to detect intrusions might be incapacitated by packet encryption. Traffic-based IDS (T-IDS) alleviates the shortcomings of PI-IDS, as it does not inspect packet payload; however, it analyzes packet header to identify intrusions. As the network's traffic grows rapidly, not only the detection-rate is critical, but also the efficiency and the scalability of IDS become more significant. In this paper, we propose a state-of-the-art T-IDS built on a novel randomized data partitioned learning model (RDPLM), relying on a compact network feature set and feature selection techniques, simplified subspacing and a multiple randomized meta-learning technique. The proposed model has achieved 99.984% accuracy and 21.38 s training time on a well-known benchmark botnet dataset. Experiment results demonstrate that the proposed methodology outperforms other well-known machine-learning models used in the same detection task, namely, sequential minimal optimization, deep neural network, C4.5, reduced error pruning tree, and randomTree.

  20. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    PubMed Central

    Amudha, P.; Karthik, S.; Sivakumari, S.

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different. PMID:26221625

  1. Scanning seismic intrusion detection method and apparatus. [monitoring unwanted subterranean entry and departure

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1983-01-01

    An intrusion monitoring system includes an array of seismic sensors, such as geophones, arranged along a perimeter to be monitored for unauthorized intrusion as by surface movement or tunneling. Two wires lead from each sensor to a central monitoring station. The central monitoring station has three modes of operation. In a first mode of operation, the output of all of the seismic sensors is summed into a receiver for amplification and detection. When the amplitude of the summed signals exceeds a certain predetermined threshold value an alarm is sounded. In a second mode of operation, the individual output signals from the sensors are multiplexed into the receiver for sequentially interrogating each of the sensors.

  2. Nuclear data for non-intrusive inspection systems

    SciTech Connect

    Bendahan, J.; Loveman, R.; Gozani, T.

    1994-12-31

    Non-intrusive inspection systems based on nuclear techniques utilize the interaction of neutrons and gamma rays to determine the elemental constituents of the inspected object. The Thermal Neutron Analysis System has been used to detect explosives and narcotics concealed in passenger luggage and small objects. More recently the Pulsed Fast Neutron Analysis technique is being used to detect contraband in large cargo containers and has been proposed for the characterization of waste drums. The design of these systems requires the utilization of simulation codes where the accuracy of the results depends largely on the nuclear libraries. Several nuclear data evaluations were reviewed and compared with existing data to identify the most accurate ones. Large discrepancies were found among the various nuclear libraries, mainly in the production cross sections and angular distributions of gamma rays, stimulated by neutron interactions. An experimental program was carried out to correct and complement the required data. Evaluations of gamma-ray production cross sections for carbon, oxygen and chlorine are reviewed and compared with existing and new experimental data.

  3. Integration of Self-Organizing Map (SOM) and Kernel Density Estimation (KDE) for network intrusion detection

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; He, Haibo; Man, Hong; Shen, Xiaoping

    2009-09-01

    This paper proposes an approach to integrate the self-organizing map (SOM) and kernel density estimation (KDE) techniques for the anomaly-based network intrusion detection (ABNID) system to monitor the network traffic and capture potential abnormal behaviors. With the continuous development of network technology, information security has become a major concern for the cyber system research. In the modern net-centric and tactical warfare networks, the situation is more critical to provide real-time protection for the availability, confidentiality, and integrity of the networked information. To this end, in this work we propose to explore the learning capabilities of SOM, and integrate it with KDE for the network intrusion detection. KDE is used to estimate the distributions of the observed random variables that describe the network system and determine whether the network traffic is normal or abnormal. Meanwhile, the learning and clustering capabilities of SOM are employed to obtain well-defined data clusters to reduce the computational cost of the KDE. The principle of learning in SOM is to self-organize the network of neurons to seek similar properties for certain input patterns. Therefore, SOM can form an approximation of the distribution of input space in a compact fashion, reduce the number of terms in a kernel density estimator, and thus improve the efficiency for the intrusion detection. We test the proposed algorithm over the real-world data sets obtained from the Integrated Network Based Ohio University's Network Detective Service (INBOUNDS) system to show the effectiveness and efficiency of this method.

  4. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    NASA Astrophysics Data System (ADS)

    Gomez, Andres; Lara, Camilo; Kebschull, Udo

    2015-12-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware.

  5. DETECTION OR WARNING SYSTEM

    DOEpatents

    Tillman, J E

    1953-10-20

    This patent application describes a sensitive detection or protective system capable of giving an alarm or warning upon the entrance or intrusion of any body into a defined area or zone protected by a radiation field of suitable direction or extent.

  6. Probabilistic monitoring in intrusion detection module for energy efficiency in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    De Rango, Floriano; Lupia, Andrea

    2016-05-01

    MANETs allow mobile nodes communicating to each other using the wireless medium. A key aspect of these kind of networks is the security, because their setup is done without an infrastructure, so external nodes could interfere in the communication. Mobile nodes could be compromised, misbehaving during the multi-hop transmission of data, or they could have a selfish behavior to save energy, which is another important constraint in MANETs. The detection of these behaviors need a framework that takes into account the latest interactions among nodes, so malicious or selfish nodes could be detected also if their behavior is changed over time. The monitoring activity increases the energy consumption, so our proposal takes into account this issue reducing the energy required by the monitoring system, keeping the effectiveness of the intrusion detection system. The results show an improvement in the saved energy, improving the detection performance too.

  7. An armored-cable-based fiber Bragg grating sensor array for perimeter fence intrusion detection

    NASA Astrophysics Data System (ADS)

    Hao, Jianzhong; Dong, Bo; Varghese, Paulose; Phua, Jiliang; Foo, Siang Fook

    2011-11-01

    In this paper, an armored-cable-based optical fiber Bragg grating (FBG) sensor array, for perimeter fence intrusion detection, is demonstrated and some of the field trial results are reported. The field trial was conducted at a critical local installation in Singapore in December 2010. The sensor array was put through a series of both simulated and live intrusion scenarios to test the stability and suitability of operation in the local environmental conditions and to determine its capabilities in detecting and reporting these intrusions accurately to the control station. Such a sensor array can provide perimeter intrusion detection with fine granularity and preset pin-pointing accuracy. The various types of intrusions included aided or unaided climbs, tampering and cutting of the fence, etc. The unique sensor packaging structure provides high sensitivity, crush resistance and protection against rodents. It is also capable of resolving nuisance events such as rain, birds sitting on the fence or seismic vibrations. These sensors are extremely sensitive with a response time of a few seconds. They can be customized for a desired spatial resolution and pre-determined sensitivity. Furthermore, it is easy to cascade a series of such sensors to monitor and detect intrusion events over a long stretch of fence line. Such sensors can be applied to real-time intrusion detection for perimeter security, pipeline security and communications link security.

  8. An armored-cable-based fiber Bragg grating sensor array for perimeter fence intrusion detection

    NASA Astrophysics Data System (ADS)

    Hao, Jianzhong; Dong, Bo; Varghese, Paulose; Phua, Jiliang; Foo, Siang Fook

    2012-01-01

    In this paper, an armored-cable-based optical fiber Bragg grating (FBG) sensor array, for perimeter fence intrusion detection, is demonstrated and some of the field trial results are reported. The field trial was conducted at a critical local installation in Singapore in December 2010. The sensor array was put through a series of both simulated and live intrusion scenarios to test the stability and suitability of operation in the local environmental conditions and to determine its capabilities in detecting and reporting these intrusions accurately to the control station. Such a sensor array can provide perimeter intrusion detection with fine granularity and preset pin-pointing accuracy. The various types of intrusions included aided or unaided climbs, tampering and cutting of the fence, etc. The unique sensor packaging structure provides high sensitivity, crush resistance and protection against rodents. It is also capable of resolving nuisance events such as rain, birds sitting on the fence or seismic vibrations. These sensors are extremely sensitive with a response time of a few seconds. They can be customized for a desired spatial resolution and pre-determined sensitivity. Furthermore, it is easy to cascade a series of such sensors to monitor and detect intrusion events over a long stretch of fence line. Such sensors can be applied to real-time intrusion detection for perimeter security, pipeline security and communications link security.

  9. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  10. Weighted link graphs: a distributed IDS for secondary intrusion detection and defense

    NASA Astrophysics Data System (ADS)

    Zhou, Mian; Lang, Sheau-Dong

    2005-03-01

    While a firewall installed at the perimeter of a local network provides the first line of defense against the hackers, many intrusion incidents are the results of successful penetration of the firewalls. One computer"s compromise often put the entire network at risk. In this paper, we propose an IDS that provides a finer control over the internal network. The system focuses on the variations of connection-based behavior of each single computer, and uses a weighted link graph to visualize the overall traffic abnormalities. The functionality of our system is of a distributed personal IDS system that also provides a centralized traffic analysis by graphical visualization. We use a novel weight assignment schema for the local detection within each end agent. The local abnormalities are quantitatively carried out by the node weight and link weight and further sent to the central analyzer to build the weighted link graph. Thus, we distribute the burden of traffic processing and visualization to each agent and make it more efficient for the overall intrusion detection. As the LANs are more vulnerable to inside attacks, our system is designed as a reinforcement to prevent corruption from the inside.

  11. Evaluation and analysis of non-intrusive techniques for detecting illicit substances

    SciTech Connect

    Micklich, B.J.; Roche, C.T.; Fink, C.L.; Yule, T.J.; Demirgian, J.C.; Kunz, T.D.; Ulvick, S.J.; Cui, J.

    1995-12-31

    Argonne National Laboratory (ANL) and the Houston Advanced Research Center (HARC) have been tasked by the Counterdrug Technology Assessment Center of the Office of National Drug Control Policy to conduct evaluations and analyses of technologies for the non-intrusive inspection of containers for illicit substances. These technologies span the range of nuclear, X-ray, and chemical techniques used in nondestructive sample analysis. ANL has performed assessments of nuclear and X-ray inspection concepts and undertaken site visits with developers to understand the capabilities and the range of applicability of candidate systems. ANL and HARC have provided support to law enforcement agencies (LEAs), including participation in numerous field studies. Both labs have provided staff to assist in the Narcotics Detection Technology Assessment (NDTA) program for evaluating drug detection systems. Also, the two labs are performing studies of drug contamination of currency. HARC has directed technical evaluations of automated ballistics imaging and identification systems under consideration by law enforcement agencies. ANL and HARC have sponsored workshops and a symposium, and are participating in a Non-Intrusive Inspection Study being led by Dynamics Technology, Incorporated.

  12. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  13. FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.

    PubMed

    N Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash

    2016-01-01

    Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.

  14. Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection

    NASA Astrophysics Data System (ADS)

    Nikles, Marc

    2009-05-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions where pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Third party intentional interference or accidental intrusions are a major cause of pipeline failures leading to large leaks or even explosions. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. The description is supported by case studies and illustrated by field data.

  15. Detection and Classification of Network Intrusions Using Hidden Markov Models

    DTIC Science & Technology

    2002-01-01

    system was able to detect buffer overflows, ftp-write attack, warez attack, guess telnet, guest and HTTPtunnel attacks. They claim that no false...already known attack that has been altered or a completely new attack. 95 Bibliography [1] Stuart McClure et. al “ Hacking Exposed: Network Security

  16. Studying bio-inspired coalition formation of robots for detecting intrusions using game theory.

    PubMed

    Liang, Xiannuan; Xiao, Yang

    2010-06-01

    In this paper, inspired by the society of animals, we study the coalition formation of robots for detecting intrusions using game theory. We consider coalition formation in a group of three robots that detect and capture intrusions in a closed curve loop. In our analytical model, individuals seek alliances if they think that their detect regions are too short to gain an intrusion capturing probability larger than their own. We assume that coalition seeking has an investment cost and that the formation of a coalition determines the outcomes of parities, with the detect length of a coalition simply being the sum of those of separate coalition members. We derive that, for any cost, always detecting alone is an evolutionarily stable strategy (ESS), and that, if the cost is below a threshold, always trying to form a coalition is an ESS (thus a three-way coalition arises).

  17. Intrusion detection capabilities of smart video: Collaborative efforts to improve remote monitoring for safeguards surveillance

    SciTech Connect

    Kadner, S.P.; Ondrik, M.; Reisman, A.

    1996-12-31

    Collaborative efforts between the International Projects Division (IPD) of the Department of Advanced Technology at Brookhaven National Laboratory, Aquila Technologies Group, Inc. (Aquila), and the General Physics Institute (GPI) in Moscow have developed object recognition technologies to provide real-time intrusion detection capabilities for Aquila`s GEMINI Digital Surveillance System. The research, development and testing for integrating enhanced surveillance capabilities into Aquila`s GEMINI system will receive support from the US Industry Coalition (USIC), an initiative funded by the Initiatives for Proliferation Prevention (IPP), in the coming year. Oversight of the research and development effort is being provided by the IPD staff to ensure that the technical standards of safeguards systems for use by the International Atomic Energy Agency (IAEA) are met. The scientific expertise at GPI is providing breakthroughs in the realm of motion detection for surveillance. Aquila`s contribution to the project focuses on the integration of authenticated digital camera technology for front-end detection. This project illustrates how the application of technology can increase efficiency and reliability of remote monitoring, as well as the timely detection of Safeguards-significant events.

  18. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    PubMed Central

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  19. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    PubMed

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  20. Vulnerability of water distribution systems to pathogen intrusion: how effective is a disinfectant residual?

    PubMed

    Propato, Marco; Uber, James G

    2004-07-01

    Can the spread of infectious disease through water distribution systems be halted by a disinfectant residual? This question is overdue for an answer. Regulatory agencies and water utilities have long been concerned about accidental intrusions of pathogens into distribution system pipelines (i.e., cross-connections) and are increasingly concerned about deliberate pathogen contamination. Here, a simulation framework is developed and used to assess the vulnerability of a water system to microbiological contamination. The risk of delivering contaminated water to consumers is quantified by a network water quality model that includes disinfectant decay and disinfection kinetics. The framework is applied to two example networks under a worst-case deliberate intrusion scenario. Results show that the risk of consumer exposure is affected by the residual maintenance strategy employed. The common regulation that demands a "detectable" disinfectant residual may not provide effective consumer protection against microbial contamination. A chloramine residual, instead of free chlorine, may significantly weaken this final barrier against pathogen intrusions. Moreover, the addition of a booster station at storage tanks may improve consumer protection without requiring excessive disinfectant.

  1. Temporal Development of Repeated Intrusive Events in a South Iceland Volcanic System, Inferred From InSAR Measurements

    NASA Astrophysics Data System (ADS)

    Pedersen, R.; Sigmundsson, F.

    2002-12-01

    We present measurements of volcano deformation from a series of 18 interferograms spanning the years 1993-2000. The detected deformation originates from repeated intrusions in the Eyjafjallaj”kull system, an icecap covered stratovolcano situated in, what is considered to be, a propagating rift zone in southern Iceland. The volcano erupts infrequently, with only two known eruptions in historic time (last 1100 years). The eruptive products are alkaline in composition, with only small volumes produced in recent eruptions. In spite of the apparent silence of this system two intrusive episodes have been detected within the last decade, causing major concern in the local community. In 1994, and again in 1999, seismic unrest associated with magmatic intrusions occurred in the system. Crustal deformation associated with the events was detected by dry-tilt, GPS and interferometry. During the 1994 episode, the center of deformation was situated underneath the icecap, and the area experiencing maximum uplift was therefore within the zone of decorrelation. The deformation shows an oval fringe pattern, which reaches well beyond the icecap, covering more than 300 km2 in total. Up to 15 cm of LOS ("line of sight") displacement is observed. The temporal resolution of the InSAR images during the 1999 intrusive episode is better and it is possible to follow the development of the intrusive event through time. The center of deformation does not coincide with the center from the 1994 event, but is situated just south of the icecap. The deformation during this event amounts to about 20 cm of LOS. Several of the interferograms cover the whole time-span of the 1999 intrusion, but three interferograms cover different periods of the intrusive event. The data set enables us to follow the temporal development of the crustal deformation created by the intrusion, and hence the growth of the intrusion itself through time. A previous study based on forward modeling of GPS and tilt data

  2. An Optimal Method for Detecting Internal and External Intrusion in MANET

    NASA Astrophysics Data System (ADS)

    Rafsanjani, Marjan Kuchaki; Aliahmadipour, Laya; Javidi, Mohammad M.

    Mobile Ad hoc Network (MANET) is formed by a set of mobile hosts which communicate among themselves through radio waves. The hosts establish infrastructure and cooperate to forward data in a multi-hop fashion without a central administration. Due to their communication type and resources constraint, MANETs are vulnerable to diverse types of attacks and intrusions. In this paper, we proposed a method for prevention internal intruder and detection external intruder by using game theory in mobile ad hoc network. One optimal solution for reducing the resource consumption of detection external intruder is to elect a leader for each cluster to provide intrusion service to other nodes in the its cluster, we call this mode moderate mode. Moderate mode is only suitable when the probability of attack is low. Once the probability of attack is high, victim nodes should launch their own IDS to detect and thwart intrusions and we call robust mode. In this paper leader should not be malicious or selfish node and must detect external intrusion in its cluster with minimum cost. Our proposed method has three steps: the first step building trust relationship between nodes and estimation trust value for each node to prevent internal intrusion. In the second step we propose an optimal method for leader election by using trust value; and in the third step, finding the threshold value for notifying the victim node to launch its IDS once the probability of attack exceeds that value. In first and third step we apply Bayesian game theory. Our method due to using game theory, trust value and honest leader can effectively improve the network security, performance and reduce resource consumption.

  3. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors

    PubMed Central

    Choi, Minho; Jeong, Jae Jin; Kim, Seung Hun; Kim, Sang Woo

    2016-01-01

    Non-intrusive electrocardiogram (ECG) monitoring has many advantages: easy to measure and apply in daily life. However, motion noise in the measured signal is the major problem of non-intrusive measurement. This paper proposes a method to reduce the noise and to detect the R peaks of ECG in a stable manner in a sitting arrangement using non-intrusive sensors. The method utilizes two capacitive ECG sensors (cECGs) to measure ECG, and another two cECGs located adjacent to the sensors for ECG are added to obtain the information on motion. Then, active noise cancellation technique and the motion information are used to reduce motion noise. To verify the proposed method, ECG was measured indoors and during driving, and the accuracy of the detected R peaks was compared. After applying the method, the sum of sensitivity and positive predictivity increased 8.39% on average and 26.26% maximally in the data. Based on the results, it was confirmed that the motion noise was reduced and that more reliable R peak positions could be obtained by the proposed method. The robustness of the new ECG measurement method will elicit benefits to various health care systems that require noninvasive heart rate or heart rate variability measurements. PMID:27196910

  4. Detection of Dry Intrusion on Water Vapor Images Over Central Europe - June 2010 TO September 2011

    NASA Astrophysics Data System (ADS)

    Novotny, J.; Dejmal, K.; Hudec, F.; Kolar, P.

    2016-06-01

    The knowledge of evaluation of the intensity of cyclogenesis which could be connected with the weather having a significant impact on Earth's surface is quite useful. If, as one of the basic assumptions, the existence of connection between dry intrusions, dry bands, tropopause height and warm dark areas distribution on water vapor images (WV images) is considered, it is possible to set up a method of detecting dry intrusions on searching and tracking areas with higher brightness temperature compared with the surrounding environment. This paper covers the period between June 2010 and September 2011 over Central Europe. The ISIS method (Instrument de Suivi dans I'Imagerie satellitaire), originally developed for detection of cold cloud tops, was used as an initial ideological point. Subsequently, this method was modified by Michel and Bouttier for usage on WV images. Some of the applied criteria and parameters were chosen with reference to the results published by Michel and Bouttier as well as by Novotny. The procedure can be divided into two steps: detection of warm areas and their tracking. Cases of detection of areas not evidently connected with dry intrusions can be solved by filtering off based on the connection between detected warm areas to the cyclonic side of jet streams and significant lowering of the tropopause.

  5. Components for Cooperative Intrusion Detection in Dynamic Coalition Environments

    DTIC Science & Technology

    2004-04-20

    IWS Before it is possible to design and build a robust and effective IWS for CE scenarios, several issues are to be solved. Some of these issues...during the measurement period. Those graphs can be partitioned into subgraphs using graph clustering algorithms. The clustering of the graph...reported as warning messages. The comparison measures used for anomaly detection in network traffic structures can be used in this domain as well. When

  6. How Intrusion Detection Can Improve Software Decoy Applications

    DTIC Science & Technology

    2003-03-01

    processes and uses a security kernel. Additionally, LIDS has a built-in portscan detector, which can be used to alert users to the warning signs of a...several useful ways, such as in IP defragmentation, TCP stream assembly, portscan detection, and web-traffic normalization. The preprocessor can...HIDS can see a portscan , but a NIDS can see the similar attacks on other sites that happened first. 22 SNORT LIDS NIDS AlarmsLog Files HIDS

  7. Intrusion detection: a novel approach that combines boosting genetic fuzzy classifier and data mining techniques

    NASA Astrophysics Data System (ADS)

    Ozyer, Tansel; Alhajj, Reda; Barker, Ken

    2005-03-01

    This paper proposes an intelligent intrusion detection system (IDS) which is an integrated approach that employs fuzziness and two of the well-known data mining techniques: namely classification and association rule mining. By using these two techniques, we adopted the idea of using an iterative rule learning that extracts out rules from the data set. Our final intention is to predict different behaviors in networked computers. To achieve this, we propose to use a fuzzy rule based genetic classifier. Our approach has two main stages. First, fuzzy association rule mining is applied and a large number of candidate rules are generated for each class. Then the rules pass through pre-screening mechanism in order to reduce the fuzzy rule search space. Candidate rules obtained after pre-screening are used in genetic fuzzy classifier to generate rules for the specified classes. Classes are defined as Normal, PRB-probe, DOS-denial of service, U2R-user to root and R2L- remote to local. Second, an iterative rule learning mechanism is employed for each class to find its fuzzy rules required to classify data each time a fuzzy rule is extracted and included in the system. A Boosting mechanism evaluates the weight of each data item in order to help the rule extraction mechanism focus more on data having relatively higher weight. Finally, extracted fuzzy rules having the corresponding weight values are aggregated on class basis to find the vote of each class label for each data item.

  8. A Spread Spectrum Approach to Next Generation Intrusion Detection

    DTIC Science & Technology

    2005-06-01

    14. SUBJECT TERMS Spread-Spectrum Message Embedding Capacity, Distortion, Spread Spectrum Steganography , Digital Watermarking 16. PRICE CODE 17...message) in another digital signal (image or audio ) called “cover” or “host.” Two applications of watermarking are a) image/ audio authentication and b... steganography , which is an attempt to establish covert communication between trusting parties. The first step in the design of a watermarking system

  9. Report on the NS/EP Implications of Intrusion Detection Technology Research and Development

    DTIC Science & Technology

    1997-12-01

    component&ignaling System 7 ( SS7 ), Signal Transfer Points (STPs), and Synchronous Optical Network (SONET)-that if attacked or exploited could...potential use of electronic intrusion techniques to exploit , degrade, or deny service to key information systems. As a result of considering new terms of...As other critical infrastructures seek to exploit information technologies and migrate to more open systems, their control networks may be similarly

  10. PLC backplane analyzer for field forensics and intrusion detection

    DOEpatents

    Mulder, John; Schwartz, Moses Daniel; Berg, Michael; Van Houten, Jonathan Roger; Urrea, Jorge Mario; King, Michael Aaron; Clements, Abraham Anthony; Trent, Jason; Depoy, Jennifer M; Jacob, Joshua

    2015-05-12

    The various technologies presented herein relate to the determination of unexpected and/or malicious activity occurring between components communicatively coupled across a backplane. Control data, etc., can be intercepted at a backplane where the backplane facilitates communication between a controller and at least one device in an automation process. During interception of the control data, etc., a copy of the control data can be made, e.g., the original control data can be replicated to generate a copy of the original control data. The original control data can continue on to its destination, while the control data copy can be forwarded to an analyzer system to determine whether the control data contains a data anomaly. The content of the copy of the control data can be compared with a previously captured baseline data content, where the baseline data can be captured for a same operational state as the subsequently captured control data.

  11. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing

    PubMed Central

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990

  12. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    PubMed

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  13. 76 FR 5370 - Potential Addition of Vapor Intrusion Component to the Hazard Ranking System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Potential Addition of Vapor Intrusion Component to the Hazard Ranking System AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Opportunity for Public Input. SUMMARY: The...

  14. The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware

    SciTech Connect

    Tierney, Brian L; Vallentin, Matthias; Sommer, Robin; Lee, Jason; Leres, Craig; Paxson, Vern; Tierney, Brian

    2007-09-19

    In this work we present a NIDS cluster as a scalable solution for realizing high-performance, stateful network intrusion detection on commodity hardware. The design addresses three challenges: (i) distributing traffic evenly across an extensible set of analysis nodes in a fashion that minimizes the communication required for coordination, (ii) adapting the NIDS's operation to support coordinating its low-level analysis rather than just aggregating alerts; and (iii) validating that the cluster produces sound results. Prototypes of our NIDS cluster now operate at the Lawrence Berkeley National Laboratory and the University of California at Berkeley. In both environments the clusters greatly enhance the power of the network security monitoring.

  15. Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Galley, Alan G.

    2003-06-01

    trondhjemite phases. The trondhjemite phases contain numerous internal contacts indicating emplacement as composite sills. Common structural features of the composite intrusions include early xenolith phases, abundant small comagmatic dikes, fractures and veins and, in places, columnar jointing. Internal phases may differ greatly in texture from fine- to coarse-grained, aphyric and granophyric through seriate to porphyritic. Mineralogical and isotopic evidence indicates that early phases of each composite intrusion are affected by pervasive to fracture-controlled high-temperature (350-450 °C) alteration reflecting seawater-rock interaction. Trondhjemite phases contain hydrothermal-magmatic alteration assemblages within miarolitic cavities, hydrothermal breccias and veins. This hydrothermal-magmatic alteration may, in part, be inherited from previously altered wall rocks. Two of the four intrusions are host to Cu-Mo-rich intrusive breccias and porphyry-type mineralization which formed as much as 14 Ma after the main subvolcanic magmatic activity. The recognition of these Precambrian, subvolcanic composite intrusions is important for greenfields VMS exploration, as they define the location of thermal corridors within extensional oceanic-arc regimes which have the greatest potential for significant VMS mineralization. The VMS mineralization may occur for 2,000 m above the intrusions. In some cases, VMS mineralization has been truncated or enveloped by late trondhjemite phases of the composite intrusions. Evidence that much of the trondhjemitic magmatism postdates the principal VMS activity is a critical factor when developing heat and fluid flow models for these subseafloor magmatic-hydrothermal systems.

  16. Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection

    SciTech Connect

    Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred

    2016-03-01

    Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles of graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.

  17. Time-resolved seismic tomography detects magma intrusions at Mount Etna.

    PubMed

    Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C

    2006-08-11

    The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.

  18. Non-intrusive detection of methanol in gas phase using infrared degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Sahlberg, A. L.; Nilsson, H.; Lundgren, E.; Zetterberg, J.

    2015-11-01

    Sensitive and non-intrusive detection of gas-phase methanol with high spatial and temporal resolution has for the first time been reported using mid-infrared degenerate four-wave mixing (IR-DFWM). IR-DFWM spectra of methanol have been successfully recorded in nitrogen-diluted gas flows at room temperature and at 300 °C, by probing ro-vibrational transitions belonging to the fundamental C-H stretching modes, ν 2 and ν 9, and the O-H stretching mode, ν 1. The detection limit of methanol vapor at room temperature and atmospheric pressure is estimated to be 250 ppm with the present setup. Potential interference from CH4 and CO2 is discussed from recorded IR-DFWM spectra of CH4 and CO2, and it was found that detection of methanol free from CH4 and CO2 interference is possible. These results show the potential of the detection of methanol with IR-DFWM for applications in both combustion and catalytic environments, such as CO2 hydrogenation and CH4 oxidation.

  19. EPA Seeks Public Comments on Addition of Subsurface Intrusion Component to the Superfund Hazard Ranking System

    EPA Pesticide Factsheets

    WASHINGTON -- The U.S. Environmental Protection Agency (EPA) is seeking public comment on the proposed addition of a subsurface intrusion (SsI) component to the Superfund Hazard Ranking System (HRS). The HRS is a scoring system EPA uses to identify

  20. Enforcing positivity in intrusive PC-UQ methods for reactive ODE systems

    DOE PAGES

    Najm, Habib N.; Valorani, Mauro

    2014-04-12

    We explore the relation between the development of a non-negligible probability of negative states and the instability of numerical integration of the intrusive Galerkin ordinary differential equation system describing uncertain chemical ignition. To prevent this instability without resorting to either multi-element local polynomial chaos (PC) methods or increasing the order of the PC representation in time, we propose a procedure aimed at modifying the amplitude of the PC modes to bring the probability of negative state values below a user-defined threshold. This modification can be effectively described as a filtering procedure of the spectral PC coefficients, which is applied on-the-flymore » during the numerical integration when the current value of the probability of negative states exceeds the prescribed threshold. We demonstrate the filtering procedure using a simple model of an ignition process in a batch reactor. This is carried out by comparing different observables and error measures as obtained by non-intrusive Monte Carlo and Gauss-quadrature integration and the filtered intrusive procedure. Lastly, the filtering procedure has been shown to effectively stabilize divergent intrusive solutions, and also to improve the accuracy of stable intrusive solutions which are close to the stability limits.« less

  1. Enforcing positivity in intrusive PC-UQ methods for reactive ODE systems

    SciTech Connect

    Najm, Habib N.; Valorani, Mauro

    2014-04-12

    We explore the relation between the development of a non-negligible probability of negative states and the instability of numerical integration of the intrusive Galerkin ordinary differential equation system describing uncertain chemical ignition. To prevent this instability without resorting to either multi-element local polynomial chaos (PC) methods or increasing the order of the PC representation in time, we propose a procedure aimed at modifying the amplitude of the PC modes to bring the probability of negative state values below a user-defined threshold. This modification can be effectively described as a filtering procedure of the spectral PC coefficients, which is applied on-the-fly during the numerical integration when the current value of the probability of negative states exceeds the prescribed threshold. We demonstrate the filtering procedure using a simple model of an ignition process in a batch reactor. This is carried out by comparing different observables and error measures as obtained by non-intrusive Monte Carlo and Gauss-quadrature integration and the filtered intrusive procedure. Lastly, the filtering procedure has been shown to effectively stabilize divergent intrusive solutions, and also to improve the accuracy of stable intrusive solutions which are close to the stability limits.

  2. Enforcing positivity in intrusive PC-UQ methods for reactive ODE systems

    NASA Astrophysics Data System (ADS)

    Najm, Habib N.; Valorani, Mauro

    2014-08-01

    We explore the relation between the development of a non-negligible probability of negative states and the instability of numerical integration of the intrusive Galerkin ordinary differential equation system describing uncertain chemical ignition. To prevent this instability without resorting to either multi-element local polynomial chaos (PC) methods or increasing the order of the PC representation in time, we propose a procedure aimed at modifying the amplitude of the PC modes to bring the probability of negative state values below a user-defined threshold. This modification can be effectively described as a filtering procedure of the spectral PC coefficients, which is applied on-the-fly during the numerical integration when the current value of the probability of negative states exceeds the prescribed threshold. We demonstrate the filtering procedure using a simple model of an ignition process in a batch reactor. This is carried out by comparing different observables and error measures as obtained by non-intrusive Monte Carlo and Gauss-quadrature integration and the filtered intrusive procedure. The filtering procedure has been shown to effectively stabilize divergent intrusive solutions, and also to improve the accuracy of stable intrusive solutions which are close to the stability limits.

  3. Managing risks from virus intrusion into water distribution systems due to pressure transients.

    PubMed

    Yang, Jian; LeChevallier, Mark W; Teunis, Peter F M; Xu, Minhua

    2011-06-01

    Low or negative pressure transients in water distribution systems, caused by unexpected events (e.g. power outages) or routine operation/maintenance activities, are usually brief and thus are rarely monitored or alarmed. Previous studies have shown connections between negative pressure events in water distribution systems and potential public health consequences. Using a quantitative microbial risk assessment (QMRA) model previously developed, various factors driving the risk of viral infection from intrusion were evaluated, including virus concentrations external to the distribution system, maintenance of a disinfectant residual, leak orifice sizes, the duration and the number of nodes drawing negative pressures. The most sensitive factors were the duration and the number of nodes drawing negative pressures, indicating that mitigation practices should be targeted to alleviate the severity of low/negative pressure transients. Maintaining a free chlorine residual of 0.2 mg/L or above is the last defense against the risk of viral infection due to negative pressure transients. Maintaining a chloramine residual did not appear to significantly reduce the risk. The effectiveness of ensuring separation distances from sewer mains to reduce the risk of infection may be system-specific. Leak detection/repair and cross-connection control should be prioritized in areas vulnerable to negative pressure transients.

  4. Non-intrusive tunable resonant microwave cavity for optical detected magnetic resonance of NV centres in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Le Floch, Jean-Michel; Bradac, Carlo; Volz, Thomas; Tobar, Michael E.; Castelletto, Stefania

    2013-12-01

    Optically detected magnetic resonance (ODMR) in nanodiamond nitrogen-vacancy (NV) centres is usually achieved by applying a microwave field delivered by micron-size wires, strips or antennas directly positioned in very close proximity (~ μm) of the nanodiamond crystals. The microwave field couples evanescently with the ground state spin transition of the NV centre (2.87 GHz at zero magnetic field), which results in a reduction of the centre photoluminescence. We propose an alternative approach based on the construction of a dielectric resonator. We show that such a resonator allows for the efficient detection of NV spins in nanodiamonds without the constraints associated to the laborious positioning of the microwave antenna next to the nanodiamonds, providing therefore improved flexibility. The resonator is based on a tunable Transverse Electric Mode in a dielectric-loaded cavity, and we demonstrate that the resonator can detect single NV centre spins in nanodiamonds using less microwave power than alternative techniques in a non-intrusive manner. This method can achieve higher precision measurement of ODMR of paramagnetic defects spin transition in the micro to millimetre-wave frequency domain. Our approach would permit the tracking of NV centres in biological solutions rather than simply on the surface, which is desirable in light of the recently proposed applications of using nanodiamonds containing NV centres for spin labelling in biological systems with single spin and single particle resolution.

  5. Characterization of Extremely Lightweight Intrusion Detection (ELIDe) Power Utilization by Varying N-gram and Hash Length

    DTIC Science & Technology

    2015-09-01

    Contents List of Figures iv 1. Introduction 1 2. Setup 2 2.1 Mobile Device 2 2.2 Network 2 2.3 Software Configuration 3 2.4 Determining Power...Figures Fig. 1 Test- network setup ................................................................................... 3 Fig. 2 Power utilization of ELIDe...Signature detection is a very performance-intensive task in regard to network traffic.1 Extremely lightweight intrusion detection (ELIDe) was developed to

  6. Conjunctive Management of Multi-Aquifer System for Saltwater Intrusion Mitigation

    NASA Astrophysics Data System (ADS)

    Tsai, F. T. C.; Pham, H. V.

    2015-12-01

    Due to excessive groundwater withdrawals, many water wells in Baton Rouge, Louisiana experience undesirable chloride concentration because of saltwater intrusion. The study goal is to develop a conjunctive management framework that takes advantage of the Baton Rouge multi-aquifer system to mitigate saltwater intrusion. The conjunctive management framework utilizes several hydraulic control techniques to mitigate saltwater encroachment. These hydraulic control approaches include pumping well relocation, freshwater injection, saltwater scavenging, and their combinations. Specific objectives of the study are: (1) constructing scientific geologic architectures of the "800-foot" sand, the "1,000-foot" sand, the "1,200-foot" sand, the "1,500-foot" sand, the "1,700-foot" sand, and the "2,000-foot" sand, (2) developing scientific saltwater intrusion models for these sands. (3) using connector wells to draw native groundwater from one sand and inject to another sand to create hydraulic barriers to halt saltwater intrusion, (4) using scavenger wells or well couples to impede saltwater intrusion progress and reduce chloride concentration in pumping wells, and (5) reducing cones of depression by relocating and dispersing pumping wells to different sands. The study utilizes optimization techniques and newest LSU high performance computing (HPC) facilities to derive solutions. The conjunctive management framework serves as a scientific tool to assist policy makers to solve the urgent saltwater encroachment issue in the Baton Rouge area. The research results will help water companies as well as industries in East Baton Rouge Parish and neighboring parishes by reducing their saltwater intrusion threats, which in turn would sustain Capital Area economic development.

  7. Department of Defense counterdrug technology development of non-intrusive inspection systems

    NASA Astrophysics Data System (ADS)

    Pennella, John J.

    1997-02-01

    The Naval Surface Warfare Center Dahlgren Division serves as the executive agent for the DoD's Contraband Detection and Cargo Container Inspection Technology Development Program. The goal of the DoD non-intrusive inspection (NII) program is to develop prototype equipment that can be used to inspect containers and vehicles, quickly and in large numbers without unnecessary delays in the movement of legitimate cargo. This paper summaries the past accomplishments of the program, current status, and future plans.

  8. Ad Duwayhi, Saudi Arabia: Geology and geochronology of a neoproterozoic intrusion-related gold system in the Arabian shield

    USGS Publications Warehouse

    Doebrich, Jeff L.; Zahony, S.G.; Leavitt, J.D.; Portacio, J.S.; Siddiqui, A.A.; Wooden, Joseph L.; Fleck, Robert J.; Stein, Holly J.

    2004-01-01

    In light of our findings at Ad Duwayhi, a reassessment of similar intrusion-hosted deposits in the Arabian shield is warranted, and areas of late- to postorogenic plutonism, particularly in the Afif composite terrane, should be considered prospective for intrusion-related gold systems.

  9. Non-intrusive detection of rotating stall in pump-turbines

    NASA Astrophysics Data System (ADS)

    Botero, F.; Hasmatuchi, V.; Roth, S.; Farhat, M.

    2014-10-01

    When operated far from their optimum conditions, pump-turbines may exhibit strong hydrodynamic instabilities, often called rotating stall, which lead to substantial increase of vibration and risk of mechanical failure. In the present study, we have investigated the flow filed in a model of radial pump-turbine with the help of tuft visualization, wall pressure measurement and structure-borne noise monitoring. As the rotation speed is increased, the machine is brought from its optimum operation to runaway with zero torque on the shaft. The runaway operation is characterized by a significant increase of pressure fluctuation at the rotor-stator interaction frequency. As the speed is further increased, the flow exhibits sub-synchronous instability, which rotates at 70% of the rotation frequency. Tuft visualization clearly shows that, as the instability evolves, the flow in a given distributor channel suddenly stalls and switches to reverse pumping mode in periodic way. We have also investigated the monitoring of the rotating stall with the help of vibration signals. A specific signal processing method, based on amplitude demodulation, was developed. The use of 2 accelerometers allows for the identification of the optimum carrier frequency by computing the cyclic coherence of vibration signals. This non-intrusive method is proved to be efficient in detecting the rotating stall instability and the number of stall cells. We strongly believe that it could be implemented in full scale pump-turbines.

  10. Non-intrusive load monitoring systems: Considerations for use and potential applications

    SciTech Connect

    Sharp, T.R.

    1994-12-31

    The value of measured energy performance data and the desire to acquire them without the cost, complexity, and intrusiveness of standard submetering techniques have led to recent research on non-intrusive load monitoring systems. These systems offer installation simplicity and the ability to discriminate important load changes through high-resolution, higher-speed sampling at a central monitoring point such as a building`s electrical service entrance. Important hardware and installation considerations learned from Oak Ridge National Laboratory`s (ORNL) experience with these systems are reviewed. In addition, the ability to discern important load changes in residential and commercial buildings using these systems is discussed based on recent ORNL experiments in two buildings. Potential applications, with examples, are also discussed. Using a non-intrusive load monitoring system, an experienced user can collect valuable building power profiles that provide insight into building operations, energy use, demand, and building systems problems easily and at low cost. These systems, when available, could be valuable to DSM and energy management professionals, utilities, researchers, building management firms, energy service companies, and others.

  11. Petrogenesis of the Ni-Cu-PGE sulfide-bearing Tamarack Intrusive Complex, Midcontinent Rift System, Minnesota

    NASA Astrophysics Data System (ADS)

    Taranovic, Valentina; Ripley, Edward M.; Li, Chusi; Rossell, Dean

    2015-01-01

    The Tamarack Intrusive Complex (TIC, 1105.6 ± 1.2 Ma) in NE Minnesota, was emplaced during the early stages of the development of the Midcontinent Rift System (MRS, "Early Stage": 1110-1106 Ma). Country rocks of the TIC are those of the Paleoproterozoic Thomson Formation, part of the Animikie Group including sulfide-bearing metasedimentary black shale. The magmatic system is composed of at least two principal mafic-ultramafic intrusive sequences: the sulfide-barren Bowl Intrusion in the south and the "dike" area intrusions in the north which host Ni-Cu-Platinum Group Elements (PGE) mineralization with up to 2.33% Ni, 1.24% Cu, 0.34 g/t Pt, 0.23 g/t Pd and 0.18 g/t Au. Two distinct intrusive units in the "dike" area are the CGO (coarse-grained olivine-bearing) Intrusion, a sub-vertical dike-like body, and the overlying sub-horizontal FGO (fine-grained olivine-bearing) Intrusion. Both intrusions comprise peridotite, feldspathic peridotite, feldspathic pyroxenite, melatroctolite and melagabbro. Massive sulfides are volumetrically minor and mainly occur as lenses emplaced into the country rocks associated with both intrusions. Semi-massive (net-textured) sulfides are distributed at the core of the CGO Intrusion, surrounded by a halo of the disseminated sulfides. Disseminated sulfides also occur in lenses along the base of the FGO Intrusion. Olivine compositions in the CGO Intrusion are between Fo89 and Fo82 and in the FGO Intrusion from Fo84 to Fo82. TIC intrusions have more primitive olivine compositions than that of olivine in the sheet-like intrusions in the Duluth Complex (below Fo70), as well as olivine from the smaller, conduit-related, Eagle and East Eagle Intrusions in Northern Michigan (Fo86 to Fo75). The FeO/MgO ratios of the CGO and FGO Intrusion parental magmas, inferred from olivine compositions, are similar to those of picritic basalts erupted during the early stages of the MRS formation. Trace element ratios differ slightly from other intrusions in the

  12. Non-Intrusive Electric Appliances Load Monitoring System-Experiment for Real Household-

    NASA Astrophysics Data System (ADS)

    Murata, Hiroshi; Onoda, Takashi; Yoshimoto, Katsuhisa; Nakano, Yukio; Kondo, Syuhei

    This paper presents applying results of four estimation algorithms of non-intrusive monitoring system for real household. We conclude that all algorithms have practicable ability. 1) support vector machine(SVM): SVM was used to estimate ON/OFF states for fluorescent and refrigerator. SVM has the performance equivalent to best performance of sigmoid function networks(SFN). However, SVM has high estimating ability constantly. 2) RBF networks(RBFN): RBFN was used to estimate power consumption for air conditioner. RBFN has the performance equivalent to best performance of SFN. However, RBFN has high estimating ability constantly. 3) step change detection method(SCD): SCD was used to estimate ON/OFF states and power consumption for IH cooking range. SCD does not need the necessary learning process for SFN and has higher estimating ability than SFN. 4) spectrum reference method(SRM): SRM was used to estimate working conditions for rice cocker and washing machine. SRM is able to estimate these working conditions that cannot be estimated by earlier methods.

  13. Shipboard Fluid System Diagnostics Using Non-Intrusive Load Monitoring

    DTIC Science & Technology

    2007-06-01

    funding Officers and Crew of the USCGC Escanaba Officers and Crew of the USCGC Seneca Professor Robert Cox for his enthusiasm, assistance, and...45 Figure 3-18: Seneca RO Unit Membrane Seal Failure Detection...Table 2-2: RC7000 Plus RO Unit Component Details ................................................................ 19 Table 2-3: Seneca NILM Setup

  14. New device to measure dynamic intrusion/extrusion cycles of lyophobic heterogeneous systems

    NASA Astrophysics Data System (ADS)

    Guillemot, Ludivine; Galarneau, Anne; Vigier, Gérard; Abensur, Thierry; Charlaix, Élisabeth

    2012-10-01

    Lyophobic heterogeneous systems (LHS) are made of mesoporous materials immersed in a non-wetting liquid. One application of LHS is the nonlinear damping of high frequency vibrations. The behaviour of LHS is characterized by P - ΔV cycles, where P is the pressure applied to the system, and ΔV its volume change due to the intrusion of the liquid into the pores of the material, or its extrusion out of the pores. Very few dynamic studies of LHS have been performed until now. We describe here a new apparatus that allows us to carry out dynamic intrusion/extrusion cycles with various liquid/porous material systems, controlling the temperature from ambient to 120 °C and the frequency from 0.01 to 20 Hz. We show that for two LHS: water/MTS and Galinstan/CPG, the energy dissipated during one cycle depends very weakly on the cycle frequency, in strong contrast to conventional dampers.

  15. Distributed fiber optic intrusion sensor system for monitoring long perimeters

    NASA Astrophysics Data System (ADS)

    Juarez, Juan C.; Taylor, Henry F.

    2005-05-01

    The use of an optical fiber as a distributed sensor for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer (Φ-OTDR). Light pulses from a cw laser operating in a single longitudinal mode and with low (MHz/min range) frequency drift are injected into one end of the single mode fiber, and the backscattered light is monitored with a photodetector. In laboratory tests with 12 km of fiber on reels, the effects of localized phase perturbations induced by a piezoelectric fiber stretcher on Φ-OTDR traces were characterized. In field tests in which the sensing element is a single mode fiber in a 3-mm diameter cable buried in a 20-46 cm deep, 10 cm wide trench in clay soil, detection of intruders on foot up to 4.6 m from the cable line was achieved. In desert terrain field tests in which the sensing fiber is in a 4.5-mm diameter cable buried in a 30 cm deep, 75 cm wide trench filled with loose sand, high sensitivity and consistent detection of intruders on foot and of vehicles traveling down a road near the cable line was realized over a cable length of 8.5 km and a total fiber path of 19 km. Based on these results, this technology may be regarded as a candidate for providing low-cost perimeter security for nuclear power plants, electrical power distribution centers, storage facilities for fuel and volatile chemicals, communication hubs, airports, government offices, military bases, embassies, and national borders.

  16. Force Protection Joint Experiment (FPJE) Battlefield Anti-Intrusion System (BAIS) sensors data analysis and filtering metrics

    NASA Astrophysics Data System (ADS)

    Barngrover, C. M.; Laird, R. T.; Kramer, T. A.; Cruickshanks, J. R.; Cutler, S. H.

    2009-04-01

    The FPJE was an experiment to consider the best way to develop and evaluate a system of systems approach to Force Protection. It was sponsored by Physical Security Equipment Action Group (PSEAG) and Joint Program Manager - Guardian (JPM-G), and was managed by the Product Manager - Force Protection Systems (PM-FPS). The experiment was an effort to utilize existing technical solutions from all branches of the military in order to provide more efficient and effective force protection. The FPJE consisted of four separate Integration Assessments (IA), which were intended as opportunities to assess the status of integration, automation and fusion efforts, and the effectiveness of the current configuration and "system" components. The underlying goal of the FPJE was to increase integration, automation, and fusion of the many different sensors and their data to provide enhanced situational awareness and a common operational picture. One such sensor system is the Battlefield Anti-Intrusion System (BAIS), which is a system of seismic and acoustic unmanned ground sensors. These sensors were originally designed for employment by infantry soldiers at the platoon level to provide early warning of personnel and vehicle intrusion in austere environments. However, when employed around airfields and high traffic areas, the sensitivity of these sensors can cause an excessive number of detections. During the second FPJE-IA all of the BAIS detections and the locations of all Opposing Forces were logged and analyzed to determine the accuracy rate of the sensors. This analysis revealed that with minimal filtering of detections, the number of false positives and false negatives could be reduced substantially to manageable levels while using the sensors within extreme operational acoustic and seismic noise conditions that are beyond the design requirements.

  17. Implementation of Karp-Rabin string matching algorithm in reconfigurable hardware for network intrusion prevention system

    NASA Astrophysics Data System (ADS)

    Botwicz, Jakub; Buciak, Piotr; Sapiecha, Piotr

    2006-03-01

    Intrusion Prevention Systems (IPSs) have become widely recognized as a powerful tool and an important element of IT security safeguards. The essential feature of network IPSs is searching through network packets and matching multiple strings, that are fingerprints of known attacks. String matching is highly resource consuming and also the most significant bottleneck of IPSs. In this article an extension of the classical Karp-Rabin algorithm and its implementation architectures were examined. The result is a software, which generates a source code of a string matching module in hardware description language, that could be easily used to create an Intrusion Prevention System implemented in reconfigurable hardware. The prepared module matches the complete set of Snort IPS signatures achieving throughput of over 2 Gbps on an Altera Stratix I1 evaluation board. The most significant advantage of the proposed architecture is that the update of the patterns database does not require reconfiguration of the circuitry.

  18. An Analysis of Security System for Intrusion in Smartphone Environment

    PubMed Central

    Louk, Maya; Lim, Hyotaek; Lee, HoonJae

    2014-01-01

    There are many malware applications in Smartphone. Smartphone's users may become unaware if their data has been recorded and stolen by intruders via malware. Smartphone—whether for business or personal use—may not be protected from malwares. Thus, monitoring, detecting, tracking, and notification (MDTN) have become the main purpose of the writing of this paper. MDTN is meant to enable Smartphone to prevent and reduce the number of cybercrimes. The methods are shown to be effective in protecting Smartphone and isolating malware and sending warning in the form of notification to the user about the danger in progress. In particular, (a) MDTN process is possible and will be enabled for Smartphone environment. (b) The methods are shown to be an advanced security for private sensitive data of the Smartphone user. PMID:25165754

  19. Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Tryoen, J.; Le Maître, O.; Ndjinga, M.; Ern, A.

    2010-09-01

    This paper deals with stochastic spectral methods for uncertainty propagation and quantification in nonlinear hyperbolic systems of conservation laws. We consider problems with parametric uncertainty in initial conditions and model coefficients, whose solutions exhibit discontinuities in the spatial as well as in the stochastic variables. The stochastic spectral method relies on multi-resolution schemes where the stochastic domain is discretized using tensor-product stochastic elements supporting local polynomial bases. A Galerkin projection is used to derive a system of deterministic equations for the stochastic modes of the solution. Hyperbolicity of the resulting Galerkin system is analyzed. A finite volume scheme with a Roe-type solver is used for discretization of the spatial and time variables. An original technique is introduced for the fast evaluation of approximate upwind matrices, which is particularly well adapted to local polynomial bases. Efficiency and robustness of the overall method are assessed on the Burgers and Euler equations with shocks.

  20. iSSH v. Auditd: Intrusion Detection in High Performance Computing

    SciTech Connect

    Karns, David M.; Protin, Kathryn S.; Wolf, Justin G.

    2012-07-30

    The goal is to provide insight into intrusions in high performance computing, focusing on tracking intruders motions through the system. The current tools, such as pattern matching, do not provide sufficient tracking capabilities. We tested two tools: an instrumented version of SSH (iSSH) and Linux Auditing Framework (Auditd). First discussed is Instrumented Secure Shell (iSSH): a version of SSH developed at Lawrence Berkeley National Laboratory. The goal is to audit user activity within a computer system to increase security. Capabilities are: Keystroke logging, Records user names and authentication information, and Catching suspicious remote and local commands. Strengths for iSSH are: (1) Good for keystroke logging, making it easier to track malicious users by catching suspicious commands; (2) Works with Bro to send alerts; could be configured to send pages to systems administrators; and (3) Creates visibility into SSH sessions. Weaknesses are: (1) Relatively new, so not very well documented; and (2) No capabilities to see if files have been edited, moved, or copied within the system. Second we discuss Auditd, the user component of the Linux Auditing System. It creates logs of user behavior, and monitors systems calls and file accesses. Its goal is to improve system security by keeping track of users actions within the system. Strenghts of Auditd are: (1) Very thorough logs; (2) Wider variety of tracking abilities than iSSH; and (3) Older, so better documented. Weaknesses are: (1) Logs record everything, not just malicious behavior; (2) The size of the logs can lead to overflowing directories; and (3) This level of logging leads to a lot of false alarms. Auditd is better documented than iSSH, which would help administrators during set up and troubleshooting. iSSH has a cleaner notification system, but the logs are not as detailed as Auditd. From our performance testing: (1) File transfer speed using SCP is increased when using iSSH; and (2) Network benchmarks

  1. Lead and cadmium associated with saltwater intrusion in a New Jersey aquifer system

    USGS Publications Warehouse

    Pucci, Amleto A.; Harriman, Douglas A.; Ervin, Elisabeth M.; Bratton, Lisa; Gordon, Alison

    1989-01-01

    The U.S. Geological Survey collected ground-water samples from the upper and middle aquifers of the Potomac-Raritan-Magothy aquifer system in a 400-square-mile area of New Jersey from 1984 through 1986. Concentrations of lead were greater than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 50 micrograms per liter in water from 16 to 239 wells. The concentrations of cadmium were greater than the MCL of 10 micrograms per liter in water from 10 to 241 wells. One-half of the wells that exceeded the lead MCL were in known areas of saltwater intrusion, as were all 10 wells that exceeded the cadmium MCL. The association of elevated concentrations of these metals with elevated concentrations of chloride indicates a mechanism related to saltwater intrusion.

  2. Lead and cadmium associated with saltwater intrusion in a New Jersey aquifer system

    SciTech Connect

    Pucci, A.A. Jr.; Gordon, A. ); Harriman, D.A. ); Ervin, E.M. ); Bratton, L. )

    1989-12-01

    The US Geological Survey collected ground-water samples from the upper and middle aquifers of the Potomac-Raritan-Magothy aquifer system in a 400-square-mile are of New Jersey from 1984 through 1986. Concentrations of lead were greater than the US Environmental Protection Agency maximum contaminant level (MCL) of 50 micrograms per liter in water from 16 to 239 wells. The concentrations of cadmium were greater than the MCL of 10 micrograms per liter in water from 10 to 241 wells. One-half of the wells that exceeded the lead MCL were in known areas of saltwater intrusion, as were all 10 wells that exceeded the cadmium MCL. The association of elevated concentrations of these metals with elevated concentrations of chloride indicates a mechanism related to saltwater intrusion.

  3. Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466

  4. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm.

    PubMed

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

  5. Non-intrusive schemes for speed and axle identification in bridge-weigh-in-motion systems

    NASA Astrophysics Data System (ADS)

    Kalhori, Hamed; Makki Alamdari, Mehrisadat; Zhu, Xinqun; Samali, Bijan; Mustapha, Samir

    2017-02-01

    Bridge weigh-in-motion (BWIM) is an approach through which the axle and gross weight of trucks travelling at normal highway speed are identified using the response of an instrumented bridge. The vehicle speed, the number of axles, and the axle spacing are crucial parameters, and are required to be determined in the majority of BWIM algorithms. Nothing-on-the-road (NOR) strategy suggests using the strain signals measured at some particular positions underneath the deck or girders of a bridge to obtain this information. The objective of this research is to present a concise overview of the challenges of the current non-intrusive schemes for speed and axle determination through bending-strain and shear-strain based approaches. The problem associated with the global bending-strain responses measured at quarter points of span is discussed and a new sensor arrangement is proposed as an alternative. As for measurement of local responses rather than the global responses, the advantage of shear strains over bending strains is presented. However, it is illustrated that shear strains at quarter points of span can only provide accurate speed estimation but fail to detect the correct number of axles. As a remedy, it is demonstrated that, even for closely-spaced axles, the shear strain at the beginning of the bridge is capable of reliably identifying the number of axles. In order to provide a fully automated speed and axle identification system, appropriate signal processing including low-pass filtering and wavelet transforms are applied to the raw time signals. As case studies, the results of experimental testing in laboratory and on a real bridge are presented.

  6. An evaluation of interior video motion detection systems

    SciTech Connect

    Vigil, J.T.

    1993-02-01

    This report discusses the testing and evaluation of five commercially available interior video emotion detection (VMD) systems. Three digital VMDs and two analog VMDs were tested. The report focuses on nuisance alarm data and on intrusion detection results. Tests were conducted in a high-bay (warehouse) location and in an office.

  7. Bald Mountain gold mining district, Nevada: A Jurassic reduced intrusion-related gold system

    USGS Publications Warehouse

    Nutt, C.J.; Hofstra, A.H.

    2007-01-01

    The Bald Mountain mining district has produced about 2 million ounces (Moz) of An. Geologic mapping, field relationships, geochemical data, petrographic observations, fluid inclusion characteristics, and Pb, S, O, and H isotope data indicate that An mineralization was associated with a reduced Jurassic intrusion. Gold deposits are localized within and surrounding a Jurassic (159 Ma) quartz monzonite porphyry pluton and dike complex that intrudes Cambrian to Mississippian carbonate and clastic rocks. The pluton, associated dikes, and An mineralization were controlled by a crustal-scale northwest-trending structure named the Bida trend. Gold deposits are localized by fracture networks in the pluton and the contact metamorphic aureole, dike margins, high-angle faults, and certain strata or shale-limestone contacts in sedimentary rocks. Gold mineralization was accompanied by silicification and phyllic alteration, ??argillic alteration at shallow levels. Although An is typically present throughout, the system exhibits a classic concentric geochemical zonation pattern with Mo, W, Bi, and Cu near the center, Ag, Pb, and Zn at intermediate distances, and As and Sb peripheral to the intrusion. Near the center of the system, micron-sized native An occurs with base metal sulfides and sulfosalts. In peripheral deposits and in later stages of mineralization, Au is typically submicron in size and resides in pyrite or arsenopyrite. Electron microprobe and laser ablation ICP-MS analyses show that arsenopyrite, pyrite, and Bi sulfide minerals contain 10s to 1,000s of ppm Au. Ore-forming fluids were aqueous and carbonic at deep levels and episodically hypersaline at shallow levels due to boiling. The isotopic compositions of H and O in quartz and sericite and S and Pb in sulfides are indicative of magmatic ore fluids with sedimentary sulfur. Together, the evidence suggests that Au was introduced by reduced S-bearing magmatic fluids derived from a reduced intrusion. The reduced

  8. Optimizing Targeting of Intrusion Detection Systems in Social Networks

    NASA Astrophysics Data System (ADS)

    Puzis, Rami; Tubi, Meytal; Elovici, Yuval

    Internet users communicate with each other in various ways: by Emails, instant messaging, social networking, accessing Web sites, etc. In the course of communicating, users may unintentionally copy files contaminated with computer viruses and worms [1, 2] to their computers and spread them to other users [3]. (Hereafter we will use the term "threats", rather than computer viruses and computer worms). The Internet is the chief source of these threats [4].

  9. The Unexplored Impact of IPv6 on Intrusion Detection Systems

    DTIC Science & Technology

    2012-03-01

    of defense (dod) internet protocol version 6(ipv6) transition plan , where it is today, and where it needs to be by the year 2008,” Master’s thesis...Standard), Oct. 1999. Updated by RFCs 3590, 3810. [52] R. Vida and L. Costa, “Multicast Listener Discovery Version 2 (MLDv2) for IPv6.” RFC 3810...28 St Sauver, J. 1, 2 Staniford, S. 28 Symantec 50 The Bro Project 19, 22, 23 Thomson, S. 16 Tuladhar, S. 9, 26, 30, 34, 35 Vida , R. 47 Vyncke, E. 2

  10. Reactive and multiphase modelling for the identification of monitoring parameters to detect CO2 intrusion into freshwater aquifers

    NASA Astrophysics Data System (ADS)

    Fahrner, S.; Schaefer, D.; Wiegers, C.; Köber, R.; Dahmke, A.

    2011-12-01

    A monitoring at geological CO2 storage sites has to meet environmental, regulative, financial and public demands and thus has to enable the detection of CO2 leakages. Current monitoring concepts for the detection of CO2 intrusion into freshwater aquifers located above saline storage formations in course of leakage events lack the identification of monitoring parameters. Their response to CO2 intrusion still has to be enlightened. Scenario simulations of CO2 intrusion in virtual synthetic aquifers are performed using the simulators PhreeqC and TOUGH2 to reveal relevant CO2-water-mineral interactions and multiphase behaviour on potential monitoring parameters. The focus is set on pH, total dissolved inorganic carbon (TIC) and the hydroelectric conductivity (EC). The study aims at identifying at which conditions the parameters react rapidly, durable and in a measurable degree. The depth of the aquifer, the mineralogy, the intrusion rates, the sorption specification and capacities, and groundwater flow velocities are varied in the course of the scenario modelling. All three parameters have been found suited in most scenarios. However, in case of a lack of calcite combined with low saturation of the water with respect to CO2 and shallow conditions, changes are close to the measurement resolution. Predicted changes in EC result from the interplay between carbonic acid production and its dissociation, and pH buffering by mineral dissolution. The formation of a discrete gas phase in cases of full saturation of the groundwater in confined aquifers illustrates the potential bipartite resistivity response: An increased hydroelectric conductivity at locations with dissolved CO2, and a high resistivity where the gas phase dominates the pore volume occupation. Increased hydrostatic pressure with depth and enhanced groundwater flow velocities enforce gas dissolution and diminish the formation of a discrete gas phase. Based on the results, a monitoring strategy is proposed which

  11. Cyber-intrusion Auto-response and Policy Management System (CAPMS)

    SciTech Connect

    Lusk, Steve; Lawrence, David; Suvana, Prakash

    2015-11-11

    The Cyber-intrusion Auto-response and Policy Management System (CAPMS) project was funded by a grant from the US Department of Energy (DOE) Cybersecurity for Energy Delivery Systems (CEDS) program with contributions from two partner electric utilities: Southern California Edison (SCE) and Duke Energy. The goal of the project was to demonstrate protecting smart grid assets from a cyber attack in a way that “does not impede critical energy delivery functions.” This report summarizes project goals and activities for the CAPMS project and explores what did and did not work as expected. It concludes with an assessment of possible benefits and value of the system for the future.

  12. Monitoring and Assessment of Saltwater Intrusion using Geographic Information Systems (GIS), Remote Sensing and Geophysical measurements of Guimaras Island, Philippines

    NASA Astrophysics Data System (ADS)

    Hernandez, B. C. B.

    2015-12-01

    Degrading groundwater quality due to saltwater intrusion is one of the key challenges affecting many island aquifers. These islands hold limited capacity for groundwater storage and highly dependent on recharge due to precipitation. But its ease of use, natural storage and accessibility make it more vulnerable to exploitation and more susceptible to encroachment from its surrounding oceanic waters. Estimating the extent of saltwater intrusion and the state of groundwater resources are important in predicting and managing water supply options for the community. In Guimaras island, central Philippines, increasing settlements, agriculture and tourism are causing stresses on its groundwater resource. Indications of saltwater intrusion have already been found at various coastal areas in the island. A Geographic Information Systems (GIS)-based approach using the GALDIT index was carried out. This includes six parameters assessing the seawater intrusion vulnerability of each hydrogeologic setting: Groundwater occurrence, Aquifer hydraulic conductivity, Groundwater Level above sea, Distance to shore, Impact of existing intrusion and Thickness of Aquifer. To further determine the extent of intrusion, Landsat images of various thematic layers were stacked and processed for unsupervised classification and electrical resistivity tomography using a 28-electrode system with array lengths of 150 and 300 meters was conducted. The GIS index showed where the vulnerable areas are located, while the geophysical measurements and images revealed extent of seawater encroachment along the monitoring wells. These results are further confirmed by the measurements collected from the monitoring wells. This study presents baseline information on the state of groundwater resources and increase understanding of saltwater intrusion dynamics in island ecosystems by providing a guideline for better water resource management in the Philippines.

  13. Computationally Efficient Neural Network Intrusion Security Awareness

    SciTech Connect

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  14. Network Intrusion Detection and Visualization using Aggregations in a Cyber Security Data Warehouse

    SciTech Connect

    Czejdo, Bogdan; Ferragut, Erik M; Goodall, John R; Laska, Jason A

    2012-01-01

    The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our pro-posed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.

  15. Sensitivity analysis of some critical factors affecting simulated intrusion volumes during a low pressure transient event in a full-scale water distribution system.

    PubMed

    Ebacher, G; Besner, M C; Clément, B; Prévost, M

    2012-09-01

    Intrusion events caused by transient low pressures may result in the contamination of a water distribution system (DS). This work aims at estimating the range of potential intrusion volumes that could result from a real downsurge event caused by a momentary pump shutdown. A model calibrated with transient low pressure recordings was used to simulate total intrusion volumes through leakage orifices and submerged air vacuum valves (AVVs). Four critical factors influencing intrusion volumes were varied: the external head of (untreated) water on leakage orifices, the external head of (untreated) water on submerged air vacuum valves, the leakage rate, and the diameter of AVVs' outlet orifice (represented by a multiplicative factor). Leakage orifices' head and AVVs' orifice head levels were assessed through fieldwork. Two sets of runs were generated as part of two statistically designed experiments. A first set of 81 runs was based on a complete factorial design in which each factor was varied over 3 levels. A second set of 40 runs was based on a latin hypercube design, better suited for experimental runs on a computer model. The simulations were conducted using commercially available transient analysis software. Responses, measured by total intrusion volumes, ranged from 10 to 366 L. A second degree polynomial was used to analyze the total intrusion volumes. Sensitivity analyses of both designs revealed that the relationship between the total intrusion volume and the four contributing factors is not monotonic, with the AVVs' orifice head being the most influential factor. When intrusion through both pathways occurs concurrently, interactions between the intrusion flows through leakage orifices and submerged AVVs influence intrusion volumes. When only intrusion through leakage orifices is considered, the total intrusion volume is more largely influenced by the leakage rate than by the leakage orifices' head. The latter mainly impacts the extent of the area affected by

  16. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  17. Vapor Intrusion

    EPA Pesticide Factsheets

    Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.

  18. The potential for health risks from intrusion of contaminants into the distribution system from pressure transients.

    PubMed

    LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E

    2003-03-01

    The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.

  19. Using Hybrid Algorithm to Improve Intrusion Detection in Multi Layer Feed Forward Neural Networks

    ERIC Educational Resources Information Center

    Ray, Loye Lynn

    2014-01-01

    The need for detecting malicious behavior on a computer networks continued to be important to maintaining a safe and secure environment. The purpose of this study was to determine the relationship of multilayer feed forward neural network architecture to the ability of detecting abnormal behavior in networks. This involved building, training, and…

  20. Extracting Features from an Electrical Signal of a Non-Intrusive Load Monitoring System

    NASA Astrophysics Data System (ADS)

    Figueiredo, Marisa B.; de Almeida, Ana; Ribeiro, Bernardete; Martins, António

    Improving energy efficiency by monitoring household electrical consumption is of significant importance with the present-day climate change concerns. A solution for the electrical consumption management problem is the use of a non-intrusive load monitoring system (NILM). This system captures the signals from the aggregate consumption, extracts the features from these signals and classifies the extracted features in order to identify the switched on appliances. An effective device identification (ID) requires a signature to be assigned for each appliance. Moreover, to specify an ID for each device, signal processing techniques are needed for extracting the relevant features. This paper describes a technique for the steady-states recognition in an electrical digital signal as the first stage for the implementation of an innovative NILM. Furthermore, the final goal is to develop an intelligent system for the identification of the appliances by automated learning. The proposed approach is based on the ratio value between rectangular areas defined by the signal samples. The computational experiments show the method effectiveness for the accurate steady-states identification in the electrical input signals.

  1. Future Volcanism at Yucca Mountain - Statistical Insights from the Non-Detection of Basalt Intrusions in the Potential Repository

    NASA Astrophysics Data System (ADS)

    Coleman, N.; Abramson, L.

    2004-05-01

    Yucca Mt. (YM) is a potential repository site for high-level radioactive waste and spent fuel. One issue is the potential for future igneous activity to intersect the repository. If the event probability is <1E-8/yr, it need not be considered in licensing. Plio-Quaternary volcanos and older basalts occur near YM. Connor et al (JGR, 2000) estimate a probability of 1E-8/yr to 1E-7/yr for a basaltic dike to intersect the potential repository. Based on aeromagnetic data, Hill and Stamatakos (CNWRA, 2002) propose that additional volcanos may lie buried in nearby basins. They suggest if these volcanos are part of temporal-clustered volcanic activity, the probability of an intrusion may be as high as 1E-6/yr. We examine whether recurrence probabilities >2E-7/yr are realistic given that no dikes have been found in or above the 1.3E7 yr-old potential repository block. For 2E-7/yr (or 1E-6/yr), the expected number of penetrating dikes is 2.6 (respectively, 13), and the probability of at least one penetration is 0.93 (0.999). These results are not consistent with the exploration evidence. YM is one of the most intensively studied places on Earth. Over 20 yrs of studies have included surface and subsurface mapping, geophysical surveys, construction of 10+ km of tunnels in the mountain, drilling of many boreholes, and construction of many pits (DOE, Site Recommendation, 2002). It seems unlikely that multiple dikes could exist within the proposed repository footprint and escape detection. A dike complex dated 11.7 Ma (Smith et al, UNLV, 1997) or 10 Ma (Carr and Parrish, 1985) does exist NW of YM and west of the main Solitario Canyon Fault. These basalts intruded the Tiva Canyon Tuff (12.7 Ma) in an epoch of caldera-forming pyroclastic eruptions that ended millions of yrs ago. We would conclude that basaltic volcanism related to Miocene silicic volcanism may also have ended. Given the nondetection of dikes in the potential repository, we can use a Poisson model to estimate an

  2. Watchdog Sensor Network with Multi-Stage RF Signal Identification and Cooperative Intrusion Detection

    DTIC Science & Technology

    2012-03-01

    Group 5: 9504-10.560 GHz 3.1-4.85 GHz 6.2-9.7 GHz Modulation Scheme QPSK BPSK 4- BOK (optional) Data Rates 53.3*, 80, 110*, 160, 200*, 320, 400, and...Jeon, J. Choi and H. Lee, ``Fast spectrum sensing algorithm for 802.22 WRAN systems,’’ in Proc. International Symposium on Communications and

  3. Life detection systems.

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1972-01-01

    Some promising newer approaches for detecting microorganisms are discussed, giving particular attention to the integration of different methods into a single instrument. Life detection methods may be divided into biological, chemical, and cytological methods. Biological methods are based on the biological properties of assimilation, metabolism, and growth. Devices for the detection of organic materials are considered, taking into account an instrument which volatilizes, separates, and analyzes a sample sequentially. Other instrumental systems described make use of a microscope and the cytochemical staining principle.

  4. Idaho Explosive Detection System

    ScienceCinema

    Klinger, Jeff

    2016-07-12

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  5. Idaho Explosive Detection System

    SciTech Connect

    Klinger, Jeff

    2011-01-01

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  6. Trouble Brewing: Using Observations of Invariant Behavior to Detect Malicious Agency in Distributed Control Systems

    NASA Astrophysics Data System (ADS)

    McEvoy, Thomas Richard; Wolthusen, Stephen D.

    Recent research on intrusion detection in supervisory data acquisition and control (SCADA) and DCS systems has focused on anomaly detection at protocol level based on the well-defined nature of traffic on such networks. Here, we consider attacks which compromise sensors or actuators (including physical manipulation), where intrusion may not be readily apparent as data and computational states can be controlled to give an appearance of normality, and sensor and control systems have limited accuracy. To counter these, we propose to consider indirect relations between sensor readings to detect such attacks through concurrent observations as determined by control laws and constraints.

  7. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  8. Geochronological and geochemical study of the Pan African intrusive rocks along the Najd Fault system in El Wajh area, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud; Abu-Alam, Tamer; Hauzenberger, Christoph; Stüwe, Kurt; Tiepolo, Massimo

    2014-05-01

    In the active tectonic regions, shear zones play an important role to re-configure the structure of the lithosphere. One of the largest shear zones on the Earth is the Najd Fault system of the Arabian-Nubian Shield. Literature data record the main active phase of this shear zone during the last stages of the Pan-African Orogeny (ca. 650-550 Ma). Compilation of new geochronological and geochemical data in addition to field relation is used to figure the tectonic history of the Najd Fault system. Different relationships between igneous intrusions and the Najd Fault System are observed. Some igneous bodies predate the activity of the shear zone, others intruded during the shearing process and a later phase intruded after the activity of the Najd Fault system ceased. The intrusive rocks in the study area show a geochemical and compositional diversity. Intrusives with dioritic composition were derived from a metaluminous tholeiitic magma around 700 Ma, and granodiorite-tonalite intrusions have calcalkaline characters and display a metaluminous to peraluminous character (ca. 740 and 660 Ma) then the magmatic activity terminated with peraluminous calcalkaline intrusives which formed granitic rocks with intrusion ages of 605-580 Ma. These magmatic events are identical for the Arabian-Nubian Shield but contamination from the crust or different rates of fractionation are recorded in our samples which are responsible for variations in the geochemical signature of the intrusive rocks. Based on field observations and contact relations, the intrusive rocks within the Ajjaj shear zone were studied in details in order to determine the age and the tectonic history of this shear zone that marks the termination of the Najd System against the eastern margin of the Red Sea. The provided zircon U-Pb dating by LA-ICP-MS and field relationships confine the activation age of the Ajjaj shear zone in limited period between 605 Ma and 580 Ma.

  9. Intruder detection system

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1973-01-01

    An intruder detection system is described. The system contains a transmitter which sends a frequency modulated and amplitude modulated signal to a remote receiver in response to a geophone detector which responds to seismic impulses created by the intruder. The signal makes it possible for an operator to determine the number of intruders and the manner of movement.

  10. Radiation detection system

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.; Lyons, Peter B.

    1981-01-01

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  11. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  12. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  13. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  14. Development and evaluation of a decision-supporting model for identifying the source location of microbial intrusions in real gravity sewer systems.

    PubMed

    Kim, Minyoung; Choi, Christopher Y; Gerba, Charles P

    2013-09-01

    Assuming a scenario of a hypothetical pathogenic outbreak, we aimed this study at developing a decision-support model for identifying the location of the pathogenic intrusion as a means of facilitating rapid detection and efficient containment. The developed model was applied to a real sewer system (the Campbell wash basin in Tucson, AZ) in order to validate its feasibility. The basin under investigation was divided into 14 sub-basins. The geometric information associated with the sewer network was digitized using GIS (Geological Information System) and imported into an urban sewer network simulation model to generate microbial breakthrough curves at the outlet. A pre-defined amount of Escherichia coli (E. coli), which is an indicator of fecal coliform bacteria, was hypothetically introduced into 56 manholes (four in each sub-basin, chosen at random), and a total of 56 breakthrough curves of E. coli were generated using the simulation model at the outlet. Transport patterns were classified depending upon the location of the injection site (manhole), various known characteristics (peak concentration and time, pipe length, travel time, etc.) extracted from each E. coli breakthrough curve and the layout of sewer network. Using this information, we back-predicted the injection location once an E. coli intrusion was detected at a monitoring site using Artificial Neural Networks (ANNs). The results showed that ANNs identified the location of the injection sites with 57% accuracy; ANNs correctly recognized eight out of fourteen expressions with relying on data from a single detection sensor. Increasing the available sensors within the basin significantly improved the accuracy of the simulation results (from 57% to 100%).

  15. Idaho Explosives Detection System

    SciTech Connect

    Edward L. Reber; J. Keith Jewell; Larry G. Blackwood; Andrew J. Edwards; Kenneth W. Rohde; Edward H. Seabury

    2004-10-01

    The Idaho Explosives Detection System (IEDS) was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-minute measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  16. The behavior of double-diffusive intrusion in a rotating system

    SciTech Connect

    Yoshida, J. ); Nagashima, H. ); Niino, H. )

    1989-04-15

    The effects of Earth's rotation on the stability of a thermohaline front of finite width are studied by means of a linear theory. It is found that when the rotation is present, two different types of unstable modes are possible. When the front is narrow and a Rossby radius of deformation based on Ruddick and Turner's (1979) vertical scale is large in comparison with the width of the front, the fastest growing intrusion is nearly two dimensional (nonrotational mode), and its vertical scale is given by Ruddick and Turner's scale. When the Rossby radius becomes small, in addition to the nonrotational mode there appears another unstable mode (the rotational mode) which has a smaller vertical wave number than the nonrotational mode. With the introduction of rotation, the fastest growing mode has nonzero along-frontal wave number; that is, the intrusion becomes tilted in the along-frontal direction. When the Rossby radius of deformation is sufficiently small in comparison with the width of the front, transition from the nonrotational mode to the rotational one occurs. The transition from nonrotational to rotational mode becomes less pronounced when the width of the front is increased for fixed horizontal density-compensating gradients of temperature and salinity. For a wide front the growth rate and vertical wave number for both modes becomes similar, which agrees with the results of previous studies for infinite fronts that rotation does not modify the behavior of the intrusion except for the occurrence of along-frontal tilt.

  17. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  18. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.

    1975-01-01

    A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.

  19. Calculation notes that support accident scenario and consequence development for the steam intrusion from interfacing systems accident

    SciTech Connect

    Van Vleet, R.J.; Ryan, G.W.; Crowe, R.D.; Lindberg, S.E., Fluor Daniel Hanford

    1997-03-04

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report (FSAR): Steam Intrusion From Interfacing Systems. The calculations needed to quantify the risk associated with this accident scenario are included in the following sections to aid in the understanding of this accident scenario. Information validation forms citing assumptions that were approved for use specifically in this analysis are included in Appendix A. Copies of these forms are also on file with TWRS Project Files. Calculations performed in this document, in general, are expressed in traditional (English) units to aid understanding of the accident scenario and related parameters.

  20. Intruder detection system

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1970-01-01

    Moving coil geophones are utilized to develop a small, rugged, battery operated system capable of detecting seismic disturbances caused by intruders. Seismic disturbances sensed by each geophone are converted into electrical signals, amplified, and transmitted to remote receiver which provides listener with aural signal.

  1. SHRIMP U-Pb zircon geochronology and thermal modeling of multilayer granitoid intrusions. Implications for the building and thermal evolution of the Central System batholith, Iberian Massif, Spain

    NASA Astrophysics Data System (ADS)

    Díaz Alvarado, Juan; Fernández, Carlos; Castro, Antonio; Moreno-Ventas, Ignacio

    2013-08-01

    This work shows the results of a U-Pb SHRIMP zircon geochronological study of the central part of the Gredos massif (Spanish Central System batholith). The studied batholith is composed of several granodiorite and monzogranite tabular bodies, around 1 km thick each, intruded into partially molten pelitic metasediments. Granodiorites and monzogranites, belonging to three distinct intrusive bodies, and samples of anatectic leucogranites have been selected for SHRIMP U-Pb zircon geochronology. Distinct age groups, separated by up to 20 Ma, have been distinguished in each sample. Important age differences have also been determined among the most representative age groups of the three analyzed granitoid bodies: 312.6 ± 2.8 Ma for the Circo de Gredos Bt-granodiorites (floor intrusive layer), 306.9 ± 1.5 Ma for the Barbellido-Plataforma granitoids (top intrusive layer) and 303.5 ± 2.8 Ma for Las Pozas Crd-monzogranites (middle intrusive layer). These age differences are interpreted in terms of sequential emplacement of the three intrusive bodies, contemporary with the Late Paleozoic D3 deformation phase. The anatectic leucogranites are coeval to slightly younger than the adjacent intrusive granodiorites and monzogranites (305.4 ± 1.6 Ma for Refugio del Rey leucogranites and 303 ± 2 Ma for migmatitic hornfelses). It is suggested that these anatectic magmas were generated in response to the thermal effects of granodiorite intrusions. Thermal modeling with COMSOL Multiphysics® reveals that sequential emplacement was able to keep the thermal conditions of the batholith around the temperature of zircon crystallization in granitic melts (around 750 °C) for several million of years, favoring the partial melting of host rocks and the existence of large magma chambers composed of crystal mush prone to be rejuvenated after new intrusions.

  2. Superfund Vapor Intrusion

    EPA Pesticide Factsheets

    In addition to basic information about vapor intrusion, the site contains technical and policy documents, tools and other resources to support vapor intrusion environmental investigations and mitigation activities.

  3. Analysis of a SCADA System Anomaly Detection Model Based on Information Entropy

    DTIC Science & Technology

    2014-03-27

    20 Intrusion Detection...alarms ( Rem ). ............................................................................................................. 86 Figure 25. TP% for...literature concerning the focus areas of this research. The focus areas include SCADA vulnerabilities, information theory, and intrusion detection

  4. Radiation detection system

    DOEpatents

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  5. Mechanical response of the south flank of kilauea volcano, hawaii, to intrusive events along the rift systems

    USGS Publications Warehouse

    Dvorak, J.J.; Okamura, A.T.; English, T.T.; Koyanagi, R.Y.; Nakata, J.S.; Sako, M.K.; Tanigawa, W.T.; Yamashita, K.M.

    1986-01-01

    Increased earthquake activity and compression of the south flank of Kilauea volcano, Hawaii, have been recognized by previous investigators to accompany rift intrusions. We further detail the temporal and spatial changes in earthquake rates and ground strain along the south flank induced by six major rift intrusions which occurred between December 1971 and January 1981. The seismic response of the south flank to individual rift intrusions is immediate; the increased rate of earthquake activity lasts from 1 to 4 weeks. Horizontal strain measurements indicate that compression of the south flank usually accompanies rift intrusions and eruptions. Emplacement of an intrusion at a depth greater than about 4 km, such as the June 1982 southwest rift intrusion, however, results in a slight extension of the subaerial portion of the south flank. Horizontal strain measurements along the south flank are used to locate the January 1983 east-rift intrusion, which resulted in eruptive activity. The intrusion is modeled as a vertical rectangular sheet with constant displacement perpendicular to the plane of the sheet. This model suggests that the intrusive body that compressed the south flank in January 1983 extended from the surface to about 2.4 km depth, and was aligned along a strike of N66??E. The intrusion is approximately 11 km in length, extended beyond the January 1983 eruptive fissures, which are 8 km in length and is contained within the 14-km-long region of shallow rift earthquakes. ?? 1986.

  6. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J. (Inventor)

    1978-01-01

    The performance of a waste water reclamation system is monitored by introducing a non-pathogenic marker virus, bacteriophage F2, into the waste-water prior to treatment and, thereafter, testing the reclaimed water for the presence of the marker virus. A test sample is first concentrated by absorbing any marker virus onto a cellulose acetate filter in the presence of a trivalent cation at low pH and then flushing the filter with a limited quantity of a glycine buffer solution to desorb any marker virus present on the filter. Photo-optical detection of indirect passive immune agglutination by polystyrene beads indicates the performance of the water reclamation system in removing the marker virus. A closed system provides for concentrating any marker virus, initiating and monitoring the passive immune agglutination reaction, and then flushing the system to prepare for another sample.

  7. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  8. High Temperature Metamorphism In The Conductive Boundary Layer Of An Intrusion Of Rhyolite Magma In The Krafla Geothermal System, Iceland

    NASA Astrophysics Data System (ADS)

    Schiffman, P.; Zierenberg, R. A.; Fridleifsson, G. O.; Elders, W. A.; Mortensen, A. K.

    2011-12-01

    A rhyolite magma body within the Krafla geothermal system- encountered at a depth of 2.1 km during drilling of the Iceland Deep Drilling Project's IDDP-1 borehole - is producing high temperature metamorphism within adjacent country rocks. Cuttings recovered during drilling within a few meters of the intrusive contact are undergoing recrystallization into granoblastic, pyroxene hornfelses. In mafic rocks, clinopyroxene-orthopyroxene-plagioclase-magnetite-ilmenite assemblages record temperatures in the range of 800-950°C. Silicic lithologies - mainly older felsitic intrusions -contain pockets of rhyolite melt, quenched to glass during drilling, amongst alkali feldspar, plagioclase, quartz, clinopyroxene, and magnetite. Curiously, no lower grade metamorphic assemblages have been identified in the drill cuttings, and country rocks at distances beyond 30 m of the contact are essentially unaltered. These findings suggest that the intruding rhyolite magma body has created a thin conductive boundary layer above it, but that a contact metamorphic aureole has not as yet developed beyond this. The heat flow across the boundary layer is calculated to be a minimum of 23 W m-2. This flux is capable of supplying steam to a geothermal power plant that can produce approximately 40 MW of electrical generation from a single well that has a measured well-head temperature of up to 415°C.

  9. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  10. A Weld Defects Detection System Based on a Spectrometer

    PubMed Central

    Bebiano, Daniel; Alfaro, Sadek C. A.

    2009-01-01

    Improved product quality and production methods, and decreased production costs are important objectives of industries. Welding processes are part of this goal. There are many studies about monitoring and controlling welding process. This work presents a non-intrusive on-line monitoriment system and some algorithms capable of detecting GTAW weld defects. Some experiments were made to simulate weld defects by disturbing the electric arc. The data comes from a spectrometer which captures perturbations on the electric arc by the radiation emission of chosen lines. Algorithms based on change detection methods are used to indicate the presence and localization of those defects. PMID:22574049

  11. A weld defects detection system based on a spectrometer.

    PubMed

    Bebiano, Daniel; Alfaro, Sadek C A

    2009-01-01

    Improved product quality and production methods, and decreased production costs are important objectives of industries. Welding processes are part of this goal. There are many studies about monitoring and controlling welding process. This work presents a non-intrusive on-line monitoriment system and some algorithms capable of detecting GTAW weld defects. Some experiments were made to simulate weld defects by disturbing the electric arc. The data comes from a spectrometer which captures perturbations on the electric arc by the radiation emission of chosen lines. Algorithms based on change detection methods are used to indicate the presence and localization of those defects.

  12. An automated computer misuse detection system for UNICOS

    SciTech Connect

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1994-09-27

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. This activity is reflected in the system audit record, in the system vulnerability posture, and in other evidence found through active testing of the system. During the last several years we have implemented an automatic misuse detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter (NADIR). We are currently expanding NADIR to include processing of the Cray UNICOS operating system. This new component is called the UNICOS Realtime NADIR, or UNICORN. UNICORN summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. The first phase of UNICORN development is nearing completion, and will be operational in late 1994.

  13. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  14. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  15. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    NASA Technical Reports Server (NTRS)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  16. Incipient Transient Detection in Reactor Systems: Experimental and Theoretical Investigation

    SciTech Connect

    Lefteri H. Tsoukalas; S.T. Revankar; X Wang; R. Sattuluri

    2005-09-27

    The main goal of this research was to develop a method for detecting reactor system transients at the earliest possible time through a comprehensive experimental, testing and benchmarking program. This approach holds strong promise for developing new diagnostic technologies that are non-intrusive, generic and highly portable across different systems. It will help in the design of new generation nuclear power reactors, which utilize passive safety systems with a reliable and non-intrusive multiphase flow diagnostic system to monitor the function of the passive safety systems. The main objective of this research was to develop an improved fuzzy logic based detection method based on a comprehensive experimental testing program to detect reactor transients at the earliest possible time, practically at their birth moment. A fuzzy logic and neural network based transient identification methodology and implemented in a computer code called PROTREN was considered in this research and was compared with SPRT (Sequentially Probability Ratio Testing) decision and Bayesian inference. The project involved experiment, theoretical modeling and a thermal-hydraulic code assessment. It involved graduate and undergraduate students participation providing them with exposure and training in advanced reactor concepts and safety systems. In this final report, main tasks performed during the project period are summarized and the selected results are presented. Detailed descriptions for the tasks and the results are presented in previous yearly reports (Revankar et al 2003 and Revankar et al 2004).

  17. Glycol leak detection system

    NASA Astrophysics Data System (ADS)

    Rabe, Paul; Browne, Keith; Brink, Janus; Coetzee, Christiaan J.

    2016-07-01

    MonoEthylene glycol coolant is used extensively on the Southern African Large Telescope to cool components inside the telescope chamber. To prevent coolant leaks from causing serious damage to electronics and optics, a Glycol Leak Detection System was designed to automatically shut off valves in affected areas. After two years of research and development the use of leaf wetness sensors proved to work best and is currently operational. These sensors are placed at various critical points within the instrument payload that would trigger the leak detector controller, which closes the valves, and alerts the building management system. In this paper we describe the research of an initial concept and the final accepted implementation and the test results thereof.

  18. Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System.

    PubMed

    Pidlisecky, A; Moran, T; Hansen, B; Knight, R

    2016-03-01

    We use electrical resistivity tomography to obtain a 6.8-km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater- and freshwater-saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole-dipole, Wenner, Wenner-gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south.

  19. Reconciling Volatile Outputs with Heat Flow and Magma Intrusion Rates at the Yellowstone Magma-Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Lowenstern, J. B.; Hurwitz, S.

    2012-12-01

    The Yellowstone hydrothermal system releases hundreds of millions of liters of water on a daily basis. Gigawatts of heat and kilotons of magmatic volatiles (CO2, S, Cl, F and He) are discharged by these waters. By quantifying the relative contributions of crustal, meteoric, and mantle-derived components, we can estimate the rate at which magma is fed to the crust from below (1). Combining isotopic studies with mass discharge rates of geothermal gases and aqueous dissolved solids, we recognize that over 20,000 tons of CO2 is released from basaltic magmas ponding beneath any silicic magma reservoir in the mid to shallow crust (1,2). In contrast, silicic magma provides significantly less volatiles than what emerges from the hydrothermal system. Estimates of heat flow range from ~3 to 8 GW (1,3,4), derived from satellite, surface geophysics and geochemical methods. Such values, combined with estimates from gas flux, imply prolific basalt intrusion rates between 0.05 and 0.3 cubic kilometers per year (1). Over the history of the Yellowstone Plateau Volcanic Field, a picture emerges where the lower crust is converted from Precambrian metasediments and silicic intrusions into a thick gabbroic batholith similar to that envisioned by some to reside beneath the Snake River Plain along the ancestral track of the Yellowstone Hot Spot (5). (1) Lowenstern and Hurwitz, 2008, Elements 4: 35-40. (2) Werner and Brantley, 2003, G-Cubed 4;7: 1061 (3) Vaughan and others, 2012, JVGR 233-234: 72-89. (4) Hurwitz and others, in press, JGR (5) Shervais and others, 2006, Geology 34:365-368.

  20. A Feasibility Study on the Application of the ScriptGenE Framework as an Anomaly Detection System in Industrial Control Systems

    DTIC Science & Technology

    2015-09-17

    Hines. Anomaly-based intrusion detection for SCADA systems . In 5th International Topical Meeting on Nuclear Plant Instrumentation , Control, and Human...A FEASIBILITY STUDY ON THE APPLICATION OF THE SCRIPTGENE FRAMEWORK AS AN ANOMALY DETECTION SYSTEM IN INDUSTRIAL CONTROL SYSTEMS THESIS Charito M...FEASIBILITY STUDY ON THE APPLICATION OF THE SCRIPTGENE FRAMEWORK AS AN ANOMALY DETECTION SYSTEM IN INDUSTRIAL CONTROL SYSTEMS THESIS Presented to the

  1. Neonatal Jaundice Detection System.

    PubMed

    Aydın, Mustafa; Hardalaç, Fırat; Ural, Berkan; Karap, Serhat

    2016-07-01

    Neonatal jaundice is a common condition that occurs in newborn infants in the first week of life. Today, techniques used for detection are required blood samples and other clinical testing with special equipment. The aim of this study is creating a non-invasive system to control and to detect the jaundice periodically and helping doctors for early diagnosis. In this work, first, a patient group which is consisted from jaundiced babies and a control group which is consisted from healthy babies are prepared, then between 24 and 48 h after birth, 40 jaundiced and 40 healthy newborns are chosen. Second, advanced image processing techniques are used on the images which are taken with a standard smartphone and the color calibration card. Segmentation, pixel similarity and white balancing methods are used as image processing techniques and RGB values and pixels' important information are obtained exactly. Third, during feature extraction stage, with using colormap transformations and feature calculation, comparisons are done in RGB plane between color change values and the 8-color calibration card which is specially designed. Finally, in the bilirubin level estimation stage, kNN and SVR machine learning regressions are used on the dataset which are obtained from feature extraction. At the end of the process, when the control group is based on for comparisons, jaundice is succesfully detected for 40 jaundiced infants and the success rate is 85 %. Obtained bilirubin estimation results are consisted with bilirubin results which are obtained from the standard blood test and the compliance rate is 85 %.

  2. Photoelectric detection system

    NASA Astrophysics Data System (ADS)

    Currie, J. R.; Schansman, R. R.

    1982-03-01

    A photoelectric beam system for the detection of the arrival of an object at a discrete station wherein artificial light, natural light, or no light may be present is described. A signal generator turns on and off a signal light at a selected frequency. When the object in question arrives on station, ambient light is blocked by the object, and the light from the signal light is reflected onto a photoelectric sensor which has a delayed electrical output but is of the frequency of the signal light. Outputs from both the signal source and the photoelectric sensor are fed to inputs of an exclusively OR detector which provides as an output the difference between them. The difference signal is a small width pulse occurring at the frequency of the signal source. By filter means, this signal is distinguished from those responsive to sunlight, darkness, or 120 Hz artificial light. In this fashion, the presence of an object is positively established.

  3. A Web-Based Non-Intrusive Ambient System to Measure and Classify Activities of Daily Living

    PubMed Central

    Urwyler, Prabitha; Rampa, Luca; Müri, René; Mosimann, Urs P

    2014-01-01

    Background The number of older adults in the global population is increasing. This demographic shift leads to an increasing prevalence of age-associated disorders, such as Alzheimer’s disease and other types of dementia. With the progression of the disease, the risk for institutional care increases, which contrasts with the desire of most patients to stay in their home environment. Despite doctors’ and caregivers’ awareness of the patient’s cognitive status, they are often uncertain about its consequences on activities of daily living (ADL). To provide effective care, they need to know how patients cope with ADL, in particular, the estimation of risks associated with the cognitive decline. The occurrence, performance, and duration of different ADL are important indicators of functional ability. The patient’s ability to cope with these activities is traditionally assessed with questionnaires, which has disadvantages (eg, lack of reliability and sensitivity). Several groups have proposed sensor-based systems to recognize and quantify these activities in the patient’s home. Combined with Web technology, these systems can inform caregivers about their patients in real-time (eg, via smartphone). Objective We hypothesize that a non-intrusive system, which does not use body-mounted sensors, video-based imaging, and microphone recordings would be better suited for use in dementia patients. Since it does not require patient’s attention and compliance, such a system might be well accepted by patients. We present a passive, Web-based, non-intrusive, assistive technology system that recognizes and classifies ADL. Methods The components of this novel assistive technology system were wireless sensors distributed in every room of the participant’s home and a central computer unit (CCU). The environmental data were acquired for 20 days (per participant) and then stored and processed on the CCU. In consultation with medical experts, eight ADL were classified

  4. Saltwater intrusion in the Floridan aquifer system near downtown Brunswick, Georgia, 1957–2015

    USGS Publications Warehouse

    Cherry, Gregory S.; Peck, Michael

    2017-02-16

    IntroductionThe Floridan aquifer system (FAS) consists of the Upper Floridan aquifer (UFA), an intervening confining unit of highly variable properties, and the Lower Floridan aquifer (LFA). The UFA and LFA are primarily composed of Paleocene- to Oligocene-age carbonate rocks that include, locally, Upper Cretaceous rocks. The FAS extends from coastal areas in southeastern South Carolina and continues southward and westward across the coastal plain of Georgia and Alabama, and underlies all of Florida. The thickness of the FAS varies from less than 100 feet (ft) in aquifer outcrop areas of South Carolina to about 1,700 ft near the city of Brunswick, Georgia.Locally, in southeastern Georgia and the Brunswick– Glynn County area, the UFA consists of an upper water-bearing zone (UWBZ) and a lower water-bearing zone (LWBZ), as identified by Wait and Gregg (1973), with aquifer test data indicating the upper zone has higher productivity than the lower zone. Near the city of Brunswick, the LFA is composed of two permeable zones: an early middle Eocene-age upper permeable zone (UPZ) and a highly permeable lower zone of limestone (LPZ) of Paleocene and Late Cretaceous age that includes a deeply buried, cavernous, saline water-bearing unit known as the Fernandina permeable zone. Maslia and Prowell (1990) inferred the presence of major northeast–southwest trending faults through the downtown Brunswick area based on structural analysis of geophysical data, northeastward elongation of the potentiometric surface of the UFA, and breaches in the local confining unit that influence the area of chloride contamination. Pronounced horizontal and vertical hydraulic head gradients, caused by pumping in the UFA, allow saline water from the FPZ to migrate upward into the UFA through this system of faults and conduits.Saltwater was first detected in the FAS in wells completed in the UFA near the southern part of the city of Brunswick in late 1957. By the 1970s, a plume of groundwater

  5. Petroleum Vapor Intrusion

    EPA Pesticide Factsheets

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  6. Intelligent Leak Detection System

    SciTech Connect

    Mohaghegh, Shahab D.

    2014-10-27

    apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise

  7. Coupling of hydrogeological models with hydrogeophysical data to characterize seawater intrusion and shallow geothermal systems

    NASA Astrophysics Data System (ADS)

    Beaujean, J.; Kemna, A.; Engesgaard, P. K.; Hermans, T.; Vandenbohede, A.; Nguyen, F.

    2013-12-01

    While coastal aquifers are being stressed due to climate changes and excessive groundwater withdrawals require characterizing efficiently seawater intrusion (SWI) dynamics, production of geothermal energy is increasingly being used to hinder global warming. To study these issues, we need both robust measuring technologies and reliable predictions based on numerical models. SWI models are currently calibrated using borehole observations. Similarly, geothermal models depend mainly on the temperature field at few locations. Electrical resistivity tomography (ERT) can be used to improve these models given its high sensitivity to TDS and temperature and its relatively high lateral resolution. Inherent geophysical limitations, such as the resolution loss, can affect the overall quality of the ERT images and also prevent the correct recovery of the desired hydrochemical property. We present an uncoupled and coupled hydrogeophysical inversion to calibrate SWI and thermohydrogeologic models using ERT. In the SWI models, we demonstrate with two synthetic benchmarks (homogeneous and heterogeneous coastal aquifers) the ability of cumulative sensitivity-filtered ERT images using surface-only data to recover the hydraulic conductivity. Filtering of ERT-derived data at depth, where resolution is poorer, and the model errors make the dispersivity more difficult to estimate. In the coupled approach, we showed that parameter estimation is significantly improved because regularization bias is replaced by forward modeling only. Our efforts are currently focusing on applying the uncoupled/coupled approaches on a real life case study using field data from the site of Almeria, SE Spain. In the thermohydrogeologic models, the most sensitive hydrologic parameters responsible for heat transport are estimated from surface ERT-derived temperatures and ERT resistance data. A real life geothermal experiment that took place on the Campus De Sterre of Ghent University, Belgium and a synthetic

  8. Incipient fire detection system

    DOEpatents

    Brooks, Jr., William K.

    1999-01-01

    A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.

  9. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    USGS Publications Warehouse

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross

  10. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle

  11. Hand held explosives detection system

    DOEpatents

    Conrad, Frank J.

    1992-01-01

    The present invention is directed to a sensitive hand-held explosives detection device capable of detecting the presence of extremely low quantities of high explosives molecules, and which is applicable to sampling vapors from personnel, baggage, cargo, etc., as part of an explosives detection system.

  12. Genetic relationship between deformation and low-Ca content in olivine from magmatic systems: evidence from the Poyi ultramafic intrusion, NW China

    NASA Astrophysics Data System (ADS)

    Yao, Zhuo-sen; Qin, Ke-zhang; Xue, Sheng-chao

    2017-03-01

    The deformation features (e.g., undulose extinction and subgrain boundaries) and low Ca content (<1000 ppm) of high-Fo olivine have been widely used as indictors for the mantle origin of olivine in the past. However, grains with these characteristics are also found in some crustal intrusions, e.g., Duke Island and Bushveld complexes. Here, we study this type of olivine in the Poyi ultramafic intrusion, NW China, to trace the formation of these unusual features in magmatic systems. As a result of the possible Ca-depleted parental melt and low Ca olivine/melt partition coefficient, olivine from the Poyi intrusion is extremely depleted in Ca. On the other hand, it has been confirmed that trace elements with large ionic radii (e.g., Ca2+ and Al3+) are chemically segregated at the grain boundary of olivine, exerting a dragging influence on grain boundary processes (named as solute drag effect). In this regard, the low Ca content in olivine weakens the solute drag effect, and in doing so it enhances the rate and strength of grain deformation, which occurs to accommodate the stress derived by fast compaction of the crystal mush in Poyi intrusion. Therefore, there is a genetic relationship between the plastic deformation and low Ca content in olivines from magmatic cumulates, and this link is one of the reasons causing the widespread deformation observed in Ca-depleted olivine from Poyi and other intrusions. What is more important, this work fills the gaps in the interpretation of this type of olivine in volcanic rocks.

  13. Geochemical signature variation of pre-, syn-, and post-shearing intrusives within the Najd Fault System of western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Abu-Alam, T. S.; Hauzenberger, C.; Stüwe, K.

    2016-10-01

    Late Precambrian intrusive rocks in the Arabian-Nubian Shield emplaced within and around the Najd Fault System of Saudi Arabia feature a great compositional diversity and a variety of degrees of deformation (i.e. pre-shearing deformed, sheared mylonitized, and post-shearing undeformed) that allows placing them into a relative time order. It is shown here that the degree of deformation is related to compositional variations where early, usually pre-shearing deformed rocks are of dioritic, tonalitic to granodioritic, and later, mainly post-shearing undeformed rocks are mostly of granitic composition. Correlation of the geochemical signature and time of emplacement is interpreted in terms of changes in the source region of the produced melts due to the change of the stress regime during the tectonic evolution of the Arabian-Nubian Shield. The magma of the pre-shearing rocks has tholeiitic and calc-alkaline affinity indicating island arc or continental arc affinity. In contrast, the syn- and post-shearing rocks are mainly potassium rich peraluminous granites which are typically associated with post-orogenic uplift and collapse. This variation in geochemical signature is interpreted to reflect the change of the tectonic regime from a compressional volcanic arc nature to extensional within-plate setting of the Arabian-Nubian Shield. Within the context of published geochronological data, this change is likely to have occurred around 605-580 Ma.

  14. Antigen detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissues or other specimens, using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular m...

  15. Antigen detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious agents or their constituent parts (antigens or nucleic acids) can be detected in fresh, frozen, or fixed tissue using a variety of direct or indirect assays. The assays can be modified to yield the greatest sensitivity and specificity but in most cases a particular methodology is chosen ...

  16. Protein detection system

    DOEpatents

    Fruetel, Julie A.; Fiechtner, Gregory J.; Kliner, Dahv A. V.; McIlroy, Andrew

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  17. Non-Intrusive Device for Real-Time Circulatory System Assessment with Advanced Signal Processing Capabilities

    NASA Astrophysics Data System (ADS)

    Pinheiro, E.; Postolache, O.; Girão, P.

    2010-01-01

    This paper presents a device that uses three cardiography signals to characterize several important parameters of a subject's circulatory system. Using electrocardiogram, finger photoplethysmogram, and ballistocardiogram, three heart rate estimates are acquired from beat-to-beat time interval extraction. Furthermore, pre-ejection period, pulse transit time (PTT), and pulse arrival time (PAT) are computed, and their long-term evolution is analyzed. The system estimates heart rate variability (HRV) and blood pressure variability (BPV) from the heart rate and PAT time series, to infer the activity of the cardiac autonomic system. The software component of the device evaluates the frequency content of HRV and BPV, and also their fractal dimension and entropy, thus providing a detailed analysis of the time series' regularity and complexity evolution, to allow personalized subject evaluation.

  18. SUPPLEMENT TO EPA COMPENDIUM METHOD TO-15 - REDUCTION OF METHOD DETECTION LIMITS TO MEET VAPOR INTRUSION MONITORING NEEDS

    EPA Science Inventory

    The Supplement to EPA Compendium Method TO-15 provides guidance for reducing the method detection limit (MDL) for the compound 1,1- dichloroethene (1,1-DCE) and for other volatile organic compounds (VOCs) from 0.5 ppbv, as cited in Method TO-15, to much lower concentrations. R...

  19. SUPPLEMENT TO EPA COMPENDIUM METHOD TO-15 - REDUCTION OF METHOD DETECTION LIMITS TO MEET VAPOR INTRUSION MONITORING NEEDS

    EPA Science Inventory

    The Supplement to EPA Compendium Method TO-15 provides guidance for reducing the method detection limit (MDL) for the compound 1,1-dichloroethene (1,1-DCE) and for other volatile organic compounds (VOCs) from 0.5 parts per billion by volume (ppbv), as cited in Method TO-15, to ...

  20. Particle detection systems and methods

    DOEpatents

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  1. Lunar igneous intrusions.

    PubMed

    El-Baz, F

    1970-01-02

    Photographs taken from Apollo 10 and 11 reveal a number of probable igneous intrusions, including three probable dikes that crosscut the wall and floor of an unnamed 75-kilometer crater on the lunar farside. These intrusions are distinguished by their setting, textures, structures, and brightness relative to the surrounding materials. Recognition of these probable igneous intrusions in the lunar highlands slupports the indications of the heterogeneity of lunar materials and the plausibility of intrusive igneous activity, in addition to extrusive volcanism, on the moon.

  2. NORSAR Detection Processing System.

    DTIC Science & Technology

    1987-05-31

    systems have been reliable. NTA/Lillestrom and Hamar will take a new initiative medio April regarding 04C. The line will be remeasured and if a certain...estimate of the ambient noise level at the site of the FINESA array, ground motion spectra were calculated for four time intervals. Two intervals were

  3. Remote Voice Detection System

    DTIC Science & Technology

    2007-06-25

    back to the laser Doppler vibrometer and the digital camera, respectively. Mechanical beam steering mirror modules, such as galvanometer steering...mirror module 43 in accordance with this invention. An appropriate galvanometer -based tracker system has been used for tracking eye motion during laser

  4. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  5. Power line detection system

    DOEpatents

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  6. Power line detection system

    DOEpatents

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  7. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  8. Radiation detection system

    DOEpatents

    Whited, R.C.

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI/sub 2/, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  9. APDS: Autonomous Pathogen Detection System

    SciTech Connect

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  10. Diversified transmission multichannel detection system

    SciTech Connect

    Tournois, P.; Engelhard, P.

    1984-07-03

    A detection system for imaging by sonar or radar signals. The system associates diversified transmissions with an interferometric base. This base provides an angular channel formation means and each signal formed in this way is processed by matched filtering in a circuit containing copy signals characterizing the space coloring obtained by the diversified transmission means. The invention is particularly applicable to side or front looking detection sonars.

  11. Heterogeneous VM Replication: A New Approach to Intrusion Detection, Active Response and Recovery in Cloud Data Centers

    DTIC Science & Technology

    2015-08-17

    amounts of information flowing through relevant networks and information spaces are very germane to Air Force. One of the goals of AFOSR in information ...an attack on information systems. Tennessee State University is submitting a proposal to 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  12. Performance Analysis of Hierarchical Group Key Management Integrated with Adaptive Intrusion Detection in Mobile ad hoc Networks

    DTIC Science & Technology

    2016-04-05

    key management Region-voting-based IDS Host-based IDS Stochastic Petri net Performance analysis a b s t r a c t We develop a mathematical model to...performance metric. We analyze the tradeoff of security versus performance properties of a GCS system by means of a mathematical model and identify optimal...attack/failure. Lastly, we develop a mathematical model based on stochastic Petri nets (SPN) [5] to quantitatively identify optimal settings in terms

  13. Comparison and characterization of Android-based fall detection systems.

    PubMed

    Luque, Rafael; Casilari, Eduardo; Morón, María-José; Redondo, Gema

    2014-10-08

    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones' potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems.

  14. Comparison and Characterization of Android-Based Fall Detection Systems

    PubMed Central

    Luque, Rafael; Casilari, Eduardo; Morón, María-José; Redondo, Gema

    2014-01-01

    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones' potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems. PMID:25299953

  15. Alert Confidence Fusion in Intrusion Detection Systems with Extended Dempster- Shafer Theory

    SciTech Connect

    Yu, Dong; Frincke, Deborah A.

    2005-03-01

    Extend Dempster-Shafer Theory of Evidence to include differential weightings of alerts drawn from multiple sources. The intent is to support automated (and manual) response to threat by producing more realistic confidence ratings for IDS alerts than is currently available.

  16. A Comparative Analysis of the Snort and Suricata Intrusion-Detection Systems

    DTIC Science & Technology

    2011-09-01

    TESTING .......................................................................................41 ANNEX 2 EXAMPLE PYTBULL REPORTS FOR SURICATA AND...Called the HTP library and developed independently for the Suricata project by Ivan Ristic, it is an advanced HTTP parser developed for Suricata and...III, we will introduce and describe our testing methodology for our comparison of Suricata and Snort. We will discuss the setup of our experiments

  17. A Micro-Computer Computational Unit for an IR-CCD Intrusion Detection System.

    DTIC Science & Technology

    1980-10-01

    70 3.9 Uses of stare time information ................. 73 3.10 Distribution of calculations over P packets ........... 77 3.11...using the parame- ters D, Cl, C2, P , N, d, n, and t. These parameters are adjustable by the user through terminal interaction. See Section I.E. The...parameters wherein no ambiguity will result if upper or Lower case symbols are typed, either case may be used, i.e., the " P " parameter. If ambiguity will

  18. MFIRE-2: A Multi Agent System for Flow-Based Intrusion Detection Using Stochastic Search

    DTIC Science & Technology

    2012-03-01

    features. In the networking domain, if agents are required to be mobile, then all hosts in the network must have a generic agent platform installed...execution - surviving agents continue to operate when part of the IDS fails • Platform independence - agent platforms with standard interfaces may be...developed [25, 96, 79, 74, 43]. In all cases, electronics personas are created, which reflect the specific forum under evaluation ( ecommerce , social

  19. Developing Network Situational Awareness through Visualizations of Fused Intrusion Detection System Alerts

    DTIC Science & Technology

    2008-06-01

    Phishing with Plug and Play Exploit. In this attack, the at- tacker sets up a website offering the visitor free “ porn ” if they sign up. The user is allowed... porn alert so its unclear at the moment if 100.20.3.127 is compromised and if so, how it is compromised because there are no other alerts at this time...unauthorized porn website. The investigation would conclude that the attacker at 51.251.22.183 used the information gained from the website to open an

  20. Computer Intrusions and Attacks.

    ERIC Educational Resources Information Center

    Falk, Howard

    1999-01-01

    Examines some frequently encountered unsolicited computer intrusions, including computer viruses, worms, Java applications, trojan horses or vandals, e-mail spamming, hoaxes, and cookies. Also discusses virus-protection software, both for networks and for individual users. (LRW)

  1. Hearing aid malfunction detection system

    NASA Technical Reports Server (NTRS)

    Kessinger, R. L. (Inventor)

    1977-01-01

    A malfunction detection system for detecting malfunctions in electrical signal processing circuits is disclosed. Malfunctions of a hearing aid in the form of frequency distortion and/or inadequate amplification by the hearing aid amplifier, as well as weakening of the hearing aid power supply are detectable. A test signal is generated and a timed switching circuit periodically applies the test signal to the input of the hearing aid amplifier in place of the input signal from the microphone. The resulting amplifier output is compared with the input test signal used as a reference signal. The hearing aid battery voltage is also periodically compared to a reference voltage. Deviations from the references beyond preset limits cause a warning system to operate.

  2. Semi autonomous mine detection system

    NASA Astrophysics Data System (ADS)

    Few, Doug; Versteeg, Roelof; Herman, Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude - from an autonomous robotic perspective - the rapid development and deployment of fieldable systems.

  3. Portable Microleak-Detection System

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Sikora, Joseph G.; Sankaran, Sankara N.

    2007-01-01

    The figure schematically depicts a portable microleak-detection system that has been built especially for use in testing hydrogen tanks made of polymer-matrix composite materials. (As used here, microleak signifies a leak that is too small to be detectable by the simple soap-bubble technique.) The system can also be used to test for microleaks in tanks that are made of other materials and that contain gases other than hydrogen. Results of calibration tests have shown that measurement errors are less than 10 percent for leak rates ranging from 0.3 to 200 cm3/min. Like some other microleak-detection systems, this system includes a vacuum pump and associated plumbing for sampling the leaking gas, and a mass spectrometer for analyzing the molecular constituents of the gas. The system includes a flexible vacuum chamber that can be attached to the outer surface of a tank or other object of interest that is to be tested for leakage (hereafter denoted, simply, the test object). The gas used in a test can be the gas or vapor (e.g., hydrogen in the original application) to be contained by the test object. Alternatively, following common practice in leak testing, helium can be used as a test gas. In either case, the mass spectrometer can be used to verify that the gas measured by the system is the test gas rather than a different gas and, hence, that the leak is indeed from the test object.

  4. Semi autonomous mine detection system

    SciTech Connect

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  5. Tape Cassette Bacteria Detection System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  6. Optimal design of saltwater intrusion control systems by Global Interactive Response Surfaces: the Nauru island case study

    NASA Astrophysics Data System (ADS)

    Alberti, Luca; Oberto, Gabriele; Pianosi, Francesca; Castelletti, Andrea

    2013-04-01

    Infiltration galleries and scavenger wells are often constructed to prevent saltwater intrusion in coastal aquifers. The optimal design of these infrastructures can be framed as a multi-objective optimization problem balancing availability of fresh water supply and installation/operation costs. High fidelity simulation models of the flow and transport processes can be used to link design parameters (e.g. wells location, size and pumping rates) to objective functions. However, the incorporation of these simulation models within an optimization-based planning framework is not straightforward because of the computational requirements of the model itself and the computational limitations of the optimization algorithms. In this study we investigate the potential for the Global Interactive Response Surface (GIRS) methodology to overcome these technical limitations. The GIRS methodology is used to recursively build a non-dynamic emulator of the process-based simulation model that maps design options into objectives values and can be used in place of the original model to more quickly explore the design space. The approach is used to plan infrastructural interventions for controlling saltwater intrusion and ensuring sustainable groundwater supply for Nauru, a Pacific island republic in Micronesia. GIRS is used to emulate a SEAWAT density driven groundwater flow-and-transport simulation model. Results show the potential applicability of the proposed approach for optimal planning of coastal aquifers.

  7. Blind Leak Detection for Closed Systems

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter; Johnson, Ricky; Todd, Douglas; Russell, Samuel; Walker, James

    2003-01-01

    The current inspection technique for locating interstitial leaking in the Space Shuttle Main Engine nozzles is the application of a liquid leak check solution in the openings where the interstitials space between the tubing and the structural jacket vent out the aft end of the nozzle, while its cooling tubes are pressurized to 25 psig with Helium. When a leak is found, it is classified, and if the leak is severe enough the suspect tube is cut open so that a boroscope can be inserted to find the leak point. Since the boroscope can only cover a finite tube length and since it is impossible to identify which tube (to the right or left of the identified interstitial) is leaking, many extra and undesired repairs have been made to fix just one leak. In certain instances when the interstitials are interlinked by poor braze bonding, many interstitials will show indications of leaking from a single source. What is desired is a technique that can identify the leak source so that a single repair can be performed. Dr, Samuel Russell and James Walker, both with NASA/MSFC have developed a thermographic inspection system that addresses a single repair approach. They have teamed with Boeing/Rocketdyne to repackage the inspection processes to be suitable to address full scale Shuttle development and flight hardware and implement the process at NASA centers. The methods and results presented address the thermographic identification of interstitial leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera (capable of detecting a delta temperature difference of 0.025 C) is used to record the cooling effects associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner hot wall surface as the nozzle is pressurized, These images are enhanced by digitally subtracting a thermal reference image taken before pressurization. The method provides a non-intrusive way of locating the tube that is leaking and the

  8. The Autonomous Pathogen Detection System

    SciTech Connect

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  9. Detecting transition in agricultural systems

    NASA Technical Reports Server (NTRS)

    Neary, P. J.; Coiner, J. C.

    1979-01-01

    Remote sensing of agricultural phenomena has been largely concentrated on analysis of agriculture at the field level. Concern has been to identify crop status, crop condition, and crop distribution, all of which are spatially analyzed on a field-by-field basis. A more general level of abstraction is the agricultural system, or the complex of crops and other land cover that differentiate various agricultural economies. The paper reports on a methodology to assist in the analysis of the landscape elements of agricultural systems with Landsat digital data. The methodology involves tracing periods of photosynthetic activity for a fixed area. Change from one agricultural system to another is detected through shifts in the intensity and periodicity of photosynthetic activity as recorded in the radiometric return to Landsat. The Landsat-derived radiometric indicator of photosynthetic activity appears to provide the ability to differentiate agricultural systems from each other as well as from conterminous natural vegetation.

  10. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  11. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada

    USGS Publications Warehouse

    Hart, C.J.R.; Mair, J.L.; Goldfarb, R.J.; Groves, D.I.

    2004-01-01

    The Tombstone, Mayo and Tungsten plutonic suites of granitic intrusions, collectively termed the Tombstone-Tungsten Belt, form three geographically, mineralogically, geochemically and metallogenically distinct plutonic suites. The granites (sensu lato) intruded the ancient North American continental margin of the northern Canadian Cordillera as part of a single magmatic episode in the mid-Cretaceous (96-90 Ma). The Tombstone Suite is alkalic, variably fractionated, slightly oxidised, contains magnetite and titanite, and has primary, but no xenocrystic, zircon. The Mayo Suite is sub-alkalic, metaluminous to weakly peraluminous, fractionated, but with early felsic and late mafic phases, moderately reduced with titanite dominant, and has xenocrystic zircon. The Tungsten Suite is peraluminous, entirely felsic, more highly fractionated, reduced with ilmenite dominant, and has abundant xenocrystic zircon. Each suite has a distinctive petrogenesis. The Tombstone Suite was derived from an enriched, previously depleted lithospheric mantle, the Tungsten Suite is from the continental crust including, but not dominated by, carbonaceous pelitic rocks, and the Mayo Suite is from a similar sedimentary crustal source, but is mixed with a distinct mafic component from an enriched mantle source. Each suite has a distinctive metallogeny that is related to the source and redox characteristics of the magma. The Tombstone Suite has a Au-Cu-Bi association that is characteristic of most oxidised and alkalic magmas, but also has associated, and enigmatic, U-Th-F mineralisation. The reduced Tungsten Suite intrusions are characterised by world-class tungsten skarn deposits with less significant Cu, Zn, Sn and Mo anomalies. The Mayo Suite intrusions are characteristically gold-enriched, with associated As, Bi, Te and W associations. All suites also have associated, but distal and lower temperature Ag-Pb-and Sb-rich mineral occurrences. Although processes such as fractionation, volatile

  12. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada

    USGS Publications Warehouse

    Hart, C.J.R.; Mair, J.L.; Goldfarb, R.J.; Groves, D.I.

    2004-01-01

    The Tombstone, Mayo and Tungsten plutonic suites of granitic intrusions, collectively termed the Tombstone-Tungsten Belt, form three geographically, mineralogically, geochemically and metallogenically distinct plutonic suites. The granites (sensu lato) intruded the ancient North American continental margin of the northern Canadian Cordillera as part of a single magmatic episode in the mid-Cretaceous (96-90 Ma). The Tombstone Suite is alkalic, variably fractionated, slightly oxidised, contains magnetite and titanite, and has primary, but no xenocrystic, zircon. The Mayo Suite is sub-alkalic, metaluminous to weakly peraluminous, fractionated, but with early felsic and late mafic phases, moderately reduced with titanite dominant, and has xenocrystic zircon. The Tungsten Suite is peraluminous, entirely felsic, more highly fractionated, reduced with ilmenite dominant, and has abundant xenocrystic zircon. Each suite has a distinctive petrogenesis. The Tombstone Suite was derived from an enriched, previously depleted lithospheric mantle, the Tungsten Suite is from the continental crust including, but not dominated by, carbonaceous pelitic rocks, and the Mayo Suite is from a similar sedimentary crustal source, but is mixed with a distinct mafic component from an enriched mantle source. Each suite has a distinctive metallogeny that is related to the source and redox characteristics of the magma. The Tombstone Suite has a Au-Cu-Bi association that is characteristic of most oxidised and alkalic magmas, but also has associated, and enigmatic, U-Th-F mineralisation. The reduced Tungsten Suite intrusions are characterised by world-class tungsten skarn deposits with less significant Cu, Zn, Sn and Mo anomalies. The Mayo Suite intrusions are characteristically gold-enriched, with associated As, Bi, Te and W associations. All suites also have associated, but distal and lower temperature Ag-Pb- and Sb-rich mineral occurrences. Although processes such as fractionation, volatile

  13. Nucleic acid detection system and method for detecting influenza

    DOEpatents

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  14. Compensated intruder-detection systems

    DOEpatents

    McNeilly, David R.; Miller, William R.

    1984-01-01

    Intruder-detection systems in which intruder-induced signals are transmitted through a medium also receive spurious signals induced by changes in a climatic condition affecting the medium. To combat this, signals received from the detection medium are converted to a first signal. The system also provides a reference signal proportional to climate-induced changes in the medium. The first signal and the reference signal are combined for generating therefrom an output signal which is insensitive to the climatic changes in the medium. An alarm is energized if the output signal exceeds a preselected value. In one embodiment, an acoustic cable is coupled to a fence to generate a first electrical signal proportional to movements thereof. False alarms resulting from wind-induced movements of the fence (detection medium) are eliminated by providing an anemometer-driven voltage generator to provide a reference voltage proportional to the velocity of wind incident on the fence. An analog divider receives the first electrical signal and the reference signal as its numerator and denominator inputs, respectively, and generates therefrom an output signal which is insensitive to the wind-induced movements in the fence.

  15. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  16. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  17. Autonomous pathogen detection system 2001

    SciTech Connect

    Langlois, R G; Wang, A; Colston, B; Masquelier, D; Jones, L; Venkateswaran, K S; Nasarabadi, S; Brown, S; Ramponi, A; Milanovich, F P

    2001-01-09

    The objective of this project is to design, fabricate and field-demonstrate a fully Autonomous Pathogen Detector (identifier) System (APDS). This will be accomplished by integrating a proven flow cytometer and real-time polymerase chain reaction (PCR) detector with sample collection, sample preparation and fluidics to provide a compact, autonomously operating instrument capable of simultaneously detecting multiple pathogens and/or toxins. The APDS will be designed to operate in fixed locations, where it continuously monitors air samples and automatically reports the presence of specific biological agents. The APDS will utilize both multiplex immuno and nucleic acid assays to provide ''quasi-orthogonal'', multiple agent detection approaches to minimize false positives and increase the reliability of identification. Technical advancements across several fronts must first be made in order to realize the full extent of the APDS. Commercialization will be accomplished through three progressive generations of instruments. The APDS is targeted for domestic applications in which (1) the public is at high risk of exposure to covert releases of bioagent such as in major subway systems and other transportation terminals, large office complexes, and convention centers; and (2) as part of a monitoring network of sensors integrated with command and control systems for wide area monitoring of urban areas and major gatherings (e.g., inaugurations, Olympics, etc.). In this latter application there is potential that a fully developed APDS could add value to Defense Department monitoring architectures.

  18. Mafic intrusions triggering eruptions in Iceland

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2012-04-01

    The last two eruptions in Iceland, Eyjafjallajökull 2010 and Grímsvötn 2011, were both provoked by an intrusion of more mafic magma into pre-existing magmatic system. Injection into the latter volcano, which is located in the main rift-zone of the island, above the presumed centre of the mantle plume and is the most active volcano of Iceland, has been gradual since the last eruption in 2004. In contrast, at Eyjafjallajökull volcano, one of the least active volcano in Iceland and located at the southern part of a propagating rift-zone where extensional tectonics are poorly developed, mafic magma intrusion occurred over less than a year. Beneath Eyjafjallajökull, a silicic intrusion at approximately 6 km depth was recharged with mantle derived alkali basalt that was injected into residual rhyolite from the penultimate eruption in the years 1821-23. The resulting magma mingIing process was highly complex, but careful sampling of tephra during the entire eruption allows the dynamics of the mingling process to be unravelled. Short-lived disequilibria between the gaseous nuclide 210Po and the much less volatile nuclide 210Pb, suggest that basalt accumulated beneath the silicic intrusion over approximately 100 days, or from early January 2010 until the onset of the explosive summit eruption on 14 April. Due to the degassing, crystal fractionation modified the composition of the injected mafic magma producing evolved Fe-and Ti-rich basalt, similar in composition to that of the nearby Katla volcano. This evolved basalt was intruded into the liquid part of the silicic intrusion only a few hours before the onset of the explosive summit eruption. The short time between intrusion and eruption led to the production of very heterogeneous (of basaltic, intermediate and silicic composition) and fine-grained tephra during the first days of explosive eruption. The fine grained tephra resulted from combined effects of magma fragmentation due to degassing of stiff magma rich in

  19. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  20. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  1. Optical fibre gas detections systems

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2016-05-01

    This tutorial review covers the principles of and prospects for fibre optic sensor technology in gas detection. Many of the potential benefits common to fibre sensor technology also apply in the context of gas sensing - notably long distance - many km - access to multiple remote measurement points; invariably intrinsic safety; access to numerous important gas species and often uniquely high levels of selectivity and/or sensitivity. Furthermore, the range of fibre sensor network architectures - single point, multiple point and distributed - enable unprecedented flexibility in system implementation. Additionally, competitive technologies and regulatory issues contribute to final application potential.

  2. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  3. Infrared trace element detection system

    DOEpatents

    Bien, Fritz; Bernstein, Lawrence S.; Matthew, Michael W.

    1988-01-01

    An infrared trace element detection system including an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined.

  4. Infrared trace element detection system

    DOEpatents

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  5. Explosives detection system and method

    DOEpatents

    Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.

    2007-12-11

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  6. Evaluating sensitivity of complex electrical methods for monitoring CO2 intrusion into a shallow groundwater system and associated geochemical transformations

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Wu, Y.; Hubbard, S. S.; Birkholzer, J. T.; Daley, T. M.; Pugh, J. D.; Peterson, J.; Trautz, R. C.

    2011-12-01

    A risk factor of CO2 storage in deep geological formations includes its potential to leak into shallow formations and impact groundwater geochemistry and quality. In particular, CO2 decreases groundwater pH, which can potentially mobilize naturally occurring trace metals and ions commonly absorbed to or contained in sediments. Here, geophysical studies (primarily complex electrical method) are being carried out at both laboratory and field scales to evaluate the sensitivity of geophysical methods for monitoring dissolved CO2 distribution and geochemical transformations that may impact water quality. Our research is performed in association with a field test that is exploring the effects of dissolved CO2 intrusion on groundwater geochemistry. Laboratory experiments using site sediments (silica sand and some fraction of clay minerals) and groundwater were initially conducted under field relevant CO2 partial pressures (pCO2). A significant pH drop was observed with inline sensors with concurrent changes in fluid conductivity caused by CO2 dissolution. Electrical resistivity and electrical phase responses correlated well with the CO2 dissolution process at various pCO2. Specifically, resistivity decreased initially at low pCO2 condition resulting from CO2 dissolution followed by a slight rebound because of the transition of bicarbonate into non-dissociated carbonic acid at lower pH slightly reducing the total concentration of dissociated species. Continuous electrical phase decreases were also observed, which are interpreted to be driven by the decrease of surface charge density (due to the decrease of pH, which approaches the PZC of the sediments). In general, laboratory experiments revealed the sensitivity of electrical signals to CO2 intrusion into groundwater formations and can be used to guide field data interpretation. Cross well complex electrical data are currently being collected periodically throughout a field experiment involving the controlled release of

  7. Assessment of Mitigation Systems on Vapor Intrusion: Temporal Trends, Attenuation Factors, and Contaminant Migration Routes under Mitigated and Non-mitigated Conditions

    EPA Science Inventory

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor ...

  8. A Portable Infrasonic Detection System

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Lawrenson, Christopher C.; Masterman, Michael

    2008-01-01

    During last couple of years, NASA Langley has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and sufficiently thick wall to insure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The design and results of the compact system, based upon laboratory and field experiments, will be presented.

  9. Planetary system detection by POINTS

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The final report and semiannual reports 1, 2, and 3 in response to the study of 'Planetary System Detection by POINTS' is presented. The grant covered the period from 15 Jun. 1988 through 31 Dec. 1989. The work during that period comprised the further development and refinement of the POINTS concept. The status of the POINTS development at the end of the Grant period was described by Reasenberg in a paper given at the JPL Workshop on Space Interferometry, 12-13 Mar. 1990, and distributed as CfA Preprint 3138. That paper, 'POINTS: a Small Astrometric Interferometer,' follows as Appendix-A. Our proposal P2276-7-09, dated July 1990, included a more detailed description of the state of the development of POINTS at the end of the tenure of Grant NAGW-1355. That proposal, which resulted in Grant NAGW-2497, is included by reference.

  10. Photoelectric detection system. [manufacturing automation

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Schansman, R. R. (Inventor)

    1982-01-01

    A photoelectric beam system for the detection of the arrival of an object at a discrete station wherein artificial light, natural light, or no light may be present is described. A signal generator turns on and off a signal light at a selected frequency. When the object in question arrives on station, ambient light is blocked by the object, and the light from the signal light is reflected onto a photoelectric sensor which has a delayed electrical output but is of the frequency of the signal light. Outputs from both the signal source and the photoelectric sensor are fed to inputs of an exclusively OR detector which provides as an output the difference between them. The difference signal is a small width pulse occurring at the frequency of the signal source. By filter means, this signal is distinguished from those responsive to sunlight, darkness, or 120 Hz artificial light. In this fashion, the presence of an object is positively established.

  11. The impact of river water intrusion on trace metal cycling in karst aquifers: an example from the Floridan aquifer system at Madison Blue Spring, Florida

    NASA Astrophysics Data System (ADS)

    Brown, A. L.; Martin, J. B.; Screaton, E.; Spellman, P.; Gulley, J.

    2011-12-01

    Springs located adjacent to rivers can serve as recharge points for aquifers when allogenic runoff increases river stage above the hydraulic head of the spring, forcing river water into the spring vent. Depending on relative compositions of the recharged water and groundwater, the recharged river water could be a source of dissolved trace metals to the aquifer, could mobilize solid phases such as metal oxide coatings, or both. Whether metals are mobilized or precipitated should depend on changes in redox and pH conditions as dissolved oxygen and organic carbon react following intrusion of the river water. To assess how river intrusion events affect metal cycling in springs, we monitored a small recharge event in April 2011 into Madison Blue Spring, which discharges to the Withlacoochee River in north-central Florida. Madison Blue Spring is the entrance to a phreatic cave system that includes over 7.8 km of surveyed conduits. During the event, river stage increased over base flow conditions for approximately 25 days by a maximum of 8%. Intrusion of the river water was monitored with conductivity, temperature and depth sensors that were installed within the cave system and adjacent wells. Decreased specific conductivity within the cave system occurred for approximately 20 days, reflecting the length of time that river water was present in the cave system. During this time, grab samples were collected seven times over a period of 34 days for measurements of major ion and trace metal concentrations at the spring vent and at Martz sink, a karst window connected to the conduit system approximately 150 meters from the spring vent. Relative fractions of surface water and groundwater were estimated based on Cl concentrations of the samples, assuming conservative two end-member mixing during the event. This mixing model indicates that maximum river water contribution to the groundwater system was approximately 20%. River water had concentrations of iron, manganese, and other

  12. Intrusive Images in Psychological Disorders

    PubMed Central

    Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil

    2010-01-01

    Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in the medial and lateral parietal cortices, the lateral temporal cortex, and the medial temporal lobe. Evidence from cognitive psychology and neuroscience implies distinct neural bases to abstract, flexible, contextualized representations (C-reps) and to inflexible, sensory-bound representations (S-reps). We revise our previous dual representation theory of posttraumatic stress disorder to place it within a neural systems model of healthy memory and imagery. The revised model is used to explain how the different types of distressing visual intrusions associated with clinical disorders arise, in terms of the need for correct interaction between the neural systems supporting S-reps and C-reps via visuospatial working memory. Finally, we discuss the treatment implications of the new model and relate it to existing forms of psychological therapy. PMID:20063969

  13. Identification and Control of Pollution from Salt Water Intrusion.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document contains informational guidelines for identifying and evaluating the nature and extent of pollution from salt water intrusion. The intent of these guidelines is to provide a basic framework for assessing salt water intrusion problems and their relationship to the total hydrologic system, and to provide assistance in developing…

  14. Generalized Detectability for Discrete Event Systems

    PubMed Central

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  15. Convective, intrusive geothermal plays: what about tectonics?

    NASA Astrophysics Data System (ADS)

    Santilano, A.; Manzella, A.; Gianelli, G.; Donato, A.; Gola, G.; Nardini, I.; Trumpy, E.; Botteghi, S.

    2015-09-01

    We revised the concept of convective, intrusive geothermal plays, considering that the tectonic setting is not, in our opinion, a discriminant parameter suitable for a classification. We analysed and compared four case studies: (i) Larderello (Italy), (ii) Mt Amiata (Italy), (iii) The Geysers (USA) and (iv) Kizildere (Turkey). The tectonic settings of these geothermal systems are different and a matter of debate, so it is hard to use this parameter, and the results of classification are ambiguous. We suggest a classification based on the age and nature of the heat source and the related hydrothermal circulation. Finally we propose to distinguish the convective geothermal plays as volcanic, young intrusive and amagmatic.

  16. Vulnerbility of production wells in the Potomac-Raritan-Magothy aquifer system to saltwater intrusion from the Delaware River in Camden, Gloucester, and Salem Counties, New Jersey

    USGS Publications Warehouse

    Navoy, Anthony S.; Voronin, Lois M.; Modica, Edward

    2005-01-01

    The Potomac-Raritan-Magothy aquifer system is hydraulically connected to the Delaware River in parts of Camden and Gloucester Counties, New Jersey, and has more limited contact with the river in Salem County, New Jersey. The aquifer system is used widely for water supply, and 122 production wells that are permitted by the New Jersey Department of Environmental Protection to pump more than 100,000 gallons per year in the three counties are within 2 miles of the river. During drought, saltwater may encroach upstream from the Atlantic Ocean and Delaware Bay to areas where the aquifer system is recharged by induced infiltration through the Delaware River streambed. During the drought of the mid-1960's, water with a chloride concentration in excess of potability standards (250 mg/L (milligrams per liter)) encroached into the reach of the river that recharges the aquifer system. The vulnerability of the major production wells in the area to similar saltwater encroachment in the future is a concern to water managers. This vulnerability was evaluated by investigating two scenarios: (1) a one-time recurrence of the conditions approximating those that occurred in the1960's, and (2) the recurrence of those same conditions on an annual basis. Results of ground-water-flow simulation in conjunction with particle tracking and one-dimensional transport analysis indicate that the wells that are most vulnerable to saltwater intrusion are those in the Morris and Delair well fields in Camden County. A single 30-day event during which the concentration of dissolved chloride or sodium exceeds 2,098 mg/L or 407 mg/L, respectively, in the Delaware River would threaten the potability of water from these wells, given New Jersey drinking-water standards of 250 mg/L for dissolved chloride and 50 mg/L for dissolved sodium. This chloride concentration is about six times that observed in the river during the 1960's drought. An annually occurring 1-month event during which the concentrations of

  17. Non-intrusive speed sensor

    NASA Technical Reports Server (NTRS)

    Wyett, L.

    1986-01-01

    In Phase I of the Non-Intrusive Speed Sensor program, a computerized literature search was performed to identify candidate technologies for remote, non-intrusive speed sensing applications in Space Shuttle Main Engine (SSME) turbopumps. The three most promising technologies were subjected to experimental evaluation to quantify their performance characteristics under the harsh environmental requirements within the turbopumps. Although the infrared and microwave approaches demonstrated excellent cavitation immunity in laboratory tests, the variable-source magnetic speed sensor emerged as the most viable approach. Preliminary design of this speed sensor encountered no technical obstacles and resulted in viable and feasible speed nut, sensor housing, and sensor coil designs. Phase II of this program developed the variable-source magnetic speed sensor through the detailed design task and guided the design into breadboard fabrication. The speed sensor and its integral speed nut were evaluated at both unit and system level testing. The final room-temperature and cryogenic spin testing of the hardware demonstrated that the sensor was capable of generating sufficient output signal to enable remote speed sensing from 1500 to 40000 rpm over a speed nut/sensor separation of 3.5 inches.

  18. Damage-detection system for LNG carriers

    NASA Technical Reports Server (NTRS)

    Mastandrea, J. R.; Scherb, M. V.

    1978-01-01

    System utilizes array of acoustical transducers to detect cracks and leaks in liquefied natural gas (LNG) containers onboard ships. In addition to detecting leaks, device indicates location and leak rate.

  19. Saltwater intrusion in the surficial aquifer system of the Big Cypress Basin, southwest Florida, and a proposed plan for improved salinity monitoring

    USGS Publications Warehouse

    Prinos, Scott T.

    2013-01-01

    The installation of drainage canals, poorly cased wells, and water-supply withdrawals have led to saltwater intrusion in the primary water-use aquifers in southwest Florida. Increasing population and water use have exacerbated this problem. Installation of water-control structures, well-plugging projects, and regulation of water use have slowed saltwater intrusion, but the chloride concentration of samples from some of the monitoring wells in this area indicates that saltwater intrusion continues to occur. In addition, rising sea level could increase the rate and extent of saltwater intrusion. The existing saltwater intrusion monitoring network was examined and found to lack the necessary organization, spatial distribution, and design to properly evaluate saltwater intrusion. The most recent hydrogeologic framework of southwest Florida indicates that some wells may be open to multiple aquifers or have an incorrect aquifer designation. Some of the sampling methods being used could result in poor-quality data. Some older wells are badly corroded, obstructed, or damaged and may not yield useable samples. Saltwater in some of the canals is in close proximity to coastal well fields. In some instances, saltwater occasionally occurs upstream from coastal salinity control structures. These factors lead to an incomplete understanding of the extent and threat of saltwater intrusion in southwest Florida. A proposed plan to improve the saltwater intrusion monitoring network in the South Florida Water Management District’s Big Cypress Basin describes improvements in (1) network management, (2) quality assurance, (3) documentation, (4) training, and (5) data accessibility. The plan describes improvements to hydrostratigraphic and geospatial network coverage that can be accomplished using additional monitoring, surface geophysical surveys, and borehole geophysical logging. Sampling methods and improvements to monitoring well design are described in detail. Geochemical analyses

  20. IRA: Intrusion - Reaction - Appats

    DTIC Science & Technology

    2004-11-01

    méthodes d ’attaques Détection d ’intrusion Cas particulier des Canaux Cachés Notion d ’appât (Honey Pot & Honey Net) Protection entre environnements de...aspects suivants : La notion de « Pot de miel » peut s ’étendre d ’un simple leurre (mot de passe constructeur conservé) à des environnement dédié...d’Attaques Logiques .........................................................................7-10 2.3 Environnement Technique étudié

  1. Magma rheology variation in sheet intrusions (Invited)

    NASA Astrophysics Data System (ADS)

    Magee, C.; O'Driscoll, B.; Petronis, M. S.; Stevenson, C.

    2013-12-01

    The rheology of magma fundamentally controls igneous intrusion style as well as the explosivity and type of volcanic eruptions. Importantly, the dynamic interplay between the viscosity of magma and other processes active during intrusion (e.g., crystallisation, magma mixing, assimilation of crystal mushes and/or xenolith entrainment) will likely bear an influence on the temporal variation of magma rheology. Constraining the timing of rheological changes during magma transit therefore plays an important role in understanding the nuances of volcanic systems. However, the rheological evolution of actively emplacing igneous intrusions cannot be directly studied. While significant advances have been made via experimental modelling and analysis of lava flows, how these findings relate to intruding magma remains unclear. This has led to an increasing number of studies that analyse various characteristics of fully crystallised intrusions in an attempt to ';back-out' the rheological conditions governing emplacement. For example, it has long been known that crystallinity affects the rheology and, consequently, the velocity of intruding magma. This means that quantitative textural analysis of crystal populations (e.g., crystal size distribution; CSD) used to elucidate crystallinity at different stages of emplacement can provide insights into magma rheology. Similarly, methods that measure flow-related fabrics (e.g., anisotropy of magnetic susceptibility; AMS) can be used to discern velocity profiles, a potential proxy for the magma rheology. To illustrate these ideas, we present an integrated AMS and petrological study of several sheet intrusions located within the Ardnamurchan Central Complex, NW Scotland. We focus on the entrainment and transport dynamics of gabbroic inclusions that were infiltrated by the host magma upon entrainment. Importantly, groundmass magnetic fabrics within and external to these inclusions are coaxial. This implies that a deviatoric stress was

  2. Non-intrusive appliance monitor apparatus

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.; Schweppe, Fred C.

    1989-08-15

    A non-intrusive monitor of energy consumption of residential appliances is described in which sensors, coupled to the power circuits entering a residence, supply analog voltage and current signals which are converted to digital format and processed to detect changes in certain residential load parameters, i.e., admittance. Cluster analysis techniques are employed to group change measurements into certain categories, and logic is applied to identify individual appliances and the energy consumed by each.

  3. Non-intrusive appliance monitor apparatus

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.; Schweppe, F.C.

    1989-08-15

    A non-intrusive monitor of energy consumption of residential appliances is described in which sensors, coupled to the power circuits entering a residence, supply analog voltage and current signals which are converted to digital format and processed to detect changes in certain residential load parameters, i.e., admittance. Cluster analysis techniques are employed to group change measurements into certain categories, and logic is applied to identify individual appliances and the energy consumed by each. 9 figs.

  4. Discriminating ultrasonic proximity detection system

    DOEpatents

    Annala, Wayne C.

    1989-01-01

    This invention uses an ultrasonic transmitter and receiver and a microprocessor to detect the presence of an object. In the reset mode the invention uses a plurality of echoes from each ultrasonic burst to create a reference table of the echo-burst-signature of the empty monitored environment. The invention then processes the reference table so that it only uses the most reliable data. In the detection mode the invention compares the echo-burst-signature of the present environment with the reference table, detecting an object if there is a consistent difference between the echo-burst-signature of the empty monitored environment recorded in the reference table and the echo-burst-signature of the present environment.

  5. Expandable coating cocoon leak detection system

    NASA Technical Reports Server (NTRS)

    Hauser, R. L.; Kochansky, M. C.

    1972-01-01

    Development of system and materials for detecting leaks in cocoon protective coatings are discussed. Method of applying materials for leak determination is presented. Pressurization of system following application of materials will cause formation of bubble if leak exists.

  6. Forward Obstacle Detection System by Stereo Vision

    NASA Astrophysics Data System (ADS)

    Iwata, Hiroaki; Saneyoshi, Keiji

    Forward obstacle detection is needed to prevent car accidents. We have developed forward obstacle detection system which has good detectability and the accuracy of distance only by using stereo vision. The system runs in real time by using a stereo processing system based on a Field-Programmable Gate Array (FPGA). Road surfaces are detected and the space to drive can be limited. A smoothing filter is also used. Owing to these, the accuracy of distance is improved. In the experiments, this system could detect forward obstacles 100 m away. Its error of distance up to 80 m was less than 1.5 m. It could immediately detect cutting-in objects.

  7. Toward detecting deception in intelligent systems

    NASA Astrophysics Data System (ADS)

    Santos, Eugene, Jr.; Johnson, Gregory, Jr.

    2004-08-01

    Contemporary decision makers often must choose a course of action using knowledge from several sources. Knowledge may be provided from many diverse sources including electronic sources such as knowledge-based diagnostic or decision support systems or through data mining techniques. As the decision maker becomes more dependent on these electronic information sources, detecting deceptive information from these sources becomes vital to making a correct, or at least more informed, decision. This applies to unintentional disinformation as well as intentional misinformation. Our ongoing research focuses on employing models of deception and deception detection from the fields of psychology and cognitive science to these systems as well as implementing deception detection algorithms for probabilistic intelligent systems. The deception detection algorithms are used to detect, classify and correct attempts at deception. Algorithms for detecting unexpected information rely upon a prediction algorithm from the collaborative filtering domain to predict agent responses in a multi-agent system.

  8. Solvents and vapor intrusion pathways.

    PubMed

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  9. Hydrogen Fire Detection System Features Sharp Discrimination

    NASA Technical Reports Server (NTRS)

    Bright, C. S.

    1966-01-01

    Hydrogen fire detection system discovers fires by detecting the flickering ultraviolet radiation emitted by the OH molecule, a short-lived intermediate combustion product found in hydrogen-air flames. In a space application, the system discriminates against false signals from sunlight and rocket engine exhaust plume radiation.

  10. Development of an in-line filter to prevent intrusion of NO2 toxic vapors into A/C systems

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Mcnulty, R. J.; Springer, Mike; Lueck, Dale E.

    1995-01-01

    The hypergolic propellant nitrogen tetroxide (N2O4 or NTO) is routinely used in spacecraft launched at Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). In the case of a catastrophic failure of the spacecraft, there would be a release of the unspent propellant in the form of a toxic cloud. Inhalation of this material at downwind concentrations which may be as high as 20 parts per million (ppm) for 30 minutes in duration, may produce irritation to the eyes, nose and respiratory tract. Studies at both KSC and CCAS have shown that the indoor concentrations of N2O4 during a toxic release may range from 1 to 15 ppm and depend on the air change rate (ACR) for a particular building and whether or not the air conditioning (A/C) system has been shut down or left in an operating mode. This project was initiated in order to assess how current A/C systems could be easily modified to prevent personnel from being exposed to toxic vapors. A sample system has been constructed to test the ability of several types of filter material to capture the N2O4 vapors prior to their infiltration into the A/C system. Test results will be presented which compare the efficiencies of standard A/C filters, water wash systems, and chemically impregnated filter material in taking toxic vapors out of the incoming air stream.

  11. Deep Water Munitions Detection System

    DTIC Science & Technology

    2010-03-01

    UXO unexploded ordnance GPS global positioning system MTA marine towed array TG towed gradiometer Mag magnetic nT nanotesla rms root mean square...other sites were used which had been surveyed with Geometrics Towed Gradiometer (TG) systems. In both of the gradiometer based surveys the data from...the individual magnetometers that made up the gradiometer were available. Magnetic anomalies from each site were reanalyzed to produce uniform target

  12. Non-intrusive refrigerant charge indicator

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  13. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  14. Influence of seawater intrusion on microbial communities in groundwater.

    PubMed

    Unno, Tatsuya; Kim, Jungman; Kim, Yumi; Nguyen, Son G; Guevarra, Robin B; Kim, Gee Pyo; Lee, Ji-Hoon; Sadowsky, Michael J

    2015-11-01

    Groundwater is the sole source of potable water on Jeju Island in the Republic of (South) Korea. Groundwater is also used for irrigation and industrial purposes, and it is severely impacted by seawater intrusion in coastal areas. Consequently, monitoring the intrusion of seawater into groundwater on Jeju is very important for health and environmental reasons. A number of studies have used hydrological models to predict the deterioration of groundwater quality caused by seawater intrusion. However, there is conflicting evidence of intrusion due to complicated environmental influences on groundwater quality. Here we investigated the use of next generation sequencing (NGS)-based microbial community analysis as a way to monitor groundwater quality and detect seawater intrusion. Pristine groundwater, groundwater from three coastal areas, and seawater were compared. Analysis of the distribution of bacterial species clearly indicated that the high and low salinity groundwater differed significantly with respect to microbial composition. While members of the family Parvularculaceae were only identified in high salinity water samples, a greater percentage of the phylum Actinobacteria was predominantly observed in pristine groundwater. In addition, we identified 48 shared operational taxonomic units (OTUs) with seawater, among which the high salinity groundwater sample shared a greater number of bacterial species with seawater (6.7%). In contrast, other groundwater samples shared less than 0.5%. Our results suggest that NGS-based microbial community analysis of groundwater may be a useful tool for monitoring groundwater quality and detect seawater intrusion. This technology may also provide additional insights in understanding hydrological dynamics.

  15. A national drilling program to study the roots of active hydrothermal systems related to young magmatic intrusions

    SciTech Connect

    Not Available

    1984-01-01

    The importance of studies of active hydrothermal-magma systems as part of a national continental scientific drilling program has been emphasized in numerous workshops and symposia. The present report, prepared by the Panel on Thermal Regimes of the Continental Scientific Drilling Committee, both reinforces and expands on earlier recommendations. The US Geodynamics Committee 1979 report of the Los Almos workshop, Continental Scientific Drilling Program, placed major emphasis on maximizing the scientific value of current and planned drilling by industry and government, supplementing these efforts with holes drilled solely for scientific purposes. Although the present report notes the importance of opportunities for scientific investigations that may be added on to current, mission-oriented drilling activities, the Panel on Thermal Regimes recognizes that such opportunities are limited and thus focused its study on holes dedicated to broad scientific objectives. 16 refs., 2 figs., 4 tabs.

  16. Mine Safety Detection System (MSDS)

    DTIC Science & Technology

    2012-09-01

    information would support its use in the fulfillment of the Assess/identify functions. The problem or challenge to IR is that the ocean acts ...away from dedicated or exotic resources. Lastly, the political notions with regard to the perceived endangerment or exploitation of animals are...cabin of the helicopter (in the case of the AN/AQS-20A), and to act as primary data evaluators for the 56 information gathered from both systems. The

  17. Data Fusion to Develop a Driver Drowsiness Detection System with Robustness to Signal Loss

    PubMed Central

    Samiee, Sajjad; Azadi, Shahram; Kazemi, Reza; Nahvi, Ali; Eichberger, Arno

    2014-01-01

    This study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used. In order to avoid driving distraction, any use of an intrusive method is prevented. A driving simulator is used to gather real data and then artificial neural networks are used in the structure of the designed system. Several tests were conducted on twelve volunteers while their sleeping situations during one day prior to the tests, were fully under control. Although the impact of the proposed system on the improvement of the detection accuracy is not remarkable, the results indicate the main advantages of the system are the reliability of the detections and robustness to the loss of the input signals. The high reliability of the drowsiness detection systems plays an important role to reduce drowsiness related road accidents and their associated costs. PMID:25256113

  18. Data fusion to develop a driver drowsiness detection system with robustness to signal loss.

    PubMed

    Samiee, Sajjad; Azadi, Shahram; Kazemi, Reza; Nahvi, Ali; Eichberger, Arno

    2014-09-25

    This study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used. In order to avoid driving distraction, any use of an intrusive method is prevented. A driving simulator is used to gather real data and then artificial neural networks are used in the structure of the designed system. Several tests were conducted on twelve volunteers while their sleeping situations during one day prior to the tests, were fully under control. Although the impact of the proposed system on the improvement of the detection accuracy is not remarkable, the results indicate the main advantages of the system are the reliability of the detections and robustness to the loss of the input signals. The high reliability of the drowsiness detection systems plays an important role to reduce drowsiness related road accidents and their associated costs.

  19. On Deadlock Detection in Distributed Computing Systems.

    DTIC Science & Technology

    1983-04-01

    With the advent of distributed computing systems, the problem of deadlock, which has been essentially solved for centralized computing systems, has...reappeared. Existing centralized deadlock detection techniques are either too expensive or they do not work correctly in distributed computing systems

  20. Fail-safe fire detection system

    NASA Technical Reports Server (NTRS)

    Bloam, E. T.

    1974-01-01

    Fire detection control system continually monitors its own integrity, automatically signals any malfunction, and separately signals fire in any zone being monitored. Should be of interest in fields of chemical and petroleum processing, power generation, equipment testing, and building protection.

  1. RADIATION DETECTING AND TELEMETERING SYSTEM

    DOEpatents

    Richards, H.K.

    1959-12-15

    A system is presented for measuring ionizing radiation at several remote stations and transmitting the measured information by radio to a central station. At each remote station a signal proportioned to the counting rate is applied across an electrical condenser made of ferroelectric material. The voltage across the condenser will vary as a function of the incident radiation and the capacitance of the condenser will vary accordingly. This change in capacitance is used to change the frequency of a crystalcontrolled oscillator. The output of the oscillator is coupled to an antenna for transmitting a signal proportional to the incident radiation.

  2. Heartbeat detection system using piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Hamonangan, Yosua; Purnamaningsih, Wigajatri

    2017-02-01

    This paper presents a simple piezoelectric based heartbeat detection system. The signal produced by the piezoelectric will undergo signal conditioning and then converted into digital data by Arduino Nano. Using serial communication, the data will be sent to a computer for display and further analysis. The detection of heartbeat is carried out on three locations; wrist, chest, and diaphragm. From the measurement results, it is shown that the system work best when the piezoelectric is placed on wrist.

  3. Seismic Interpretation of Igneous Intrusions and Their Implications for an Unconventional Petroleum System in Southeastern Parnaiba Basin, Northeastern Brazil.

    NASA Astrophysics Data System (ADS)

    Porto, A. L.; Pereira, E.

    2014-12-01

    After almost two decades of little exploratory effort in the Parnaiba Basin, recent gas discoveries have revived the economic interest in this region. A new exploratory play was successfully tested, confirming the efficiency of the igneous sills triggering the thermal effect on source rocks maturation, and also playing an important role as unconventional trap and seal. Parnaiba Basin was affected by two magmatic events: the Mosquito Formation (Average Age: 178 Ma) and the Sardinha Formation (Average Age: 124 Ma), both characterized by basic magmatic rocks. Ten 2D seismic lines, located in the southeastern Parnaiba Basin, were systematically interpreted in order to identify the main diabase sills geometry, some possible emplacement controls and further implications for an unconventional petroleum system. The identified sills were classified in three types: A, B, and C, according to their dominant geometries and the stratigraphic position of their host rocks. From base to top, Type A sills intrude the Pre-Silurian Sequence, that fills in graben structures of the basement. They have short lateral continuity and saucer-shaped geometry. The main graben faults seem to control the steeper sills, which seem to feed upper sills. Type B sills intrude mainly the Silurian Sequence and have a very long lateral continuity when intruding the shales of Tiangua Formation, in which they are mainly horizontal tabular. Type C sills intrude the top of the Devonian Sequence and have two main geometries: saucer-shaped and horizontal tabular. By correlation to the surface geology of the area, Type C sills are interpreted as Sardinha Formation (Lower Cretaceous). Considering an unconventional hydrocarbon play in the area, some potential trap features associated with sill geometry, were identified, using analogous plays successfully tested in recent discoveries. These traps are associated to a specific sill geometry locally known as "inverted saucer-shaped sill". This shape consists into a

  4. Multispectral imaging system for contaminant detection

    NASA Technical Reports Server (NTRS)

    Poole, Gavin H. (Inventor)

    2003-01-01

    An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.

  5. DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA

    SciTech Connect

    SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

    2010-12-02

    Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

  6. Detecting ground moving objects using panoramic system

    NASA Astrophysics Data System (ADS)

    Xu, Fuyuan; Gu, Guohua; Wang, Jing

    2015-09-01

    The moving objects detection is an essential issue in many computer vision and video processing tasks. In this paper, a detecting moving objects method using a panoramic system is proposed. It can detect ground moving objects when the camera is rotated, so it can be called the moving objects detection in rotation (MODIR). The detection area and flexible of the panoramic system are be enhanced by MODIR. The background and moving objects are moving in image when the camera is rotated. Compare with the traditional methods, the aim of MODIR is to segment the isolated entities out according to the motions in the video whether imaging platform is moving or not. Firstly, the corresponding relations between the images captured from two different views is deduced from the multi-view geometric. The moving objects and stationary background in the images are distinguished by this corresponding relations. Secondly, the moving object detection framework base on multi-frame is established. This detection framework can reduce the impacts of the image matching error and cumulative error on the moving objects detection. In the experiment, an evaluation metrics method is used to compare the performance of MODIR with the traditional methods. And a lot of videos captured by the panoramic system are processed by MODIR to demonstrate its good performance in practice.

  7. Airborne Turbulence Detection System Certification Tool Set

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.

  8. Flat Surface Damage Detection System (FSDDS)

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  9. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  10. Autonomous microfluidic system for phosphate detection.

    PubMed

    McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot

    2007-02-28

    Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.

  11. Deadlock Detection in Distributed Computing Systems.

    DTIC Science & Technology

    1982-06-01

    With the advent of distributed computing systems, the problem of deadlock, which has been essentially solved for centralized computing systems, has...reappeared. Existing centralized deadlock detection techniques are either too expensive or they do not work correctly in distributed computing systems...incorrect. Additionally, although fault-tolerance is usually listed as an advantage of distributed computing systems, little has been done to analyze

  12. Gas intrusion into SPR caverns

    SciTech Connect

    Hinkebein, T.E.; Bauer, S.J.; Ehgartner, B.L.; Linn, J.K.; Neal, J.T.; Todd, J.L.; Kuhlman, P.S.; Gniady, C.T.; Giles, H.N.

    1995-12-01

    The conditions and occurrence of gas in crude oil stored in Strategic Petroleum Reserve, SPR, caverns is characterized in this report. Many caverns in the SPR show that gas has intruded into the oil from the surrounding salt dome. Historical evidence and the analyses presented here suggest that gas will continue to intrude into many SPR caverns in the future. In considering why only some caverns contain gas, it is concluded that the naturally occurring spatial variability in salt permeability can explain the range of gas content measured in SPR caverns. Further, it is not possible to make a one-to-one correlation between specific geologic phenomena and the occurrence of gas in salt caverns. However, gas is concluded to be petrogenic in origin. Consequently, attempts have been made to associate the occurrence of gas with salt inhomogeneities including anomalies and other structural features. Two scenarios for actual gas intrusion into caverns were investigated for consistency with existing information. These scenarios are gas release during leaching and gas permeation through salt. Of these mechanisms, the greater consistency comes from the belief that gas permeates to caverns through the salt. A review of historical operating data for five Bryan Mound caverns loosely supports the hypothesis that higher operating pressures reduce gas intrusion into caverns. This conclusion supports a permeability intrusion mechanism. Further, it provides justification for operating the caverns near maximum operating pressure to minimize gas intrusion. Historical gas intrusion rates and estimates of future gas intrusion are given for all caverns.

  13. An enhanced stream mining approach for network anomaly detection

    NASA Astrophysics Data System (ADS)

    Bellaachia, Abdelghani; Bhatt, Rajat

    2005-03-01

    Network anomaly detection is one of the hot topics in the market today. Currently, researchers are trying to find a way in which machines could automatically learn both normal and anomalous behavior and thus detect anomalies if and when they occur. Most important applications which could spring out of these systems is intrusion detection and spam mail detection. In this paper, the primary focus on the problem and solution of "real time" network intrusion detection although the underlying theory discussed may be used for other applications of anomaly detection (like spam detection or spy-ware detection) too. Since a machine needs a learning process on its own, data mining has been chosen as a preferred technique. The object of this paper is to present a real time clustering system; we call Enhanced Stream Mining (ESM) which could analyze packet information (headers, and data) to determine intrusions.

  14. Biochemical and Clinical Assessments of Segmental Maxillary Posterior Tooth Intrusion

    PubMed Central

    Tasanapanont, Jintana; Wattanachai, Tanapan; Apisariyakul, Janya; Pothacharoen, Peraphan; Kongtawelert, Prachya; Midtbø, Marit

    2017-01-01

    Objective. To compare chondroitin sulphate (CS) levels around maxillary second premolars, first molars, and second molars between the unloaded and the loaded periods and to measure the rates of intrusion of maxillary posterior teeth during segmental posterior tooth intrusion. Materials and Methods. In this prospective clinical study, 105 teeth (from 15 patients exhibiting anterior open bite and requiring maxillary posterior tooth intrusion) were studied. Competitive ELISA was used to detect CS levels. Dental casts (during the unloaded and loaded periods) were scanned, and posterior tooth intrusion distances were measured. Results. During the unloaded period, the median CS levels around maxillary second premolars, first molars, second molars (experimental teeth), and mandibular first molars (negative control) were 0.006, 0.055, 0.056, and 0.012 and during the loaded period were 2.592, 5.738, 4.727, and 0.163 ng/μg of total protein, respectively. The median CS levels around experimental teeth were significantly elevated during the loaded period. The mean rates of maxillary second premolar and first and second molar intrusion were 0.72, 0.58, and 0.40 mm/12 weeks, respectively. Conclusions. Biochemical and clinical assessments suggested that the segmental posterior tooth intrusion treatment modality with 50 g of vertical force per side was sufficient. Trial Registration. The study is registered as TCTR20170206006. PMID:28321256

  15. Recent advances in vapor intrusion site investigations.

    PubMed

    McHugh, Thomas; Loll, Per; Eklund, Bart

    2017-02-22

    Our understanding of vapor intrusion has evolved rapidly since the discovery of the first high profile vapor intrusion sites in the late 1990s and early 2000s. Research efforts and field investigations have improved our understanding of vapor intrusion processes including the role of preferential pathways and natural barriers to vapor intrusion. This review paper addresses recent developments in the regulatory framework and conceptual model for vapor intrusion. In addition, a number of innovative investigation methods are discussed.

  16. Force protection demining system (FPDS) detection subsystem

    NASA Astrophysics Data System (ADS)

    Zachery, Karen N.; Schultz, Gregory M.; Collins, Leslie M.

    2005-06-01

    This study describes the U.S. Army Force Protection Demining System (FPDS); a remotely-operated, multisensor platform developed for reliable detection and neutralization of both anti-tank and anti-personnel landmines. The ongoing development of the prototype multisensor detection subsystem is presented, which integrates an advanced electromagnetic pulsed-induction array and ground penetrating synthetic aperture radar array on a single standoff platform. The FPDS detection subsystem is mounted on a robotic rubber-tracked vehicle and incorporates an accurate and precise navigation/positioning module making it well suited for operation in varied and irregular terrains. Detection sensors are optimally configured to minimize interference without loss in sensitivity or performance. Mine lane test data acquired from the prototype sensors are processed to extract signal- and image-based features for automatic target recognition. Preliminary results using optimal feature and classifier selection indicate the potential of the system to achieve high probabilities of detection while minimizing false alarms. The FPDS detection software system also exploits modern multi-sensor data fusion algorithms to provide real-time detection and discrimination information to the user.

  17. Development of an Autonomous Pathogen Detection System

    SciTech Connect

    Langlosi, S.; Brown, S.; Colston, B.; Jones, L.; Masquelier, D.; Meyer, P.; McBride, M.; Nasarabad, S.; Ramponi, A.J.; Venkatseswarm, K.; Milanovich, F.

    2000-10-12

    An Autonomous Pathogen Detection System (APDS) is being designed and evaluated for use in domestic counter-terrorism. The goal is a fully automated system that utilizes both flow cytometry and polymerase chain reaction (PCR) to continuously monitor the air for BW pathogens in major buildings or high profile events. A version 1 APDS system consisting of an aerosol collector, a sample preparation subsystem, and a flow cytometer for detecting the antibody-labeled target organisms has been completed and evaluated. Improved modules are under development for a version 2 APDS including a Lawrence Livermore National Laboratory-designed aerosol preconcentrator, a multiplex flow cytometer, and a flow-through PCR detector.

  18. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  19. Coal-shale interface detection system

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)

    1979-01-01

    A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  20. Laser Obstacle Detection System Flight Testing

    DTIC Science & Technology

    2003-09-01

    without hazardous effect or adverse biological changes in the eye for a repetitively pulsed laser is the more restrictive of several MPE calculations...crossed above them. The LODS system detection ranges appeared not to be effected by sunlight from behind the aircraft. - Raw Data and Safety Line ...obstacles - Raw data and safety line detection ranges were similar to those at wire set 1 (900-1000 meters) and did not appear to be effected by the

  1. Statistical Fault Detection & Diagnosis Expert System

    SciTech Connect

    Wegerich, Stephan

    1996-12-18

    STATMON is an expert system that performs real-time fault detection and diagnosis of redundant sensors in any industrial process requiring high reliability. After a training period performed during normal operation, the expert system monitors the statistical properties of the incoming signals using a pattern recognition test. If the test determines that statistical properties of the signals have changed, the expert system performs a sequence of logical steps to determine which sensor or machine component has degraded.

  2. Automated macromolecular crystal detection system and method

    DOEpatents

    Christian, Allen T.; Segelke, Brent; Rupp, Bernard; Toppani, Dominique

    2007-06-05

    An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.

  3. Edge detection techniques for iris recognition system

    NASA Astrophysics Data System (ADS)

    Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.

    2013-12-01

    Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.

  4. Maximum Temperature Detection System for Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  5. Multilayer optical disc system using homodyne detection

    NASA Astrophysics Data System (ADS)

    Kurokawa, Takahiro; Ide, Tatsuro; Tanaka, Yukinobu; Watanabe, Koichi

    2014-09-01

    A write/read system using high-productivity multilayer optical discs was developed. The recording medium used in the system consists of planar recording layers and a separated guide layer, and is fabricated by web coating and lamination process. The recording layers in the medium are made of one-photon-absorption material, on which data can be recorded with a normal laser diode. The developed system is capable of focusing and tracking on the medium and amplifying readout signals by using phase-diversity homodyne detection. A highly layer-selective focusing method using homodyne detection was also proposed. This method obtains stable focus-error signals with clearly separated S-shaped curves even when layer spacing is quite narrow, causing large interlayer crosstalk. Writing on the medium and reading with the signal amplification effect of homodyne detection was demonstrated. In addition, the effectiveness of the method was experimentally evaluated.

  6. Novel systems for corrosion detection in piping

    SciTech Connect

    Raad, J.A. de; Fingerhut, M.P.

    1995-12-31

    Predictive maintenance requires accurate quantitative information. Nondestructive testing (NDT) tools have been able provide the necessary information, economically. Examination of the full surface of components is often required, which is contrary to the more typical spot location measurements. In addition, predictive maintenance inspection often requires the examination of hot and or insulated components. These challenges have been satisfied by recent developments in NDT and are applicable to a broad range of facility types such as tank terminals and pulp and paper plants. For non-insulated and above ground piping systems magnetic flux leakage (MFL) tools have recently been introduced into the marketplace. These tools allow very quick and reliable detection of local and extensive general corrosion, in carbon steel pipes or vessel walls, with nominal wall thicknesses of up to 15 mm. A relatively new method for detection of corrosion under insulated components is the RTD-Incotest, pulse eddy current (PEC) system. This system can also provide the components remaining wall thickness at general corrosion locations. Demand for corrosion detection under insulation on piping has also been satisfied by new dynamic Real-Time-Radiography systems. These systems are relatively fast, but the concept itself and its weight require close human access to the pipe, hence, some method of accessing above ground piping is required. Nevertheless, the systems satisfy a market demand. Time-of-flight-Diffraction (TOFD) for detection and sizing of weld root corrosion as well as coherent color enhanced thickness mapping will also be introduced.

  7. Network intrusion detector: NID user`s guide V 1.0

    SciTech Connect

    Palasek, R.

    1994-04-01

    The NID suite of software tools was developed to help detect and analyze intrusive behavior over networks. NID combines and uses three techniques of intrusion detection: attack signature recognition, anomaly detection, and a vulnerability risk model. The authors have found from experience that the signature recognition component has been the most effective in detecting network based attacks. The underlying assumption of NID is that there is a security domain that you are interested in protecting. NID monitors traffic that crosses the boundary of that domain, looking for signs of intrusion and abnormal activity.

  8. Non-intrusive electric field sensing

    NASA Astrophysics Data System (ADS)

    Schultz, S. M.; Selfridge, R.; Chadderdon, S.; Perry, D.; Stan, N.

    2014-04-01

    This paper presents an overview of non-intrusive electric field sensing. The non-intrusive nature is attained by creating a sensor that is entirely dielectric, has a small cross-sectional area, and has the interrogation electronics a long distance away from the system under test. One non-intrusive electric field sensing technology is the slab coupled optical fiber sensor (SCOS). The SCOS consists of an electro-optic crystal attached to the surface of a D-shaped optical fiber. It is entirely dielectric and has a cross-sectional area down to 0.3mm by 0.3mm. The SCOS device functions as an electric field sensor through use of resonant mode coupling between the crystal waveguide and the core of a D-shaped optical fiber. The resonant mode coupling of a SCOS device occurs at specific wavelengths whose spectral locations are determined in part by the effective refractive index of the modes in the slab. An electric field changes the refractive index of the slab causing a shift in the spectral position of the resonant modes. This paper describes an overview of the SCOS technology including the theory, fabrication, and operation. The effect of crystal orientation and crystal type are explained with respect to directional sensitivity and frequency response.

  9. Fault detection and diagnosis of HVAC systems

    SciTech Connect

    Han, C.Y.; Xiao, Y.; Ruther, C.J.

    1999-07-01

    This paper presents a model-based fault detection and diagnosis (FDD) system for building heating, ventilating, and air conditioning (HVAC). Model-based fault detection is based on the strategy of determining the difference or the residuals between the normal and the existing patterns. Their approach was to attack the problem on many levels of abstraction: from the signal level, controller programming level, and system component, all the way up to the information and knowledge processing level. The various issues of real implementation of the system and the processing of real-time on-line data in actual systems of campus buildings using the proven technology and off-the-shelf commercial tools are discussed. The research was based on input and output points and software control programs found in typical direct digital control systems used for variable-air-volume air handlers and VAV cooling and hot water reheat terminal units.

  10. Damage detection in initially nonlinear systems

    SciTech Connect

    Bornn, Luke; Farrar, Charles; Park, Gyuhae

    2009-01-01

    The primary goal of Structural Health Monitoring (SHM) is to detect structural anomalies before they reach a critical level. Because of the potential life-safety and economic benefits, SHM has been widely studied over the past decade. In recent years there has been an effort to provide solid mathematical and physical underpinnings for these methods; however, most focus on systems that behave linearly in their undamaged state - a condition that often does not hold in complex 'real world' systems and systems for which monitoring begins mid-lifecycle. In this work, we highlight the inadequacy of linear-based methodology in handling initially nonlinear systems. We then show how the recently developed autoregressive support vector machine (AR-SVM) approach to time series modeling can be used for detecting damage in a system that exhibits initially nonlinear response. This process is applied to data acquired from a structure with induced nonlinearity tested in a laboratory environment.

  11. Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    The upper limestone unit of the intermediate aquifer system, locally called the upper Hawthorn aquifer, is the principal source of freshwater for Cape Coral, Florida. The aquifer has been contaminated with saline water by downward intrusion from the surficial aquifer system and by upward intrusion from the Floridan aquifer system. Much of the intrusion has occurred through open wellbores where steel casings are short or where casings have collapsed because of corrosion. Saline-water contamination of the upper limestone unit due to downward intrusion from the surficial aquifer is most severe in the southern and eastern parts of Cape Coral; contamination due to upward intrusion has occurred in many areas throughout Cape Coral. Intrusion is amplified in areas of heavy water withdrawals and large water-level declines. (USGS)

  12. 75 FR 57458 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ..., firewalls, routers, and Access Control Lists are used to protect access to the system. Virtual Private... incoming and outgoing traffic. An Intrusion Detection System, firewalls, routers, and Access Control...

  13. System for particle concentration and detection

    DOEpatents

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  14. Position Sensitive Detection System for Charged Particles

    SciTech Connect

    Coello, E. A.; Favela, F.; Curiel, Q.; Chavez, E; Huerta, A.; Varela, A.; Shapira, Dan

    2012-01-01

    The position sensitive detection system presented in this work employs the Anger logic algorithm to determine the position of the light spark produced by the passage of charged particles on a 170 x 170 x 10 mm3 scintillator material (PILOT-U). The detection system consists of a matrix of nine photomultipliers, covering a fraction of the back area of the scintillators. Tests made with a non-collimated alpha particle source together with a Monte Carlo simulation that reproduces the data, suggest an intrinsic position resolution of up to 6 mm is achieved.

  15. Miniaturized detection system for handheld PCR assays

    NASA Astrophysics Data System (ADS)

    Richards, James B.; Benett, William J.; Stratton, Paul; Hadley, Dean R.; Nasarabadi, Shanavaz L.; Milanovich, Fred P.

    2000-12-01

    We have developed and delivered a four chamber, battery powered, handheld instrument referred to as the HANAA which monitors the polymerase chain reaction (PCR) process using a TaqMan based fluorescence assay. The detection system differs form standard configurations in two essential ways. First, the size is miniaturized, with a combined cycling and optics plug-in module for a duplex assay begin about the size of a small box of matches. Second, the detection/analysis system is designed to call a positive sample in real time.

  16. An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    DTIC Science & Technology

    2007-03-01

    turn to a visualization of the solutions, as conceived in 1896 by Italian economist Vilfredo Pareto . 2.7 Pareto Optimality and Nondominance By...47 2.6 Single and Multiobjective Optimization ..............................................................49 2.7 Pareto ...73 3.6.7 Calculating the Pareto Front

  17. Modeling and Analysis of Intrusion Detection Integrated with Batch Rekeying for Dynamic Group Communication Systems in Mobile Ad Hoc Networks

    DTIC Science & Technology

    2010-05-01

    Diffie - Hellman Key Distribution Extended to Group Communication,” Proc. of 3rd ACM Conf. on Computer and Communications Security, New Delhi, India, Jan... Diffie -Hallman (GDH) algorithm [23] as the CKA protocol for group members to generate and distribute a new group key upon a group membership change event

  18. Saltwater intrusion in coastal regions of North America

    NASA Astrophysics Data System (ADS)

    Barlow, Paul M.; Reichard, Eric G.

    2010-02-01

    Saltwater has intruded into many of the coastal aquifers of the United States, Mexico, and Canada, but the extent of saltwater intrusion varies widely among localities and hydrogeologic settings. In many instances, the area contaminated by saltwater is limited to small parts of an aquifer and to specific wells and has had little or no effect on overall groundwater supplies; in other instances, saltwater contamination is of regional extent and has resulted in the closure of many groundwater supply wells. The variability of hydrogeologic settings, three-dimensional distribution of saline water, and history of groundwater withdrawals and freshwater drainage has resulted in a variety of modes of saltwater intrusion into coastal aquifers. These include lateral intrusion from the ocean; upward intrusion from deeper, more saline zones of a groundwater system; and downward intrusion from coastal waters. Saltwater contamination also has occurred along open boreholes and within abandoned, improperly constructed, or corroded wells that provide pathways for vertical migration across interconnected aquifers. Communities within the coastal regions of North America are taking actions to manage and prevent saltwater intrusion to ensure a sustainable source of groundwater for the future. These actions can be grouped broadly into scientific monitoring and assessment, engineering techniques, and regulatory approaches.

  19. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  20. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  1. Methods and systems for detection of radionuclides

    DOEpatents

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  2. Bioinspired Sensory Systems for Shear Flow Detection

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin K.; Kanso, Eva

    2017-03-01

    Aquatic organisms such as copepods exhibit remarkable responses to changes in ambient flows, especially shear gradients, when foraging, mating and escaping. To accomplish these tasks, the sensory system of the organism must decode the local sensory measurements to detect the flow properties. Evidence suggests that organisms sense differences in the hydrodynamic signal rather than absolute values of the ambient flow. In this paper, we develop a mathematical framework for shear flow detection using a bioinspired sensory system that measures only differences in velocity. We show that the sensory system is capable of reconstructing the properties of the ambient shear flow under certain conditions on the flow sensors. We discuss these conditions and provide explicit expressions for processing the sensory measurements and extracting the flow properties. These findings suggest that by combining suitable velocity sensors and physics-based methods for decoding sensory measurements, we obtain a powerful approach for understanding and developing underwater sensory systems.

  3. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  4. DCE Bio Detection System Final Report

    SciTech Connect

    Lind, Michael A.; Batishko, Charles R.; Morgen, Gerald P.; Owsley, Stanley L.; Dunham, Glen C.; Warner, Marvin G.; Willett, Jesse A.

    2007-12-01

    The DCE (DNA Capture Element) Bio-Detection System (Biohound) was conceived, designed, built and tested by PNNL under a MIPR for the US Air Force under the technical direction of Dr. Johnathan Kiel and his team at Brooks City Base in San Antonio Texas. The project was directed toward building a measurement device to take advantage of a unique aptamer based assay developed by the Air Force for detecting biological agents. The assay uses narrow band quantum dots fluorophores, high efficiency fluorescence quenchers, magnetic micro-beads beads and selected aptamers to perform high specificity, high sensitivity detection of targeted biological materials in minutes. This final report summarizes and documents the final configuration of the system delivered to the Air Force in December 2008

  5. Photon Detection Systems for Modern Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Britting, A.; Cowie, E.; Eyrich, W.; Hoek, M.; Keri, T.; Lehmann, A.; Montgomery, R.; Uhlig, F.

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particle and their momentum vectors. The ANDA experiment at FAIR and the CLAS 12 experiment and Jefferson Laboratory both plan to use imaging Cherenkov counters for particle identification. CLAS 12 will feature a Ring Imaging CHerenkov counter (RICH), while ANDA plans to construct Cherenkov counters relying on the Detections of Internally Reflected Cherenkov light (DIRC). These detectors require high-rate, single-photon capable light detection systems with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of the rate dependence, cross-talk, time-resolution and position resolution fro a range of commercially available photon detection solutions are presented and evaluated on their applicability to the ANDA and CLAS12 Cherenkov counters.

  6. Portable light detection system for the blind

    NASA Technical Reports Server (NTRS)

    Wilber, R. L.; Carpenter, B. L.

    1973-01-01

    System can be used to detect "ready" light on automatic cooking device, to tell if lights are on for visitors, or to tell whether it is daylight or dark outside. Device is actuated like flashlight. Light impinging on photo cell activates transistor which energizes buzzer to indicate presence of light.

  7. Digital radiographic systems detect boiler tube cracks

    SciTech Connect

    Walker, S.

    2008-06-15

    Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

  8. Detection of abrupt changes in dynamic systems

    NASA Technical Reports Server (NTRS)

    Willsky, A. S.

    1984-01-01

    Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed.

  9. RAZOR EX anthrax air detection system.

    PubMed

    Spaulding, Usha K; Christensen, Clarissa J; Crisp, Robert J; Vaughn, Michael B; Trauscht, Robert C; Gardner, Jordan R; Thatcher, Stephanie A; Clemens, Kristine M; Teng, David H F; Bird, Abigail; Ota, Irene M; Hadfield, Ted; Ryan, Valorie; Brunelle, Sharon L

    2012-01-01

    The RAZOR EX Anthrax Air Detection System, developed by Idaho Technology, Inc. (ITI), is a qualitative method for the detection of Bacillus anthracis spores collected by air collection devices. This system comprises a DNA extraction kit, a freeze-dried PCR reagent pouch, and the RAZOR EX real-time PCR instrument. Each pouch contains three assays, which distinguish potentially virulent B. anthracis from avirulent B. anthracis and other Bacillus species. These assays target the pXO1 and pXO2 plasmids and chromosomal DNA. When all targets are detected, the instrument makes an "anthrax detected" call, meaning that virulence genes of the anthrax bacillus are present. This report describes results from AOAC Method Developer (MD) and Independent Laboratory Validation (ILV) studies, which include matrix, inclusivity/exclusivity, environmental interference, upper and lower LOD of DNA, robustness, product consistency and stability, and instrument variation testing. In the MD studies, the system met the acceptance criteria for sensitivity and specificity, and the performance was consistent, stable, and robust for all components of the system. For the matrix study, the acceptance criteria of 95/96 expected calls was met for three of four matrixes, clean dry filters being the exception. Ninety-four of the 96 clean dry filter samples tested gave the expected calls. The nucleic acid limit of detection was 5-fold lower than AOAC's acceptable minimum detection limit. The system demonstrated no tendency for false positives when tested with Bacillus cereus. Environmental substances did not inhibit accurate detection of B. anthracis. The ILV studies yielded similar results for the matrix and inclusivity/exclusivity studies. The ILV environmental interference study included environmental substances and environmental organisms. Subsoil at a high concentration was found to negatively interfere with the pXO1 reaction. No interference was observed from the environmental organisms. The

  10. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...) Each fire detection system must be divided into zones to limit the area covered by any particular...

  11. Detection of timescales in evolving complex systems

    PubMed Central

    Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo

    2016-01-01

    Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. PMID:28004820

  12. Detection of timescales in evolving complex systems

    NASA Astrophysics Data System (ADS)

    Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo

    2016-12-01

    Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system.

  13. APDS: The Autonomous Pathogen Detection System

    SciTech Connect

    Hindson, B; Makarewicz, A; Setlur, U; Henderer, B; McBride, M; Dzenitis, J

    2004-10-04

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic-acid based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for seven days in a major U.S. transportation hub is reported.

  14. Method and system for detecting an explosive

    DOEpatents

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-12-07

    A method and system for detecting at least one explosive in a vehicle using a neutron generator and a plurality of NaI detectors. Spectra read from the detectors is calibrated by performing Gaussian peak fitting to define peak regions, locating a Na peak and an annihilation peak doublet, assigning a predetermined energy level to one peak in the doublet, and predicting a hydrogen peak location based on a location of at least one peak of the doublet. The spectra are gain shifted to a common calibration, summed for respective groups of NaI detectors, and nitrogen detection analysis performed on the summed spectra for each group.

  15. Portable chemical detection system with intergrated preconcentrator

    DOEpatents

    Baumann, Mark J.; Brusseau, Charles A.; Hannum, David W.; Linker, Kevin L.

    2005-12-27

    A portable system for the detection of chemical particles such as explosive residue utilizes a metal fiber substrate that may either be swiped over a subject or placed in a holder in a collection module which can shoot a jet of gas at the subject to dislodge residue, and then draw the air containing the residue into the substrate. The holder is then placed in a detection module, which resistively heats the substrate to evolve the particles, and provides a gas flow to move the particles to a miniature detector in the module.

  16. Antigenemia detected by radioimmunoassay in systemic aspergillosis

    SciTech Connect

    Weiner, M.H.

    1980-06-01

    Because of difficulties in antemortem diagnosis of systemic aspergillosis, a radioimmunoassay to an Aspergillus fumigatus carbohydrate was developed and evaluated in patients with mycotic or bacterial infections. Antigenemia was detected in sera obtained antemortem from four of seven patients with systemic aspergillosis and in pleural fluid from an Aspergillus empyema but not in control sera or pleural fluid from 43 patients or 27 normal donors. When characterized with reference to onset of disease, antigenemia was an early sign of infection. This study shows the usefulness of the Aspergillus antigen radioimmunoassay for early, specific immunodiagnosis of systemic aspergillosis.

  17. Wireless application in intravenous infiltration detection system.

    PubMed

    Alley, Matthew S; Naramore, William J; Chou, Nee-Yin; Winchester, Leonard W

    2008-01-01

    The IrDA wireless protocol has been applied to a fiber optics based point-of-care system for the detection of intravenous infiltration. The system is used for monitoring patients under infusion therapy. It is optimized for portability by incorporating a battery source and wireless communication. The IrDA protocol provides secure data communication between the electronic module of the system and the PDAs carried by the nurses. The PDA is used for initiating the actions of the electronic module and for data transfer. Security is provided by specially designed software and hardware.

  18. The Mount Rainier Lahar Detection System

    NASA Astrophysics Data System (ADS)

    Lockhart, A. B.; Murray, T. L.

    2003-12-01

    To mitigate the risk of unheralded lahars from Mount Rainier, the U.S. Geological Survey, in cooperation with Pierce County, Washington, installed a lahar-detection system on the Puyallup and Carbon rivers that originate on Mount Rainier's western slopes. The system, installed in 1998, is designed to automatically detect the passage of lahars large enough to potentially affect populated areas downstream (approximate volume threshold 40 million cubic meters), while ignoring small lahars, earthquakes, extreme weather and floods. Along each river valley upstream, arrays of independent lahar-monitoring stations equipped with geophones and short tripwires telemeter data to a pair of redundant computer base stations located in and near Tacoma at existing public safety facilities that are staffed around the clock. Monitored data consist of ground-vibration levels, tripwire status, and transmissions at regular intervals. The base stations automatically evaluate these data to determine if a dangerous lahar is passing through the station array. The detection algorithm requires significant ground vibration to occur at those stations in the array that are above the anticipated level of inundation, while lower level `deadman' stations, inundated by the flow, experience tripwire breakage or are destroyed. Once a base station detects a lahar, it alerts staff who execute a call-down of public-safety officials and schools, initiating evacuation of areas potentially at risk. Because the system's risk-mitigation task imposes high standards of reliability on all components, it has been under test for several years. To date, the system has operated reliably and without false alarms, including during the nearby M6.8 Nisqually Earthquake on February 28, 2001. The system is being turned over to Pierce County, and activated as part of their lahar warning system.

  19. Final OSWER Vapor Intrusion Guidance

    EPA Science Inventory

    EPA is preparing to finalize its guidance on assessing and addressing vapor intrusion, which is defined as migration of volatile constituents from contaminated media in the subsurface (soil or groundwater) into the indoor environment. In November 2002, EPA issued draft guidance o...

  20. Detecting Anomalous Insiders in Collaborative Information Systems.

    PubMed

    Chen, You; Nyemba, Steve; Malin, Bradley

    2012-05-01

    Collaborative information systems (CISs) are deployed within a diverse array of environments that manage sensitive information. Current security mechanisms detect insider threats, but they are ill-suited to monitor systems in which users function in dynamic teams. In this paper, we introduce the community anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on the access logs of collaborative environments. The framework is based on the observation that typical CIS users tend to form community structures based on the subjects accessed (e.g., patients' records viewed by healthcare providers). CADS consists of two components: 1) relational pattern extraction, which derives community structures and 2) anomaly prediction, which leverages a statistical model to determine when users have sufficiently deviated from communities. We further extend CADS into MetaCADS to account for the semantics of subjects (e.g., patients' diagnoses). To empirically evaluate the framework, we perform an assessment with three months of access logs from a real electronic health record (EHR) system in a large medical center. The results illustrate our models exhibit significant performance gains over state-of-the-art competitors. When the number of illicit users is low, MetaCADS is the best model, but as the number grows, commonly accessed semantics lead to hiding in a crowd, such that CADS is more prudent.

  1. Real-time head motion detection system

    NASA Astrophysics Data System (ADS)

    Mase, Kenji; Watanabe, Yasuhiko; Suenaga, Yasuhito

    1990-01-01

    We present a three-dimensional head motion detection system called a realtime headreader. This headreader analyzes the head motion picture sequences taken by a TV-camera, and extracts the motion parameters in realtime, i.e. 3-d rotations and translations. We used a simple but very fast algorithm, which exploits the contrast of hair and face to recognize face orientation. The system extracts the head and face area, then estimates the head motion parameters from the change in position of each area's centroids. The head motion is computed at nearly 10 frames per second on a SUN4 workstation and the motion parameters are sent to an IRIS workstation at a 2.5 Kbps. The IRIS generates a head motion sequence that duplicates the original head motion. The entire motion detection program is written in C language. No special image processing hardware is used, except for a video digitizer. Our head motion detection system will enhance man-machine interactions by providing a new visual eue. An operator will be able to point to a target by just looking at it thus a mouse or 3-d tracking device is not needed. The eventual goal of this research is to build an intelligent video communication system that codes the information in terms of high level language rather than compressed video signals.

  2. Detecting Anomalous Insiders in Collaborative Information Systems

    PubMed Central

    Chen, You; Nyemba, Steve; Malin, Bradley

    2012-01-01

    Collaborative information systems (CISs) are deployed within a diverse array of environments that manage sensitive information. Current security mechanisms detect insider threats, but they are ill-suited to monitor systems in which users function in dynamic teams. In this paper, we introduce the community anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on the access logs of collaborative environments. The framework is based on the observation that typical CIS users tend to form community structures based on the subjects accessed (e.g., patients’ records viewed by healthcare providers). CADS consists of two components: 1) relational pattern extraction, which derives community structures and 2) anomaly prediction, which leverages a statistical model to determine when users have sufficiently deviated from communities. We further extend CADS into MetaCADS to account for the semantics of subjects (e.g., patients’ diagnoses). To empirically evaluate the framework, we perform an assessment with three months of access logs from a real electronic health record (EHR) system in a large medical center. The results illustrate our models exhibit significant performance gains over state-of-the-art competitors. When the number of illicit users is low, MetaCADS is the best model, but as the number grows, commonly accessed semantics lead to hiding in a crowd, such that CADS is more prudent. PMID:24489520

  3. An Automated Flying-Insect-Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2005-01-01

    An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.

  4. Number of Waste Package Hit by Igneous Intrusion

    SciTech Connect

    M. Wallace

    2004-10-13

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios.

  5. Tsunami Detection Systems for International Requirements

    NASA Astrophysics Data System (ADS)

    Lawson, R. A.

    2007-12-01

    Results are presented regarding the first commercially available, fully operational, tsunami detection system to have passed stringent U.S. government testing requirements and to have successfully demonstrated its ability to detect an actual tsunami at sea. Spurred by the devastation of the December 26, 2004, Indian Ocean tsunami that killed more than 230,000 people, the private sector actively supported the Intergovernmental Oceanographic Commission's (IOC"s) efforts to develop a tsunami warning system and mitigation plan for the Indian Ocean region. As each country in the region developed its requirements, SAIC recognized that many of these underdeveloped countries would need significant technical assistance to fully execute their plans. With the original focus on data fusion, consequence assessment tools, and warning center architecture, it was quickly realized that the cornerstone of any tsunami warning system would be reliable tsunami detection buoys that could meet very stringent operational standards. Our goal was to leverage extensive experience in underwater surveillance and oceanographic sensing to produce an enhanced and reliable deep water sensor that could meet emerging international requirements. Like the NOAA Deep-ocean Assessment and Recording of Tsunamis (DART TM ) buoy, the SAIC Tsunami Buoy (STB) system consists of three subsystems: a surfaccommunications buoy subsystem, a bottom pressure recorder subsystem, and a buoy mooring subsystem. With the operational success that DART has demonstrated, SAIC decided to build and test to the same high standards. The tsunami detection buoy system measures small changes in the depth of the deep ocean caused by tsunami waves as they propagate past the sensor. This is accomplished by using an extremely sensitive bottom pressure sensor/recorder to measure very small changes in pressure as the waves move past the buoy system. The bottom pressure recorder component includes a processor with algorithms that

  6. Detecting Triple Systems with Gravitational Wave Observations

    NASA Astrophysics Data System (ADS)

    Meiron, Yohai; Kocsis, Bence; Loeb, Abraham

    2017-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) emitted by merging black hole binaries. We examine whether future GW detections may identify triple companions of merging binaries. Such a triple companion causes variations in the GW signal due to: (1) the varying path length along the line of sight during the orbit around the center of mass; (2) relativistic beaming, Doppler, and gravitational redshift; (3) the variation of the “light”-travel time in the gravitational field of the triple companion; and (4) secular variations of the orbital elements. We find that the prospects for detecting a triple companion are the highest for low-mass compact object binaries which spend the longest time in the LIGO frequency band. In particular, for merging neutron star binaries, LIGO may detect a white dwarf or M-dwarf perturber at a signal-to-noise ratio of 8, if it is within 0.4 {R}ȯ distance from the binary and the system is within a distance of 100 Mpc. Stellar mass (supermassive) black hole perturbers may be detected at a factor 5 × (103×) larger separations. Such pertubers in orbit around a merging binary emit GWs at frequencies above 1 mHz detectable by the Laser Interferometer Space Antenna in coincidence.

  7. Multimodal imaging system for dental caries detection

    NASA Astrophysics Data System (ADS)

    Liang, Rongguang; Wong, Victor; Marcus, Michael; Burns, Peter; McLaughlin, Paul

    2007-02-01

    Dental caries is a disease in which minerals of the tooth are dissolved by surrounding bacterial plaques. A caries process present for some time may result in a caries lesion. However, if it is detected early enough, the dentist and dental professionals can implement measures to reverse and control caries. Several optical, nonionized methods have been investigated and used to detect dental caries in early stages. However, there is not a method that can singly detect the caries process with both high sensitivity and high specificity. In this paper, we present a multimodal imaging system that combines visible reflectance, fluorescence, and Optical Coherence Tomography (OCT) imaging. This imaging system is designed to obtain one or more two-dimensional images of the tooth (reflectance and fluorescence images) and a three-dimensional OCT image providing depth and size information of the caries. The combination of two- and three-dimensional images of the tooth has the potential for highly sensitive and specific detection of dental caries.

  8. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  9. Object detection system using SPAD proximity detectors

    NASA Astrophysics Data System (ADS)

    Stark, Laurence; Raynor, Jeffrey M.; Henderson, Robert K.

    2011-10-01

    This paper presents an object detection system based upon the use of multiple single photon avalanche diode (SPAD) proximity sensors operating upon the time-of-flight (ToF) principle, whereby the co-ordinates of a target object in a coordinate system relative to the assembly are calculated. The system is similar to a touch screen system in form and operation except that the lack of requirement of a physical sensing surface provides a novel advantage over most existing touch screen technologies. The sensors are controlled by FPGA-based firmware and each proximity sensor in the system measures the range from the sensor to the target object. A software algorithm is implemented to calculate the x-y coordinates of the target object based on the distance measurements from at least two separate sensors and the known relative positions of these sensors. Existing proximity sensors were capable of determining the distance to an object with centimetric accuracy and were modified to obtain a wide field of view in the x-y axes with low beam angle in z in order to provide a detection area as large as possible. Design and implementation of the firmware, electronic hardware, mechanics and optics are covered in the paper. Possible future work would include characterisation with alternative designs of proximity sensors, as this is the component which determines the highest achievable accur1acy of the system.

  10. 46 CFR 182.480 - Flammable vapor detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Flammable vapor detection systems. 182.480 Section 182... detection systems. (a) A flammable vapor detection system required by § 182.410(c) must meet UL 1110... checking the proper operation of a flammable vapor detection system must be posted at the primary...

  11. 29 CFR 1910.164 - Fire detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Fire detection systems. 1910.164 Section 1910.164 Labor... detection systems. (a) Scope and application. This section applies to all automatic fire detection systems... detection systems and components to normal operating condition as promptly as possible after each test...

  12. A System for Traffic Violation Detection

    PubMed Central

    Aliane, Nourdine; Fernandez, Javier; Mata, Mario; Bemposta, Sergio

    2014-01-01

    This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS) aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR) for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations. PMID:25421737

  13. Cloud Intrusion Detection and Repair (CIDAR)

    DTIC Science & Technology

    2016-02-01

    input formats of these applications include three im- age types (PNG, TIFF, JPEG), wave sound (WAV) and Shockwave flash video (SWF). We evaluate the...Errors: We use SOAP to rectify inputs for five applications: Swfdec 0.5.5 (a shockwave player) [18], Dillo 2.1 (a lightweight browser) [4], 23...incorrectly allocate memory or perform an invalid memory access. The input file formats for these errors are the SWF Shockwave Flash format; the PNG

  14. Intrusion detection and monitoring for wireless networks.

    SciTech Connect

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda; Tabriz, Parisa; Pelon, Kristen; McCoy, Damon (University of Colorado, Boulder); Lodato, Mark; Hemingway, Franklin; Custer, Ryan P.; Averin, Dimitry; Franklin, Jason; Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

  15. Ultrasonic Imaging and Automated Flaw Detection System

    DTIC Science & Technology

    1986-03-01

    imager sold by Searle Ultrasound. An LSI-11 microcomputer is interfaced to the imager with custom designed modules. Ultrasonic image data is loaded...phased array ultrasonic imager, an LSI-11 microcomputer , and an assortment of custom-designed electronic modules. There is also a CRT display terminal...AD CONTRACTOR REPORT ARCCB-CR-86011 ULTRASONIC IMAGING AND AUTOMATED FLAW DETECTION SYSTEM L. JONES DTIC3ZLECTE J. F. MC DONALD JUNCTE G.P

  16. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  17. An Automated Flying-Insect Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2007-01-01

    An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has

  18. Vehicle detection system using artificial retina chips

    NASA Astrophysics Data System (ADS)

    Ikuta, Koichi; Tamura, Toshiyuki; Tanaka, Ken-ichi; Kyuma, Kazuo

    2001-05-01

    The AR chip is a versatile CMOS image sensor, functions are not only normal image acquisition but also on-chip image processing. Such features can accelerate algorithms of image processing and the controls of proper image. We have developed the low-cost and compact vehicle detection system using he AR chips. The system is composed of a processing module and an AR camera module. The AR Camera module has dual artificial retina chips to cover the wide dynamic range of the outdoor brightness environment. The ND filter is coated on the lens of one of the chips, each AR chip covers different range of the brightness. The control algorithm of image acquisition is designed to select an adequate chip based on the image quality. The images of the selected chip are processed by on-chip functions for pre-processing and they are transferred to the processing module. Finally the processing module judges the existence of vehicles and detects several kinds of attributive information of the detected vehicle such as moving direction. In our paper, we describe details of the system and the algorithm and we show several result data through field experiments under the real road environment.

  19. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  20. System and method for detecting gas

    DOEpatents

    Chow, Oscar Ken; Moulthrop, Lawrence Clinton; Dreier, Ken Wayne; Miller, Jacob Andrew

    2010-03-16

    A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

  1. Automatic flatness detection system for micro part

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Wang, Xiaodong; Shan, Zhendong; Li, Kehong

    2016-01-01

    An automatic flatness detection system for micro rings is developed. It is made up of machine vision module, ring supporting module and control system. An industry CCD camera with the resolution of 1628×1236 pixel, a telecentric with magnification of two, and light sources are used to collect the vision information. A rotary stage with a polished silicon wafer is used to support the ring. The silicon wafer provides a mirror image and doubles the gap caused by unevenness of the ring. The control system comprise an industry computer and software written in LabVIEW Get Kernel and Convolute Function are selected to reduce noise and distortion, Laplacian Operator is used to sharp the image, and IMAQ Threshold function is used to separate the target object from the background. Based on this software, system repeating precision is 2.19 μm, less than one pixel. The designed detection system can easily identify the ring warpage larger than 5 μm, and if the warpage is less than 25 μm, it can be used in ring assembly and satisfied the final positionary and perpendicularity error requirement of the component.

  2. How Saccade Intrusions Affect Subsequent Motor and Oculomotor Actions

    PubMed Central

    Terao, Yasuo; Fukuda, Hideki; Tokushige, Shin-ichi; Inomata-Terada, Satomi; Ugawa, Yoshikazu

    2017-01-01

    In daily activities, there is a close spatial and temporal coupling between eye and hand movements that enables human beings to perform actions smoothly and accurately. If this coupling is disrupted by inadvertent saccade intrusions, subsequent motor actions suffer from delays, and lack of coordination. To examine how saccade intrusions affect subsequent voluntary actions, we used two tasks that require subjects to make motor/oculomotor actions in response to a visual cue. One was the memory guided saccade (MGS) task, and the other the hand reaction time (RT) task. The MGS task required subjects to initiate a voluntary saccade to a memorized target location, which is indicated shortly before by a briefly presented cue. The RT task required subjects to release a button on detection of a visual target, while foveating on a central fixation point. In normal subjects of various ages, inadvertent saccade intrusions delayed subsequent voluntary motor, and oculomotor actions. We also studied patients with Parkinson's disease (PD), who are impaired not only in initiating voluntary saccades but also in suppressing unwanted reflexive saccades. Saccade intrusions also delayed hand RT in PD patients. However, MGS was affected by the saccade intrusion differently. Saccade intrusion did not delay MGS latency in PD patients who could perform MGS with a relatively normal latency. In contrast, in PD patients who were unable to initiate MGS within the normal time range, we observed slightly decreased MGS latency after saccade intrusions. What explains this paradoxical phenomenon? It is known that motor actions slow down when switching between controlled and automatic behavior. We discuss how the effect of saccade intrusions on subsequent voluntary motor/oculomotor actions may reflect a similar switching cost between automatic and controlled behavior and a cost for switching between different motor effectors. In contrast, PD patients were unable to initiate internally guided MGS in

  3. How Saccade Intrusions Affect Subsequent Motor and Oculomotor Actions.

    PubMed

    Terao, Yasuo; Fukuda, Hideki; Tokushige, Shin-Ichi; Inomata-Terada, Satomi; Ugawa, Yoshikazu

    2016-01-01

    In daily activities, there is a close spatial and temporal coupling between eye and hand movements that enables human beings to perform actions smoothly and accurately. If this coupling is disrupted by inadvertent saccade intrusions, subsequent motor actions suffer from delays, and lack of coordination. To examine how saccade intrusions affect subsequent voluntary actions, we used two tasks that require subjects to make motor/oculomotor actions in response to a visual cue. One was the memory guided saccade (MGS) task, and the other the hand reaction time (RT) task. The MGS task required subjects to initiate a voluntary saccade to a memorized target location, which is indicated shortly before by a briefly presented cue. The RT task required subjects to release a button on detection of a visual target, while foveating on a central fixation point. In normal subjects of various ages, inadvertent saccade intrusions delayed subsequent voluntary motor, and oculomotor actions. We also studied patients with Parkinson's disease (PD), who are impaired not only in initiating voluntary saccades but also in suppressing unwanted reflexive saccades. Saccade intrusions also delayed hand RT in PD patients. However, MGS was affected by the saccade intrusion differently. Saccade intrusion did not delay MGS latency in PD patients who could perform MGS with a relatively normal latency. In contrast, in PD patients who were unable to initiate MGS within the normal time range, we observed slightly decreased MGS latency after saccade intrusions. What explains this paradoxical phenomenon? It is known that motor actions slow down when switching between controlled and automatic behavior. We discuss how the effect of saccade intrusions on subsequent voluntary motor/oculomotor actions may reflect a similar switching cost between automatic and controlled behavior and a cost for switching between different motor effectors. In contrast, PD patients were unable to initiate internally guided MGS in

  4. Detection system for ocular refractive error measurement.

    PubMed

    Ventura, L; de Faria e Sousa, S J; de Castro, J C

    1998-05-01

    An automatic and objective system for measuring ocular refractive errors (myopia, hyperopia and astigmatism) was developed. The system consists of projecting a light target (a ring), using a diode laser (lambda = 850 nm), at the fundus of the patient's eye. The light beams scattered from the retina are submitted to an optical system and are analysed with regard to their vergence by a CCD detector (matrix). This system uses the same basic principle for the projection of beams into the tested eye as some commercial refractors, but it is innovative regarding the ring-shaped measuring target for the projection system and the detection system where a matrix detector provides a wider range of measurement and a less complex system for the optical alignment. Also a dedicated electronic circuit was not necessary for treating the electronic signals from the detector (as the usual refractors do); instead a commercial frame grabber was used and software based on the heuristic search technique was developed. All the guiding equations that describe the system as well as the image processing procedure are presented in detail. Measurements in model eyes and in human eyes are in good agreement with retinoscopic measurements and they are also as precise as these kinds of measurements require (0.125D and 5 degrees).

  5. GPS-Aided Tsunami Early Detection System

    NASA Astrophysics Data System (ADS)

    Song, Y. T.; Bar-Sever, Y. E.; Liu, Z.; Khachikyan, R.

    2015-12-01

    Most tsunami fatalities occur in near-field communities of earthquakes at offshore faults. Tsunami early warning is key for reducing the number of fatalities. Unfortunately, an earthquake's magnitude often does not gauge the resulting tsunami power. Here we show that real-time GPS stations along coastlines are able to detect seafloor motions due to big earthquakes, and that the detected seafloor displacements are able to determine tsunami energy and scales instantaneously for early warnings. Our method focuses on estimating tsunami energy directly from seafloor motions because a tsunami's potential or scale, no matter how it is defined, has to be proportional to the tsunami energy. Since seafloor motions are the only source of a tsunami, their estimation directly relates to the mechanism that generates tsunamis; therefore, it is a proper way of identifying earthquakes that are capable of triggering tsunamis, while being able to discriminate those particular earthquakes from false alarms. Examples of detecting the tsunami energy scales for the 2004 Sumatra M9.1 earthquake, the 2005 Nias M8.7 earthquake, the 2010 M8.8 Chilean earthquake, and the 2011 M9.0 Tohoku-Oki earthquake will be presented. The development of the Indo-Pacific GPS-Aided Tsunami Early Detection (GATED) system will be reported.

  6. Advanced kick detection systems improve HPHT operations

    SciTech Connect

    Harris, T.W.R.; Hendriks, P.; Surewaard, J.H.G.

    1995-09-01

    Many high-pressure, high-temperature (HPHT) wells are often characterized by the small margins that can exist between pore pressure and formation strength. Therefore, it is not surprising that kicks are far more likely to occur in HPHT wells and that a greater risk of internal blowout exists. The development and application of advanced kick detection systems for HPHT wells can help manage risks and improve drilling efficiency. Such systems enable earlier well shut-in, minimizing both the influx volume and the subsequent well bore pressures. This in turn lowers the risk, time and cost required for well control operations. Carefully considered application of these systems can also justify favorable economic benefits by optimization of the HPHT preliminary casing design. Minimizing kick volume can be important for the critical HPHT hole sections, where a reduced operating margin between pore pressure and fracture gradient exists, defining small design kick tolerance limits to permit safe drilling ahead to reach specified objectives. Kick detection for HPHT wells equivalent to less than 5 bbl of gas influx are often necessary to adequately minimize the risk of internal blowout and obtain the same levels of safety which are applied to conventional wells. This paper reviews these systems for both on-shore and off-shore operations.

  7. The ITER Radial Neutron Camera Detection System

    SciTech Connect

    Marocco, D.; Belli, F.; Esposito, B.; Petrizzi, L.; Riva, M.; Bonheure, G.; Kaschuck, Y.

    2008-03-12

    A multichannel neutron detection system (Radial Neutron Camera, RNC) will be installed on the ITER equatorial port plug 1 for total neutron source strength, neutron emissivity/ion temperature profiles and n{sub t}/n{sub d} ratio measurements [1]. The system is composed by two fan shaped collimating structures: an ex-vessel structure, looking at the plasma core, containing tree sets of 12 collimators (each set lying on a different toroidal plane), and an in-vessel structure, containing 9 collimators, for plasma edge coverage. The RNC detecting system will work in a harsh environment (neutron fiux up to 10{sup 8}-10{sup 9} n/cm{sup 2} s, magnetic field >0.5 T or in-vessel detectors), should provide both counting and spectrometric information and should be flexible enough to cover the high neutron flux dynamic range expected during the different ITER operation phases. ENEA has been involved in several activities related to RNC design and optimization [2,3]. In the present paper the up-to-date design and the neutron emissivity reconstruction capabilities of the RNC will be described. Different options for detectors suitable for spectrometry and counting (e.g. scintillators and diamonds) focusing on the implications in terms of overall RNC performance will be discussed. The increase of the RNC capabilities offered by the use of new digital data acquisition systems will be also addressed.

  8. Global ionospheric flare detection system (GIFDS)

    NASA Astrophysics Data System (ADS)

    Wenzel, Daniela; Jakowski, Norbert; Berdermann, Jens; Mayer, Christoph; Valladares, Cesar; Heber, Bernd

    2016-02-01

    The Global Ionospheric Flare Detection System (GIFDS) is currently under development at the German Aerospace Center as a ground based detector for continuous monitoring of the solar flare activity in order to provide real time warnings on solar X-ray events. GIFDS is using Very Low Frequency (VLF) radio transmissions in the northern hemisphere which respond to enhanced ionization in the bottomside ionosphere caused by X-ray flares. Since solar flares can only be detected during daytime, VLF receivers have to be installed around the globe to guarantee continuous records at the dayside sector. GIFDS consists of a network of Perseus SDR (Software Defined Radio) receivers equipped with a MiniWhip antenna each. Reliable detection of solar flares is ensured by recording multiple frequency channels ranging from 0 to 500 kHz. The applicability of the system is demonstrated in a first analysis by comparing VLF measurements with GOES's (Geostationary Operational Environmental Satellite) X-ray flux data. The high potential of GIFDS for a permanent monitoring of solar flares in near real time is discussed.

  9. Long-term pumping test to study the impact of an open-loop geothermal system on seawater intrusion in a coastal aquifer: the case study of Bari (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Masciale, Rita; Masciopinto, Costantino; De Carlo, Lorenzo

    2016-04-01

    The high cost and scarcity of fossil fuels have promoted the increased use of natural heat for a number of direct applications. Just as for fossil fuels, the exploitation of geothermal energy should consider its environmental impact and sustainability. Particular attention deserves the so-called open loop geothermal groundwater heat pump (GWHP) system, which uses groundwater as geothermal fluid. From an economic point of view, the implementation of this kind of geothermal system is particularly attractive in coastal areas, which have generally shallow aquifers. Anyway the potential problem of seawater intrusion has led to laws that restrict the use of groundwater. The scarcity of freshwater could be a major impediment for the utilization of geothermal resources. In this study a new methodology has been proposed. It was based on an experimental approach to characterize a coastal area in order to exploit the low-enthalpy geothermal resource. The coastal karst and fractured aquifer near Bari, in Southern Italy, was selected for this purpose. For the purpose of investigating the influence of an open-loop GWHP system on the seawater intrusion, a long-term pumping test was performed. The test simulated the effects of a prolonged withdrawal on the chemical-physical groundwater characteristics of the studied aquifer portion. The duration of the test was programmed in 16 days, and it was performed with a constant pumping flowrate of 50 m3/h. The extracted water was outflowed into an adjacent artificial channel, by means of a piping system. Water depth, temperature and electrical conductivity of the pumped water were monitored for 37 days, including also some days before and after the pumping duration. The monitored parameters, collected in the pumping and in five observation wells placed 160 m down-gradient with respect to the groundwater flow direction, have been used to estimate different scenarios of the impact of the GWHP system on the seawater intrusion by mean of a

  10. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  11. System and method for anomaly detection

    DOEpatents

    Scherrer, Chad

    2010-06-15

    A system and method for detecting one or more anomalies in a plurality of observations is provided. In one illustrative embodiment, the observations are real-time network observations collected from a stream of network traffic. The method includes performing a discrete decomposition of the observations, and introducing derived variables to increase storage and query efficiencies. A mathematical model, such as a conditional independence model, is then generated from the formatted data. The formatted data is also used to construct frequency tables which maintain an accurate count of specific variable occurrence as indicated by the model generation process. The formatted data is then applied to the mathematical model to generate scored data. The scored data is then analyzed to detect anomalies.

  12. Supersensitive SQUID/magnetostrictor detecting system

    SciTech Connect

    Golovashkin, Aleksander I; Zherikhina, L N; Tskhovrebov, Andrei M; Izmailov, G N

    2012-12-31

    It is shown that using the state-of-the-art quantum interferometer (SQUID) with the resolution 10{sup -6} {Phi}{sub 0} Hz{sup -1/2} = 2.07 Multiplication-Sign 10{sup -21} Wb Hz{sup -1/2}, coupled to a magnetostrictor, playing the role of tensomagnetic transducer, it is possible to construct a system for detecting pressure variations with the ultimate sensitivity of 10{sup -13} Pa Hz{sup -1/2} and for measuring specific elongation with the sensitivity of 10{sup -24} Hz{sup -1/2}. The analysis of physical grounds of the inverse magnetostriction effect demonstrates concrete ways to essentially higher efficiency of tensomagnetic conversion. The estimates performed demonstrate the possibility of using the SQUID/magnetostrictor system as a detector of gravitational waves. Other possibilities of using this system for solving both fundamental and applied problems are also considered. (experimental techniques)

  13. Network Intrusion Dataset Assessment

    DTIC Science & Technology

    2013-03-01

    and Andrei Sabelfeld (editors), European Symposium on Research in Computer Security, volume 4189 of Lecture Notes in Computer Science, 527–546...Returns for Security, BADGERS ’11, 62–69. ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0768-0. 97 [42] Papadogiannakis, Antonis, Michalis...10: Proceedings of the Third European ACM Workshop on System Security, 15–21. 2010. ISBN 978-1-4503-0059-9. [43] Pianka, E.R. “Niche overlap and

  14. Developments toward a Low-Cost Approach for Long-Term, Unattended Vapor Intrusion Monitoring

    PubMed Central

    Tolley, William K.

    2014-01-01

    There are over 450,000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these site stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10−9, or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors. PMID:24903107

  15. Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring.

    PubMed

    Patel, Sanjay V; Tolley, William K

    2014-08-07

    There are over 450 000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these sites stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10(-9), or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors.

  16. Non-intrusive head movement analysis of videotaped seizures of epileptic origin.

    PubMed

    Mandal, Bappaditya; Eng, How-Lung; Lu, Haiping; Chan, Derrick W S; Ng, Yen-Ling

    2012-01-01

    In this work we propose a non-intrusive video analytic system for patient's body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients' heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally non-intrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection.

  17. WCEDS: A waveform correlation event detection system

    SciTech Connect

    Young, C.J.; Beiriger, J.I.; Trujillo, J.R.; Withers, M.M.; Aster, R.C.; Astiz, L.; Shearer, P.M.

    1995-08-01

    We have developed a working prototype of a grid-based global event detection system based on waveform correlation. The algorithm comes from a long-period detector but we have recast it in a full matrix formulation which can reduce the number of multiplications needed by better than two orders of magnitude for realistic monitoring scenarios. The reduction is made possible by eliminating redundant multiplications in the original formulation. All unique correlations for a given origin time are stored in a correlation matrix (C) which is formed by a full matrix product of a Master Image matrix (M) and a data matrix (D). The detector value at each grid point is calculated by following a different summation path through the correlation matrix. Master Images can be derived either empirically or synthetically. Our testing has used synthetic Master Images because their influence on the detector is easier to understand. We tested the system using the matrix formulation with continuous data from the IRIS (Incorporate Research Institutes for Seismology) broadband global network to monitor a 2 degree evenly spaced surface grid with a time discretization of 1 sps; we successfully detected the largest event in a two hour segment from October 1993. The output at the correct gridpoint was at least 33% larger than at adjacent grid points, and the output at the correct gridpoint at the correct origin time was more than 500% larger than the output at the same gridpoint immediately before or after. Analysis of the C matrix for the origin time of the event demonstrates that there are many significant ``false`` correlations of observed phases with incorrect predicted phases. These false correlations dull the sensitivity of the detector and so must be dealt with if our system is to attain detection thresholds consistent with a Comprehensive Test Ban Treaty (CTBT).

  18. Evaluation of intrusion sensors and video assessment in areas of restricted passage

    SciTech Connect

    Hoover, C.E.; Ringler, C.E.

    1996-04-01

    This report discusses an evaluation of intrusion sensors and video assessment in areas of restricted passage. The discussion focuses on applications of sensors and video assessment in suspended ceilings and air ducts. It also includes current and proposed requirements for intrusion detection and assessment. Detection and nuisance alarm characteristics of selected sensors as well as assessment capabilities of low-cost board cameras were included in the evaluation.

  19. A dual-threshold radar detection system

    NASA Astrophysics Data System (ADS)

    Hammerle, K. J.

    It is known that the beam agility of a phased-array radar can be utilized to enhance target detection capability as compared to a radar which has the same power but which radiates its energy uniformly over the solid angle being surveilled. A dual-threshold approach for realizing this enhancement is examined. Quantitative results are presented parametrically for four signal fluctuation models. The study also identifies the optimum combination of dual-threshold design parameters for each target model under a wide range of imposed system constraints such as the allowed number of false alarms per beam position. It is shown that under certain imposed constraints, no enhancement is possible.

  20. Natural contamination in radionuclide detection systems

    SciTech Connect

    Wogman, N.A.

    1980-10-01

    Through the use of low-level gamma-ray spectrometry, clean material for construction of radionuclide detection systems has been identified. In general aluminum contains high quantities of /sup 232/Th and /sup 238/U with minimal quantities of /sup 40/K. Stainless steels contain /sup 60/Co. The radioactive contents of foams, cements, and light reflective materials are quite variable. Molecular sieve materials used in germanium spectrometers contain from 4-9 dpm/g. Only through a judicious choice of materials can a spectrometer with the lowest achievable background be assembled.

  1. Systems and methods for detecting and processing

    DOEpatents

    Johnson, Michael M.; Yoshimura, Ann S.

    2006-03-28

    Embodiments of the present invention provides systems and method for detecting. Sensing modules are provided in communication with one or more detectors. In some embodiments, detectors are provided that are sensitive to chemical, biological, or radiological agents. Embodiments of sensing modules include processing capabilities to analyze, perform computations on, and/or run models to predict or interpret data received from one or more detectors. Embodiments of sensing modules form various network configurations with one another and/or with one or more data aggregation devices. Some embodiments of sensing modules include power management functionalities.

  2. System for Anomaly and Failure Detection (SAFD) system development

    NASA Technical Reports Server (NTRS)

    Oreilly, D.

    1993-01-01

    The System for Anomaly and Failure Detection (SAFD) algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failures as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient conditions. This task assignment originally specified developing a platform for executing the algorithm during hot fire tests at Technology Test Bed (TTB) and installing the SAFD algorithm on that platform. Two units were built and installed in the Hardware Simulation Lab and at the TTB in December 1991. Since that time, the task primarily entailed improvement and maintenance of the systems, additional testing to prove the feasibility of the algorithm, and support of hot fire testing. This document addresses the work done since the last report of June 1992. The work on the System for Anomaly and Failure Detection during this period included improving the platform and the algorithm, testing the algorithm against previous test data and in the Hardware Simulation Lab, installing other algorithms on the system, providing support for operations at the Technology Test Bed, and providing routine maintenance.

  3. Autonomous system for pathogen detection and identification

    SciTech Connect

    Belgrader, P.; Benett, W.; Bergman, W.; Langlois, R.; Mariella, R.; Milanovich, F.; Miles, R.; Venkateswaran, K.; Long, G.; Nelson, W.

    1998-09-24

    This purpose of this project is to build a prototype instrument that will, running unattended, detect, identify, and quantify BW agents. In order to accomplish this, we have chosen to start with the world' s leading, proven, assays for pathogens: surface-molecular recognition assays, such as antibody-based assays, implemented on a high-performance, identification (ID)-capable flow cytometer, and the polymerase chain reaction (PCR) for nucleic-acid based assays. With these assays, we must integrate the capability to: l collect samples from aerosols, water, or surfaces; l perform sample preparation prior to the assays; l incubate the prepared samples, if necessary, for a period of time; l transport the prepared, incubated samples to the assays; l perform the assays; l interpret and report the results of the assays. Issues such as reliability, sensitivity and accuracy, quantity of consumables, maintenance schedule, etc. must be addressed satisfactorily to the end user. The highest possible sensitivity and specificity of the assay must be combined with no false alarms. Today, we have assays that can, in under 30 minutes, detect and identify simulants for BW agents at concentrations of a few hundred colony-forming units per ml of solution. If the bio-aerosol sampler of this system collects 1000 Ymin and concentrates the respirable particles into 1 ml of solution with 70% processing efficiency over a period of 5 minutes, then this translates to a detection/ID capability of under 0.1 agent-containing particle/liter of air.

  4. Simple Systems for Detecting Spacecraft Meteoroid Punctures

    NASA Technical Reports Server (NTRS)

    Hall, Stephen B.

    2004-01-01

    A report describes proposed systems to be installed in spacecraft to detect punctures by impinging meteoroids or debris. Relative to other systems that have been used for this purpose, the proposed systems would be simpler and more adaptable, and would demand less of astronauts attention and of spacecraft power and computing resources. The proposed systems would include a thin, hollow, hermetically sealed panel containing an inert fluid at a pressure above the spacecraft cabin pressure. A transducer would monitor the pressure in the panel. It is assumed that an impinging object that punctures the cabin at the location of the panel would also puncture the panel. Because the volume of the panel would be much smaller than that of the cabin, the panel would lose its elevated pressure much faster than the cabin would lose its lower pressure. The transducer would convert the rapid pressure drop to an electrical signal that could trigger an alarm. Hence, the system would provide an immediate indication of the approximate location of a small impact leak, possibly in time to take corrective action before a large loss of cabin pressure could occur.

  5. A polarization system for persistent chemical detection

    NASA Astrophysics Data System (ADS)

    Craven-Jones, Julia; Appelhans, Leah; Couphos, Eric; Embree, Todd; Finnegan, Patrick; Goldstein, Dennis; Karelitz, David; LaCasse, Charles; Luk, Ting S.; Mahamat, Adoum; Massey, Lee; Tanbakuchi, Anthony; Washburn, Cody; Vigil, Steven

    2015-09-01

    We report on the development of a prototype polarization tag based system for detecting chemical vapors. The system primarily consists of two components, a chemically sensitive tag that experiences a change in its optical polarization properties when exposed to a specific chemical of interest, and an optical imaging polarimeter that is used to measure the polarization properties of the tags. Although the system concept could be extended to other chemicals, for the initial system prototype presented here the tags were developed to be sensitive to hydrogen fluoride (HF) vapors. HF is used in many industrial processes but is highly toxic and thus monitoring for its presence and concentration is often of interest for personnel and environmental safety. The tags are periodic multilayer structures that are produced using standard photolithographic processes. The polarimetric imager has been designed to measure the degree of linear polarization reflected from the tags in the short wave infrared. By monitoring the change in the reflected polarization signature from the tags, the polarimeter can be used to determine if the tag was exposed to HF gas. In this paper, a review of the system development effort and preliminary test results are presented and discussed, as well as our plan for future work.

  6. Non-intrusive measurements in a rocket engine combustor

    NASA Astrophysics Data System (ADS)

    Farhangi, S.; Gylys, V. T.; Jensen, R. J.

    1993-07-01

    In recent years analytical tools to characterize combustor flow have been developed in order to support design. To facilitate anchoring of combustion related physical models and the CFD codes in which they are incorporated, considerable development and application of non-intrusive combustion diagnostic capabilities has occurred. Raman spectroscopy can be used to simultaneously detect all polyatomic molecules present in significant concentrations and to determine gas temperature. This is because all molecules possess a distinct temperature dependent Raman spectrum. A multi-point diagnostic system for non-intrusive temperature and species profiling in rocket engines has been developed at Rocketdyne. In the present effort, the system has been undergoing validation for application to rocket engine component testing. A 4 inch diameter windowed combustor with a coaxial gas-gas injector was chosen for this series of validation experiments. Initially an excimer-pumped tunable dye laser and later a solid state Nd-Yag laser served as excitation sources. The Raman signal was dispersed by a monochromator and detected by a gated, intensified Charged Coupled Device (CCD) array. Experiments were carried out prior to each series of hot fire tests to ensure that the Raman signal detected was due to a spontaneous rather than a stimulated Raman emission process. Over sixty hot fire tests were conducted during the first series of tests with the excimer/dye laser. All hot fire testing was at a mixture ratio of 0.5 and chamber pressures of approximately 100 and approximately 300 psia. The Raman spectra of hydrogen, water vapor and oxygen recorded during single element hot fire tests were reduced and analyzed. A significant achievement was the attainment of single shot Raman spectra in cold flow tests. Unfortunately, the single shot signal-to-noise ratio deteriorated to an unacceptable level during the hot fire testing. Attempts to obtain temperature data from the hydrogen Q1-branch

  7. Non-intrusive measurements in a rocket engine combustor

    NASA Technical Reports Server (NTRS)

    Farhangi, S.; Gylys, V. T.; Jensen, R. J.

    1993-01-01

    In recent years analytical tools to characterize combustor flow have been developed in order to support design. To facilitate anchoring of combustion related physical models and the CFD codes in which they are incorporated, considerable development and application of non-intrusive combustion diagnostic capabilities has occurred. Raman spectroscopy can be used to simultaneously detect all polyatomic molecules present in significant concentrations and to determine gas temperature. This is because all molecules possess a distinct temperature dependent Raman spectrum. A multi-point diagnostic system for non-intrusive temperature and species profiling in rocket engines has been developed at Rocketdyne. In the present effort, the system has been undergoing validation for application to rocket engine component testing. A 4 inch diameter windowed combustor with a coaxial gas-gas injector was chosen for this series of validation experiments. Initially an excimer-pumped tunable dye laser and later a solid state Nd-Yag laser served as excitation sources. The Raman signal was dispersed by a monochromator and detected by a gated, intensified Charged Coupled Device (CCD) array. Experiments were carried out prior to each series of hot fire tests to ensure that the Raman signal detected was due to a spontaneous rather than a stimulated Raman emission process. Over sixty hot fire tests were conducted during the first series of tests with the excimer/dye laser. All hot fire testing was at a mixture ratio of 0.5 and chamber pressures of approximately 100 and approximately 300 psia. The Raman spectra of hydrogen, water vapor and oxygen recorded during single element hot fire tests were reduced and analyzed. A significant achievement was the attainment of single shot Raman spectra in cold flow tests. Unfortunately, the single shot signal-to-noise ratio deteriorated to an unacceptable level during the hot fire testing. Attempts to obtain temperature data from the hydrogen Q1-branch

  8. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system...

  9. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system...

  10. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system...

  11. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system...

  12. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  13. Threat detection system for intersection collision avoidance

    NASA Astrophysics Data System (ADS)

    Jocoy, Edward H.; Pierowicz, John A.

    1998-01-01

    Calspan SRL Corporation is currently developing an on- vehicle threat detection system for intersection collision avoidance (ICA) as part of its ICA program with the National Highway Transportation Safety Administration. Crash scenarios were previously defined and an on-board radar sensor was designed. This paper describes recent efforts that include the development of a simulation of a multitarget tracker and collision avoidance algorithm used to predict system performance in a variety of target configurations in the various ICA crash scenarios. In addition, a current headway radar was mounted on the Calspan Instrumented Vehicle and in-traffic data were recorded for two limited crash scenarios. Warning functions were developed through the simulation and applied to the recorded data.

  14. Method and system for detecting explosives

    DOEpatents

    Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.

    2009-03-10

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  15. A complete low cost radon detection system.

    PubMed

    Bayrak, A; Barlas, E; Emirhan, E; Kutlu, Ç; Ozben, C S

    2013-08-01

    Monitoring the (222)Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center.

  16. Simulation Model of Mobile Detection Systems

    SciTech Connect

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  17. Doppler-corrected differential detection system

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1991-01-01

    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.

  18. System for Anomaly and Failure Detection (SAFD) system development

    NASA Astrophysics Data System (ADS)

    Oreilly, D.

    1992-07-01

    This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.

  19. System for Anomaly and Failure Detection (SAFD) system development

    NASA Technical Reports Server (NTRS)

    Oreilly, D.

    1992-01-01

    This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.

  20. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    SciTech Connect

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas.

  1. VISDTA: A video imaging system for detection, tracking, and assessment: Prototype development and concept demonstration

    SciTech Connect

    Pritchard, D.A.

    1987-05-01

    It has been demonstrated that thermal imagers are an effective surveillance and assessment tool for security applications because: (1) they work day or night due to their sensitivity to thermal signatures; (2) penetrability through fog, rain, dust, etc., is better than human eyes; (3) short or long range operation is possible with various optics; and (4) they are strictly passive devices providing visible imagery which is readily interpreted by the operator with little training. Unfortunately, most thermal imagers also require the setup of a tripod, connection of batteries, cables, display, etc. When this is accomplished, the operator must manually move the camera back and forth searching for signs of aggressor activity. VISDTA is designed to provide automatic panning, and in a sense, ''watch'' the imagery in place of the operator. The idea behind the development of VISDTA is to provide a small, portable, rugged system to automatically scan areas and detect targets by computer processing of images. It would use a thermal imager and possibly an intensified day/night TV camera, a pan/ tilt mount, and a computer for system control. If mounted on a dedicated vehicle or on a tower, VISDTA will perform video motion detection functions on incoming video imagery, and automatically scan predefined patterns in search of abnormal conditions which may indicate attempted intrusions into the field-of-regard. In that respect, VISDTA is capable of improving the ability of security forces to maintain security of a given area of interest by augmenting present techniques and reducing operator fatigue.

  2. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of

  3. Label-free high-throughput detection and content sensing of individual droplets in microfluidic systems.

    PubMed

    Yesiloz, Gurkan; Boybay, Muhammed Said; Ren, Carolyn L

    2015-10-21

    This study reports a microwave-microfluidics integrated approach capable of performing droplet detection at high-throughput as well as content sensing of individual droplets without chemical or physical intrusion. The sensing system consists of a custom microwave circuitry and a spiral-shaped microwave resonator that is integrated with microfluidic chips where droplets are generated. The microwave circuitry is very cost effective by using off-the-shelf components only. It eliminates the need for bulky benchtop equipment, and provides a compact, rapid and sensitive tool compatible for Lab-on-a-Chip (LOC) platforms. To evaluate the resonator's sensing capability, it was first applied to differentiate between single-phase fluids which are aqueous solutions with different concentrations of glucose and potassium chloride respectively by measuring its reflection coefficient as a function of frequency. The minimum concentration assessed was 0.001 g ml(-1) for potassium chloride and 0.01 g ml(-1) for glucose. In the droplet detection experiments, it is demonstrated that the microwave sensor is able to detect droplets generated at as high throughput as 3.33 kHz. Around two million droplets were counted over a period of ten minutes without any missing. For droplet sensing experiments, pairs of droplets that were encapsulated with biological materials were generated alternatively in a double T-junction configuration and clearly identified by the microwave sensor. The sensed biological materials include fetal bovine serum, penicillin antibiotic mixture, milk (2% mf) and d-(+)-glucose. This system has significant advantages over optical detection methods in terms of its cost, size and compatibility with LOC settings and also presents significant improvements over other electrical-based detection techniques in terms of its sensitivity and throughput.

  4. Programmable Logic Controller Modification Attacks for use in Detection Analysis

    DTIC Science & Technology

    2014-03-27

    Control System IDS Intrusion Detection System IP Internet Protocol IT Information Technology JTAG Joint Test Action Group LAN Local Area Network PLC...firewalls or Intrusion Detection System (IDS), implementing cryptography, and improving protocol security. There are few vendors, however, that include...Mode Setting Register Values. Mode r0 Value r3 Value PRGM 0x11 0x1 RUN 0x11 0x2 REM PRGM 0x12 0x1 REM RUN 0x12 0x2 cpmode 1 contains two

  5. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    NASA Astrophysics Data System (ADS)

    Trickl, Thomas; Vogelmann, Hannes; Fix, Andreas; Schäfler, Andreas; Wirth, Martin; Calpini, Bertrand; Levrat, Gilbert; Romanens, Gonzague; Apituley, Arnoud; Wilson, Keith M.; Begbie, Robert; Reichardt, Jens; Vömel, Holger; Sprenger, Michael

    2016-07-01

    A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison). The measurements were carried out at four observational sites: Payerne (Switzerland), Bilthoven (the Netherlands), Lindenberg (north-eastern Germany), and the Zugspitze mountain (Garmisch-Partenkichen, German Alps), and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg). The dryness hardens the findings of a preceding study ("Part 1", Trickl et al., 2014) that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in "Part 1" from the Zugspitze CO observations. The trajectories qualitatively explain

  6. Intrusive upwelling in the Central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Benthuysen, Jessica A.; Tonin, Hemerson; Brinkman, Richard; Herzfeld, Michael; Steinberg, Craig

    2016-11-01

    In the Central Great Barrier Reef, the outer continental shelf has an open reef matrix that facilitates the exchange of waters with the Coral Sea. During austral summer, cool water intrudes onto the shelf along the seafloor. Temperature observations reveal cool, bottom intrusions during a 6 year period from the Queensland Integrated Marine Observing System's Palm Passage mooring. A metric is used to identify 64 intrusion events. These intrusions predominantly occur from October to March including the wet season. During an event, the outer-shelf's near-bottom temperature decreases by 1-3°C typically over 1 week. The near-bottom salinity tends to increase, while near-surface changes do not reflect these tendencies. Intrusion events occur predominantly with either weakening equatorward winds or poleward wind bursts. A regional hydrodynamic model for the Great Barrier Reef captures the timing and amplitude of these intrusions. During intrusion events, isotherms tend to uplift over the continental slope and onto the shelf and the East Australian Current intensifies poleward. Over the shelf, a bottom-intensified onshore current coincides with bottom cooling. For numerous events, the model diagnostics reveal that the cross-shelf flow is dominated by the geostrophic contribution. A vertical circulation tilts the isopycnals upward on the southern side of the passage, causing an along-shelf density gradient and geostrophic onshore flow with depth. While wind fluctuations play a major role in controlling the along-shelf currents, model results indicate that a concurrent topographically induced circulation can assist the onshore spread of cool water.

  7. Method and system for turbomachinery surge detection

    DOEpatents

    Faymon, David K.; Mays, Darrell C.; Xiong, Yufei

    2004-11-23

    A method and system for surge detection within a gas turbine engine, comprises: measuring the compressor discharge pressure (CDP) of the gas turbine over a period of time; determining a time derivative (CDP.sub.D ) of the measured (CDP) correcting the CDP.sub.D for altitude, (CDP.sub.DCOR); estimating a short-term average of CDP.sub.DCOR.sup.2 ; estimating a short-term average of CDP.sub.DCOR ; and determining a short-term variance of corrected CDP rate of change (CDP.sub.roc) based upon the short-term average of CDP.sub.DCOR and the short-term average of CDP.sub.DCOR.sup.2. The method and system then compares the short-term variance of corrected CDP rate of change with a pre-determined threshold (CDP.sub.proc) and signals an output when CDP.sub.roc >CDP.sub.proc. The method and system provides a signal of a surge within the gas turbine engine when CDP.sub.roc remains>CDP.sub.proc for pre-determined period of time.

  8. Leak detection system upgrades Cochin pipeline

    SciTech Connect

    Wray, B.; O`Leary, C.

    1996-02-01

    Amoco Canada`s Cochin pipeline system consists of 1,900 miles of 12-inch pipeline, 31 pump stations, eight injection/delivery stations and five propane terminals. It originates just northeast of Edmonton and crosses into the US in North Dakota, runs south of Lake Michigan, turns northeast to pass through Detroit and terminates in Sarnia, Ontario. In 1991, it was decided to significantly upgrade facilities for operating the Cochin pipeline. The control center hardware was obsolete, including parts and components no longer available. Also, SCADA and modeling software was no longer supported by outside vendors or consultants and there was only limited in-house support available. The land-based communications system was unreliable and expensive. Goals for the upgrade project included maintaining (improving) reliability and minimizing operating risks. Amoco Canada wanted to ensure reliable operations and support, provide reliable and effective leak detection, establish dependable communications, have the capability to respond to market additions or changes and maintain customer and regulatory confidence. Another important goal was to minimize operating costs. Specifically, methods were sought to minimize power costs, communications expense and support and maintenance expenditures while eliminating non-productive work. This paper reviews the resulting design and performance of this system.

  9. Automatic system for detecting pornographic images

    NASA Astrophysics Data System (ADS)

    Ho, Kevin I. C.; Chen, Tung-Shou; Ho, Jun-Der

    2002-09-01

    Due to the dramatic growth of network and multimedia technology, people can more easily get variant information by using Internet. Unfortunately, it also makes the diffusion of illegal and harmful content much easier. So, it becomes an important topic for the Internet society to protect and safeguard Internet users from these content that may be encountered while surfing on the Net, especially children. Among these content, porno graphs cause more serious harm. Therefore, in this study, we propose an automatic system to detect still colour porno graphs. Starting from this result, we plan to develop an automatic system to search porno graphs or to filter porno graphs. Almost all the porno graphs possess one common characteristic that is the ratio of the size of skin region and non-skin region is high. Based on this characteristic, our system first converts the colour space from RGB colour space to HSV colour space so as to segment all the possible skin-colour regions from scene background. We also apply the texture analysis on the selected skin-colour regions to separate the skin regions from non-skin regions. Then, we try to group the adjacent pixels located in skin regions. If the ratio is over a given threshold, we can tell if the given image is a possible porno graph. Based on our experiment, less than 10% of non-porno graphs are classified as pornography, and over 80% of the most harmful porno graphs are classified correctly.

  10. System for detecting special nuclear materials

    DOEpatents

    Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas

    2015-07-14

    The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.

  11. Systems and methods for detecting neutrons

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-08-09

    Systems and methods for detecting neutrons. One or more neutron-sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material, such as polystyrene. The nano-sized particles can be compounded into the extruded plastic material with at least one dopant that permits the plastic material to scintillate. One or more plastic light collectors can be associated with a neutron-sensitive scintillator, such that the plastic light collector includes a central hole thereof. A wavelength-shifting fiber can then be located within the hole. The wavelength shifting (WLS) fiber absorbs scintillation light having a wavelength thereof and re-emits the light at a longer wavelength.

  12. Liquid chromatography detection unit, system, and method

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    2015-10-27

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method of liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.

  13. Sea Water Intrusion in Kaligawe Semarang Based on Resistivity Data

    NASA Astrophysics Data System (ADS)

    Setyawan, Agus; Najib; Aribowo, Yoga; Trihadini, Agnis; Hastuti, Dhana; Ramdhani, Fitra; Waskito, Fajar; Febrika, Ganap; Virgiawan, Galang

    2017-02-01

    Semarang is a city on the north coast of the island of Java, Indonesia and it is lowland areas have experienced sea water intrusion. One of interesting area is Kaligawe which located at Eastern part of Semarang. Kaligawe has big population and industrial and it need water consumption. Excessive extraction of groundwater will be resulting height difference surface ground water to the surface of the sea water due to sea water intrusion. Electric resistivity method was used to detect for salt water intrusion. Dipole-dipole configuration was applied with 3 lines to get current, potential difference, and apparent resistivity from the field. 2D model has presented using Res2Dinv to get the true resistivity and the depth of each layer. A calibration of the model was conducted based on geological information. Result showed the subsurface area has 4 layers: sandstone, sandsilt, siltstone and clay. Moreover the sea water intrusion occurs in the Northwest, East and Southern part of the study area

  14. Evaluation of 3M Molecular Detection System and ANSR Pathogen Detection System for rapid detection of Salmonella from egg products.

    PubMed

    Hu, L; Ma, L M; Zheng, S; He, X; Wang, H; Brown, E W; Hammack, T S; Zhang, G

    2016-11-02

    Isothermal amplification assay is a novel simple detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was to evaluate the effectiveness of the 3M Molecular Detection System (MDS) and ANSR Pathogen Detection System (PDS) for the detection of Salmonella in egg products as compared to the Food and Drug Administration's Bacteriological Analytical Manual (BAM) culture method and a modified culture method (3M MDS and ANSR PDS preferred method). Two Salmonella ser. Enteritidis (18579, PT4; CDC_2010K_1441, PT8), one Salmonella ser. Heidelberg (607310-1), and one Salmonella ser. Typhimurium (0723) isolates were used in this study. Seven wet egg products and 13 dry egg products were inoculated with these strains individually at 1 to 5 CFU/25 g. One set of test portions was prepared following FDA BAM procedures [with lactose broth (LB) as pre-enrichment broth]. Another set of test portions was prepared using buffered peptone water (BPW) as pre-enrichment broth, as instructed by the 2 detection systems. Results from 3M MDS and ANSR PDS were 100% in agreement with their BPW-based culture method results. When LB was used as pre-enrichment broth, the number of Salmonella positive test portions (80 tested), identified with the BAM, 3M MDS, and ANSR PDS, were 63, 61, and 60, respectively. In conclusion, both 3M MDS and ANSR PDS Salmonella assays were as effective as their BPW based culture methods and were equivalent to the BAM culture method for the detection of Salmonella in egg products. These sensitive isothermal assays can be used as rapid detection tools for Salmonella in egg products provided that BPW is used as pre-enrichment broth.

  15. An international perspective on Facebook intrusion.

    PubMed

    Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela Magdalena; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N; Mazzoni, Elvis; Pappas, Ilias O; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M S; Ben-Ezra, Menachem

    2016-08-30

    Facebook has become one of the most popular social networking websites in the world. The main aim of the study was to present an international comparison of Facebook intrusion and Internet penetration while examining possible gender differences. The study consisted of 2589 participants from eight countries: China, Greece, Israel, Italy, Poland, Romania, Turkey, USA. Facebook intrusion and Internet penetration were taken into consideration. In this study the relationship between Facebook intrusion and Internet penetration was demonstrated. Facebook intrusion was slightly negatively related to Internet penetration in each country.

  16. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    SciTech Connect

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  17. The Autonomous Pathogen Detection System (APDS)

    SciTech Connect

    Morris, J; Dzenitis, J

    2004-09-22

    Shaped like a mailbox on wheels, it's been called a bioterrorism ''smoke detector.'' It can be found in transportation hubs such as airports and subways, and it may be coming to a location near you. Formally known as the Autonomous Pathogen Detection System, or APDS, this latest tool in the war on bioterrorism was developed at Lawrence Livermore National Laboratory to continuously sniff the air for airborne pathogens and toxins such as anthrax or plague. The APDS is the modern day equivalent of the canaries miners took underground with them to test for deadly carbon dioxide gas. But this canary can test for numerous bacteria, viruses, and toxins simultaneously, report results every hour, and confirm positive samples and guard against false positive results by using two different tests. The fully automated system collects and prepares air samples around the clock, does the analysis, and interprets the results. It requires no servicing or human intervention for an entire week. Unlike its feathered counterpart, when an APDS unit encounters something deadly in the air, that's when it begins singing, quietly. The APDS unit transmits a silent alert and sends detailed data to public health authorities, who can order evacuation and begin treatment of anyone exposed to toxic or biological agents. It is the latest in a series of biodefense detectors developed at DOE/NNSA national laboratories. The manual predecessor to APDS, called BASIS (for Biological Aerosol Sentry and Information System), was developed jointly by Los Alamos and Lawrence Livermore national laboratories. That system was modified to become BioWatch, the Department of Homeland Security's biological urban monitoring program. A related laboratory instrument, the Handheld Advanced Nucleic Acid Analyzer (HANAA), was first tested successfully at LLNL in September 1997. Successful partnering with private industry has been a key factor in the rapid advancement and deployment of biodefense instruments such as these

  18. Phase Measurement System for Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Klipstein, William

    We propose to advance the maturity of the LISA Phasemeter based on our recent experience developing a flight Phasemeter for the Laser Ranging Interferometer (LRI) on NASA's GRACE Follow-On mission. Our three main objectives are to: 1) incorporate the flight GRACE Follow-on LRI phasemeter developments into the TRL4 LISA design used extensively in our interferometer testbed; 2) evaluate the LRI Phasemeter against LISA's more stringent requirements in order to identify required design changes; 3) advance the design maturity of the LISA phasemeter through an architecture study to maintain the viability of the Phasemeter as a contribution to ESA's L3 gravitational wave mission. NASA intends to partner in the European Space Agency's (ESA) Gravitational-Wave detection mission, selected for the L3 mission to launch in 2034. This is expected to be a LISA-like mission with the two enabling LISA technologies: 1. a drag-free system to mitigate or measure non-gravitational forces on the spacecraft, 2. an interferometric measure¬ment system with precision phasemeters to measure picometer variations over the million kilometer separation between the spacecraft. To validate the key technologies of the drag-free system, the ESA LISA Pathfinder (LPF) mission is currently demonstrating a gravitational reference sensor (GRS) and microNewton thrusters in space. While LPF has an on-board interferometer to measure proof- mass motion with respect to the spacecraft, the LPF interferometer does not test the interspacecraft laser interferometry needed for a LISA-like mission. To validate the key technologies of the LISA interferometric measurement, the JPL LISA Phase Measurement Team has studied and developed a prototype LISA phase measurement system. This phase measurement system has also been adapted for a demonstration mission, albeit in a different arena. GRACE Follow-Ons Laser Ranging Interferometer (LRI), due to launch in late 2017, will make LISA-like inter-spacecraft interferometric

  19. Integration of the TDWR and LLWAS wind shear detection system

    NASA Technical Reports Server (NTRS)

    Cornman, Larry

    1991-01-01

    Operational demonstrations of a prototype TDWR/LLWAS (Terminal Doppler Weather Radar/Low Level Wind shear Alarm System) integrated wind shear detection system were conducted. The integration of wind shear detection systems is needed to provide end-users with a single, consensus source of information. A properly implemented integrated system provides wind shear warnings of a higher quality than stand-alone LLWAS or TDWR systems. The algorithmic concept used to generate the TDWR/LLWAS integrated products and several case studies are discussed, indicating the viability and potential of integrated wind shear detection systems. Implications for integrating ground and airborne wind shear detection systems are briefly examined.

  20. Detection of contamination of municipal water distribution systems

    DOEpatents

    Cooper, John F [Oakland, CA

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  1. Non-intrusive method of measuring PCV blowby constituents

    SciTech Connect

    Crane, M.E.; Ariga, S.; Boulard, R.; Lindamood, B.

    1994-10-01

    A technique is presented that has been successfully demonstrated to non-intrusively and quickly sample gases typically found in PCV systems. Color Detection Tubes (CDTs) were used with a simple sampling arrangement to monitor CO{sub 2}, NO{sub x}, O{sub 2}, and H{sub 2}O(g) at the closure line, crankcase, and PCV line. Measurements were accurate and could be made instantaneously. Short Path Thermal Desorbtion Tubes (SPTDTs) were used at the same engine locations for the characterization of fuel- and oil-derived hydrocarbon (HC) fractions and required only 50 cc samples. High engine loads caused pushover of blowby vapors as indicated by increased concentrations of CO{sub 2}, NO{sub x}, H{sub 2}O(g), and fuel HCs in the engines` fresh air inlets during WOT operation. Peak concentrations of blowby vapors were measured in the crankcase under no load and part throttle conditions. Oxygen concentrations always opposed the trends of CO{sub 2}, NO{sub x}, and H{sub 2}O(g). SPTDT data revealed that the PCV system consumes approximately 100-200 times more fuel vapors than oil vapors, on a mass basis; however, PCV-derived oil consumption represented almost 12 percent of total engine oil consumption under no load conditions. 8 refs., 17 figs.

  2. Safe Detection System for Hydrogen Leaks

    SciTech Connect

    Lieberman, Robert A.; Beshay, Manal

    2012-02-29

    Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, and has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.

  3. Coastal Marsh Monitoring for Persistent Saltwater Intrusion

    NASA Technical Reports Server (NTRS)

    Hall, Callie M.

    2008-01-01

    This viewgraph presentation reviews NASA's work on the project that supports the Gulf of Mexico Alliance (GOMA) Governors Action Plan to monitor the coastal wetlands for saltwater intrusion. The action items that relate to the task are: (1) Obtain information on projected relative sea level rise, subsidence, and storm vulnerability to help prioritize conservation projects, including restoration, enhancement, and acquisition, and (2) Develop and apply ecosystem models to forecast the habitat structure and succession following hurricane disturbance and changes in ecological functions and services that impact vital socio-economic aspects of coastal systems. The objectives of the program are to provide resource managers with remote sensing products that support ecosystem forecasting models requiring salinity and inundation data. Specifically, the proposed work supports the habitat-switching modules in the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) model, which provides scientific evaluation for restoration management.

  4. Development of Fall Detection System Using Ultrasound Sensors

    NASA Astrophysics Data System (ADS)

    Tajima, Takuya; Abe, Takehiko; Kimura, Haruhiko

    This paper proposes a sensing system for detecting bather's fall. The fall detection system uses ultrasound sensors installed on the ceiling of bathroom to measure the distance between sensor and a bather. The merits of utilizing ultrasound sensor are easy installation and easy use. Moreover the apparatus has an advantage of enhancing the privacy of bathers and having robustness against humidity. In order to detect bather's fall, the proposed system uses the following two methods: status detection and behavior detection. The function of status detection is to estimate bather's postures such as standing and sitting by monitoring the highest part of bather's body. Meanwhile, the function of behavior detection is to grasp the speed of bather's vertical movement by monitoring the change of distance between sensor and the bather. The system estimates the occurrence of bather's fall when the distance changes suddenly. As a result of experiment with some subjects, the system was possible to detect bather's falling behavior with high accuracy.

  5. Analyzing and Detecting Problems in Systems of Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Ackermann, Christopher; Stratton, William C.; Sibol, Deane E.; Godfrey, Sally

    2008-01-01

    Many software systems are evolving complex system of systems (SoS) for which inter-system communication is mission-critical. Evidence indicates that transmission failures and performance issues are not uncommon occurrences. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we are presenting an approach for analyzing inter-system communications with the goal to uncover both transmission errors and performance problems. Our approach consists of a visualization and an evaluation component. While the visualization of the observed communication aims to facilitate understanding, the evaluation component automatically checks the conformance of an observed communication (actual) to a desired one (planned). The actual and the planned are represented as sequence diagrams. The evaluation algorithm checks the conformance of the actual to the planned diagram. We have applied our approach to the communication of aerospace systems and were successful in detecting and resolving even subtle and long existing transmission problems.

  6. Legal Vs. Psychological Aspects of Intrusiveness.

    ERIC Educational Resources Information Center

    Binder, Virginia L.

    Court decisions stressing the rights of mental patients have necessitated a radical revision in the management of behavioral treatment programs. The client's rights to the least intrusive procedures to achieve treatment goals have become important in case law. Factors which identify intrusiveness include: (1) the extent to which the "new…

  7. A Teacher's Checklist for Evaluating Treatment Intrusiveness

    ERIC Educational Resources Information Center

    Carter, Stacy L.; Mayton, Michael R.; Wheeler, John J.

    2011-01-01

    Teachers are frequently involved in developing and evaluating treatments for problematic behaviors. Along with other members of the interdisciplinary team, they must determine the level of intrusiveness that a treatment may have on a student. Several factors that influence the intrusiveness of treatment procedures are described. These factors were…

  8. Vapour Intrusion into Buildings - A Literature Review

    EPA Science Inventory

    This chapter provides a review of recent research on vapour intrusion of volatile organic compounds (VOCs) into buildings. The chapter builds on a report from Tillman and Weaver (2005) which reviewed the literature on vapour intrusion through 2005. Firstly, the term ‘vapour intru...

  9. Drastic change of the intrusion-extrusion behavior of electrolyte solutions in pure silica *BEA-type zeolite.

    PubMed

    Ryzhikov, A; Khay, I; Nouali, H; Daou, T J; Patarin, J

    2014-09-07

    High pressure water and electrolyte solutions intrusion-extrusion experiments in pure-silica *BEA-type zeolite (zeosil β) were performed in order to study the performances of these systems in energy absorption and storage. The "zeosil β-water" system displays a bumper behavior with an intrusion pressure of 53 MPa and an absorbed energy of 8.3 J g(-1). For the "zeosil β-LiCl aqueous solutions" systems the intrusion pressure increases with the LiCl concentration to 95, 111 and 115 MPa for 10, 15 and 20 M solution, respectively. However, for concentrations above 10 M, a transformation of the system behavior from bumper to shock-absorber is observed. The zeolite samples were characterized by several structural and physicochemical methods (XRD, TGA, solid-state NMR, N2 physisorption, ICP-OES) before and after intrusion-extrusion experiments in order to understand the influence of the LiCl concentration on the intrusion-extrusion behavior. It is shown that the intrusion of water and LiCl solutions with low concentration leads to the formation of Si-(OSi)3OH groups, whereas no defects are observed under intrusion of concentrated LiCl solutions. A possible mechanism of LiCl solution intrusion based on separate intrusion of H2O molecules and Li(H2O)x(+) ions is proposed.

  10. Detection technique of targets for missile defense system

    NASA Astrophysics Data System (ADS)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  11. Systems and Methods for Automated Water Detection Using Visible Sensors

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  12. Geochronology of the Neogene intrusive magmatism of the Oaș—Gutâi Mountains, Eastern Carpathians (NW Romania)

    NASA Astrophysics Data System (ADS)

    Kovacs, Marinel; Pécskay, Zoltán; Fülöp, Alexandrina; Jurje, Maria; Edelstein, Oscar

    2013-12-01

    Earlier geological work in the Oaș-Gutâi Mts (OG), Eastern Carpathians, has revealed the extensive presence of shallow subvolcanic intrusive bodies, both exposed on the surface and covered by Paleogene-Neogene sedimentary sequences and Neogene volcanic formations. This study is based on detailed mapping and sampling of the OG Neogene intrusive magmatic rocks. Thirty seven representative intrusions (sills, dykes, microlaccoliths, etc.) were selected for radiometric dating. These intrusions show a wide variety of petrographic rock-types: from microgabbros to microgranodiorites and from basalts to andesites. However, the intrusions consist of typical calc-alkaline, medium-K rocks, similar to the volcanic rocks which outcrop in the same areas. The K-Ar age determinations on whole-rock samples of intrusions yielded ages between 11.9 Ma and 7.0 Ma (from Late Sarmatian to Middle Pannonian). The results are in good agreement with the common assumption, based on the biostratigraphic and geological data, that large volumes of intrusions have formed during the paroxysm of the intermediate volcanic activity in the OG. Except for the Firiza basalt intrusive complex of the Gutâi Mts (8.1-7.0 Ma), the OG intrusions show similar K-Ar ages as the intrusions of the "Subvolcanic Zone" and Călimani Mts from Eastern Carpathians. The timing of the OG intrusive magmatism partially overlaps with the timing of the intrusive magmatic activity in the Eastern Moravia and Pieniny Mts. The systematic radiometric datings in the whole OG give clear evidence that the hydrothermal activity related to the epithermal systems always postdates intrusion emplacement.

  13. [Optical detection system for micro biochemical analyses].

    PubMed

    Li, Feng; Wu, Yi-hui; Zhao, Hua-bing; Ju, Hui

    2005-04-01

    For the need of biochemical chip, which consumes fewer specimens and is easy to integrate with micro-fluid chip, two kinds of spectrophotometric analysis methods are described in the present paper. Both the direct detection method and evanescent wave detection method are used in the experiments with visible light (460-800 nm). The experimental results proved that the direct detection is simple and evident; on the other hand the evanescent wave detection method consumes much less reagent and is easy to integrate with microchips.

  14. Magnetic fabric constraints of the emplacement of igneous intrusions

    NASA Astrophysics Data System (ADS)

    Maes, Stephanie M.

    Fabric analysis is critical to evaluating the history, kinematics, and dynamics of geological deformation. This is particularly true of igneous intrusions, where the development of fabric is used to constrain magmatic flow and emplacement mechanisms. Fabric analysis was applied to three mafic intrusions, with different tectonic and petrogenetic histories, to study emplacement and magma flow: the Insizwa sill (Mesozoic Karoo Large Igneous Province, South Africa), Sonju Lake intrusion (Proterozoic Midcontinent Rift, Minnesota, USA), and Palisades sill (Mesozoic rift basin, New Jersey, USA). Multiple fabric analysis techniques were used to define the fabric in each intrusive body. Using digital image analysis techniques on multiple thin sections, the three-dimensional shape-preferred orientation (SPO) of populations of mineral phases were calculated. Low-field anisotropy of magnetic susceptibility (AMS) measurements were used as a proxy for the mineral fabric of the ferromagnetic phases (e.g., magnetite). In addition, a new technique---high-field AMS---was used to isolate the paramagnetic component of the fabric (e.g., silicate fabric). Each fabric analysis technique was then compared to observable field fabrics as a framework for interpretation. In the Insizwa sill, magnetic properties were used to corroborate vertical petrologic zonation and distinguish sub-units within lithologically defined units. Abrupt variation in magnetic properties provides evidence supporting the formation of the Insizwa sill by separate magma intrusions. Low-field AMS fabrics in the Sonju Lake intrusion exhibit consistent SW-plunging lineations and SW-dipping foliations. These fabric orientations provide evidence that the cumulate layers in the intrusion were deposited in a dynamic environment, and indicate magma flowed from southwest to northeast, parallel to the pre-existing rift structures. In the Palisades sill, the magnetite SPO and low-field AMS lineation have developed orthogonal to

  15. Fusion of optimized indicators from Advanced Driver Assistance Systems (ADAS) for driver drowsiness detection.

    PubMed

    Daza, Iván García; Bergasa, Luis Miguel; Bronte, Sebastián; Yebes, Jose Javier; Almazán, Javier; Arroyo, Roberto

    2014-01-09

    This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study.

  16. Real Time Intrusion Detection (la detection des intrusions en temps reel)

    DTIC Science & Technology

    2003-06-01

    modelled by extended finite state machines . They examined the performance of these techniques, for real-time monitoring of communication networks, from both...widely used to avoid side -effect “Denial Of Service” attacks. The third presentation (Massicotte, Whalen and Bilodeau) was on a prototype network... machines , indicates the state and shows configuration information about the hosts and their connectivity. To query network components, the tool uses

  17. System and method for detecting cells or components thereof

    DOEpatents

    Porter, Marc D.; Lipert, Robert J.; Doyle, Robert T.; Grubisha, Desiree S.; Rahman, Salma

    2009-01-06

    A system and method for detecting a detectably labeled cell or component thereof in a sample comprising one or more cells or components thereof, at least one cell or component thereof of which is detectably labeled with at least two detectable labels. In one embodiment, the method comprises: (i) introducing the sample into one or more flow cells of a flow cytometer, (ii) irradiating the sample with one or more light sources that are absorbed by the at least two detectable labels, the absorption of which is to be detected, and (iii) detecting simultaneously the absorption of light by the at least two detectable labels on the detectably labeled cell or component thereof with an array of photomultiplier tubes, which are operably linked to two or more filters that selectively transmit detectable emissions from the at least two detectable labels.

  18. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If...

  19. 46 CFR 108.411 - Smoke detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Smoke detection system. 108.411 Section 108.411 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.411 Smoke detection system. Each smoke accumulator in a...

  20. 46 CFR 108.404 - Selection of fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If...