Sample records for intuitive computer code

  1. Canonical microcircuits for predictive coding

    PubMed Central

    Bastos, Andre M.; Usrey, W. Martin; Adams, Rick A.; Mangun, George R.; Fries, Pascal; Friston, Karl J.

    2013-01-01

    Summary This review considers the influential notion of a canonical (cortical) microcircuit in light of recent theories about neuronal processing. Specifically, we conciliate quantitative studies of microcircuitry and the functional logic of neuronal computations. We revisit the established idea that message passing among hierarchical cortical areas implements a form of Bayesian inference – paying careful attention to the implications for intrinsic connections among neuronal populations. By deriving canonical forms for these computations, one can associate specific neuronal populations with specific computational roles. This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding. Furthermore, it provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate. PMID:23177956

  2. Bridging Inquiry-Based Science and Constructionism: Exploring the Alignment between Students Tinkering with Code of Computational Models and Goals of Inquiry

    ERIC Educational Resources Information Center

    Wagh, Aditi; Cook-Whitt, Kate; Wilensky, Uri

    2017-01-01

    Research on the design of learning environments for K-12 science education has been informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused on designing intuitively accessible authoring…

  3. NP-hardness of decoding quantum error-correction codes

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Le Gall, François

    2011-05-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  4. Neoclassical transport in toroidal plasmas with nonaxisymmetric flux surfaces

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.

    2015-04-15

    The capability to treat nonaxisymmetric flux surface geometry has been added to the drift-kinetic code NEO. Geometric quantities (i.e. metric elements) are supplied by a recently-developed local 3D equilibrium solver, allowing neoclassical transport coefficients to be systematically computed while varying the 3D plasma shape in a simple and intuitive manner. Code verification is accomplished via detailed comparison with 3D Pfirsch–Schlüter theory. A discussion of the various collisionality regimes associated with 3D transport is given, with an emphasis on non-ambipolar particle flux, neoclassical toroidal viscosity, energy flux and bootstrap current. As a result, we compute the transport in the presence ofmore » ripple-type perturbations in a DIII-D-like H-mode edge plasma.« less

  5. Expression Templates for Truncated Power Series

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Shasharina, Svetlana G.

    1997-05-01

    Truncated power series are used extensively in accelerator transport modeling for rapid tracking and analysis of nonlinearity. Such mathematical objects are naturally represented computationally as objects in C++. This is more intuitive and produces more transparent code through operator overloading. However, C++ object use often comes with a computational speed loss due, e.g., to the creation of temporaries. We have developed a subset of truncated power series expression templates(http://monet.uwaterloo.ca/blitz/). Such expression templates use the powerful template processing facility of C++ to combine complicated expressions into series operations that exectute more rapidly. We compare computational speeds with existing truncated power series libraries.

  6. Code IN Exhibits - Supercomputing 2000

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob F.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers immense resource opportunities but at the expense of great difficulty of use. We present ILab, an advanced graphical user interface approach to this problem. Our novel strategy stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  7. Adaptive Spontaneous Transitions between Two Mechanisms of Numerical Averaging.

    PubMed

    Brezis, Noam; Bronfman, Zohar Z; Usher, Marius

    2015-06-04

    We investigated the mechanism with which humans estimate numerical averages. Participants were presented with 4, 8 or 16 (two-digit) numbers, serially and rapidly (2 numerals/second) and were instructed to convey the sequence average. As predicted by a dual, but not a single-component account, we found a non-monotonic influence of set-size on accuracy. Moreover, we observed a marked decrease in RT as set-size increases and RT-accuracy tradeoff in the 4-, but not in the 16-number condition. These results indicate that in accordance with the normative directive, participants spontaneously employ analytic/sequential thinking in the 4-number condition and intuitive/holistic thinking in the 16-number condition. When the presentation rate is extreme (10 items/sec) we find that, while performance still remains high, the estimations are now based on intuitive processing. The results are accounted for by a computational model postulating population-coding underlying intuitive-averaging and working-memory-mediated symbolic procedures underlying analytical-averaging, with flexible allocation between the two.

  8. Applying Standard Interfaces to a Process-Control Language

    NASA Technical Reports Server (NTRS)

    Berthold, Richard T.

    2005-01-01

    A method of applying open-operating-system standard interfaces to the NASA User Interface Language (UIL) has been devised. UIL is a computing language that can be used in monitoring and controlling automated processes: for example, the Timeliner computer program, written in UIL, is a general-purpose software system for monitoring and controlling sequences of automated tasks in a target system. In providing the major elements of connectivity between UIL and the target system, the present method offers advantages over the prior method. Most notably, unlike in the prior method, the software description of the target system can be made independent of the applicable compiler software and need not be linked to the applicable executable compiler image. Also unlike in the prior method, it is not necessary to recompile the source code and relink the source code to a new executable compiler image. Abstraction of the description of the target system to a data file can be defined easily, with intuitive syntax, and knowledge of the source-code language is not needed for the definition.

  9. Imagination, Intuition, and Computing in School Algebra.

    ERIC Educational Resources Information Center

    Kieren, Thomas E.; Olson, Alton T.

    1989-01-01

    Two incidents involving novice teachers with classes in grades 7 and 10 are presented. Then considered are the nature of intuitive mathematics and contributions computers can make to such intuitive mathematics, particularly in Algebra. (MNS)

  10. LAURA Users Manual: 5.3-48528

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Chirstopher O.; Kleb, Bil

    2010-01-01

    This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the FUN3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  11. LAURA Users Manual: 5.5-64987

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, William L.

    2013-01-01

    This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintain ability by eliminating the requirement for problem dependent recompilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  12. LAURA Users Manual: 5.4-54166

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2011-01-01

    This users manual provides in-depth information concerning installation and execution of Laura, version 5. Laura is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 Laura code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multi-physics coupling. As a result, Laura now shares gas-physics modules, MPI modules, and other low-level modules with the Fun3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  13. LAURA Users Manual: 5.2-43231

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2009-01-01

    This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multiphysics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the FUN3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  14. Laura Users Manual: 5.1-41601

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2009-01-01

    This users manual provides in-depth information concerning installation and execution of LAURA, version 5. LAURA is a structured, multi-block, computational aerothermodynamic simulation code. Version 5 represents a major refactoring of the original Fortran 77 LAURA code toward a modular structure afforded by Fortran 95. The refactoring improved usability and maintainability by eliminating the requirement for problem-dependent re-compilations, providing more intuitive distribution of functionality, and simplifying interfaces required for multiphysics coupling. As a result, LAURA now shares gas-physics modules, MPI modules, and other low-level modules with the FUN3D unstructured-grid code. In addition to internal refactoring, several new features and capabilities have been added, e.g., a GNU-standard installation process, parallel load balancing, automatic trajectory point sequencing, free-energy minimization, and coupled ablation and flowfield radiation.

  15. Optimally combining dynamical decoupling and quantum error correction.

    PubMed

    Paz-Silva, Gerardo A; Lidar, D A

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.

  16. Optimally combining dynamical decoupling and quantum error correction

    PubMed Central

    Paz-Silva, Gerardo A.; Lidar, D. A.

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization. PMID:23559088

  17. Gyrofluid Modeling of Turbulent, Kinetic Physics

    NASA Astrophysics Data System (ADS)

    Despain, Kate Marie

    2011-12-01

    Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.

  18. Tight-binding calculation of single-band and generalized Wannier functions of graphene

    NASA Astrophysics Data System (ADS)

    Ribeiro, Allan Victor; Bruno-Alfonso, Alexys

    Recent work has shown that a tight-binding approach associated with Wannier functions (WFs) provides an intuitive physical image of the electronic structure of graphene. Regarding the case of graphene, Marzari et al. displayed the calculated WFs and presented a comparison between the Wannier-interpolated bands and the bands generated by using the density-functional code. Jung and MacDonald provided a tight-binding model for the π-bands of graphene that involves maximally localized Wannier functions (MLWFs). The mixing of the bands yields better localized WFs. In the present work, the MLWFs of graphene are calculated by combining the Quantum-ESPRESSO code and tight-binding approach. The MLWFs of graphene are calculated from the Bloch functions obtained through a tight binding approach that includes interactions and overlapping obtained by partially fitting the DFT bands. The phase of the Bloch functions of each band is appropriately chosen to produce MLWFs. The same thing applies to the coefficients of their linear combination in the generalized case. The method allows for an intuitive understanding of the maximally localized WFs of graphene and shows excellent agreement with the literature. Moreover, it provides accurate results at reduced computational cost.

  19. Development of a New System for Transport Simulation and Analysis at General Atomics

    NASA Astrophysics Data System (ADS)

    St. John, H. E.; Peng, Q.; Freeman, J.; Crotinger, J.

    1997-11-01

    General Atomics has begun a long term program to improve all aspects of experimental data analysis related to DIII--D. The object is to make local and visiting physicists as productive as possible, with only a small investment in training, by developing intuitive, sophisticated interfaces to existing and newly created computer programs. Here we describe our initial work and results of a pilot project in this program. The pilot project is a collaboratory effort between LLNL and GA which will ultimately result in the merger of Corsica and ONETWO (and selected modules from other codes) into a new advanced transport code system. The initial goal is to produce a graphical user interface to the transport code ONETWO which will couple to a programmable (steerable) front end designed for the transport system. This will be an object oriented scheme written primarily in python. The programmable application will integrate existing C, C^++, and Fortran methods in a single computational paradigm. Its most important feature is the use of plug in physics modules which will allow a high degree of customization.

  20. Pteros: fast and easy to use open-source C++ library for molecular analysis.

    PubMed

    Yesylevskyy, Semen O

    2012-07-15

    An open-source Pteros library for molecular modeling and analysis of molecular dynamics trajectories for C++ programming language is introduced. Pteros provides a number of routine analysis operations ranging from reading and writing trajectory files and geometry transformations to structural alignment and computation of nonbonded interaction energies. The library features asynchronous trajectory reading and parallel execution of several analysis routines, which greatly simplifies development of computationally intensive trajectory analysis algorithms. Pteros programming interface is very simple and intuitive while the source code is well documented and easily extendible. Pteros is available for free under open-source Artistic License from http://sourceforge.net/projects/pteros/. Copyright © 2012 Wiley Periodicals, Inc.

  1. VO-KOREL: A Fourier Disentangling Service of the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Škoda, Petr; Hadrava, Petr; Fuchs, Jan

    2012-04-01

    VO-KOREL is a web service exploiting the technology of the Virtual Observatory for providing astronomers with the intuitive graphical front-end and distributed computing back-end running the most recent version of the Fourier disentangling code KOREL. The system integrates the ideas of the e-shop basket, conserving the privacy of every user by transfer encryption and access authentication, with features of laboratory notebook, allowing the easy housekeeping of both input parameters and final results, as well as it explores a newly emerging technology of cloud computing. While the web-based front-end allows the user to submit data and parameter files, edit parameters, manage a job list, resubmit or cancel running jobs and mainly watching the text and graphical results of a disentangling process, the main part of the back-end is a simple job queue submission system executing in parallel multiple instances of the FORTRAN code KOREL. This may be easily extended for GRID-based deployment on massively parallel computing clusters. The short introduction into underlying technologies is given, briefly mentioning advantages as well as bottlenecks of the design used.

  2. DNA as a Binary Code: How the Physical Structure of Nucleotide Bases Carries Information

    ERIC Educational Resources Information Center

    McCallister, Gary

    2005-01-01

    The DNA triplet code also functions as a binary code. Because double-ring compounds cannot bind to double-ring compounds in the DNA code, the sequence of bases classified simply as purines or pyrimidines can encode for smaller groups of possible amino acids. This is an intuitive approach to teaching the DNA code. (Contains 6 figures.)

  3. Mixed quantum/classical theory of rotationally and vibrationally inelastic scattering in space-fixed and body-fixed reference frames

    NASA Astrophysics Data System (ADS)

    Semenov, Alexander; Babikov, Dmitri

    2013-11-01

    We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scattering process in the diatomic molecule + atom system. Two versions of theory are presented, first in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-valued and dense. Such calculations may be computationally demanding for heavier molecules and/or higher temperatures, when the number of accessible channels becomes large. In contrast, the second version of theory requires some tedious derivations and the final equations of motion are rather complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from the computational point of view, while the space-fixed formulation can serve as a test of the body-fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model system to ensure that all equations, matrixes, and computer codes in both formulations are correct.

  4. Practical aspects of prestack depth migration with finite differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less

  5. The innovation catalysts.

    PubMed

    Martin, Roger L

    2011-06-01

    A few years ago the software development company Intuit realized that it needed a new approach to galvanizing customers. The company's Net Promoter Score was faltering, and customer recommendations of new products were especially disappointing. Intuit decided to hold a two-day, off-site meeting for the company's top 300 managers with a focus on the role of design in innovation. One of the days was dedicated to a program called Design for Delight. The centerpiece of the day was a PowerPoint presentation by Intuit founder Scott Cook, who realized midway through that he was no Steve Jobs: The managers listened dutifully, but there was little energy in the room. By contrast, a subsequent exercise in which the participants worked through a design challenge by creating prototypes, getting feedback, iterating, and refining, had them mesmerized. The eventual result was the creation of a team of nine design-thinking coaches--"innovation catalysts"--from across Intuit who were made available to help any work group create prototypes, run experiments, and learn from customers. The process includes a "painstorm" (to determine the customer's greatest pain point), a "soljam" (to generate and then winnow possible solutions), and a "code-jam" (to write code "good enough" to take to customers within two weeks). Design for Delight has enabled employees throughout Intuit to move from satisfying customers to delighting them.

  6. The rat-a-gorical imperative: Moral intuition and the limits of affective learning.

    PubMed

    Greene, Joshua D

    2017-10-01

    Decades of psychological research have demonstrated that intuitive judgments are often unreliable, thanks to their inflexible reliance on limited information (Kahneman, 2003, 2011). Research on the computational underpinnings of learning, however, indicates that intuitions may be acquired by sophisticated learning mechanisms that are highly sensitive and integrative. With this in mind, Railton (2014) urges a more optimistic view of moral intuition. Is such optimism warranted? Elsewhere (Greene, 2013) I've argued that moral intuitions offer reasonably good advice concerning the give-and-take of everyday social life, addressing the basic problem of cooperation within a "tribe" ("Me vs. Us"), but that moral intuitions offer unreliable advice concerning disagreements between tribes with competing interests and values ("Us vs. Them"). Here I argue that a computational perspective on moral learning underscores these conclusions. The acquisition of good moral intuitions requires both good (representative) data and good (value-aligned) training. In the case of inter-tribal disagreement (public moral controversy), the problem of bad training looms large, as training processes may simply reinforce tribal differences. With respect to moral philosophy and the paradoxical problems it addresses, the problem of bad data looms large, as theorists seek principles that minimize counter-intuitive implications, not only in typical real-world cases, but in unusual, often hypothetical, cases such as some trolley dilemmas. In such cases the prevailing real-world relationships between actions and consequences are severed or reversed, yielding intuitions that give the right answers to the wrong questions. Such intuitions-which we may experience as the voice of duty or virtue-may simply reflect the computational limitations inherent in affective learning. I conclude, in optimistic agreement with Railton, that progress in moral philosophy depends on our having a better understanding of the mechanisms behind our moral intuitions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The role of the insula in intuitive expert bug detection in computer code: an fMRI study.

    PubMed

    Castelhano, Joao; Duarte, Isabel C; Ferreira, Carlos; Duraes, Joao; Madeira, Henrique; Castelo-Branco, Miguel

    2018-05-09

    Software programming is a complex and relatively recent human activity, involving the integration of mathematical, recursive thinking and language processing. The neural correlates of this recent human activity are still poorly understood. Error monitoring during this type of task, requiring the integration of language, logical symbol manipulation and other mathematical skills, is particularly challenging. We therefore aimed to investigate the neural correlates of decision-making during source code understanding and mental manipulation in professional participants with high expertise. The present fMRI study directly addressed error monitoring during source code comprehension, expert bug detection and decision-making. We used C code, which triggers the same sort of processing irrespective of the native language of the programmer. We discovered a distinct role for the insula in bug monitoring and detection and a novel connectivity pattern that goes beyond the expected activation pattern evoked by source code understanding in semantic language and mathematical processing regions. Importantly, insula activity levels were critically related to the quality of error detection, involving intuition, as signalled by reported initial bug suspicion, prior to final decision and bug detection. Activity in this salience network (SN) region evoked by bug suspicion was predictive of bug detection precision, suggesting that it encodes the quality of the behavioral evidence. Connectivity analysis provided evidence for top-down circuit "reutilization" stemming from anterior cingulate cortex (BA32), a core region in the SN that evolved for complex error monitoring such as required for this type of recent human activity. Cingulate (BA32) and anterolateral (BA10) frontal regions causally modulated decision processes in the insula, which in turn was related to activity of math processing regions in early parietal cortex. In other words, earlier brain regions used during evolution for other functions seem to be reutilized in a top-down manner for a new complex function, in an analogous manner as described for other cultural creations such as reading and literacy.

  8. Packaging printed circuit boards: A production application of interactive graphics

    NASA Technical Reports Server (NTRS)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  9. Adiabatic markovian dynamics.

    PubMed

    Oreshkov, Ognyan; Calsamiglia, John

    2010-07-30

    We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.

  10. Aether: leveraging linear programming for optimal cloud computing in genomics.

    PubMed

    Luber, Jacob M; Tierney, Braden T; Cofer, Evan M; Patel, Chirag J; Kostic, Aleksandar D

    2018-05-01

    Across biology, we are seeing rapid developments in scale of data production without a corresponding increase in data analysis capabilities. Here, we present Aether (http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective and scalable framework that uses linear programming to optimally bid on and deploy combinations of underutilized cloud computing resources. Our approach simultaneously minimizes the cost of data analysis and provides an easy transition from users' existing HPC pipelines. Data utilized are available at https://pubs.broadinstitute.org/diabimmune and with EBI SRA accession ERP005989. Source code is available at (https://github.com/kosticlab/aether). Examples, documentation and a tutorial are available at http://aether.kosticlab.org. chirag_patel@hms.harvard.edu or aleksandar.kostic@joslin.harvard.edu. Supplementary data are available at Bioinformatics online.

  11. Components of Understanding in Proportional Reasoning: A Fuzzy Set Representation of Developmental Progressions.

    ERIC Educational Resources Information Center

    Moore, Colleen F.; And Others

    1991-01-01

    Examined the development of proportional reasoning by means of a temperature mixture task. Results show the importance of distinguishing between intuitive knowledge and formal computational knowledge of proportional concepts. Provides a new perspective on the relation of intuitive and computational knowledge during development. (GLR)

  12. Many-core graph analytics using accelerated sparse linear algebra routines

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric

    2016-05-01

    Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.

  13. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    NASA Astrophysics Data System (ADS)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  14. Topology optimization aided structural design: Interpretation, computational aspects and 3D printing.

    PubMed

    Kazakis, Georgios; Kanellopoulos, Ioannis; Sotiropoulos, Stefanos; Lagaros, Nikos D

    2017-10-01

    Construction industry has a major impact on the environment that we spend most of our life. Therefore, it is important that the outcome of architectural intuition performs well and complies with the design requirements. Architects usually describe as "optimal design" their choice among a rather limited set of design alternatives, dictated by their experience and intuition. However, modern design of structures requires accounting for a great number of criteria derived from multiple disciplines, often of conflicting nature. Such criteria derived from structural engineering, eco-design, bioclimatic and acoustic performance. The resulting vast number of alternatives enhances the need for computer-aided architecture in order to increase the possibility of arriving at a more preferable solution. Therefore, the incorporation of smart, automatic tools in the design process, able to further guide designer's intuition becomes even more indispensable. The principal aim of this study is to present possibilities to integrate automatic computational techniques related to topology optimization in the phase of intuition of civil structures as part of computer aided architectural design. In this direction, different aspects of a new computer aided architectural era related to the interpretation of the optimized designs, difficulties resulted from the increased computational effort and 3D printing capabilities are covered here in.

  15. Aether: leveraging linear programming for optimal cloud computing in genomics

    PubMed Central

    Luber, Jacob M; Tierney, Braden T; Cofer, Evan M; Patel, Chirag J

    2018-01-01

    Abstract Motivation Across biology, we are seeing rapid developments in scale of data production without a corresponding increase in data analysis capabilities. Results Here, we present Aether (http://aether.kosticlab.org), an intuitive, easy-to-use, cost-effective and scalable framework that uses linear programming to optimally bid on and deploy combinations of underutilized cloud computing resources. Our approach simultaneously minimizes the cost of data analysis and provides an easy transition from users’ existing HPC pipelines. Availability and implementation Data utilized are available at https://pubs.broadinstitute.org/diabimmune and with EBI SRA accession ERP005989. Source code is available at (https://github.com/kosticlab/aether). Examples, documentation and a tutorial are available at http://aether.kosticlab.org. Contact chirag_patel@hms.harvard.edu or aleksandar.kostic@joslin.harvard.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:29228186

  16. Adaptationism and intuitions about modern criminal justice.

    PubMed

    Petersen, Michael Bang

    2013-02-01

    Research indicates that individuals have incoherent intuitions about particular features of the criminal justice system. This could be seen as an argument against the existence of adapted computational systems for counter-exploitation. Here, I outline how the model developed by McCullough et al. readily predicts the production of conflicting intuitions in the context of modern criminal justice issues.

  17. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less

  18. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.

  19. AnnotCompute: annotation-based exploration and meta-analysis of genomics experiments

    PubMed Central

    Zheng, Jie; Stoyanovich, Julia; Manduchi, Elisabetta; Liu, Junmin; Stoeckert, Christian J.

    2011-01-01

    The ever-increasing scale of biological data sets, particularly those arising in the context of high-throughput technologies, requires the development of rich data exploration tools. In this article, we present AnnotCompute, an information discovery platform for repositories of functional genomics experiments such as ArrayExpress. Our system leverages semantic annotations of functional genomics experiments with controlled vocabulary and ontology terms, such as those from the MGED Ontology, to compute conceptual dissimilarities between pairs of experiments. These dissimilarities are then used to support two types of exploratory analysis—clustering and query-by-example. We show that our proposed dissimilarity measures correspond to a user's intuition about conceptual dissimilarity, and can be used to support effective query-by-example. We also evaluate the quality of clustering based on these measures. While AnnotCompute can support a richer data exploration experience, its effectiveness is limited in some cases, due to the quality of available annotations. Nonetheless, tools such as AnnotCompute may provide an incentive for richer annotations of experiments. Code is available for download at http://www.cbil.upenn.edu/downloads/AnnotCompute. Database URL: http://www.cbil.upenn.edu/annotCompute/ PMID:22190598

  20. Issues and approach to develop validated analysis tools for hypersonic flows: One perspective

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1993-01-01

    Critical issues concerning the modeling of low density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools, and the activity in the NASA Ames Research Center's Aerothermodynamics Branch is described. Inherent in the process is a strong synergism between ground test and real gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flowfield simulation codes are discussed. These models were partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions is sparse and reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high enthalpy flow facilities, such as shock tubes and ballistic ranges.

  1. Issues and approach to develop validated analysis tools for hypersonic flows: One perspective

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1992-01-01

    Critical issues concerning the modeling of low-density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools. A description of the activity in the Ames Research Center's Aerothermodynamics Branch is also given. Inherent in the process is a strong synergism between ground test and real-gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flow-field simulation codes are discussed. These models have been partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions are sparse; reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground-based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high-enthalpy flow facilities, such as shock tubes and ballistic ranges.

  2. Convergent Validity of O*NET Holland Code Classifications

    ERIC Educational Resources Information Center

    Eggerth, Donald E.; Bowles, Shannon M.; Tunick, Roy H.; Andrew, Michael E.

    2005-01-01

    The interpretive ease and intuitive appeal of the Holland RIASEC typology have made it nearly ubiquitous in vocational guidance settings. Its incorporation into the Occupational Information Network (O*NET) has moved it another step closer to reification. This research investigated the rates of agreement between Holland code classifications from…

  3. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  4. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE PAGES

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  5. Clinical Intuition in Family Medicine: More Than First Impressions

    PubMed Central

    Woolley, Amanda; Kostopoulou, Olga

    2013-01-01

    PURPOSE The clinical literature advises physicians not to trust their intuition. Studies of clinical intuition, however, equate it to early impressions, the first thing that comes to the physician’s mind. This study aimed to investigate the validity of this perspective by examining real cases of intuition in family medicine. METHODS Eighteen family physicians were interviewed about patient cases in which they believed that they had experienced an intuition. Cases were included if (1) participants were unaware of the basis of their judgment, or (2) participants talked about the basis of their judgment but believed that it was irrational or unsubstantiated. During the interview, case descriptions were systematically probed following the Critical Decision Method. Transcripts were coded for judgments, informational cues, expectancies, goals, and actions and were reordered into chronological accounts of the decision process. The 2 authors independently categorized cases into 3 emerging decision process types. RESULTS Participants reported 31 cases, 24 of which met inclusion criteria. Three types of decision process emerged: gut feelings, recognitions, and insights (κ = 0.78). In all cases, participants thought that their intuitive judgment was in conflict with a more rational explanation or what other colleagues would do. CONCLUSIONS Automatic, nonanalytical processes in clinical judgment extend beyond first impressions. Rather than admonishing clinicians not to trust their intuition, it should be acknowledged that little is currently known about the different types of intuitive processes and what determines their success or failure. Research on the conditions for accurate clinical intuitions is needed. PMID:23319507

  6. Clinical intuition in family medicine: more than first impressions.

    PubMed

    Woolley, Amanda; Kostopoulou, Olga

    2013-01-01

    The clinical literature advises physicians not to trust their intuition. Studies of clinical intuition, however, equate it to early impressions, the first thing that comes to the physician's mind. This study aimed to investigate the validity of this perspective by examining real cases of intuition in family medicine. Eighteen family physicians were interviewed about patient cases in which they believed that they had experienced an intuition. Cases were included if (1) participants were unaware of the basis of their judgment, or (2) participants talked about the basis of their judgment but believed that it was irrational or unsubstantiated. During the interview, case descriptions were systematically probed following the Critical Decision Method. Transcripts were coded for judgments, informational cues, expectancies, goals, and actions and were reordered into chronological accounts of the decision process. The 2 authors independently categorized cases into 3 emerging decision process types. Participants reported 31 cases, 24 of which met inclusion criteria. Three types of decision process emerged: gut feelings, recognitions, and insights (κ = 0.78). In all cases, participants thought that their intuitive judgment was in conflict with a more rational explanation or what other colleagues would do. Automatic, nonanalytical processes in clinical judgment extend beyond first impressions. Rather than admonishing clinicians not to trust their intuition, it should be acknowledged that little is currently known about the different types of intuitive processes and what determines their success or failure. Research on the conditions for accurate clinical intuitions is needed.

  7. Inductive Reasoning about Causally Transmitted Properties

    ERIC Educational Resources Information Center

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D.; Tenenbaum, Joshua B.

    2008-01-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates'…

  8. Object-oriented design and programming in medical decision support.

    PubMed

    Heathfield, H; Armstrong, J; Kirkham, N

    1991-12-01

    The concept of object-oriented design and programming has recently received a great deal of attention from the software engineering community. This paper highlights the realisable benefits of using the object-oriented approach in the design and development of clinical decision support systems. These systems seek to build a computational model of some problem domain and therefore tend to be exploratory in nature. Conventional procedural design techniques do not support either the process of model building or rapid prototyping. The central concepts of the object-oriented paradigm are introduced, namely encapsulation, inheritance and polymorphism, and their use illustrated in a case study, taken from the domain of breast histopathology. In particular, the dual roles of inheritance in object-oriented programming are examined, i.e., inheritance as a conceptual modelling tool and inheritance as a code reuse mechanism. It is argued that the use of the former is not entirely intuitive and may be difficult to incorporate into the design process. However, inheritance as a means of optimising code reuse offers substantial technical benefits.

  9. Accuracy & Computational Considerations for Wide--Angle One--way Seismic Propagators and Multiple Scattering by Invariant Embedding

    NASA Astrophysics Data System (ADS)

    Thomson, C. J.

    2004-12-01

    Pseudodifferential operators (PSDOs) yield in principle exact one--way seismic wave equations, which are attractive both conceptually and for their promise of computational efficiency. The one--way operators can be extended to include multiple--scattering effects, again in principle exactly. In practice approximations must be made and, as an example, the variable--wavespeed Helmholtz equation for scalar waves in two space dimensions is here factorized to give the one--way wave equation. This simple case permits clear identification of a sequence of physically reasonable approximations to be used when the mathematically exact PSDO one--way equation is implemented on a computer. As intuition suggests, these approximations hinge on the medium gradients in the direction transverse to the main propagation direction. A key point is that narrow--angle approximations are to be avoided in the interests of accuracy. Another key consideration stems from the fact that the so--called ``standard--ordering'' PSDO indicates how lateral interpolation of the velocity structure can significantly reduce computational costs associated with the Fourier or plane--wave synthesis lying at the heart of the calculations. The decision on whether a slow or a fast Fourier transform code should be used rests upon how many lateral model parameters are truly distinct. A third important point is that the PSDO theory shows what approximations are necessary in order to generate an exponential one--way propagator for the laterally varying case, representing the intuitive extension of classical integral--transform solutions for a laterally homogeneous medium. This exponential propagator suggests the use of larger discrete step sizes, and it can also be used to approach phase--screen like approximations (though the latter are not the main interest here). Numerical comparisons with finite--difference solutions will be presented in order to assess the approximations being made and to gain an understanding of computation time differences. The ideas described extend to the three--dimensional, generally anisotropic case and to multiple scattering by invariant embedding.

  10. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  11. Formally specifying the logic of an automatic guidance controller

    NASA Technical Reports Server (NTRS)

    Guaspari, David

    1990-01-01

    The following topics are covered in viewgraph form: (1) the Penelope Project; (2) the logic of an experimental automatic guidance control system for a 737; (3) Larch/Ada specification; (4) some failures of informal description; (5) description of mode changes caused by switches; (6) intuitive description of window status (chosen vs. current); (7) design of the code; (8) and specifying the code.

  12. Paired Learners' Verbalised Strategies for Determining Grammatical Correctness: A Turn-Based System for Coding Metatalk

    ERIC Educational Resources Information Center

    Ishii, David N.

    2011-01-01

    The purpose of this paper is to explore the use of a new coding system that incorporates the various types of metatalk that occurred during paired learners' engagement in a consciousness-raising task. On the basis of previous studies, metalanguage (e.g. with or without terminology), knowledge sources (e.g. intuition), and verbalisation strategies…

  13. A computer program for thermal radiation from gaseous rocket exhuast plumes (GASRAD)

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1979-01-01

    A computer code is presented for predicting incident thermal radiation from defined plume gas properties in either axisymmetric or cylindrical coordinate systems. The radiation model is a statistical band model for exponential line strength distribution with Lorentz/Doppler line shapes for 5 gaseous species (H2O, CO2, CO, HCl and HF) and an appoximate (non-scattering) treatment of carbon particles. The Curtis-Godson approximation is used for inhomogeneous gases, but a subroutine is available for using Young's intuitive derivative method for H2O with Lorentz line shape and exponentially-tailed-inverse line strength distribution. The geometry model provides integration over a hemisphere with up to 6 individually oriented identical axisymmetric plumes, a single 3-D plume, Shading surfaces may be used in any of 7 shapes, and a conical limit may be defined for the plume to set individual line-of-signt limits. Intermediate coordinate systems may specified to simplify input of plumes and shading surfaces.

  14. External audio for IBM-compatible computers

    NASA Technical Reports Server (NTRS)

    Washburn, David A.

    1992-01-01

    Numerous applications benefit from the presentation of computer-generated auditory stimuli at points discontiguous with the computer itself. Modification of an IBM-compatible computer for use of an external speaker is relatively easy but not intuitive. This modification is briefly described.

  15. Designing Artificial Enzymes by Intuition and Computation

    PubMed Central

    Nanda, Vikas; Koder, Ronald L.

    2012-01-01

    The rational design of artificial enzymes either by applying physio-chemical intuition of protein structure and function or with the aid of computation methods is a promising area of research with the potential to tremendously impact medicine, industrial chemistry and energy production. Designed proteins also provide a powerful platform for dissecting enzyme mechanisms of natural systems. Artificial enzymes have come a long way, from simple α-helical peptide catalysts to proteins that facilitate multi-step chemical reactions designed by state-of-the-art computational methods. Looking forward, we examine strategies employed by natural enzymes which could be used to improve the speed and selectivity of artificial catalysts. PMID:21124375

  16. Graphical user interfaces for symbol-oriented database visualization and interaction

    NASA Astrophysics Data System (ADS)

    Brinkschulte, Uwe; Siormanolakis, Marios; Vogelsang, Holger

    1997-04-01

    In this approach, two basic services designed for the engineering of computer based systems are combined: a symbol-oriented man-machine-service and a high speed database-service. The man-machine service is used to build graphical user interfaces (GUIs) for the database service; these interfaces are stored using the database service. The idea is to create a GUI-builder and a GUI-manager for the database service based upon the man-machine service using the concept of symbols. With user-definable and predefined symbols, database contents can be visualized and manipulated in a very flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build and operate its own graphical user interface for a given database according to its needs without writing a single line of code.

  17. The Magnitude Response Learning Tool for DSP Education: A Case Study

    ERIC Educational Resources Information Center

    Kulmer, Florian; Wurzer, Christian Gun; Geiger, Bernhard C.

    2016-01-01

    Many concepts in digital signal processing are intuitive, despite being mathematically challenging. The lecturer not only has to teach the complicated math but should also help students develop intuition about the concept. To aid the lecturer in this task, the Magnitude Response Learning Tool has been introduced, a computer-based learning game…

  18. From Intuition to Evidence: A Data-Driven Approach to Transforming CS Education

    ERIC Educational Resources Information Center

    Allevato, Anthony J.

    2012-01-01

    Educators in many disciplines are too often forced to rely on intuition about how students learn and the effectiveness of teaching to guide changes and improvements to their curricula. In computer science, systems that perform automated collection and assessment of programming assignments are seeing increased adoption, and these systems generate a…

  19. Text Simplification and Comprehensible Input: A Case for an Intuitive Approach

    ERIC Educational Resources Information Center

    Crossley, Scott A.; Allen, David; McNamara, Danielle S.

    2012-01-01

    Texts are routinely simplified to make them more comprehensible for second language learners. However, the effects of simplification upon the linguistic features of texts remain largely unexplored. Here we examine the effects of one type of text simplification: intuitive text simplification. We use the computational tool, Coh-Metrix, to examine…

  20. Automating annotation of information-giving for analysis of clinical conversation.

    PubMed

    Mayfield, Elijah; Laws, M Barton; Wilson, Ira B; Penstein Rosé, Carolyn

    2014-02-01

    Coding of clinical communication for fine-grained features such as speech acts has produced a substantial literature. However, annotation by humans is laborious and expensive, limiting application of these methods. We aimed to show that through machine learning, computers could code certain categories of speech acts with sufficient reliability to make useful distinctions among clinical encounters. The data were transcripts of 415 routine outpatient visits of HIV patients which had previously been coded for speech acts using the Generalized Medical Interaction Analysis System (GMIAS); 50 had also been coded for larger scale features using the Comprehensive Analysis of the Structure of Encounters System (CASES). We aggregated selected speech acts into information-giving and requesting, then trained the machine to automatically annotate using logistic regression classification. We evaluated reliability by per-speech act accuracy. We used multiple regression to predict patient reports of communication quality from post-visit surveys using the patient and provider information-giving to information-requesting ratio (briefly, information-giving ratio) and patient gender. Automated coding produces moderate reliability with human coding (accuracy 71.2%, κ=0.57), with high correlation between machine and human prediction of the information-giving ratio (r=0.96). The regression significantly predicted four of five patient-reported measures of communication quality (r=0.263-0.344). The information-giving ratio is a useful and intuitive measure for predicting patient perception of provider-patient communication quality. These predictions can be made with automated annotation, which is a practical option for studying large collections of clinical encounters with objectivity, consistency, and low cost, providing greater opportunity for training and reflection for care providers.

  1. WinTRAX: A raytracing software package for the design of multipole focusing systems

    NASA Astrophysics Data System (ADS)

    Grime, G. W.

    2013-07-01

    The software package TRAX was a simulation tool for modelling the path of charged particles through linear cylindrical multipole fields described by analytical expressions and was a development of the earlier OXRAY program (Grime and Watt, 1983; Grime et al., 1982) [1,2]. In a 2005 comparison of raytracing software packages (Incerti et al., 2005) [3], TRAX/OXRAY was compared with Geant4 and Zgoubi and was found to give close agreement with the more modern codes. TRAX was a text-based program which was only available for operation in a now rare VMS workstation environment, so a new program, WinTRAX, has been developed for the Windows operating system. This implements the same basic computing strategy as TRAX, and key sections of the code are direct translations from FORTRAN to C++, but the Windows environment is exploited to make an intuitive graphical user interface which simplifies and enhances many operations including system definition and storage, optimisation, beam simulation (including with misaligned elements) and aberration coefficient determination. This paper describes the program and presents comparisons with other software and real installations.

  2. adwTools Developed: New Bulk Alloy and Surface Analysis Software for the Alloy Design Workbench

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Morse, Jeffrey A.; Noebe, Ronald D.; Abel, Phillip B.

    2004-01-01

    A suite of atomistic modeling software, called the Alloy Design Workbench, has been developed by the Computational Materials Group at the NASA Glenn Research Center and the Ohio Aerospace Institute (OAI). The main goal of this software is to guide and augment experimental materials research and development efforts by creating powerful, yet intuitive, software that combines a graphical user interface with an operating code suitable for real-time atomistic simulations of multicomponent alloy systems. Targeted for experimentalists, the interface is straightforward and requires minimum knowledge of the underlying theory, allowing researchers to focus on the scientific aspects of the work. The centerpiece of the Alloy Design Workbench suite is the adwTools module, which concentrates on the atomistic analysis of surfaces and bulk alloys containing an arbitrary number of elements. An additional module, adwParams, handles ab initio input for the parameterization used in adwTools. Future modules planned for the suite include adwSeg, which will provide numerical predictions for segregation profiles to alloy surfaces and interfaces, and adwReport, which will serve as a window into the database, providing public access to the parameterization data and a repository where users can submit their own findings from the rest of the suite. The entire suite is designed to run on desktop-scale computers. The adwTools module incorporates a custom OAI/Glenn-developed Fortran code based on the BFS (Bozzolo- Ferrante-Smith) method for alloys, ref. 1). The heart of the suite, this code is used to calculate the energetics of different compositions and configurations of atoms.

  3. Factors that impact on emergency nurses' ethical decision-making ability.

    PubMed

    Alba, Barbara

    2016-11-10

    Reliance on moral principles and professional codes has given nurses direction for ethical decision-making. However, rational models do not capture the emotion and reality of human choice. Intuitive response must be considered. Supporting intuition as an important ethical decision-making tool for nurses, the aim of this study was to determine relationships between intuition, years of worked nursing experience, and perceived ethical decision-making ability. A secondary aim explored the relationships between rational thought to years of worked nursing experience and perceived ethical decision-making ability. A non-experimental, correlational research design was used. The Rational Experiential Inventory measured intuition and rational thought. The Clinical Decision Making in Nursing Scale measured perceived ethical decision-making ability. Pearson's r was the statistical method used to analyze three primary and two secondary research questions. A sample of 182 emergency nurses was recruited electronically through the Emergency Nurses Association. Participants were self-selected. Approval to conduct this study was obtained by the Adelphi University Institutional Review Board. A relationship between intuition and perceived ethical decision-making ability (r = .252, p = .001) was a significant finding in this study. This study is one of the first of this nature to make a connection between intuition and nurses' ethical decision-making ability. This investigation contributes to a broader understanding of the different thought processes used by emergency nurses to make ethical decisions. © The Author(s) 2016.

  4. A neutron spectrum unfolding computer code based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in the HTML format. NSDann unfolding code is freely available, upon request to the authors.

  5. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm.

    PubMed

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-09-19

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.

  6. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm

    PubMed Central

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-01-01

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979

  7. Real-time implementation of an interactive jazz accompaniment system

    NASA Astrophysics Data System (ADS)

    Deshpande, Nikhil

    Modern computational algorithms and digital signal processing (DSP) are able to combine with human performers without forced or predetermined structure in order to create dynamic and real-time accompaniment systems. With modern computing power and intelligent algorithm layout and design, it is possible to achieve more detailed auditory analysis of live music. Using this information, computer code can follow and predict how a human's musical performance evolves, and use this to react in a musical manner. This project builds a real-time accompaniment system to perform together with live musicians, with a focus on live jazz performance and improvisation. The system utilizes a new polyphonic pitch detector and embeds it in an Ableton Live system - combined with Max for Live - to perform elements of audio analysis, generation, and triggering. The system also relies on tension curves and information rate calculations from the Creative Artificially Intuitive and Reasoning Agent (CAIRA) system to help understand and predict human improvisation. These metrics are vital to the core system and allow for extrapolated audio analysis. The system is able to react dynamically to a human performer, and can successfully accompany the human as an entire rhythm section.

  8. Does intuition cause cooperation?

    PubMed

    Verkoeijen, Peter P J L; Bouwmeester, Samantha

    2014-01-01

    Recently, researchers claimed that people are intuitively inclined to cooperate with reflection causing them to behave selfishly. Empirical support for this claim came from experiments using a 4-player public goods game with a marginal return of 0.5 showing that people contributed more money to a common project when they had to decide quickly (i.e., a decision based on intuition) than when they were instructed to reflect and decide slowly. This intuitive-cooperation effect is of high scientific and practical importance because it argues against a central assumption of traditional economic and evolutionary models. The first experiment of present study was set up to examine the generality of the intuitive-cooperation effect and to further validate the experimental task producing the effect. In Experiment 1, we investigated Amazon Mechanical Turk (AMT) workers' contributions to a 4-player public goods game with a marginal return of 0.5 while we manipulated the knowledge about the other players' contribution to the public goods game (contribution known vs. contribution unknown), the identity of the other players (humans vs. computers randomly generating contributions) and the time constraint (time pressure/intuition vs. forced delay/reflection). However, the results of Experiment 1 failed to reveal an intuitive-cooperation effect. Furthermore, four subsequent direct replications attempts with AMT workers (Experiments 2a, 2b, 2c and Experiment 3, which was conducted with naïve/inexperienced participants) also failed to demonstrate intuitive-cooperation effects. Taken together, the results of the present study could not corroborate the idea that people are intuitively cooperative, hence suggesting that the theoretical relationship between intuition and cooperation should be further scrutinized.

  9. Does Intuition Cause Cooperation?

    PubMed Central

    Verkoeijen, Peter P. J. L.; Bouwmeester, Samantha

    2014-01-01

    Recently, researchers claimed that people are intuitively inclined to cooperate with reflection causing them to behave selfishly. Empirical support for this claim came from experiments using a 4-player public goods game with a marginal return of 0.5 showing that people contributed more money to a common project when they had to decide quickly (i.e., a decision based on intuition) than when they were instructed to reflect and decide slowly. This intuitive-cooperation effect is of high scientific and practical importance because it argues against a central assumption of traditional economic and evolutionary models. The first experiment of present study was set up to examine the generality of the intuitive-cooperation effect and to further validate the experimental task producing the effect. In Experiment 1, we investigated Amazon Mechanical Turk (AMT) workers' contributions to a 4-player public goods game with a marginal return of 0.5 while we manipulated the knowledge about the other players' contribution to the public goods game (contribution known vs. contribution unknown), the identity of the other players (humans vs. computers randomly generating contributions) and the time constraint (time pressure/intuition vs. forced delay/reflection). However, the results of Experiment 1 failed to reveal an intuitive-cooperation effect. Furthermore, four subsequent direct replications attempts with AMT workers (Experiments 2a, 2b, 2c and Experiment 3, which was conducted with naïve/inexperienced participants) also failed to demonstrate intuitive-cooperation effects. Taken together, the results of the present study could not corroborate the idea that people are intuitively cooperative, hence suggesting that the theoretical relationship between intuition and cooperation should be further scrutinized. PMID:24801381

  10. Nonlocal Intuition: Replication and Paired-subjects Enhancement Effects

    PubMed Central

    Mirzaei, Maryam; Zali, Mohammad Reza

    2014-01-01

    This article reports the results of a study of repeat entrepreneurs in Tehran, Iran, in which nonlocal intuition was investigated in a replication and extension of experiment using measures of heart rate variability (HRV). Nonlocal intuition is the perception of information about a distant or future event by the body's psychophysiological systems, which is not based on reason or memories of prior experience. This study follows up on the McCraty, Radin, and Bradley studies, which found evidence of nonlocal intuition. We used Radin's experimental protocol, with the addition of HRV measures as in the McCraty studies involving computer administration of a random sequence of calm and emotional pictures as the stimulus, and conducted two experiments on mutually exclusive samples—the first on a group of single participants (N=15) and the second on a group of co-participant pairs (N=30)—to investigate the question of the “amplification” of intuition effects by social connection. Each experiment was conducted over 45 trials while heart rate rhythm activity was recorded continuously. Results, using random permutation analysis, a statistically conservative procedure, show significant pre-stimulus results—that is, for the period before the computer had randomly selected the picture stimulus—for both experiments. Moreover, while significant separation between the emotional and calm HRV curves was observed in the single-participant experiment, an even larger separation was apparent for the experiment on co-participant pairs; the difference between the two groups was also significant. Overall, the results of the single-participant experiment confirm previous finding: that electrophysiological measures, especially changes in the heart rhythm, can detect intuitive foreknowledge. This result is notable because it constitutes cross-cultural corroboration in a non-Western context—namely, Iran. In addition, the results for co-participant pairs offer new evidence on the amplification of the nonlocal intuition signal. PMID:24808977

  11. Plant Habitat Telemetry / Command Interface and E-MIST

    NASA Technical Reports Server (NTRS)

    Walker, Uriae M.

    2013-01-01

    Plant Habitat (PH) is an experiment to be taken to the International Space Station (ISS) in 2016. It is critical that ground support computers have the ability to uplink commands to control PH, and that ISS computers have the ability to downlink PH telemetry data to ground support. This necessitates communication software that can send, receive, and process, PH specific commands and telemetry. The objective of the Plant Habitat Telemetry/ Command Interface is to provide this communication software, and to couple it with an intuitive Graphical User Interface (GUI). Initial investigation of the project objective led to the decision that code be written in C++ because of its compatibility with existing source code infrastructures and robustness. Further investigation led to a determination that multiple Ethernet packet structures would need to be created to effectively transmit data. Setting a standard for packet structures would allow us to distinguish these packets that would range from command type packets to sub categories of telemetry packets. In order to handle this range of packet types, the conclusion was made to take an object-oriented programming approach which complemented our decision to use the C++ programming language. In addition, extensive utilization of port programming concepts was required to implement the core functionality of the communication software. Also, a concrete understanding of a packet processing software was required in order to put aU the components of ISS-to-Ground Support Equipment (GSE) communication together and complete the objective. A second project discussed in this paper is Exposing Microbes to the Stratosphere (EMIST). This project exposes microbes into the stratosphere to observe how they are impacted by atmospheric effects. This paper focuses on the electrical and software expectations of the project, specifically drafting the printed circuit board, and programming the on-board sensors. The Eagle Computer-Aided Drafting (CAD) software was used to draft the E-MIST circuit. This required several component libraries to be created. Coding the sensors and obtaining sensor data involved using the Arduino Uno developmental board and coding language, and properly wiring peripheral sensors to the microcontroller (the central control unit of the experiment).

  12. Multiple neural network approaches to clinical expert systems

    NASA Astrophysics Data System (ADS)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  13. The Probabilities of Unique Events

    DTIC Science & Technology

    2012-08-30

    social justice and also participated in antinuclear demonstrations. The participants ranked the probability that Linda is a feminist bank teller as...investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only...of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of

  14. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less

  15. Analytical Design Package (ADP2): A computer aided engineering tool for aircraft transparency design

    NASA Technical Reports Server (NTRS)

    Wuerer, J. E.; Gran, M.; Held, T. W.

    1994-01-01

    The Analytical Design Package (ADP2) is being developed as a part of the Air Force Frameless Transparency Program (FTP). ADP2 is an integrated design tool consisting of existing analysis codes and Computer Aided Engineering (CAE) software. The objective of the ADP2 is to develop and confirm an integrated design methodology for frameless transparencies, related aircraft interfaces, and their corresponding tooling. The application of this methodology will generate high confidence for achieving a qualified part prior to mold fabrication. ADP2 is a customized integration of analysis codes, CAE software, and material databases. The primary CAE integration tool for the ADP2 is P3/PATRAN, a commercial-off-the-shelf (COTS) software tool. The open architecture of P3/PATRAN allows customized installations with different applications modules for specific site requirements. Integration of material databases allows the engineer to select a material, and those material properties are automatically called into the relevant analysis code. The ADP2 materials database will be composed of four independent schemas: CAE Design, Processing, Testing, and Logistics Support. The design of ADP2 places major emphasis on the seamless integration of CAE and analysis modules with a single intuitive graphical interface. This tool is being designed to serve and be used by an entire project team, i.e., analysts, designers, materials experts, and managers. The final version of the software will be delivered to the Air Force in Jan. 1994. The Analytical Design Package (ADP2) will then be ready for transfer to industry. The package will be capable of a wide range of design and manufacturing applications.

  16. Prior schemata transfer as an account for assessing the intuitive use of new technology.

    PubMed

    Fischer, Sandrine; Itoh, Makoto; Inagaki, Toshiyuki

    2015-01-01

    New devices are considered intuitive when they allow users to transfer prior knowledge. Drawing upon fundamental psychology experiments that distinguish prior knowledge transfer from new schema induction, a procedure was specified for assessing intuitive use. This procedure was tested with 31 participants who, prior to using an on-board computer prototype, studied its screenshots in reading vs. schema induction conditions. Distinct patterns of transfer or induction resulted for features of the prototype whose functions were familiar or unfamiliar, respectively. Though moderated by participants' cognitive style, these findings demonstrated a means for quantitatively assessing transfer of prior knowledge as the operation that underlies intuitive use. Implications for interface evaluation and design, as well as potential improvements to the procedure, are discussed. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Embodying Computational Thinking: Initial Design of an Emerging Technological Learning Tool

    ERIC Educational Resources Information Center

    Daily, Shaundra B.; Leonard, Alison E.; Jörg, Sophie; Babu, Sabarish; Gundersen, Kara; Parmar, Dhaval

    2015-01-01

    This emerging technology report describes virtual environment interactions an approach for blending movement and computer programming as an embodied way to support girls in building computational thinking skills. The authors seek to understand how body syntonicity might enable young learners to bootstrap their intuitive knowledge in order to…

  18. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales

    DOE PAGES

    Riccardi, Demian M.; Parks, Jerry M.; Johs, Alexander; ...

    2015-03-20

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. We tested the core; it is well-documented and easy to install across computational platforms. Our goal for the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, anmore » abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.« less

  19. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales.

    PubMed

    Riccardi, Demian; Parks, Jerry M; Johs, Alexander; Smith, Jeremy C

    2015-04-27

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. The core is well-tested, well-documented, and easy to install across computational platforms. The goal of the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, an abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.

  20. Generating Stimuli for Neuroscience Using PsychoPy.

    PubMed

    Peirce, Jonathan W

    2008-01-01

    PsychoPy is a software library written in Python, using OpenGL to generate very precise visual stimuli on standard personal computers. It is designed to allow the construction of as wide a variety of neuroscience experiments as possible, with the least effort. By writing scripts in standard Python syntax users can generate an enormous variety of visual and auditory stimuli and can interact with a wide range of external hardware (enabling its use in fMRI, EEG, MEG etc.). The structure of scripts is simple and intuitive. As a result, new experiments can be written very quickly, and trying to understand a previously written script is easy, even with minimal code comments. PsychoPy can also generate movies and image sequences to be used in demos or simulated neuroscience experiments. This paper describes the range of tools and stimuli that it provides and the environment in which experiments are conducted.

  1. HackaMol: An Object-Oriented Modern Perl Library for Molecular Hacking on Multiple Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardi, Demian M.; Parks, Jerry M.; Johs, Alexander

    HackaMol is an open source, object-oriented toolkit written in Modern Perl that organizes atoms within molecules and provides chemically intuitive attributes and methods. The library consists of two components: HackaMol, the core that contains classes for storing and manipulating molecular information, and HackaMol::X, the extensions that use the core. We tested the core; it is well-documented and easy to install across computational platforms. Our goal for the extensions is to provide a more flexible space for researchers to develop and share new methods. In this application note, we provide a description of the core classes and two extensions: HackaMol::X::Calculator, anmore » abstract calculator that uses code references to generalize interfaces with external programs, and HackaMol::X::Vina, a structured class that provides an interface with the AutoDock Vina docking program.« less

  2. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  3. miRNAFold: a web server for fast miRNA precursor prediction in genomes.

    PubMed

    Tav, Christophe; Tempel, Sébastien; Poligny, Laurent; Tahi, Fariza

    2016-07-08

    Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. User input verification and test driven development in the NJOY21 nuclear data processing code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trainer, Amelia Jo; Conlin, Jeremy Lloyd; McCartney, Austin Paul

    Before physically-meaningful data can be used in nuclear simulation codes, the data must be interpreted and manipulated by a nuclear data processing code so as to extract the relevant quantities (e.g. cross sections and angular distributions). Perhaps the most popular and widely-trusted of these processing codes is NJOY, which has been developed and improved over the course of 10 major releases since its creation at Los Alamos National Laboratory in the mid-1970’s. The current phase of NJOY development is the creation of NJOY21, which will be a vast improvement from its predecessor, NJOY2016. Designed to be fast, intuitive, accessible, andmore » capable of handling both established and modern formats of nuclear data, NJOY21 will address many issues that many NJOY users face, while remaining functional for those who prefer the existing format. Although early in its development, NJOY21 is quickly providing input validation to check user input. By providing rapid and helpful responses to users while writing input files, NJOY21 will prove to be more intuitive and easy to use than any of its predecessors. Furthermore, during its development, NJOY21 is subject to regular testing, such that its test coverage must strictly increase with the addition of any production code. This thorough testing will allow developers and NJOY users to establish confidence in NJOY21 as it gains functionality. This document serves as a discussion regarding the current state input checking and testing practices of NJOY21.« less

  5. CodeSlinger: a case study in domain-driven interactive tool design for biomedical coding scheme exploration and use.

    PubMed

    Flowers, Natalie L

    2010-01-01

    CodeSlinger is a desktop application that was developed to aid medical professionals in the intertranslation, exploration, and use of biomedical coding schemes. The application was designed to provide a highly intuitive, easy-to-use interface that simplifies a complex business problem: a set of time-consuming, laborious tasks that were regularly performed by a group of medical professionals involving manually searching coding books, searching the Internet, and checking documentation references. A workplace observation session with a target user revealed the details of the current process and a clear understanding of the business goals of the target user group. These goals drove the design of the application's interface, which centers on searches for medical conditions and displays the codes found in the application's database that represent those conditions. The interface also allows the exploration of complex conceptual relationships across multiple coding schemes.

  6. Color visualization of cyclic magnitudes

    NASA Astrophysics Data System (ADS)

    Restrepo, Alfredo; Estupiñán, Viviana

    2014-02-01

    We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.

  7. The Role of Context-Related Parameters in Adults' Mental Computational Acts

    ERIC Educational Resources Information Center

    Naresh, Nirmala; Presmeg, Norma

    2012-01-01

    Researchers who have carried out studies pertaining to mental computation and everyday mathematics point out that adults and children reason intuitively based upon experiences within specific contexts; they use invented strategies of their own to solve real-life problems. We draw upon research areas of mental computation and everyday mathematics…

  8. The effect of code expanding optimizations on instruction cache design

    NASA Technical Reports Server (NTRS)

    Chen, William Y.; Chang, Pohua P.; Conte, Thomas M.; Hwu, Wen-Mei W.

    1991-01-01

    It is shown that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance for small cache sizes, but degrades the performance of medium caches. Superscalar optimizations increases the cache size required for a given miss ratio. On the other hand, they also increase the sequentiality of instruction access so that a simple load-forward scheme effectively cancels the negative effects. Overall, it is shown that with load forwarding, the three types of code expanding optimizations jointly improve the performance of small caches and have little effect on large caches.

  9. Experimental Validation of an Ion Beam Optics Code with a Visualized Ion Thruster

    NASA Astrophysics Data System (ADS)

    Nakayama, Yoshinori; Nakano, Masakatsu

    For validation of an ion beam optics code, the behavior of ion beam optics was experimentally observed and evaluated with a two-dimensional visualized ion thruster (VIT). Since the observed beam focus positions, sheath positions and measured ion beam currents were in good agreement with the numerical results, it was confirmed that the numerical model of this code was appropriated. In addition, it was also confirmed that the beam focus position was moved on center axis of grid hole according to the applied grid potentials, which differs from conventional understanding/assumption. The VIT operations may be useful not only for the validation of ion beam optics codes but also for the fundamental and intuitive understanding of the Child Law Sheath theory.

  10. A Synthesis of Research on Psychological Types of Gifted Adolescents

    ERIC Educational Resources Information Center

    Sak, Ugur

    2004-01-01

    In this study, the author synthesizes results of studies about personality types of gifted adolescents. Fourteen studies were coded with 19 independent samples. The total number of identified participants in original studies was 5,723. The most common personality types among gifted adolescents were "intuitive" and "perceiving." They were higher on…

  11. Protecting Public-Access Computers in Libraries.

    ERIC Educational Resources Information Center

    King, Monica

    1999-01-01

    Describes one public library's development of a computer-security plan, along with helpful products used. Discussion includes Internet policy, physical protection of hardware, basic protection of the operating system and software on the network, browser dilemmas and maintenance, creating clear intuitive interface, and administering fair use and…

  12. Slime mould biotechnology

    NASA Astrophysics Data System (ADS)

    Mayne, Richard

    2015-03-01

    Slime mould computing is an inherently multi-disciplinary subfield of unconventional computing that draws upon aspects of not only theoretical computer science and electronics, but also the natural sciences. This chapter focuses on the biology of slime moulds and expounds the viewpoint that a deep, intuitive understanding of slime mould life processes is a fundamental requirement for understanding -- and, hence, harnessing -- the incredible behaviour patterns we may characterise as "computation"...

  13. Version 4.0 of code Java for 3D simulation of the CCA model

    NASA Astrophysics Data System (ADS)

    Fan, Linyu; Liao, Jianwei; Zuo, Junsen; Zhang, Kebo; Li, Chao; Xiong, Hailing

    2018-07-01

    This paper presents a new version Java code for the three-dimensional simulation of Cluster-Cluster Aggregation (CCA) model to replace the previous version. Many redundant traverses of clusters-list in the program were totally avoided, so that the consumed simulation time is significantly reduced. In order to show the aggregation process in a more intuitive way, we have labeled different clusters with varied colors. Besides, a new function is added for outputting the particle's coordinates of aggregates in file to benefit coupling our model with other models.

  14. Rationale for classification of combustible gases, vapors and dusts with reference to the National Electrical Code

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Serious reservations about the entire classification procedure of chemical compounds present in electrical equipment environments and the precepts on which it is based are discussed. Although some tests were conducted on selected key compounds, the committee primarily considered the chemical similarity of compounds and other known flammability properties and relied heavily on the experience and intuition of its members. The committee also recommended that the NEC grouping of dusts be changed in some ways and has reclassified dusts according to the modified version of the code.

  15. Biological intuition in alignment-free methods: response to Posada.

    PubMed

    Ragan, Mark A; Chan, Cheong Xin

    2013-08-01

    A recent editorial in Journal of Molecular Evolution highlights opportunities and challenges facing molecular evolution in the era of next-generation sequencing. Abundant sequence data should allow more-complex models to be fit at higher confidence, making phylogenetic inference more reliable and improving our understanding of evolution at the molecular level. However, concern that approaches based on multiple sequence alignment may be computationally infeasible for large datasets is driving the development of so-called alignment-free methods for sequence comparison and phylogenetic inference. The recent editorial characterized these approaches as model-free, not based on the concept of homology, and lacking in biological intuition. We argue here that alignment-free methods have not abandoned models or homology, and can be biologically intuitive.

  16. Mind Games: Game Engines as an Architecture for Intuitive Physics.

    PubMed

    Ullman, Tomer D; Spelke, Elizabeth; Battaglia, Peter; Tenenbaum, Joshua B

    2017-09-01

    We explore the hypothesis that many intuitive physical inferences are based on a mental physics engine that is analogous in many ways to the machine physics engines used in building interactive video games. We describe the key features of game physics engines and their parallels in human mental representation, focusing especially on the intuitive physics of young infants where the hypothesis helps to unify many classic and otherwise puzzling phenomena, and may provide the basis for a computational account of how the physical knowledge of infants develops. This hypothesis also explains several 'physics illusions', and helps to inform the development of artificial intelligence (AI) systems with more human-like common sense. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Special Topic From Nuclear Reactor Dynamics for the Undergraduate Physics Curriculum

    ERIC Educational Resources Information Center

    Sevenich, R. A.

    1977-01-01

    Presents an intuitive derivation of the point reactor equations followed by formulation of equations for inverse and direct kinetics which are readily programmed on a digital computer. Suggests several computer simulations involving the effect of control rod motion on reactor power. (MLH)

  18. DDGui, a new and fast way to analyse DRAGON and DONJON code results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambon, R.; Marleau, G.

    2012-07-01

    With the largely increased performance of computer, the results from DRAGON and DONJON have increase in size and complexity. The scroll, copy and paste technique to get the result is not appropriate anymore. Many in-house script, software, macro have been developed to make the data gathering easier. However, the limit of these solutions is their specificity and the difficulty to export them from one place to another. A general tool usable and accessible by everyone was needed. The first bricks for a very fast and intuitive way to analyse the DRAGON and DONJON results have been put together in themore » graphic user interface DDGUI. Based on the extensive ROOT C++ package, the possible features are numerous. For this first version of the software, we have programmed the fundamental tools which may be the more useful on an everyday basis: view the data structures content, draw the geometry and draw the flux or power from a DONJON computation. The tests show how amazingly fast the user can get the information needed for a general overview or more precise analyses. Several other features will be implemented in the near feature. (authors)« less

  19. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  20. Matter Gravitates, but Does Gravity Matter?

    ERIC Educational Resources Information Center

    Groetsch, C. W.

    2011-01-01

    The interplay of physical intuition, computational evidence, and mathematical rigor in a simple trajectory model is explored. A thought experiment based on the model is used to elicit student conjectures on the influence of a physical parameter; a mathematical model suggests a computational investigation of the conjectures, and rigorous analysis…

  1. Intuitive and deliberate judgments are based on common principles.

    PubMed

    Kruglanski, Arie W; Gigerenzer, Gerd

    2011-01-01

    A popular distinction in cognitive and social psychology has been between intuitive and deliberate judgments. This juxtaposition has aligned in dual-process theories of reasoning associative, unconscious, effortless, heuristic, and suboptimal processes (assumed to foster intuitive judgments) versus rule-based, conscious, effortful, analytic, and rational processes (assumed to characterize deliberate judgments). In contrast, we provide convergent arguments and evidence for a unified theoretical approach to both intuitive and deliberative judgments. Both are rule-based, and in fact, the very same rules can underlie both intuitive and deliberate judgments. The important open question is that of rule selection, and we propose a 2-step process in which the task itself and the individual's memory constrain the set of applicable rules, whereas the individual's processing potential and the (perceived) ecological rationality of the rule for the task guide the final selection from that set. Deliberate judgments are not generally more accurate than intuitive judgments; in both cases, accuracy depends on the match between rule and environment: the rules' ecological rationality. Heuristics that are less effortful and in which parts of the information are ignored can be more accurate than cognitive strategies that have more information and computation. The proposed framework adumbrates a unified approach that specifies the critical dimensions on which judgmental situations may vary and the environmental conditions under which rules can be expected to be successful.

  2. GPU.proton.DOCK: Genuine Protein Ultrafast proton equilibria consistent DOCKing.

    PubMed

    Kantardjiev, Alexander A

    2011-07-01

    GPU.proton.DOCK (Genuine Protein Ultrafast proton equilibria consistent DOCKing) is a state of the art service for in silico prediction of protein-protein interactions via rigorous and ultrafast docking code. It is unique in providing stringent account of electrostatic interactions self-consistency and proton equilibria mutual effects of docking partners. GPU.proton.DOCK is the first server offering such a crucial supplement to protein docking algorithms--a step toward more reliable and high accuracy docking results. The code (especially the Fast Fourier Transform bottleneck and electrostatic fields computation) is parallelized to run on a GPU supercomputer. The high performance will be of use for large-scale structural bioinformatics and systems biology projects, thus bridging physics of the interactions with analysis of molecular networks. We propose workflows for exploring in silico charge mutagenesis effects. Special emphasis is given to the interface-intuitive and user-friendly. The input is comprised of the atomic coordinate files in PDB format. The advanced user is provided with a special input section for addition of non-polypeptide charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. The output is comprised of docked complexes in PDB format as well as interactive visualization in a molecular viewer. GPU.proton.DOCK server can be accessed at http://gpudock.orgchm.bas.bg/.

  3. Creativity and Strategic Vision: The Key to the Army’s Future

    DTIC Science & Technology

    1993-04-21

    Colonel Gordon A. Moon II, Creativity, ArM (May 1967), 44: quoted in Maginnis. 19. 32. Galvin. 26. 33. Ibid. 25 BIBLIOGRAPHY Agor . Weston H . Intuition...22b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL DR. H . F. BARBER, PROJECT ADVISER 717/245-3478 AWCAA DO Form 1473, JUN 86 Previous editions are

  4. Linking Physical and Numerical Modelling in Hydrogeology Using Sand Tank Experiments and Comsol Multiphysics

    ERIC Educational Resources Information Center

    Singha, Kamini; Loheide, Steven P., II

    2011-01-01

    Visualising subsurface processes in hydrogeology and building intuition for how these processes are controlled by changes in forcing is hard for many undergraduate students. While numerical modelling is one way to help undergraduate students explore outcomes of multiple scenarios, many codes are not user-friendly with respect to defining domains,…

  5. The Global Error Assessment (GEA) model for the selection of differentially expressed genes in microarray data.

    PubMed

    Mansourian, Robert; Mutch, David M; Antille, Nicolas; Aubert, Jerome; Fogel, Paul; Le Goff, Jean-Marc; Moulin, Julie; Petrov, Anton; Rytz, Andreas; Voegel, Johannes J; Roberts, Matthew-Alan

    2004-11-01

    Microarray technology has become a powerful research tool in many fields of study; however, the cost of microarrays often results in the use of a low number of replicates (k). Under circumstances where k is low, it becomes difficult to perform standard statistical tests to extract the most biologically significant experimental results. Other more advanced statistical tests have been developed; however, their use and interpretation often remain difficult to implement in routine biological research. The present work outlines a method that achieves sufficient statistical power for selecting differentially expressed genes under conditions of low k, while remaining as an intuitive and computationally efficient procedure. The present study describes a Global Error Assessment (GEA) methodology to select differentially expressed genes in microarray datasets, and was developed using an in vitro experiment that compared control and interferon-gamma treated skin cells. In this experiment, up to nine replicates were used to confidently estimate error, thereby enabling methods of different statistical power to be compared. Gene expression results of a similar absolute expression are binned, so as to enable a highly accurate local estimate of the mean squared error within conditions. The model then relates variability of gene expression in each bin to absolute expression levels and uses this in a test derived from the classical ANOVA. The GEA selection method is compared with both the classical and permutational ANOVA tests, and demonstrates an increased stability, robustness and confidence in gene selection. A subset of the selected genes were validated by real-time reverse transcription-polymerase chain reaction (RT-PCR). All these results suggest that GEA methodology is (i) suitable for selection of differentially expressed genes in microarray data, (ii) intuitive and computationally efficient and (iii) especially advantageous under conditions of low k. The GEA code for R software is freely available upon request to authors.

  6. HeatmapGenerator: high performance RNAseq and microarray visualization software suite to examine differential gene expression levels using an R and C++ hybrid computational pipeline.

    PubMed

    Khomtchouk, Bohdan B; Van Booven, Derek J; Wahlestedt, Claes

    2014-01-01

    The graphical visualization of gene expression data using heatmaps has become an integral component of modern-day medical research. Heatmaps are used extensively to plot quantitative differences in gene expression levels, such as those measured with RNAseq and microarray experiments, to provide qualitative large-scale views of the transcriptonomic landscape. Creating high-quality heatmaps is a computationally intensive task, often requiring considerable programming experience, particularly for customizing features to a specific dataset at hand. Software to create publication-quality heatmaps is developed with the R programming language, C++ programming language, and OpenGL application programming interface (API) to create industry-grade high performance graphics. We create a graphical user interface (GUI) software package called HeatmapGenerator for Windows OS and Mac OS X as an intuitive, user-friendly alternative to researchers with minimal prior coding experience to allow them to create publication-quality heatmaps using R graphics without sacrificing their desired level of customization. The simplicity of HeatmapGenerator is that it only requires the user to upload a preformatted input file and download the publicly available R software language, among a few other operating system-specific requirements. Advanced features such as color, text labels, scaling, legend construction, and even database storage can be easily customized with no prior programming knowledge. We provide an intuitive and user-friendly software package, HeatmapGenerator, to create high-quality, customizable heatmaps generated using the high-resolution color graphics capabilities of R. The software is available for Microsoft Windows and Apple Mac OS X. HeatmapGenerator is released under the GNU General Public License and publicly available at: http://sourceforge.net/projects/heatmapgenerator/. The Mac OS X direct download is available at: http://sourceforge.net/projects/heatmapgenerator/files/HeatmapGenerator_MAC_OSX.tar.gz/download. The Windows OS direct download is available at: http://sourceforge.net/projects/heatmapgenerator/files/HeatmapGenerator_WINDOWS.zip/download.

  7. VisIVO: A Library and Integrated Tools for Large Astrophysical Dataset Exploration

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Costa, A.; Ersotelos, N.; Krokos, M.; Massimino, P.; Petta, C.; Vitello, F.

    2012-09-01

    VisIVO provides an integrated suite of tools and services that can be used in many scientific fields. VisIVO development starts in the Virtual Observatory framework. VisIVO allows users to visualize meaningfully highly-complex, large-scale datasets and create movies of these visualizations based on distributed infrastructures. VisIVO supports high-performance, multi-dimensional visualization of large-scale astrophysical datasets. Users can rapidly obtain meaningful visualizations while preserving full and intuitive control of the relevant parameters. VisIVO consists of VisIVO Desktop - a stand-alone application for interactive visualization on standard PCs, VisIVO Server - a platform for high performance visualization, VisIVO Web - a custom designed web portal, VisIVOSmartphone - an application to exploit the VisIVO Server functionality and the latest VisIVO features: VisIVO Library allows a job running on a computational system (grid, HPC, etc.) to produce movies directly with the code internal data arrays without the need to produce intermediate files. This is particularly important when running on large computational facilities, where the user wants to have a look at the results during the data production phase. For example, in grid computing facilities, images can be produced directly in the grid catalogue while the user code is running in a system that cannot be directly accessed by the user (a worker node). The deployment of VisIVO on the DG and gLite is carried out with the support of EDGI and EGI-Inspire projects. Depending on the structure and size of datasets under consideration, the data exploration process could take several hours of CPU for creating customized views and the production of movies could potentially last several days. For this reason an MPI parallel version of VisIVO could play a fundamental role in increasing performance, e.g. it could be automatically deployed on nodes that are MPI aware. A central concept in our development is thus to produce unified code that can run either on serial nodes or in parallel by using HPC oriented grid nodes. Another important aspect, to obtain as high performance as possible, is the integration of VisIVO processes with grid nodes where GPUs are available. We have selected CUDA for implementing a range of computationally heavy modules. VisIVO is supported by EGI-Inspire, EDGI and SCI-BUS projects.

  8. Programming of a flexible computer simulation to visualize pharmacokinetic-pharmacodynamic models.

    PubMed

    Lötsch, J; Kobal, G; Geisslinger, G

    2004-01-01

    Teaching pharmacokinetic-pharmacodynamic (PK/PD) models can be made more effective using computer simulations. We propose the programming of educational PK or PK/PD computer simulations as an alternative to the use of pre-built simulation software. This approach has the advantage of adaptability to non-standard or complicated PK or PK/PD models. Simplicity of the programming procedure was achieved by selecting the LabVIEW programming environment. An intuitive user interface to visualize the time courses of drug concentrations or effects can be obtained with pre-built elements. The environment uses a wiring analogy that resembles electrical circuit diagrams rather than abstract programming code. The goal of high interactivity of the simulation was attained by allowing the program to run in continuously repeating loops. This makes the program behave flexibly to the user input. The programming is described with the aid of a 2-compartment PK simulation. Examples of more sophisticated simulation programs are also given where the PK/PD simulation shows drug input, concentrations in plasma, and at effect site and the effects themselves as a function of time. A multi-compartmental model of morphine, including metabolite kinetics and effects is also included. The programs are available for download from the World Wide Web at http:// www. klinik.uni-frankfurt.de/zpharm/klin/ PKPDsimulation/content.html. For pharmacokineticists who only program occasionally, there is the possibility of building the computer simulation, together with the flexible interactive simulation algorithm for clinical pharmacological teaching in the field of PK/PD models.

  9. PointCom: semi-autonomous UGV control with intuitive interface

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham

    2008-04-01

    Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).

  10. Evidence in clinical reasoning: a computational linguistics analysis of 789,712 medical case summaries 1983-2012.

    PubMed

    Seidel, Bastian M; Campbell, Steven; Bell, Erica

    2015-03-21

    Better understanding of clinical reasoning could reduce diagnostic error linked to 8% of adverse medical events and 30% of malpractice cases. To a greater extent than the evidence-based movement, the clinical reasoning literature asserts the importance of practitioner intuition—unconscious elements of diagnostic reasoning. The study aimed to analyse the content of case report summaries in ways that explored the importance of an evidence concept, not only in relation to research literature but also intuition. The study sample comprised all 789,712 abstracts in English for case reports contained in the database PUBMED for the period 1 January 1983 to 31 December 2012. It was hypothesised that, if evidence and intuition concepts were viewed by these clinical authors as essential to understanding their case reports, they would be more likely to be found in the abstracts. Computational linguistics software was used in 1) concept mapping of 21,631,481 instances of 201 concepts, and 2) specific concept analyses examining 200 paired co-occurrences for 'evidence' and research 'literature' concepts. 'Evidence' is a fundamentally patient-centred, intuitive concept linked to less common concepts about underlying processes, suspected disease mechanisms and diagnostic hunches. In contrast, the use of research literature in clinical reasoning is linked to more common reasoning concepts about specific knowledge and descriptions or presenting features of cases. 'Literature' is by far the most dominant concept, increasing in relevance since 2003, with an overall relevance of 13% versus 5% for 'evidence' which has remained static. The fact that the least present types of reasoning concepts relate to diagnostic hunches to do with underlying processes, such as what is suspected, raises questions about whether intuitive practitioner evidence-making, found in a constellation of dynamic, process concepts, has become less important. The study adds support to the existing corpus of research on clinical reasoning, by suggesting that intuition involves a complex constellation of concepts important to how the construct of evidence is understood. The list of concepts the study generated offers a basis for reflection on the nature of evidence in diagnostic reasoning and the importance of intuition to that reasoning.

  11. The Computer in Second Semester Introductory Physics.

    ERIC Educational Resources Information Center

    Merrill, John R.

    This supplementary text material is meant to suggest ways in which the computer can increase students' intuitive understanding of fields and waves. The first way allows the student to produce a number of examples of the physics discussed in the text. For example, more complicated field and potential maps, or intensity patterns, can be drawn from…

  12. Computer programing for geosciences: Teach your students how to make tools

    NASA Astrophysics Data System (ADS)

    Grapenthin, Ronni

    2011-12-01

    When I announced my intention to pursue a Ph.D. in geophysics, some people gave me confused looks, because I was working on a master's degree in computer science at the time. My friends, like many incoming geoscience graduate students, have trouble linking these two fields. From my perspective, it is pretty straightforward: Much of geoscience evolves around novel analyses of large data sets that require custom tools—computer programs—to minimize the drudgery of manual data handling; other disciplines share this characteristic. While most faculty adapted to the need for tool development quite naturally, as they grew up around computer terminal interfaces, incoming graduate students lack intuitive understanding of programing concepts such as generalization and automation. I believe the major cause is the intuitive graphical user interfaces of modern operating systems and applications, which isolate the user from all technical details. Generally, current curricula do not recognize this gap between user and machine. For students to operate effectively, they require specialized courses teaching them the skills they need to make tools that operate on particular data sets and solve their specific problems. Courses in computer science departments are aimed at a different audience and are of limited help.

  13. A Triangulated Study of Academic Language Needs of Iranian Students of Computer Engineering: Are the Courses on Track?

    ERIC Educational Resources Information Center

    Atai, Mahmood Reza; Shoja, Leila

    2011-01-01

    Even though English for Specific Academic Purposes (ESAP) courses constitute a significant part of the Iranian university curriculum, curriculum developers have generally developed the programs based on intuition. This study assessed the present and target situation academic language needs of undergraduate students of computer engineering. To this…

  14. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less

  15. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.

  16. The EDIT-COMGEOM Code

    DTIC Science & Technology

    1975-09-01

    This report assumes a familiarity with the GIFT and MAGIC computer codes. The EDIT-COMGEOM code is a FORTRAN computer code. The EDIT-COMGEOM code...converts the target description data which was used in the MAGIC computer code to the target description data which can be used in the GIFT computer code

  17. High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.

    PubMed

    Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei

    2017-07-01

    Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.

  18. ANT: Software for Generating and Evaluating Degenerate Codons for Natural and Expanded Genetic Codes.

    PubMed

    Engqvist, Martin K M; Nielsen, Jens

    2015-08-21

    The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.

  19. Faunus: An object oriented framework for molecular simulation

    PubMed Central

    Lund, Mikael; Trulsson, Martin; Persson, Björn

    2008-01-01

    Background We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual. Results We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction. Conclusion C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained. PMID:18241331

  20. The Simple Video Coder: A free tool for efficiently coding social video data.

    PubMed

    Barto, Daniel; Bird, Clark W; Hamilton, Derek A; Fink, Brandi C

    2017-08-01

    Videotaping of experimental sessions is a common practice across many disciplines of psychology, ranging from clinical therapy, to developmental science, to animal research. Audio-visual data are a rich source of information that can be easily recorded; however, analysis of the recordings presents a major obstacle to project completion. Coding behavior is time-consuming and often requires ad-hoc training of a student coder. In addition, existing software is either prohibitively expensive or cumbersome, which leaves researchers with inadequate tools to quickly process video data. We offer the Simple Video Coder-free, open-source software for behavior coding that is flexible in accommodating different experimental designs, is intuitive for students to use, and produces outcome measures of event timing, frequency, and duration. Finally, the software also offers extraction tools to splice video into coded segments suitable for training future human coders or for use as input for pattern classification algorithms.

  1. Computer vision in cell biology.

    PubMed

    Danuser, Gaudenz

    2011-11-23

    Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists for visualization and measurement, interpretation of image content, i.e., the selection of events worth observing and the definition of what they mean in terms of cellular mechanisms, is mostly left to human intuition. This Essay attempts to outline roles computer vision may play and should play in image-based studies of cellular life. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Jupyter Notebooks as tools for interactive learning of Concepts in Structural Geology and efficient grading of exercises.

    NASA Astrophysics Data System (ADS)

    Niederau, Jan; Wellmann, Florian; Maersch, Jannik; Urai, Janos

    2017-04-01

    Programming is increasingly recognised an important skill for geoscientists - however, the hurdle to jump into programming for students with little or no experience can be high. We present here teaching concepts on the basis of Jupyter notebooks that combine, in an intuitive way, formatted instruction text with code cells in a single environment. This integration allows for an exposure to programming on several levels: from a complete interactive presentation of content, where students require no or very limited programming experience, to highly complex geoscientific computations. We consider these notebooks therefore as an ideal medium to present computational content to students in the field of geosciences. We show here how we use these notebooks to develop digital documents in Python for undergrad-students, who can then learn about basic concepts in structural geology via self-assessment. Such notebooks comprise concepts such as: stress tensor, strain ellipse, or the mohr circle. Students can interactively change parameters, e.g. by using sliders and immediately see the results. They can further experiment and extend the notebook by writing their own code within the notebook. Jupyter Notebooks for teaching purposes can be provided ready-to-use via online services. That is, students do not need to install additional software on their devices in order to work with the notebooks. We also use Jupyter Notebooks for automatic grading of programming assignments in multiple lectures. An implemented workflow facilitates the generation, distribution of assignments, as well as the final grading. Compared to previous grading methods with a high percentage of repetitive manual grading, the implemented workflow proves to be much more time efficient.

  3. MemAxes Visualization Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  4. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Dzhunov, I.; Karavakis, E.; Kokoszkiewicz, L.; Nowotka, M.; Saiz, P.; Tuckett, D.

    2012-12-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Computing Grid. We demonstrate the benefits of the approach for large-scale JavaScript web applications in this context by examining the design of several Experiment Dashboard applications for data processing, data transfer and site status monitoring, and by showing how they have been ported for different virtual organisations and technologies.

  5. Evaluation of coded aperture radiation detectors using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Miller, Kyle; Huggins, Peter; Labov, Simon; Nelson, Karl; Dubrawski, Artur

    2016-12-01

    We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.

  6. Physics: Quantum problems solved through games

    NASA Astrophysics Data System (ADS)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  7. Virtual reality body motion induced navigational controllers and their effects on simulator sickness and pathfinding.

    PubMed

    Aldaba, Cassandra N; White, Paul J; Byagowi, Ahmad; Moussavi, Zahra

    2017-07-01

    Virtual reality (VR) navigation is usually constrained by plausible simulator sickness (SS) and intuitive user interaction. The paper reports on the use of four different degrees of body motion induced navigational VR controllers, a TiltChair, omni-directional treadmill, a manual wheelchair joystick (VRNChair), and a joystick in relation to a participant's SS occurrence and a controller's intuitive utilization. Twenty young adult participants utilized all controllers to navigate through the same VR task environment in separate sessions. Throughout the sessions, SS occurrence was measured from a severity score by a standard SS questionnaire and from body sway by a center of pressure path length with eyes opened and closed. SS occurrence did not significantly differ among the controllers. However, time spent in VR significantly contributed to SS occurrence; hence, a few breaks to minimize SS should be interjected throughout a VR task. For all task trials, we recorded the participant's travel trajectories to investigate each controller's intuitive utilization from a computed traversed distance. Shorter traversed distances indicated that participants intuitively utilized the TiltChair with a slower speed; while longer traversed distances indicated participants struggled to utilize the omni-directional treadmill with a unnaturalistic stimulation of gait. Therefore, VR navigation should use technologies best suited for the intended age group that minimizes SS, and produces intuitive interactions for the participants.

  8. Using Mental Imagery Processes for Teaching and Research in Mathematics and Computer Science

    ERIC Educational Resources Information Center

    Arnoux, Pierre; Finkel, Alain

    2010-01-01

    The role of mental representations in mathematics and computer science (for teaching or research) is often downplayed or even completely ignored. Using an ongoing work on the subject, we argue for a more systematic study and use of mental representations, to get an intuition of mathematical concepts, and also to understand and build proofs. We…

  9. Motmot, an open-source toolkit for realtime video acquisition and analysis.

    PubMed

    Straw, Andrew D; Dickinson, Michael H

    2009-07-22

    Video cameras sense passively from a distance, offer a rich information stream, and provide intuitively meaningful raw data. Camera-based imaging has thus proven critical for many advances in neuroscience and biology, with applications ranging from cellular imaging of fluorescent dyes to tracking of whole-animal behavior at ecologically relevant spatial scales. Here we present 'Motmot': an open-source software suite for acquiring, displaying, saving, and analyzing digital video in real-time. At the highest level, Motmot is written in the Python computer language. The large amounts of data produced by digital cameras are handled by low-level, optimized functions, usually written in C. This high-level/low-level partitioning and use of select external libraries allow Motmot, with only modest complexity, to perform well as a core technology for many high-performance imaging tasks. In its current form, Motmot allows for: (1) image acquisition from a variety of camera interfaces (package motmot.cam_iface), (2) the display of these images with minimal latency and computer resources using wxPython and OpenGL (package motmot.wxglvideo), (3) saving images with no compression in a single-pass, low-CPU-use format (package motmot.FlyMovieFormat), (4) a pluggable framework for custom analysis of images in realtime and (5) firmware for an inexpensive USB device to synchronize image acquisition across multiple cameras, with analog input, or with other hardware devices (package motmot.fview_ext_trig). These capabilities are brought together in a graphical user interface, called 'FView', allowing an end user to easily view and save digital video without writing any code. One plugin for FView, 'FlyTrax', which tracks the movement of fruit flies in real-time, is included with Motmot, and is described to illustrate the capabilities of FView. Motmot enables realtime image processing and display using the Python computer language. In addition to the provided complete applications, the architecture allows the user to write relatively simple plugins, which can accomplish a variety of computer vision tasks and be integrated within larger software systems. The software is available at http://code.astraw.com/projects/motmot.

  10. Human-computer interface including haptically controlled interactions

    DOEpatents

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  11. CMG-biotools, a free workbench for basic comparative microbial genomics.

    PubMed

    Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David

    2013-01-01

    Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training.

  12. Structural Optimization of a Force Balance Using a Computational Experiment Design

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2002-01-01

    This paper proposes a new approach to force balance structural optimization featuring a computational experiment design. Currently, this multi-dimensional design process requires the designer to perform a simplification by executing parameter studies on a small subset of design variables. This one-factor-at-a-time approach varies a single variable while holding all others at a constant level. Consequently, subtle interactions among the design variables, which can be exploited to achieve the design objectives, are undetected. The proposed method combines Modern Design of Experiments techniques to direct the exploration of the multi-dimensional design space, and a finite element analysis code to generate the experimental data. To efficiently search for an optimum combination of design variables and minimize the computational resources, a sequential design strategy was employed. Experimental results from the optimization of a non-traditional force balance measurement section are presented. An approach to overcome the unique problems associated with the simultaneous optimization of multiple response criteria is described. A quantitative single-point design procedure that reflects the designer's subjective impression of the relative importance of various design objectives, and a graphical multi-response optimization procedure that provides further insights into available tradeoffs among competing design objectives are illustrated. The proposed method enhances the intuition and experience of the designer by providing new perspectives on the relationships between the design variables and the competing design objectives providing a systematic foundation for advancements in structural design.

  13. Investigating the Relationship between Customer Wait Time and Operational Availability through Simulation Modeling

    DTIC Science & Technology

    2012-12-01

    STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Customer Wait Time ( CWT ...inventory level, thereby increasing the material readiness of the operating forces. Intuitively, decreasing CWT increases operational availability (Ao...and CWT has led to arbitrary stock policies that do not account for the cost and benefit they provide. This project centers on monetizing the

  14. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.

    PubMed

    Gopnik, Alison; Wellman, Henry M

    2012-11-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.

  15. Simulating Technology Processes to Foster Learning.

    ERIC Educational Resources Information Center

    Krumholtz, Nira

    1998-01-01

    Based on a spiral model of technology evolution, elementary students used LOGO computer software to become both developers and users of technology. The computerized environment enabled 87% to reach intuitive understanding of physical concepts; 24% expressed more formal scientific understanding. (SK)

  16. Modeling the impact of changing patient transportation systems on peri-operative process performance in a large hospital: insights from a computer simulation study.

    PubMed

    Segev, Danny; Levi, Retsef; Dunn, Peter F; Sandberg, Warren S

    2012-06-01

    Transportation of patients is a key hospital operational activity. During a large construction project, our patient admission and prep area will relocate from immediately adjacent to the operating room suite to another floor of a different building. Transportation will require extra distance and elevator trips to deliver patients and recycle transporters (specifically: personnel who transport patients). Management intuition suggested that starting all 52 first cases simultaneously would require many of the 18 available elevators. To test this, we developed a data-driven simulation tool to allow decision makers to simultaneously address planning and evaluation questions about patient transportation. We coded a stochastic simulation tool for a generalized model treating all factors contributing to the process as JAVA objects. The model includes elevator steps, explicitly accounting for transporter speed and distance to be covered. We used the model for sensitivity analyses of the number of dedicated elevators, dedicated transporters, transporter speed and the planned process start time on lateness of OR starts and the number of cases with serious delays (i.e., more than 15 min). Allocating two of the 18 elevators and 7 transporters reduced lateness and the number of cases with serious delays. Additional elevators and/or transporters yielded little additional benefit. If the admission process produced ready-for-transport patients 20 min earlier, almost all delays would be eliminated. Modeling results contradicted clinical managers' intuition that starting all first cases on time requires many dedicated elevators. This is explained by the principle of decreasing marginal returns for increasing capacity when there are other limiting constraints in the system.

  17. Decision Support Systems and the Conflict Model of Decision Making: A Stimulus for New Computer-Assisted Careers Guidance Systems.

    ERIC Educational Resources Information Center

    Ballantine, R. Malcolm

    Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…

  18. Chemically intuited, large-scale screening of MOFs by machine learning techniques

    NASA Astrophysics Data System (ADS)

    Borboudakis, Giorgos; Stergiannakos, Taxiarchis; Frysali, Maria; Klontzas, Emmanuel; Tsamardinos, Ioannis; Froudakis, George E.

    2017-10-01

    A novel computational methodology for large-scale screening of MOFs is applied to gas storage with the use of machine learning technologies. This approach is a promising trade-off between the accuracy of ab initio methods and the speed of classical approaches, strategically combined with chemical intuition. The results demonstrate that the chemical properties of MOFs are indeed predictable (stochastically, not deterministically) using machine learning methods and automated analysis protocols, with the accuracy of predictions increasing with sample size. Our initial results indicate that this methodology is promising to apply not only to gas storage in MOFs but in many other material science projects.

  19. Equilibrium Distribution Functions: Another Look.

    ERIC Educational Resources Information Center

    Waite, Boyd A.

    1986-01-01

    Discusses equilibrium distribution functions and provides an alternative "derivation" that allows the student, with the help of a computer, to gain intuitive insight as to the nature of distributions in general and the precise nature of the dominance of the Boltzmann distribution. (JN)

  20. Don’t worry, be (moderately) happy: Mothers’ anxiety and positivity during pregnancy independently predict lower mother–infant synchrony

    PubMed Central

    Moore, Ginger; Quigley, Kelsey M.; Voegtline, Kristin M.; DiPietro, Janet A.

    2015-01-01

    Maternal positivity and mother–infant synchrony have been linked, independently, to beneficial infant outcomes; however, research that has examined relations between the two has found that higher positivity is associated with lower synchrony. Methodological issues may inform this counter-intuitive association and clinical theory supports its validity. This study examined the theory that heightened positivity associated with anxiety is a way of avoiding negative emotion and contributes to lower synchrony because it interferes with appropriate responding to infant cues. We examined mothers’ (N = 75) self-reported anxiety and verbal expression of positivity during pregnancy in relation to mother–infant synchrony at 6 months post-partum. Verbal positivity was assessed using linguistic analysis of interviews about pregnancy experiences. Mother and infant affect and gaze were coded during interaction and synchrony was computed as the correlation between mother and infant behaviors. Higher verbal positivity and anxiety during pregnancy independently predicted lower mother–infant synchrony, suggesting distinct pathways to the same degree of synchrony with potentially different consequences for infant development. PMID:26705933

  1. Blast waves and how they interact with structures.

    PubMed

    Cullis, I G

    2001-02-01

    The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge.

  2. treeman: an R package for efficient and intuitive manipulation of phylogenetic trees.

    PubMed

    Bennett, Dominic J; Sutton, Mark D; Turvey, Samuel T

    2017-01-07

    Phylogenetic trees are hierarchical structures used for representing the inter-relationships between biological entities. They are the most common tool for representing evolution and are essential to a range of fields across the life sciences. The manipulation of phylogenetic trees-in terms of adding or removing tips-is often performed by researchers not just for reasons of management but also for performing simulations in order to understand the processes of evolution. Despite this, the most common programming language among biologists, R, has few class structures well suited to these tasks. We present an R package that contains a new class, called TreeMan, for representing the phylogenetic tree. This class has a list structure allowing phylogenetic trees to be manipulated more efficiently. Computational running times are reduced because of the ready ability to vectorise and parallelise methods. Development is also improved due to fewer lines of code being required for performing manipulation processes. We present three use cases-pinning missing taxa to a supertree, simulating evolution with a tree-growth model and detecting significant phylogenetic turnover-that demonstrate the new package's speed and simplicity.

  3. Gstat: a program for geostatistical modelling, prediction and simulation

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer J.; Wesseling, Cees G.

    1998-01-01

    Gstat is a computer program for variogram modelling, and geostatistical prediction and simulation. It provides a generic implementation of the multivariable linear model with trends modelled as a linear function of coordinate polynomials or of user-defined base functions, and independent or dependent, geostatistically modelled, residuals. Simulation in gstat comprises conditional or unconditional (multi-) Gaussian sequential simulation of point values or block averages, or (multi-) indicator sequential simulation. Besides many of the popular options found in other geostatistical software packages, gstat offers the unique combination of (i) an interactive user interface for modelling variograms and generalized covariances (residual variograms), that uses the device-independent plotting program gnuplot for graphical display, (ii) support for several ascii and binary data and map file formats for input and output, (iii) a concise, intuitive and flexible command language, (iv) user customization of program defaults, (v) no built-in limits, and (vi) free, portable ANSI-C source code. This paper describes the class of problems gstat can solve, and addresses aspects of efficiency and implementation, managing geostatistical projects, and relevant technical details.

  4. Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo

    The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

  5. Improving Metallic Thermal Protection System Hypervelocity Impact Resistance Through Design of Experiments Approach

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Blosser, Max L.

    2001-01-01

    A design of experiments approach has been implemented using computational hypervelocity impact simulations to determine the most effective place to add mass to an existing metallic Thermal Protection System (TPS) to improve hypervelocity impact protection. Simulations were performed using axisymmetric models in CTH, a shock-physics code developed by Sandia National Laboratories, and validated by comparison with existing test data. The axisymmetric models were then used in a statistical sensitivity analysis to determine the influence of five design parameters on degree of hypervelocity particle dispersion. Several damage metrics were identified and evaluated. Damage metrics related to the extent of substructure damage were seen to produce misleading results, however damage metrics related to the degree of dispersion of the hypervelocity particle produced results that corresponded to physical intuition. Based on analysis of variance results it was concluded that the most effective way to increase hypervelocity impact resistance is to increase the thickness of the outer foil layer. Increasing the spacing between the outer surface and the substructure is also very effective at increasing dispersion.

  6. Genomicus update 2015: KaryoView and MatrixView provide a genome-wide perspective to multispecies comparative genomics

    PubMed Central

    Louis, Alexandra; Nguyen, Nga Thi Thuy; Muffato, Matthieu; Roest Crollius, Hugues

    2015-01-01

    The Genomicus web server (http://www.genomicus.biologie.ens.fr/genomicus) is a visualization tool allowing comparative genomics in four different phyla (Vertebrate, Fungi, Metazoan and Plants). It provides access to genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants. Here we present the new features available for vertebrate genome with a focus on new graphical tools. The interface to enter the database has been improved, two pairwise genome comparison tools are now available (KaryoView and MatrixView) and the multiple genome comparison tools (PhyloView and AlignView) propose three new kinds of representation and a more intuitive menu. These new developments have been implemented for Genomicus portal dedicated to vertebrates. This allows the analysis of 68 extant animal genomes, as well as 58 ancestral reconstructed genomes. The Genomicus server also provides access to ancestral gene orders, to facilitate evolutionary and comparative genomics studies, as well as computationally predicted regulatory interactions, thanks to the representation of conserved non-coding elements with their putative gene targets. PMID:25378326

  7. Performance of the density matrix functional theory in the quantum theory of atoms in molecules.

    PubMed

    García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A

    2012-02-02

    The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.

  8. The Virtual Geophysics Laboratory (VGL): Scientific Workflows Operating Across Organizations and Across Infrastructures

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.

    2012-12-01

    The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models, code, data, processing) are shared in the one virtual laboratory. VGL provides end users with access to an intuitive, user-centered interface that leverages cloud storage and cloud and cluster processing from both the research communities and commercial suppliers (e.g. Amazon). As the underlying data and information services are agnostic of the scientific domain, they can support many other data types. This fundamental characteristic results in a highly reusable virtual laboratory infrastructure that could also be used for example natural hazards, satellite processing, soil geochemistry, climate modeling, agriculture crop modeling.

  9. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebennikov, A.N.; Zhitnik, A.K.; Zvenigorodskaya, O.A.

    1995-12-31

    In conformity with the protocol of the Workshop under Contract {open_quotes}Assessment of RBMK reactor safety using modern Western Codes{close_quotes} VNIIEF performed a neutronics computation series to compare western and VNIIEF codes and assess whether VNIIEF codes are suitable for RBMK type reactor safety assessment computation. The work was carried out in close collaboration with M.I. Rozhdestvensky and L.M. Podlazov, NIKIET employees. The effort involved: (1) cell computations with the WIMS, EKRAN codes (improved modification of the LOMA code) and the S-90 code (VNIIEF Monte Carlo). Cell, polycell, burnup computation; (2) 3D computation of static states with the KORAT-3D and NEUmore » codes and comparison with results of computation with the NESTLE code (USA). The computations were performed in the geometry and using the neutron constants presented by the American party; (3) 3D computation of neutron kinetics with the KORAT-3D and NEU codes. These computations were performed in two formulations, both being developed in collaboration with NIKIET. Formulation of the first problem maximally possibly agrees with one of NESTLE problems and imitates gas bubble travel through a core. The second problem is a model of the RBMK as a whole with imitation of control and protection system controls (CPS) movement in a core.« less

  10. Development and application of the GIM code for the Cyber 203 computer

    NASA Technical Reports Server (NTRS)

    Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.

    1982-01-01

    The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.

  11. Other Persons: On the Phenomenology of Interpersonal Experience in Schizophrenia (Ancillary Article to EAWE Domain 3).

    PubMed

    Stanghellini, Giovanni; Ballerini, Massimo; Mancini, Milena

    2017-01-01

    In this paper, we discuss the philosophical and psychopathological background of Domain 3, Other persons, of the Examination of Anomalous World Experiences (EAWE). The EAWE interview aims to describe the manifold phenomena of the schizophrenic lifeworld in all of their concrete and distinctive features, thus complementing a more abstract, symptom-focused approach. Domain 3, Other persons, focuses specifically on subjectively experienced interpersonal disturbances that may be especially common in schizophrenia. The aim of this domain, as with the rest of the EAWE, is to provide clinicians and researchers with a systematic orientation toward, or knowledge of, patients' experiences, so that the experiential universe of schizophrenia can be clarified in terms of the particular feel, meaning, and value it has for the patient. To help provide a context for EAWE Domain 3, Other persons, we propose a definition of "intersubjectivity" (IS) and "dissociality." The former is the ability to understand other persons, that is, the basis of our capacity to experience people and social situations as meaningful. IS relies both on perceptive- intuitive as well as cognitive-computational resources. Dissociality addresses the core psychopathological nucleus characterizing the quality of abnormal IS in persons with schizophrenia and covers several dimensions, including disturbances of both perceptive-intuitive and cognitive-computational capacities. The most typical perceptive-intuitive abnormality is hypoattunement, that is, the lack of interpersonal resonance and difficulties in grasping or immediately understanding others' mental states. The most characteristic cognitive-computational anomaly is social hyperreflexivity, especially an algorithmic conception of sociality (an observational/ethological attitude aimed to develop an explicit, often rule-based personal method for participating in social transactions). Other anomalous interpersonal experiences, such as emotional and behavioral responses to others, are also discussed in relation to this core of dissociality. © 2017 S. Karger AG, Basel.

  12. A new theory of development: the generation of complexity in ontogenesis.

    PubMed

    Barbieri, Marcello

    2016-03-13

    Today there is a very wide consensus on the idea that embryonic development is the result of a genetic programme and of epigenetic processes. Many models have been proposed in this theoretical framework to account for the various aspects of development, and virtually all of them have one thing in common: they do not acknowledge the presence of organic codes (codes between organic molecules) in ontogenesis. Here it is argued instead that embryonic development is a convergent increase in complexity that necessarily requires organic codes and organic memories, and a few examples of such codes are described. This is the code theory of development, a theory that was originally inspired by an algorithm that is capable of reconstructing structures from incomplete information, an algorithm that here is briefly summarized because it makes it intuitively appealing how a convergent increase in complexity can be achieved. The main thesis of the new theory is that the presence of organic codes in ontogenesis is not only a theoretical necessity but, first and foremost, an idea that can be tested and that has already been found to be in agreement with the evidence. © 2016 The Author(s).

  13. GATA: A graphic alignment tool for comparative sequenceanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nix, David A.; Eisen, Michael B.

    2005-01-01

    Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dotmore » plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.« less

  14. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline.

    PubMed

    Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M; Tettelin, Hervé; White, Owen; Angiuoli, Samuel V; Mahurkar, Anup; Fricke, W Florian

    2017-04-27

    The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise.

  15. shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics.

    PubMed

    Khomtchouk, Bohdan B; Hennessy, James R; Wahlestedt, Claes

    2017-01-01

    Transcriptomics, metabolomics, metagenomics, and other various next-generation sequencing (-omics) fields are known for their production of large datasets, especially across single-cell sequencing studies. Visualizing such big data has posed technical challenges in biology, both in terms of available computational resources as well as programming acumen. Since heatmaps are used to depict high-dimensional numerical data as a colored grid of cells, efficiency and speed have often proven to be critical considerations in the process of successfully converting data into graphics. For example, rendering interactive heatmaps from large input datasets (e.g., 100k+ rows) has been computationally infeasible on both desktop computers and web browsers. In addition to memory requirements, programming skills and knowledge have frequently been barriers-to-entry for creating highly customizable heatmaps. We propose shinyheatmap: an advanced user-friendly heatmap software suite capable of efficiently creating highly customizable static and interactive biological heatmaps in a web browser. shinyheatmap is a low memory footprint program, making it particularly well-suited for the interactive visualization of extremely large datasets that cannot typically be computed in-memory due to size restrictions. Also, shinyheatmap features a built-in high performance web plug-in, fastheatmap, for rapidly plotting interactive heatmaps of datasets as large as 105-107 rows within seconds, effectively shattering previous performance benchmarks of heatmap rendering speed. shinyheatmap is hosted online as a freely available web server with an intuitive graphical user interface: http://shinyheatmap.com. The methods are implemented in R, and are available as part of the shinyheatmap project at: https://github.com/Bohdan-Khomtchouk/shinyheatmap. Users can access fastheatmap directly from within the shinyheatmap web interface, and all source code has been made publicly available on Github: https://github.com/Bohdan-Khomtchouk/fastheatmap.

  16. Integrated and flexible multichannel interface for electrotactile stimulation

    NASA Astrophysics Data System (ADS)

    Štrbac, Matija; Belić, Minja; Isaković, Milica; Kojić, Vladimir; Bijelić, Goran; Popović, Igor; Radotić, Milutin; Došen, Strahinja; Marković, Marko; Farina, Dario; Keller, Thierry

    2016-08-01

    Objective. The aim of the present work was to develop and test a flexible electrotactile stimulation system to provide real-time feedback to the prosthesis user. The system requirements were to accommodate the capabilities of advanced multi-DOF myoelectric hand prostheses and transmit the feedback variables (proprioception and force) using intuitive coding, with high resolution and after minimal training. Approach. We developed a fully-programmable and integrated electrotactile interface supporting time and space distributed stimulation over custom designed flexible array electrodes. The system implements low-level access to individual stimulation channels as well as a set of high-level mapping functions translating the state of a multi-DoF prosthesis (aperture, grasping force, wrist rotation) into a set of predefined dynamic stimulation profiles. The system was evaluated using discrimination tests employing spatial and frequency coding (10 able-bodied subjects) and dynamic patterns (10 able-bodied and 6 amputee subjects). The outcome measure was the success rate (SR) in discrimination. Main results. The more practical electrode with the common anode configuration performed similarly to the more usual concentric arrangement. The subjects could discriminate six spatial and four frequency levels with SR >90% after a few minutes of training, whereas the performance significantly deteriorated for more levels. The dynamic patterns were intuitive for the subjects, although amputees showed lower SR than able-bodied individuals (86% ± 10% versus 99% ± 3%). Significance. The tests demonstrated that the system was easy to setup and apply. The design and resolution of the multipad electrode was evaluated. Importantly, the novel dynamic patterns, which were successfully tested, can be superimposed to transmit multiple feedback variables intuitively and simultaneously. This is especially relevant for closing the loop in modern multifunction prostheses. Therefore, the proposed system is convenient for practical applications and can be used to implement sensory perception training and/or closed-loop control of myoelectric prostheses, providing grasping force and proprioceptive feedback.

  17. A Symbolic Model of the Nonconscious Acquisition of Information.

    ERIC Educational Resources Information Center

    Ling, Charles X.; Marinov, Marin

    1994-01-01

    Challenges Smolensky's theory that human intuitive/nonconscious cognitive processes can only be accurately explained in terms of subsymbolic computations in artificial neural networks. Symbolic learning models of two cognitive tasks involving nonconscious acquisition of information are presented: learning production rules and artificial finite…

  18. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  19. The virtual mirror: a new interaction paradigm for augmented reality environments.

    PubMed

    Bichlmeier, Christoph; Heining, Sandro Michael; Feuerstein, Marco; Navab, Nassir

    2009-09-01

    Medical augmented reality (AR) has been widely discussed within the medical imaging as well as computer aided surgery communities. Different systems for exemplary medical applications have been proposed. Some of them produced promising results. One major issue still hindering AR technology to be regularly used in medical applications is the interaction between physician and the superimposed 3-D virtual data. Classical interaction paradigms, for instance with keyboard and mouse, to interact with visualized medical 3-D imaging data are not adequate for an AR environment. This paper introduces the concept of a tangible/controllable Virtual Mirror for medical AR applications. This concept intuitively augments the direct view of the surgeon with all desired views on volumetric medical imaging data registered with the operation site without moving around the operating table or displacing the patient. We selected two medical procedures to demonstrate and evaluate the potentials of the Virtual Mirror for the surgical workflow. Results confirm the intuitiveness of this new paradigm and its perceptive advantages for AR-based computer aided interventions.

  20. To punish or repair? Evolutionary psychology and lay intuitions about modern criminal justice.

    PubMed

    Petersen, Michael Bang; Sell, Aaron; Tooby, John; Cosmides, Leda

    2012-11-01

    We propose that intuitions about modern mass-level criminal justice emerge from evolved mechanisms designed to operate in ancestral small-scale societies. By hypothesis, individuals confronted with a crime compute two distinct psychological magnitudes: one that reflects the crime's seriousness and another that reflects the criminal's long-term value as an associate. These magnitudes are computed based on different sets of cues and are fed into motivational mechanisms regulating different aspects of sanctioning. The seriousness variable regulates how much to react (e.g., how severely we want to punish); the variable indexing the criminal's association value regulates the more fundamental decision of how to react (i.e., whether we want to punish or repair). Using experimental designs embedded in surveys, we validate this theory across several types of crime and two countries. The evidence augments past research and suggests that the human mind contains dedicated psychological mechanisms for restoring social relationships following acts of exploitation.

  1. To punish or repair? Evolutionary psychology and lay intuitions about modern criminal justice

    PubMed Central

    Petersen, Michael Bang; Sell, Aaron; Tooby, John; Cosmides, Leda

    2013-01-01

    We propose that intuitions about modern mass-level criminal justice emerge from evolved mechanisms designed to operate in ancestral small-scale societies. By hypothesis, individuals confronted with a crime compute two distinct psychological magnitudes: one that reflects the crime’s seriousness and another that reflects the criminal’s long-term value as an associate. These magnitudes are computed based on different sets of cues and are fed into motivational mechanisms regulating different aspects of sanctioning. The seriousness variable regulates how much to react (e.g., how severely we want to punish); the variable indexing the criminal’s association value regulates the more fundamental decision of how to react (i.e., whether we want to punish or repair). Using experimental designs embedded in surveys, we validate this theory across several types of crime and two countries. The evidence augments past research and suggests that the human mind contains dedicated psychological mechanisms for restoring social relationships following acts of exploitation. PMID:23412662

  2. Simulation of Ionospheric Response During Solar Eclipse Events

    NASA Astrophysics Data System (ADS)

    Kordella, L.; Earle, G. D.; Huba, J.

    2016-12-01

    Total solar eclipses are rare, short duration events that present interesting case studies of ionospheric behavior because the structure of the ionosphere is determined and stabilized by varying energies of solar radiation (Lyman alpha, X-ray, U.V., etc.). The ionospheric response to eclipse events is a source of scientific intrigue that has been studied in various capacities over the past 50 years. Unlike the daily terminator crossings, eclipses cause highly localized, steep gradients of ionization efficiency due to their comparatively small solar zenith angle. However, the corona remains present even at full obscuration, meaning that the energy reduction never falls to the levels seen at night. Previous eclipse studies performed by research groups in the US, UK, China and Russia have shown a range of effects, some counter-intuitive and others contradictory. In the shadowed region of an eclipse (i.e. umbra) it is logical to assume a reduction in ionization rates correlating with the reduction of incident solar radiation. Results have shown that even this straightforward hypothesis may not be true; effects on plasma distribution, motion and temperature are more appreciable than might be expected. Recent advancements in ionospheric simulation codes present the opportunity to investigate the relationship between geophysical conditions and geomagnetic location on resulting eclipse event ionosphere. Here we present computational simulation results using the Naval Research Lab (NRL) developed ionospheric modeling codes Sami2 and Sami3 (Sami2 is Another Model of the Ionosphere) modified with spatio-temporal photoionization attenuation functions derived from theory and empirical data.

  3. A new model to compute the desired steering torque for steer-by-wire vehicles and driving simulators

    NASA Astrophysics Data System (ADS)

    Fankem, Steve; Müller, Steffen

    2014-05-01

    This paper deals with the control of the hand wheel actuator in steer-by-wire (SbW) vehicles and driving simulators (DSs). A novel model for the computation of the desired steering torque is presented. The introduced steering torque computation does not only aim to generate a realistic steering feel, which means that the driver should not miss the basic steering functionality of a modern conventional steering system such as an electric power steering (EPS) or hydraulic power steering (HPS), and this in every driving situation. In addition, the modular structure of the steering torque computation combined with suitably selected tuning parameters has the objective to offer a high degree of customisability of the steering feel and thus to provide each driver with his preferred steering feel in a very intuitive manner. The task and the tuning of each module are firstly described. Then, the steering torque computation is parameterised such that the steering feel of a series EPS system is reproduced. For this purpose, experiments are conducted in a hardware-in-the-loop environment where a test EPS is mounted on a steering test bench coupled with a vehicle simulator and parameter identification techniques are applied. Subsequently, how appropriate the steering torque computation mimics the test EPS system is objectively evaluated with respect to criteria concerning the steering torque level and gradient, the feedback behaviour and the steering return ability. Finally, the intuitive tuning of the modular steering torque computation is demonstrated for deriving a sportier steering feel configuration.

  4. A5: Automated Analysis of Adversarial Android Applications

    DTIC Science & Technology

    2014-06-03

    algorithm is fairly intuitive. First, A5 invokes the DED [11] decompiler to create Java classes from the Android application code. Next, A5 uses Soot [30...implemented such as Bluetooth, Wi-Fi, sensors , etc. These hardware features are very common in physical devices and are simply not present in the...such as Androguard [1] and Soot [30]. Deficiencies in these tools may also manifest in A5. The bytecode static analysis is limited to finding only

  5. Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory

    PubMed Central

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. PMID:22582739

  6. MAPPER: A personal computer map projection tool

    NASA Technical Reports Server (NTRS)

    Bailey, Steven A.

    1993-01-01

    MAPPER is a set of software tools designed to let users create and manipulate map projections on a personal computer (PC). The capability exists to generate five popular map projections. These include azimuthal, cylindrical, mercator, lambert, and sinusoidal projections. Data for projections are contained in five coordinate databases at various resolutions. MAPPER is managed by a system of pull-down windows. This interface allows the user to intuitively create, view and export maps to other platforms.

  7. The Specification of an Integrated Computer-Aided Ship Design Process in an Academic Environment.

    DTIC Science & Technology

    1984-06-01

    complicated. The intuition .-nd ex:perience of a good designer are qualities that cannot yet ;e programmed into even the most capable computer. Comitters...between themselves. These application routines, while very capable in their own right, lack the qualities which would make them more usable in the...academic environment. These qualities include thorough documentation, both substantive derivations and descriptive user’s guides, user friendliness and

  8. Terascale direct numerical simulations of turbulent combustion using S3D

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory intensive loops in the code. Through the careful application of loop transformations, data reuse in cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D's nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design is used to construct a two-stage write-behind method for improving the performance of write-only operations. The simulations generate tens of terabytes of data requiring analysis. Interactive exploration of the simulation data is enabled by multivariate time-varying volume visualization. The visualization highlights spatial and temporal correlations between multiple reactive scalar fields using an intuitive user interface based on parallel coordinates and time histogram. Finally, an automated combustion workflow is designed using Kepler to manage large-scale data movement, data morphing, and archival and to provide a graphical display of run-time diagnostics.

  9. Understanding resonance graphs using Easy Java Simulations (EJS) and why we use EJS

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel

    2015-03-01

    This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of equal amplitude but different driving frequencies, and (2) different amounts of damping. The simulation aims to create a visually intuitive way of understanding how the series of amplitude versus driving frequency graphs are obtained by showing how the displacement of the system changes over time as it transits from the transient to the steady state. A suggested ‘how to use’ the model is added to help educators and students in their teaching and learning, where we explain the theoretical steady-state equation time conditions when the model begins to allow data recording of maximum amplitudes to closely match the theoretical equation, and the steps to collect different runs of the degree of damping. We also discuss two of the design features in our computer model: displaying the instantaneous oscillation together with the achieved steady-state amplitudes, and the explicit world view overlay with scientific representation with different degrees of damping runs. Three advantages of using EJS include: (1) open source codes and creative commons attribution licenses for scaling up of interactively engaging educational practices; (2) the models made can run on almost any device, including Android and iOS; and (3) it allows the redefinition of physics educational practices through computer modeling.

  10. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  11. Action Understanding as Inverse Planning

    ERIC Educational Resources Information Center

    Baker, Chris L.; Saxe, Rebecca; Tenenbaum, Joshua B.

    2009-01-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the…

  12. Defining Usability: How Library Practice Differs from Published Research

    ERIC Educational Resources Information Center

    Chen, Yu-Hui; Germain, Carol Anne; Rorissa, Abebe

    2011-01-01

    Library/information science professionals need a clearly articulated definition of usability/Web usability to implement intuitive websites. In this study, the authors analyzed usability definitions provided by the ARL library professionals and those found in the library/information science and computer science-information systems literature.…

  13. Using Mutual Information for Adaptive Item Comparison and Student Assessment

    ERIC Educational Resources Information Center

    Liu, Chao-Lin

    2005-01-01

    The author analyzes properties of mutual information between dichotomous concepts and test items. The properties generalize some common intuitions about item comparison, and provide principled foundations for designing item-selection heuristics for student assessment in computer-assisted educational systems. The proposed item-selection strategies…

  14. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  15. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  16. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  17. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  18. 40 CFR 194.23 - Models and computer codes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  19. Geometric Models for Collaborative Search and Filtering

    ERIC Educational Resources Information Center

    Bitton, Ephrat

    2011-01-01

    This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…

  20. jAMVLE, a New Integrated Molecular Visualization Learning Environment

    ERIC Educational Resources Information Center

    Bottomley, Steven; Chandler, David; Morgan, Eleanor; Helmerhorst, Erik

    2006-01-01

    A new computer-based molecular visualization tool has been developed for teaching, and learning, molecular structure. This java-based jmol Amalgamated Molecular Visualization Learning Environment (jAMVLE) is platform-independent, integrated, and interactive. It has an overall graphical user interface that is intuitive and easy to use. The…

  1. Dynamic Programming: An Introduction by Example

    ERIC Educational Resources Information Center

    Zietz, Joachim

    2007-01-01

    The author introduces some basic dynamic programming techniques, using examples, with the help of the computer algebra system "Maple". The emphasis is on building confidence and intuition for the solution of dynamic problems in economics. To integrate the material better, the same examples are used to introduce different techniques. One covers the…

  2. Classroom Integration of Technology: Are Teachers Understanding?

    ERIC Educational Resources Information Center

    Galloway, Jerry P.

    2007-01-01

    Teachers continue to be trained following a ritualized approach for skills and competencies. But, a deeper understanding of fundamental concepts, improvement of problem-solving and high-order thinking skills and even the development of a contextual intuition can be even more important in becoming computer-using professionals. These factors as well…

  3. Computer Description of Black Hawk Helicopter

    DTIC Science & Technology

    1979-06-01

    Model Combinatorial Geometry Models Black Hawk Helicopter Helicopter GIFT Computer Code Geometric Description of Targets 20. ABSTRACT...description was made using the technique of combinatorial geometry (COM-GEOM) and will be used as input to the GIFT computer code which generates Tliic...rnHp The data used bv the COVART comtmter code was eenerated bv the Geometric Information for Targets ( GIFT )Z computer code. This report documents

  4. An exact computational method for performance analysis of sequential test algorithms for detecting network intrusions

    NASA Astrophysics Data System (ADS)

    Chen, Xinjia; Lacy, Fred; Carriere, Patrick

    2015-05-01

    Sequential test algorithms are playing increasingly important roles for quick detecting network intrusions such as portscanners. In view of the fact that such algorithms are usually analyzed based on intuitive approximation or asymptotic analysis, we develop an exact computational method for the performance analysis of such algorithms. Our method can be used to calculate the probability of false alarm and average detection time up to arbitrarily pre-specified accuracy.

  5. The effective application of a discrete transition model to explore cell-cycle regulation in yeast

    PubMed Central

    2013-01-01

    Background Bench biologists often do not take part in the development of computational models for their systems, and therefore, they frequently employ them as “black-boxes”. Our aim was to construct and test a model that does not depend on the availability of quantitative data, and can be directly used without a need for intensive computational background. Results We present a discrete transition model. We used cell-cycle in budding yeast as a paradigm for a complex network, demonstrating phenomena such as sequential protein expression and activity, and cell-cycle oscillation. The structure of the network was validated by its response to computational perturbations such as mutations, and its response to mating-pheromone or nitrogen depletion. The model has a strong predicative capability, demonstrating how the activity of a specific transcription factor, Hcm1, is regulated, and what determines commitment of cells to enter and complete the cell-cycle. Conclusion The model presented herein is intuitive, yet is expressive enough to elucidate the intrinsic structure and qualitative behavior of large and complex regulatory networks. Moreover our model allowed us to examine multiple hypotheses in a simple and intuitive manner, giving rise to testable predictions. This methodology can be easily integrated as a useful approach for the study of networks, enriching experimental biology with computational insights. PMID:23915717

  6. Examining intuitive cancer risk perceptions in Haitian-Creole and Spanish-speaking populations

    PubMed Central

    Hay, Jennifer; Brennessel, Debra; Kemeny, M. Margaret; Lubetkin, Erica

    2017-01-01

    Background There is a developing emphasis on intuition and affect in the illness risk perception process, yet there have been no available strategies to measure these constructs in non-English speakers. This study examined the comprehensibility and acceptability of translations of cancer risk beliefs in Haitian-Creole and Spanish. Methods An established, iterative, team-based translation process was employed. Cognitive interviews (n=20 in Haitian-Creole speakers; n=23 in Spanish speakers) were conducted in an inner city primary care clinic by trained interviewers who were native speakers of each language. Use of an established coding scheme for problematic terms and ambiguous concepts resulted in rewording and dropping items. Results Most items (90% in the Haitian-Creole version; 87% in the Spanish version) were highly comprehensible. Discussion This work will allow for further research examining health outcomes associated with risk perceptions across diverse, non-English language subgroups, paving the way for targeted risk communication with these populations. PMID:25505052

  7. Qualitative CFD for Rapid Learning in Industrial and Academic Applications

    NASA Astrophysics Data System (ADS)

    Variano, Evan

    2010-11-01

    We present a set of tools that allow CFD to be used at an early stage in the design process. Users can rapidly explore the qualitative aspects of fluid flow using real-time simulations that react immediately to design changes. This can guide the design process by fostering an intuitive understanding of fluid dynamics at the prototyping stage. We use an extremely stable Navier-Stokes solver that is available commercially (and free to academic users) plus a custom user interface. The code is designed for the animation and gaming industry, and we exploit the powerful graphical display capabilities to develop a unique human-machine interface. This interface allows the user to efficiently explore the flow in 3D + real time, fostering an intuitive understanding of steady and unsteady flow patterns. There are obvious extensions to use in an academic setting. The trade-offs between accuracy and speed will be discussed in the context of CFD's role in design and education.

  8. Wearable computer technology for dismounted applications

    NASA Astrophysics Data System (ADS)

    Daniels, Reginald

    2010-04-01

    Small computing devices which rival the compact size of traditional personal digital assistants (PDA) have recently established a market niche. These computing devices are small enough to be considered unobtrusive for humans to wear. The computing devices are also powerful enough to run full multi-tasking general purpose operating systems. This paper will explore the wearable computer information system for dismounted applications recently fielded for ground-based US Air Force use. The environments that the information systems are used in will be reviewed, as well as a description of the net-centric, ground-based warrior. The paper will conclude with a discussion regarding the importance of intuitive, usable, and unobtrusive operator interfaces for dismounted operators.

  9. Human-computer interface

    DOEpatents

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, Marvin; /SLAC

    It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for themore » behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will turn to tunneling problems and show that the instanton can also be though of in the same way. I will do this for the classic problem of a double well potential in the extreme limit when the splitting between the two lowest levels is extremely small and the tunneling rate from one well to another is also very small.« less

  11. User manual for semi-circular compact range reflector code: Version 2

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1987-01-01

    A computer code has been developed at the Ohio State University ElectroScience Laboratory to analyze a semi-circular paraboloidal reflector with or without a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the reflector or its individual components at a given distance from the center of the paraboloid. The code computes the fields along a radial, horizontal, vertical or axial cut at that distance. Thus, it is very effective in computing the size of the sweet spot for a semi-circular compact range reflector. This report describes the operation of the code. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.

  12. Inductive reasoning about causally transmitted properties.

    PubMed

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B

    2008-11-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.

  13. Intuitive presentation of clinical forensic data using anonymous and person-specific 3D reference manikins.

    PubMed

    Urschler, Martin; Höller, Johannes; Bornik, Alexander; Paul, Tobias; Giretzlehner, Michael; Bischof, Horst; Yen, Kathrin; Scheurer, Eva

    2014-08-01

    The increasing use of CT/MR devices in forensic analysis motivates the need to present forensic findings from different sources in an intuitive reference visualization, with the aim of combining 3D volumetric images along with digital photographs of external findings into a 3D computer graphics model. This model allows a comprehensive presentation of forensic findings in court and enables comparative evaluation studies correlating data sources. The goal of this work was to investigate different methods to generate anonymous and patient-specific 3D models which may be used as reference visualizations. The issue of registering 3D volumetric as well as 2D photographic data to such 3D models is addressed to provide an intuitive context for injury documentation from arbitrary modalities. We present an image processing and visualization work-flow, discuss the major parts of this work-flow, compare the different investigated reference models, and show a number of cases studies that underline the suitability of the proposed work-flow for presenting forensically relevant information in 3D visualizations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Policy Process Editor for P3BM Software

    NASA Technical Reports Server (NTRS)

    James, Mark; Chang, Hsin-Ping; Chow, Edward T.; Crichton, Gerald A.

    2010-01-01

    A computer program enables generation, in the form of graphical representations of process flows with embedded natural-language policy statements, input to a suite of policy-, process-, and performance-based management (P3BM) software. This program (1) serves as an interface between users and the Hunter software, which translates the input into machine-readable form; and (2) enables users to initialize and monitor the policy-implementation process. This program provides an intuitive graphical interface for incorporating natural-language policy statements into business-process flow diagrams. Thus, the program enables users who dictate policies to intuitively embed their intended process flows as they state the policies, reducing the likelihood of errors and reducing the time between declaration and execution of policy.

  15. Intuitive and interpretable visual communication of a complex statistical model of disease progression and risk.

    PubMed

    Jieyi Li; Arandjelovic, Ognjen

    2017-07-01

    Computer science and machine learning in particular are increasingly lauded for their potential to aid medical practice. However, the highly technical nature of the state of the art techniques can be a major obstacle in their usability by health care professionals and thus, their adoption and actual practical benefit. In this paper we describe a software tool which focuses on the visualization of predictions made by a recently developed method which leverages data in the form of large scale electronic records for making diagnostic predictions. Guided by risk predictions, our tool allows the user to explore interactively different diagnostic trajectories, or display cumulative long term prognostics, in an intuitive and easily interpretable manner.

  16. Hanford meteorological station computer codes: Volume 9, The quality assurance computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burk, K.W.; Andrews, G.L.

    1989-02-01

    The Hanford Meteorological Station (HMS) was established in 1944 on the Hanford Site to collect and archive meteorological data and provide weather forecasts and related services for Hanford Site approximately 1/2 mile east of the 200 West Area and is operated by PNL for the US Department of Energy. Meteorological data are collected from various sensors and equipment located on and off the Hanford Site. These data are stored in data bases on the Digital Equipment Corporation (DEC) VAX 11/750 at the HMS (hereafter referred to as the HMS computer). Files from those data bases are routinely transferred to themore » Emergency Management System (EMS) computer at the Unified Dose Assessment Center (UDAC). To ensure the quality and integrity of the HMS data, a set of Quality Assurance (QA) computer codes has been written. The codes will be routinely used by the HMS system manager or the data base custodian. The QA codes provide detailed output files that will be used in correcting erroneous data. The following sections in this volume describe the implementation and operation of QA computer codes. The appendices contain detailed descriptions, flow charts, and source code listings of each computer code. 2 refs.« less

  17. Spherical hashing: binary code embedding with hyperspheres.

    PubMed

    Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui

    2015-11-01

    Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.

  18. User's manual for semi-circular compact range reflector code

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1986-01-01

    A computer code was developed to analyze a semi-circular paraboloidal reflector antenna with a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the antenna or its individual components at a given distance from the center of the paraboloid. Thus, it is very effective in computing the size of the sweet spot for RCS or antenna measurement. The operation of the code is described. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.

  19. Highly fault-tolerant parallel computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, D.A.

    We re-introduce the coded model of fault-tolerant computation in which the input and output of a computational device are treated as words in an error-correcting code. A computational device correctly computes a function in the coded model if its input and output, once decoded, are a valid input and output of the function. In the coded model, it is reasonable to hope to simulate all computational devices by devices whose size is greater by a constant factor but which are exponentially reliable even if each of their components can fail with some constant probability. We consider fine-grained parallel computations inmore » which each processor has a constant probability of producing the wrong output at each time step. We show that any parallel computation that runs for time t on w processors can be performed reliably on a faulty machine in the coded model using w log{sup O(l)} w processors and time t log{sup O(l)} w. The failure probability of the computation will be at most t {center_dot} exp(-w{sup 1/4}). The codes used to communicate with our fault-tolerant machines are generalized Reed-Solomon codes and can thus be encoded and decoded in O(n log{sup O(1)} n) sequential time and are independent of the machine they are used to communicate with. We also show how coded computation can be used to self-correct many linear functions in parallel with arbitrarily small overhead.« less

  20. An emulator for minimizing computer resources for finite element analysis

    NASA Technical Reports Server (NTRS)

    Melosh, R.; Utku, S.; Islam, M.; Salama, M.

    1984-01-01

    A computer code, SCOPE, has been developed for predicting the computer resources required for a given analysis code, computer hardware, and structural problem. The cost of running the code is a small fraction (about 3 percent) of the cost of performing the actual analysis. However, its accuracy in predicting the CPU and I/O resources depends intrinsically on the accuracy of calibration data that must be developed once for the computer hardware and the finite element analysis code of interest. Testing of the SCOPE code on the AMDAHL 470 V/8 computer and the ELAS finite element analysis program indicated small I/O errors (3.2 percent), larger CPU errors (17.8 percent), and negligible total errors (1.5 percent).

  1. CMG-Biotools, a Free Workbench for Basic Comparative Microbial Genomics

    PubMed Central

    Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David

    2013-01-01

    Background Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. Results The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. Conclusion This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training. PMID:23577086

  2. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  3. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †

    PubMed Central

    Murdani, Muhammad Harist; Hong, Bonghee

    2018-01-01

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes (Ad-Hoc) and neighborhood proximity (Top-K). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space. PMID:29587366

  4. Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †.

    PubMed

    Murdani, Muhammad Harist; Kwon, Joonho; Choi, Yoon-Ho; Hong, Bonghee

    2018-03-24

    In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes ( Ad-Hoc ) and neighborhood proximity ( Top-K ). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.

  5. One-shot 3D scanning by combining sparse landmarks with dense gradient information

    NASA Astrophysics Data System (ADS)

    Di Martino, Matías; Flores, Jorge; Ferrari, José A.

    2018-06-01

    Scene understanding is one of the most challenging and popular problems in the field of robotics and computer vision and the estimation of 3D information is at the core of most of these applications. In order to retrieve the 3D structure of a test surface we propose a single shot approach that combines dense gradient information with sparse absolute measurements. To that end, we designed a colored pattern that codes fine horizontal and vertical fringes, with sparse corners landmarks. By measuring the deformation (bending) of horizontal and vertical fringes, we are able to estimate surface local variations (i.e. its gradient field). Then corner sparse landmarks are detected and matched to infer spare absolute information about the test surface height. Local gradient information is combined with the sparse absolute values which work as anchors to guide the integration process. We show that this can be mathematically done in a very compact and intuitive way by properly defining a Poisson-like partial differential equation. Then we address in detail how the problem can be formulated in a discrete domain and how it can be practically solved by straight forward linear numerical solvers. Finally, validation experiment are presented.

  6. Genomicus update 2015: KaryoView and MatrixView provide a genome-wide perspective to multispecies comparative genomics.

    PubMed

    Louis, Alexandra; Nguyen, Nga Thi Thuy; Muffato, Matthieu; Roest Crollius, Hugues

    2015-01-01

    The Genomicus web server (http://www.genomicus.biologie.ens.fr/genomicus) is a visualization tool allowing comparative genomics in four different phyla (Vertebrate, Fungi, Metazoan and Plants). It provides access to genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants. Here we present the new features available for vertebrate genome with a focus on new graphical tools. The interface to enter the database has been improved, two pairwise genome comparison tools are now available (KaryoView and MatrixView) and the multiple genome comparison tools (PhyloView and AlignView) propose three new kinds of representation and a more intuitive menu. These new developments have been implemented for Genomicus portal dedicated to vertebrates. This allows the analysis of 68 extant animal genomes, as well as 58 ancestral reconstructed genomes. The Genomicus server also provides access to ancestral gene orders, to facilitate evolutionary and comparative genomics studies, as well as computationally predicted regulatory interactions, thanks to the representation of conserved non-coding elements with their putative gene targets. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Detection of plasticity mechanisms in an energetic molecular crystal through shock-like 3D unidirectional compressions: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard

    2017-06-01

    TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.

  8. OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments

    NASA Astrophysics Data System (ADS)

    Rebuffi, Luca; Sanchez del Rio, Manuel

    2017-08-01

    The evolution of the hardware platforms, the modernization of the software tools, the access to the codes of a large number of young people and the popularization of the open source software for scientific applications drove us to design OASYS (ORange SYnchrotron Suite), a completely new graphical environment for modelling X-ray experiments. The implemented software architecture allows to obtain not only an intuitive and very-easy-to-use graphical interface, but also provides high flexibility and rapidity for interactive simulations, making configuration changes to quickly compare multiple beamline configurations. Its purpose is to integrate in a synergetic way the most powerful calculation engines available. OASYS integrates different simulation strategies via the implementation of adequate simulation tools for X-ray Optics (e.g. ray tracing and wave optics packages). It provides a language to make them to communicate by sending and receiving encapsulated data. Python has been chosen as main programming language, because of its universality and popularity in scientific computing. The software Orange, developed at the University of Ljubljana (SLO), is the high level workflow engine that provides the interaction with the user and communication mechanisms.

  9. Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    NASA Technical Reports Server (NTRS)

    Fields, Chris

    1989-01-01

    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countably many quasistable states has at least the computational power of a universal Turing machine. Such an analysis assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine.

  10. Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    NASA Technical Reports Server (NTRS)

    Fields, Chris

    1989-01-01

    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countablely many quasistable states has at least the computational power of a universal Turing machine. Such an analyses assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine.

  11. Virtual microscopy: merging of computer mediated communication and intuitive interfacing

    NASA Astrophysics Data System (ADS)

    de Ridder, Huib; de Ridder-Sluiter, Johanna G.; Kluin, Philip M.; Christiaans, Henri H. C. M.

    2009-02-01

    Ubiquitous computing (or Ambient Intelligence) is an upcoming technology that is usually associated with futuristic smart environments in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. However spectacular the corresponding scenarios may be, it is equally challenging to consider how this technology may enhance existing situations. This is illustrated by a case study from the Dutch medical field: central quality reviewing for pathology in child oncology. The main goal of the review is to assess the quality of the diagnosis based on patient material. The sharing of knowledge in social face-to-face interaction during such meeting is an important advantage. At the same time there is the disadvantage that the experts from the seven Dutch academic medical centers have to travel to the review meeting and that the required logistics to collect and bring patient material and data to the meeting is cumbersome and time-consuming. This paper focuses on how this time-consuming, nonefficient way of reviewing can be replaced by a virtual collaboration system by merging technology supporting Computer Mediated Collaboration and intuitive interfacing. This requires insight in the preferred way of communication and collaboration as well as knowledge about preferred interaction style with a virtual shared workspace.

  12. Volume accumulator design analysis computer codes

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The computer codes, VANEP and VANES, were written and used to aid in the design and performance calculation of the volume accumulator units (VAU) for the 5-kwe reactor thermoelectric system. VANEP computes the VAU design which meets the primary coolant loop VAU volume and pressure performance requirements. VANES computes the performance of the VAU design, determined from the VANEP code, at the conditions of the secondary coolant loop. The codes can also compute the performance characteristics of the VAU's under conditions of possible modes of failure which still permit continued system operation.

  13. "Hour of Code": Can It Change Students' Attitudes toward Programming?

    ERIC Educational Resources Information Center

    Du, Jie; Wimmer, Hayden; Rada, Roy

    2016-01-01

    The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-profit dedicated to expanding participation in computer science. This study investigated the impact of the Hour of Code on students' attitudes towards computer programming and their knowledge of programming. A sample of undergraduate students from two…

  14. Subsumption principles underlying medical concept systems and their formal reconstruction.

    PubMed Central

    Bernauer, J.

    1994-01-01

    Conventional medical concept systems represent generic concept relations by hierarchical coding principles. Often, these coding principles constrain the concept system and reduce the potential for automatical derivation of subsumption. Formal reconstruction of medical concept systems is an approach that bases on the conceptual representation of meanings and that allows for the application of formal criteria for subsumption. Those criteria must reflect intuitive principles of subordination which are underlying conventional medical concept systems. Particularly these are: The subordinate concept results (1) from adding a specializing criterion to the superordinate concept, (2) from refining the primary category, or a criterion of the superordinate concept, by a concept that is less general, (3) from adding a partitive criterion to a criterion of the superordinate, (4) from refining a criterion by a concept that is less comprehensive, and finally (5) from coordinating the superordinate concept, or one of its criteria. This paper introduces a formalism called BERNWARD that aims at the formal reconstruction of medical concept systems according to these intuitive principles. The automatical derivation of hierarchical relations is primarily supported by explicit generic and explicit partititive hierarchies of concepts, secondly, by two formal criteria that base on the structure of concept descriptions and explicit hierarchical relations between their elements, namely: formal subsumption and part-sensitive subsumption. Formal subsumption takes only generic relations into account, part-sensitive subsumption additionally regards partive relations between criteria. This approach seems to be flexible enough to cope with unforeseeable effects of partitive criteria on subsumption. PMID:7949907

  15. Talking about Code: Integrating Pedagogical Code Reviews into Early Computing Courses

    ERIC Educational Resources Information Center

    Hundhausen, Christopher D.; Agrawal, Anukrati; Agarwal, Pawan

    2013-01-01

    Given the increasing importance of soft skills in the computing profession, there is good reason to provide students withmore opportunities to learn and practice those skills in undergraduate computing courses. Toward that end, we have developed an active learning approach for computing education called the "Pedagogical Code Review"…

  16. Learning Science through Computer Games and Simulations

    ERIC Educational Resources Information Center

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  17. Focus Your Young Visitors: Kids Innovation--Fundamental Changes in Digital Edutainment.

    ERIC Educational Resources Information Center

    Sauer, Sebastian; Gobel, Stefan

    With regard to the acceptance of human-computer interfaces, immersion represents one of the most important methods for attracting young visitors into museum exhibitions. Exciting and diversely presented content as well as intuitive, natural and human-like interfaces are indispensable to bind users to an interactive system with real and digital…

  18. Preparing Business Vocabulary for the ESP Classroom

    ERIC Educational Resources Information Center

    Tangpijaikul, Montri

    2014-01-01

    This research combines corpus-based and intuition-based approaches in developing a list of important words in business news that Thai learners of business English need to know. The Thai corpus of English for Business and Economic News (Thai-EBEN) has been compiled from English business news articles in the Thai press. A computer concordancing…

  19. Evaluating the Cognitive Consequences of Playing "Portal" for a Short Duration

    ERIC Educational Resources Information Center

    Adams, Deanne M.; Pilegard, Celeste; Mayer, Richard E.

    2016-01-01

    Learning physics often requires overcoming common misconceptions based on naïve interpretations of observations in the everyday world. One proposed way to help learners build appropriate physics intuitions is to expose them to computer simulations in which motion is based on Newtonian principles. In addition, playing video games that require…

  20. Google Wave: Collaboration Reworked

    ERIC Educational Resources Information Center

    Rethlefsen, Melissa L.

    2010-01-01

    Over the past several years, Internet users have become accustomed to Web 2.0 and cloud computing-style applications. It's commonplace and even intuitive to drag and drop gadgets on personalized start pages, to comment on a Facebook post without reloading the page, and to compose and save documents through a web browser. The web paradigm has…

  1. Simplified Application of Material Efficiency Green Metrics to Synthesis Plans: Pedagogical Case Studies Selected from "Organic Syntheses"

    ERIC Educational Resources Information Center

    Andraos, John

    2015-01-01

    This paper presents a simplified approach for the application of material efficiency metrics to linear and convergent synthesis plans encountered in organic synthesis courses. Computations are facilitated and automated using intuitively designed Microsoft Excel spreadsheets without invoking abstract mathematical formulas. The merits of this…

  2. Integrating Statistical Visualization Research into the Political Science Classroom

    ERIC Educational Resources Information Center

    Draper, Geoffrey M.; Liu, Baodong; Riesenfeld, Richard F.

    2011-01-01

    The use of computer software to facilitate learning in political science courses is well established. However, the statistical software packages used in many political science courses can be difficult to use and counter-intuitive. We describe the results of a preliminary user study suggesting that visually-oriented analysis software can help…

  3. Designing overall stoichiometric conversions and intervening metabolic reactions

    DOE PAGES

    Chowdhury, Anupam; Maranas, Costas D.

    2015-11-04

    Existing computational tools for de novo metabolic pathway assembly, either based on mixed integer linear programming techniques or graph-search applications, generally only find linear pathways connecting the source to the target metabolite. The overall stoichiometry of conversion along with alternate co-reactant (or co-product) combinations is not part of the pathway design. Therefore, global carbon and energy efficiency is in essence fixed with no opportunities to identify more efficient routes for recycling carbon flux closer to the thermodynamic limit. Here, we introduce a two-stage computational procedure that both identifies the optimum overall stoichiometry (i.e., optStoic) and selects for (non-)native reactions (i.e.,more » minRxn/minFlux) that maximize carbon, energy or price efficiency while satisfying thermodynamic feasibility requirements. Implementation for recent pathway design studies identified non-intuitive designs with improved efficiencies. Specifically, multiple alternatives for non-oxidative glycolysis are generated and non-intuitive ways of co-utilizing carbon dioxide with methanol are revealed for the production of C 2+ metabolites with higher carbon efficiency.« less

  4. The Emergence of Organizing Structure in Conceptual Representation.

    PubMed

    Lake, Brenden M; Lawrence, Neil D; Tenenbaum, Joshua B

    2018-06-01

    Both scientists and children make important structural discoveries, yet their computational underpinnings are not well understood. Structure discovery has previously been formalized as probabilistic inference about the right structural form-where form could be a tree, ring, chain, grid, etc. (Kemp & Tenenbaum, 2008). Although this approach can learn intuitive organizations, including a tree for animals and a ring for the color circle, it assumes a strong inductive bias that considers only these particular forms, and each form is explicitly provided as initial knowledge. Here we introduce a new computational model of how organizing structure can be discovered, utilizing a broad hypothesis space with a preference for sparse connectivity. Given that the inductive bias is more general, the model's initial knowledge shows little qualitative resemblance to some of the discoveries it supports. As a consequence, the model can also learn complex structures for domains that lack intuitive description, as well as predict human property induction judgments without explicit structural forms. By allowing form to emerge from sparsity, our approach clarifies how both the richness and flexibility of human conceptual organization can coexist. Copyright © 2018 Cognitive Science Society, Inc.

  5. Computational Discovery of New Materials Under Pressure

    NASA Astrophysics Data System (ADS)

    Zurek, Eva

    The pressure variable opens the door towards the synthesis of materials with unique properties, ie. superconductivity, hydrogen storage media, high-energy density and superhard materials, to name a few. Indeed, recently superconductivity has been observed below 203 K and 103 K in samples of compressed sulfur dihydride and phosphine, respectively. Under pressure elements that would not normally combine may form stable compounds, or may mix in novel proportions. As a result using our chemical intuition developed at 1 atm to theoretically predict stable phases is bound to fail. In order to enable our search for superconducting hydrogen-rich systems under pressure, we have developed XtalOpt, an open-source evolutionary algorithm for crystal structure prediction. New advances in XtalOpt that enable the prediction of unit cells with greater complexity will be described. XtalOpt has been employed to find the most stable structures of hydrides with unique stoichiometries under pressure. The electronic structure and bonding of the predicted phases has been analyzed by detailed first-principles calculations based on density functional theory. The results of our computational experiments are helping us to build chemical and physical intuition for compressed solids.

  6. Passive wireless tags for tongue controlled assistive technology interfaces.

    PubMed

    Rakibet, Osman O; Horne, Robert J; Kelly, Stephen W; Batchelor, John C

    2016-03-01

    Tongue control with low profile, passive mouth tags is demonstrated as a human-device interface by communicating values of tongue-tag separation over a wireless link. Confusion matrices are provided to demonstrate user accuracy in targeting by tongue position. Accuracy is found to increase dramatically after short training sequences with errors falling close to 1% in magnitude with zero missed targets. The rate at which users are able to learn accurate targeting with high accuracy indicates that this is an intuitive device to operate. The significance of the work is that innovative very unobtrusive, wireless tags can be used to provide intuitive human-computer interfaces based on low cost and disposable mouth mounted technology. With the development of an appropriate reading system, control of assistive devices such as computer mice or wheelchairs could be possible for tetraplegics and others who retain fine motor control capability of their tongues. The tags contain no battery and are intended to fit directly on the hard palate, detecting tongue position in the mouth with no need for tongue piercings.

  7. Guidelines for developing vectorizable computer programs

    NASA Technical Reports Server (NTRS)

    Miner, E. W.

    1982-01-01

    Some fundamental principles for developing computer programs which are compatible with array-oriented computers are presented. The emphasis is on basic techniques for structuring computer codes which are applicable in FORTRAN and do not require a special programming language or exact a significant penalty on a scalar computer. Researchers who are using numerical techniques to solve problems in engineering can apply these basic principles and thus develop transportable computer programs (in FORTRAN) which contain much vectorizable code. The vector architecture of the ASC is discussed so that the requirements of array processing can be better appreciated. The "vectorization" of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and some of the difficulties involved. Increases in computing speed with vectorization are illustrated with results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of these principles was substantiated through running programs on other computers with array-associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F.

  8. The Helicopter Antenna Radiation Prediction Code (HARP)

    NASA Technical Reports Server (NTRS)

    Klevenow, F. T.; Lynch, B. G.; Newman, E. H.; Rojas, R. G.; Scheick, J. T.; Shamansky, H. T.; Sze, K. Y.

    1990-01-01

    The first nine months effort in the development of a user oriented computer code, referred to as the HARP code, for analyzing the radiation from helicopter antennas is described. The HARP code uses modern computer graphics to aid in the description and display of the helicopter geometry. At low frequencies the helicopter is modeled by polygonal plates, and the method of moments is used to compute the desired patterns. At high frequencies the helicopter is modeled by a composite ellipsoid and flat plates, and computations are made using the geometrical theory of diffraction. The HARP code will provide a user friendly interface, employing modern computer graphics, to aid the user to describe the helicopter geometry, select the method of computation, construct the desired high or low frequency model, and display the results.

  9. FBC: a flat binary code scheme for fast Manhattan hash retrieval

    NASA Astrophysics Data System (ADS)

    Kong, Yan; Wu, Fuzhang; Gao, Lifa; Wu, Yanjun

    2018-04-01

    Hash coding is a widely used technique in approximate nearest neighbor (ANN) search, especially in document search and multimedia (such as image and video) retrieval. Based on the difference of distance measurement, hash methods are generally classified into two categories: Hamming hashing and Manhattan hashing. Benefitting from better neighborhood structure preservation, Manhattan hashing methods outperform earlier methods in search effectiveness. However, due to using decimal arithmetic operations instead of bit operations, Manhattan hashing becomes a more time-consuming process, which significantly decreases the whole search efficiency. To solve this problem, we present an intuitive hash scheme which uses Flat Binary Code (FBC) to encode the data points. As a result, the decimal arithmetic used in previous Manhattan hashing can be replaced by more efficient XOR operator. The final experiments show that with a reasonable memory space growth, our FBC speeds up more than 80% averagely without any search accuracy loss when comparing to the state-of-art Manhattan hashing methods.

  10. Modernizing the ATLAS simulation infrastructure

    NASA Astrophysics Data System (ADS)

    Di Simone, A.; CollaborationAlbert-Ludwigs-Universitt Freiburg, ATLAS; Institut, Physikalisches; Br., 79104 Freiburg i.; Germany

    2017-10-01

    The ATLAS Simulation infrastructure has been used to produce upwards of 50 billion proton-proton collision events for analyses ranging from detailed Standard Model measurements to searches for exotic new phenomena. In the last several years, the infrastructure has been heavily revised to allow intuitive multithreading and significantly improved maintainability. Such a massive update of a legacy code base requires careful choices about what pieces of code to completely rewrite and what to wrap or revise. The initialization of the complex geometry was generalized to allow new tools and geometry description languages, popular in some detector groups. The addition of multithreading requires Geant4-MT and GaudiHive, two frameworks with fundamentally different approaches to multithreading, to work together. It also required enforcing thread safety throughout a large code base, which required the redesign of several aspects of the simulation, including truth, the record of particle interactions with the detector during the simulation. These advances were possible thanks to close interactions with the Geant4 developers.

  11. Enhanced fault-tolerant quantum computing in d-level systems.

    PubMed

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  12. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1992-01-01

    Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.

  13. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  14. Nonuniform code concatenation for universal fault-tolerant quantum computing

    NASA Astrophysics Data System (ADS)

    Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza

    2017-09-01

    Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.

  15. Green's function methods in heavy ion shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.

    1993-01-01

    An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.

  16. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan

    2016-09-01

    In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to "yes" or "no" intentions (e.g., mental arithmetic calculation for "yes"). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient's internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an "fNIRS-based direct intention decoding" paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing "yes" or "no" intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ±1.39 and 74.08% ±2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p<0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.

  17. Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.

    1982-01-01

    A user's manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented. The general features of the computer codes, the input/output formats, run streams, and sample input cases are described.

  18. Automated apparatus and method of generating native code for a stitching machine

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey L. (Inventor)

    2000-01-01

    A computer system automatically generates CNC code for a stitching machine. The computer determines the locations of a present stitching point and a next stitching point. If a constraint is not found between the present stitching point and the next stitching point, the computer generates code for making a stitch at the next stitching point. If a constraint is found, the computer generates code for changing a condition (e.g., direction) of the stitching machine's stitching head.

  19. Computer codes developed and under development at Lewis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1992-01-01

    The objective of this summary is to provide a brief description of: (1) codes developed or under development at LeRC; and (2) the development status of IPACS with some typical early results. The computer codes that have been developed and/or are under development at LeRC are listed in the accompanying charts. This list includes: (1) the code acronym; (2) select physics descriptors; (3) current enhancements; and (4) present (9/91) code status with respect to its availability and documentation. The computer codes list is grouped by related functions such as: (1) composite mechanics; (2) composite structures; (3) integrated and 3-D analysis; (4) structural tailoring; and (5) probabilistic structural analysis. These codes provide a broad computational simulation infrastructure (technology base-readiness) for assessing the structural integrity/durability/reliability of propulsion systems. These codes serve two other very important functions: they provide an effective means of technology transfer; and they constitute a depository of corporate memory.

  20. Combining Computational and Social Effort for Collaborative Problem Solving

    PubMed Central

    Wagy, Mark D.; Bongard, Josh C.

    2015-01-01

    Rather than replacing human labor, there is growing evidence that networked computers create opportunities for collaborations of people and algorithms to solve problems beyond either of them. In this study, we demonstrate the conditions under which such synergy can arise. We show that, for a design task, three elements are sufficient: humans apply intuitions to the problem, algorithms automatically determine and report back on the quality of designs, and humans observe and innovate on others’ designs to focus creative and computational effort on good designs. This study suggests how such collaborations should be composed for other domains, as well as how social and computational dynamics mutually influence one another during collaborative problem solving. PMID:26544199

  1. Brian: a simulator for spiking neural networks in python.

    PubMed

    Goodman, Dan; Brette, Romain

    2008-01-01

    "Brian" is a new simulator for spiking neural networks, written in Python (http://brian. di.ens.fr). It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

  2. The Probabilities of Unique Events

    PubMed Central

    Khemlani, Sangeet S.; Lotstein, Max; Johnson-Laird, Phil

    2012-01-01

    Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama's re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable. PMID:23056224

  3. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N., E-mail: zizin@adis.vver.kiae.ru

    2010-12-15

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit ofmore » the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.« less

  4. Reactivity effects in VVER-1000 of the third unit of the kalinin nuclear power plant at physical start-up. Computations in ShIPR intellectual code system with library of two-group cross sections generated by UNK code

    NASA Astrophysics Data System (ADS)

    Zizin, M. N.; Zimin, V. G.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2010-12-01

    The ShIPR intellectual code system for mathematical simulation of nuclear reactors includes a set of computing modules implementing the preparation of macro cross sections on the basis of the two-group library of neutron-physics cross sections obtained for the SKETCH-N nodal code. This library is created by using the UNK code for 3D diffusion computation of first VVER-1000 fuel loadings. Computation of neutron fields in the ShIPR system is performed using the DP3 code in the two-group diffusion approximation in 3D triangular geometry. The efficiency of all groups of control rods for the first fuel loading of the third unit of the Kalinin Nuclear Power Plant is computed. The temperature, barometric, and density effects of reactivity as well as the reactivity coefficient due to the concentration of boric acid in the reactor were computed additionally. Results of computations are compared with the experiment.

  5. Children's understanding of the immune system: Integrating the cognitive-developmental and intuitive theories' perspectives

    NASA Astrophysics Data System (ADS)

    Landry-Boozer, Kristine L.

    Traditional cognitive-developmental researchers have provided a large body of evidence supporting the stage-like progression of children's cognitive development. Further, from this body of research comes evidence that children's understanding of HIV/AIDS develops in much the same way as their understanding of other illness-related concepts. Researchers from a newer perspective assert that biological concepts develop from intuitive theories. In general, as children are exposed to relevant content and have opportunities to organize this information, their theories become more accurate and differentiated. According to this perspective, there are no broad structural constraints on developing concepts, as asserted by cognitive developmental theorists. The purpose of the current study was two-fold: to provide support for both theoretical perspectives, while at the same time to explore children's conceptualizations of the immune system, which has not been done previously in the cognitive-developmental literature. One hundred ninety children ranging in age from 4 years old through 11 years old, and a group of adults, participated. Each participant was interviewed regarding health concepts and the body's function in maintaining health. Participants were also asked to report if they had certain experiences that would have led to relevant content exposure. Qualitative analyses were utilized to code the interviews with rubrics based on both theoretical perspectives. Quantitative analyses consisted of a series of univariate ANOVAs (and post hoc tests when appropriate) examining all three coding variables (accuracy, differentiation, and developmental level) across various age-group combinations and exposure groups. Results of these analyses provided support for both theoretical perspectives. When the data were analyzed for developmental level by all ages, a stage-like progression consistent with Piagetian stages emerged. When accuracy and differentiation were examined (intuitive theories perspective), discrete groups could not be formed. Instead, a gradual increase in accuracy and differentiation was observed. Additional support for this perspective was found when the responses of participants who had additional exposure provided responses that were more accurate, differentiated, and sophisticated than those of participants with no additional exposure. Theoretical and educational implications of these findings are discussed.

  6. Intuitive representation of surface properties of biomolecules using BioBlender.

    PubMed

    Andrei, Raluca Mihaela; Callieri, Marco; Zini, Maria Francesca; Loni, Tiziana; Maraziti, Giuseppe; Pan, Mike Chen; Zoppè, Monica

    2012-03-28

    In living cells, proteins are in continuous motion and interaction with the surrounding medium and/or other proteins and ligands. These interactions are mediated by protein features such as electrostatic and lipophilic potentials. The availability of protein structures enables the study of their surfaces and surface characteristics, based on atomic contribution. Traditionally, these properties are calculated by physico-chemical programs and visualized as range of colors that vary according to the tool used and imposes the necessity of a legend to decrypt it. The use of color to encode both characteristics makes the simultaneous visualization almost impossible, requiring these features to be visualized in different images. In this work, we describe a novel and intuitive code for the simultaneous visualization of these properties. Recent advances in 3D animation and rendering software have not yet been exploited for the representation of biomolecules in an intuitive, animated form. For our purpose we use Blender, an open-source, free, cross-platform application used professionally for 3D work. On the basis Blender, we developed BioBlender, dedicated to biological work: elaboration of protein motion with simultaneous visualization of their chemical and physical features. Electrostatic and lipophilic potentials are calculated using physico-chemical software and scripts, organized and accessed through BioBlender interface. A new visual code is introduced for molecular lipophilic potential: a range of optical features going from smooth-shiny for hydrophobic regions to rough-dull for hydrophilic ones. Electrostatic potential is represented as animated line particles that flow along field lines, proportional to the total charge of the protein. Our system permits visualization of molecular features and, in the case of moving proteins, their continuous perception, calculated for each conformation during motion. Using real world tactile/sight feelings, the nanoscale world of proteins becomes more understandable, familiar to our everyday life, making it easier to introduce "un-seen" phenomena (concepts) such as hydropathy or charges. Moreover, this representation contributes to gain insight into molecular functions by drawing viewer's attention to the most active regions of the protein. The program, available for Windows, Linux and MacOS, can be downloaded freely from the dedicated website http://www.bioblender.eu.

  7. Intuitive representation of surface properties of biomolecules using BioBlender

    PubMed Central

    2012-01-01

    Background In living cells, proteins are in continuous motion and interaction with the surrounding medium and/or other proteins and ligands. These interactions are mediated by protein features such as electrostatic and lipophilic potentials. The availability of protein structures enables the study of their surfaces and surface characteristics, based on atomic contribution. Traditionally, these properties are calculated by physico-chemical programs and visualized as range of colors that vary according to the tool used and imposes the necessity of a legend to decrypt it. The use of color to encode both characteristics makes the simultaneous visualization almost impossible, requiring these features to be visualized in different images. In this work, we describe a novel and intuitive code for the simultaneous visualization of these properties. Methods Recent advances in 3D animation and rendering software have not yet been exploited for the representation of biomolecules in an intuitive, animated form. For our purpose we use Blender, an open-source, free, cross-platform application used professionally for 3D work. On the basis Blender, we developed BioBlender, dedicated to biological work: elaboration of protein motion with simultaneous visualization of their chemical and physical features. Electrostatic and lipophilic potentials are calculated using physico-chemical software and scripts, organized and accessed through BioBlender interface. Results A new visual code is introduced for molecular lipophilic potential: a range of optical features going from smooth-shiny for hydrophobic regions to rough-dull for hydrophilic ones. Electrostatic potential is represented as animated line particles that flow along field lines, proportional to the total charge of the protein. Conclusions Our system permits visualization of molecular features and, in the case of moving proteins, their continuous perception, calculated for each conformation during motion. Using real world tactile/sight feelings, the nanoscale world of proteins becomes more understandable, familiar to our everyday life, making it easier to introduce "un-seen" phenomena (concepts) such as hydropathy or charges. Moreover, this representation contributes to gain insight into molecular functions by drawing viewer's attention to the most active regions of the protein. The program, available for Windows, Linux and MacOS, can be downloaded freely from the dedicated website http://www.bioblender.eu PMID:22536962

  8. Users manual and modeling improvements for axial turbine design and performance computer code TD2-2

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    Computer code TD2 computes design point velocity diagrams and performance for multistage, multishaft, cooled or uncooled, axial flow turbines. This streamline analysis code was recently modified to upgrade modeling related to turbine cooling and to the internal loss correlation. These modifications are presented in this report along with descriptions of the code's expanded input and output. This report serves as the users manual for the upgraded code, which is named TD2-2.

  9. An Object-Oriented Approach to Writing Computational Electromagnetics Codes

    NASA Technical Reports Server (NTRS)

    Zimmerman, Martin; Mallasch, Paul G.

    1996-01-01

    Presently, most computer software development in the Computational Electromagnetics (CEM) community employs the structured programming paradigm, particularly using the Fortran language. Other segments of the software community began switching to an Object-Oriented Programming (OOP) paradigm in recent years to help ease design and development of highly complex codes. This paper examines design of a time-domain numerical analysis CEM code using the OOP paradigm, comparing OOP code and structured programming code in terms of software maintenance, portability, flexibility, and speed.

  10. Computer Description of the Field Artillery Ammunition Supply Vehicle

    DTIC Science & Technology

    1983-04-01

    Combinatorial Geometry (COM-GEOM) GIFT Computer Code Computer Target Description 2& AfTNACT (Cmne M feerve shb N ,neemssalyan ify by block number) A...input to the GIFT computer code to generate target vulnerability data. F.a- 4 ono OF I NOV 5S OLETE UNCLASSIFIED SECUOITY CLASSIFICATION OF THIS PAGE...Combinatorial Geometry (COM-GEOM) desrription. The "Geometric Information for Tarqets" ( GIFT ) computer code accepts the CO!-GEOM description and

  11. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE PAGES

    Giera, Brian; Bukosky, Scott; Lee, Elaine; ...

    2018-01-23

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  12. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Bukosky, Scott; Lee, Elaine

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  13. Theoretical and subjective bit assignments in transform picture

    NASA Technical Reports Server (NTRS)

    Jones, H. W., Jr.

    1977-01-01

    It is shown that all combinations of symmetrical input distributions with difference distortion measures give a bit assignment rule identical to the well-known rule for a Gaussian input distribution with mean-square error. Published work is examined to show that the bit assignment rule is useful for transforms of full pictures, but subjective bit assignments for transform picture coding using small block sizes are significantly different from the theoretical bit assignment rule. An intuitive explanation is based on subjective design experience, and a subjectively obtained bit assignment rule is given.

  14. Interactive web-based identification and visualization of transcript shared sequences.

    PubMed

    Azhir, Alaleh; Merino, Louis-Henri; Nauen, David W

    2018-05-12

    We have developed TraC (Transcript Consensus), a web-based tool for detecting and visualizing shared sequences among two or more mRNA transcripts such as splice variants. Results including exon-exon boundaries are returned in a highly intuitive, data-rich, interactive plot that permits users to explore the similarities and differences of multiple transcript sequences. The online tool (http://labs.pathology.jhu.edu/nauen/trac/) is free to use. The source code is freely available for download (https://github.com/nauenlab/TraC). Copyright © 2018 Elsevier Inc. All rights reserved.

  15. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  16. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  17. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  18. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar data produced for...

  19. Antenna pattern study, task 2

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1989-01-01

    Two electromagnetic scattering codes, NEC-BSC and ESP3, were delivered and installed on a NASA VAX computer for use by Marshall Space Flight Center antenna design personnel. The existing codes and certain supplementary software were updated, the codes installed on a computer that will be delivered to the customer, to provide capability for graphic display of the data to be computed by the use of the codes and to assist the customer in the solution of specific problems that demonstrate the use of the codes. With the exception of one code revision, all of these tasks were performed.

  20. An Investigation of the Role of Background Music in IVWs for Learning

    ERIC Educational Resources Information Center

    Richards, Debbie; Fassbender, Eric; Bilgin, Ayse; Thompson, William Forde

    2008-01-01

    Empirical evidence is needed to corroborate the intuitions of gamers and game developers in understanding the benefits of Immersive Virtual Worlds (IVWs) as a learning environment and the role that music plays within these environments. We report an investigation to determine if background music of the genre typically found in computer-based…

  1. R&D Project on Algebra Software Seen to Show Promise

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2007-01-01

    Computer software that shows students visual models of mathematical concepts--and lets them manipulate those models by doing math--has a certain intuitive appeal. Now, recent research on SimCalc Mathworlds, one of the pioneering examples of such software, is providing some of the best evidence so far that the approach can lead to gains in student…

  2. Driven by Power? Probe Question and Presentation Format Effects on Causal Judgment

    ERIC Educational Resources Information Center

    Perales, Jose C.; Shanks, David R.

    2008-01-01

    It has been proposed that causal power (defined as the probability with which a candidate cause would produce an effect in the absence of any other background causes) can be intuitively computed from cause-effect covariation information. Estimation of power is assumed to require a special type of counterfactual probe question, worded to remove…

  3. On the Use of a Virtual Mach-Zehnder Interferometer in the Teaching of Quantum Mechanics

    ERIC Educational Resources Information Center

    Pereira, Alexsandro; Ostermann, Fernanda; Cavalcanti, Claudio

    2009-01-01

    For many students, the conceptual learning of quantum mechanics can be rather painful owing to the counter-intuitive nature of quantum phenomena. In order to enhance students' understanding of the odd behaviour of photons and electrons, we introduce a computational simulation of the Mach-Zehnder interferometer, developed by our research group. An…

  4. Virtual Display Design and Evaluation of Clothing: A Design Process Support System

    ERIC Educational Resources Information Center

    Zhang, Xue-Fang; Huang, Ren-Qun

    2014-01-01

    This paper proposes a new computer-aided educational system for clothing visual merchandising and display. It aims to provide an operating environment that supports the various stages of display design in a user-friendly and intuitive manner. First, this paper provides a brief introduction to current software applications in the field of…

  5. Computer Cache. Environmental Protection: Websites on the Environment

    ERIC Educational Resources Information Center

    Byerly, Greg; Brodie, Carolyn S.

    2005-01-01

    "Give a hoot, don't pollute!" "Save the environment!" "Save the Whales!" Ranger Rick. Recycle. These are all well-known phrases and emblems of the fight to "protect the environment." Young children seem to understand almost intuitively the need to do those simple things that will make the Earth a better place to live and play. However, especially…

  6. Can Dynamic Visualizations with Variable Control Enhance the Acquisition of Intuitive Knowledge?

    ERIC Educational Resources Information Center

    Wichmann, Astrid; Timpe, Sebastian

    2015-01-01

    An important feature of inquiry learning is to take part in science practices including exploring variables and testing hypotheses. Computer-based dynamic visualizations have the potential to open up various exploration possibilities depending on the level of learner control. It is assumed that variable control, e.g., by changing parameters of a…

  7. Recognizing User Identity by Touch on Tabletop Displays: An Interactive Authentication Method

    ERIC Educational Resources Information Center

    Torres Peralta, Raquel

    2012-01-01

    Multi-touch tablets allow users to interact with computers through intuitive, natural gestures and direct manipulation of digital objects. One advantage of these devices is that they can offer a large, collaborative space where several users can work on a task at the same time. However the lack of privacy in these situations makes standard…

  8. Intuition and nursing practice implications for nurse educators: a review of the literature.

    PubMed

    Correnti, D

    1992-01-01

    Intuitive knowledge is an essential component of the art of nursing and of the nursing process. This article provides an analysis and review of the literature on intuition. The author addresses the use of intuition in nursing science, characteristics of intuitive nurses, receptivity of intuitive knowledge, and the importance of expanding nursing's utilization of the intuitive process. Strategies are provided for promoting intuitive skills in continuing education/staff development settings.

  9. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... funds; (ii) Studies, analyses, test data, or similar data produced for this contract, when the study...

  10. Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB

    NASA Technical Reports Server (NTRS)

    Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.

    2017-01-01

    Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.

  11. Impact of dynamic rate coding aspects of mobile phone networks on forensic voice comparison.

    PubMed

    Alzqhoul, Esam A S; Nair, Balamurali B T; Guillemin, Bernard J

    2015-09-01

    Previous studies have shown that landline and mobile phone networks are different in their ways of handling the speech signal, and therefore in their impact on it. But the same is also true of the different networks within the mobile phone arena. There are two major mobile phone technologies currently in use today, namely the global system for mobile communications (GSM) and code division multiple access (CDMA) and these are fundamentally different in their design. For example, the quality of the coded speech in the GSM network is a function of channel quality, whereas in the CDMA network it is determined by channel capacity (i.e., the number of users sharing a cell site). This paper examines the impact on the speech signal of a key feature of these networks, namely dynamic rate coding, and its subsequent impact on the task of likelihood-ratio-based forensic voice comparison (FVC). Surprisingly, both FVC accuracy and precision are found to be better for both GSM- and CDMA-coded speech than for uncoded. Intuitively one expects FVC accuracy to increase with increasing coded speech quality. This trend is shown to occur for the CDMA network, but, surprisingly, not for the GSM network. Further, in respect to comparisons between these two networks, FVC accuracy for CDMA-coded speech is shown to be slightly better than for GSM-coded speech, particularly when the coded-speech quality is high, but in terms of FVC precision the two networks are shown to be very similar. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  12. ProjectQ Software Framework

    NASA Astrophysics Data System (ADS)

    Steiger, Damian S.; Haener, Thomas; Troyer, Matthias

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. A high level quantum programming language and optimizing compilers are essential components to achieve scalable quantum computation. In order to address this, we introduce the ProjectQ software framework - an open source effort to support both theorists and experimentalists by providing intuitive tools to implement and run quantum algorithms. Here, we present our ProjectQ quantum compiler, which compiles a quantum algorithm from our high-level Python-embedded language down to low-level quantum gates available on the target system. We demonstrate how this compiler can be used to control actual hardware and to run high-performance simulations.

  13. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  14. An intuitive graphical webserver for multiple-choice protein sequence search.

    PubMed

    Banky, Daniel; Szalkai, Balazs; Grolmusz, Vince

    2014-04-10

    Every day tens of thousands of sequence searches and sequence alignment queries are submitted to webservers. The capitalized word "BLAST" becomes a verb, describing the act of performing sequence search and alignment. However, if one needs to search for sequences that contain, for example, two hydrophobic and three polar residues at five given positions, the query formation on the most frequently used webservers will be difficult. Some servers support the formation of queries with regular expressions, but most of the users are unfamiliar with their syntax. Here we present an intuitive, easily applicable webserver, the Protein Sequence Analysis server, that allows the formation of multiple choice queries by simply drawing the residues to their positions; if more than one residue are drawn to the same position, then they will be nicely stacked on the user interface, indicating the multiple choice at the given position. This computer-game-like interface is natural and intuitive, and the coloring of the residues makes possible to form queries requiring not just certain amino acids in the given positions, but also small nonpolar, negatively charged, hydrophobic, positively charged, or polar ones. The webserver is available at http://psa.pitgroup.org. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Intuition: A Concept Analysis.

    PubMed

    Chilcote, Deborah R

    2017-01-01

    The purpose of this article is to conceptually examine intuition; identify the importance of intuition in nursing education, clinical practice, and patient care; encourage acceptance of the use of intuition; and add to the body of nursing knowledge. Nurses often report using intuition when making clinical decisions. Intuition is a rapid, unconscious process based in global knowledge that views the patient holistically while synthesizing information to improve patient outcomes. However, with the advent of evidence-based practice (EBP), the use of intuition has become undervalued in nursing. Walker and Avant's framework was used to analyze intuition. A literature search from 1987 to 2014 was conducted using the following keywords: intuition, intuition and nursing, clinical decision making, clinical decision making and intuition, patient outcomes, EBP, and analytical thinking. The use of intuition is reported by nurses, but is not legitimized within the nursing profession. Defining attributes of intuition are an unconscious, holistic knowledge gathered without using an analytical process and knowledge derived through synthesis, not analysis. Consequences include verification of intuition through an analytical process and translating that knowledge into a course of action. This article supports the use of intuition in nursing by offering clarity to the concept, adds to the nursing knowledge base, encourages a holistic view of the patient during clinical decision making, and encourages nurse educators to promote the use of intuition. © 2016 Wiley Periodicals, Inc.

  16. Intuitive Choices Lead to Intensified Positive Emotions: An Overlooked Reason for "Intuition Bias"?

    PubMed

    Kirkebøen, Geir; Nordbye, Gro H H

    2017-01-01

    People have, for many well-documented reasons, a tendency to overemphasize their intuitions and to follow them, even when they should not. This "intuition bias" leads to several kinds of specific intuitive biases in judgments and decision making. Previous studies have shown that characteristics of the decision process have a tendency to "leak" into the experience of the choice outcome. We explore whether intuitive choices influence the experience of the choice outcomes differently from "non-intuitive," analytic choices. Since intuition is feeling based, we examine in particular if intuitive choices have stronger affective consequences than non-intuitive ones. Participants in two scenario studies ( N = 90; N = 126) rated the feelings of decision makers who experienced a conflict between two options, one intuitively appealing and another that appeared preferable on analytic grounds. Choosing the intuitive alternative was anticipated to lead to somewhat more regret after negative outcomes and, in particular, much more satisfaction with positive outcomes. In two autobiographical studies, one with psychology students ( N = 88) and the other with experienced engineers ( N = 99), participants were asked to provide examples of choice conflicts between an intuitive and a non-intuitive option from their own private or professional lives. Both groups showed a tendency to report stronger emotions, in particular positive, after intuitive choices. One well-established explanation for intuition bias focuses on the nature of people's anticipated negative counterfactual thoughts if their decisions were to turn out badly. The present data indicate that intuitive choices intensify positive emotions, anticipated and real, after successful outcomes much more than negative emotions after failures. Positive outcomes are also more commonly expected than negative ones, when we make choices. We argue that markedly amplified emotions, mediated by stronger personal involvement, in the positive outcomes of intuitive versus non-intuitive choices, is an overlooked reason for intuition bias.

  17. Development of a model and computer code to describe solar grade silicon production processes

    NASA Technical Reports Server (NTRS)

    Gould, R. K.; Srivastava, R.

    1979-01-01

    Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.

  18. Quality Traceability System of Traditional Chinese Medicine Based on Two Dimensional Barcode Using Mobile Intelligent Technology.

    PubMed

    Cai, Yong; Li, Xiwen; Wang, Runmiao; Yang, Qing; Li, Peng; Hu, Hao

    2016-01-01

    Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it's expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints.

  19. Vector and Raster Data Storage Based on Morton Code

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Pan, Q.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Liu, X.

    2018-05-01

    Even though geomatique is so developed nowadays, the integration of spatial data in vector and raster formats is still a very tricky problem in geographic information system environment. And there is still not a proper way to solve the problem. This article proposes a method to interpret vector data and raster data. In this paper, we saved the image data and building vector data of Guilin University of Technology to Oracle database. Then we use ADO interface to connect database to Visual C++ and convert row and column numbers of raster data and X Y of vector data to Morton code in Visual C++ environment. This method stores vector and raster data to Oracle Database and uses Morton code instead of row and column and X Y to mark the position information of vector and raster data. Using Morton code to mark geographic information enables storage of data make full use of storage space, simultaneous analysis of vector and raster data more efficient and visualization of vector and raster more intuitive. This method is very helpful for some situations that need to analyse or display vector data and raster data at the same time.

  20. CircularLogo: A lightweight web application to visualize intra-motif dependencies.

    PubMed

    Ye, Zhenqing; Ma, Tao; Kalmbach, Michael T; Dasari, Surendra; Kocher, Jean-Pierre A; Wang, Liguo

    2017-05-22

    The sequence logo has been widely used to represent DNA or RNA motifs for more than three decades. Despite its intelligibility and intuitiveness, the traditional sequence logo is unable to display the intra-motif dependencies and therefore is insufficient to fully characterize nucleotide motifs. Many methods have been developed to quantify the intra-motif dependencies, but fewer tools are available for visualization. We developed CircularLogo, a web-based interactive application, which is able to not only visualize the position-specific nucleotide consensus and diversity but also display the intra-motif dependencies. Applying CircularLogo to HNF6 binding sites and tRNA sequences demonstrated its ability to show intra-motif dependencies and intuitively reveal biomolecular structure. CircularLogo is implemented in JavaScript and Python based on the Django web framework. The program's source code and user's manual are freely available at http://circularlogo.sourceforge.net . CircularLogo web server can be accessed from http://bioinformaticstools.mayo.edu/circularlogo/index.html . CircularLogo is an innovative web application that is specifically designed to visualize and interactively explore intra-motif dependencies.

  1. Comparison of two computer codes for crack growth analysis: NASCRAC Versus NASA/FLAGRO

    NASA Technical Reports Server (NTRS)

    Stallworth, R.; Meyers, C. A.; Stinson, H. C.

    1989-01-01

    Results are presented from the comparison study of two computer codes for crack growth analysis - NASCRAC and NASA/FLAGRO. The two computer codes gave compatible conservative results when the part through crack analysis solutions were analyzed versus experimental test data. Results showed good correlation between the codes for the through crack at a lug solution. For the through crack at a lug solution, NASA/FLAGRO gave the most conservative results.

  2. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  3. Visualization and processing of computed solid-state NMR parameters: MagresView and MagresPython.

    PubMed

    Sturniolo, Simone; Green, Timothy F G; Hanson, Robert M; Zilka, Miri; Refson, Keith; Hodgkinson, Paul; Brown, Steven P; Yates, Jonathan R

    2016-09-01

    We introduce two open source tools to aid the processing and visualisation of ab-initio computed solid-state NMR parameters. The Magres file format for computed NMR parameters (as implemented in CASTEP v8.0 and QuantumEspresso v5.0.0) is implemented. MagresView is built upon the widely used Jmol crystal viewer, and provides an intuitive environment to display computed NMR parameters. It can provide simple pictorial representation of one- and two-dimensional NMR spectra as well as output a selected spin-system for exact simulations with dedicated spin-dynamics software. MagresPython provides a simple scripting environment to manipulate large numbers of computed NMR parameters to search for structural correlations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Dissociating intuitive physics from intuitive psychology: Evidence from Williams syndrome.

    PubMed

    Kamps, Frederik S; Julian, Joshua B; Battaglia, Peter; Landau, Barbara; Kanwisher, Nancy; Dilks, Daniel D

    2017-11-01

    Prior work suggests that our understanding of how things work ("intuitive physics") and how people work ("intuitive psychology") are distinct domains of human cognition. Here we directly test the dissociability of these two domains by investigating knowledge of intuitive physics and intuitive psychology in adults with Williams syndrome (WS) - a genetic developmental disorder characterized by severely impaired spatial cognition, but relatively spared social cognition. WS adults and mental-age matched (MA) controls completed an intuitive physics task and an intuitive psychology task. If intuitive physics is a distinct domain (from intuitive psychology), then we should observe differential impairment on the physics task for individuals with WS compared to MA controls. Indeed, adults with WS performed significantly worse on the intuitive physics than the intuitive psychology task, relative to controls. These results support the hypothesis that knowledge of the physical world can be disrupted independently from knowledge of the social world. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Proceduracy: Computer Code Writing in the Continuum of Literacy

    ERIC Educational Resources Information Center

    Vee, Annette

    2010-01-01

    This dissertation looks at computer programming through the lens of literacy studies, building from the concept of code as a written text with expressive and rhetorical power. I focus on the intersecting technological and social factors of computer code writing as a literacy--a practice I call "proceduracy". Like literacy, proceduracy is a human…

  6. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  7. Cloud Computing for Complex Performance Codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin

    This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.

  8. APC: A New Code for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  9. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.

    1988-01-01

    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).

  10. Self-paced brain-computer interface control of ambulation in a virtual reality environment.

    PubMed

    Wang, Po T; King, Christine E; Chui, Luis A; Do, An H; Nenadic, Zoran

    2012-10-01

    Spinal cord injury (SCI) often leaves affected individuals unable to ambulate. Electroencephalogram (EEG) based brain-computer interface (BCI) controlled lower extremity prostheses may restore intuitive and able-body-like ambulation after SCI. To test its feasibility, the authors developed and tested a novel EEG-based, data-driven BCI system for intuitive and self-paced control of the ambulation of an avatar within a virtual reality environment (VRE). Eight able-bodied subjects and one with SCI underwent the following 10-min training session: subjects alternated between idling and walking kinaesthetic motor imageries (KMI) while their EEG were recorded and analysed to generate subject-specific decoding models. Subjects then performed a goal-oriented online task, repeated over five sessions, in which they utilized the KMI to control the linear ambulation of an avatar and make ten sequential stops at designated points within the VRE. The average offline training performance across subjects was 77.2 ± 11.0%, ranging from 64.3% (p = 0.001 76) to 94.5% (p = 6.26 × 10(-23)), with chance performance being 50%. The average online performance was 8.5 ± 1.1 (out of 10) successful stops and 303 ± 53 s completion time (perfect = 211 s). All subjects achieved performances significantly different than those of random walk (p < 0.05) in 44 of the 45 online sessions. By using a data-driven machine learning approach to decode users' KMI, this BCI-VRE system enabled intuitive and purposeful self-paced control of ambulation after only 10 minutes training. The ability to achieve such BCI control with minimal training indicates that the implementation of future BCI-lower extremity prosthesis systems may be feasible.

  11. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development.

    PubMed

    Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S

    2011-02-01

    Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.

  12. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy.

    PubMed

    Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan

    2016-09-01

    In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to “yes” or “no” intentions (e.g., mental arithmetic calculation for “yes”). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient’s internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an “fNIRS-based direct intention decoding” paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing “yes” or “no” intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ± 1.39 and 74.08% ± 2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p < 0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.

  13. Calculation of Water Drop Trajectories to and About Arbitrary Three-Dimensional Bodies in Potential Airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1980-01-01

    Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  14. Utilizing GPUs to Accelerate Turbomachinery CFD Codes

    NASA Technical Reports Server (NTRS)

    MacCalla, Weylin; Kulkarni, Sameer

    2016-01-01

    GPU computing has established itself as a way to accelerate parallel codes in the high performance computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn Research Center, while also drawing conclusions about the nature of GPU computing and the requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source code was avoided to limit the introduction of new bugs. The code was profiled and investigated for parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly exceed the work being done by any one portion of the APNASA code. It was determined that in order for an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the parallel portions of the code must contain a large portion of the code's computation time.

  15. PASCO: Structural panel analysis and sizing code: Users manual - Revised

    NASA Technical Reports Server (NTRS)

    Anderson, M. S.; Stroud, W. J.; Durling, B. J.; Hennessy, K. W.

    1981-01-01

    A computer code denoted PASCO is described for analyzing and sizing uniaxially stiffened composite panels. Buckling and vibration analyses are carried out with a linked plate analysis computer code denoted VIPASA, which is included in PASCO. Sizing is based on nonlinear mathematical programming techniques and employs a computer code denoted CONMIN, also included in PASCO. Design requirements considered are initial buckling, material strength, stiffness and vibration frequency. A user's manual for PASCO is presented.

  16. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, Kuo-Huey

    1997-01-01

    The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.

  17. Automated Cache Performance Analysis And Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohror, Kathryn

    While there is no lack of performance counter tools for coarse-grained measurement of cache activity, there is a critical lack of tools for relating data layout to cache behavior to application performance. Generally, any nontrivial optimizations are either not done at all, or are done ”by hand” requiring significant time and expertise. To the best of our knowledge no tool available to users measures the latency of memory reference instructions for partic- ular addresses and makes this information available to users in an easy-to-use and intuitive way. In this project, we worked to enable the Open|SpeedShop performance analysis tool tomore » gather memory reference latency information for specific instructions and memory ad- dresses, and to gather and display this information in an easy-to-use and intuitive way to aid performance analysts in identifying problematic data structures in their codes. This tool was primarily designed for use in the supercomputer domain as well as grid, cluster, cloud-based parallel e-commerce, and engineering systems and middleware. Ultimately, we envision a tool to automate optimization of application cache layout and utilization in the Open|SpeedShop performance analysis tool. To commercialize this soft- ware, we worked to develop core capabilities for gathering enhanced memory usage per- formance data from applications and create and apply novel methods for automatic data structure layout optimizations, tailoring the overall approach to support existing supercom- puter and cluster programming models and constraints. In this Phase I project, we focused on infrastructure necessary to gather performance data and present it in an intuitive way to users. With the advent of enhanced Precise Event-Based Sampling (PEBS) counters on recent Intel processor architectures and equivalent technology on AMD processors, we are now in a position to access memory reference information for particular addresses. Prior to the introduction of PEBS counters, cache behavior could only be measured reliably in the ag- gregate across tens or hundreds of thousands of instructions. With the newest iteration of PEBS technology, cache events can be tied to a tuple of instruction pointer, target address (for both loads and stores), memory hierarchy, and observed latency. With this information we can now begin asking questions regarding the efficiency of not only regions of code, but how these regions interact with particular data structures and how these interactions evolve over time. In the short term, this information will be vital for performance analysts understanding and optimizing the behavior of their codes for the memory hierarchy. In the future, we can begin to ask how data layouts might be changed to improve performance and, for a particular application, what the theoretical optimal performance might be. The overall benefit to be produced by this effort was a commercial quality easy-to- use and scalable performance tool that will allow both beginner and experienced parallel programmers to automatically tune their applications for optimal cache usage. Effective use of such a tool can literally save weeks of performance tuning effort. Easy to use. With the proposed innovations, finding and fixing memory performance issues would be more automated and hide most to all of the performance engineer exper- tise ”under the hood” of the Open|SpeedShop performance tool. One of the biggest public benefits from the proposed innovations is that it makes performance analysis more usable to a larger group of application developers. Intuitive reporting of results. The Open|SpeedShop performance analysis tool has a rich set of intuitive, yet detailed reports for presenting performance results to application developers. Our goal was to leverage this existing technology to present the results from our memory performance addition to Open|SpeedShop. Suitable for experts as well as novices. Application performance is getting more difficult to measure as the hardware platforms they run on become more complicated. This makes life difficult for the application developer, in that they need to know more about the hardware platform, including the memory system hierarchy, in order to understand the performance of their application. Some application developers are comfortable in that sce- nario, while others want to do their scientific research and not have to understand all the nuances in the hardware platform they are running their application on. Our proposed innovations were aimed to support both experts and novice performance analysts. Useful in many markets. The enhancement to Open|SpeedShop would appeal to a broader market space, as it will be useful in scientific, commercial, and cloud computing environments. Our goal was to use technology developed initially at the and Lawrence Livermore Na- tional Laboratory combined with the development and commercial software experience of the Argo Navis Technologies, LLC (ANT) to form a powerful combination to delivery these objectives.« less

  18. Amplitudes for multiphoton quantum processes in linear optics

    NASA Astrophysics Data System (ADS)

    Urías, Jesús

    2011-07-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  19. NASA Rotor 37 CFD Code Validation: Glenn-HT Code

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2010-01-01

    In order to advance the goals of NASA aeronautics programs, it is necessary to continuously evaluate and improve the computational tools used for research and design at NASA. One such code is the Glenn-HT code which is used at NASA Glenn Research Center (GRC) for turbomachinery computations. Although the code has been thoroughly validated for turbine heat transfer computations, it has not been utilized for compressors. In this work, Glenn-HT was used to compute the flow in a transonic compressor and comparisons were made to experimental data. The results presented here are in good agreement with this data. Most of the measures of performance are well within the measurement uncertainties and the exit profiles of interest agree with the experimental measurements.

  20. Final report for the Tera Computer TTI CRADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, G.S.; Pavlakos, C.; Silva, C.

    1997-01-01

    Tera Computer and Sandia National Laboratories have completed a CRADA, which examined the Tera Multi-Threaded Architecture (MTA) for use with large codes of importance to industry and DOE. The MTA is an innovative architecture that uses parallelism to mask latency between memories and processors. The physical implementation is a parallel computer with high cross-section bandwidth and GaAs processors designed by Tera, which support many small computation threads and fast, lightweight context switches between them. When any thread blocks while waiting for memory accesses to complete, another thread immediately begins execution so that high CPU utilization is maintained. The Tera MTAmore » parallel computer has a single, global address space, which is appealing when porting existing applications to a parallel computer. This ease of porting is further enabled by compiler technology that helps break computations into parallel threads. DOE and Sandia National Laboratories were interested in working with Tera to further develop this computing concept. While Tera Computer would continue the hardware development and compiler research, Sandia National Laboratories would work with Tera to ensure that their compilers worked well with important Sandia codes, most particularly CTH, a shock physics code used for weapon safety computations. In addition to that important code, Sandia National Laboratories would complete research on a robotic path planning code, SANDROS, which is important in manufacturing applications, and would evaluate the MTA performance on this code. Finally, Sandia would work directly with Tera to develop 3D visualization codes, which would be appropriate for use with the MTA. Each of these tasks has been completed to the extent possible, given that Tera has just completed the MTA hardware. All of the CRADA work had to be done on simulators.« less

  1. Operations analysis (study 2.1). Program listing for the LOVES computer code

    NASA Technical Reports Server (NTRS)

    Wray, S. T., Jr.

    1974-01-01

    A listing of the LOVES computer program is presented. The program is coded partially in SIMSCRIPT and FORTRAN. This version of LOVES is compatible with both the CDC 7600 and the UNIVAC 1108 computers. The code has been compiled, loaded, and executed successfully on the EXEC 8 system for the UNIVAC 1108.

  2. Students' Informal Inference about the Binomial Distribution of "Bunny Hops": A Dialogic Perspective

    ERIC Educational Resources Information Center

    Kazak, Sibel; Fujita, Taro; Wegerif, Rupert

    2016-01-01

    The study explores the development of 11-year-old students' informal inference about random bunny hops through student talk and use of computer simulation tools. Our aim in this paper is to draw on dialogic theory to explain how students make shifts in perspective, from intuition-based reasoning to more powerful, formal ways of using probabilistic…

  3. SDI Software Technology Program Plan Version 1.5

    DTIC Science & Technology

    1987-06-01

    computer generation of auditory communication of meaningful speech. Most speech synthesizers are based on mathematical models of the human vocal tract, but...oral/ auditory and multimodal communications. Although such state-of-the-art interaction technology has not fully matured, user experience has...superior I pattern matching capabilities and the subliminal intuitive deduction capability. The error performance of humans can be helped by careful

  4. Single-Scale Fusion: An Effective Approach to Merging Images.

    PubMed

    Ancuti, Codruta O; Ancuti, Cosmin; De Vleeschouwer, Christophe; Bovik, Alan C

    2017-01-01

    Due to its robustness and effectiveness, multi-scale fusion (MSF) based on the Laplacian pyramid decomposition has emerged as a popular technique that has shown utility in many applications. Guided by several intuitive measures (weight maps) the MSF process is versatile and straightforward to be implemented. However, the number of pyramid levels increases with the image size, which implies sophisticated data management and memory accesses, as well as additional computations. Here, we introduce a simplified formulation that reduces MSF to only a single level process. Starting from the MSF decomposition, we explain both mathematically and intuitively (visually) a way to simplify the classical MSF approach with minimal loss of information. The resulting single-scale fusion (SSF) solution is a close approximation of the MSF process that eliminates important redundant computations. It also provides insights regarding why MSF is so effective. While our simplified expression is derived in the context of high dynamic range imaging, we show its generality on several well-known fusion-based applications, such as image compositing, extended depth of field, medical imaging, and blending thermal (infrared) images with visible light. Besides visual validation, quantitative evaluations demonstrate that our SSF strategy is able to yield results that are highly competitive with traditional MSF approaches.

  5. Computationally efficient modeling of proprioceptive signals in the upper limb for prostheses: a simulation study

    PubMed Central

    Williams, Ian; Constandinou, Timothy G.

    2014-01-01

    Accurate models of proprioceptive neural patterns could 1 day play an important role in the creation of an intuitive proprioceptive neural prosthesis for amputees. This paper looks at combining efficient implementations of biomechanical and proprioceptor models in order to generate signals that mimic human muscular proprioceptive patterns for future experimental work in prosthesis feedback. A neuro-musculoskeletal model of the upper limb with 7 degrees of freedom and 17 muscles is presented and generates real time estimates of muscle spindle and Golgi Tendon Organ neural firing patterns. Unlike previous neuro-musculoskeletal models, muscle activation and excitation levels are unknowns in this application and an inverse dynamics tool (static optimization) is integrated to estimate these variables. A proprioceptive prosthesis will need to be portable and this is incompatible with the computationally demanding nature of standard biomechanical and proprioceptor modeling. This paper uses and proposes a number of approximations and optimizations to make real time operation on portable hardware feasible. Finally technical obstacles to mimicking natural feedback for an intuitive proprioceptive prosthesis, as well as issues and limitations with existing models, are identified and discussed. PMID:25009463

  6. Analysis of the Length of Braille Texts in English Braille American Edition, the Nemeth Code, and Computer Braille Code versus the Unified English Braille Code

    ERIC Educational Resources Information Center

    Knowlton, Marie; Wetzel, Robin

    2006-01-01

    This study compared the length of text in English Braille American Edition, the Nemeth code, and the computer braille code with the Unified English Braille Code (UEBC)--also known as Unified English Braille (UEB). The findings indicate that differences in the length of text are dependent on the type of material that is transcribed and the grade…

  7. Intuitive Ethics: Understanding and Critiquing the Role of Intuition in Ethical Decisions.

    ERIC Educational Resources Information Center

    Faber, Brenton

    1999-01-01

    Examines the role intuition plays in forming ethical decisions. Reviews examples of intuitive ethics in professional-communication research. Suggests that intuition is the naturalization of dominant cultural values and beliefs. Offers a pedagogical example of the theory and concludes by suggesting the value that a "critique of intuition"…

  8. A MATLAB based 3D modeling and inversion code for MT data

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Dehiya, Rahul; Gupta, Pravin K.; Israil, M.

    2017-07-01

    The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator code and modeling/inversion code. The grid generator code performs model discretization and acts as an interface by generating various I/O files. The inversion code performs core computations in modular form - forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the code provides a framework useful for implementation of new applications and inversion algorithms. The use of MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several published models. To demonstrate its versatility and capabilities the results of inversion for two complex models are presented.

  9. Applications of automatic differentiation in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Carle, A.; Bischof, C.; Haigler, Kara J.; Newman, Perry A.

    1994-01-01

    Automatic differentiation (AD) is a powerful computational method that provides for computing exact sensitivity derivatives (SD) from existing computer programs for multidisciplinary design optimization (MDO) or in sensitivity analysis. A pre-compiler AD tool for FORTRAN programs called ADIFOR has been developed. The ADIFOR tool has been easily and quickly applied by NASA Langley researchers to assess the feasibility and computational impact of AD in MDO with several different FORTRAN programs. These include a state-of-the-art three dimensional multigrid Navier-Stokes flow solver for wings or aircraft configurations in transonic turbulent flow. With ADIFOR the user specifies sets of independent and dependent variables with an existing computer code. ADIFOR then traces the dependency path throughout the code, applies the chain rule to formulate derivative expressions, and generates new code to compute the required SD matrix. The resulting codes have been verified to compute exact non-geometric and geometric SD for a variety of cases. in less time than is required to compute the SD matrix using centered divided differences.

  10. Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems

    NASA Astrophysics Data System (ADS)

    Alipchenkov, V. M.; Anfimov, A. M.; Afremov, D. A.; Gorbunov, V. S.; Zeigarnik, Yu. A.; Kudryavtsev, A. V.; Osipov, S. L.; Mosunova, N. A.; Strizhov, V. F.; Usov, E. V.

    2016-02-01

    The conceptual fundamentals of the development of the new-generation system thermal-hydraulic computational HYDRA-IBRAE/LM code are presented. The code is intended to simulate the thermalhydraulic processes that take place in the loops and the heat-exchange equipment of liquid-metal cooled fast reactor systems under normal operation and anticipated operational occurrences and during accidents. The paper provides a brief overview of Russian and foreign system thermal-hydraulic codes for modeling liquid-metal coolants and gives grounds for the necessity of development of a new-generation HYDRA-IBRAE/LM code. Considering the specific engineering features of the nuclear power plants (NPPs) equipped with the BN-1200 and the BREST-OD-300 reactors, the processes and the phenomena are singled out that require a detailed analysis and development of the models to be correctly described by the system thermal-hydraulic code in question. Information on the functionality of the computational code is provided, viz., the thermalhydraulic two-phase model, the properties of the sodium and the lead coolants, the closing equations for simulation of the heat-mass exchange processes, the models to describe the processes that take place during the steam-generator tube rupture, etc. The article gives a brief overview of the usability of the computational code, including a description of the support documentation and the supply package, as well as possibilities of taking advantages of the modern computer technologies, such as parallel computations. The paper shows the current state of verification and validation of the computational code; it also presents information on the principles of constructing of and populating the verification matrices for the BREST-OD-300 and the BN-1200 reactor systems. The prospects are outlined for further development of the HYDRA-IBRAE/LM code, introduction of new models into it, and enhancement of its usability. It is shown that the program of development and practical application of the code will allow carrying out in the nearest future the computations to analyze the safety of potential NPP projects at a qualitatively higher level.

  11. Performance assessment of KORAT-3D on the ANL IBM-SP computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexeyev, A.V.; Zvenigorodskaya, O.A.; Shagaliev, R.M.

    1999-09-01

    The TENAR code is currently being developed at the Russian Federal Nuclear Center (VNIIEF) as a coupled dynamics code for the simulation of transients in VVER and RBMK systems and other nuclear systems. The neutronic module in this code system is KORAT-3D. This module is also one of the most computationally intensive components of the code system. A parallel version of KORAT-3D has been implemented to achieve the goal of obtaining transient solutions in reasonable computational time, particularly for RBMK calculations that involve the application of >100,000 nodes. An evaluation of the KORAT-3D code performance was recently undertaken on themore » Argonne National Laboratory (ANL) IBM ScalablePower (SP) parallel computer located in the Mathematics and Computer Science Division of ANL. At the time of the study, the ANL IBM-SP computer had 80 processors. This study was conducted under the auspices of a technical staff exchange program sponsored by the International Nuclear Safety Center (INSC).« less

  12. Profugus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Thomas; Hamilton, Steven; Slattery, Stuart

    Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is notmore » meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.« less

  13. Can Dynamic Visualizations with Variable Control Enhance the Acquisition of Intuitive Knowledge?

    NASA Astrophysics Data System (ADS)

    Wichmann, Astrid; Timpe, Sebastian

    2015-10-01

    An important feature of inquiry learning is to take part in science practices including exploring variables and testing hypotheses. Computer-based dynamic visualizations have the potential to open up various exploration possibilities depending on the level of learner control. It is assumed that variable control, e.g., by changing parameters of a variable, leads to deeper processing (Chang and Linn 2013; de Jong and Njoo 1992; Nerdel 2003; Trey and Khan 2008). Variable control may be helpful, in particular, for acquiring intuitive knowledge (Swaak and de Jong 2001). However, it bares the risk of mental exhaustion and thus may have detrimental effects on knowledge acquisition (Sweller 1998). Students ( N = 118) from four chemistry classes followed inquiry cycles using the software Molecular Workbench (Xie and Tinker 2006). Variable control was varied across the conditions (1) No-Manipulation group and (2) Manipulation group. By adding a third condition, (3) Manipulation-Plus group, we tested whether adding an active hypothesis phase prepares students before changing parameters of a variable. As expected, students in the Manipulation group and Manipulation-Plus group performed better concerning intuitive knowledge ( d = 1.14) than students in the No-Manipulation group. On a descriptive level, results indicated higher cognitive effort in the Manipulation group and the Manipulation-Plus group than in the No-Manipulation group. Unexpectedly, students in the Manipulation-Plus group did not benefit from the active hypothesis phase (intuitive knowledge: d = .36). Findings show that students benefit from variable control. Furthermore, findings point toward the direction that variable control evokes desirable difficulties (Bjork and Linn 2006).

  14. Fast H.264/AVC FRExt intra coding using belief propagation.

    PubMed

    Milani, Simone

    2011-01-01

    In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.

  15. 2,445 Hours of Code: What I Learned from Facilitating Hour of Code Events in High School Libraries

    ERIC Educational Resources Information Center

    Colby, Jennifer

    2015-01-01

    This article describes a school librarian's experience with initiating an Hour of Code event for her school's student body. Hadi Partovi of Code.org conceived the Hour of Code "to get ten million students to try one hour of computer science" (Partovi, 2013a), which is implemented during Computer Science Education Week with a goal of…

  16. Making Your Tools Useful to a Broader Audience

    NASA Astrophysics Data System (ADS)

    Lyness, M. D.; Broten, M. J.

    2006-12-01

    With the increasing growth of Web Services and SOAP the ability to connect and reuse computational and also visualization tools from all over the world via Web Interfaces that can be easily displayed in any current browser has provided the means to construct an ideal online research environment. The age-old question of usability is a major determining factor whether a particular tool would find great success in its community. An interface that can be understood purely by a user's intuition is desirable and more closely obtainable than ever before. Through the use of increasingly sophisticated web-oriented technologies including JavaScript, AJAX, and the DOM, web interfaces are able to harness the advantages of the Internet along with the functional capabilities of native applications such as menus, partial page changes, background processing, and visual effects to name a few. Also, with computers becoming a normal part of the educational process companies, such as Google and Microsoft, give us a synthetic intuition as a foundation for new designs. Understanding the way earth science researchers know how to use computers will allow the VLab portal (http://vlab.msi.umn.edu) and other projects to create interfaces that will get used. To provide detailed communication with the users of VLab's computational tools, projects like the Porky Portlet (http://www.gorerle.com/vlab-wiki/index.php?title=Porky_Portlet) spawned to empower users with a fully- detailed, interactive visual representation of progressing workflows. With the well-thought design of such tools and interfaces, researchers around the world will become accustomed to new highly engaging, visual web- based research environments.

  17. Numerical algorithm comparison for the accurate and efficient computation of high-incidence vortical flow

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    1991-01-01

    Computations from two Navier-Stokes codes, NSS and F3D, are presented for a tangent-ogive-cylinder body at high angle of attack. Features of this steady flow include a pair of primary vortices on the leeward side of the body as well as secondary vortices. The topological and physical plausibility of this vortical structure is discussed. The accuracy of these codes are assessed by comparison of the numerical solutions with experimental data. The effects of turbulence model, numerical dissipation, and grid refinement are presented. The overall efficiency of these codes are also assessed by examining their convergence rates, computational time per time step, and maximum allowable time step for time-accurate computations. Overall, the numerical results from both codes compared equally well with experimental data, however, the NSS code was found to be significantly more efficient than the F3D code.

  18. User's Manual for FEMOM3DR. Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    1998-01-01

    FEMoM3DR is a computer code written in FORTRAN 77 to compute radiation characteristics of antennas on 3D body using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. The code is written to handle different feeding structures like coaxial line, rectangular waveguide, and circular waveguide. This code uses the tetrahedral elements, with vector edge basis functions for FEM and triangular elements with roof-top basis functions for MoM. By virtue of FEM, this code can handle any arbitrary shaped three dimensional bodies with inhomogeneous lossy materials; and due to MoM the computational domain can be terminated in any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.

  19. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B.P.; Mahoney, L.A.

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected tomore » affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.« less

  20. User's manual for a material transport code on the Octopus Computer Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.; Mendez, G.D.

    1978-09-15

    A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.

  1. Performance analysis of three dimensional integral equation computations on a massively parallel computer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Logan, Terry G.

    1994-01-01

    The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.

  2. Computer Description of the M561 Utility Truck

    DTIC Science & Technology

    1984-10-01

    GIFT Computer Code Sustainabi1ity Predictions for Army Spare Components Requirements for Combat (SPARC) 20. ABSTRACT (Caotfmia «a NWM eitim ft...used as input to the GIFT computer code to generate target vulnerability data. DO FORM V JAM 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclass i f ied...anaLyiis requires input from the Geometric Information for Targets ( GIFT ) ’ computer code. This report documents the combina- torial geometry (Com-Geom

  3. TEMPEST: A three-dimensional time-dependent computer program for hydrothermal analysis: Volume 2, Assessment and verification results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyler, L L; Trent, D S; Budden, M J

    During the course of the TEMPEST computer code development a concurrent effort was conducted to assess the code's performance and the validity of computed results. The results of this work are presented in this document. The principal objective of this effort was to assure the code's computational correctness for a wide range of hydrothermal phenomena typical of fast breeder reactor application. 47 refs., 94 figs., 6 tabs.

  4. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  5. [Application of computer-assisted 3D imaging simulation for surgery].

    PubMed

    Matsushita, S; Suzuki, N

    1994-03-01

    This article describes trends in application of various imaging technology in surgical planning, navigation, and computer aided surgery. Imaging information is essential factor for simulation in medicine. It includes three dimensional (3D) image reconstruction, neuro-surgical navigation, creating substantial model based on 3D imaging data and etc. These developments depend mostly on 3D imaging technique, which is much contributed by recent computer technology. 3D imaging can offer new intuitive information to physician and surgeon, and this method is suitable for mechanical control. By utilizing simulated results, we can obtain more precise surgical orientation, estimation, and operation. For more advancement, automatic and high speed recognition of medical imaging is being developed.

  6. An Advanced User Interface Approach for Complex Parameter Study Process Specification in the Information Power Grid

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)

    2000-01-01

    The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.

  7. The influence of commenting validity, placement, and style on perceptions of computer code trustworthiness: A heuristic-systematic processing approach.

    PubMed

    Alarcon, Gene M; Gamble, Rose F; Ryan, Tyler J; Walter, Charles; Jessup, Sarah A; Wood, David W; Capiola, August

    2018-07-01

    Computer programs are a ubiquitous part of modern society, yet little is known about the psychological processes that underlie reviewing code. We applied the heuristic-systematic model (HSM) to investigate the influence of computer code comments on perceptions of code trustworthiness. The study explored the influence of validity, placement, and style of comments in code on trustworthiness perceptions and time spent on code. Results indicated valid comments led to higher trust assessments and more time spent on the code. Properly placed comments led to lower trust assessments and had a marginal effect on time spent on code; however, the effect was no longer significant after controlling for effects of the source code. Low style comments led to marginally higher trustworthiness assessments, but high style comments led to longer time spent on the code. Several interactions were also found. Our findings suggest the relationship between code comments and perceptions of code trustworthiness is not as straightforward as previously thought. Additionally, the current paper extends the HSM to the programming literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Coronal Magnetism and Forward Solarsoft Idl Package

    NASA Astrophysics Data System (ADS)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  9. Adiabatic topological quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less

  10. Adiabatic topological quantum computing

    DOE PAGES

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; ...

    2015-07-31

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less

  11. PRISM: An open source framework for the interactive design of GPU volume rendering shaders.

    PubMed

    Drouin, Simon; Collins, D Louis

    2018-01-01

    Direct volume rendering has become an essential tool to explore and analyse 3D medical images. Despite several advances in the field, it remains a challenge to produce an image that highlights the anatomy of interest, avoids occlusion of important structures, provides an intuitive perception of shape and depth while retaining sufficient contextual information. Although the computer graphics community has proposed several solutions to address specific visualization problems, the medical imaging community still lacks a general volume rendering implementation that can address a wide variety of visualization use cases while avoiding complexity. In this paper, we propose a new open source framework called the Programmable Ray Integration Shading Model, or PRISM, that implements a complete GPU ray-casting solution where critical parts of the ray integration algorithm can be replaced to produce new volume rendering effects. A graphical user interface allows clinical users to easily experiment with pre-existing rendering effect building blocks drawn from an open database. For programmers, the interface enables real-time editing of the code inside the blocks. We show that in its default mode, the PRISM framework produces images very similar to those produced by a widely-adopted direct volume rendering implementation in VTK at comparable frame rates. More importantly, we demonstrate the flexibility of the framework by showing how several volume rendering techniques can be implemented in PRISM with no more than a few lines of code. Finally, we demonstrate the simplicity of our system in a usability study with 5 medical imaging expert subjects who have none or little experience with volume rendering. The PRISM framework has the potential to greatly accelerate development of volume rendering for medical applications by promoting sharing and enabling faster development iterations and easier collaboration between engineers and clinical personnel.

  12. PRISM: An open source framework for the interactive design of GPU volume rendering shaders

    PubMed Central

    Collins, D. Louis

    2018-01-01

    Direct volume rendering has become an essential tool to explore and analyse 3D medical images. Despite several advances in the field, it remains a challenge to produce an image that highlights the anatomy of interest, avoids occlusion of important structures, provides an intuitive perception of shape and depth while retaining sufficient contextual information. Although the computer graphics community has proposed several solutions to address specific visualization problems, the medical imaging community still lacks a general volume rendering implementation that can address a wide variety of visualization use cases while avoiding complexity. In this paper, we propose a new open source framework called the Programmable Ray Integration Shading Model, or PRISM, that implements a complete GPU ray-casting solution where critical parts of the ray integration algorithm can be replaced to produce new volume rendering effects. A graphical user interface allows clinical users to easily experiment with pre-existing rendering effect building blocks drawn from an open database. For programmers, the interface enables real-time editing of the code inside the blocks. We show that in its default mode, the PRISM framework produces images very similar to those produced by a widely-adopted direct volume rendering implementation in VTK at comparable frame rates. More importantly, we demonstrate the flexibility of the framework by showing how several volume rendering techniques can be implemented in PRISM with no more than a few lines of code. Finally, we demonstrate the simplicity of our system in a usability study with 5 medical imaging expert subjects who have none or little experience with volume rendering. The PRISM framework has the potential to greatly accelerate development of volume rendering for medical applications by promoting sharing and enabling faster development iterations and easier collaboration between engineers and clinical personnel. PMID:29534069

  13. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.

    PubMed

    Pnevmatikakis, Eftychios A; Giovannucci, Andrea

    2017-11-01

    Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Intuitive biological thought: Developmental changes and effects of biology education in late adolescence.

    PubMed

    Coley, John D; Arenson, Melanie; Xu, Yian; Tanner, Kimberly D

    2017-02-01

    A large body of cognitive research has shown that people intuitively and effortlessly reason about the biological world in complex and systematic ways. We addressed two questions about the nature of intuitive biological reasoning: How does intuitive biological thinking change during adolescence and early adulthood? How does increasing biology education influence intuitive biological thinking? To do so, we developed a battery of measures to systematically test three components of intuitive biological thought: anthropocentric thinking, teleological thinking and essentialist thinking, and tested 8th graders and university students (both biology majors, and non-biology majors). Results reveal clear evidence of persistent intuitive reasoning among all populations studied, consistent but surprisingly small differences between 8th graders and college students on measures of intuitive biological thought, and consistent but again surprisingly small influence of increasing biology education on intuitive biological reasoning. Results speak to the persistence of intuitive reasoning, the importance of taking intuitive knowledge into account in science classrooms, and the necessity of interdisciplinary research to advance biology education. Further studies are necessary to investigate how cultural context and continued acquisition of expertise impact intuitive biology thinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Fast Computation of the Two-Point Correlation Function in the Age of Big Data

    NASA Astrophysics Data System (ADS)

    Pellegrino, Andrew; Timlin, John

    2018-01-01

    We present a new code which quickly computes the two-point correlation function for large sets of astronomical data. This code combines the ease of use of Python with the speed of parallel shared libraries written in C. We include the capability to compute the auto- and cross-correlation statistics, and allow the user to calculate the three-dimensional and angular correlation functions. Additionally, the code automatically divides the user-provided sky masks into contiguous subsamples of similar size, using the HEALPix pixelization scheme, for the purpose of resampling. Errors are computed using jackknife and bootstrap resampling in a way that adds negligible extra runtime, even with many subsamples. We demonstrate comparable speed with other clustering codes, and code accuracy compared to known and analytic results.

  16. Impaired intuition in patients with major depressive disorder.

    PubMed

    Remmers, Carina; Topolinski, Sascha; Dietrich, Detlef E; Michalak, Johannes

    2015-06-01

    In daily life, many decisions of minor and major importance have to be made. Thereby, intuitive judgments serve as useful guides and help us to adapt to our environment. People with major depressive disorder (MDD) often have difficulties to come to decisions. Is their intuition impaired? Since this question has not been addressed until now, the present study explored intuition in MDD. Depressed patients (n = 29) and healthy control participants (n = 27) completed the Judgment of Semantic Coherence Task, a well-established paradigm used in basic cognitive research to measure intuition. Furthermore, participants' severity of depressive symptoms (BDI-II), negative affect (PANAS), and rumination (RSQ) were assessed. All participants were interviewed with the SCID. Depressed patients showed impaired intuition compared to healthy control participants. In the depressed sample, negative affect accounts for the association between rumination and impaired intuition. Results further reveal that negative affect overall mediates the depression-intuition relationship. Patients with diminished ability to concentrate or indecisiveness had lower intuition indices compared to patients who did not fulfil this diagnostic criterion of MDD. The study introduces the phenomenon of intuition into depression research. Additionally, these results extent findings from basic research showing that induced negative mood as well difficulties to down-regulate negative affect impair intuitive coherence judgments. Current results indicate that the negative affectivity of patients is the crucial mediator in the association between depression and impaired intuition. Limitations of the study as well as the potential etiological role of intuition in MDD are discussed. The finding that intuition is impaired in depressed patients extends our knowledge as to the cognitive profile of patients with MDD. Patients who suffer from indecisiveness have lower intuition indices compared to patients who do not fulfill this diagnostic criterion of MDD. Due to the cross-sectional design, final conclusions as to the etiological role of intuition in MDD cannot be drawn. The question remains open whether impaired intuition is specific to MDD. © 2014 The British Psychological Society.

  17. Nursing intuition as an assessment tool in predicting severity of injury in trauma patients.

    PubMed

    Cork, Lora L

    2014-01-01

    Emergency nurses assess patients using objective and subjective data. When the charge nurse takes report from a paramedic, another form of assessment occurs. By eliciting apt data and using trauma-scoring criteria, a decision to enact a "trauma code" occurs. Considering the cost and staff utilization, it is important for the charge nurse to make sound decisions when activating a trauma code. The objective of this study is to explore the validity of nurses' use of intuition in patients to predict the severity of their injuries, and whether it impacts their choice to institute a trauma code.The study design was a descriptive, quantitative, cross-sectional record review and cohort analysis. The setting was a rural Trauma Level III emergency department (ED) located 80 miles from the nearest Level I trauma center. Phase I was a convenience cluster sample of all charge nurses in an ED. Phase II was a collection of all trauma records from June 2010 to May 2012. The inclusion criterion for Phase I subjects was that all participants were currently working as ED charge nurses. Analysis for Phase I data consisted of evaluating demographic information provided in questions 1 through 6 in a questionnaire. For Phase II data, a power analysis using Cohen's d was performed to determine the sample size to be evaluated. On the basis of the 2012 trauma data, a total of 419 records needed to be assessed (confidence interval, 0.164; P < .286). Two groups were created: (1) gut instinct only, and (2) all other criteria. Injury severity scores were categorized by ascending severity: (1) 0 to 4, (2) 5 to 9, (3) 10 to 16, (4) 17 to 24, and (5) greater than 25. The data analysis consisted of a 2-tailed t test for probability and a linear regression analysis using Pearson's r for correlation. In Phase I, 6 of the 8 charge nurses responded. Results showed an average of greater than 10 years of experience as an ED registered nurse, certification was equally yes and no, and highest level of education was at the BSN level. Phase II consisted of a review of 393 eligible medical files during the specified period. Because of the lack of sufficient data, 33 records were excluded. A total of 360 files remained with 109 in the "gut instinct" and 251 in the "other" category. A t test was performed using a 2-tailed test with an α value of .05. Results were a t-score of 0.02, and the null hypothesis was rejected. To evaluate the linear relationship between the sets of data, a Pearson's r correlation coefficient was calculated to determine the relationship between the 2 variables. Results indicated a strong positive correlation (r = 0.992; P ≤ .001).Intuition is a well-known phenomenon within the nursing community, but it is an abstract concept that is difficult to substantiate. To enhance the development of properly utilizing intuition in practice, I suggest pairing experienced with novice nurses in their patient assignments. This would enable the less proficient nurse to observe and ask questions about the rationale surrounding decisions the expert nurse has made regarding patient assessment and care.

  18. Integration of cardiac proteome biology and medicine by a specialized knowledgebase.

    PubMed

    Zong, Nobel C; Li, Haomin; Li, Hua; Lam, Maggie P Y; Jimenez, Rafael C; Kim, Christina S; Deng, Ning; Kim, Allen K; Choi, Jeong Ho; Zelaya, Ivette; Liem, David; Meyer, David; Odeberg, Jacob; Fang, Caiyun; Lu, Hao-Jie; Xu, Tao; Weiss, James; Duan, Huilong; Uhlen, Mathias; Yates, John R; Apweiler, Rolf; Ge, Junbo; Hermjakob, Henning; Ping, Peipei

    2013-10-12

    Omics sciences enable a systems-level perspective in characterizing cardiovascular biology. Integration of diverse proteomics data via a computational strategy will catalyze the assembly of contextualized knowledge, foster discoveries through multidisciplinary investigations, and minimize unnecessary redundancy in research efforts. The goal of this project is to develop a consolidated cardiac proteome knowledgebase with novel bioinformatics pipeline and Web portals, thereby serving as a new resource to advance cardiovascular biology and medicine. We created Cardiac Organellar Protein Atlas Knowledgebase (COPaKB; www.HeartProteome.org), a centralized platform of high-quality cardiac proteomic data, bioinformatics tools, and relevant cardiovascular phenotypes. Currently, COPaKB features 8 organellar modules, comprising 4203 LC-MS/MS experiments from human, mouse, drosophila, and Caenorhabditis elegans, as well as expression images of 10,924 proteins in human myocardium. In addition, the Java-coded bioinformatics tools provided by COPaKB enable cardiovascular investigators in all disciplines to retrieve and analyze pertinent organellar protein properties of interest. COPaKB provides an innovative and interactive resource that connects research interests with the new biological discoveries in protein sciences. With an array of intuitive tools in this unified Web server, nonproteomics investigators can conveniently collaborate with proteomics specialists to dissect the molecular signatures of cardiovascular phenotypes.

  19. Application of theoretical methods to increase succinate production in engineered strains.

    PubMed

    Valderrama-Gomez, M A; Kreitmayer, D; Wolf, S; Marin-Sanguino, A; Kremling, A

    2017-04-01

    Computational methods have enabled the discovery of non-intuitive strategies to enhance the production of a variety of target molecules. In the case of succinate production, reviews covering the topic have not yet analyzed the impact and future potential that such methods may have. In this work, we review the application of computational methods to the production of succinic acid. We found that while a total of 26 theoretical studies were published between 2002 and 2016, only 10 studies reported the successful experimental implementation of any kind of theoretical knowledge. None of the experimental studies reported an exact application of the computational predictions. However, the combination of computational analysis with complementary strategies, such as directed evolution and comparative genome analysis, serves as a proof of concept and demonstrates that successful metabolic engineering can be guided by rational computational methods.

  20. Health monitoring display system for a complex plant

    DOEpatents

    Ridolfo, Charles F [Bloomfield, CT; Harmon, Daryl L [Enfield, CT; Colin, Dreyfuss [Enfield, CT

    2006-08-08

    A single page enterprise wide level display provides a comprehensive readily understood representation of the overall health status of a complex plant. Color coded failure domains allow rapid intuitive recognition of component failure status. A three-tier hierarchy of displays provide details on the health status of the components and systems displayed on the enterprise wide level display in a manner that supports a logical drill down to the health status of sub-components on Tier 1 to expected faults of the sub-components on Tier 2 to specific information relative to expected sub-component failures on Tier 3.

  1. Interoceptive predictions in the brain

    PubMed Central

    Barrett, Lisa Feldman; Simmons, W. Kyle

    2016-01-01

    Intuition suggests that perception follows sensation and therefore bodily feelings originate in the body. However, recent evidence goes against this logic: interoceptive experience may largely reflect limbic predictions about the expected state of the body that are constrained by ascending visceral sensations. In this Opinion article, we introduce the Embodied Predictive Interoception Coding model, which integrates an anatomical model of corticocortical connections with Bayesian active inference principles, to propose that agranular visceromotor cortices contribute to interoception by issuing interoceptive predictions. We then discuss how disruptions in interoceptive predictions could function as a common vulnerability for mental and physical illness. PMID:26016744

  2. Design of convolutional tornado code

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less

  4. Projector-based augmented reality for intuitive intraoperative guidance in image-guided 3D interstitial brachytherapy.

    PubMed

    Krempien, Robert; Hoppe, Harald; Kahrs, Lüder; Daeuber, Sascha; Schorr, Oliver; Eggers, Georg; Bischof, Marc; Munter, Marc W; Debus, Juergen; Harms, Wolfgang

    2008-03-01

    The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.

  5. Three-dimensional turbopump flowfield analysis

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.

    1992-01-01

    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  6. High altitude chemically reacting gas particle mixtures. Volume 3: Computer code user's and applications manual. [rocket nozzle and orbital plume flow fields

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1984-01-01

    A users manual for the RAMP2 computer code is provided. The RAMP2 code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. The general structure and operation of RAMP2 are discussed. A user input/output guide for the modified TRAN72 computer code and the RAMP2F code is given. The application and use of the BLIMPJ module are considered. Sample problems involving the space shuttle main engine and motor are included.

  7. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  8. Research in Computational Aeroscience Applications Implemented on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Wigton, Larry

    1996-01-01

    Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as distributed-memory parallel computers.

  9. ISSYS: An integrated synergistic Synthesis System

    NASA Technical Reports Server (NTRS)

    Dovi, A. R.

    1980-01-01

    Integrated Synergistic Synthesis System (ISSYS), an integrated system of computer codes in which the sequence of program execution and data flow is controlled by the user, is discussed. The commands available to exert such control, the ISSYS major function and rules, and the computer codes currently available in the system are described. Computational sequences frequently used in the aircraft structural analysis and synthesis are defined. External computer codes utilized by the ISSYS system are documented. A bibliography on the programs is included.

  10. Approaching the Distinction between Intuition and Insight.

    PubMed

    Zhang, Zhonglu; Lei, Yi; Li, Hong

    2016-01-01

    Intuition and insight share similar cognitive and neural basis. Though, there are still some essential differences between the two. Here in this short review, we discriminated between intuition, and insight in two aspects. First, intuition, and insight are toward different aspects of information processing. Whereas intuition involves judgment about "yes or no," insight is related to "what" is the solution. Second, tacit knowledge play different roles in between intuition and insight. On the one hand, tacit knowledge is conducive to intuitive judgment. On the other hand, tacit knowledge may first impede but later facilitate insight occurrence. Furthermore, we share theoretical, and methodological views on how to access the distinction between intuition and insight.

  11. User's manual for a two-dimensional, ground-water flow code on the Octopus computer network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.

    1978-08-30

    A ground-water hydrology computer code, programmed by R.L. Taylor (in Proc. American Society of Civil Engineers, Journal of Hydraulics Division, 93(HY2), pp. 25-33 (1967)), has been adapted to the Octopus computer system at Lawrence Livermore Laboratory. Using an example problem, this manual details the input, output, and execution options of the code.

  12. Interactive Synthesis of Code Level Security Rules

    DTIC Science & Technology

    2017-04-01

    Interactive Synthesis of Code-Level Security Rules A Thesis Presented by Leo St. Amour to The Department of Computer Science in partial fulfillment...of the requirements for the degree of Master of Science in Computer Science Northeastern University Boston, Massachusetts April 2017 DISTRIBUTION...Abstract of the Thesis Interactive Synthesis of Code-Level Security Rules by Leo St. Amour Master of Science in Computer Science Northeastern University

  13. Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    1986-01-01

    AGDISP, a computer code written for Langley by Continuum Dynamics, Inc., aids crop dusting airplanes in targeting pesticides. The code is commercially available and can be run on a personal computer by an inexperienced operator. Called SWA+H, it is used by the Forest Service, FAA, DuPont, etc. DuPont uses the code to "test" equipment on the computer using a laser system to measure particle characteristics of various spray compounds.

  14. The adaption and use of research codes for performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebetrau, A.M.

    1987-05-01

    Models of real-world phenomena are developed for many reasons. The models are usually, if not always, implemented in the form of a computer code. The characteristics of a code are determined largely by its intended use. Realizations or implementations of detailed mathematical models of complex physical and/or chemical processes are often referred to as research or scientific (RS) codes. Research codes typically require large amounts of computing time. One example of an RS code is a finite-element code for solving complex systems of differential equations that describe mass transfer through some geologic medium. Considerable computing time is required because computationsmore » are done at many points in time and/or space. Codes used to evaluate the overall performance of real-world physical systems are called performance assessment (PA) codes. Performance assessment codes are used to conduct simulated experiments involving systems that cannot be directly observed. Thus, PA codes usually involve repeated simulations of system performance in situations that preclude the use of conventional experimental and statistical methods. 3 figs.« less

  15. Continued Development of Python-Based Thomson Data Analysis and Associated Visualization Tool for NSTX-U

    NASA Astrophysics Data System (ADS)

    Wallace, William; Miller, Jared; Diallo, Ahmed

    2015-11-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas. [1] Previous work [2] converted the single-processor IDL code into Python code, and prepared a new architecture for multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a software test suite for the new architecture which allowed identification of the code which generated the difference in output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internship (CCI) program.

  16. Topological color codes on Union Jack lattices: a stable implementation of the whole Clifford group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzgraber, Helmut G.; Theoretische Physik, ETH Zurich, CH-8093 Zurich; Bombin, H.

    We study the error threshold of topological color codes on Union Jack lattices that allow for the full implementation of the whole Clifford group of quantum gates. After mapping the error-correction process onto a statistical mechanical random three-body Ising model on a Union Jack lattice, we compute its phase diagram in the temperature-disorder plane using Monte Carlo simulations. Surprisingly, topological color codes on Union Jack lattices have a similar error stability to color codes on triangular lattices, as well as to the Kitaev toric code. The enhanced computational capabilities of the topological color codes on Union Jack lattices with respectmore » to triangular lattices and the toric code combined with the inherent robustness of this implementation show good prospects for future stable quantum computer implementations.« less

  17. SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS.

    PubMed

    Thiede, Erik; VAN Koten, Brian; Weare, Jonathan

    For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations.

  18. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low-Altitude VLF Transmitter

    DTIC Science & Technology

    2007-08-31

    latitude) for 3 different grid spacings. 14 8. Low-altitude fields produced by a 10-kHz source computed using the FD and TD codes. The agreement is...excellent, validating the new FD code. 16 9. High-altitude fields produced by a 10-kHz source computed using the FD and TD codes. The agreement is...again excellent. 17 10. Low-altitude fields produced by a 20-k.Hz source computed using the FD and TD codes. 17 11. High-altitude fields produced

  19. Typing Compared with Handwriting for Essay Examinations at University: Letting the Students Choose

    ERIC Educational Resources Information Center

    Mogey, Nora; Paterson, Jessie; Burk, John; Purcell, Michael

    2010-01-01

    Students at the University of Edinburgh do almost all their work on computers, but at the end of the semester they are examined by handwritten essays. Intuitively it would be appealing to allow students the choice of handwriting or typing, but this raises a concern that perhaps this might not be "fair"--that the choice a student makes,…

  20. Integrating Conjoint Analysis with TOPSIS Algorithm to the Visual Effect of Icon Design Based on Multiple Users' Image Perceptions

    ERIC Educational Resources Information Center

    Tung, Ting-Chun; Chen, Hung-Yuan

    2017-01-01

    With the advance of mobile computing and wireless technology, a user's intent to interact with the interface of a mobile device is motivated not only by its intuitional operation, but also by the emotional perception induced by its aesthetic appeal. A graphical interface employing icons with suitable visual effect based on the users' emotional…

  1. EMERSE: The Electronic Medical Record Search Engine

    PubMed Central

    Hanauer, David A.

    2006-01-01

    EMERSE (The Electronic Medical Record Search Engine) is an intuitive, powerful search engine for free-text documents in the electronic medical record. It offers multiple options for creating complex search queries yet has an interface that is easy enough to be used by those with minimal computer experience. EMERSE is ideal for retrospective chart reviews and data abstraction and may have potential for clinical care as well.

  2. An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.

    1998-01-01

    We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.

  3. Reduced and simplified chemical kinetics for air dissociation using Computational Singular Perturbation

    NASA Technical Reports Server (NTRS)

    Goussis, D. A.; Lam, S. H.; Gnoffo, P. A.

    1990-01-01

    The Computational Singular Perturbation CSP methods is employed (1) in the modeling of a homogeneous isothermal reacting system and (2) in the numerical simulation of the chemical reactions in a hypersonic flowfield. Reduced and simplified mechanisms are constructed. The solutions obtained on the basis of these approximate mechanisms are shown to be in very good agreement with the exact solution based on the full mechanism. Physically meaningful approximations are derived. It is demonstrated that the deduction of these approximations from CSP is independent of the complexity of the problem and requires no intuition or experience in chemical kinetics.

  4. Early years of Computational Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Mareschal, Michel

    2018-05-01

    Evidence that a model of hard spheres exhibits a first-order solid-fluid phase transition was provided in the late fifties by two new numerical techniques known as Monte Carlo and Molecular Dynamics. This result can be considered as the starting point of computational statistical mechanics: at the time, it was a confirmation of a counter-intuitive (and controversial) theoretical prediction by J. Kirkwood. It necessitated an intensive collaboration between the Los Alamos team, with Bill Wood developing the Monte Carlo approach, and the Livermore group, where Berni Alder was inventing Molecular Dynamics. This article tells how it happened.

  5. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  6. Links Between the Intuitive Sense of Number and Formal Mathematics Ability.

    PubMed

    Feigenson, Lisa; Libertus, Melissa E; Halberda, Justin

    2013-06-01

    Humans share with other animals a system for thinking about numbers in an imprecise and intuitive way. The Approximate Number System (ANS) that underlies this thinking is present throughout the lifespan, is entirely nonverbal, and supports basic numerical computations like comparing, adding, and subtracting quantities. Humans, unlike other animals, also have a system for representing exact numbers. This linguistically mediated system is slowly mastered over the course of many years and provides the basis for most of our formal mathematical thought. A growing body of evidence suggests that the nonverbal ANS and the culturally invented system of exact numbers are fundamentally linked. In this article, we review evidence for this relationship, describing how group and individual differences in the ANS correlate with and even predict formal math ability. In this way, we illustrate how a system of ancient core knowledge may serve as a foundation for more complex mathematical thought.

  7. Analysis of airborne antenna systems using geometrical theory of diffraction and moment method computer codes

    NASA Technical Reports Server (NTRS)

    Hartenstein, Richard G., Jr.

    1985-01-01

    Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.

  8. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  9. Code of Ethical Conduct for Computer-Using Educators: An ICCE Policy Statement.

    ERIC Educational Resources Information Center

    Computing Teacher, 1987

    1987-01-01

    Prepared by the International Council for Computers in Education's Ethics and Equity Committee, this code of ethics for educators using computers covers nine main areas: curriculum issues, issues relating to computer access, privacy/confidentiality issues, teacher-related issues, student issues, the community, school organizational issues,…

  10. Embedding Secure Coding Instruction into the IDE: Complementing Early and Intermediate CS Courses with ESIDE

    ERIC Educational Resources Information Center

    Whitney, Michael; Lipford, Heather Richter; Chu, Bill; Thomas, Tyler

    2018-01-01

    Many of the software security vulnerabilities that people face today can be remediated through secure coding practices. A critical step toward the practice of secure coding is ensuring that our computing students are educated on these practices. We argue that secure coding education needs to be included across a computing curriculum. We are…

  11. Unpacking Intuition

    PubMed Central

    Seligman, Martin E.P.; Kahana, Michael

    2009-01-01

    Can intuition be taught? The way in which faces are recognized, the structure of natural classes, and the architecture of intuition may all be instances of the same process. The conjecture that intuition is a species of recognition memory implies that human intuitive decision making can be enormously enhanced by virtual simulation. PMID:20300491

  12. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1985-01-01

    Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  13. Debugging Techniques Used by Experienced Programmers to Debug Their Own Code.

    DTIC Science & Technology

    1990-09-01

    IS. NUMBER OF PAGES code debugging 62 computer programmers 16. PRICE CODE debug programming 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119...Davis, and Schultz (1987) also compared experts and novices, but focused on the way a computer program is represented cognitively and how that...of theories in the emerging computer programming domain (Fisher, 1987). In protocol analysis, subjects are asked to talk/think aloud as they solve

  14. A COTS-Based Replacement Strategy for Aging Avionics Computers

    DTIC Science & Technology

    2001-12-01

    Communication Control Unit. A COTS-Based Replacement Strategy for Aging Avionics Computers COTS Microprocessor Real Time Operating System New Native Code...Native Code Objec ts Native Code Thread Real - Time Operating System Legacy Function x Virtual Component Environment Context Switch Thunk Add-in Replace

  15. PARAVT: Parallel Voronoi tessellation code

    NASA Astrophysics Data System (ADS)

    González, R. E.

    2016-10-01

    In this study, we present a new open source code for massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid. Code implementation and user guide are publicly available at https://github.com/regonzar/paravt.

  16. Quality Traceability System of Traditional Chinese Medicine Based on Two Dimensional Barcode Using Mobile Intelligent Technology

    PubMed Central

    Cai, Yong; Li, Xiwen; Wang, Runmiao; Yang, Qing; Li, Peng; Hu, Hao

    2016-01-01

    Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it’s expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints. PMID:27780256

  17. The STAGS computer code

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Brogan, F. A.

    1978-01-01

    Basic information about the computer code STAGS (Structural Analysis of General Shells) is presented to describe to potential users the scope of the code and the solution procedures that are incorporated. Primarily, STAGS is intended for analysis of shell structures, although it has been extended to more complex shell configurations through the inclusion of springs and beam elements. The formulation is based on a variational approach in combination with local two dimensional power series representations of the displacement components. The computer code includes options for analysis of linear or nonlinear static stress, stability, vibrations, and transient response. Material as well as geometric nonlinearities are included. A few examples of applications of the code are presented for further illustration of its scope.

  18. Holonomic surface codes for fault-tolerant quantum computation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Devitt, Simon J.; You, J. Q.; Nori, Franco

    2018-02-01

    Surface codes can protect quantum information stored in qubits from local errors as long as the per-operation error rate is below a certain threshold. Here we propose holonomic surface codes by harnessing the quantum holonomy of the system. In our scheme, the holonomic gates are built via auxiliary qubits rather than the auxiliary levels in multilevel systems used in conventional holonomic quantum computation. The key advantage of our approach is that the auxiliary qubits are in their ground state before and after each gate operation, so they are not involved in the operation cycles of surface codes. This provides an advantageous way to implement surface codes for fault-tolerant quantum computation.

  19. Comparison of two- and three-dimensional flow computations with laser anemometer measurements in a transonic compressor rotor

    NASA Technical Reports Server (NTRS)

    Chima, R. V.; Strazisar, A. J.

    1982-01-01

    Two and three dimensional inviscid solutions for the flow in a transonic axial compressor rotor at design speed are compared with probe and laser anemometers measurements at near-stall and maximum-flow operating points. Experimental details of the laser anemometer system and computational details of the two dimensional axisymmetric code and three dimensional Euler code are described. Comparisons are made between relative Mach number and flow angle contours, shock location, and shock strength. A procedure for using an efficient axisymmetric code to generate downstream pressure input for computationally expensive Euler codes is discussed. A film supplement shows the calculations of the two operating points with the time-marching Euler code.

  20. Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution

    NASA Astrophysics Data System (ADS)

    Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi

    2015-05-01

    In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs source is also compared with the experimental data.

  1. Intuition: an important tool in the practice of nursing.

    PubMed

    McCutcheon, H H; Pincombe, J

    2001-08-01

    The aim of the study reported here was to evaluate the role of intuition, to examine nurses' understanding of intuition and their perceptions of their use of intuition, and to assess the impact of intuition on nursing practice. When we read the dictionary definition of intuition, we have a sense of the meaning but there is also a sense of something still not quite defined. Yet we instinctively know what intuition is. That is, of course, an example of intuition in itself: an understanding of the concept based on our feelings, knowledge and experience. Intuition is a concept neither clearly articulated nor adequately theorized in nursing. There is evidence to suggest that practising nurses use intuition and that its use can change outcomes for patients. Because of its influence on patient well being, it needs to be recognized as an important tool in the practice of nursing. The very nature of intuition determines that there will be little agreement on a precise definition and little empirical evidence to support its existence or worth. Neither of these issues detracts from the fact that intuition is an important part of nursing. Grounded theory was used as the overarching theoretical and methodological framework for this study. Using focus group interviews and the Delphi survey technique, data were collected from 262 Registered Nurses who volunteered to take part in the study. The theory that emerged from this study provides nurses with a way of articulating their understanding of intuition and their perceptions of its use in nursing practice. Intuition is not some mystical power that appears from nowhere, with no rational explanation or basis. The findings from this study show that it is a product of the synergy that occurs as a result of the interaction of a number of factors.

  2. EAC: A program for the error analysis of STAGS results for plates

    NASA Technical Reports Server (NTRS)

    Sistla, Rajaram; Thurston, Gaylen A.; Bains, Nancy Jane C.

    1989-01-01

    A computer code is now available for estimating the error in results from the STAGS finite element code for a shell unit consisting of a rectangular orthotropic plate. This memorandum contains basic information about the computer code EAC (Error Analysis and Correction) and describes the connection between the input data for the STAGS shell units and the input data necessary to run the error analysis code. The STAGS code returns a set of nodal displacements and a discrete set of stress resultants; the EAC code returns a continuous solution for displacements and stress resultants. The continuous solution is defined by a set of generalized coordinates computed in EAC. The theory and the assumptions that determine the continuous solution are also outlined in this memorandum. An example of application of the code is presented and instructions on its usage on the Cyber and the VAX machines have been provided.

  3. CFD Modeling of Free-Piston Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  4. On the error statistics of Viterbi decoding and the performance of concatenated codes

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Deutsch, L. J.; Butman, S. A.

    1981-01-01

    Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations.

  5. New double-byte error-correcting codes for memory systems

    NASA Technical Reports Server (NTRS)

    Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.

    1996-01-01

    Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.

  6. SOURCELESS STARTUP. A MACHINE CODE FOR COMPUTING LOW-SOURCE REACTOR STARTUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMillan, D.B.

    1960-06-01

    >A revision to the sourceless start-up code is presented. The code solves a system of differential equations encountered in computing the probability distribution of activity at an observed power level during reactor start-up from a very low source level. (J.R.D.)

  7. Computer-assisted coding and clinical documentation: first things first.

    PubMed

    Tully, Melinda; Carmichael, Angela

    2012-10-01

    Computer-assisted coding tools have the potential to drive improvements in seven areas: Transparency of coding. Productivity (generally by 20 to 25 percent for inpatient claims). Accuracy (by improving specificity of documentation). Cost containment (by reducing overtime expenses, audit fees, and denials). Compliance. Efficiency. Consistency.

  8. On intuitional stability: the clear, the strong, and the paradigmatic.

    PubMed

    Wright, Jennifer Cole

    2010-06-01

    Skepticism about the epistemic value of intuition in theoretical and philosophical inquiry has recently been bolstered by empirical research suggesting that people's concrete-case intuitions are vulnerable to irrational biases (e.g., the order effect). What is more, skeptics argue that we have no way to "calibrate" our intuitions against these biases and no way of anticipating intuitional instability. This paper challenges the skeptical position, introducing data from two studies that suggest not only that people's concrete-case intuitions are often stable, but also that people have introspective awareness of this stability, providing a promising means by which to assess the epistemic value of our intuitions.

  9. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, R.; Imbriale, W.; Liewer, P.; Lyons, J.; Manshadi, F.; Patterson, J.

    1987-01-01

    The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture.

  10. Bistatic radar cross section of a perfectly conducting rhombus-shaped flat plate

    NASA Astrophysics Data System (ADS)

    Fenn, Alan J.

    1990-05-01

    The bistatic radar cross section of a perfectly conducting flat plate that has a rhombus shape (equilateral parallelogram) is investigated. The Ohio State University electromagnetic surface patch code (ESP version 4) is used to compute the theoretical bistatic radar cross section of a 35- x 27-in rhombus plate at 1.3 GHz over the bistatic angles 15 deg to 142 deg. The ESP-4 computer code is a method of moments FORTRAN-77 program which can analyze general configurations of plates and wires. This code has been installed and modified at Lincoln Laboratory on a SUN 3 computer network. Details of the code modifications are described. Comparisons of the method of moments simulations and measurements of the rhombus plate are made. It is shown that the ESP-4 computer code provides a high degree of accuracy in the calculation of copolarized and cross-polarized bistatic radar cross section patterns.

  11. ASR4: A computer code for fitting and processing 4-gage anelastic strain recovery data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    A computer code for analyzing four-gage Anelastic Strain Recovery (ASR) data has been modified for use on a personal computer. This code fits the viscoelastic model of Warpinski and Teufel to measured ASR data, calculates the stress orientation directly, and computes stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and its calculates stress magnitudes using Blanton's approach, assuming sufficient input data are available. The program is written in FORTRAN, compiled with Ryan-McFarland Version 2.4. Graphics use PLOT88 software by Plotworks, Inc., but the graphics software must be obtained by themore » user because of licensing restrictions. A version without graphics can also be run. This code is available through the National Energy Software Center (NESC), operated by Argonne National Laboratory. 5 refs., 3 figs.« less

  12. Cloud hosting of the IPython Notebook to Provide Collaborative Research Environments for Big Data Analysis

    NASA Astrophysics Data System (ADS)

    Kershaw, Philip; Lawrence, Bryan; Gomez-Dans, Jose; Holt, John

    2015-04-01

    We explore how the popular IPython Notebook computing system can be hosted on a cloud platform to provide a flexible virtual research hosting environment for Earth Observation data processing and analysis and how this approach can be expanded more broadly into a generic SaaS (Software as a Service) offering for the environmental sciences. OPTIRAD (OPTImisation environment for joint retrieval of multi-sensor RADiances) is a project funded by the European Space Agency to develop a collaborative research environment for Data Assimilation of Earth Observation products for land surface applications. Data Assimilation provides a powerful means to combine multiple sources of data and derive new products for this application domain. To be most effective, it requires close collaboration between specialists in this field, land surface modellers and end users of data generated. A goal of OPTIRAD then is to develop a collaborative research environment to engender shared working. Another significant challenge is that of data volume and complexity. Study of land surface requires high spatial and temporal resolutions, a relatively large number of variables and the application of algorithms which are computationally expensive. These problems can be addressed with the application of parallel processing techniques on specialist compute clusters. However, scientific users are often deterred by the time investment required to port their codes to these environments. Even when successfully achieved, it may be difficult to readily change or update. This runs counter to the scientific process of continuous experimentation, analysis and validation. The IPython Notebook provides users with a web-based interface to multiple interactive shells for the Python programming language. Code, documentation and graphical content can be saved and shared making it directly applicable to OPTIRAD's requirements for a shared working environment. Given the web interface it can be readily made into a hosted service with Wakari and Microsoft Azure being notable examples. Cloud-hosting of the Notebook allows the same familiar Python interface to be retained but backed by Cloud Computing attributes of scalability, elasticity and resource pooling. This combination makes it a powerful solution to address the needs of long-tail science users of Big Data: an intuitive interactive interface with which to access powerful compute resources. IPython Notebook can be hosted as a single user desktop environment but the recent development by the IPython community of JupyterHub enables it to be run as a multi-user hosting environment. In addition, IPython.parallel allows the exposition of parallel compute infrastructure through a Python interface. Applying these technologies in combination, a collaborative research environment has been developed for OPTIRAD on the UK JASMIN/CEMS facility's private cloud (http://jasmin.ac.uk). Based on this experience, a generic virtualised solution is under development suitable for use by the wider environmental science community - on both JASMIN and portable to third party cloud platforms.

  13. Navier-Stokes Simulation of Homogeneous Turbulence on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.; Rogallo, R. S.

    1984-01-01

    A computer code which solves the Navier-Stokes equations for three dimensional, time-dependent, homogenous turbulence has been written for the CYBER 205. The code has options for both 64-bit and 32-bit arithmetic. With 32-bit computation, mesh sizes up to 64 (3) are contained within core of a 2 million 64-bit word memory. Computer speed timing runs were made for various vector lengths up to 6144. With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe CYBER 205. Several problems encountered in the coding are discussed.

  14. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    The tether control law to retrieve the satellite was modified in order to have a smooth retrieval trajectory of the satellite that minimizes the thruster activation. The satellite thrusters were added to the rotational dynamics computer code and a preliminary control logic was implemented to simulate them during the retrieval maneuver. The high resolution computer code for modelling the three dimensional dynamics of untensioned tether, SLACK3, was made fully operative and a set of computer simulations of possible tether breakages was run. The distribution of the electric field around an electrodynamic tether in vacuo severed at some length from the shuttle was computed with a three dimensional electrodynamic computer code.

  15. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.

  16. Presenting Your Best Self(ie): The Influence of Gender on Vertical Orientation of Selfies on Tinder.

    PubMed

    Sedgewick, Jennifer R; Flath, Meghan E; Elias, Lorin J

    2017-01-01

    When taking a self-portrait or "selfie" to display in an online dating profile, individuals may intuitively manipulate the vertical camera angle to embody how they want to be perceived by the opposite sex. Concepts from evolutionary psychology and grounded cognition suggest that this manipulation can provide cues of physical height and impressions of power to the viewer which are qualities found to influence mate-selection. We predicted that men would orient selfies more often from below to appear taller (i.e., more powerful) than the viewer, and women, from an above perspective to appear shorter (i.e., less powerful). A content analysis was conducted which coded the vertical orientation of 557 selfies from profile pictures on the popular mobile dating application, Tinder. In general, selfies were commonly used by both men (54%) and women (90%). Consistent with our predictions, a gender difference emerged; men's selfies were angled significantly more often from below, whereas women's were angled more often from above. Our findings suggest that selfies presented in a mate-attraction context are intuitively or perhaps consciously selected to adhere to ideal mate qualities. Further discussion proposes that biological or individual differences may also facilitate vertical compositions of selfies.

  17. Computer search for binary cyclic UEP codes of odd length up to 65

    NASA Technical Reports Server (NTRS)

    Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu

    1990-01-01

    Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.

  18. A Combinatorial Geometry Computer Description of the MEP-021A Generator Set

    DTIC Science & Technology

    1979-02-01

    Generator Computer Description Gasoline Generator GIFT MEP-021A 20. ABSTRACT fCbntteu* an rararaa eta* ft namamwaay anal Identify by block number) This... GIFT code is also stored on magnetic tape for future vulnerability analysis. 00,] 󈧚*7,1473 EDITION OF • NOV 65 IS OBSOLETE UNCLASSIFIED SECURITY...the Geometric Information for Targets ( GIFT ) computer code. The GIFT code traces shotlines through a COM-GEOM description from any specified attack

  19. Optimizing a liquid propellant rocket engine with an automated combustor design code (AUTOCOM)

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Reichel, R. H.; Jones, R. T.; Glatt, C. R.

    1972-01-01

    A procedure for automatically designing a liquid propellant rocket engine combustion chamber in an optimal fashion is outlined. The procedure is contained in a digital computer code, AUTOCOM. The code is applied to an existing engine, and design modifications are generated which provide a substantial potential payload improvement over the existing design. Computer time requirements for this payload improvement were small, approximately four minutes in the CDC 6600 computer.

  20. C. G. Jung and intuition: from the mindscape of the paranormal to the heart of psychology.

    PubMed

    Pilard, Nathalie

    2018-02-01

    Intuition is central in the work, practice, and philosophical legacy of C. G. Jung. In this paper, I will first discuss the importance of intuition for Jung in the paradigm usually designated the 'paranormal'. Jung was attracted to intuition as an extra-ordinary gift or function in the traditional sense, and this is considered here in relation to his 1896-1899 Zofingia Lectures and 1902 On the Psychology and Pathology of So-called Occult Phenomena: A Psychiatric Study. A significant development then occurred in 1913, when esotericist intuitions were turned toward psychological use with Jung's Red Book. There, his personal and private use of intuition - and we know how extraordinarily intuitive he was - led Jung to fully incorporate intuition at the core of his psychology. Not only in his practice, in the crucial intuitive form of empathy, but as we will see, also at the very heart of his theory. In 1921, Jung wrote Psychological Types, where intuition became one - the first - of the four fundamental functions and types of the psyche next to thinking, feeling, and sensation. In 1921, Jung proved to the world in rational argument that intuition was no longer a psychologist's hobby for table turning, but the most significant function of the psyche. © 2018, The Society of Analytical Psychology.

  1. DMG-α--a computational geometry library for multimolecular systems.

    PubMed

    Szczelina, Robert; Murzyn, Krzysztof

    2014-11-24

    The DMG-α library grants researchers in the field of computational biology, chemistry, and biophysics access to an open-sourced, easy to use, and intuitive software for performing fine-grained geometric analysis of molecular systems. The library is capable of computing power diagrams (weighted Voronoi diagrams) in three dimensions with 3D periodic boundary conditions, computing approximate projective 2D Voronoi diagrams on arbitrarily defined surfaces, performing shape properties recognition using α-shape theory and can do exact Solvent Accessible Surface Area (SASA) computation. The software is written mainly as a template-based C++ library for greater performance, but a rich Python interface (pydmga) is provided as a convenient way to manipulate the DMG-α routines. To illustrate possible applications of the DMG-α library, we present results of sample analyses which allowed to determine nontrivial geometric properties of two Escherichia coli-specific lipids as emerging from molecular dynamics simulations of relevant model bilayers.

  2. The Clinical Intuition Exploration Guide: A Decision-Making Tool for Counselors and Supervisors

    ERIC Educational Resources Information Center

    Jeffrey, Aaron

    2012-01-01

    Clinical intuition is a common experience among counselors, yet many do not know what to do with intuition when it occurs. This article reviews the role intuition plays in clinical work and presents the research-based Clinical Intuition Exploration Guide to help counselors navigate the decision-making process. The guide consists of self-reflection…

  3. Rethinking Visual Analytics for Streaming Data Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris

    In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less

  4. [Computer graphic display of retinal examination results. Software improving the quality of documenting fundus changes].

    PubMed

    Jürgens, Clemens; Grossjohann, Rico; Czepita, Damian; Tost, Frank

    2009-01-01

    Graphic documentation of retinal examination results in clinical ophthalmological practice is often depicted using pictures or in handwritten form. Popular software products used to describe changes in the fundus do not vary much from simple graphic programs that enable to insert, scale and edit basic graphic elements such as: a circle, rectangle, arrow or text. Displaying the results of retinal examinations in a unified way is difficult to achieve. Therefore, we devised and implemented modern software tools for this purpose. A computer program enabling to quickly and intuitively form graphs of the fundus, that can be digitally archived or printed was created. Especially for the needs of ophthalmological clinics, a set of standard digital symbols used to document the results of retinal examinations was developed and installed in a library of graphic symbols. These symbols are divided into the following categories: preoperative, postoperative, neovascularization, retinopathy of prematurity. The appropriate symbol can be selected with a click of the mouse and dragged-and-dropped on the canvas of the fundus. Current forms of documenting results of retinal examinations are unsatisfactory, due to the fact that they are time consuming and imprecise. Unequivocal interpretation is difficult or in some cases impossible. Using the developed computer program a sketch of the fundus can be created much more quickly than by hand drawing. Additionally the quality of the medica documentation using a system of well described and standardized symbols will be enhanced. (1) Graphic symbols used to document the results of retinal examinations are a part of everyday clinical practice. (2) The designed computer program will allow quick and intuitive graphical creation of fundus sketches that can be either digitally archived or printed.

  5. Unaligned instruction relocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.

    In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unalignedmore » ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.« less

  6. Unaligned instruction relocation

    DOEpatents

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.

    2018-01-23

    In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unaligned ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.

  7. Computer algorithm for coding gain

    NASA Technical Reports Server (NTRS)

    Dodd, E. E.

    1974-01-01

    Development of a computer algorithm for coding gain for use in an automated communications link design system. Using an empirical formula which defines coding gain as used in space communications engineering, an algorithm is constructed on the basis of available performance data for nonsystematic convolutional encoding with soft-decision (eight-level) Viterbi decoding.

  8. Intuitions, principles and consequences

    PubMed Central

    Shaw, A

    2001-01-01

    Some approaches to the assessment of moral intuitions are discussed. The controlled ethical trial isolates a moral issue from confounding factors and thereby clarifies what a person's intuition actually is. Casuistic reasoning from situations, where intuitions are clear, suggests or modifies principles, which can then help to make decisions in situations where intuitions are unclear. When intuitions are defended by a supporting principle, that principle can be tested by finding extreme cases, in which it is counterintuitive to follow the principle. An approach to the resolution of conflict between valid moral principles, specifically the utilitarian and justice principles, is considered. It is argued that even those who justify intuitions by a priori principles are often obliged to modify or support their principles by resort to the consideration of consequences. Key Words: Intuitions • principles • consequences • utilitarianism PMID:11233371

  9. Intuitive Space Weather Displays to Improve Space Situational Awareness (SSA)

    DTIC Science & Technology

    2011-09-01

    parsimonious offering. After engaging several mathematicians and space physicists to devise valid computational formulas for aggregating the four hazard... PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aptima, Inc.,12 Gill Street Ste 200,Woburn,MA... physicists , the operational users find little use in receiving particle fluxes or magnetometer readings collected by the scientific community. Fortunately

  10. EMERSE: The Electronic Medical Record Search Engine

    PubMed Central

    Hanauer, David A.

    2006-01-01

    EMERSE (The Electronic Medical Record Search Engine) is an intuitive, powerful search engine for free-text documents in the electronic medical record. It offers multiple options for creating complex search queries yet has an interface that is easy enough to be used by those with minimal computer experience. EMERSE is ideal for retrospective chart reviews and data abstraction and may have potential for clinical care as well. PMID:17238560

  11. A natural way to do spatial linear geometry in MACSYMA

    NASA Technical Reports Server (NTRS)

    Bulnes, J.

    1977-01-01

    A set of routines appropriate for use as an interactive aid in 3-dimensional calculations with planes, lines and points is presented. The mathematical language used is vector calculus. The simplicity with which these routines can be written in MACSYMA is demonstrated. Because of the natural way in which geometric intuition is mapped into them, they can serve as a model for an interactive computational aid for architects.

  12. Introducing computational thinking through hands-on projects using R with applications to calculus, probability and data analysis

    NASA Astrophysics Data System (ADS)

    Benakli, Nadia; Kostadinov, Boyan; Satyanarayana, Ashwin; Singh, Satyanand

    2017-04-01

    The goal of this paper is to promote computational thinking among mathematics, engineering, science and technology students, through hands-on computer experiments. These activities have the potential to empower students to learn, create and invent with technology, and they engage computational thinking through simulations, visualizations and data analysis. We present nine computer experiments and suggest a few more, with applications to calculus, probability and data analysis, which engage computational thinking through simulations, visualizations and data analysis. We are using the free (open-source) statistical programming language R. Our goal is to give a taste of what R offers rather than to present a comprehensive tutorial on the R language. In our experience, these kinds of interactive computer activities can be easily integrated into a smart classroom. Furthermore, these activities do tend to keep students motivated and actively engaged in the process of learning, problem solving and developing a better intuition for understanding complex mathematical concepts.

  13. Evaluating the Energetic Driving Force for Cocrystal Formation.

    PubMed

    Taylor, Christopher R; Day, Graeme M

    2018-02-07

    We present a periodic density functional theory study of the stability of 350 organic cocrystals relative to their pure single-component structures, the largest study of cocrystals yet performed with high-level computational methods. Our calculations demonstrate that cocrystals are on average 8 kJ mol -1 more stable than their constituent single-component structures and are very rarely (<5% of cases) less stable; cocrystallization is almost always a thermodynamically favorable process. We consider the variation in stability between different categories of systems-hydrogen-bonded, halogen-bonded, and weakly bound cocrystals-finding that, contrary to chemical intuition, the presence of hydrogen or halogen bond interactions is not necessarily a good predictor of stability. Finally, we investigate the correlation of the relative stability with simple chemical descriptors: changes in packing efficiency and hydrogen bond strength. We find some broad qualitative agreement with chemical intuition-more densely packed cocrystals with stronger hydrogen bonding tend to be more stable-but the relationship is weak, suggesting that such simple descriptors do not capture the complex balance of interactions driving cocrystallization. Our conclusions suggest that while cocrystallization is often a thermodynamically favorable process, it remains difficult to formulate general rules to guide synthesis, highlighting the continued importance of high-level computation in predicting and rationalizing such systems.

  14. Quantifying the signals contained in heterogeneous neural responses and determining their relationships with task performance

    PubMed Central

    Pagan, Marino

    2014-01-01

    The responses of high-level neurons tend to be mixtures of many different types of signals. While this diversity is thought to allow for flexible neural processing, it presents a challenge for understanding how neural responses relate to task performance and to neural computation. To address these challenges, we have developed a new method to parse the responses of individual neurons into weighted sums of intuitive signal components. Our method computes the weights by projecting a neuron's responses onto a predefined orthonormal basis. Once determined, these weights can be combined into measures of signal modulation; however, in their raw form these signal modulation measures are biased by noise. Here we introduce and evaluate two methods for correcting this bias, and we report that an analytically derived approach produces performance that is robust and superior to a bootstrap procedure. Using neural data recorded from inferotemporal cortex and perirhinal cortex as monkeys performed a delayed-match-to-sample target search task, we demonstrate how the method can be used to quantify the amounts of task-relevant signals in heterogeneous neural populations. We also demonstrate how these intuitive quantifications of signal modulation can be related to single-neuron measures of task performance (d′). PMID:24920017

  15. On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.

    1997-01-01

    Perhaps the most prevalent use of statistics in engineering design is through Taguchi's parameter and robust design -- using orthogonal arrays to compute signal-to-noise ratios in a process of design improvement. In our view, however, there is an equally exciting use of statistics in design that could become just as prevalent: it is the concept of metamodeling whereby statistical models are built to approximate detailed computer analysis codes. Although computers continue to get faster, analysis codes always seem to keep pace so that their computational time remains non-trivial. Through metamodeling, approximations of these codes are built that are orders of magnitude cheaper to run. These metamodels can then be linked to optimization routines for fast analysis, or they can serve as a bridge for integrating analysis codes across different domains. In this paper we first review metamodeling techniques that encompass design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We discuss their existing applications in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of metamodeling techniques in given situations and how common pitfalls can be avoided.

  16. Intuitive Face Judgments Rely on Holistic Eye Movement Pattern

    PubMed Central

    Mega, Laura F.; Volz, Kirsten G.

    2017-01-01

    Non-verbal signals such as facial expressions are of paramount importance for social encounters. Their perception predominantly occurs without conscious awareness and is effortlessly integrated into social interactions. In other words, face perception is intuitive. Contrary to classical intuition tasks, this work investigates intuitive processes in the realm of every-day type social judgments. Two differently instructed groups of participants judged the authenticity of emotional facial expressions, while their eye movements were recorded: an ‘intuitive group,’ instructed to rely on their “gut feeling” for the authenticity judgments, and a ‘deliberative group,’ instructed to make their judgments after careful analysis of the face. Pixel-wise statistical maps of the resulting eye movements revealed a differential viewing pattern, wherein the intuitive judgments relied on fewer, longer and more centrally located fixations. These markers have been associated with a global/holistic viewing strategy. The holistic pattern of intuitive face judgments is in line with evidence showing that intuition is related to processing the “gestalt” of an object, rather than focusing on details. Our work thereby provides further evidence that intuitive processes are characterized by holistic perception, in an understudied and real world domain of intuition research. PMID:28676773

  17. Intuitive Face Judgments Rely on Holistic Eye Movement Pattern.

    PubMed

    Mega, Laura F; Volz, Kirsten G

    2017-01-01

    Non-verbal signals such as facial expressions are of paramount importance for social encounters. Their perception predominantly occurs without conscious awareness and is effortlessly integrated into social interactions. In other words, face perception is intuitive. Contrary to classical intuition tasks, this work investigates intuitive processes in the realm of every-day type social judgments. Two differently instructed groups of participants judged the authenticity of emotional facial expressions, while their eye movements were recorded: an 'intuitive group,' instructed to rely on their "gut feeling" for the authenticity judgments, and a 'deliberative group,' instructed to make their judgments after careful analysis of the face. Pixel-wise statistical maps of the resulting eye movements revealed a differential viewing pattern, wherein the intuitive judgments relied on fewer, longer and more centrally located fixations. These markers have been associated with a global/holistic viewing strategy. The holistic pattern of intuitive face judgments is in line with evidence showing that intuition is related to processing the "gestalt" of an object, rather than focusing on details. Our work thereby provides further evidence that intuitive processes are characterized by holistic perception, in an understudied and real world domain of intuition research.

  18. Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.

  19. Development of a thermal and structural analysis procedure for cooled radial turbines

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Deanna, Russell G.

    1988-01-01

    A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.

  20. COMPUTATION OF GLOBAL PHOTOCHEMISTRY WITH SMVGEAR II (R823186)

    EPA Science Inventory

    A computer model was developed to simulate global gas-phase photochemistry. The model solves chemical equations with SMVGEAR II, a sparse-matrix, vectorized Gear-type code. To obtain SMVGEAR II, the original SMVGEAR code was modified to allow computation of different sets of chem...

  1. Computational strategies for three-dimensional flow simulations on distributed computer systems. Ph.D. Thesis Semiannual Status Report, 15 Aug. 1993 - 15 Feb. 1994

    NASA Technical Reports Server (NTRS)

    Weed, Richard Allen; Sankar, L. N.

    1994-01-01

    An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.

  2. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  3. A Combinatorial Geometry Computer Description of the M9 ACE (Armored Combat Earthmover) Vehicle

    DTIC Science & Technology

    1984-12-01

    program requires as input the M9 target descriptions as processed by the Geometric Information for Targets ( GIFT ) ’ computer code. The first step is...model of the target. This COM-GEOM target description is used as input to the Geometric Information For Targets ( GIFT ) computer code. Among other...things, the GIFT code traces shotlines through a COM-GEOM description from any specified aspect, listing pertinent information about each component hit

  4. Characterizing the Properties of a Woven SiC/SiC Composite Using W-CEMCAN Computer Code

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.

    1999-01-01

    A micromechanics based computer code to predict the thermal and mechanical properties of woven ceramic matrix composites (CMC) is developed. This computer code, W-CEMCAN (Woven CEramic Matrix Composites ANalyzer), predicts the properties of two-dimensional woven CMC at any temperature and takes into account various constituent geometries and volume fractions. This computer code is used to predict the thermal and mechanical properties of an advanced CMC composed of 0/90 five-harness (5 HS) Sylramic fiber which had been chemically vapor infiltrated (CVI) with boron nitride (BN) and SiC interphase coatings and melt-infiltrated (MI) with SiC. The predictions, based on the bulk constituent properties from the literature, are compared with measured experimental data. Based on the comparison. improved or calibrated properties for the constituent materials are then developed for use by material developers/designers. The computer code is then used to predict the properties of a composite with the same constituents but with different fiber volume fractions. The predictions are compared with measured data and a good agreement is achieved.

  5. Fault tolerant computing: A preamble for assuring viability of large computer systems

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1977-01-01

    The need for fault-tolerant computing is addressed from the viewpoints of (1) why it is needed, (2) how to apply it in the current state of technology, and (3) what it means in the context of the Phoenix computer system and other related systems. To this end, the value of concurrent error detection and correction is described. User protection, program retry, and repair are among the factors considered. The technology of algebraic codes to protect memory systems and arithmetic codes to protect memory systems and arithmetic codes to protect arithmetic operations is discussed.

  6. Coalescent: an open-science framework for importance sampling in coalescent theory.

    PubMed

    Tewari, Susanta; Spouge, John L

    2015-01-01

    Background. In coalescent theory, computer programs often use importance sampling to calculate likelihoods and other statistical quantities. An importance sampling scheme can exploit human intuition to improve statistical efficiency of computations, but unfortunately, in the absence of general computer frameworks on importance sampling, researchers often struggle to translate new sampling schemes computationally or benchmark against different schemes, in a manner that is reliable and maintainable. Moreover, most studies use computer programs lacking a convenient user interface or the flexibility to meet the current demands of open science. In particular, current computer frameworks can only evaluate the efficiency of a single importance sampling scheme or compare the efficiencies of different schemes in an ad hoc manner. Results. We have designed a general framework (http://coalescent.sourceforge.net; language: Java; License: GPLv3) for importance sampling that computes likelihoods under the standard neutral coalescent model of a single, well-mixed population of constant size over time following infinite sites model of mutation. The framework models the necessary core concepts, comes integrated with several data sets of varying size, implements the standard competing proposals, and integrates tightly with our previous framework for calculating exact probabilities. For a given dataset, it computes the likelihood and provides the maximum likelihood estimate of the mutation parameter. Well-known benchmarks in the coalescent literature validate the accuracy of the framework. The framework provides an intuitive user interface with minimal clutter. For performance, the framework switches automatically to modern multicore hardware, if available. It runs on three major platforms (Windows, Mac and Linux). Extensive tests and coverage make the framework reliable and maintainable. Conclusions. In coalescent theory, many studies of computational efficiency consider only effective sample size. Here, we evaluate proposals in the coalescent literature, to discover that the order of efficiency among the three importance sampling schemes changes when one considers running time as well as effective sample size. We also describe a computational technique called "just-in-time delegation" available to improve the trade-off between running time and precision by constructing improved importance sampling schemes from existing ones. Thus, our systems approach is a potential solution to the "2(8) programs problem" highlighted by Felsenstein, because it provides the flexibility to include or exclude various features of similar coalescent models or importance sampling schemes.

  7. The Advanced Software Development and Commercialization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallopoulos, E.; Canfield, T.R.; Minkoff, M.

    1990-09-01

    This is the first of a series of reports pertaining to progress in the Advanced Software Development and Commercialization Project, a joint collaborative effort between the Center for Supercomputing Research and Development of the University of Illinois and the Computing and Telecommunications Division of Argonne National Laboratory. The purpose of this work is to apply techniques of parallel computing that were pioneered by University of Illinois researchers to mature computational fluid dynamics (CFD) and structural dynamics (SD) computer codes developed at Argonne. The collaboration in this project will bring this unique combination of expertise to bear, for the first time,more » on industrially important problems. By so doing, it will expose the strengths and weaknesses of existing techniques for parallelizing programs and will identify those problems that need to be solved in order to enable wide spread production use of parallel computers. Secondly, the increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more accurate engineering models that involve fluid and structural dynamics. In order to realize the above two goals, we are considering two production codes that have been developed at ANL and are widely used by both industry and Universities. These are COMMIX and WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor design and safety and as a design tool for the casting industry. The second is a three-dimensional structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These codes are currently available for both sequential and vector computers only. Our main goal is to port and optimize these two codes on shared memory multiprocessors. In so doing, we shall establish a process that can be followed in optimizing other sequential or vector engineering codes for parallel processors.« less

  8. The perception of intuition in clinical practice by Iranian critical care nurses: a phenomenological study

    PubMed Central

    Hassani, Parkhide; Abdi, Alireza; Jalali, Rostam; Salari, Nader

    2016-01-01

    Background Intuition as a way of learning in nursing is applied to decision making and judgment in complicated clinical situations. Several studies have been conducted on intuition in clinical settings, but comprehension of this concept is unclear. Moreover, there is a lack of information about intuition in critical care nurses caring for more seriously ill patients. This study aimed to explore Iranian critical care nurses’ understanding of intuition in clinical practice. Methods In a descriptive–phenomenological study, 12 nurses employed in critical care units of the hospitals affiliated to Kermanshah University of Medical Sciences were purposively recruited to the study. A semistructured interview was administered, and then written verbatim. The data were managed by MAXQDA 10 software, and qualitative analysis was undertaken using the seven-stage approach of Colaizzi. Results Of the 12 nurses who participated in the study, 7 (58.3%) were female and married, and 10 (88.3%) held a bachelor’s degree in nursing. The mean and standard deviations of participants’ age, job experience, and critical care experience were 36.66±7.01, 13.75±6.82, and 7.66±3.36 years, respectively. Four main themes and eleven sub-themes were elicited from the qualitative analysis; the main themes including “Understanding intuition as a feeling”, “Understanding intuition as a thought”, “Understanding intuition as receiving signs”, and “Understanding intuition as an alarm”. Because they have trust in their own intuition, the nurses made further assessments and paid more attention to patients. They were also better prepared after receiving intuition alarms to perform the appropriate responses, and acting upon the alarms reduced the nurses’ physical and psychological signs. Conclusion The findings showed how intuition was understood by the critical care nurses; therefore, these results can be considered to form a theoretical basis for designing other studies. Because of the significant role of intuition in enhancing the nursing care of critically ill patients, it is suggested that more qualitative, quantitative, and trials studies be performed to reinforce intuition in nursing; moreover, to incorporate intuition into nursing curriculums, it should be debated in academic settings. PMID:27022306

  9. Source Code Plagiarism--A Student Perspective

    ERIC Educational Resources Information Center

    Joy, M.; Cosma, G.; Yau, J. Y.-K.; Sinclair, J.

    2011-01-01

    This paper considers the problem of source code plagiarism by students within the computing disciplines and reports the results of a survey of students in Computing departments in 18 institutions in the U.K. This survey was designed to investigate how well students understand the concept of source code plagiarism and to discover what, if any,…

  10. Poetry in Programs: A Brief Examination of Software Aesthetics, Including Observations on the History of Programming Styles and Speculations on Post-object Programming

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    This viewgraph presentation provides samples of computer code which have characteristics of poetic verse, and addresses the theoretical underpinnings of artistic coding, as well as how computer language influences software style, and the possible style of future coding.

  11. Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing

    NASA Astrophysics Data System (ADS)

    Salamone, Joseph A., III

    Sonic boom focusing theory has been augmented with new terms that account for mean flow effects in the direction of propagation and also for atmospheric absorption/dispersion due to molecular relaxation due to oxygen and nitrogen. The newly derived model equation was numerically implemented using a computer code. The computer code was numerically validated using a spectral solution for nonlinear propagation of a sinusoid through a lossy homogeneous medium. An additional numerical check was performed to verify the linear diffraction component of the code calculations. The computer code was experimentally validated using measured sonic boom focusing data from the NASA sponsored Superboom Caustic and Analysis Measurement Program (SCAMP) flight test. The computer code was in good agreement with both the numerical and experimental validation. The newly developed code was applied to examine the focusing of a NASA low-boom demonstration vehicle concept. The resulting pressure field was calculated for several supersonic climb profiles. The shaping efforts designed into the signatures were still somewhat evident despite the effects of sonic boom focusing.

  12. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    NASA Astrophysics Data System (ADS)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; Kalinkin, Alexander A.

    2017-02-01

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, which is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,'bottom-up' and 'top-down', are illustrated. Preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.

  13. Visual Computing Environment Workshop

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles (Compiler)

    1998-01-01

    The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.

  14. Force user's manual: A portable, parallel FORTRAN

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Arenstorf, Norbert S.; Ramanan, Aruna V.

    1990-01-01

    The use of Force, a parallel, portable FORTRAN on shared memory parallel computers is described. Force simplifies writing code for parallel computers and, once the parallel code is written, it is easily ported to computers on which Force is installed. Although Force is nearly the same for all computers, specific details are included for the Cray-2, Cray-YMP, Convex 220, Flex/32, Encore, Sequent, Alliant computers on which it is installed.

  15. Investigating learners' epistemological framings of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dini, Vesal

    Classical mechanics challenges students to use their intuitions and experiences as a basis for understanding, in effect to approach learning as "a refinement of everyday thinking'' (Einstein, 1936). Moving on to quantum mechanics (QM), students, like physicists, need to adjust this approach, in particular with respect to the roles that intuitive knowledge and mathematics play in the pursuit of coherent understanding (these are adjustments to aspects of their epistemologies). In this dissertation, I explore how some students manage the epistemological transition. I began this work by recruiting both graduate and undergraduate students, interviewing each subject several times as they moved through coursework in QM. The interviews featured, among other things, how students tried to fit ideas together in mutually consistent ways, including with respect to intuitive knowledge, mathematics and experiment, if at all. I modeled these dynamic cognitive processes as different epistemological framings (i.e., tacit, in-the-moment responses to the question "How should I approach knowledge?''). Through detailed qualitative analyses of students' reasoning and a systematic coding of their interviews, I explored how these coherence seeking related framings impacted their learning. The dissertation supports three main findings: (1) students' patterns of epistemological framing are mostly stable within a given course; (2) students who profess epistemologies aligned with the coordination of coherence seeking framings tend to be more stable in demonstrating them; and (3) students aware that their understanding of QM ultimately anchors in its mathematics tend to produce more coherent explanations and perform better in their courses. These findings are consistent with existing research on student epistemologies in QM and imply that epistemologies, in particular whether and how students seek coherence, require greater attention and emphasis in instruction.

  16. Monte Carlo simulation of Ising models by multispin coding on a vector computer

    NASA Astrophysics Data System (ADS)

    Wansleben, Stephan; Zabolitzky, John G.; Kalle, Claus

    1984-11-01

    Rebbi's efficient multispin coding algorithm for Ising models is combined with the use of the vector computer CDC Cyber 205. A speed of 21.2 million updates per second is reached. This is comparable to that obtained by special- purpose computers.

  17. The Use of Intuition in Homeopathic Clinical Decision Making: An Interpretative Phenomenological Study

    PubMed Central

    Brien, Sarah; Dibb, Bridget; Burch, Alex

    2011-01-01

    While intuition plays a role in clinical decision making within conventional medicine, little is understood about its use in complementary and alternative medicine (CAM). The aim of this qualitative study was to investigate intuition from the perspective of homeopathic practitioners; its' manifestation, how it was recognized, its origins and when it was used within daily clinical practice. Semi-structured interviews were carried out with clinically experienced non-National Health Service (NHS) UK homeopathic practitioners. Interpretative phenomenological analysis was used to analyze the data. Homeopaths reported many similarities with conventional medical practitioner regarding the nature, perceived origin and manifestation of their intuitions in clinical practice. Intuition was used in two key aspects of the consultation: (i) to enhance the practitioner-patient relationship, these were generally trusted; and (ii) intuitions relating to the prescribing decision. Homeopaths were cautious about these latter intuitions, testing any intuitive thoughts through deductive reasoning before accepting them. Their reluctance is not surprising given the consequences for patient care, but we propose this also reflects homeopaths' sensitivity to the academic and medical mistrust of both homeopathy and intuition. This study is the first to explore the use of intuition in decision making in any form of complementary medicine. The similarities with conventional practitioners may provide confidence in validating intuition as a legitimate part of the decision making process for these specific practitioners. Further work is needed to elucidate if these findings reflect intuitive use in clinical practice of other CAM practitioners in both private and NHS (i.e., time limited) settings. PMID:19773389

  18. Thrust chamber performance using Navier-Stokes solution. [space shuttle main engine viscous nozzle calculation

    NASA Technical Reports Server (NTRS)

    Chan, J. S.; Freeman, J. A.

    1984-01-01

    The viscous, axisymmetric flow in the thrust chamber of the space shuttle main engine (SSME) was computed on the CRAY 205 computer using the general interpolants method (GIM) code. Results show that the Navier-Stokes codes can be used for these flows to study trends and viscous effects as well as determine flow patterns; but further research and development is needed before they can be used as production tools for nozzle performance calculations. The GIM formulation, numerical scheme, and computer code are described. The actual SSME nozzle computation showing grid points, flow contours, and flow parameter plots is discussed. The computer system and run times/costs are detailed.

  19. Data Management Applications for the Service Preparation Subsystem

    NASA Technical Reports Server (NTRS)

    Luong, Ivy P.; Chang, George W.; Bui, Tung; Allen, Christopher; Malhotra, Shantanu; Chen, Fannie C.; Bui, Bach X.; Gutheinz, Sandy C.; Kim, Rachel Y.; Zendejas, Silvino C.; hide

    2009-01-01

    These software applications provide intuitive User Interfaces (UIs) with a consistent look and feel for interaction with, and control of, the Service Preparation Subsystem (SPS). The elements of the UIs described here are the File Manager, Mission Manager, and Log Monitor applications. All UIs provide access to add/delete/update data entities in a complex database schema without requiring technical expertise on the part of the end users. These applications allow for safe, validated, catalogued input of data. Also, the software has been designed in multiple, coherent layers to promote ease of code maintenance and reuse in addition to reducing testing and accelerating maturity.

  20. Finite difference time domain electromagnetic scattering from frequency-dependent lossy materials

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.

    1991-01-01

    Four different FDTD computer codes and companion Radar Cross Section (RCS) conversion codes on magnetic media are submitted. A single three dimensional dispersive FDTD code for both dispersive dielectric and magnetic materials was developed, along with a user's manual. The extension of FDTD to more complicated materials was made. The code is efficient and is capable of modeling interesting radar targets using a modest computer workstation platform. RCS results for two different plate geometries are reported. The FDTD method was also extended to computing far zone time domain results in two dimensions. Also the capability to model nonlinear materials was incorporated into FDTD and validated.

  1. Multitasking the code ARC3D. [for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  2. Intuition: a bridge to the coenesthetic world of experience.

    PubMed

    Piha, Heikki

    2005-01-01

    The concept of intuition is relatively unestablished in psychoanalysis, where it is often associated with narcissistic meanings and vagueness. But intuition, as an integrated mode of archaic coenesthetic thinking, should be kept conceptually free of those connotations. Its capacity of undifferentiated delineation supplies an instinctive general means of dealing immediately with various rationally indistinct phenomena, such as forms, shades, and multidimensionality, regardless of the boundaries between sensory modalities. It may be impossible to translate intuitive experiences into lexical form; these languages are incommensurable. Intuition as a preconscious nondiscursive thinking process is needed in creativity, as well as less conspicuously in countless everyday activities. In speech communication, intuition rapidly specifies subtle shades of meaning in linguistic content and all the prosody. In psychoanalytic work intuition is like radar, creating preliminary contacts with the inner world of the analysand. The observations gained require, however, rational consideration to be confirmed. Intuition is an essential instrument of the psychoanalyst, and also functions in the service of tact to create working space and adequate forms of interpretations. Clinical vignettes reflecting some problematic fates of special intuitiveness in creativity are presented from psychoanalytic work with artists.

  3. Addressing the challenges of standalone multi-core simulations in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ocaya, R. O.; Terblans, J. J.

    2017-07-01

    Computational modelling in material science involves mathematical abstractions of force fields between particles with the aim to postulate, develop and understand materials by simulation. The aggregated pairwise interactions of the material's particles lead to a deduction of its macroscopic behaviours. For practically meaningful macroscopic scales, a large amount of data are generated, leading to vast execution times. Simulation times of hours, days or weeks for moderately sized problems are not uncommon. The reduction of simulation times, improved result accuracy and the associated software and hardware engineering challenges are the main motivations for many of the ongoing researches in the computational sciences. This contribution is concerned mainly with simulations that can be done on a "standalone" computer based on Message Passing Interfaces (MPI), parallel code running on hardware platforms with wide specifications, such as single/multi- processor, multi-core machines with minimal reconfiguration for upward scaling of computational power. The widely available, documented and standardized MPI library provides this functionality through the MPI_Comm_size (), MPI_Comm_rank () and MPI_Reduce () functions. A survey of the literature shows that relatively little is written with respect to the efficient extraction of the inherent computational power in a cluster. In this work, we discuss the main avenues available to tap into this extra power without compromising computational accuracy. We also present methods to overcome the high inertia encountered in single-node-based computational molecular dynamics. We begin by surveying the current state of the art and discuss what it takes to achieve parallelism, efficiency and enhanced computational accuracy through program threads and message passing interfaces. Several code illustrations are given. The pros and cons of writing raw code as opposed to using heuristic, third-party code are also discussed. The growing trend towards graphical processor units and virtual computing clouds for high-performance computing is also discussed. Finally, we present the comparative results of vacancy formation energy calculations using our own parallelized standalone code called Verlet-Stormer velocity (VSV) operating on 30,000 copper atoms. The code is based on the Sutton-Chen implementation of the Finnis-Sinclair pairwise embedded atom potential. A link to the code is also given.

  4. XTALOPT: An open-source evolutionary algorithm for crystal structure prediction

    NASA Astrophysics Data System (ADS)

    Lonie, David C.; Zurek, Eva

    2011-02-01

    The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely available to the scientific community for use and collaboration under the GNU Public License. Running time: User dependent. The program runs until stopped by the user.

  5. Computational techniques to enable visualizing shapes of objects of extra spatial dimensions

    NASA Astrophysics Data System (ADS)

    Black, Don Vaughn, II

    Envisioning extra dimensions beyond the three of common experience is a daunting challenge for three dimensional observers. Intuition relies on experience gained in a three dimensional environment. Gaining experience with virtual four dimensional objects and virtual three manifolds in four-space on a personal computer may provide the basis for an intuitive grasp of four dimensions. In order to enable such a capability for ourselves, it is first necessary to devise and implement a computationally tractable method to visualize, explore, and manipulate objects of dimension beyond three on the personal computer. A technology is described in this dissertation to convert a representation of higher dimensional models into a format that may be displayed in realtime on graphics cards available on many off-the-shelf personal computers. As a result, an opportunity has been created to experience the shape of four dimensional objects on the desktop computer. The ultimate goal has been to provide the user a tangible and memorable experience with mathematical models of four dimensional objects such that the user can see the model from any user selected vantage point. By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can be rotated, panned, scrolled, and zoomed until a suitable dimensionally reduced view or Aspect is obtained. The 4D GUI then allows the user to manipulate a 3-flat hyperplane cutting tool to slice the model at an arbitrary orientation and position to extract or "pluck" an embedded 3D slice or "aspect" from the embedding four-space. This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer using three multiple POV viewports, and optionally exported to a third party CAD viewer for further manipulation. Plucking and Manipulating the Aspect provides a tangible experience for the end-user in the same manner as any 3D Computer Aided Design viewing and manipulation tool does for the engineer or a 3D video game provides for the nascent student.

  6. [A UNIX-based electronic data processing system for routine use in a trauma surgery department].

    PubMed

    Boos, O; Kinzl, L; Schweiggert, F; Suger, G

    1994-05-01

    A computer program for a UNIX workstation has been developed to support routine activities in a surgical department. A relational database contains reports on operations, medical letters and further data imported from independent computer subsystems outside the department. Data are accessible at 15 terminals and PCs through a simple and intuitive user interface with a mouse. The patient record is organized in a hypertext fashion and permits direct access to the various types of documents in a consistent manner. The implementation is currently used to manage information on 40,000 patients and has proved valuable in daily routine over a 2-year period.

  7. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2005-11-01

    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green’s function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between the full nonequilibrium Green’s function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide a convenient way of parameterizing the physics. This is exemplified by fitting the expressions to the experimentally observed conductances through both an atomic gold wire and a hydrogen molecule.

  8. RS/1 in the Clinical Environment

    PubMed Central

    Kush, Thomas

    1980-01-01

    This paper describes the design of RS/1,™ the Research System, and its use in clinical patient studies. RS/1 is an interactive computer software system developed by the Medical Systems Group at BBN. Investigators and technicians who have never before used computers can learn RS/1 with a few hours of training. It uses familiar and intuitive concepts for data handling and data analysis, such as the “automated notebook” format of data storage, the direct use of graphs in curve-fitting, and a simple command language. Its versatility has made RS/1 useful in clinical research contexts, especially for studies involving patient care data.

  9. Computer-assisted virtual autopsy using surgical navigation techniques.

    PubMed

    Ebert, Lars Christian; Ruder, Thomas D; Martinez, Rosa Maria; Flach, Patricia M; Schweitzer, Wolf; Thali, Michael J; Ampanozi, Garyfalia

    2015-01-01

    OBJECTIVE; Virtual autopsy methods, such as postmortem CT and MRI, are increasingly being used in forensic medicine. Forensic investigators with little to no training in diagnostic radiology and medical laypeople such as state's attorneys often find it difficult to understand the anatomic orientation of axial postmortem CT images. We present a computer-assisted system that permits postmortem CT datasets to be quickly and intuitively resliced in real time at the body to narrow the gap between radiologic imaging and autopsy. Our system is a potentially valuable tool for planning autopsies, showing findings to medical laypeople, and teaching CT anatomy, thus further closing the gap between radiology and forensic pathology.

  10. Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2008-01-01

    complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called...AFRL-RI-RS-TR-2007-288 Final Technical Report January 2008 SUPERIMPOSED CODE THEORETIC ANALYSIS OF DNA CODES AND DNA COMPUTING

  11. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  12. Aeroacoustic Prediction Codes

    NASA Technical Reports Server (NTRS)

    Gliebe, P; Mani, R.; Shin, H.; Mitchell, B.; Ashford, G.; Salamah, S.; Connell, S.; Huff, Dennis (Technical Monitor)

    2000-01-01

    This report describes work performed on Contract NAS3-27720AoI 13 as part of the NASA Advanced Subsonic Transport (AST) Noise Reduction Technology effort. Computer codes were developed to provide quantitative prediction, design, and analysis capability for several aircraft engine noise sources. The objective was to provide improved, physics-based tools for exploration of noise-reduction concepts and understanding of experimental results. Methods and codes focused on fan broadband and 'buzz saw' noise and on low-emissions combustor noise and compliment work done by other contractors under the NASA AST program to develop methods and codes for fan harmonic tone noise and jet noise. The methods and codes developed and reported herein employ a wide range of approaches, from the strictly empirical to the completely computational, with some being semiempirical analytical, and/or analytical/computational. Emphasis was on capturing the essential physics while still considering method or code utility as a practical design and analysis tool for everyday engineering use. Codes and prediction models were developed for: (1) an improved empirical correlation model for fan rotor exit flow mean and turbulence properties, for use in predicting broadband noise generated by rotor exit flow turbulence interaction with downstream stator vanes: (2) fan broadband noise models for rotor and stator/turbulence interaction sources including 3D effects, noncompact-source effects. directivity modeling, and extensions to the rotor supersonic tip-speed regime; (3) fan multiple-pure-tone in-duct sound pressure prediction methodology based on computational fluid dynamics (CFD) analysis; and (4) low-emissions combustor prediction methodology and computer code based on CFD and actuator disk theory. In addition. the relative importance of dipole and quadrupole source mechanisms was studied using direct CFD source computation for a simple cascadeigust interaction problem, and an empirical combustor-noise correlation model was developed from engine acoustic test results. This work provided several insights on potential approaches to reducing aircraft engine noise. Code development is described in this report, and those insights are discussed.

  13. Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Garg Vijay; Ameri, Ali

    2005-01-01

    The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.

  14. Development of a 3-D upwind PNS code for chemically reacting hypersonic flowfields

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.; Wadawadigi, G.

    1992-01-01

    Two new parabolized Navier-Stokes (PNS) codes were developed to compute the three-dimensional, viscous, chemically reacting flow of air around hypersonic vehicles such as the National Aero-Space Plane (NASP). The first code (TONIC) solves the gas dynamic and species conservation equations in a fully coupled manner using an implicit, approximately-factored, central-difference algorithm. This code was upgraded to include shock fitting and the capability of computing the flow around complex body shapes. The revised TONIC code was validated by computing the chemically-reacting (M(sub infinity) = 25.3) flow around a 10 deg half-angle cone at various angles of attack and the Ames All-Body model at 0 deg angle of attack. The results of these calculations were in good agreement with the results from the UPS code. One of the major drawbacks of the TONIC code is that the central-differencing of fluxes across interior flowfield discontinuities tends to introduce errors into the solution in the form of local flow property oscillations. The second code (UPS), originally developed for a perfect gas, has been extended to permit either perfect gas, equilibrium air, or nonequilibrium air computations. The code solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that was modified to account for real gas effects. The dissipation term associated with this algorithm is sufficiently adaptive to flow conditions that, even when attempting to capture very strong shock waves, no additional smoothing is required. For nonequilibrium calculations, the code solves the fluid dynamic and species continuity equations in a loosely-coupled manner. This code was used to calculate the hypersonic, laminar flow of chemically reacting air over cones at various angles of attack. In addition, the flow around the McDonnel Douglas generic option blended-wing-body was computed and comparisons were made between the perfect gas, equilibrium air, and the nonequilibrium air results.

  15. Linear chirp phase perturbing approach for finding binary phased codes

    NASA Astrophysics Data System (ADS)

    Li, Bing C.

    2017-05-01

    Binary phased codes have many applications in communication and radar systems. These applications require binary phased codes to have low sidelobes in order to reduce interferences and false detection. Barker codes are the ones that satisfy these requirements and they have lowest maximum sidelobes. However, Barker codes have very limited code lengths (equal or less than 13) while many applications including low probability of intercept radar, and spread spectrum communication, require much higher code lengths. The conventional techniques of finding binary phased codes in literatures include exhaust search, neural network, and evolutionary methods, and they all require very expensive computation for large code lengths. Therefore these techniques are limited to find binary phased codes with small code lengths (less than 100). In this paper, by analyzing Barker code, linear chirp, and P3 phases, we propose a new approach to find binary codes. Experiments show that the proposed method is able to find long low sidelobe binary phased codes (code length >500) with reasonable computational cost.

  16. Development of Reduced-Order Models for Aeroelastic and Flutter Prediction Using the CFL3Dv6.0 Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Bartels, Robert E.

    2002-01-01

    A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.

  17. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  18. Manual for obscuration code with space station applications

    NASA Technical Reports Server (NTRS)

    Marhefka, R. J.; Takacs, L.

    1986-01-01

    The Obscuration Code, referred to as SHADOW, is a user-oriented computer code to determine the case shadow of an antenna in a complex environment onto the far zone sphere. The surrounding structure can be composed of multiple composite cone frustums and multiply sided flat plates. These structural pieces are ideal for modeling space station configurations. The means of describing the geometry input is compatible with the NEC-BASIC Scattering Code. In addition, an interactive mode of operation has been provided for DEC VAX computers. The first part of this document is a user's manual designed to give a description of the method used to obtain the shadow map, to provide an overall view of the operation of the computer code, to instruct a user in how to model structures, and to give examples of inputs and outputs. The second part is a code manual that details how to set up the interactive and non-interactive modes of the code and provides a listing and brief description of each of the subroutines.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems.

  20. Progressive fracture of fiber composites

    NASA Technical Reports Server (NTRS)

    Irvin, T. B.; Ginty, C. A.

    1983-01-01

    Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.

  1. Modeling Improvements and Users Manual for Axial-flow Turbine Off-design Computer Code AXOD

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1994-01-01

    An axial-flow turbine off-design performance computer code used for preliminary studies of gas turbine systems was modified and calibrated based on the experimental performance of large aircraft-type turbines. The flow- and loss-model modifications and calibrations are presented in this report. Comparisons are made between computed performances and experimental data for seven turbines over wide ranges of speed and pressure ratio. This report also serves as the users manual for the revised code, which is named AXOD.

  2. Design geometry and design/off-design performance computer codes for compressors and turbines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1995-01-01

    This report summarizes some NASA Lewis (i.e., government owned) computer codes capable of being used for airbreathing propulsion system studies to determine the design geometry and to predict the design/off-design performance of compressors and turbines. These are not CFD codes; velocity-diagram energy and continuity computations are performed fore and aft of the blade rows using meanline, spanline, or streamline analyses. Losses are provided by empirical methods. Both axial-flow and radial-flow configurations are included.

  3. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  4. Multiple grid problems on concurrent-processing computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.

    1986-01-01

    Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.

  5. A comparison between detailed and configuration-averaged collisional-radiative codes applied to nonlocal thermal equilibrium plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Gaufridy de Dortan, F. de

    A collisional-radiative model describing nonlocal-thermodynamic-equilibrium plasmas is developed. It is based on the HULLAC (Hebrew University Lawrence Livermore Atomic Code) suite for the transitions rates, in the zero-temperature radiation field hypothesis. Two variants of the model are presented: the first one is configuration averaged, while the second one is a detailed level version. Comparisons are made between them in the case of a carbon plasma; they show that the configuration-averaged code gives correct results for an electronic temperature T{sub e}=10 eV (or higher) but fails at lower temperatures such as T{sub e}=1 eV. The validity of the configuration-averaged approximation ismore » discussed: the intuitive criterion requiring that the average configuration-energy dispersion must be less than the electron thermal energy turns out to be a necessary but far from sufficient condition. Another condition based on the resolution of a modified rate-equation system is proposed. Its efficiency is emphasized in the case of low-temperature plasmas. Finally, it is shown that near-threshold autoionization cascade processes may induce a severe failure of the configuration-average formalism.« less

  6. Binary weight distributions of some Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Pollara, F.; Arnold, S.

    1992-01-01

    The binary weight distributions of the (7,5) and (15,9) Reed-Solomon (RS) codes and their duals are computed using the MacWilliams identities. Several mappings of symbols to bits are considered and those offering the largest binary minimum distance are found. These results are then used to compute bounds on the soft-decoding performance of these codes in the presence of additive Gaussian noise. These bounds are useful for finding large binary block codes with good performance and for verifying the performance obtained by specific soft-coding algorithms presently under development.

  7. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  8. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  9. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  10. Fingerprinting Communication and Computation on HPC Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisert, Sean

    2010-06-02

    How do we identify what is actually running on high-performance computing systems? Names of binaries, dynamic libraries loaded, or other elements in a submission to a batch queue can give clues, but binary names can be changed, and libraries provide limited insight and resolution on the code being run. In this paper, we present a method for"fingerprinting" code running on HPC machines using elements of communication and computation. We then discuss how that fingerprint can be used to determine if the code is consistent with certain other types of codes, what a user usually runs, or what the user requestedmore » an allocation to do. In some cases, our techniques enable us to fingerprint HPC codes using runtime MPI data with a high degree of accuracy.« less

  11. Practices in source code sharing in astrophysics

    NASA Astrophysics Data System (ADS)

    Shamir, Lior; Wallin, John F.; Allen, Alice; Berriman, Bruce; Teuben, Peter; Nemiroff, Robert J.; Mink, Jessica; Hanisch, Robert J.; DuPrie, Kimberly

    2013-02-01

    While software and algorithms have become increasingly important in astronomy, the majority of authors who publish computational astronomy research do not share the source code they develop, making it difficult to replicate and reuse the work. In this paper we discuss the importance of sharing scientific source code with the entire astrophysics community, and propose that journals require authors to make their code publicly available when a paper is published. That is, we suggest that a paper that involves a computer program not be accepted for publication unless the source code becomes publicly available. The adoption of such a policy by editors, editorial boards, and reviewers will improve the ability to replicate scientific results, and will also make computational astronomy methods more available to other researchers who wish to apply them to their data.

  12. Development of V/STOL methodology based on a higher order panel method

    NASA Technical Reports Server (NTRS)

    Bhateley, I. C.; Howell, G. A.; Mann, H. W.

    1983-01-01

    The development of a computational technique to predict the complex flowfields of V/STOL aircraft was initiated in which a number of modules and a potential flow aerodynamic code were combined in a comprehensive computer program. The modules were developed in a building-block approach to assist the user in preparing the geometric input and to compute parameters needed to simulate certain flow phenomena that cannot be handled directly within a potential flow code. The PAN AIR aerodynamic code, which is higher order panel method, forms the nucleus of this program. PAN AIR's extensive capability for allowing generalized boundary conditions allows the modules to interact with the aerodynamic code through the input and output files, thereby requiring no changes to the basic code and easy replacement of updated modules.

  13. Lattice surgery on the Raussendorf lattice

    NASA Astrophysics Data System (ADS)

    Herr, Daniel; Paler, Alexandru; Devitt, Simon J.; Nori, Franco

    2018-07-01

    Lattice surgery is a method to perform quantum computation fault-tolerantly by using operations on boundary qubits between different patches of the planar code. This technique allows for universal planar code computation without eliminating the intrinsic two-dimensional nearest-neighbor properties of the surface code that eases physical hardware implementations. Lattice surgery approaches to algorithmic compilation and optimization have been demonstrated to be more resource efficient for resource-intensive components of a fault-tolerant algorithm, and consequently may be preferable over braid-based logic. Lattice surgery can be extended to the Raussendorf lattice, providing a measurement-based approach to the surface code. In this paper we describe how lattice surgery can be performed on the Raussendorf lattice and therefore give a viable alternative to computation using braiding in measurement-based implementations of topological codes.

  14. 40 CFR 1033.110 - Emission diagnostics-general requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engine operation. (d) Record and store in computer memory any diagnostic trouble codes showing a... and understand the diagnostic trouble codes stored in the onboard computer with generic tools and...

  15. Hyperspace geography: visualizing fitness landscapes beyond 4D.

    PubMed

    Wiles, Janet; Tonkes, Bradley

    2006-01-01

    Human perception is finely tuned to extract structure about the 4D world of time and space as well as properties such as color and texture. Developing intuitions about spatial structure beyond 4D requires exploiting other perceptual and cognitive abilities. One of the most natural ways to explore complex spaces is for a user to actively navigate through them, using local explorations and global summaries to develop intuitions about structure, and then testing the developing ideas by further exploration. This article provides a brief overview of a technique for visualizing surfaces defined over moderate-dimensional binary spaces, by recursively unfolding them onto a 2D hypergraph. We briefly summarize the uses of a freely available Web-based visualization tool, Hyperspace Graph Paper (HSGP), for exploring fitness landscapes and search algorithms in evolutionary computation. HSGP provides a way for a user to actively explore a landscape, from simple tasks such as mapping the neighborhood structure of different points, to seeing global properties such as the size and distribution of basins of attraction or how different search algorithms interact with landscape structure. It has been most useful for exploring recursive and repetitive landscapes, and its strength is that it allows intuitions to be developed through active navigation by the user, and exploits the visual system's ability to detect pattern and texture. The technique is most effective when applied to continuous functions over Boolean variables using 4 to 16 dimensions.

  16. Vision-Based Haptic Feedback for Remote Micromanipulation in-SEM Environment

    NASA Astrophysics Data System (ADS)

    Bolopion, Aude; Dahmen, Christian; Stolle, Christian; Haliyo, Sinan; Régnier, Stéphane; Fatikow, Sergej

    2012-07-01

    This article presents an intuitive environment for remote micromanipulation composed of both haptic feedback and virtual reconstruction of the scene. To enable nonexpert users to perform complex teleoperated micromanipulation tasks, it is of utmost importance to provide them with information about the 3-D relative positions of the objects and the tools. Haptic feedback is an intuitive way to transmit such information. Since position sensors are not available at this scale, visual feedback is used to derive information about the scene. In this work, three different techniques are implemented, evaluated, and compared to derive the object positions from scanning electron microscope images. The modified correlation matching with generated template algorithm is accurate and provides reliable detection of objects. To track the tool, a marker-based approach is chosen since fast detection is required for stable haptic feedback. Information derived from these algorithms is used to propose an intuitive remote manipulation system that enables users situated in geographically distant sites to benefit from specific equipments, such as SEMs. Stability of the haptic feedback is ensured by the minimization of the delays, the computational efficiency of vision algorithms, and the proper tuning of the haptic coupling. Virtual guides are proposed to avoid any involuntary collisions between the tool and the objects. This approach is validated by a teleoperation involving melamine microspheres with a diameter of less than 2 μ m between Paris, France and Oldenburg, Germany.

  17. PopED lite: An optimal design software for preclinical pharmacokinetic and pharmacodynamic studies.

    PubMed

    Aoki, Yasunori; Sundqvist, Monika; Hooker, Andrew C; Gennemark, Peter

    2016-04-01

    Optimal experimental design approaches are seldom used in preclinical drug discovery. The objective is to develop an optimal design software tool specifically designed for preclinical applications in order to increase the efficiency of drug discovery in vivo studies. Several realistic experimental design case studies were collected and many preclinical experimental teams were consulted to determine the design goal of the software tool. The tool obtains an optimized experimental design by solving a constrained optimization problem, where each experimental design is evaluated using some function of the Fisher Information Matrix. The software was implemented in C++ using the Qt framework to assure a responsive user-software interaction through a rich graphical user interface, and at the same time, achieving the desired computational speed. In addition, a discrete global optimization algorithm was developed and implemented. The software design goals were simplicity, speed and intuition. Based on these design goals, we have developed the publicly available software PopED lite (http://www.bluetree.me/PopED_lite). Optimization computation was on average, over 14 test problems, 30 times faster in PopED lite compared to an already existing optimal design software tool. PopED lite is now used in real drug discovery projects and a few of these case studies are presented in this paper. PopED lite is designed to be simple, fast and intuitive. Simple, to give many users access to basic optimal design calculations. Fast, to fit a short design-execution cycle and allow interactive experimental design (test one design, discuss proposed design, test another design, etc). Intuitive, so that the input to and output from the software tool can easily be understood by users without knowledge of the theory of optimal design. In this way, PopED lite is highly useful in practice and complements existing tools. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A practical, intuitive brain-computer interface for communicating ‘yes’ or ‘no’ by listening

    NASA Astrophysics Data System (ADS)

    Hill, N. Jeremy; Ricci, Erin; Haider, Sameah; McCane, Lynn M.; Heckman, Susan; Wolpaw, Jonathan R.; Vaughan, Theresa M.

    2014-06-01

    Objective. Previous work has shown that it is possible to build an EEG-based binary brain-computer interface system (BCI) driven purely by shifts of attention to auditory stimuli. However, previous studies used abrupt, abstract stimuli that are often perceived as harsh and unpleasant, and whose lack of inherent meaning may make the interface unintuitive and difficult for beginners. We aimed to establish whether we could transition to a system based on more natural, intuitive stimuli (spoken words ‘yes’ and ‘no’) without loss of performance, and whether the system could be used by people in the locked-in state. Approach. We performed a counterbalanced, interleaved within-subject comparison between an auditory streaming BCI that used beep stimuli, and one that used word stimuli. Fourteen healthy volunteers performed two sessions each, on separate days. We also collected preliminary data from two subjects with advanced amyotrophic lateral sclerosis (ALS), who used the word-based system to answer a set of simple yes-no questions. Main results. The N1, N2 and P3 event-related potentials elicited by words varied more between subjects than those elicited by beeps. However, the difference between responses to attended and unattended stimuli was more consistent with words than beeps. Healthy subjects’ performance with word stimuli (mean 77% ± 3.3 s.e.) was slightly but not significantly better than their performance with beep stimuli (mean 73% ± 2.8 s.e.). The two subjects with ALS used the word-based BCI to answer questions with a level of accuracy similar to that of the healthy subjects. Significance. Since performance using word stimuli was at least as good as performance using beeps, we recommend that auditory streaming BCI systems be built with word stimuli to make the system more pleasant and intuitive. Our preliminary data show that word-based streaming BCI is a promising tool for communication by people who are locked in.

  19. Inverse MDS: Inferring Dissimilarity Structure from Multiple Item Arrangements

    PubMed Central

    Kriegeskorte, Nikolaus; Mur, Marieke

    2012-01-01

    The pairwise dissimilarities of a set of items can be intuitively visualized by a 2D arrangement of the items, in which the distances reflect the dissimilarities. Such an arrangement can be obtained by multidimensional scaling (MDS). We propose a method for the inverse process: inferring the pairwise dissimilarities from multiple 2D arrangements of items. Perceptual dissimilarities are classically measured using pairwise dissimilarity judgments. However, alternative methods including free sorting and 2D arrangements have previously been proposed. The present proposal is novel (a) in that the dissimilarity matrix is estimated by “inverse MDS” based on multiple arrangements of item subsets, and (b) in that the subsets are designed by an adaptive algorithm that aims to provide optimal evidence for the dissimilarity estimates. The subject arranges the items (represented as icons on a computer screen) by means of mouse drag-and-drop operations. The multi-arrangement method can be construed as a generalization of simpler methods: It reduces to pairwise dissimilarity judgments if each arrangement contains only two items, and to free sorting if the items are categorically arranged into discrete piles. Multi-arrangement combines the advantages of these methods. It is efficient (because the subject communicates many dissimilarity judgments with each mouse drag), psychologically attractive (because dissimilarities are judged in context), and can characterize continuous high-dimensional dissimilarity structures. We present two procedures for estimating the dissimilarity matrix: a simple weighted-aligned-average of the partial dissimilarity matrices and a computationally intensive algorithm, which estimates the dissimilarity matrix by iteratively minimizing the error of MDS-predictions of the subject’s arrangements. The Matlab code for interactive arrangement and dissimilarity estimation is available from the authors upon request. PMID:22848204

  20. Tomorrow's Intuitive Leaders.

    ERIC Educational Resources Information Center

    Agor, Weston H.

    1983-01-01

    Tomorrow's managers will need to rely less on formal authority and more on intuitive judgment. The value and definition of intuition, brain-style tests for right and left dominance that can be used to select or place personnel, and rules for building intuitive power are discussed. (SR)

  1. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  2. Computer optimization of reactor-thermoelectric space power systems

    NASA Technical Reports Server (NTRS)

    Maag, W. L.; Finnegan, P. M.; Fishbach, L. H.

    1973-01-01

    A computer simulation and optimization code that has been developed for nuclear space power systems is described. The results of using this code to analyze two reactor-thermoelectric systems are presented.

  3. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  4. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  5. Command History for 1989.

    DTIC Science & Technology

    1990-09-01

    13 Bart Kuhn, GM-14 Samantha K. Maddox , GS-04 Mike Nakada, GM- 13 John Wolfe, GM-14 Reynaldo I. Monzon, GS- 12 Jose G. Suarez, GS- 11 19 Product...1410-09 GS-334-09 Janice Whiting Procurement Clerk Code 21 GS-1106-05 Separations Samantha Maddox Hoa T. Lu Supply Clerk Computer Specialist Code 21...Jennifer Thorp Royal S. Magnus Student Aide Personnel Research Psychologist Code 23 Code 12 GW-322-03 GS-180-11 Linda L. Turnmire Yvonne S. Baker Computer

  6. Ascent Aerodynamic Pressure Distributions on WB001

    NASA Technical Reports Server (NTRS)

    Vu, B.; Ruf, J.; Canabal, F.; Brunty, J.

    1996-01-01

    To support the reusable launch vehicle concept study, the aerodynamic data and surface pressure for WB001 were predicted using three computational fluid dynamic (CFD) codes at several flow conditions between code to code and code to aerodynamic database as well as available experimental data. A set of particular solutions have been selected and recommended for use in preliminary conceptual designs. These computational fluid dynamic (CFD) results have also been provided to the structure group for wing loading analysis.

  7. User's guide for vectorized code EQUIL for calculating equilibrium chemistry on Control Data STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Graves, R. A., Jr.; Weilmuenster, K. J.

    1980-01-01

    A vectorized code, EQUIL, was developed for calculating the equilibrium chemistry of a reacting gas mixture on the Control Data STAR-100 computer. The code provides species mole fractions, mass fractions, and thermodynamic and transport properties of the mixture for given temperature, pressure, and elemental mass fractions. The code is set up for the electrons H, He, C, O, N system of elements. In all, 24 chemical species are included.

  8. Computer code for charge-exchange plasma propagation

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.

    1981-01-01

    The propagation of the charge-exchange plasma from an electrostatic ion thruster is crucial in determining the interaction of that plasma with the associated spacecraft. A model that describes this plasma and its propagation is described, together with a computer code based on this model. The structure and calling sequence of the code, named PLASIM, is described. An explanation of the program's input and output is included, together with samples of both. The code is written in ASNI Standard FORTRAN.

  9. Self-Scheduling Parallel Methods for Multiple Serial Codes with Application to WOPWOP

    NASA Technical Reports Server (NTRS)

    Long, Lyle N.; Brentner, Kenneth S.

    2000-01-01

    This paper presents a scheme for efficiently running a large number of serial jobs on parallel computers. Two examples are given of computer programs that run relatively quickly, but often they must be run numerous times to obtain all the results needed. It is very common in science and engineering to have codes that are not massive computing challenges in themselves, but due to the number of instances that must be run, they do become large-scale computing problems. The two examples given here represent common problems in aerospace engineering: aerodynamic panel methods and aeroacoustic integral methods. The first example simply solves many systems of linear equations. This is representative of an aerodynamic panel code where someone would like to solve for numerous angles of attack. The complete code for this first example is included in the appendix so that it can be readily used by others as a template. The second example is an aeroacoustics code (WOPWOP) that solves the Ffowcs Williams Hawkings equation to predict the far-field sound due to rotating blades. In this example, one quite often needs to compute the sound at numerous observer locations, hence parallelization is utilized to automate the noise computation for a large number of observers.

  10. Intuitive Knowing and Embodied Consciousness

    ERIC Educational Resources Information Center

    Lawrence, Randee Lipson

    2012-01-01

    Intuitive knowing is one of the most complex and misunderstood ways of knowing. It is difficult to put into words and verbalize. Intuition is spontaneous, heart-centered, free, adventurous, imaginative, playful, nonsequential, and nonlinear. People access intuitive knowledge through dreams, symbols, artwork, dance, yoga, meditation, contemplation,…

  11. A weighted generalized score statistic for comparison of predictive values of diagnostic tests.

    PubMed

    Kosinski, Andrzej S

    2013-03-15

    Positive and negative predictive values are important measures of a medical diagnostic test performance. We consider testing equality of two positive or two negative predictive values within a paired design in which all patients receive two diagnostic tests. The existing statistical tests for testing equality of predictive values are either Wald tests based on the multinomial distribution or the empirical Wald and generalized score tests within the generalized estimating equations (GEE) framework. As presented in the literature, these test statistics have considerably complex formulas without clear intuitive insight. We propose their re-formulations that are mathematically equivalent but algebraically simple and intuitive. As is clearly seen with a new re-formulation we presented, the generalized score statistic does not always reduce to the commonly used score statistic in the independent samples case. To alleviate this, we introduce a weighted generalized score (WGS) test statistic that incorporates empirical covariance matrix with newly proposed weights. This statistic is simple to compute, always reduces to the score statistic in the independent samples situation, and preserves type I error better than the other statistics as demonstrated by simulations. Thus, we believe that the proposed WGS statistic is the preferred statistic for testing equality of two predictive values and for corresponding sample size computations. The new formulas of the Wald statistics may be useful for easy computation of confidence intervals for difference of predictive values. The introduced concepts have potential to lead to development of the WGS test statistic in a general GEE setting. Copyright © 2012 John Wiley & Sons, Ltd.

  12. A weighted generalized score statistic for comparison of predictive values of diagnostic tests

    PubMed Central

    Kosinski, Andrzej S.

    2013-01-01

    Positive and negative predictive values are important measures of a medical diagnostic test performance. We consider testing equality of two positive or two negative predictive values within a paired design in which all patients receive two diagnostic tests. The existing statistical tests for testing equality of predictive values are either Wald tests based on the multinomial distribution or the empirical Wald and generalized score tests within the generalized estimating equations (GEE) framework. As presented in the literature, these test statistics have considerably complex formulas without clear intuitive insight. We propose their re-formulations which are mathematically equivalent but algebraically simple and intuitive. As is clearly seen with a new re-formulation we present, the generalized score statistic does not always reduce to the commonly used score statistic in the independent samples case. To alleviate this, we introduce a weighted generalized score (WGS) test statistic which incorporates empirical covariance matrix with newly proposed weights. This statistic is simple to compute, it always reduces to the score statistic in the independent samples situation, and it preserves type I error better than the other statistics as demonstrated by simulations. Thus, we believe the proposed WGS statistic is the preferred statistic for testing equality of two predictive values and for corresponding sample size computations. The new formulas of the Wald statistics may be useful for easy computation of confidence intervals for difference of predictive values. The introduced concepts have potential to lead to development of the weighted generalized score test statistic in a general GEE setting. PMID:22912343

  13. Computer Code for Transportation Network Design and Analysis

    DOT National Transportation Integrated Search

    1977-01-01

    This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...

  14. Clinical intuition in the nursing process and decision-making-A mixed-studies review.

    PubMed

    Melin-Johansson, Christina; Palmqvist, Rebecca; Rönnberg, Linda

    2017-12-01

    To review what is characteristic of registered nurses' intuition in clinical settings, in relationships and in the nursing process. Intuition is a controversial concept and nurses believe that there are difficulties in how they should explain their nursing actions or decisions based on intuition. Much of the evidence from the body of research indicates that nurses value their intuition in a variety of clinical settings. More information on how nurses integrate intuition as a core element in daily clinical work would contribute to an improved understanding on how they go about this. Intuition deserves a place in evidence-based activities, where intuition is an important component associated with the nursing process. An integrative review strengthened with a mixed-studies review. Literature searches were conducted in the databases CINAHL, PubMed and PsycINFO, and literature published 1985-2016 were included. The findings in the studies were analysed with content analysis, and the synthesis process entailed a reasoning between the authors. After a quality assessment, 16 studies were included. The analysis and synthesis resulted in three categories. The characteristics of intuition in the nurse's daily clinical activities include application, assertiveness and experiences; in the relationships with patients' intuition include unique connections, mental and bodily responses, and personal qualities; and in the nursing process include support and guidance, component and clues in decision-making, and validating decisions. Intuition is more than simply a "gut feeling," and it is a process based on knowledge and care experience and has a place beside research-based evidence. Nurses integrate both analysis and synthesis of intuition alongside objective data when making decisions. They should rely on their intuition and use this knowledge in clinical practice as a support in decision-making, which increases the quality and safety of patient care. We find that intuition plays a key role in more or less all of the steps in the nursing process as a base for decision-making that supports safe patient care, and is a validated component of nursing clinical care expertise. © 2017 John Wiley & Sons Ltd.

  15. Current and anticipated uses of the thermal hydraulics codes at the NRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruso, R.

    1997-07-01

    The focus of Thermal-Hydraulic computer code usage in nuclear regulatory organizations has undergone a considerable shift since the codes were originally conceived. Less work is being done in the area of {open_quotes}Design Basis Accidents,{close_quotes}, and much more emphasis is being placed on analysis of operational events, probabalistic risk/safety assessment, and maintenance practices. All of these areas need support from Thermal-Hydraulic computer codes to model the behavior of plant fluid systems, and they all need the ability to perform large numbers of analyses quickly. It is therefore important for the T/H codes of the future to be able to support thesemore » needs, by providing robust, easy-to-use, tools that produce easy-to understand results for a wider community of nuclear professionals. These tools need to take advantage of the great advances that have occurred recently in computer software, by providing users with graphical user interfaces for both input and output. In addition, reduced costs of computer memory and other hardware have removed the need for excessively complex data structures and numerical schemes, which make the codes more difficult and expensive to modify, maintain, and debug, and which increase problem run-times. Future versions of the T/H codes should also be structured in a modular fashion, to allow for the easy incorporation of new correlations, models, or features, and to simplify maintenance and testing. Finally, it is important that future T/H code developers work closely with the code user community, to ensure that the code meet the needs of those users.« less

  16. Analyzing Pulse-Code Modulation On A Small Computer

    NASA Technical Reports Server (NTRS)

    Massey, David E.

    1988-01-01

    System for analysis pulse-code modulation (PCM) comprises personal computer, computer program, and peripheral interface adapter on circuit board that plugs into expansion bus of computer. Functions essentially as "snapshot" PCM decommutator, which accepts and stores thousands of frames of PCM data, sifts through them repeatedly to process according to routines specified by operator. Enables faster testing and involves less equipment than older testing systems.

  17. A fast technique for computing syndromes of BCH and RS codes. [deep space network

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.; Miller, R. L.

    1979-01-01

    A combination of the Chinese Remainder Theorem and Winograd's algorithm is used to compute transforms of odd length over GF(2 to the m power). Such transforms are used to compute the syndromes needed for decoding CBH and RS codes. The present scheme requires substantially fewer multiplications and additions than the conventional method of computing the syndromes directly.

  18. Computational techniques for solar wind flows past terrestrial planets: Theory and computer programs

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Chaussee, D. S.; Trudinger, B. C.; Spreiter, J. R.

    1977-01-01

    The interaction of the solar wind with terrestrial planets can be predicted using a computer program based on a single fluid, steady, dissipationless, magnetohydrodynamic model to calculate the axisymmetric, supersonic, super-Alfvenic solar wind flow past both magnetic and nonmagnetic planets. The actual calculations are implemented by an assemblage of computer codes organized into one program. These include finite difference codes which determine the gas-dynamic solution, together with a variety of special purpose output codes for determining and automatically plotting both flow field and magnetic field results. Comparisons are made with previous results, and results are presented for a number of solar wind flows. The computational programs developed are documented and are presented in a general user's manual which is included.

  19. Numerical computation of space shuttle orbiter flow field

    NASA Technical Reports Server (NTRS)

    Tannehill, John C.

    1988-01-01

    A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.

  20. Determining mode excitations of vacuum electronics devices via three-dimensional simulations using the SOS code

    NASA Technical Reports Server (NTRS)

    Warren, Gary

    1988-01-01

    The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.

Top